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Abstract

Traumatic brain injury (TBI) is a major cause of death and disability in the 
United States, contributing to about 30% of all injury-related deaths. TBI 
survivors often develop clinical impairments and long-term disabilities. 
These include impaired thinking or memory, effects on movement and sen-
sations such as vision, hearing, or emotional functioning including person-
ality changes, depression, burst of anger, abnormal social behavior, and 
insomnia. These issues not only affect individuals but can have a deleteri-
ous impact on families and communities. The advances in computer soft-
ware applied to a non-invasive acquisition of images containing digital 
data, provides us with objective examination of brain structure and function. 
Magnetic resonance (MR) imaging of the brain makes it possible to inves-
tigate morphological and functional connectivity without exposing the 
patient to ionizing radiations. In patients with TBI, computed tomography 
and conventional MR scans seldom show limited or no abnormalities to 
explain clinical symptomatology. For these reasons, we propose an “ad 
hoc” protocol that exploits advances in MR sequences to predict long-term 
outcomes including evaluation of cortical thickness, detecting hemosiderin 
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deposits via magnetic susceptibility weighted images, to explore indemnity 
of fiber tracts using diffusion tensor with fractional anisotropy measure-
ment, to assess metabolic changes in the frontal lobe and cingulate cortex 
by utilizing the properties of magnetic resonance spectroscopy, and lastly 
to detect abnormal connectivity in the brain networks via resting-state func-
tional magnetic resonance imaging. Meticulous application of our protocol 
can potentially detect subtle abnormalities in patients with mild TBI such 
as detection of iron or mineral deposits, abnormal cortical thickness, abnor-
mal metabolites, disruption of white matter tracts, and decreased or loss 
connectivity in brain networks. Application of special MR sequences as 
described in our protocol can optimize clinical outcomes, offer predictive 
capabilities of short and long-term prognosis, and aid in risk-stratification 
tailored upon individual comorbidities.
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�Introduction

In technical parlance, traumatic brain injury (TBI) 
is described as “an alteration in brain function, or 
other evidence of brain pathology, caused by an 
external force.” Synonymous with its nomencla-
ture, TBI simply refers to structural and func-
tional changes in the brain attributable to external 
trauma [1, 2]. The desideratum for an external 
force distinguishes TBI from various acquired 
brain injuries, including vascular insults, and neo-
plastic and degenerative pathologies [3]. Typical 
mechanisms leading to TBI, albeit heterogeneous 
in nature, include blunt trauma, penetrating injury, 
blast waves, and sudden acceleration or decelera-
tion. Both the magnitude and transfer of impact to 
the scalp vault and its contents determine the 
severity of damage, presenting variably in the 
form of cerebral edema, focal contusions, hema-
tomas, and shearing of white matter tracts leading 
to diffuse axonal injury (DAI).

Affecting population across all age groups, TBI 
has become one of the leading causes of mortality 
and disability in children and adolescents world-
wide [4–8]. In the United States (US), TBI 
accounts for approximately 30% of all deaths 
resulting from injury, averaging 138 deaths per 
day [9]. The dramatic increment in the cumulative 

rates for TBI-related emergency department (ED) 
visits, hospitalizations, and mortality across the 
globe as witnessed during the previous decades 
have been concerning from a public health per-
spective. In the US, this upsurge translated from 
approximately 1.5 million cases in 2003 to 2.5 
million in 2010, an increase in incidence to over 
50%, from 538 per 100,000 at baseline to 823 per 
100,000 in 2010 [4–10]. During the same period, 
the average mortality from TBI declined from 18.2 
deaths per 100,000 to 17.1 per 100,000, a meager 
rate of 6% [4] Considering under-reporting of 
events and limited accountability for uninsured 
patients with non-fatal TBI without access to 
healthcare facilities and those seen at private clin-
ics, the projected estimates far undervalue the 
actual magnitude of burden posed by TBI.  The 
economic impact from these low estimates is 
equally colossal. In 2010 alone, healthcare spend-
ing including direct and indirect costs for 
management of patients with TBI stood at a stag-
gering US$ 76.5 billion, [11] contributing to 
approximately 3% of the national health expendi-
tures for that year [12]. A major proportion of this 
economic burden is attributed to long-term resid-
ual disability seen in patients with TBI, in the form 
of motor and sensory deficits, cognitive impair-
ments, and emotional disturbances. Insomnia, 
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cognitive decline, post-traumatic headache, and 
depression are common factors limiting a patient’s 
reintegration into the community and return to 
employment [13–18]. Post-traumatic depression 
following TBI contributes independently to cogni-
tive decline [16–18], which affects quality of life 
over the long term. TBI has also been implicated in 
delayed-onset neurodegenerative syndromes such 
as Alzheimer’s disease (AD) and chronic trau-
matic encephalopathy (CTE). Brain pathology fol-
lowing a single incident of severe TBI mimics 
closely that seen in AD during early amyloid 
pathology, whereas repetitive TBI can produce 
tauopathy with or without amyloidosis, which 
resembles the pathology of boxers’ dementia [19–
21]. Although clinical assessment of TBI severity 
based upon the Glasgow coma scale (GCS) [22] 
provides some insight into the extent of severity at 
the time of presentation, it is often under-predic-
tive of the actual extent of structural and impend-
ing functional damage to the brain, and is often 
deemed unreliable for predicting acute prognosis 
or long-term sequelae. To this effect, neuroimag-
ing, particularly the MR imaging, plays a crucial 
role in determining the extent of injury, providing 
guidance for surgical management, and predicting 
prognosis. In this article, we provide a comprehen-
sive overview on the utility of magnetic resonance 
(MR) imaging in explaining anatomical and func-
tional brain impairment in patients with TBI.

�Neuroimaging in TBI

Integration of technological advancements in the 
digital world has led to development and enhance-
ment of non-invasive neuroimaging modalities 
employed for objective assessment of anatomical, 
functional, and metabolic milieu of the brain. This 
has led to improved diagnosis and subsequent 
management for patients with TBI.  Ability to 
assess these changes confers risk-stratification via 
gauging severity, predicting prognosis, and stream-
lining management for these patients. While head 
roentgenogram may have become obsolete in 
today’s era, other neuroimaging modalities such as 
computed tomography, MR imaging, positron 
emission tomography (PET), and single-photon 

emission computed tomography (SPECT) provide 
valuable insights on brain abnormalities.

Conventional computed tomography (CT) is a 
routinely employed diagnostic procedure to assess 
acute head injury requiring observation or admission 
[23]. By using the degree of X-ray attenuation, CT 
scans can differentiate between normal brain with 
the presence of bleed, contusions, discontinuity in 
scalp or facial bones, edema, and ischemia. With the 
advent of high-resolution, multi-detector scanners, 
scanning duration has dramatically reduced, and 
offers selective re-scanning of slices affected by 
motion artifacts [24]. Three-dimensional (3D) 
reconstruction depicts bony injury and intracranial 
pathologies, if any [25]. Despite obvious advantages 
of CT in the initial detection of head injury with sur-
gical guidance in management of acute cases and its 
cost-effectiveness, conventional CT scans have limi-
tations in detecting the subtle neuronal damage and 
diffuse axonal injury seen in over 50% patients with 
TBI. These subtle changes form the basis of residual 
disability and cognitive impairment from TBI [26–
29]. Most of these limitations in detecting these neu-
ronal changes can be mitigated through the use of 
specialized magnetic resonance (MR) sequences. 
Structural MR sequences in conjunction with func-
tional MR imaging can potentially provide accurate 
assessment of extent and severity of brain injury in 
these patients.

�Magnetic Resonance Imaging: 
An Overview

Of the various available neuroimaging modalities, 
developments in MR technology have been remark-
able. It is based upon the principle of nuclear mag-
netic resonance. In the presence of a static magnetic 
field, nuclei of atoms (mainly protons) resonate 
when varying electromagnetic fields are applied at a 
fixed frequency. The MR machine computes an 
image based on the “resonance” signals to compute 
spatial orientation based on processing the frequency 
and phase in these signals. Diverse MR sequences 
exploit the physical properties of the target tissue 
(protons) to provide information on morphological 
and functional integrity. MR signals are obtained 
from several parameters such as T1, T2, proton 
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density and flow, chemical shift, and molecular dif-
fusion [30]. Unlike CT scans, MR imaging neutral-
izes the risk of being exposed to ionizing radiation, 
thus eliminating the risk of radiation-induced DNA 
damage that has been implicated as a potential risk 
factor for carcinogenesis [31, 32]. With increasing 
availability in emergency settings, MR imaging con-
stitutes a valuable tool for baseline assessment in 
practically all patients with TBI, albeit with some 
contraindication. An absolute contraindication for 
brain MR is for patients with cardiac pacemakers, 
penile implants, cochlear implants, and ferromag-
netic materials, and relative contraindications are 
metallic implants including, but not limited to, vas-
cular clips, coronary and peripheral arterial stents, 
prosthetic heart valves, cardiac devices, aortic stent 
grafts, vena cava filters, hemodynamic monitoring, 
and pacing devices [23]. Claustrophobic patients 
and those with tattoos are some relative contraindi-
cations for MR scans. Some MR scans utilize con-
trast agents, therefore those with renal insufficiency 
or hypersensitivity, or are pregnant or breastfeeding 
may not be eligible candidates [33].

�Structural MR Imaging

In contrast to CT scans, conventional MR scans 
are more sensitive in depicting minute areas of 
petechial hemorrhages, contusions, or extra-axial 
hematomas, axonal injury [34–37], and white 
matter abnormalities [38]. In patients with mild 
TBI, conventional MR scans depict abnormal 
findings in approximately one third of patients 
with normal CT scans [35–39]. T1-weighted MR 
scans provides descriptive overview of anatomic 
affection of the brain, if any, such as midline shift, 
ventricular distortion, or mass effect. Although 
gadolinium-based contrast may offer few advan-
tages over non-contrast scans in regards to struc-
tural anatomical changes in mild TBI, special MR 
sequences such as fluid attenuation inversion 
recovery (FLAIR) and gradient echo have shown 
particularly high sensitivity for appreciating axo-
nal injury, and in predicting outcomes [40, 41].

•	 FLAIR: The FLAIR technique permits detec-
tion of periventricular and superficial cortical 

lesions [42]. By diminishing the signal from 
CSF while concurrently amplifying the inten-
sity of lesions that are non-fluid-containing, 
FLAIR is of utility in identifying lesions in 
close proximity to the CSF-filled sub-
arachnoid and ventricular spaces. Areas of T2 
prolongation appear as bright, while normal 
CSF signals are depicted dark [42]. FLAIR is 
helpful in detecting non-hemorrhagic DAI and 
sub-arachnoid hemorrhage.

•	 Gradient echo sequence (GRE): T2-weighted 
gradient echo MR is sensitive to signal inten-
sity loss that results from changes in magnetic 
susceptibility. GRE is sensitive in detecting the 
presence of blood breakdown products such as 
deoxyhemoglobin, intracellular methemoglo-
bin, ferritin and hemosiderin. This is useful in 
detecting hemorrhagic DAI and contusions.

•	 Susceptibility-weighted imaging (SWI): This is 
a relatively newer contrast type of MR that dif-
fers from T1- or T2-weighted imaging that 
exploits magnetic susceptibility differences 
across various tissues such as calcium and iron, 
and uses phase image signals to detect these 
differences. It is sensitive in detecting micro-
bleeds in the form of paramagnetic hemoglobin 
or intracellular hemorrhages [43]. It is also 
used to image venous blood via the blood-oxy-
gen-level-dependent (BOLD) technique.

•	 Short tau inversion recovery (STIR): STIR 
signals attenuate fat signals, and provide 
distinction of water-containing lesions in 
areas with relative fat abundance such as the 
orbit, head and neck, or spine. STIR improves 
T1 or T2 lesion conspicuity, and is useful in 
avoiding chemical shift artifacts. While its 
utility as a diagnostic tool is limited in TBI, 
STIR is often used to differentiate between 
lipomas and hemorrhage, evaluation of optic 
nerve injury, and vertebral body compression 
fractures in patients with head trauma.

•	 Diffusion-weighted imaging (DWI): DWI pro-
cesses information based upon differences in water 
molecule diffusion rate by employing echo-planar 
or line-scan spin echo MR technique. The measure 
of mobility of water molecules is reflected via the 
apparent diffusion coefficient (ADC). Regions 
with relatively higher degree of diffusion such as 
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that of the CSF appear hypo-intense with a high 
ADC value, while areas with restricted diffusion, 
such as protons within grey or white matter, appear 
hyper-intense with low ADC value. A distinction 
between cytotoxic and vasogenic edema can be 
made using DWI. While the former depicts charac-
teristics of restricted diffusion, vasogenic edema 
demonstrates signs of increased diffusion. In 
patients with mild TBI, focal areas of restricted dif-
fusion associated with cerebral edema or DAI are 
often seen. In contrast to FLAIR and T2-weighted 
imaging, DWI demonstrates a greater degree and 
extent of abnormalities in patients with 
TBI.  Regions with acute DAI brighten up and 
appear dark in ADC due to restricted pattern of dif-
fusion from plausible cellular death.

•	 Diffusion tensor imaging (DTI): DTI is an 
extension of DWI that senses diffusion of water 
molecules across several directions, along the 
course of nerve fibers, with a tensor applied to 
describe diffusion in an anisotropic system. 
This forms the basis for the 3D reconstruction 
of the fiber tracts (white matter), thus enabling 
the possibility of exploring broken connections 
[44]. Key approaches to assess microstructural 
damage include whole-brain voxel-based anal-
ysis, region-of-interest (ROI) analysis and in-
vivo tractography. A quantified estimate of DTI 
data is derived from the functional anisotropy 
(FA) value, which ranges from 0 to 1. An FA 
value of zero depicts an isotropic diffusion 
occurring in all directions, while FA value of 1 
indicates a unidirectional diffusion. A standard-
ized color coding is applied in 2D representa-
tion to depict direction of fibers; red representing 
lateral commissural pathways, green for ante-
rior–posterior pathways, and blue indicating 
cranial–caudal pathways. In patients with mild 
TBI with normal CT scans and GCS 15, DTI is 
regarded as a potential biomarker as it detects 
micro-structural changes in white matter, even 
in patients with mild TBI, as opposed to other 
MR sequences [45–49].

A decreased FA value corresponds to axonal 
degradation and fiber discontinuity owing to inter-
tract or perivascular accumulation of water, and can 
be detected as early as 24 h after TBI [50–53].

DTI studies have confirmed decreased FA 
value in the corpus callosum, which sustains a 
high degree of deformation [53, 54]. Structural 
abnormalities in the corpus callosum as shown by 
DTI indices correlated clinically with cognitive, 
somatic, and affective disorders as seen post 
injury in these patients. An association between 
quantitative measures of gait function and DTI 
findings demonstrate white matter integrity in the 
genu of corpus callosum to be an important 
marker of gait [55]. Other common brain regions 
affected in mild TBI detected on DTI include 
anterior and posterior cingulum, middle cerebel-
lar peduncles, and inferior longitudinal (ILF) and 
uncinate fasciculi (UF). As cingulum is the fiber 
tract related to the limbic system, any structural 
abnormality is associated clinically with depres-
sion, memory loss, lack of social restraint, 
aggressiveness, heightened sexuality, and buli-
mia [56]. The anterior cingulum is linked to emo-
tion, especially apathy and depression, while the 
posterior cingulum is more related to cognitive 
functions [57, 58]. Structural abnormalities as 
detected in the ILF bundle using DTI can explain 
functional impairments such as thought disor-
ders, visual emotion, and cognitive impairment 
[59]. Studies have demonstrated abnormalities in 
DTI to correlate with symptom severity, and with 
predicting long-term cognitive impairments [48, 
52, 60, 61]. Disruption of the UF may cause 
problems with expression of memory, decision 
making, and acquisition of certain types of learn-
ing and memory. Additionally, uncinate involve-
ment in TBI often extends beyond memory to 
include social–emotional problems and low 
motivation [62].

•	 Magnetic resonance angiography (MRA): 
This is a specialized form of MR imaging that 
visualizes blood vessels as opposed to brain 
tissues. It can detect bleed or patency of blood 
vessels, and is often used to screen for evi-
dence of vascular injury in the head and neck 
region in patients with TBI [63].

•	 Cortical thickness: Using high-resolution T1 
anatomical MR images, evaluation of cortical 
changes using an automated, vertex-based 
reconstruction for measurement of thickness 
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of the brain cortex can be performed [62–77]. 
This provides baseline assessment of cortical 
integrity. Cortical thinning occurs in TBI, and 
correlates with measures of PTSD, depres-
sion, executive functioning, declarative mem-
ory loss, and post-concussive symptoms [68, 
78–80]. Precuneus thickness is correlated to 
acute traumatic stress symptoms in TBI survi-
vors. Recent evidence suggests structural 
changes in frontal cortex over 3 months fol-
lowing mild TBI [81].

�Functional Imaging

•	 Magnetic resonance spectroscopy (MRS): MRS 
is similar to conventional MR that uses proper-
ties of magnetism. As opposed to MR that uti-
lizes time domain to obtain T1 and T2 relaxation 
times that are processed as images, MRS data 
uses frequency-domain information to display a 
spectrum of signal intensity from different brain 
metabolites [82]. The main metabolites are 
N-acetyl aspartate (NAA) related to neurons, 
creatine (Cr) related to energetic metabolism, 
choline (Cho) representing membrane metabo-
lism, and myoinositol (mI) representing glial 
cells. Data is quantified as a ratio of all metabo-
lites with respect to creatinine. In children with 
TBI, a disturbance in brain metabolites is pre-
dictive of overall outcomes relating to behav-
ioral and cognitive functions both in acute and 
long-term phase [83–86].

•	 Resting-state fMRI: Several studies have dem-
onstrated that damage to white matter alters 
structural integrity, which leads to impairment 
in functional connectivity across regions of 
the brain. Structural and functional disrup-
tions are implicated in cognitive impairment 
in TBI [87–90]. Resting-state fMRI assesses 
functional connectivity in the brain following 
severe TBI and even in patients with mild TBI 
during the initial phase [90–96]. As it pro-
cesses brain connectivity in the absence of any 
task or activity, this modality of MR permits 
functional evaluation irrespective of severity 
and cognitive functions. Using advanced neu-
roimaging processing tools, functional con-

nectivity during resting state can be studied 
effectively. The most commonly studied func-
tional connectivity network during resting 
state is the default mode network (DMN) [97]. 
Although commonly related to the cognitive 
process, DMN can be affected in a broad 
range of disorders affecting the brain [98]. 
Resting-state fMRI assesses changes in oxy-
gen delivery to various centers that are syn-
chronously connected within a time duration 
of 8 min while the patient is at rest (not per-
forming any task). The data processed and 
reconstructed to depict any synchrony across 
various regions is compared to a pool of nor-
mal controls. This generates a brain map with 
areas of abnormally decreased connectivity or 
increased connectivity within target centers.

�Findings in Traumatic Brain Injury

In our protocol to study morphological, meta-
bolic, and functional characteristics of the 
patients with TBI, we routinely employ 
T1-weighted images, T2 and proton density, 
diffusion-weighted sequence, tensor sequence, 
SWI, FLAIR sequence, magnetic resonance 
spectroscopy, and resting-state fMRI.

With no likely abnormality being seen on CT 
scans and conventional MRI in most patients 
with TBI, an “ad-hoc” protocol is recommended 
for unanimous implementation across centers for 
complete MR evaluation for patients with 
TBI.  This should mandate cortical thickness 
reconstruction, magnetic susceptibility weighted 
sequences for detecting any hemosiderin depos-
its, DTI for measurement of FA values for struc-
tural integrity of white matter tracts, and lastly 
resting-state fMRI for functional regional con-
nectivity across the brain. The protocol is viable 
even for patients with mild TBI, as they present a 
pattern with one or more of the following:

	(a)	 Hemosiderin deposits in temporal and frontal 
poles that could be picked up with magnetic 
susceptibility weighted sequences.

	(b)	 Cortical thickness or abnormal integrity in 
frontal dorsomedial and central decreased 
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cortical thickness which may extend to the 
parietal, depending on the power of the 
impact, as well as in the ventral surfaces of 
the brain such as the orbitofrontal cortex, 
temporal poles and temporo-occipital areas 
[99–105].

	(c)	 Abnormal fractional anisotropy values in the 
genu of the corpus callosum and cingulum 
fibers [106–120].

	(d)	 Decreased NAA in magnetic resonance spec-
troscopy indicating neuronal loss, mostly in 
frontal lobes [121, 122].

	(e)	 A decrease in or loss of connectivity to the 
frontal cortex from anterior and posterior 
cingulum on rsfMRI [92, 123–125].

Implementation of the aforementioned proto-
col at presentation, short- and long-term follow 
up can help unveil microstructural changes to 
explain and predict long-term outcomes. These 
findings may intuitively form the basis of reha-
bilitation, and an octagonal approach for long-
term care, and plausibly attenuate residual 
disability (Figs. 31.1, 31.2, 31.3 and 31.4).
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Fig. 31.1  Patient is a 20-year-old male admitted to the hos-
pital for 30 ft. fall from oil rig. Patient was helicoptered in 
from the field and intubated due to low GCS 4–5. Presented 
with subarachnoid hemorrhage, brain laceration in the left 
frontal lobe, multiple skull fractures. After 3 years the 
patient showed cognitive decline, depression, bursts of 
anger, decreased capacity for planning, bad social interac-
tion. Never returned to work. (a) Computed tomography in 
transverse view showing laceration and hematoma in left 

frontal lobe. (b) Magnetic resonance with susceptibility 
sequence depicts the frontal hemorrhage and blood deposits 
in the ventricles. (c) Hemosiderin deposits in microglia 
appear 3 years after first magnetic resonance in the suscepti-
bility sequence. (d) Decreased cortical thickness (blue) in 
the frontal lobe in the same patient pinpointing Brodmann’s 
areas involved. (e) Diffusion tensor imaging performed in 
the same patient with decreased fractional anisotropy values 
in corpus callosum and inferior longitudinal fasciculus
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Fig. 31.2  Resting-state functional magnetic resonance. 
(a) Functional connectivity. A seed was placed in the ante-
rior cingulum. No connectivity with posterior cingulum 
and dorsal frontal cortex compared with normal in (c). (b) 
Z-test, patient compared to 20 normal individuals depict-
ing decreased connectivity in the posterior cingulum. (d) 
Normal frsfMRI with seed in anterior cingulum. (e) 
Resting-state functional magnetic resonance. Compared 
to normal in (f), there is no connectivity with posterior 

cingulum, frontal cortex, angular cortex. (f) Z-test show-
ing decreased connectivity in the patient’s anterior cingu-
lum. (f, g) Magnetic resonance spectroscopy. Decreased 
n-acetyl aspartate in the frontal lobe. NAA is a marker for 
neurons, indicating decreased neuronal content in the 
frontal lobe. There is also an increase in myoinositol, a 
marker for glia. This correlates with increase in scarring 
and fibrillary content
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Fig. 31.3  Autopsy in a patient who died from TBI. MR 
was obtained before death. Correlation of abnormal frac-
tional anisotropy with pathology. Swollen and disrupted 

fibers in genu and splenium of corpus callosum correlate 
with fractional anisotropy (FA) abnormal values
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�Conclusions

Neuroimaging has increasingly become a vital 
tool for management of patients with head 
injury. While conventional CT and MR modali-
ties offer rapid structural assessment ensuring 
prompt institution of surgical management for 
selective cases, functional modalities allow 
accurate prediction of overall functional and 
clinical outcomes in patients with TBI.  With 
easy accessibility to MR technology, complex 
MR sequences entailing deeper insights into 
structural and functional impairments should 
routinely be employed in assessment of patients 
with TBI. MR imaging techniques additionally 
enhance our knowledge base relating to ana-
tomic abnormalities and functional outcomes. 
Higher resolution scans, integration of digital 
software for data processing, and technical 
advancements offer a viable solution for auto-
mation in image processing and interpretation.
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