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Abstract Internet of Things (IoT) is a network of physical things or objects fixed
with electronics, software, sensors and network connectivity. It is a new revolution
of the Internet that is hastily gathering impetus driven by the advancements in sensor
networks, mobile devices, networking, and wireless and cloud technologies. It
permits these things or objects to collect and transact and analyze data for per-
forming specific tasks in digital world with limited storage and processing capacities.
Due to massive adoption of cloud computing having virtually unlimited storage and
processing capabilities, it can be merged with IoT to be an important component of
Future Internet. This chapter explores IoT and cloud computing as well as their
symbiosis based on the common environment of distributed processing. For IoT
devices to be operational for longer time, the development of energy efficient
schemes for sustainable computing environment is a challenging issue. It is possible
to lease on-demand computing resources through cloud in an optimized manner
from energy point of view. Further, Computational Intelligence can help to save
device resources and energy by shifting the computational tasks from device to
cloud. To make the devices energy efficient, this chapter also presents a dominance
sort based optimized heuristic to offload and process local computations on cloud.
The proposed approach uses the multi-objective swarm intelligence technique, i.e.,
Multi-Objective Particle Swarm Optimization (MOPSO) to generate Pareto optimal
solutions for task offloading. Our method first determined which of the tasks can be
run locally over the mobile cores and which are to be offloaded to the cloud. This will
result into lower cost and high value to end user of services. The overall outcome can
be helpful to bolster the performance of IoT devices. Higher operational efficiency in
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system will help and support to make IoT sustainable in long run. These improve-
ments will pave the way for achieving a new level in IoT industry and establishing
new standard for benchmarking.

Keywords Computational intelligence ⋅ Sustainable computing ⋅ IoT ⋅
Cloud ⋅ Non-dominance ⋅ Pareto optimal solution

1 Introduction

Cloud computing is the latest emerging paradigm of distributed computing which
uses the concept of hardware and software virtualization to provide a dynamically
scalable services. Based upon the demand, these services can be accessed over
Internet. In the past few years, Distributed and Parallel Computing as well as
Service Oriented Computing attract the interests of researchers [1]. As compared
with the other traditional computing paradigms like cluster, Grid, and peer-to-peer
(p2p), the Cloud computing adopts a market-oriented business model where users
are charged for consuming Cloud services such as computing, storage, and network
services like conventional utilities in everyday life (e.g. water, electricity, gas, and
telephony) [2]. Cloud computing delivers three defined models as Software as a
Service (SaaS), where the user uses the various applications but has no control over
the hosting environment. The examples of SaaS include Google Apps and Sales-
force.com [3]. Platform as a Service (PaaS) offers a full or partial application
development environment that users can access and utilized online collectively or
individually. It facilitates the deployment of applications without the cost and
complexity of buying and managing the underlying hardware and software and
provisioning hosting capabilities. In this model, the platform is typically an
application framework. AWS and Google App Engine are PaaS cloud providers [4].
In infrastructure as a service (IaaS), the service provider provides the wide variety
of resources of different processing power and storage capabilities. The user can use
these resources to deploy its own applications. The user no longer needs to maintain
the hardware. Amazon EC2, Globus, Nimbus, and Eucalyptus are IaaS providers
[5]. Scalability and flexibility are two main advantages of cloud where the user can
access and release the resources as per their need.

On the other hand, Internet of Things (IoT) is a network of physical things or
objects fixed with electronics, software, sensors and network connectivity. It is
based upon ubiquitous and pervasive computing [6]. IoT consists of real world
small things with limited processing and storage capacities. But, the cloud virtually
provides unlimited storage and processing capabilities. Thus, by integrating these
two complementary techniques, the mutual advantages have been identified in the
literature and this new paradigm is known as CloudIoT [7]. In general, to handle the
issues of limited processing and storage capabilities, IoT can use unlimited
resources of Cloud. Similarly, Cloud can extend its scope from virtual to real world
things with the help of IoT. Cloud acts as an intermediate between the real things
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and virtual applications. It hides the complex functionality details to implement the
IoT [8]. The various applications of IoT includes Healthcare services [9], Smart
cities and communities [10], Smart home [11], Video surveillance [12], and Energy
efficient smart grid [13] etc. All of these applications need massive storage and
computational resources. Combining IOT with Cloud can solve the problem of
processing and storage. In the following we list the few advantages obtained using
CloudIoT paradigm:

(i) Storage: IoT applications generate a large volume of structured and
semi-structured data. It requires collecting, processing, sharing and searching
of large volume of data. This problem can be solved by accessing the
unlimited, cost efficient and on-demand storage services of Cloud [14].

(ii) Computational Resources: IoT devices cannot perform complex on-site data
processing due to their limited processing and limited battery. So, major
processing unit of an application is transmitted to nodes that are more pow-
erful in terms of processing and storage. As, cloud provides virtually unlimited
processing capabilities, this represents another important CloudIoT driver. The
major processing part of an application is offloading to the cloud for energy
saving of IoT devices [7].

Thus, these several motivations lead to the integration of Cloud and IoT. But, at
the same time, it imposes several challenges for each application. Main challenges
include heterogeneity of resources, security, performance, reliability and power and
energy efficiency, etc. [8].

For IoT devices to be operational for longer time, the development of energy
efficient schemes for sustainable computing environment is a challenging issue.
Energy efficient task offloading is currently getting interest of the research com-
munity [15]. Computational Intelligence techniques can help to save device
resources and energy by shifting the computational tasks from device to cloud.
Computational Intelligence techniques generate number of Pareto optimal solutions
depending upon the user requirements.

This chapter first explores the work done in the area of energy efficient task
offloading techniques for IoT enabled mobile devices. From the study of work
done, we have found that none of the existing techniques used Computational
Intelligence techniques to give optimal energy saving results to the user. So, to
make the devices energy efficient, in this chapter, we have also proposed a novel
technique to offload the task from IoT enabled mobile devices to cloud. The pro-
posed approach uses the multi-objective computational intelligence to generate
Pareto optimal solutions for task offloading. Our method first determined which of
the tasks can be run locally over the mobile cores and which are to be offloaded to
the cloud. Then, results of this assignment is fed into the initial population of
multi-objective swarm intelligence technique, i.e., Multi-Objective Particle Swarm
Optimization (MOPSO) to schedule the task either over mobile cores or offloaded
to cloud such that the precedence requirements among the different tasks along with
time constraints are met and energy consumption of IOT mobile devices is
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minimized. The simulation analysis validates that the solutions obtained with
proposed heuristic deliver better convergence and uniform spacing among the
solutions as compared to others.

The remaining chapter is organized as follow: Sect. 2 presents the related work
done on energy efficient task offloading techniques. The problem description is
presented in Sect. 3. Section 4 described the multi-objective optimization approach.
Section 5 explains the proposed modified multi-objective PSO. Section 6 discusses
the simulation strategy and result analysis. Finally, Sect. 7 concludes the chapter.

2 Related Works

The various heuristics in the literature have been proposed for task scheduling and
task offloading problems in mobile cloud environment. Broadly, these are of two
types: (I) minimizing the makespan of an application [16–18] and (ii) minimizing
the battery consumption of mobile devices [15, 19, 20]. With the objective of
minimizing the makespan, a list based heuristic, HEFT[16] was proposed. Firstly, it
assigned priority to all tasks and then mapped the highest priority task to a machine
that gave the earlier finish time of a task at each step and thus minimized the overall
completion time of an application. Another heuristic, named, Push-Pull algorithm
has also been proposed. This algorithm initially used a random schedule and then
deterministic guided search method is applied to iteratively improve the current
solution [17]. For maximizing the throughput a genetic algorithm was proposed
[18] that partition the application task over a mobile device and the cloud in an
optimized manner. An incremental greedy strategy to offload and parallel execution
of perceptual applications [21] has also been proposed to reduce the finish time of
applications. In recent years, the main focus of the researchers is on energy aware
scheduling mobile devices. Rong and Pedram [22] used the positive slack time
between tasks for minimizing the energy consumption of a computer system. Li
et al. [23] presented an optimized maximum-flow/minimum-cut task partitioning
algorithm to offload the tasks from mobile device to cloud for minimizing energy
consumption. Kumar and Lu [24] proposed a strategy based upon computation-to
communication ratio for making offloading decision to minimize the energy
consumption.

To find the trade-off solutions between completion time and energy for parallel
tasks, Lee and Zomaya [25] proposed two energy-conscious scheduling (ECS and
ECS + idle) for heterogeneous computing systems. An integer liner programming
based optimization technique [26] for adaptive computation offloading is addressed
considering the available memory, CPU and energy consumption as the main cri-
teria for offloading. Wu et al. [27] presented an offloading decision model using
network unavailability to decide whether to offload a task for remote execution or
not. Similarly, another task offloading technique, CRoSS algorithm [28] was also
presented using the link failure rate and the bidirectional transmission rate as main
factors for offloading. Along with these factors, other important computing factor is
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clock frequency. Using Dynamic Voltage Frequency Scale (DVFS), the mobile
device energy can be further optimized [29] as the CPU clock frequency is
approximately linearly proportional to the voltage supply. Similarly, a mobile
device can be connected to more than one wireless networks and thus can offload
the data to different networks. To address multisite offloading, a graph partitioning
approach is proposed to find solution to the partitioning problem [30]. Lin et al.
proposed the task scheduling and task migration algorithm from mobile device to
cloud based on DVFS for mobile cloud computing [31]. The results showed a
significant reduction in energy under the application completion constraints. Energy
efficient computational offloading framework (EECOF) [32] has been presented to
leverage minimal application processing migration to cloud and thus reducing the
total energy consumption cost. Based on contextual network conditions [33], an
energy model was presented whether to offload a task or to run it locally. Similarly,
few fuzzy and artificial intelligence based decision support systems [34–36] have
also been developed to offload the tasks.

From the review of literature, it has been found that most of the existing studies
try to minimizing the makespan or energy consumed while scheduling the tasks in
mobile cloud environment. None of the existing techniques used multi-objective
computational intelligence techniques like MOPSO [37], NSGA-II [38], and
FDPSO [39] etc. that give set of near optimal solutions. Hence, this chapter pre-
sented multi-objective optimization technique that generates a set of near optimal
solutions for mobile cloud applications. We proposed the Modified Multi-Objective
Particle Swarm Optimization (MMOPSO) algorithm using the concept of
non-dominance to offload the tasks from mobile device to the cloud so as to
minimize the energy consumption of created schedule plan.

3 System Model and Assumptions

3.1 Application Model and Mobile Cloud Model

A user application is modelled by a Directed Acyclic Graph (DAG), defined by a
tuple G (T, E), where T is the set of n tasks {t1, t2, …, tn}, and E is a set of e edges,
represent the dependencies. Each ti ε T, represents a task in the application and each
edge (ti … tj) ε E represents a precedence constraint, such that the execution of tj ε T
cannot be started before ti ε T finishes its execution [40]. If (ti, tj) ε T, then ti is the
parent of tj, and tj is the child of ti. A task with no parent is known as an entry task
and a task with no children is known as exit task. The task size (zi) is expressed in
Million of Instructions (MI).

Our mobile cloud model consists of a mobile device having m, computational
cores, R = {r1, r2, …, rm} at different processing power and a cloud resource. The
processing power of a core (mobile core or cloud core), is expressed as Million of
Instruction per Second (MIPS) and is denoted by PPrp . Each core is Dynamic
Voltage Scaling (DVS) enabled; in other words, it can operate with different

Computational Intelligence Based Heuristic Approach … 57



Voltage Scaling Levels (VSLs) i.e., at different clock frequencies. This mobile
device has also access to the computing resources on the cloud. Each task can be
executed on different cores or can be offloaded to cloud for its execution. The
execution time, ET(i,p), of a task ti on a core (either mobile core or cloud core), is
calculated by the following equation:

ET ði, pÞ =
Zi

PPrp
ð1Þ

We use ET(i,c) to denote the execution time of task ti on cloud c. Time for
sending the task ti to cloud is given by

Ti
s =

datai
BWs

ð2Þ

where datai is the task data and BWs is the available bandwidth of sending channel.
Similarly, time for receiving output of task ti from cloud is given by

Ti
r =

datai
BWr

ð3Þ

where datai is the task data and BWr is the available bandwidth of receiving
channel.

Let EST (ti, rp) and EFT (ti, rp) denote the earliest Earliest Start Time and the
Earliest Finish Time of a task ti on a local core rp, respectively. For the entry task,
we have:

EST tentry, rp
� �

= avail rp
� � ð4Þ

For the other tasks in DAG, we computer EST and EFT recursively as follows:

EST ti, rp
� �

=max
avail rp

� �
max

tjεpredðtiÞ
fAFT tj

� �
+ ctijg

(
ð5Þ

EFT ti, rp
� �

=ET ði, pÞ +EST ti, rp
� � ð6Þ

where pred (ti) is the set of parent tasks of task ti, and avail (rp) is the time when the
core rp is ready for task execution. The Estimated Remote Execution Time of a task
ti on a cloud is given by:

ERT ti, cð Þ=ET ði, cÞ +Ti
s + Ti

r ð7Þ

Similarly, AST (ti,rp) and AFT (ti,rp) denotes the Actual Start Time and Actual
Finish Time of task ti on local core or on cloud, respectively. The makespan is equal
to the maximum of actual finish time of the exit tasks texit and is defined by
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M =max AFT texitð Þf g ð8Þ

The makespan is also referred to as the running time for the entire application
DAG. The energy model used in this study is derived from the capacitive power
(Pc) of Complementary Metal-Oxide Semiconductor (CMOS)-based logic circuits
[41] which is given by:

Pc =ACV2f ð9Þ

where A is the number of switches per clock cycle, C is the total capacitance load,
V is the supply voltage, and f is the frequency. It’s clear from Eq. (9) that the supply
voltage is the dominant factor; hence, low supply voltage means lower power
consumption.

The energy consumed by executing entire application tasks over available local
core is defined as [41]

El =ACV2f ⋅ET i, pð Þ = αV2
i ET i, pð Þ ð10Þ

where Vi is the supply voltage of the core on which task ni is executed, and ET i, pð Þ is
the execution time of task ni on the scheduled core rp.

If task ni is offloaded to the cloud, the energy consumption of mobile device for
offloading the task is given by:

Ec =ACV2f ⋅ET i, cð Þ = αV2
i ET i, cð Þ ð11Þ

where Vi is the supply voltage of the sending channel and ET i, cð Þ is the execution
time of task ni on the cloud c. Therefore, the total energy consumed, i.e., Etotal for
executing the whole application is given by

Etotal = ∑
n

i=1
Ei ð12Þ

where Ei = El if the task ti is executed locally and is equal to Ec if the task ti is
offloaded to the cloud.

4 Task Scheduling Based on Multi-objective Particle
Swarm Optimization

The first part of this section introduces the concept of Multi-Objective Optimization
and the second part gives an overview of Particle Swarm Optimization (PSO).
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4.1 Multi-objective Optimization

A Multi-objective Optimization Problem (MOP) [42] with m decision variables and
n objectives can be formally defined as:

Minðy= f ðxÞ= ½f1ðxÞ, . . . , fnðxÞ�Þ

where x = (x1, …, xm) ∈ X is an m-dimensional decision vector, X is the search
space, y = (y1, …, yn) ∈ Y is the objective vector and Y the objective-space.

In general MOP, there is no single optimal solution with regards to all objec-
tives. In such problems, the desired solution is considered to be the set of potential
solutions which are optimal for one or more objectives. This set is known as the
Pareto optimal set. Some of the Pareto concepts used in MOP are as follows:

(i) Pareto dominance. For two decision vectors x1 and x2, dominance (denoted
by ≺) is defined as follows:

x1 ≺ x2 ⇐ ⇒ ∀ifiðx1Þ≤ fiðx2Þ∧∃jðx1Þ< fiðx2Þ

The decision vector x1 is said to dominate x2 if and only if, x1 is as better as x2 for
all the objectives and x1 is strictly superior to x2 in at least one objective.

(ii) Pareto optimal set. The Pareto optimal set Ps is the set of all Pareto optimal
decision vectors.

PS = fx1 ∈X, j∄ x2 ∈ : x2≺ x1g

where the decision vector, x1, is said to be Pareto optimal when it is not dominated
by any other decision vectors, x2, in the set.

(iii) Pareto optimal front. The Pareto optimal front PF is the image of the Pareto
optimal set in the objective space.

PF = ff ðxÞ= ðf1ðxÞ, . . . , fnðxÞÞjx∈PSg

4.2 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a stochastic optimization technique that
operates on the principle of the social behavior of swarms of birds or the schools of
fish [43]. In this technique, a swarm of individuals, known as the particles, flow
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through the swarm space. Each particle represents a candidate solution to the given
problem. Each particle is associated with two parameters, namely, current position,
xi and current velocity, vi.

The position of a particle is influenced by the best position visited by it, i.e., its
own experience (pbest). Along with pbest, the second parameter that influences the
position is the position of the best particle in its neighborhood, i.e., the experience
of neighboring particles (gbest). The performance of each particle is measured
using a fitness function that varies depending on the optimization problem. During
each PSO iteration k, particle i updates its velocity vki and position vector xki as
described below [43]:

(a) Updating Velocity Vector

vk+1
i =ωvki + c1rand1* pbesti − xki

� �
+ c2rand2* gbest− xki

� � ð13Þ

where ω: inertia weight; c1: cognitive coefficient based on particle’s own experi-
ence; c2: social coefficient based on the swarms experience; rand1, rand2: Random
variables with between (0,1).

The inertia weight, ω, controls the momentum of the particle. Improvement in
performance is obtained by decreasing the value of ω linearly from its maximum
value, ω1, to its minimum value, ω2 [44]. At iteration k, its value, ωk is obtained as:

ωk = ω1 −ω2ð Þmax k− k
max k

+ω2 ð14Þ

Similarly, if c1 decreases from its maximum value, c1max, to its minimum value,
c1min, then more divergence among the particles in the search space can be
achieved, while if c2 increases from its minimum value, c2min, to its maximum
value, c2max, then the particles are much closer to the present gbest. The following
equations are used to find the values of c1i and c2i at iteration k:

c1i = c1min − c1maxð Þ k
max k

+ c1max ð15Þ

c2i = c2max − c2minð Þ k
max k

+ c2min ð16Þ

where max_k is the maximum number of iterations and k is the iteration number.

(b) Updating Position Vector

xk+1
i = xki + vki ð17Þ
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where xki : position of the particle at kth iteration; vki: velocity of the particle at kth
iteration.

(c) Fitness Function

The fitness function used in proposed MMOPSO is as described in Eq. (18):

Fitness=Etotal ð18Þ

The next section describes the proposed algorithm based upon multi-objective
PSO.

5 Proposed Work

In order to solve the multi-objective task scheduling problem for mobile cloud
environment, we have proposed the Modified Multi-Objective Particle Swarm
Optimization (MMOPSO) algorithm based upon non-dominance sorting procedure.
The proposed algorithm is consisting of two phases. In the first phase, the initial
schedule in created based upon HEFT [16] to minimizes the makespan. Then in the
second phase, the schedule created in first phase is fed into the initial population of
MMOPSO for minimizing the energy consumption (E). Both of the phases are
explained below:

5.1 First Phase: Initial Schedule

For creating the initial schedule, HEFT algorithm is used to schedule tasks over the
mobile cores as well as over the cloud cores. For this purpose, first of all, the
application tasks are divided into either local task or cloud task. For each task ti, we
defined its minimum completion time over mobiles cores as

Tmin
i = min

1≤ p≤m
fET i, pð Þg ð19Þ

And if Tmin
i <ERT ti, cð Þ, then the task ti will run on mobile cores and is known

as local task, otherwise it is known cloud task.
If a task ti is cloud task, then its average execution time is given by

wi =ERT ti, cð Þ ð20Þ
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Otherwise,

wi = avg
1≤ p≤m

fET i, pð Þg ð21Þ

Each task is assigned a priority using upward rank as defined in HEFT and is
given by Eq. (22).

rankðtiÞ=wi + max
tjεsuccðtiÞ

frankðtjÞg ð22Þ

where wi is the average execution time of the task on the different computing
resources; succ(ti) includes all the children tasks of ti. After assigning the rank to all
tasks, initial schedule is generated using HEFT.

5.1.1 An Example

An example workflow with 10 tasks as shown in Fig. 1a is considered to illustrate
the working of the first phase. Figure 1b shows the execution time of these tasks on
three different available mobile cores. It has been assumed that Ts

i = 3, Tr
i = 1 and

ET(ti,c) = 1 for each task.
After applying Eq. (18), only task t2 is identified as cloud task and rest will be

assigned on the mobile cores. Then the rank of all the tasks is calculated using
Eq. (21). The order of execution after sorting tasks in descending order of their rank
is: t1, t3, t6, t2, t4, t5, t7, t8, t9, and t10. Now the tasks are assigned either on local
cores or over cloud using HEFT as shown in the Fig. 2.

5.2 Second Phase: MMOPSO Algorithm

The main steps followed in MMOPSO algorithm are described in Fig. 1. The
fitness function used is presented by Eq. (18) in Sect. 4.2. MMOPSO algorithm is
executed for bi-objective task offloading problem, i.e., minimization of execution
time and energy. Therefore the task offloading problem is formulated as (Fig. 3):

Minimize TimeðSÞ=max AFT texitð Þf g
Minimize Energy (S) = Etotal

Subject to Time (S) < D

Where D is the maximum completion time of an application over mobile device.
MMOPSO algorithm used the following operators:

(a) Archive Updating:

In multi-objective algorithms, the non-dominated particles are stored in elite
archive. Particle’s dominance is checked against other particles based upon the
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objective functions. The current generation’s solutions are combined with the
solutions in the archive of previous generations to make 2 N solutions, where N is
the size of archive. Then, all of these solutions are sorted in ascending order of their
dominance. If more than one solutions show the same dominance value, then
diversity perimeter, I (.) is calculates for such solutions. The solution showing
higher value of I (.) is selected. For updating archive, the best N solutions are
selected from these 2 N solutions based upon dominance and perimeter [39].

(b) Diversity Perimeter:

The diversity parameter for any solution y, I(y) is given by:

I yð Þ= ∑
M

i=1

f i xð Þ− f i zð Þ
max f ið Þ−min f ið Þ ð23Þ

Task Core1 Core2 Core3
t 1 9 7 4
t 2 8 6 5
t 3 6 5 4
t 4 7 5 3
t 5 5 4 2
t 6 7 6 4
t 7 8 5 3
t 8 6 4 2
t 9 5 3 2
t 10 7 4 2
b) Execution Time of tasks on different 
cores

t1

t 2 t 3
t 4 t 5 t 6

t 7
t 8

t 10

(a) An Example Workflow

t 9

Fig. 1 An example
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where x and z are adjacent solutions to y, after sorting the solutions in ascending
order according to ith objective. The infinite value is assigned to the boundary
solutions. Higher the value of I(y), more is sparseness. So, the diversity of the
solutions increases with the high values of I(y).

(c) Updating pbest and gbest:

The binary tournament operator is used to select gbest solution from the current
archive. The particle’s current position is compared based on dominance sort with
the best position from the previous generation for updating pbest. If there is no
dominate solution, then the current position of particle is selected as current pbest.

(d) Mutation:

MMOPSO algorithm used the replacement mutation [45] to avoid stucking into
local minima and to explore the search space efficiently. For applying the adaptive
mutation, mutation probability, P(Mutation) is calculated using the following
equation:

P Mutationð Þ=1−
k

max k
ð24Þ

where k is the current iteration and max_k is the maximum iterations. A random
number (rand) in range [0, 1] is generated for every particle. If rand < P (Muta-
tion), then a task is randomly selected for mutation.

Fig. 2 Initial assignment of
first phase
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6 Performance Evaluations

In this section, the simulation of the proposed heuristic, MMOPSO is presented. To
evaluate the proposed task offloading workflow scheduling algorithm, we used five
synthetic workflows based on realistic workflows from diverse scientific applica-
tions, which are:

• Montage: Astronomy
• EpiGenomics: Biology
• CyberShake: Earthquake
• LIGO: Gravitational physics
• SIPHT: Biology

The detailed characterization for each workflow including their structure, data
and computational requirements can be found in [46]. Figure 4 shows the
approximate structure of each workflow.

Algorithm : Modified Multi-Objective Particle Swarm Optimization(MMOPSO) algorithm 

Input: Application with maximum completion time constraint, D 
Output : Non-dominant energy efficient schedule solutions

1.   a) Set iteration counter k = 0.

b)  Randomly initialize population of N swarm particles. 

c) Insert the schedule created in first phase as one of the swarm particle. 

d) Initialize all particle velocities V k
(i,) to zeros and personal best position pbest k

(i,) is set to X k
(i ).

2. Evaluate the fitness of all swarm particles according to eq. (18). 

3. Based on non-dominance and diversity parameter, sort all the particles in ascending order Then, initialize 
the archive Ak

(i,) with it.

4. Set k = k + 1.

5. For all the particles, repeat the following:

a) Initialize the gbest k
(i, ) from the archive with binary tournament selection.

b) Update the velocity of k th particle V k
(i,) according to Eq. (13). 

c) Update particle position X k
(i) according to Eq. (17).

d) Apply adaptive mutation using Eq. (24) 

6. Evaluate the fitness of all swarm particles according to eq. (17). 

7. Combine the solutions of current particle positions with the archive solutions to have total of 2N particle 
solutions. 

8. Select the best N solutions from the solutions of step 7 on the basis of non-dominance sort and perimeter, 
acc. to Eq. (23) and update the archive.

9. Update each particles pbest k
(i ) and gbest k

(i ). 
10. If (k <  max _k) then go to step 3, otherwise output the non- dominant solutions from the archive

Fig. 3 MMOPSO Algorithm
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6.1 Experimental Setup

For simulation, we assume a mobile cloud environment consisting of a mobile
device and a cloud service provider. We assume three heterogeneous cores with
different processing speed in a mobile device and one core available at the cloud.
For simplicity it is assumed that every task take 30 secs to sending data over cloud
from the mobile device and take 10 secs to receive the data from the cloud. For this

a) Montage b) EpiGenomics

c) CyberShake
d) SIPHT

e) LIGO

Fig. 4 Structure of various workflows [46]
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study, we have used the CloudSim [47] library. The existing CloudSim simulator
allows modelling and simulating cloud environment by dealing only with single
workload. It is not suitable for mobile cloud environment. So, the core framework
of CloudSim simulator is extended to handle task scheduling problem for MCC.
Each core is Dynamic Voltage Scaling (DVS) enabled; i.e., it can work at different
Voltage Scaling Levels (VSLs). For each resource, a set Vj of v VSLs is random and
uniformly distributed among three different sets of VSLs (Table 1).

The values for maximum completion time, D is generated as:

D=3*MHEFT

where MHEFT = makespan of HEFT

6.2 Performance Metrics

The analysis of the proposed algorithm has been done with existing state-of-art
algorithms using the following performance metrics:

(a) Generational Distance (GD): GD [38] is a convergence metric and used to
access the quality of an algorithm against the true pareto front P* which is
generated by merging solutions of different algorithms. It is calculated using
Eq. (25):

GD=
ð∑jQj

i=1 d
2
i Þ1 2̸

Qj j ð25Þ

where di is the Euclidean distance between the solution of Q and the nearest
solution of P*. Q is the front obtained from algorithms for which GD metric is
calculated.

Table 1 Voltage–relative speed pairs

Level Pair 1 Pair 2 Pair 3
Voltage
(vi)

Relative
speed (%)

Voltage
(vi)

Relative
speed (%)

Voltage
(vi)

Relative
speed (%)

0 1.6 100 2.5 100 2.0 100
1 1.4 85 2.0 75 1.6 80
2 1.2 60 1.5 55 1.4 60
3 1.1 45 1.0 35 1.0 40
4 1.0 30 1.0 35 – –
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(b) Spacing: To check the diversity among the solutions, spacing metric [38] is
used and is given by Eq. (26):

Spacing=

ffiffiffiffiffiffiffi
1
Qj j

s
∑
Qj j

i=1
ðdi − dÞ2 ð26Þ

where di is the distance between the solution and its nearest solution of Q and it is
different from Euclidean distance and d is the mean value of the distance measures
di. The small value of both GD and Spacing metric is desirable for an evolutionary
algorithm.

6.3 Simulation Results

This section presents simulation results and analysis of our proposed
Multi-objective MMOPSO algorithm. Now a days, Non-dominated Sort Genetic
Algorithm (NSGA-II) [38] and ε-FDPSO [39] are the state-of- art techniques to
solve MOP. To measure the effectiveness of proposed MMOPSO algorithm, all
these algorithms have been designed and simulated for multi-objective workflow
scheduling problem for mobile cloud environment. For implementing the NSGA-II,
we used binary tournament selection, one-point crossover and replacing mutation.
We have assumed parameters used in ε-FDPSO, and MMOPSO algorithms to be:
population size = 20, c1 = 2.5 → 0.5 and c2 = 0.5 → 2.5, inertia weight
ω = 0.9 → 0.1 and for NSGA-II population size is 20, crossover rate is 0.8, and
mutation rate is 0.5. The performance of scheduling algorithms is evaluated con-
sidering the randomly generated workflow applications. For bi-objective task
offloading problem, we considered the application completion time and the energy
consumed of the created schedule as two conflicting objectives. To obtain the
Pareto optimal solutions with ε-FDPSO, MMOPSO, and NSGA-II, algorithms, 100
samples have been captured through simulation.

Figures 5, 6, 7, 8 and 9 shows the bi-objectives non-dominated solutions for
Montage, CyberShake, EpiGenomics, LIGO, and SIPHT workflows, respectively.
The x-axis represents the execution time of created schedule for respective work-
flow structure, and y-axis represents the energy consumed by created schedule for
respective workflow structure.

It has been observed that most of the solutions obtained using MMOPSO
algorithm is lying closely to the true front and showing he uniform spacing among
the solutions. These results are analyzed using two metrics, i.e., GD and Spacing.
Table 2 and Table 3 presents the comparative results for all the three algorithms on
the basis of GD and Spacing metrics for Montage, CyberShake, EpiGenomics,
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LIGO, and SIPHT workflows, respectively. The results are obtained by taking the
average of 10 simulations as described below.

From Table 2, it is clear the performance of the MMOPSO algorithm is better
and reaches a solution set that is 84, 83, 55, 55, and 80% closer to true Pareto front
as in comparison to the solution set created by FDPSO for Montage, CyberShake,
Epigenomics, LIGO and SIPHT workflows, respectively as well as 90, 86, 70, 72,
and 87% closer to true Pareto front as in comparison to the solution set created by
NSGA-II for Montage, CyberShake, Epigenomics, LIGO and SIPHT workflows,
respectively.
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It has been observed from Table 3, the values of spacing metric using MMOPSO
algorithm is 26, 43, 38, 36, and 40% lower than that of values of spacing metric
obtained using FDPSO for Montage, CyberShake, Epigenomics, LIGO and SIPHT
workflows, respectively as well as 35, 47, 34, 38, and 37% lower than that of values
of spacing metric obtained using NSGA-II algorithm for Montage, CyberShake,
Epigenomics, LIGO and SIPHT workflows, respectively. This is due to use of
trade-off schedule plan between makespan and energy in the creation of
non-dominated solution set. So, it is concluded that MMOHPSO algorithm pro-
vides uniform spacing as well as better convergence among the solution set as
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compared to other algorithms for all workflow structures under consideration.
Hence, it is applicable to offload large workflows task like face detection and matrix
multiplication etc., over Mobile Cloud environment.
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Table 2 Comparative results
of GD for all workflow
structures

Workflow Generational distance (GD)
MMOPSO NSGA-II FDPSO

Montage 0.0016 0.1016 0.0544
CyberShake 0.0094 0.0396 0.0595
EpiGenomics 0.0097 0.0709 0.037
LIGO 0.0048 0.0358 0.0204
SIPHT 0.0047 0.0423 0.0206

Table 3 Comparative results
of Spread for all workflow
structures

Workflow Spread
MMOPSO NSGA-II FDPSO

Montage 0.4736 0.7738 0.6033
CyberShake 0.2157 0.7819 0.7288
EpiGenomics 0.3612 0.5715 0.5426
LIGO 0.285 0.7041 0.6965
SIPHT 0.4315 0.7409 0.7128

72 A. Verma et al.



7 Conclusion and Future Work

In the past few years, a single objective task offloading problem has been addresses
by many researchers. However, in real life applications, there are multiple
conflicting objectives that must be satisfied simultaneously. So, the goal of decision
maker is multi-fold and prefers the set of Pareto optimal solutions. To address this
issue, we proposed the Modified Multi-Objective Particle Swarm Optimization
(MMOPSO) algorithm based on the concept of dominance to solve the mobile
cloud task scheduling problem. It is a combination of multi-objective particle
swarm optimization algorithm and list based heuristic. Its performance is analyzed
using two conflicting objectives of makespan, and energy consumption under
application completion constraints. The efficacy and applicability of the proposed
approaches are demonstrated by using different application task graphs and com-
paring it with state-of-art MOO techniques. The simulation experiments exhibit that
MMOPSO performs better and generates the solutions that are more converged
towards the true Pareto optimal front and shown uniform spacing among the created
solutions. Hence, it is applicable to solve a wide class of multi-objective opti-
mization problems for scheduling tasks over Mobile Cloud environment.

In future, the concept of neural networks, fuzzy logic, etc. needs to be tested for
possible enhancement to the proposed heuristic for real life case studies.
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