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Chapter 4
Harnessing the Immune System Against 
Leukemia: Monoclonal Antibodies 
and Checkpoint Strategies for AML

Lucia Masarova, Hagop Kantarjian, Guillermo Garcia-Mannero, 
Farhad Ravandi, Padmanee Sharma, and Naval Daver

Abstract Acute myeloid leukemia (AML) is the most common leukemia among 
adults and is associated with a poor prognosis, especially in patients with adverse 
prognostic factors, older age, or relapsed disease. The last decade has seen a surge in 
successful immune-based therapies in various solid tumors; however, the role of 
immune therapies in AML remains poorly defined. This chapter describes the ratio-
nale, clinical data, and toxicity profiles of immune-based therapeutic modalities in 
AML including naked and conjugated monoclonal antibodies, bispecific T-cell 
engager antibodies, chimeric antigen receptor (CAR)-T cells, and checkpoint block-
ade via blockade of PD1/PDL1 or CTLA4. Monoclonal antibodies commonly used in 
AML therapy target highly expressed “leukemia” surface antigens and include (1) 
naked antibodies against common myeloid markers such as anti-CD33 (e.g., lintu-
zumab), (2) antibody-drug conjugates linked to either, (a) a highly potent toxin such 
as calicheamicin, pyrrolobenzodiazepine, maytansine, or others in various anti-
CD33 (gemtuzumab ozogamicin, SGN 33A), anti-123 (SL-401), and anti- CD56 
(lorvotuzumab mertansine) formulations, or (b) radioactive particles, such as 131I, 
213Bi, or 225Ac-labeled anti-CD33 or CD45 antibodies. Novel monoclonal antibodies 
that recruit and promote proximity-induced cytotoxicity of tumor cells by T cells 
(bispecific T-cell engager [BiTE] such as anti CD33/CD3, e.g., AMG 330) or block 
immune checkpoint pathways such as CTLA4 (e.g., ipilimumab) or PD1/PD-L1 
(e.g., nivolumab) unleashing the patients T cells to fight leukemic cells are being 
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evaluated in clinical trials in patients with AML. The numerous ongoing  clinical trials 
with immunotherapies in AML will improve our understanding of the biology of 
AML and allow us to determine the best approaches to immunotherapy in AML.

Keywords Acute myeloid leukemia • Immunotherapy • Monoclonal antibody • 
Immune checkpoint blockade

4.1  Introduction

Acute myeloid leukemia (AML) is the most prevalent acute leukemia among adults 
with an annual incidence of 19,000 new cases in the United States. AML comprises 
a heterogeneous group of diseases with differential behavior and overall survival 
impacted by numerous clinical, cytogenetic, and molecular factors. Despite exten-
sive research efforts, the therapy of AML has improved modestly over the last four 
decades. Standard frontline treatment still represents a combination of cytarabine 
and daunorubicin (“3 + 7”) introduced in the 1970s [1]. The 7 + 3 regimen produces 
complete remissions (CR) in approximately 70% of patients and long-term overall 
survival (OS) in 40% of young adults with AML. The results are worse in older 
patients or those with adverse karyotypes, where CR and OS rates are 50% and 
15%, respectively [2, 3]. Furthermore, despite intensified consolidation after remis-
sion, most patients experience subsequent relapse, likely from persistence of che-
morefractory leukemic “stem” cells. Improved induction regimens producing 
long-term remissions and/or the addition of maintenance therapy to high-risk 
patients in remission are warranted.

A significant number of patients with AML (especially those with adverse cyto-
genetic features, adverse molecular mutations, or antecedent hematological disor-
der) will be refractory or relapse after initial response to induction therapy. Patients 
with relapsed AML have further dismal outcomes, with response rates ranging from 
2 to 30% and OS of 1.5 to 3.8 months with salvage therapy [4, 5]. The only therapy 
offering long-term survival and a potential for cure in relapsed AML is allogeneic 
stem cell transplantation (ASCT), but age, performance status, and organ function 
requirements coupled with considerable morbidity and mortality of this procedure 
limits routine applicability of this approach. Therefore, improved therapeutic 
approaches in salvage AML are urgently needed.

Targeted immune therapies such as antibodies, CAR-T cells, and checkpoint 
inhibitors aim to increase antitumor activity without the burden of systemic toxici-
ties encountered with cytotoxic chemotherapies. Redirecting the patients’ own 
immune system to target cancer cells is a highly attractive treatment option and has 
become a standard and approved anticancer modality in solid tumors including 
melanoma, lung cancer, bladder cancer, and renal cancer. Although the role of 
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 antibodies that target CTLA-4 and PD-1, oncolytic viruses and adoptive T-cell 
therapy is well established in solid tumor malignancies, the experience in incorpo-
rating similar immune therapies for the treatment of leukemias remains limited. 
This is surprising for many reasons. Firstly, leukemias were the first tumor type to 
demonstrate the success of allogeneic stem cell transplant, an immunotherapeutic 
approach that depends on graft versus leukemia effect to eradicate leukemia cells 
[6]. Secondly, having an immune cell lineage, leukemias often express immune 
checkpoint molecules that are absent in solid tumor cells thereby offering direct 
targets for immune checkpoint inhibition. In the recent years, a number of immuno-
therapy approaches are under investigation in numerous clinical trials in patients 
with hematologic malignancies including AML, myelodysplastic syndrome (MDS), 
and acute lymphoblastic leukemia (ALL). These include monoclonal antibodies, 
naked or antibody-drug conjugates (ADC) targeting leukemia-specific antigens on 
AML cells (e.g., anti-CD33, anti-CD38, anti-CD123, anti-56) or immune check-
point blocking molecules (e.g., anti-PD-1, anti-PD-L1, or anti-CTLA-4), bispecific 
antibodies (e.g., bispecific T-cell engagers, BiTEs, e.g., CD3/CD33), T-cell adop-
tive therapy including chimeric antigen receptor (CAR) T cells and adoptively trans-
ferred natural killer (NK) cells.

This chapter focuses on the rationale, clinical data, and toxicity profiles of these 
immunotherapies for patients with AML.

4.2  Monoclonal Antibodies

Antibodies as cancer-targeting therapies have been investigated since the early 
1980s and a number of antibodies have successfully been used in the therapy of 
solid and hematologic malignancies [7]. Monoclonal antibodies work by a number 
of different mechanisms to target tumor cells, of which one of the most important is 
antibody-dependent cellular cytotoxicity (ADCC) mediated by activation of NK 
cells, neutrophils, and macrophages. Following ADCC, fragments of tumor cells are 
released and taken up by antigen-presenting cells (APCs), where they are presented 
on the surface by the major histocompatibility complex class II and I (MHC) to 
cytotoxic T-lymphocytes with subsequent killing of cells containing tumor antigens 
[8]. An ideal targetable cluster of differentiation (CD) surface antigen has to be 
highly expressed on leukemic blasts with minimal to no expression on other cells, 
especially hematopoietic stem cells (HPSC) to allow for recovery of normal hema-
topoiesis. CD33, CD123, CD32, CD38, CD47, CD44, CD96, and CLL-1 [9] have 
differential expression on AML and leukemia stem cells (LSC) when compared 
with normal HPSC and represent potential targets.

Most of the clinical efforts thus far have focused on exploiting CD33, CD123, 
and CD56 as targets, as they have been shown to be frequently expressed on AML cells 
including AML stem cells making them ideal markers for eradicating malignant 
stem cell while sparing normal HPSC [10–12].

4 Immunotherapy in AML
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4.2.1  Anti-CD33 Antibodies

CD33 is a member of the sialic acid-binding immunoglobulin-like lectins (Siglecs) 
and is a myeloid differentiation antigen [10] primarily expressed at very early stages 
on myeloid progenitors. CD33 is highly (>90%) expressed on AML blasts [13]. 
Unconjugated antibody lintuzumab (SGN-33) and several antibody-drug conjugates 
(ADCs) such as gemtuzumab ozogamicin (GO), AVE9633, and SGN-33A that target 
CD33 have been evaluated in the treatment of patients with AML. Conjugated anti-
bodies were engineered with an intention to improve the antitumor efficacy of CD33 
antibodies by leveraging the endocytolytic property of CD33.

4.2.1.1  Unconjugated Anti-CD33 Antibodies

Lintuzumab (SGN-33, HuM195), an unconjugated anti-CD33 antibody exerts its 
anti-leukemic activity through ADCC, complement-dependent cytotoxicity, and 
inhibition of inflammatory cytokines. Early clinic studies [14] with lintuzumab 
demonstrated promising activity with good tolerability. Subsequently, a phase 2B 
trial comparing low-dose cytarabine with or without lintuzumab in the frontline set-
ting and a phase 3 trial comparing mitoxantrone, etoposide, and cytarabine with or 
without lintuzumab in the salvage setting were conducted and both demonstrated no 
significant survival benefit. This resulted in cessation of further development of this 
agent in AML [15, 16].

Despite the initial disappointing results with unconjugated anti-CD33 antibodies 
in AML, recent research showed promising preclinical anti-leukemic efficacy with 
a new unconjugated Fc-engineered (enhanced binding affinity to Fcγ receptor IIIa 
on NK cells), CD33 antibody, BI836858. This fully humanized anti-CD33 antibody 
promoted more robust NK-cell-mediated anti-AML activity in patients treated with 
10 day decitabine [17]. The observed higher lysis of AML cells at day 28 post- 
decitabine was due to up-regulation of NK-activating receptor NKG2D ligands 
(NKG2DL) by the DNA-methyltransferase inhibitor decitabine resulting in 
enhanced NK-cell-mediated cytotoxicity against AML blasts. This agent will be 
entering clinical trials in the United States in late 2016 (Clinicaltrials.gov: 
NCT02632721).

4.2.1.2  Conjugated Anti-CD33 Antibodies

AVE9633 (ImmunoGen, USA) was the first anti-CD33 antibody conjugated to a 
cytotoxic toxin to be evaluated in clinical trials for patients with AML. The conju-
gated toxin was maytansine, a highly potent tubulin inhibitor. AVE9633 showed 
limited clinical activity in three phase 1 trials performed on 54 patients with refrac-
tory/relapsed AML, with only one CRp (CR with incomplete platelet recovery) and 
one PR (partial remission) observed [18].
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Gemtuzumab ozogamicin (GO; Mylotarg) (Pfizer, USA) is the best-known mono-
clonal antibody in AML therapy. Thus far, the largest clinical experience with a 
monoclonal antibody in AML has been with gemtuzumab ozogamicin (GO), a 
humanized anti-CD33 monoclonal antibody covalently linked to a semisynthetic 
derivative of a potent DNA-damaging toxin calicheamicin. In 2000, GO was granted 
accelerated approval by the United States FDA [19] on the basis of a 30% overall 
response rate (CR + CRi) in phase II clinical trials [20] in 142 and 277 patients with 
de novo AML in first relapse, respectively [21]. Response duration was difficult to 
determine due to the high prevalence of post-remission therapies; however, 
responses were relatively short. However, no difference in OS was observed in the 
phase III SWOG S0106 trial designed to meet FDA post-approval requirements 
[22]. The lack of clear clinical benefit, concerns about increased side effects, and 
slightly increased early death rate with GO in this SWOG trial [22], led to voluntary 
withdrawal of the drug from US markets in 2008. Particular concerns were related 
to life-threatening sinusoidal obstruction syndrome or veno-occlusive disease, 
which was more likely to occur when the drug was used in higher concentration, in 
combination with hepatotoxic agents, or within 3 months of allogeneic SCT (inci-
dence rate 9–14%) [23]. The mechanisms included either dissociation of calicheam-
icin from the anti-CD33 antibody causing direct toxic effect to hepatocytes or 
uptake of GO by CD33(+) cells residing in the hepatic sinusoids [24]. The potential 
benefits of GO in this trial might have been masked due to a suboptimal dosing 
schema as well as failure to perform patient subgroup analysis. Subsequently, large 
randomized trials conducted in the United States and Europe investigated GO in 
addition to standard induction chemotherapy in adults with newly diagnosed 
AML. These studies [25–27] showed statistically improved OS when GO was added 
to standard induction, particularly in younger patients with intermediate and/or 
favorable risk cytogenetics. In older patients, the addition of GO to cytotoxic induc-
tion regimens improved the relapse risk, event-free survival, and overall survival 
without improving the response rate or early mortality rate [26–27]. In a meta-
analysis of these randomized clinical trials, the addition of GO significantly reduced 
the risk of relapse (HR 0.8; 95%CI 0.72–0.89, p < 0.001), improved relapse free 
(HR 0.8; 95%CI 0.76–0.94, p = 0.001) and overall survival (HR 0.89; 95%CI 0.82–
0.97, p = 0.01), particularly in patients without adverse cytogenetics [28]. These 
data suggest that the use of GO in AML in the United States and Europe should be 
reassessed as suggested by experts in the field [29, 30]. Currently, clinical trials are 
ongoing to evaluate the efficacy and toxicity of GO either as a monotherapy or in 
combination with chemotherapy in frontline (France) and relapsed (United States) 
patients with AML, including its addition to standard conditioning prior to ASCT 
[ClinicalTrials.gov: NCT01869803, NCT02473146, NCT02221310].

SGN33A (vadastuximab talirine, Seattle Genetics, USA) is a promising new anti-
 CD33 antibody conjugated to a highly potent, synthetic pyrrolobenzodiazepine, 
producing DNA damage and cell cycle arrest with subsequent leukemic cell 
 apoptosis. In preclinical studies, SGN33A demonstrated greater cytotoxic potency 
against AML cell lines and primary AML cells than GO, regardless of multi-drug- 
resistant status or cytogenetic risk group [31]. Furthermore, 5-azacitidine was 
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shown to significantly enhance the tumor killing ability of SGN33A through enhanced 
ADCC and phagocytosis [32]. This compound is currently being tested in phase I dose 
escalation studies as a single agent and in combination with chemotherapy, including 
DNA-methyltransferase inhibitors (DNMTi) (decitabine or 5-azacitidine) in the pre- 
and post-ASCT setting, or as a monotherapy in maintenance [Clinicaltrials.gov: 
NCT02326584, NCT02785900, NCT02706899, NCT02614560]. Initial results 
from an ongoing phase II study combining SGN- CD33A with a DNMTi in elderly, 
treatment-naïve patients with AML are promising, with a CR plus CRi rate of 71% 
(including CR rate of 41%), ≥50% reduction in blasts in 85% of treated patients, 
and a low early mortality (8-week mortality of 4%) [33].

IMGN 779 (ImmunoGen, USA) is another humanized anti-CD33 antibody conju-
gated to a novel DNA-alkylating IGN payloads, DGN462 that acts as an alkylating 
cytotoxic agent without DNA crosslinking [34]. In preclinical studies, the com-
pound showed highly potent activity against AML cell lines in vitro and in primary 
AML patient samples isolated from peripheral blood or bone marrow. In long-term 
cultures, it has also demonstrated a dose-dependent decrease in leukemic stem cell 
colony formation without affecting normal HPSC thereby avoiding prolonged 
myelosuppression [35, 36]. IMGN 779 is currently being tested in a phase 1 clinical 
study for patients with relapsed or refractory AML [clinicaltrial.org: NCT02674763].

4.2.2  Anti-CD123

The CD123 antigen is another ideal target for monoclonal antibody-based therapy 
in patients with AML.  Binding of CD123 to interleukin-3 (IL-3Rα) results in 
increased cell survival and proliferation [37]. Overexpression of the interleukin 
(IL)-3 receptor α-chain (IL-3 Rα/CD123) on AML cells was found to be associated 
with enhanced blast proliferation, poor prognosis [38], and a major cause of leuke-
mia relapse and chemotherapy resistance.

The first anti-CD123 antibody CSL360 was a recombinant, chimeric immuno-
globulin G1 against CD123 that prevented IL-3Rα from binding to its receptor. 
CSL360 had underwhelming clinical efficacy when tested in relapsed, refractory or 
high-risk AML with only one CR observed among 26 treated patients [39]. These 
results resulted in cessation of further development of this compound in AML.

A second-generation anti-CD123 antibody, CSL362 is a fully humanized, geneti-
cally engineered antibody containing a modified Fc-domain to enhance binding to 
NK cells through Fcγ receptors (FcγR) of CD16 to enhance antibody-dependent 
cellular toxicity (ADCC). This agent showed potent activity in patients with 
CD123+ AML with a tolerable safety profile in a phase I study of 25 patients with 
AML in first or second CR/CRp with adverse risk factors conferring a high risk of 
early relapse. Among 20 patients evaluable for a response, 10 had maintained their 
CR, with a median duration of CR of 34+ weeks (range, 26–52 weeks) and ongoing 
at the last follow up. Furthermore, three out of six patients, who were MRD positive, 
converted to MRD negative. Related adverse events observed in ≥10% of patients 
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included infusion reaction/hypotension, hypertension, and increased C-reactive 
protein, three of these were classified as dose-limiting toxicities. Pharmacodynamic 
correlative studies showed rapid, complete, and durable in vivo depletion of cells 
highly expressing CD123 by induced ADCC [40].

Another anti-CD123 antibody currently in phase 2 clinical trials is SL-401 
(DT388IL3) (Stemline Therapeutics, Inc. USA)—a recombinant fusion protein com-
posed of the truncated diphtheria toxin and a human IL-3 ligand [41], which after 
binding to CD123 get internalized, and leads to inactivation of protein synthesis, and 
cell death. Encouraging results were shown in a phase I trial of SL401 in 74 AML/
MDS patients (56 with relapsed and refractory AML, 11 with de novo poor risk 
elderly AML, and 7 high-risk MDS), where ORR was observed in 6 patients (2 CRs 
and 4 PRs) and a minor response with blasts reduction was observed in 14 patients, 
including a > 50% reduction in bone marrow blasts in four patients. Moreover, disease 
stabilization was observed between 43 and 55% of patients. The median survival and 
overall survival at 12  months in patients with relapsed AML (≥2nd salvage) was 
3.2 months and 22%, respectively, both favorable when compared to historical results. 
Toxicities did not differ from those observed in patients with BPDCN. Severe grade 
3/4 adverse events were only transient and included elevation in transaminases (20%) 
and capillary leak syndrome (4%) [42, 43]. Recently reported data from the early 
expansion stages of an ongoing pivotal phase 2 clinical trial confirmed an overall 
response rate (ORR) of 87% in all patients with blastic plasmacytoid dendritic cell 
neoplasm (BPDCN) [44]. In the frontline setting, the response rate was 100% with 
majority of responses CR or CRc. The responses have been durable in all cases. The 
most common toxicities included fever, chills, hypotension, edema, transaminase 
elevation, and hypoalbuminemia. The notable toxicity was capillary leak syndrome in 
2/18 treated patients; this was reversible in one case and fatal in one case. The study 
continues to accrue and may be a breakthrough in the management of BPDCN. The 
phase II study evaluating SL401 in AML shows disease stabilization in heavily pre-
treated patients with relapsed refractory AML and is ongoing [45]. The results in 
AML have thus far been less impressive than those see in BPDCN. This agent is 
also being evaluated in a phase 2 trial designed as a consolidation therapy for 
patients with high-risk AML in first complete remission to determine whether target-
ing CD123 improves the duration of response and survival in patients who would tra-
ditionally be at a high risk of relapse [clinicaltrials.gov: NCT02270463].

4.2.3  Anti-CD56

CD56, also known as NCAM1, is a member of the neural cell adhesion molecule 
family [46] that plays an important functional role during nervous system differen-
tiation, and immune surveillance. Although primarily expressed in neuroendocrine, 
NK, and T cell lineages [47], aberrant CD56 expression is seen in a variety of hema-
tological malignancies [11] as well as solid tumors [48].
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IMGN901 (lorvotuzumab mertansine) (ImmunoGen, Inc., USA) is a humanized 
anti-CD56 antibody conjugated to tubulin inhibitor maytansinoid DM1 via a stable 
disulfide linker. On binding to the CD56 antigen, IMGN901 is internalized with 
intracellular release of toxin DM1 with subsequent microtubule disruption, cell 
cycle arrest, and ultimately cell apoptosis [49]. In preclinical models, IMGN901 
demonstrated high-affinity, antigen-specific binding, and antitumor activity in 
CD56-positive tumors [35]. And, open label phase 1/2 clinical trial was conducted 
in patients (n = 97) with relapsed CD56+ solid tumors in combination with chemo-
therapy. The drug had an acceptable tolerability profile with CR/PR observed in 
four patients and disease stabilization in 25% of evaluable patients [50]. This com-
pound is currently being evaluated in a phase 2 clinical trial in CD56+ hematologic 
malignancies, including AML, myelofibrosis, and BPDCN [clinicaltrials.gov: 
NCT02420873].

4.2.4  Radioimmunotherapy via Targeted Antibodies 
Conjugated to Radioactive Particles

The radiosensitive nature of AML best seen in the setting of a stem cell transplantation 
[51], the diffuse and widespread pattern of involvement, and the high expression of 
specific antigens on AML blasts, suggests that radioimmunotherapy via targeted 
antibodies conjugated to radionuclides may be an attractive alternative to antibodies 
conjugated to toxins. This approach has been explored in patients with AML for 
over two decades. Since the first phase 1 clinical trial published in 1991 demon-
strated the feasibility of using radiolabeled 131I anti-CD33 in patients with relapsed 
AML [52], several clinical studies have explored antibodies carrying beta (131Iodine, 
188Rhenium, 90Yttrium) or alfa (213Bismuth, 225Actinium) emitters, alone or as part of 
a conditioning regimen for ASCT in patients with relapsed AML against different 
AML targets (CD33, CD45, or CD66). Early clinical studies with easily accessible 
radionuclide 131I targeted against CD45 (131I-labeled anti-CD45 antibody) or CD33 
(131I-labeled anti-CD33 antibody—murine M195 and humanized Hu195) showed 
feasibility, efficacy, and acceptable toxicity when used in combination with stan-
dard conditioning regimen prior to ASCT in patients with refractory/high-risk 
AML [53–55]. 131I-labeled anti-CD45 antibody BC8 (Iomab-B, Actinium 
Pharmaceuticals, USA) is currently being tested in a phase 2 [clinicaltrials.gov: 
NCT00589316] and phase 3 registration trial [clinicaltrials.gov: NCT02665065] to 
evaluate the efficacy and safety of this agent in patients of all ages with relapsed or 
refractory AML as a part of myeloablative conditioning regimen prior to ASCT 
(phase 2) or in older patients with relapsed or refractory AML prior to ASCT in 
comparison to standard conventional care (phase 3).

In order to reduce the toxicity and improve the efficacy, especially in the settings 
of minimal residual disease (MRD), several studies have evaluated radionuclides 
emitting high energy or short range alfa particles, such as 213Bi and 225Ac. Preclinical 
studies followed by early clinical phase 1 studies showed the safety, feasibility, and 
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anti-leukemic activity of 213Bi anti-CD33 (213Bi-labeled HuM195). However, a very 
short half-life of only 48 min limited its widespread clinical testing [56]. To circum-
vent this problem, second-generation immunoconjugates, such as 225Ac (half-life of 
10  days), were developed. A phase 1 clinical trial with 225Ac-labeled anti-CD33 
antibody lintuzumab demonstrated clinical activity with reduction of the peripheral 
blood/bone marrow blasts in 63–67% of 18 evaluable patients with relapsed refrac-
tory AML. Dose-limiting toxicities included prolonged myelosuppression and death 
due to sepsis in three patients [57]. Based on these findings, a multicenter, phase I/
II trial is now underway to determine the toxicity and efficacy of fractionated-dose 
225Ac-lintuzumab (Actimab-A) (Actinium Pharmaceuticals, USA) in combination 
with low-dose cytarabine in untreated older (>60) patients with AML [clinitaltrials.
gov: NCT02575963].

4.3  T-Cell-Engaging Antibodies

A novel class of antibody-based immunotherapy in AML includes monoclonal anti-
bodies designed to promote antitumor activity by engaging and enhancing T- cell 
activation. These agents are called bispecific T-cell engagers (BiTEs). BiTE antibod-
ies are able to effectively recruit antigen-experienced T cells, without the requirement 
of pre- or co-stimulation, and lead to direct killing of tumor-associated antigen cell 
(TAA) [58]. BiTEs are composed of a single polypeptide chain consisting of two light 
and heavy chains of targeted antibodies. The first-in-class BiTE antibody, anti-CD19/
CD3 Blinatumomab, demonstrated significant clinical activity against CD19-positive 
malignancies [59]. Single agent blinatumomab tested in phase 2 clinical study in 189 
relapsed refractory ALL patients showed 43% CR/CRi rate (95% CI 36–50), with 
median OS and RFS of 6.1 and 5.9 months, respectively, and served as an excellent 
bridge to potentially curable allo-SCT in 40% of patients who achieved CR/CRi. 
These data resulted in the FDA approval of blinatumomab for the treatment of 
relapsed/refractory B-ALL. Based on these promising results, a similar construct tar-
geting CD3/CD33 has been developed to target AML, AMG 330 (Amgen, USA) [60]. 
In preclinical studies, AMG 330 demonstrated potent CD33- dependent cytolytic 
activity in vitro [61]. The drug is currently being evaluated in phase 1 clinical trial in 
patients with relapsed/refractory AML [clinicaltrials.gov: NCT02520427]. Another 
CD123/CD3 BiTE, JNJ-63709178 (Janssen, USA) is soon to enter phase 1 clinical 
trials in patients with relapsed refractory AML [clinicaltrial.gov: NCT02715011].

In an effort to improve the efficacy, stability, and valency of BiTEs, a novel class of 
Bivalent Dual Affinity Re-Targeting Bispecific Antibodies (DARTs) has been devel-
oped. DARTs are composed of heavy and light chain variable domains of two antigen-
binding specificities connected to two independent polypeptide chains via a disulfide 
linker [62]. Recently, a CD123/CD3 DART has been developed for AML (MGD006) 
and demonstrated promising anti-leukemic activity in preclinical studies [63]. This 
compound is currently being evaluated in a first-in-human phase I dose escalation 
study in patients with relapsed AML or International Prognostic Scoring system 
(IPSS) intermediate-2/high-risk MDS [clinicaltrials.gov: NCT02152956].
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4.4  Adoptive T-Cell Therapy

Adoptive cell therapy (ACT) is a highly personalized therapy that involves transfer 
of ex vivo expanded cytotoxic T-lymphocytes (CTLs) capable of targeting TAA into 
tumor-bearing patients. It was first recognized >20 years ago that some T cells from 
patients with cancer could immunologically recognize and kill the patients cancer 
cells [64]. Researchers found that patient lymphocytes stimulated in  vitro with 
interleukin 2 and tumor cells were able to lyse autologous tumor cell lines through 
major histocompatibility complex II (MHC II). These tumor-reactive T cells have 
been extensively investigated over the past years and may revolutionize out current 
approach to cancer therapy in hematologic and possibly in solid malignancies. The 
biggest advantage of ACT is that a large number (up to 1011) of lymphocytes can be 
grown in vitro and genetically engineered to express the binding site of specific 
antibodies. These T cells with engineered chimeric antigen receptor, also called 
CAR-T cell, are then able to directly bind to a specific TAA producing highly tar-
geted and robust tumor killing [65].

CARs consist of an extracellular domain created by the fusion between the vari-
able region of heavy and light chains of an antigen-specific monoclonal antibody 
(ScFv) separated by a short peptide linker and an intracellular T cell-activating 
domain, usually CD3-ζ of the TCR receptor, and a co-stimulator molecule. This 
allows CAR-T cells to manifest the tumor specificity of monoclonal antibodies 
while simultaneously activating effector T-cells independent of MHC [66]. Various 
CAR-T constructs have different co-stimulatory molecules to increase their efficacy 
and longevity (CD28, OX40, or 4-1BB in the second and third-generation con-
structs; additional cytokines such as IL-2, IL-15, IL-12, and IL-21  in the fourth- 
generation constructs) [67]. Anti-CD19 CAR-Ts have already shown remarkable 
success in the treatment of B-cell malignancies [68], and it remains to be estab-
lished whether similar activity can be reproduced in AML.

Only one clinical study testing anti-LeY CAR-T cells (Australia) in patients with 
AML has been completed and reported to date. This study reported the feasibility, 
safety, and persistence of CAR-T cells for up to 10 months post infusion as tested in 
five patients with relapsed AML (first salvage). Two patients achieved stable disease 
(duration of 23 months in one patient), and an additional two had transient response 
(blasts reduction/cytogenetic remission). Overall, infusion were well tolerated with 
no severe (grade 3 or 4) adverse events or tumor lysis syndrome observed [69]. A 
number of phase I clinical trials with CAR-T cells in relapsed, refractory AML 
patients are ongoing including anti-CD33, CD7, and CD133 CAR-T cell studies in 
China [clinicaltrials.gov: NCT01864902, NCT02799680, NCT02742727, 
NCT02541370] and anti-CD123 and anti-NKG2D ligand CAR-T cell studies in the 
United States [clinicaltrials.gov: NCT02159495, NCT02623582, NCT02203825].

Alternative T-cell-engaging antibody constructs, cytokine-induced killers (CIK), 
involving CD56 + NK like cells with a potent killing activity, showed activity in 
reducing refractory AML blasts and cell lines in preclinical studies when combined 
with anti-CD33 and/or anti-CD123 CAR-T [70].
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4.5  Checkpoint Inhibitors

Maintenance of immune homeostasis, self-tolerance, and prevention of autoimmu-
nity requires strict regulation of immune response, especially its quality and ampli-
tude, provided by T cells and multiple interactions between co-stimulatory and 
co-inhibitory signals [71]. T-cell-mediated immunity includes many steps involving 
initial presentation of antigen peptide on MHC through the T-cell receptor (TCR) 
with sequential activation of T cells. All the steps in this pathway are regulated by 
careful counterbalancing of the co-stimulatory and co-inhibitory signals and recep-
tors, resulting in appropriate T-cell effector function. The most important receptors 
promoting final activation of T cells are co-stimulatory signals CD28, 4-1BB 
(CD137), and CD27 (expressed on T cells), and CD80, CD86 (expressed on APC). 
These stimulatory signals are antagonized by inhibitory receptors (the so-called 
checkpoint inhibitors)—cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and 
programmed cell-death protein (PD-1).

A major impediment to cancer immunotherapy with the previously discussed 
antibody-based approaches in this chapter is tumor-induced immune suppression 
and evasion of anti-tumor immune responses, rendering the host tolerant to tumor- 
associated antigens [72, 73]. The true potential of cancer immunotherapy came to 
the fore with James Allison’s breakthrough discovery of cytotoxic T-lymphocyte 
antigen 4 (CTLA-4), a receptor on the surface of T cells that blocks the immune 
response by inhibiting T-cell activation and the subsequent development of an anti-
CTLA-4 antibody, ipilimumab, that blocks this “immune checkpoint” protein, 
thereby freeing the immune system to attack tumors [74].

Under normal physiological conditions, immune checkpoints regulate self- 
tolerance and protect tissues from damage by restraining the immune systems 
response to pathogenic infection. Deregulation of immune checkpoint proteins 
including up-regulation of negative co-stimulatory receptors and downregulation of 
positive co-stimulatory receptors plays a central role in tumor-mediated evasion of 
T-cell immune response [71]. Targeting CTLA4 and other immune checkpoint mol-
ecules represented a major breakthrough for immunotherapy in solid tumors and 
more recently in hematologic malignancies. These agents target inhibitory path-
ways on T cells thereby unleashing antitumor immune responses.

The two major approaches to immune checkpoint blockade that have been clini-
cally investigated in large numbers of patients, primarily in solid tumors and more 
recently in hematologic malignancies, focus on targeting the co-inhibitory recep-
tors, CTLA4 and PD-1, or its ligands PD-L1/PD-L2. These two inhibitory mole-
cules work on different levels and by different mechanisms. CTLA4 is expressed 
predominantly on the T cells in lymph nodes where it primarily regulates early 
T-cell activation. CTLA4 is sequestered in intracellular vesicles in T cells and is 
transported to the surface only after antigen recognition. The level of CTLA4 induction 
depends on the amplitude of the initial T-cell receptor (TCR)-mediated signaling, 
further amplified by co-stimulatory receptor CD28. The stronger the stimulation 
through the TCR, the greater the amount of CTLA4 deposited on the T-cell surface. 
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CTLA4 then binds to the same ligands as the co-stimulatory receptor CD28, namely, 
CD80 and CD86 and counteracts the stimulatory activity of CD28 by competitive 
inhibition. CTLA4 has higher affinity to CD80 and CD86 ligands and serves as a 
signal dampener to maintain a consistent level of T-cell activation, primarily by 
downregulation of T-helper cells and up-regulation of T-regulatory cells [74, 75]. In 
contrast, the major role of the PD-1 pathway (PD-1 receptor and its ligands) is to 
regulate inflammatory responses in the peripheral tissues by inhibiting effector T 
cells [76]. Inflammatory signals activate T cells and up-regulate expression of PD-1 
and PD-1L in the tissue. PD-1 expression inhibits the T-cell effector activity by 
decreasing the duration of interaction between the T cell <−  >  APC or T cell 
<− > target cell and enhancing Treg proliferation [77]. Moreover, chronic inflam-
mation leads to excessive production of inhibitory co-signals in tumor cells or their 
microenvironmental components, resulting in an exhausted or anergic state among 
co-signaling antigen-specific Tcells leading to immune escape of the tumor [78]. 
This may possibly be reversed by PD-1 or PD-L1 pathway blockade [79].

Clinical trials with anti-CTLA-4 antibodies, the first immune checkpoint tar-
geted antibody [74], have shown encouraging responses in melanoma, advanced 
mesothelioma, gastric cancer, non-small cell lung cancer, bladder cancer, and pros-
tate cancer [80–82]. CTLA4 inhibitor, ipilimumab, demonstrated overall survival 
benefit in patients with metastatic melanoma, and more importantly, revealed an 
important concept of immune-based therapies which seem to re-educate the immune 
system to keep tumors under control even in patients with multiple prior therapeutic 
intervention as was noticed by increased proportion of long-term survivors [80]. 
The responses with anti-CTLA4 occurred slowly after treatment initiation, in many 
patients were delayed up to 6 months, and were often maintained for many years 
after completion of a relatively short course of treatment. Toxicity mostly involved 
immune-mediated pneumonitis, colitis, hepatitis, or thyroiditis, and seemed to be 
manageable with steroids. Identification and targeting of additional positive 
 co- stimulatory receptors (4-1BB, CD27, ICOS, OX40, GITR) and negative co- 
stimulatory receptors (PD-1, CTLA4, TIGIT, BTLA, LAG3, TIM3) regulating 
T-cell activation and dual blockade of concurrently expressed receptors produced 
synergistic antitumor responses in mouse models [78].

Since the basic immunologic principles behind immune checkpoint therapy can 
be applied to other tumor types, it is plausible that immune checkpoint therapy can 
also be beneficial for patients with leukemias and other hematologic malignancies, 
specifically AML. Firstly, leukemias are one of the first tumor types to be success-
fully treated with immunotherapy approaches as proven by the success of allogeneic 
stem cell transplantation. Secondly, leukemias have an immune cell lineage and 
may express immune checkpoint molecules thereby offering direct targets for 
immune checkpoint therapy. For example, there is frequent expression of PD-L1 
and PD-L2 ligands on various hematopoietic cells—activated and non-activated 
T cells, B cells, and NK cells [83]. Similarly, markers typically associated with 
antigen- presenting cells, such as CD80 and CD86, are commonly overexpressed in 
hematologic malignancies owing to a common lineage shared by leukemia cells and 
APC [84–88]. Thirdly, a number of studies have demonstrated encouraging results 
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with immune checkpoint inhibition in other hematologic malignancies including 
Hodgkin’s lymphoma, follicular lymphoma, diffuse large B-cell lymphoma, and 
multiple myeloma. Specifically in leukemia, PD-1 and CTLA4 have been shown to 
play a role in leukemia, and graft versus host disease (GvHD), and their overexpres-
sion was clearly associated with a more aggressive leukemia [89, 90]. Researchers 
have demonstrated that PD1 plays a role in immune evasion and exhaustion of 
tumor-infiltrating lymphocytes (TILs) and that blocking CTLA4 and PD-1/PD-L1 
pathways enhances the anti-leukemia responses with decreased tumor burden and 
increased survival in murine models [91, 92, 93, 94]. Additionally, PD-1 positive 
T cells were shown to be significantly increased in the bone marrow aspirates of 
patients with relapsed AML as compared to healthy adult donors [95].

The initial clinical results of a phase I study of PD-1/PDL-1 inhibitor pidilizumab 
(MDV9300) in patients with various solid and hematologic malignancies included a 
small number of patients with AML. Among eight patients with AML and one patient 
with MDS, minimal response was seen in one patient with AML in the form of a 
decrease in the blast percentage from 50 to 5% [96]. In order to improve the response 
rate and the durability of response in patients with AML treated with checkpoint 
inhibitors, combinations of these agents with standard anti- leukemic therapy may be 
needed. 5-azacitidine, an epigenetic drug approved by FDA for the treatment of 
MDS, up-regulated PD-1, PD-L1, and PD-L2 (≥ 2-fold) in >50% of 61 evaluable 
patients with AML/MDS during their first course of therapy. There was a trend 
toward increased expression of all three genes in azacytidine- resistant patients com-
pared with sensitive patients, suggesting up-regulation of immune makers as a poten-
tial mechanism of resistance to 5-azacytidine and that concomitant inhibition of the 
PD-1/PD-L1 axis may be a potential mechanism to prevent or overcome resistance 
to 5-azacytidine [97]. These data have resulted in currently ongoing clinical trials 
combining epigenetic therapy with PD-1/PD-L1 inhibitor nivolumab (Opdivo, BMS-
936558) (Bristol-Myers Squibb, USA) in relapsed and frontline elderly AML, 
relapsed and frontline MDS and epigenetic therapy in combination with CTLA4 
inhibitor ipilimumab (Yervoy, BMS-734016) in relapsed and frontline MDS patients 
[ClinicalTrials.gov: NCT02397720, NCT02530463]. Phase 1/2 trials are evaluating 
the combination of PD-1 inhibitor nivolumab with standard induction chemotherapy 
in newly diagnosed AML patients [CTI: NCT02464657] or single agent nivolumab 
as a maintenance in high-risk AML patients to reduce the incidence of relapse (clini-
caltrials.gov: NCT02532231). CTLA4 inhibitor is being evaluated as a monotherapy 
in high-risk MDS failing HMA therapy and AML with minimal residual disease 
[CTI: NCT01757639]. Both PD1 and CTLA4 are also being tested in phase 1 trials 
for patients with AML after ASCT [CTI: NCT01822509]. Results from ongoing 
phase 1/2 trial of PD1 inhibitor nivolumab with 5-azacitidine [NCT02397720] are 
encouraging. Preliminary data on the 22 evaluable patients were recently presented 
by Daver et  al. [98] and showed significantly improved overall response rate, 
8-week mortality, and median progression-free survival as compared to historical 
outcomes with 5-azacitidine-based therapies from the same institution. A phase 1 
trial with CTLA4 inhibitor ipilimumab [CTI: NCT00060372] in patients with solid 
and hematologic malignancies, including patients with relapsed AML after allo-SCT 
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has been completed. Results on 28 patients with hematologic malignancies after 
stem cell transplant, including 12 patients with AML and 2 with MDS, were recently 
presented, and showed very encouraging activity with a CR/CRi rate of 33% and an 
overall disease reduction in 48%. Five of 12 (42%) patients with AML achieved CR, 
including 4 patients with chemorefractory leukemia cutis and/or myeloid sarcoma 
with the longest duration of response of 8 months and still ongoing. Typical immune-
related grade 2–4 toxicities were observed in four patients, three of them were able 
to resume the therapy after management with steroids. One patient died due to sepsis 
presumably related to severe adverse events (pneumonitis and colitis), four others 
had to be withdrawn from the study due to treatment-related adverse events (acute 
and chronic GVHD of gastrointestinal tract) [99].

Evaluation of the clinical efficacy of targeting immune checkpoint pathways 
beyond PD-1/PD-L1 and CTLA4, such as 4-1BB, OX40, and ICOS, is currently 
ongoing in patients with advanced or metastatic carcinomas [CTI: NCT02315066]. 
Agonistic antibodies to these co-stimulatory signals, such as 4-1BB, or OX40 may 
result in increased immune effector cytotoxicity. OX40 (CD134), 4-1BB (CD137) 
receptors, and the inducible co-stimulator receptor (ICOS) belong to tumor necrosis 
factor (TNF) receptors family members, and are potent co-stimulators in T-cell acti-
vation and promote expansion and proliferation of CD8+ and CD4+ T cells. They 
are transiently up-regulated on APC, B cells, macrophages, and T cells following 
their activation, and play a significant role in the functional maturation of T cells 
[100–102]. They were also found to be overexpressed on leukemic cells [103], and 
in the bone marrows of patients with AML [95] as compared to healthy donors. 
These data suggest that evaluation of these immune system accelerators in hemato-
logic malignancies, especially leukemias is warranted and may improve the 
responses when rationally administered in combination with checkpoint inhibitors. 
A number of ongoing phase 1/2 of clinical trials are evaluating these molecules 
(anti-4-1BB antibody PF-05082566; anti-OX40 antibody MEDI-6469, and anti-
ICOS antibody MEDI-570) in patients with advanced solid malignancies or lym-
phomas as single agents or in combinations [ClinicalTrials.gov: NCT02554812, 
NCT02559024, NCT02315066, NCT02520791]. Hopefully, these will soon be 
evaluable in hematologic malignancies.

Currently, ongoing clinical trials testing checkpoint inhibitors and monoclonal 
antibodies in patients with AML are summarized in Table 4.1 and Figs. 4.1 and 4.2.

4.6  Discussion

Immunotherapy is undoubtedly a breakthrough in cancer therapy, and emerging 
data suggests that immunotherapeutic approaches hold the potential to become one of 
the cornerstones of treatment strategies in AML. In spite of the rapid development 
of monoclonal antibodies and other immunotherapeutic agents for AML in clinical 
trials, none of these agents are approved for standard use and there remains limited 
experience in incorporating these therapies in routine clinical practice. Historic 
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monoclonal antibodies showed encouraging efficacy albeit with a potential for 
significant toxicity. The new generation of monoclonal antibodies with more effec-
tive payloads and better-selected targets are showing further enhanced activity with 
abrogated toxicity profiles. BiTEs, CAR-T cells, and other T-cell engaging agents 
along with immune checkpoint inhibitors are designed to harness the patient’s own 
immune system to target and kill leukemic cells, and the preclinical and early 
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clinical data are very promising. With rationally designed biomarker driven clinical 
trials these agents may well find a place in frontline treatment of high-risk AML as 
well as in salvage or maintenance setting.

Immunotherapy research in solid tumors has significantly enhanced our under-
standing of solid tumor cancer biology, and we hope that the ongoing research in 
leukemia will similarly help us better understand the underlying mechanisms of 
AML. However, several critical issues need to be addressed before immunotherapy is 
widely used in clinical practice for AML, including (1) defining the best targets in 
order to eradicate the disease while sparing the normal tissue, (2) accurately timing 
systemic therapy which may be lymphodepleting and may limit the efficacy of T cells 
required for immunotherapy effect, (3) timing of the immunotherapy in the context of 
high tumor burden with rapid proliferation often seen in hematologic malignancies 
and leukemias, (4) identification of ideal T-cell antigens to enable the development of 
targeted adoptive T-cell strategies with maximum potency and limited collateral organ 
damage, (5) improving the technology of targeted therapies to ensure better stability, 
delivery, and efficacy, (6) defining the ideal approach for combining immunotherapy 
with standard chemotherapy or other anti-leukemic therapies, (7) recognizing and 
developing standardized management of immune- mediated toxicities in leukemias, 
(8) and identification of resistance mechanisms with development of strategies to 
overcome such mechanisms. The gamut of ongoing and future clinical trials with 
extensive biomarker assays will likely help answer a number of these questions and 
allow immunotherapy to find its true niche in AML therapy.
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