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Abstract

Neuroimaging research in psychiatry has been increasing exponentially in 
recent years, yet many psychiatrists are relatively unfamiliar with this field. 
The neuroimaging findings summarized here include alterations related to 
fibromyalgia, chronic pain, and coping in somatoform pain disorders. 
Magnetic resonance imaging is the imaging method of choice for standard 
clinical sequences. Improvements in imaging technology now allow 
advanced sequences, once used exclusively for research, to be used clini-
cally. Magnetic resonance spectroscopy (showing metabolism) offers 
invaluable information on living tissues, with a special contribution to the 
diagnosis and prognosis of diseases of the central nervous system. Voxel-
based morphometry (structural information) is a recent technique that can 
simultaneously visualize group differences or statistical effects on gray and 
white matter throughout the brain. Perfusion (marker of vascularity) offers 
higher spatial resolution than radionuclide techniques such as positron 
emission tomography and single-photon emission computed tomography. 
Diffusion-weighted imaging (a marker of cellularity) detects subtle degra-
dation of white matter microstructure in fibromyalgia. Diffusion tensor 
imaging shows integrity of surrounding white matter tracts. Functional 
magnetic resonance imaging is used to identify eloquent cortex.
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These techniques, all of which have advanced our understanding of 
chronic pain and can be used to improve knowledge on the etiology of 
these illnesses, will be discussed.

Keywords

Chronic pain • Fibromyalgia • Somatization • Magnetic resonance imag-
ing • Magnetic resonance spectroscopy • Structural brain imaging • 
Perfusion • Diffusion weighted imaging • Diffusion tensor imaging • 
Functional magnetic resonance imaging • Treatment effects

�Introduction

Chronic pain is a major public health problem. 
The prevalence of chronic pain in Western, indus-
trialized countries is estimated to be between 
15% and 20% of the adult population [1–3]. 
Therefore, there is a need to better understand the 
mechanisms that lead to chronic pain. From a 
neurobiological perspective, the mechanisms 
contributing to the transition from acute to sub-
acute and chronic pain are heterogeneous, and 
are thought to occur both within the peripheral 
nervous system and at various levels of the cen-
tral nervous system (CNS). The role of the brain 
in chronic pain states remains to be fully 
elucidated.

The World Health Organization classifies 
fibromyalgia syndrome (FMS) under the heading 
of diseases of the musculoskeletal system and 
connective tissue, as does the International 
Association for the Study of Pain [4].

Fibromyalgia (FM) is a chronic rheumatic dis-
ease characterized by the presence of diffuse 
musculoskeletal pain, painful sensitivity to touch 
in at least 11 of 18 defined trigger points, and a 
constellation of symptoms including fatigue, dis-
turbed sleep, cognitive problems, and distress 
[5]. Furthermore, it is accepted as a central sensi-
tivity syndrome. The American College of 
Rheumatology in 2010 described new diagnosis 
criteria [6]. The prevalence of this syndrome in 
Europe is approximately 2.9% [7], and the preva-
lence in rheumatology consultations in Spain was 
found to be 12% [8].

Pain is the most common and disabling symp-
tom of FM. This pain is suspected to be caused 

by the altered function of structures in the CNS, 
including the primary and secondary sensory and 
motor cortices, insula, anterior cingulate cortex, 
thalamus, dorsolateral prefrontal cortex, and 
basal ganglia. If we look for analogies or paral-
lels between these and other insults, we encoun-
ter the clinical characteristics of a number of 
neuropathic pain syndromes. There are similari-
ties from the point of view of symptoms, diagno-
sis, and therapeutic approach. However, FMS has 
not demonstrated any injury or association with 
any known disease that affects the nervous sys-
tem, and therefore one that could be considered 
the origin of a somatosensory disorder. 
Neuropathic pain is defined as a “pain caused by 
direct injury or disease affecting the somatosen-
sory system” [9]. As in the case of FM, diagnosis 
of various neuropathic pain syndromes are per-
formed based on clinical criteria.

Somatoform disorders (SFDs), according to 
the fourth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-IV) [10], are 
defined by the presence of physical symptoms 
that suggest a general medical condition but that 
are not fully explained by a general medical con-
dition, by the direct effects of a substance, or by 
another mental disorder. The most extreme form 
of this group is somatization disorder, a chronic 
and polysymptomatic disorder characterized by 
at least four unexplained gastrointestinal, sexual, 
and pseudo neurological symptoms [10].

The psychological profiles show the usual 
psychological characteristics of patients with an 
FM or SFD: high scores in anxiety and depres-
sion assessed with the Hospital Anxiety 
Depression Scale; high scores on the Pain 
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Catastrophizing Scale and in pain assessed with 
the Pain Visual Analogue Scale, and low quality 
of life as measured by the EuroQol 5D.  The 
Mini-Mental State Exam scores suggest symp-
toms of cognitive dysfunction in FM and SFDs, 
but at levels less severe than those found in 
patients with dementia [11].

Over the past decade, brain-imaging studies 
have shed light on neural correlates of pain per-
ception and pain modulation, and they have also 
begun to disentangle the neural mechanisms that 
underlie chronic pain. There is now general 
agreement that the CNS plays a prominent role in 
many chronic pain states because of the “central-
ization” of pain. Some of the findings that 
strongly support this paradigm shift are outlined 
later.

The clinical diagnosis of FM does not exist 
today, given that there is no analytical testing, 
validated image, or specific pathological condi-
tion that serves to confirm the diagnosis. 
However, numerous publications describe neuro-
imaging abnormalities in this syndrome that 
affects the somatosensory system [12–14].

The quantitative study of anatomical and bio-
chemical variables is important in the diagnosis, 
prognosis, and monitoring of different diseases 
[15]. The morphometry study of certain brain 
structures, complemented by the identification of 
variations of some metabolites by nuclear mag-
netic resonance spectroscopy, is a promising tool 
for the elucidation of the morphobiological com-
ponent of different pathological conditions.

The study of low frequency signals in brain 
activity through blood oxygen level–dependent 
(BOLD) contrast at rest revealed synchronized 
cortical activity patterns, allowing the intrinsic 
functional architecture of the human brain to be 
described. The international scientific commu-
nity has shared resources that will help with this 
analysis by means of functional magnetic reso-
nance imaging (fMRI) at rest to obtain more 
accurate and advanced diagnoses in the field of 
neuroscience treatments.

This chapter seeks to review published scien-
tific evidence and studies of structural and func-
tional imaging in FMS that consider the 
similarities and dissimilarities between the find-

ings in FMS and related findings in a number of 
neuropathic pain syndromes. The ultimate goal is 
to find evidence of valid indicators with which to 
objectify the diagnosis of these syndromes.

�Magnetic Resonance Spectroscopy 
(MRS)

This technique enables us to study the chemical 
composition of living tissues, and is based on the 
chemical shift of atoms. The concentration of a 
number of metabolites is determined from spec-
tra that may be acquired in several ways. Proton 
magnetic resonance spectroscopy (1H–MRS) is 
one of the techniques used to assess potential dis-
ruptions in neuronal integrity and associated neu-
rochemical dysregulations. The most commonly 
used spectroscopy is that originating from a 
hydrogen nucleus (proton 1H–MRS). The posi-
tion of the metabolite signal is identified on the 
horizontal axis by its chemical shift, scaled in 
units referred to as parts per million (ppm).

The brain spectrum shows peaks correspond-
ing to the different metabolites: myo-inositol 
(mI), 3.56 and 4.06  ppm; choline compounds 
(Cho), 3.23  ppm; creatine (Cr), 3.03 and 
3.94 ppm; N-acetylaspartate (NAA), 2.02; gluta-
mine (Gln) and glutamate (Glu), 2.1–2.55 ppm 
and 3.8  ppm. NAA is considered a neuronal–
axonal marker with a neuronal bioenergetic role 
[16–18] found in the brain and spinal cord. 
Recent studies, however, have indicated that 
NAA reflects functional rather than structural 
neuronal characteristics [19], suggesting that 
NAA is most informative in the investigation of 
functional abnormality. Cr is involved in energy 
metabolism through the Cr kinase reaction gen-
erating phosphocreatine, and in turn, adenosine 
triphosphate [20]. Cho containing compounds of 
glycerol 3-phosphocholine and phosphocholine, 
which are present at high levels in glial cells 
[21], are intermediaries in the synthesis of ace-
tylcholine [22]. Glutamine and glutamate (Glx) 
are strongly compartmentalized (in neurons and 
in astrocytes respectively), and are directly con-
nected to energy metabolism and neurotransmis-
sion [23].
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Previous studies (see Table  30.1) described 
lower NAA levels within the dorsolateral pre-
frontal cortex of patients with chronic back pain 
when compared with healthy controls [24]. 
Lower NAA levels have also been reported in the 
thalamus of patients with neuropathic pain 
included [25, 26].

These decreases in NAA might possibly 
reflect a neuronal loss, indicating a neurodegen-
erative process to be associated with chronic 
pain. Hippocampal dysfunction in patients with 
FM has also been explored using 1H–MRS [27]. 
In this case control study, 15 patients and ten con-
trols were examined, and levels and interhippo-
campal ratios of metabolites such as NAA, Cho, 
and Cr were assessed. Patients with FM had 

lower NAA levels than those found in controls, 
representing a neuronal or axonal metabolic dys-
function in the hippocampus. As the hippocam-
pus plays a crucial role in the maintenance of 
cognitive functions, sleep regulation, and pain 
perception, the authors suggest that hippocampal 
metabolic dysfunction may be implicated in the 
symptomatology of this puzzling syndrome. 
Consequently, a decrease was found in the NAA/
Cr ratio in the right hippocampus [28], decreased 
Cho and N-acetylaspartate + N-acetylaspartate 
glutamate (NAA + NAAG) in the left hippocam-
pus, and also a decrease in both hippocampi of 
myo-inositol (mI), glutamate (Glu), the Cho/Cr 
ratio, and the mI/Cr ratio [11, 29]. On the other 
hand, an increase in NAA was found in both 

Table 30.1  Metabolic characteristics and anatomical areas in patients with fibromyalgia syndrome (FMS). Magnetic 
resonance spectroscopy (MRS)

Author Caud N. Amyg Ínsula ACC PCC VLPFC Hp DLPFC

Grachev – – – – – – – ⇓ NAA
Petrou ⇑Cho/Cr

R + L
– – – ⇑Cho/Cr

R
– –

Wood – – – – – – ⇓ NAA/Cr 
R

–

Harris – – ⇑ Glu
post R

– – – – –

Fayed – – – – ⇑
Glx
Glx/Cr

– ⇓ mI
mI/Cr
R + L
⇓ Cho
L

–

Feraco – – – – – ⇑
Glu/Cr
Glx/Cr

– –

Emad – – – – – – ⇓ NAA
R + L
⇑ Cho R

–

Foerster – – ⇓ GABA
ant R

⇑
GABA

– – – –

Valdés – ⇑
Glx

– – – – – –

Fayed – – ⇓tNAA /Cr
and
NAA/Cr
post

– ⇑Glx
⇓ Cho

– ⇓Glu
⇓ Cho/Cr
⇓mI and 
mI/Cr
⇓tNAA
L

–

Caud N. caudate nucleus, Amyg amygdala, Ins ínsula, ACC anterior cingulate cortex, PCC posterior cingulate cortex, 
VLPFC ventrolateral prefrontal cortex, Hp Hippocampus, DLPFC dorsolateral prefrontal cortex, Cho choline, Cr cre-
atine, tNAA N-acetylaspartate  +  N-acetylaspartate-glutamate, NAA N-acetylaspartate, Glu glutamate, Glx gluta-
mate + glutamine, mI myo-inositol, Ant anterior, Post posterior, R right, L left
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sides. Cho was increased on the right [27] and 
decreased on the left [29]. Our study confirms a 
significant reduction in Cho (both hippocampi ⁄ 
posterior cingulate cortex), mI (left hippocam-
pus), NAA (left hippocampus ⁄ posterior insula), 
and Glu (left hippocampus) in both FMS and 
SFD groups compared with controls. Indeed, 
neurochemical changes that could be indicative 
of such damage have been reported previously 
[29–31].

These studies report a decrease in NAA in 
patients with chronic pain in the DLPFC and the 
thalamus respectively, two areas also involved in 
pain processing and perception. They attribute 
this loss to a neurodegenerative process present 
in chronic pain. Lower hippocampal and insular 
NAA levels suggest neuronal or axonal meta-
bolic dysfunction, or a combination of these pro-
cesses. We suggest that hippocampal dysfunction 
may be partly responsible for some of the phe-
nomena associated with FM and somatization 
disorder. Blocking N-methyl-D-aspartate recep-
tors (NMDAR) in the hippocampal formation 
reduces nociceptive behaviors; this reduction, in 
turn, supports the hypothesis that the hippocam-
pal formation is involved in the pain-related neu-
ral processing and the expression of pain-related 
behaviors [32]. The default mode network 
(DMN) comprises a set of brain regions that are 
coactivated during passive task states, show an 
intrinsic functional relationship, and are con-
nected via direct and indirect anatomic projec-
tions. In a previous study, we found elevated 
levels of Glu in the ventral posterior cingulate 
cortex, a key zone in the default mode network 
hypothesis [29]. We propose that high levels of 
Glu in certain regions of the brain [29] cause cel-
lular damage and disruptions in circuits involved 
in the pain perception. This may be underlying 
the cognitive and behavioral impairments accom-
panying chronic pain. The chronic pain condition 
could cause a sustained lesion in the brain through 
Glu toxicity, and could explain the structural 
damage and significant atrophy seen in chronic 
pain patients.

Another remarkable fact is the correlation of 
all metabolites in the left hippocampus with pain 
and the correlation of choline in the posterior cin-

gulate cortex with all psychological tests. In this 
sense, higher Cho levels and lower NAA/Cho 
ratios in both hippocampi have been reported in 
patients with FM [27]. The finding of metabolic 
brain differences between patients with FM and 
healthy controls in neural structures such as the 
hippocampus and amygdala (both of which per-
tain to the limbic system and are involved in fear, 
avoidance, and emotional responses experienced 
during pain) is compatible with a possible aug-
mented emotional processing in patients with 
FM, in line with the augmented pain processing 
proposed by some authors [33].

Previous fMRI studies of FM have observed 
that augmented neural activity is due to an eleva-
tion in Glu levels, which leads to neuronal hyper-
excitability. There is an increase in Glu in the 
amygdala [34], the posterior cingulate cortex 
[29], and the right posterior insula [35]. The 
degree of Glu elevation was associated with 
evoked pain sensitivity, suggesting that glutama-
tergic activity in this region of the brain might be 
partly responsible for the “gain” setting on cen-
tral neural pain processing [35].

There is a study analyzing the neurotransmit-
ter gamma aminobutyric acid (GABA) which 
describes a decrease in right anterior insula and 
an increase by the same amount in the anterior 
cingulate cortex [14]. Other studies report meta-
bolic abnormalities in areas not studied by mor-
phometry as an increased Cho/Cr ratio in the left 
and right caudate nuclei and right ventrolateral 
prefrontal cortex [36], and an increase in the Glu/
Cr and Gln + Glu/Cr ratios [37].

A recent study has investigated the relation-
ship between Glx- and GABA-derived spectros-
copy values within the posterior cingulate, and 
the connectivity of this structure to the rest of the 
default mode network (DMN) [38]. The authors 
found that individuals with greater concentrations 
of Glu + Gln (Glx) and lower concentrations of 
GABA within the posterior cingulate have stron-
ger connectivity values with other default mode 
network (DMN) regions.

One approach that might be particularly infor-
mative in FM would be to explore the association 
between insula connectivity and Glx/GABA lev-
els in the same patient cohort. Alternatively, Glx 
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and GABA concentrations in the insula may also 
influence functional connectivity between other 
brain regions and networks, as the insula has 
widely distributed excitatory and inhibitory con-
nections throughout the brain [39].

Lower GABA levels within the posterior insula 
were associated with greater sensitivity to experi-
mental pain. These findings suggested that lower 
insular GABA may also play a role in pain, 
namely neuronal disinhibition. In neuropathic 
pain syndromes, studies on metabolism spectros-
copy reflect a decrease in NAA in the thalamus 
[26], a decrease in GABA and GABA/Cr in right 
reticular nucleus, and NAA and NAA/Cr in the 
lateral ventral posterior nucleus [40] and in the 
posteromedial and posterolateral nucleus, and 
NAA/Cr as well as the Cho/Cr combination in the 
intralaminar nuclei [41]. In chronic pain syn-
dromes, metabolic changes occur in various brain 
regions. For example, diabetic neuropathy shows 
decreased NAA in the thalamus, normal levels in 
the anterior cingulate, and a decrease in Cr in the 
dorsolateral prefrontal cortex (DLPFC); while 
temporomandibular joint dysfunction (TMJ) 
shows increased NAA and Cho in the posterior 
insula, increased Gln in the right insula, and 
decreased Gln in the left insula [42]. Our group 
observed a decrease in NAA and increased Glu/Cr 
in the posterior cingulate of chronic pain patients 
compared to patients without pain [11, 29].

The quantification of both brain metabolites 
and neurotransmitters is of great interest, as it can 
provide indirect evidence of local neural activity 
and/or excitability, and may even be a predictor 
for therapy response. Furthermore, whether 
altered neurotransmitter concentrations in 
patients with chronic pain reflect a global (whole 
brain) or region-specific phenomenon (e.g., con-
fined to regions in the pain system) needs to be 
investigated in greater depth.

Recent studies show a significantly higher 
Glu/Gln ratio in the occipital cortex of migraine 
patients compared with healthy control subjects, 
and higher Glu levels and Glu/Cr + phosphocre-
atine ratios in the anterior paracingulate cortex. 
This situation could arise from a neuronal–glial 
coupling of glutamatergic metabolism differ-
ences or an increased neuron/astrocyte ratio [43]. 

Although these data may reflect a state of neuro-
nal hyperexcitability, they may also be associated 
with a nonspecific pain process. Moreover, 
altered glutamatergic neurotransmission seems to 
mediate the relationship between abnormal corti-
cal information processing and excitability in 
migraine patients [44, 45].

In a study of patients with tinnitus, the patients 
showed higher concentrations of Glu and NAA in 
the auditory cortical areas, most notably in 
Heschl’s gyrus [46]. Another study that used 
MRS before, during, and after experimentally 
induced dental pain showed a significant absolute 
increase in Glu, Gln, and the Glu/Gln ratio in the 
insular cortex [47].

Our group has observed an increase in Glx in 
the posterior cingulate cortex in FM and, to a 
lesser extent, in somatization disorder compared 
with controls and levels of Glx correlates with 
pain-catastrophizing [11]. Our data suggest that 
Glx plays a role in this augmented pain process-
ing in those individuals who have elevated Glx 
levels. Because higher Glx levels have been asso-
ciated with an elevation in the pain catastrophiz-
ing syndrome (PCS), it is likely that Glx in the 
posterior cingulate is related to pain processing. 
We have hypothesized that increases in brain 
excitatory neurotransmitters could result in neu-
ronal hyperexcitability. As part of its neurotrans-
mitter role, Glx is an excitatory amino acid, and 
excessive Glx neurotransmission has been impli-
cated in excitotoxic neuronal damage [48].

�Structural Brain Imaging

Pain is defined as “an unpleasant sensory and 
emotional experience associated with actual or 
potential tissue damage, or described in terms of 
such damage” [4]. Pain is therefore a multidi-
mensional phenomenon that is heavily influenced 
by biopsychosocial factors.

In the field of structural imaging, new 
approaches such as T1 and T2* mapping, as well 
as magnetization transfer ratios, which are often 
acquired during the same scanning session (mul-
tiparametric approach), will be of clinical impor-
tance by unraveling new aspects of altered 
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microstructure in chronic pain conditions, and of 
methodological importance by providing a more 
detailed understanding of voxel-based morphom-
etry findings [49].

Several brain structures are involved in the 
perception and experience of pain, such as the 
somatosensory cortex (primary and secondary), 
the cingulate gyrus (anterior), insula, thalamus, 
posterior parietal cortex, and prefrontal cortex. 
Studies show changes in the volume of brain 
areas involved in a “network of pain” in both 
FMS and neuropathic pain syndromes, and even 
in other forms of chronic pain. It has been sug-
gested that prolonged nociceptive input to the 
brain might induce functional and morphologic 
maladaptive processes, which in turn further 
exacerbate the experience of chronic pain. 
Alternatively, morphologic changes might pre-
dispose toward vulnerability to develop a chronic 
pain state [50] (See Table 30.2). Interpretation of 
findings from morphometric studies must also 
take into account genetic and experiential factors 
that have recently been demonstrated to influence 
brain morphometry and the risk of developing 
chronic pain [51].

Reductions have been observed in the volume 
of gray matter in areas associated with pain: a 
level of emotional processing (anterior cingulate 
cortex and insula), cognitive (prefrontal cortex) 
and sensory (primary and secondary somatosen-
sory cortex) processing, and the processing of 
stress (parahippocampal gyrus) [52].

Significant gray matter reduction has been 
found in the prefrontal cortex, anterior cingulate 
cortex, and insular cortex of FM patients [53]. 
These regions are known to be critically involved 
in the modulation of subjective pain experiences. 
The duration of pain or functional pain disability 
did not correlate with gray matter volumes. A 
trend of inverse correlation of gray matter vol-
ume reduction in the anterior cingulate cortex 
was detected with the duration of pain medica-
tion intake [54]. Furthermore, reductions in gray 
matter volume were seen in the postcentral gyri, 
amygdala, hippocampi, superior frontal gyri, and 
anterior cingulate gyri [55]. Other authors [56] 
found those patients with FM had significantly 
less total gray matter volume and an age-

associated decrease in gray matter 3.3 times 
greater than that of healthy controls. Greater gray 
matter loss was seen in patients with a longer 
duration of the disorder, with each year of FM 
being equivalent to 9.5 times the loss in normal 
aging. In addition, patients with FM demon-
strated significantly lower gray matter density 
than healthy controls in brain regions such as the 
cingulate, the insular and medial frontal cortices, 
and the parahippocampal gyri. In summary, FM 
appears to be associated with an acceleration of 
age-related changes in the brain in regions that 
are functionally linked to core features of the dis-
order, including affective disturbances and 
chronic widespread pain. However, these results 
require replication because the sample was some-
what small (N = 10), and matching between con-
trols and patients with FM was not optimal.

Changes in volume have been found in the 
hippocampus and insula in posttraumatic stress 
disorder [57, 58], in the thalamus and the pre-
frontal cortex in back pain [59], and also bilater-
ally in the prefrontal cortex in chronic fatigue 
syndrome [60], with global changes in this vol-
ume [61]. One possible explanation for these 
changes may be atrophy secondary to chronic 
inflammation mediated by cytokines [59].

The thalamus plays a crucial role in the sen-
sory–discriminative pain component. Both mor-
phometry and diffusion tensor showed a volume 
decrease in different thalamic nuclei [55, 62]. In 
neuropathic pain syndromes (See Table 30.3), a 
decrease was also observed in the volume of the 
regions involved in the perception and processing 
of pain, and the thalamus [63, 64], the cortex of 
the region anterior cingulate gyrus [63, 65], and 
the insula [63].

The cingulate gyrus is part of the limbic sys-
tem, and numerous neuroimaging studies demon-
strate the involvement of the anterior cingulate 
region. Activation of this region is part of the 
emotional and cognitive component of pain [66, 
67]. Both this region and the prefrontal cortex are 
involved in pain modulation (inhibition and 
facilitation).

Structural changes in these systems could 
contribute to the maintenance of pain and chro-
nicity of symptoms, both in FMS and some 
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neuropathic pain syndromes. A number of 
authors [68] have proposed a model in which 
the transition from acute to chronic pain leads 
to a reorganization of cortical sensory and 
affective pain pathways, which would mean a 
contribution of independent CNS peripheral 
nociceptive input. The morphological varia-
tions relating to these chronic pain syndromes 
evolve over time and respond to concepts of 
neuroplasticity, not to irreversible structural 
loss mechanisms. NAA appears to decrease in 
hippocampus [11, 27] as a neuronal marker, 
providing the molecular correlate to the vol-
ume loss observed in studies of morphometry. 
It can therefore be deduced that there is chronic 
neuronal damage in this structure in FMS. This 
point only could be verified by postmortem 
neuropathological study.

The decrease in volume of the insula [55, 56, 
69] correlates with increased Glu [35] and 
decreased GABA [14]. These alterations suggest 
a metabolic dysregulation due to CNS hyperex-
citability, and this is probably responsible for the 
overall increase in sensitivity to noxious stimuli 
observed in these patients. The insula could 

encode or extract the magnitude of the painful 
stimulus regardless of sensory modality [70].

�Perfusion Magnetic Resonance 
Imaging

Pioneering single-photon emission computed 
tomography (SPECT) studies on somatization 
disorder first described hypoperfusion, primar-
ily in the nondominant hemisphere, in the fron-
tal, prefrontal, temporoparietal, and cerebellar 
areas [71].

Other researchers [72] conducted an observa-
tional study using technetium- 99 m ethyl cystein-
ate dimer (Tc-99 m ECD) brain SPECT to detect 
abnormal regional cerebral blood flow (rCBF) in 
92 patients with FM.  They found rCBF 
heterogeneity in patients with both primary and 
concomitant FM compared with the homogeneous 
rCBF observed in control patients. This difference 
was observed primarily in the left temporoparietal 
area, but was also described in the thalamus, as 
well as in the right temporoparietal, frontal, and 
basal ganglia areas. Differences in rCBF 

Table 30.3  Neuroradiological characteristics and anatomical areas in patients with neuropathic pain syndromes 
(NPS). Voxel-based morphometry (VBM) and magnetic resonance spectroscopy (MRS)

Author Image technique Thal Cereb Íns ACC OFG

Schmidt-Wilcke VBM – – – ⇓
L

–

Obermann VBM ⇓ ⇓ ⇓ ⇓ ⇓
Henderson VBM ⇓

(reticular nucleus)
– – – –

Mole VBM – – – – –
Fukui MRS ⇓NAA – – – –
Gustin MRS ⇓GABA, GABA/Cr

R
(reticular nucleus of the thalamus)
⇓NAA, NAA/Cr
R
(ventralis posterior)

– – – –

Wang MRS ⇓ NAA/Cr
(ventralis intermedius posterior, lateralis 
dorsalis)
⇓ NAA/Cr
⇓ Cho/Cr
(lamina medullaris)

– – – –

Thal thalamus, Cereb cerebellum, Ins ínsula, CCA anterior cingulate cortex, OFC orbito-frontal gyri, VBM voxel-based 
morphometry, MRS magnetic resonance imaging, NAA N-acetylaspartate, Cr creatine, Cho choline, R right, L left
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hypoperfusion in these areas between primary and 
concomitant FM groups were not significant. In 
conclusion, SPECT was not useful for differentiat-
ing primary and concomitant FM when the under-
lying disease activity was quiescent.

There are three main methods for studying 
brain perfusion by means of MRI:

�Dynamic Susceptibility Contrast 
Imaging (DSCI)

This is the most widespread method of perfusion 
imaging, and is likely to be a standard sequence 
on most MR machines. It relies on the T2* signal 
drop caused by the passage of a gadolinium-
containing contrast agent through the tissues. 
fMRI is based on measuring and analyzing the so-
called BOLD effect. An increase in neural activity 
leads to a hemodynamic response, associated with 
an increase in regional blood flow and volume 
resulting in an increase of the oxyhemoglobin–
deoxyhemoglobin ratio, which in turn leads to a 
reduction of local magnetic in homogeneity.

�Dynamic Contrast Enhancement 
(DCE)

This method uses a rapid T1 sequence to measure 
changes in signal intensity as a bolus of gadolin-
ium diffuses across the damaged blood-brain bar-
rier into the extracellular, extravascular space.

�Arterial Spin Labeling (ASL)

This is a newer MRI technique that uses water in 
arterial blood as a freely diffusible tracer to mea-
sure perfusion noninvasively, whereby the blood 
flowing into the brain is magnetically labeled 
(arterial spin labeling). This technique is still 
largely research-based, and provides truly quanti-
tative values of cerebral blood flow. In future 
studies, the combination of arterial spin labeling 
and BOLD imaging might provide new insight 
into the interaction of neural activity with vascu-
lar responses, which is of particular importance, 

as neural activity cannot be measured directly 
using MRI techniques.

In a multimodal imaging study using H-MRS 
and ASL [40], it was possible to demonstrate that 
patients with neuropathic pain following spinal 
cord injury displayed lower levels of thalamic 
NAA, GABA, and regional blood flow (in the 
thalamus) compared to healthy controls and 
patients with spinal cord injury but no pain. This 
and other studies support the notion that neuro-
pathic pain is associated with CNS reorganiza-
tion, specifically within the thalamus, comprising 
functional as well as neurochemical mechanisms.

�Diffusion Tensor Imaging (DTI)

Neuroimaging reveals changes in the white matter 
structure in the human brain. White matter com-
prises half of the human brain, and consists of 
bundles of myelinated axons connecting neurons 
in different brain regions [73]. Gray matter is 
composed of neuronal cell bodies and dendrites 
concentrated in the outer layers of the cortex.

Microstructural changes in white matter can 
be revealed by specialized MRI brain imaging 
techniques such as DTI.  This method analyzes 
the diffusion of protons in tissue, which is more 
restricted in white matter than in gray matter.

Water molecules in the brain are in constant 
Brownian motion, and although the movement of 
these protons affects conventional structural imag-
ing, diffusion-weighted imaging (DWI) and DTI 
allow quantification of this microscopic move-
ment within each voxel. The main advantage of 
using DTI, rather than DWI, is that DTI reflects 
the underlying diffusion properties of the sample, 
independently of the orientation of the tissue with 
respect to the direction of measurements. DTI is 
thus a robust quantitative technique that is 
independent of how the subject has been oriented 
inside the scanner magnet and gradient coils.

The appropriate mathematical combination of 
the directional diffusion-weighted images pro-
vides quantitative measures of water diffusion for 
each voxel via the apparent diffusion coefficient 
(ADC), as well as the degree of diffusion direc-
tionality, or anisotropy. Myelin is a major 
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diffusion barrier for water, and gives white matter 
its high anisotropy [74]. Demyelinating diseases 
are characterized by partial or total loss of myelin, 
with consequent loss of neuronal function. 
Anisotropy increases with increased myelination, 
diameter, and axon compaction.

Previous studies have identified and confirmed 
the existence of an anatomic circuitry for the 
functionally characterized, top-down influences 
on pain processing via brainstem structures in 
humans [75]. Fractional anisotropy (FA) is a 
measure of the portion of the diffusion tensor 
from anisotropy. Previous studies with DTI in 
FM patients showed alterations in the right thala-
mus and significantly lower fractionated anisot-
ropy in comparison with controls. A negative 
correlation was observed between the FA values 
in the right thalamus and clinical pain in the FM 
group [76]. Other authors have confirmed that 
DTI in the brain of patients with FM appeared to 
be more sensitive than volumetric imaging of 
voxel-based morphometry (VBM), and that 
increased pain intensity scores were correlated 
with changes in DTI measurements in the right 
superior frontal gyrus. Increased fatigue was cor-
related with changes in the left superior frontal 
and left anterior cingulate gyrus, and self-
perceived physical impairment was correlated 
with changes in the left postcentral gyrus. Higher 
intensity scores for stress symptoms were corre-
lated negatively with diffusivity in the thalamus 
and FA in the left insular cortex [55].

�Functional Magnetic Resonance 
Imaging (FMRI)

Clinical studies with functional imaging show that 
pain is not a static condition with a pathophysiol-
ogy that is only localized in the peripheral system 
of muscles or tendons, but that it is a highly plastic 
clinical pathology that affects multiple central 
neural systems and defines the so-called “neural 
matrix” of pain or network of cortico-subcortical 
areas involved in pain processing.

fMRI is a noninvasive technique that detects and 
locates focal brain activation taking place and 
involved in performing a task by means of a cogni-

tive, emotional, or sensory-motor neuron circuit. 
Generally, fMRI studies are based on the acquisi-
tion of images during one sequence while the 
patient is at rest and another while performing a 
task. The subsequent statistical comparison between 
the two phases (rest and activation) represents, in an 
ideal case, the focal metabolic and vascular changes 
in the cerebral cortex that are in operation during 
performance of the task being studied, or by block-
design paradigms that are well connected with the 
episode (event-related). However, fMRI can evalu-
ate the metabolic and vascular condition that occurs 
at rest (resting-state) and the actual time duration of 
the pattern of brain activation when performing a 
functional certain task under study.

The DMN comprises a set of brain regions 
that are coactivated during passive task states. 
These show an intrinsic functional relationship, 
and are connected via direct and indirect ana-
tomic projections. The medial temporal lobe sub-
system provides information from previous 
experiences in the form of memories and associa-
tions, which are the building blocks of mental 
simulation. The medial prefrontal subsystem 
facilitates the flexible use of this information dur-
ing the construction of self-relevant mental simu-
lations. These two subsystems converge on 
important nodes of integration, including the 
ventral posterior cingulate cortex (vPCC) [77].

Multiple techniques have been devised to 
evaluate functional brain connectivity. For corre-
lational analyses, the main techniques are seed 
correlation and independent component analysis 
(ICA). For seed correlation, the fMRI signal is 
extracted from a seed region of interest, and is 
then correlated with the fMRI time series taken 
from all other brain voxels [78]. Alternatively, 
ICA is a data-driven technique that considers all 
voxels in the brain and clusters them into spatio-
temporally distinct networks, which are spatially 
independent of one another [79].

Recent functional neuroimaging studies have 
enabled the neuroanatomical differentiation of the 
classic dimensions of pain processing. Sensory 
and cognitive dimensions are at the top and brain 
dorsal portion (contralateral primary somatosen-
sory cortex, bilateral secondary somatosensory 
cortex, insular cortex in its rear portion, opercular 
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area, thalamus, frontoparietal neocortex, and sup-
plementary motor area). The emotional dimension 
involves the insular cortex, anterior cingulate cor-
tex, basal ganglia, and prefrontal cortex. 
Consequently, the functional activation of the neu-
ral circuitry of pain can be modulated by either a 
sensory or emotional component, not to mention 
the involvement of the cognitive component.

The emotional component can mediate the 
intensity threshold at which a stimulus is per-
ceived as painful. In fact, this threshold appears 
to be much lower in patients diagnosed with 
chronic functional pain (such as FM) than in 
healthy controls, and can generate an abnormal 
activation of the neuronal pain circuit. This has 
given rise to the collective denomination of 
these syndromes as central susceptibility syn-
dromes. Patients with FM have been found to 
have greater connectivity between the DMN 
and the insular cortex, which is a brain region 
known to process evoked pain, and the execu-
tive attention network [80]. Resting-state func-

tional magnetic resonance imaging (rfMRI) 
data from 18 patients with FM and 18 age-
matched healthy control subjects were ana-
lyzed using dual-regression ICA, which is a 
data-driven approach for the identification of 
independent brain networks. Intrinsic, or rest-
ing-state, connectivity was evaluated in multi-
ple brain networks: the DMN, the executive 
attention network (EAN), and the medial visual 
network (MVN), with the medial visual net-
work serving as a negative control. Spontaneous 
pain levels were also analyzed for covariance 
with intrinsic connectivity. These findings 
indicate that resting brain activity within mul-
tiple networks is associated with spontaneous 
clinical pain in patients with FM. These find-
ings may also have broader implications for 
how subjective experiences such as pain arise 
from a complex interplay among multiple brain 
networks (See Table 30.4).

While acute experimental pain induces default 
mode network deactivation in healthy subjects 

Table 30.4  Neuroradiological characteristics and anatomical areas of functional magnetic resonance imaging (fMRI) 
activations in pain

Author Image technique Connectivity Deactivation
Mitigated 
deactivation

Napadov Resting state ⇑
Insula–DMN

– –

Seminowicz Resting state – DMN
(acute experimental pain)

–

Baliki Resting state – – DMN
chronic back pain

Pujol Resting state ⇓
somatosensory system
⇑
DMN and somatosensory cortex

– –

Cifre Voxel ⇑
DMN and mPFC
and PCC
insula and ACC

Insula–DMN –

Stoeter fMRI ⇑
(thalamus, basal ganglia, and 
operculo-insular cortex)

– –

Gundel fMRI ⇑
amygdala, parahippocampal 
gyrus, and anterior insula

vmPFC/OFC –

Raichle fMRI ⇑
PFC and PCC–precuneus

Lateral parietal cortex –

DMN default mode network, mPFC medial prefrontal cortex, PCC posterior cingulate cortex, ACC anterior cingulate cortex, 
mPFC medial prefrontal cortex, vmFC ventromedial prefrontal cortex, OFC orbito-frontal gyri, PFC prefrontal cortex
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[81], chronic back pain is associated with miti-
gated DMN deactivation to visual attention tasks 
[82]. The DMN showed greater connectivity to the 
insula cortex and secondary somatosensory cortex 
(S2) (brain regions known to process evoked 
experimental pain and somatosensation), while the 
EAN showed greater intra-network connectivity in 
FM patients. Both the DMN and EAN were more 
connected to the insula in patients reporting greater 
spontaneous clinical pain at the time of the scan, 
which suggested a close link between DMN–
insula connectivity and clinical pain.

Reduced resting connectivity within the 
somatosensory system and increased connectiv-
ity between the default mode network and 
somatosensory processing regions, such as the 
secondary somatosensory cortex, were recently 
reported [83]. Such independent, confirmatory 
data are important for any neuroimaging-based 
markers of disease in FM, and further research is 
needed. Interestingly, this study also found 
altered connectivity with brain regions support-
ing visual and auditory processing, which may 
relate to the multisensory dysfunction sometimes 
reported in these patients.

A study used a seed voxel region of interest 
approach, and showed a pattern of both increased 
and decreased brain connectivity in FM patients 
[84]. Increased connectivity was found between 
DMN areas such as medial prefrontal cortex 
(mPFC) and posterior cingulate cortex (PCC), and 
also between anterior cingulate cortex (ACC) and 
the insula. These results support the fact that DMN 
and insula resting connectivity is disrupted in FM.

A recent study explored structural and fMRI 
changes in FM patients, and found an interesting 
association with age [85]. Younger, but not older, 
FM patients showed decoupling between the 
insula and anterior mid-cingulate cortex, two 
brain regions that are normally strongly con-
nected in healthy adults, as part of a salience net-
work. Another study reported increased frequency 
power (for a broad 0.01–0.25  Hz band) in 
somatosensory (primary somatosensory cortex, 
S1), cognitive (DLPFC), and affective (amyg-
dala) brain regions in FM patients [86].

During mild pain events, a relationship has 
been demonstrated between catastrophizing and 

activity in cortical regions associated with affec-
tive, attention, and motor aspects of pain. This 
includes the dorsolateral prefrontal, insular, ros-
tral anterior cingulate, premotor, and parietal cor-
tices. During more intense pain, prefrontal cortical 
regions involved in top-down pain modulation are 
negatively correlated with catastrophizing. An 
explanation for this may be that a cortical vigi-
lance network is engaged during mild pain. 
However, diminished prefrontal cortical modula-
tion impedes disengagement and suppression dur-
ing more intense pain [87]. These findings may 
also involve catastrophizing in the progression 
toward or persistence of chronic pain.

Patients with somatoform pain disorders are 
thought to have an early-acquired defect in stress 
regulation. The fMRI [88] was used to search for 
common alterations in the pain-responsive and 
stress-responsive cortical areas. They studied a 
group of 17 patients and an age-matched control 
group by inducing pin-prick pain, cognitive 
stress, and emotional stress. The patients demon-
strated increased activation of pain-processing 
areas (thalamus, basal ganglia, and operculo-
insular cortex) during first pain exposure, and 
increased activation of some prefrontal, tempo-
ral, and parietal regions was also observed. 
Temporal and parietal areas were also activated 
during cognitive stress, and activation was 
reduced during emotional stress. However, hip-
pocampal volume was not significantly reduced 
in the patient group. This study supports the 
current concept that central processing of pain 
and cognitive stress is increased in these patients, 
possibly owing to exaggerated memory or antici-
pation of pain exposure, or both, and to a distur-
bance in stress regulating systems. Though 
surprising, the finding of a reduced responsive-
ness to emotional stress is not contradictory to 
this hypothesis. Some sort of neglect or coping 
mechanisms may have developed over time as a 
response to earlier adverse events.

Another fMRI study [89] researched the cere-
bral processing of noxious heat stimuli as objec-
tive markers for pain sensation in 12 right-handed 
women diagnosed with somatoform pain disor-
der and 13 age-matched, healthy volunteers. 
Compared with controls, patients with pain 
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disorder responded to induced pain with hypoac-
tivation of the ventromedial prefrontal/orbito-
frontal cortex, and hyperactivation of the 
amygdala, parahippocampal gyrus, and anterior 
insula. The finding of altered cerebral processing 
of experimentally induced pain in patients with 
somatoform pain disorder supports the hypothe-
sis of dysfunctional pain processing, particularly 
in affect-regulating regions.

An fMRI analysis [13] revealed no differences 
in activity in brain regions related with attention 
and affection, or regions with sensory projections 
from the stimulated body area. However, when 
there was a primary lesion in the descending pain 
regulating system (the rostral anterior cingulate 
cortex), the patients failed to respond to pain 
provocation. The attenuated response to pain in 
these cases is the first demonstration of a specific 
brain region where the impairment of pain inhibi-
tion in FMS patients is expressed. These results 
validate previous reports of dysfunctional endog-
enous pain inhibition in FM, and advance the 
understanding of the central pathophysiologic 
mechanisms, providing a new direction for the 
development of successful treatments in FM.

Although the etiology of this disorder remains 
largely unknown, emerging data suggest that FM 
arises through augmentation of central pain pro-
cessing pathways. This hypothesis is largely based 
upon findings of previous functional neuroimag-
ing studies, showing that FM patients display aug-
mented neuronal responses to both innocuous and 
painful stimuli [12, 33], confirming the allodynia 
and hyperalgesia seen in this condition [90].

Studies with functional neuroimaging support 
the hypothesis of central pain augmentation in 
FM.  Differences of activation in the fronto-
cingulate cortex, the supplemental motor areas, 
and the thalamus were found between both 
groups with distinct differences in BOLD signal 
changes over the duration of pain stimulation, 
and even during anticipation of pain. These 
results support the hypothesis that central mecha-
nisms of pain processing in the medial pain sys-
tem and favorable cognitive/affective factors 
even during the anticipation of pain may play an 
important role for pain processing in patients 
with FMS [54].

The default network is disrupted during pain-
ful stimuli [91, 92] in FM [93] and depression 
[94], thereby further encouraging researchers to 
consider how the functions of the DMN might be 
important in understanding diseases of the mind. 
The functional connectivity pattern within the 
DMN is altered during pain, selectively in the 
prefrontal cortex and posterior cingulate cortex–
precuneus (increased connectivity), and in the 
lateral parietal cortex (decreased connectivity). A 
limited number of functional neuroimaging pain 
studies have shown that the activity in a network, 
including the posterior cingulate cortex–precu-
neus, the inferior parietal lobule, and the medial 
prefrontal cortex, was consistently reduced in 
response to a range of painful stimuli [91, 92].

New acquisition techniques and new analysis 
strategies have emerged that enable new concep-
tual approaches to the acquisition of data, such as 
network and multivariate pattern analyses, and in 
particular, support vector machines (SVM) [95]. 
The emergence of connectivity analyses, both 
functional connectivity (resting state) and struc-
tural connectivity, as enabled by DTI and tractog-
raphy, have allowed not only for the analysis of 
the connectedness of two remote brain areas, but 
also for the construction and analysis of large 
networks consisting of multiple brain sites. One 
such approach is the graph theory, where graphs 
are mathematical structures to model relations 
between objects.

The use of the graph theory in the analysis of 
chronic pain states has been limited. When inves-
tigating patients with migraine (without aura) 
and healthy controls, and applying the graph the-
ory based on resting-state functional connectivity 
analyses [96], a disruption was found in whole-
brain networks with an increase in disease dura-
tion, in which areas implicated in sensory 
discrimination constituted an abnormal network 
configuration.

�Treatment Effects

Mindfulness meditation has beneficial effects on 
a number of psychiatric, functional somatic, and 
stress-related symptoms, and therefore has been 
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increasingly incorporated into psychotherapeutic 
programs [97, 98], with subjects reporting better 
pain-related quality of life and greater life satis-
faction [99]. Altogether, 25 systematic reviews 
were found; they investigated the evidence of 
complementary and alternative medicine (CAM) 
for the FMS [100]. In general, they were 
exercised-based CAM therapies, manipulative 
therapies, mind–body therapies, acupuncture, 
hydrotherapy, phytotherapy, and homeopathy. 
Consistently positive results were found for tai 
chi, yoga, meditation and mindfulness-based 
interventions, hypnosis or guided imagery, elec-
tromyogram (EMG) biofeedback, and balneo-
therapy/hydrotherapy. Inconsistent results were 
found for qigong, acupuncture, chiropractic 
interventions, electroencephalogram (EEG) bio-
feedback, and nutritional supplements. 
Inconclusive results were found for homeopathy 
and phytotherapy. Despite a growing body of sci-
entific evidence of CAM therapies for the man-
agement of fibromyalgia syndrome (FMS), 
systematic reviews still show methodological 
flaws that limit definite conclusions about their 
efficacy and safety.

Neuroimaging studies were conducted to ana-
lyze the brains of people with and without medi-
tation experience. During the first 20 min inside 
the MRI scanner, they had spontaneous thoughts, 
and for the next 20 min they developed a simple 
exercise task, which consisted of focusing only 
on their breathing. As they began to practice this 
exercise, meditation with the usual respiratory 
concentration, medial prefrontal cortex activity 
decreased in all patients. This part of the DMN is 
considered relevant to self-centered mental pro-
cesses. Moreover, although the blood flow in the 
medial prefrontal region of the inexperienced 
meditators decreased a few minutes later than 
that of the experienced meditators, the blood sup-
ply of the area was reduced for the duration of the 
exercise, suggesting the calming effects of medi-
tation [101].

Anatomical likelihood estimation (ALE) meta-
analysis found eight brain regions of GM that 
were consistently enhanced in meditators [102]. 
Three studies [103–105] showed an apparent pat-
tern of structural increase in WM in meditators 

versus controls. Our research found that medita-
tors showed a lower apparent diffusion coefficient 
(ADC) in the left posterior parietal white matter 
than did controls, and that the ADC was nega-
tively correlated with years of meditation.

Similar research [106] addressed the func-
tional connectivity of the DMN in subjects who 
commonly practiced mindfulness versus subjects 
who did not. Their results indicated both reduced 
activation of two main nodes of the DMN 
(posterior cingulated cortex and medial prefrontal 
cortex), and that experienced meditators showed 
activation of the medial prefrontal cortex, insula, 
and temporal lobes during meditation, a differen-
tial pattern of functional connectivity both during 
resting and during mindfulness exercises. Other 
authors [107] show that the activity in a subregion 
of the DMN, the ventromedial prefrontal cortex, 
is inversely correlated with years of meditation 
experience, suggesting that the experience of 
meditation can enable more efficient cognitive 
processes subserved by this region. Another study 
[108], also reported a higher functional connec-
tivity in the DMN in meditator subjects (medial 
prefrontal cortex), suggesting that meditation 
practice is associated with functional changes in 
areas of the DMN even when not practicing. In 
summary, existing studies suggest differential 
patterns in meditators’ functional connectivity, 
consistent with reduced mind-wandering, a 
greater awareness of the present moment, and 
self-referential processing than those found in 
non-meditators [106, 109].

Meditation may be able to reinforce positive 
feelings, especially compassion and benevolence. 
To test this hypothesis [110], subjects performed 
compassion exercises while lying down in a brain 
scanner. Half of the 30 volunteers had several 
years of experience in Buddhist meditation tech-
niques. The control group comprised age-
matched participants with no experience in this 
type of group meditation. Emotional reactions 
were provoked with either the laughter of a baby 
or a deeply distressed groan. Such acoustic sig-
nals primarily stimulated those areas that had 
been shown in other studies to process emotional 
stimuli (the insula, the anterior cingulate cortex, 
and secondary somatosensory area). The major 
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differences between experienced meditators and 
novices were observed in the insula. Many of 
these phenomena are explained through mecha-
nisms of neuronal plasticity: An intense effort 
results in alterations in the structure and mode of 
operation of certain areas of the brain.

One review [111] described up to 17 research 
studies in which the therapeutic potential of 
mindfulness in pain was analyzed. Another study 
[112] showed that Zen meditators have pain sen-
sitivity thresholds higher than non-meditator sub-
jects. This is where regulation comes into play as 
a basic feature of meditation [113]. It appears 
that one effect of reduced activation of certain 
areas is a reduction in the connectivity between 
them. Connectivity has been associated with 
complex functions that are performed by multi-
ple brain structures in combination. The study 
showed increased activation of areas typically 
associated with pain, such as the insula, thala-
mus, anterior cingulate cortex, and prefrontal 
cortex [33, 114]. If only this increased activity is 
observed, it might seem that meditators are feel-
ing more pain than nonmeditators, which con-
trasts with the poor results obtained when they 
were asked to rate their pain. Connectivity stud-
ies, however, show that meditation reduces the 
connectivity between these areas related to pain 
regulation.

Similarly, several authors have studied the role 
of the prefrontal cortex using emotion-regulation 
tasks. For example, in the first study to address 
this [115], meditators were asked to perform a 
task of emotion recognition, with results showing 
lower connectivity between the prefrontal cortex 
and the right amygdala than in participants who 
did not practice meditation. The authors hypothe-
sized that meditators tend to treat emotional states 
as “objects” of care. By treating these conditions 
as transient mental products, this allows the medi-
tator to maintain greater distance from emotional 
experiences. This contrasts with the usual way of 
thinking and feeling emotions and thoughts, in 
which they are considered “facts” or “reality”. 
Results in this field have been obtained by other 
authors [116, 117], although some of these [118] 
pointed to the amygdala as a major participant in 
the regulation of emotions. These authors studied 

the regulation of anxiety through meditation tech-
niques, which showed reduced amygdala activity 
after performing a series of exercises.

However, other researchers [119] showed that 
DMN–insula connectivity, which was increased in 
FM patients, was reduced following 4  weeks of 
nonpharmacological acupuncture and sham acu-
puncture therapy, resulting in reduced pain in these 
patients. The authors suggested that connectivity 
between the DMN and insula may serve as a pos-
sible surrogate biomarker for pain reduction in FM.

Such studies could indeed play a role in clini-
cal practice, as they could, in addition to behav-
ioral measures such as anxiety and catastrophizing 
scores, help to identify patients at a high risk of 
developing chronic pain, implying the necessity 
of early therapeutic intervention. Likewise, it is 
desirable to determine whether or not patients are 
likely to respond to a certain therapy. In two 
recently performed studies, functional connectiv-
ity was demonstrated to predict clinical improve-
ment in response to pregabalin or milnacipran 
intake in FM patients [120, 121].

Interestingly, functional brain imaging has 
also been used to predict response to placebo 
treatment [121–123]. In the context of personal-
ized medicine, placebo treatment might indeed 
be a therapeutic option in several patients with 
chronic pain, and brain imaging could help to 
identify patients who are likely to benefit from a 
placebo treatment.

Other authors investigating analgesic mecha-
nisms of pregabalin in an FM group have seen 
that reductions in clinical pain were associated 
with reductions in functional connectivity 
between the DMN and the posterior insular cor-
tex, corroborating the theory that the interaction 
of these two regions might play a specific role in 
chronic pain [120].

A recent study by our group, with 63 patients, 
showed preliminary evidence of the utility of 
memantine for the treatment of FM.  Compared 
with a placebo group, memantine significantly 
decreased ratings on a pain visual analog scale 
(Cohen’s d  =  1.43 at 6  months) and pain mea-
sured with a sphygmomanometer (d = 1.05). All 
other secondary outcomes except anxiety also 
improved, with moderate-to-large effect sizes at 
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6 months. Compared with placebo, the absolute 
risk reduction obtained with memantine was 
16.13% (95% confidence interval = 2.0–32.6%), 
and the number needed to treat was 6.2 (95% 
confidence interval = 3–47) [124].

Interestingly, in another study conducted by our 
group using MRS at baseline and 6 months, in 13 
patients with FM treated with memantine and 12 
with placebo, the patients treated with memantine 
exhibited a significant increase in Glu, the Glu/Cr 
ratio, Glx, and total NAA + NAAG in the posterior 
cingulate cortex compared with those on placebo. 
Furthermore, the memantine group exhibited 
increases in Cr and Cho in the right posterior insula, 
while a correlation between Cho and the 
Fibromyalgia Impact Questionnaire (FIQ) in the 
posterior insula was also observed, demonstrating 
that memantine treatment resulted in an increase in 
cerebral metabolism in FM patients, and suggest-
ing its utility for the treatment of the illness [125].

The combination of ASL and BOLD imaging 
might provide new insight into the interaction of 
neural activity with vascular responses, which is 
of particular importance given that neural activity 
cannot be measured directly using MRI tech-
niques. Some authors have applied ASL and a 
Gaussian process binary classifier to distinguish 
intraindividually between a nonpain condition 
(prior to molar extraction) and postsurgical pain 
(after third molar extraction from the lower jaw), 
reaching a classification accuracy of 95 [126]. 
Others have reported that the functional connec-
tivity between the nucleus accumbens (NAc) and 
the prefrontal cortex in patients with subacute 
back pain was predictive of whether the pain per-
sisted [127]. A similar association was described 
for the structural connectivity of the prefrontal 
cortex as assessed by DTI [128].

�Conclusions

This chapter discussbes several techniques 
used for the diagnosis of FM. At present, there 
are no other noninvasive techniques that can 
provide equivalent information and, as a con-
sequence, MRS, DTI tractography, and fMRI 
are expected to be a powerful combined tech-
nique for researching brain anatomy and dis-
ease in situ in human beings.

The main findings among patients with 
chronic pain are an increased functional con-
nectivity between the pain system and the 
DMS, decrease in gray matter volume in the 
insular cortex and anterior cingulate cortex, 
and also decreased GABA concentrations in 
the insular cortex or thalamus.

New acquisition techniques and new analy-
sis strategies have emerged that enable new 
conceptual approaches to the acquisition of 
data, such as network and multivariate pattern 
analyses, and in particular, support vector 
machines (SVM).

Continued improvements in the design of 
imaging equipment and analysis algorithms 
are progressively improving the specificity of 
the biological parameters that can be calcu-
lated, allowing detailed quantitative character-
ization of microvascular structure in a wide 
range of pathological tissues, including FM.
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