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Abstract

Amphetamine and cocaine are drugs of abuse worldwide consumed for 
their stimulant properties in the central nervous system. They mainly 
potentiate noradrenergic and dopaminergic neurotransmission and induce 
long-term changes in multiple neuronal circuits, modifying the future 
responses to pharmacological or non-pharmacological challenges. The 
altered neuronal connectivity induced by psychostimulants has long been 
studied in reward processing brain areas and in behavioral responses. 
Different neurotransmitter systems are involved in these responses, includ-
ing the neuropeptide angiotensin II. Locally produced brain angiotensin II, 
acting through AT1 receptors, plays an important role in the modulation of 
central dopaminergic neurotransmission. Dopamine-innervated areas such 
as caudate putamen, nucleus accumbens, substantia nigra, hypothalamus, 
and ventral pallidum express high AT1 receptor density. Our recent studies 
show the role of angiotensin II AT1 receptors in the development of neuro-
adaptative behavioral and neurochemical changes induced by amphet-
amine. Moreover, we found alterations in the components of the renin 
angiotensin system (RAS) and in the functionality of AT1 receptors after 
amphetamine exposure. The evidence presented in this chapter highlight 
the RAS as a neuromodulatory system of superior brain activities, and 
further validate Angiotensin II involvement in amphetamine-induced 
alterations through AT1 receptor activation. The AT1 receptor blockers are 
currently and safely used in clinic for different pathologies, so they would 
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be prominent candidates for pharmacological treatment in pathologies 
related to altered dopamine neurotransmission, such as drug addiction, 
schizophrenia, or even depression.
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�Psychostimulant Pharmacology

D-amphetamine and cocaine are drugs known as 
psychostimulants. These drugs have a common 
pharmacological target as indirect catecholamin-
ergic agonists. They produce their stimulant and 
psychotic effects by increasing synaptic concen-
trations of dopamine (DA) through inhibition of 
reuptake and potentiation of presynaptic release. 
The potency of the psychotogenic effects 
induced by psychostimulants is associated with 
the dopaminergic agonist action, although no 
consistent correlation has been found between 
symptoms and measures of DA neuronal activity 
[1–3]. However, the physiological actions 
induced by drug administration extend beyond 
the transient changes in synaptic concentrations 
of DA, since a temporal dissociation exists 
between behavioral response and plasma drug 
concentrations [1–3].

�Neuroadaptative Changes 
Associated with Psychostimulants

Repeated administration of stimulants may produce 
a supersensitive condition in the central nervous 
system by upward regulation of postsynaptic DA 
receptors [4, 5]. This is a consequence of presynap-
tic DA depletion and lowered tonic basal DA levels 
after the increased dopaminergic synaptic activation 
induced by psychostimulants. Furthermore, sus-
tained dopaminergic activation could develop auto-
receptor subsensitivity associated with a reduced 
inhibition of presynaptic DA synthesis and release 
[6]. These events could lead to increased DA neuro-
transmission due to dysregulation of presynaptic 
and postsynaptic mechanisms.

At behavioral level, the supersensitivity 
induced by psychostimulants is a phenomenon 
termed behavioral sensitization, characterized 
by an enhanced response to psychostimulants 
that relies on neuroplastic changes. These 
changes are time-dependent and involve the 
motivational behavior circuitry of the brain [7, 
8]. The behavioral sensitization involves changes 
associated with long-lasting hyperactivity of the 
mesolimbic dopaminergic pathway [8, 9]. 
Moreover, considerable evidence indicates that 
exposure to a drug of abuse does not need to be 
repeated to induce locomotor sensitization. In 
this regard, it has been described in mouse and 
rat studies that a single exposure to psychostim-
ulants (cocaine or amphetamine) induces behav-
ioral sensitization [10, 11]. The sensitization 
process presents two temporally distinct phases: 
induction and expression [8, 12]. The mesocorti-
colimbic dopaminergic projections play a key 
role in both described phases of amphetamine-
induced behavioral sensitization. In this respect, 
it is known that sensitization can be induced by 
microinjection of amphetamine into the ventral 
tegmental area; meanwhile, its expression is 
associated with time-dependent adaptations in 
forebrain DA-innervated areas, such as the 
nucleus accumbens (NAc) and caudate putamen 
(CPu) [13].

In contrast with observations of enhanced DA 
neurotransmission within the NAc and CPu in 
response to the repeated administration of psy-
chostimulants, the DA response in the medial 
prefrontal cortex (mPFC) has been reported to be 
decreased in animals sensitized to cocaine [14–
16]. Moreover, the evidence suggests that the 
dorsal mPFC, which provides glutamatergic 
afferents specifically to NAc core, enhances the 
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expression of behavioral sensitization to cocaine 
by increasing glutamate transmission [17]. 
Oppositely, lesions in the prelimbic area of the 
mPFC were shown to affect the development of 
sensitization to the locomotor activating effects 
of cocaine [18]. Furthermore, a negative rela-
tionship has been described between DA levels 
in the ventral and dorsal mPFC and locomotor 
activity in response to the acute systemic admin-
istration of cocaine. Meanwhile, in the shell of 
the NAc a positive relationship between DA lev-
els and locomotor response to cocaine has been 
described [19]. Based on the available evidence, 
it seems that DA tone in the mPFC is involved in 
the balance between hyper- or hypo-stimulation 
states.

�Schizophrenia and Interactions 
with Psychostimulants

The neurobiological bases of schizophrenia and 
chronic stimulant drug effects suggest the 
potential for their interaction. Schizophrenic 
patients who abuse psychostimulant drugs are 
susceptible to incur several types of risk because 
they can present symptom exacerbations that 
otherwise might not have occurred. Beyond this, 
given the occurrence of behavioral sensitization 
and neurotoxic effects, chronic stimulant use 
could conceivably exacerbate the pathophysiol-
ogy of the disease, resulting in an acceleration 
of disease progress and/or an increase in the 
severity of symptoms. In addition, the antipsy-
chotic treatment response might be altered in an 
unfavorable direction. However, schizophrenic 
patients use smaller quantities of drugs of abuse 
than healthy drug abusers. Even though the 
dose–response parameters could be different for 
schizophrenic patients, the concern whether 
chronic stimulant abuse in healthy persons can 
induce a schizophrenia-like condition persisting 
without stimulant abuse is currently unsettled. 
In this regard, the evidence suggests that the 
onset of schizophrenia may be precipitated in 
pre-psychotic or latent schizophrenic patients, 
but not directly caused by psychostimulant 
abuse [3, 20].

�Role of Angiotensin in Brain 
Excitability

Currently, it is well established that the brain pos-
sesses its own and distinct angiotensin system [21]. 
The pharmacological manipulation of this system 
may modulate a number of events coordinated by 
the central nervous system such as drinking behav-
ior [22], hormone release [23], anxiety [24–26], 
cognition [27–30], locomotor activity [31, 32], and 
stereotypy [32, 33]. The pharmacological and 
molecular evidence indicates the presence of at 
least two receptors for the octapeptides angiotensin 
II AT1 and AT2 [34, 35]. These receptor subtypes 
mediate responses evoked by angiotensin II, 
although to date the majority of the known physi-
ological responses evoked by angiotensin II appear 
to be mediated via the AT1 receptor [36, 37].

The immunohistochemical and neuropharma-
cological evidence suggests that angiotensin II 
and its derived peptides angiotensin III and/or IV 
are neurotransmitters or neuromodulators in spe-
cific neuronal pathways in the brainstem, fore-
brain, and hypothalamus. AT1 receptor activation 
by angiotensin II elicits neuronal depolarization 
by affecting the permeability of different ion 
channels. In this regard, AT1 receptor mediates an 
inhibition of potassium channel [38] or opening 
of a non-selective sodium-calcium channel [39]. 
The activation of these different signaling path-
ways inducing depolarization would reflect the 
fine tuning level of the overall cellular activation. 
The electrophysiological evidences show that 
angiotensin II applied in  vitro induces a firing 
increase in the median preoptic neurons [40], 
paraventricular nucleus of the hypothalamus [41], 
basolateral nucleus of amygdala [42], central 
nucleus of amygdala [43] and the hippocampus 
[44, 45]. Similarly to Angiotensin II, angiotensin 
IV exerts stimulating effects on the firing rate and 
burst discharges in the hippocampus [45]. The 
different distribution of the co-localized AT1 and 
AT4 receptors in the same hippocampal neuron 
could be a reason for the observed difference in 
excitation produced by either angiotensin II or 
angiotensin IV respectively. The excitatory effects 
induced by angiotensin II are due to presynaptic 
AT1 receptor activation and modulatory effects on 
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classical neurotransmitter release [38], or activa-
tion of postsynaptic AT1 receptors that induces 
membrane depolarization and an inward current 
[40]. It has been found that angiotensin II and 
angiotensin IV exert dual effects on the dorsal lat-
eral geniculate nucleus [46], amygdala [42] and 
hippocampus [44, 45], but the inhibitory role pre-
dominates in the locus coeruleus [47], superior 
colliculus [48], and septum [49].

In many brain areas, there is an interaction 
between angiotensinergic and glutamatergic sys-
tems, and this interaction could explain in part the 
inhibitory effects induced by angiotensin II.  In 
this regard, angiotensin II modulates the response 
to glutamate in the superior colliculus acting 
through AT1 and AT2 receptors, while visual 
potentials evoked by glutamate receptor agonist 
have been shown to be attenuated by postsynaptic 
AT1 receptor activation only [50]. In the locus 
coeruleus, angiotensin II blocked the excitation 
evoked by glutamate [47]. Moreover, it has been 
described that angiotensin inhibited the NMDA- 
and/or kainate-evoked increase in the firing rate of 
dorsal lateral geniculate nucleus, and the AT1 
receptors may be involved [46]. In-vivo studies 
show that angiotensin II modulates the barorecep-
tor reflex response, acting on the area postrema, 
and in an electrophysiological study, an inhibitory 
effect was found in this area, induced by angio-
tensin II. Neurons from the area postrema are in 
reciprocal connection with the nucleus tractus 
solitarius, a region involved in integration of baro-
receptor reflex response [51]. Moreover, angio-
tensin II and III inhibit the neurons of nucleus 
reticularis ventrolateralis, and subsequently the 
spontaneous baroreceptor reflex response. This 
action could be reversed by AT2 receptor antago-
nists [52]. The presented evidence strongly sug-
gests angiotensin II and derived peptides as 
modulators of neuronal activity.

�Relationship Between Dopamine 
and Angiotensin II

There is a large body of evidence supporting the 
relationship between brain angiotensin II and cat-
echolamine systems [53, 54]. This interaction 

could be involved in some central actions of 
angiotensin II such as cardiovascular control, 
dipsogenesis, and complex behaviors, supporting 
the idea that drugs able to modulate brain angio-
tensin II may be useful in regulating central DA 
activity. In this respect, high AT1 receptor density 
has been described in DA-rich regions, in CPu, 
hypothalamus, NAc, and ventral pallidum [55, 
56]. The evidence shows that brain angiotensin II 
increases the DA release in CPu and NAc [57]. 
Moreover, it has been found that in CPu the DA 
release induced by angiotensin II is mediated by 
AT1 receptors [55], and the stereotype behavior 
induced by apomorphine (DA receptor agonist) 
could also be blocked by AT1 receptor antago-
nists [58].

Given the established role of the nigro-striatal 
dopamine system in the control of movement, 
and the fact that angiotensin II enhances the 
release of dopamine in the rat striatum (that pro-
vides a neurochemical mechanism underlying the 
modulation of locomotor activity and other DA 
mediated behaviors) we may hypothesize that the 
angiotensin system could be a useful tool for 
pharmacological manipulation of the DA system 
(see above).

The available evidence suggests that DA 
and angiotensin II systems directly regulate 
against each other in the striatum and substan-
tia nigra of rodents [59, 60]. In this regard, 
reserpine-induced DA depletion produced a 
significant increase in the expression of AT1 
and AT2 receptors, which decreased when the 
dopaminergic function was restored. The same 
phenomenon was observed after dopaminergic 
denervation with 6-hydroxydopamine. In this 
case, the administration of L-Dopa decreased 
AT1 and increased AT2 receptor density [59]. 
Moreover, changes in angiotensin II levels 
may affect angiotensin II receptor density. In 
this regard, transgenic rats with very low lev-
els of brain angiotensin II showed increased 
AT1 receptors [61]. The Labandeira-Garcia 
group found evidence suggesting that AT1 
receptors expression is closely related to DA 
levels through direct (DA and AT1 receptors) 
and indirect (changes in angiotensin II levels) 
mechanisms [60].
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�Brain Angiotensin II and Cocaine

Although it is generally recognized that cocaine 
has a potentially toxic effect upon the cardiovas-
cular system, the process by which this occurs is 
extremely complex and is not, at present, fully 
understood. Acutely, cocaine administration has 
been associated with a wide range of effects, 
including increases in heart rate and blood pres-
sure, coronary vasoconstriction, increases in 
myocardial contractility, and decreases in ejec-
tion fraction [62]. Based on the available evi-
dence, it seems that these effects are associated 
with cocaine-induced increases in sympathetic 
output subsequent to potentiation of mono-
amines. Consistent with its local anesthetic prop-
erties, mediated by voltage-gated sodium channel 
blockade, cocaine also may depress heart func-
tion. These ‘opposing’ effects may create signifi-
cant imbalances in oxygen demand and supply, 
which, particularly in a cocaine-induced pro-
thrombotic context, have the potential to signifi-
cantly degrade the electrical and mechanical 
functioning of the heart [63]. Findings in chronic 
cocaine abusers include hypertension, left ven-
tricular hypertrophy, malignant arrhythmias, 
myocardial ischemia, and cardiomyopathy [64]. 
The clinical etiologic context is complex, as it is 
necessary to disentangle the effects of cocaine 
from cardiovascular risk factors associated with a 
drug-abusing lifestyle, including different factors 
such as poor diet and intravenous drug use [65].

Angiotensin I converting enzyme (ACE), the 
main angiotensin II generating enzyme, is an 
essential part of the renin–angiotensin system 
(RAS) present in the brain. Interestingly, research 
points to central nervous system effects of ACE-
inhibitors that may bear upon their potential util-
ity for the treatment of cocaine addiction. A 
number of studies in animals point to activation 
of the hypothalamic–pituitary–adrenal (HPA) 
axis by drugs of abuse, which may affect the 
drug’s positive reinforcement properties, as well 
as mediate anxiogenic-like behavior associated 
with drug withdrawal [66]. There is evidence 
suggesting that cocaine withdrawal is associated 
with activation of corticotropin-releasing factor 
(CRF) [67]. Extrapolated to a clinical population, 

CRF release may mediate the abstinence-
associated dysphoria, as well as the stress-related 
relapse to cocaine [68]. It has been found that 
ACE-inhibitors in cocaine-abusing patients 
decrease CRF release [69]. Conversely, angioten-
sin II increases CRF release [70]. Decrease in 
CRF by ACE-inhibitors could potentially play a 
role in reducing stress-related relapse to cocaine 
[65].

As was described above, DA release in the 
striatum of the rat can be directly affected by 
angiotensin II [71, 72] or through a metabolite-
like angiotensin IV [55, 73, 74]. Angiotensin II 
increases CRF release [75], an effect also induced 
by cocaine withdrawal [76]. The available evi-
dence supports the importance and possible 
implications of the complete RAS in the brain, 
where it acts to regulate a number of physiologi-
cal processes (e.g., cardiovascular maintenance, 
memory, fluid intake, energy balance). ACE-
inhibitors are ligands that form a complex with 
Zn2+ at the active site of ACE. ACE-inhibitors 
are effective in reducing blood pressure in hyper-
tensive individuals, as they block the conversion 
of angiotensin I to angiotensin II and reduce the 
degradation of bradykinin. It has been described 
that ACE-inhibitors are able to increase dopa-
mine release in the striatum, an effect probably 
mediated by the opioid system [65]. As they 
could indirectly block CRF release and directly 
block angiotensin II production, ACE-inhibitors 
have been suggested to be used in the treatment 
of cocaine abuse [65]. Moreover, it has been 
observed that chronic administration of ACE-
inhibitors increased the turnover of dopamine in 
the striatum of rats [77]. Similarly, it has been 
found that sodium depletion, known as a treat-
ment that induces RAS activation, is able to 
induce behavioral cross-sensitization with 
cocaine, showing the involvement of angiotensin 
II in the neuroplastic events induced by this psy-
chostimulant [78].

The central nucleus of the amygdala (CeA) 
plays a critical role in integrating sympathetic 
and behavioral responses to stress and the stimu-
lation of the CeA produces increases in blood 
pressure and heart rate [79]. The CeA also con-
tains angiotensin II, ACE, and angiotensin 
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receptors [80]. In addition, CRF-like immunore-
activity exists in the CeA [81, 82]. Moreover, it 
has been described that microinjection of angio-
tensin II in the CeA elicits a pressor response, 
whereas CRF evokes both an increase in plasma 
catecholamines and arterial pressure [83, 84]. 
Cocaine and acute stress increase CRF and/or its 
mRNA in the amygdala [68, 85, 86]. Therefore, 
multiple studies suggest that angiotensin II and 
CRF are key neurotransmitters in the CeA 
involved in regulation of sympathetic and hemo-
dynamic responses to stress [79].

�Brain Angiotensin II 
and Amphetamine

�Long-Lasting Changes in Brain 
Angiotensin II Involved 
in the Neuroadaptive Responses 
to Amphetamine

A direct relationship between angiotensin II and 
behavioral sensitization induced by amphetamine 
was found in our laboratory. In this regard, it was 
shown that angiotensin II AT1 receptors are 
involved in the development of behavioral and 
neurochemical sensitization induced by a single 
exposure to amphetamine [87, 88]. Moreover, it 
was recently reported by our group that 

amphetamine exposure induces persistent altera-
tions in brain angiotensin II components within 
CPu and NAc [89]. In this respect, both studied 
regions, CPu and NAc, presented long-lasting 
increase in AT1 receptor density after amphet-
amine exposure but in CPu, a significant decrease 
in angiotensinogen (angiotensin II precursor) was 
found. The available evidence suggests a relation-
ship between the AT1 receptors and angiotensino-
gen in the brain. In this regard, it has been 
described that the administration of AT1 receptor 
antagonists induced widespread up-regulation of 
angiotensinogen mRNA levels with low doses 
and down-regulation with higher doses [90] 
(Fig.  15.1). Meanwhile, other authors found a 
decrease in angiotensinogen, angiotensin II, and 
angiotensin-converting enzyme mRNA levels in 
basal ganglia after systemic administration of 
candesartan, an AT1 receptor antagonist [91]. This 
evidence supports the view that manipulations of 
AT1 receptors could induce changes in brain 
angiotensinogen levels. The results obtained for 
our group showing amphetamine-induced 
decrease in angiotensinogen in CPu could be 
related to an overstimulation of AT1 receptors. In 
this regard, it was also found that the expression 
of behavioral sensitization was attenuated by AT1 
receptor blockade in CPu [89]. In NAc, no 
changes were observed in angiotensinogen after 
amphetamine exposure, and the AT1 receptor 
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Fig. 15.1  AT1 receptors are involved in the altered neuro-
nal activation induced by amphetamine exposure in 
response to different challenges. Angiotensin II 
(400 pmol) was administered intracerebrally and amphet-
amine (0.5 mg/kg) intraperitoneally. The neuronal activa-
tion was measured as Fos expression in the two brain 

areas from animals exposed to amphetamine 21  days 
before, pretreated with AT1 receptor antagonist (CV) or 
vehicle. The values were calculated as percentage respect 
control group (vehicle-saline animals exposed to saline 
challenge) and expressed as mean  ±  SEM.  Two-way 
ANOVA analysis, *p < 0.05, n = 7–10

C. Bregonzio et al.



199

antagonists were ineffective in preventing the 
expression of behavioral sensitization induced by 
the psychostimulant [89]. Even though the two 
brain areas evaluated are rich in dopaminergic ter-
minals and are strongly related to psychostimu-
lants neuroadaptive responses, they show 
differential DA release in response to electrical 
stimulation. Moreover, the DA release in the CPu 
is not regulated by dopamine autoreceptor activa-
tion, in contrast to NAc [92]. Two mechanisms 
have been suggested for regulating DA release in 
the projections of dopaminergic systems: a phasic 
release regulated by depolarization of dopaminer-
gic nerve cell bodies, and a tonic regulation of DA 
release independent of electrical activity of these 
neurons [93]. The tonic influences are more sig-
nificant in the CPu than in the NAc [92]. This last 
fact is in agreement with the evidence showing 
the tonic influence of angiotensin II on DA syn-
thesis and release in CPu through AT1 receptors 
[55, 94]. However, CPu and NAc seem to have 
different roles in the neuroadaptive responses to 
drugs of abuse [95, 96].

�Repeated Amphetamine Exposure 
Modifies Brain Angiotensin II AT1 
Receptor Functionality

Sodium depletion, which activates RAS, devel-
ops cross-sensitization effects leading to 
enhanced locomotor activity responses to amphet-
amine [97]. These experiments indicate that treat-
ments implying RAS activation show reciprocal 
behavioral cross-sensitization with psychostimu-
lants. In relation to these findings, our group, 
using a protocol of repeated amphetamine, found 
long-lasting changes affecting brain response to 
angiotensin II [98]. These alterations were 
revealed by exogenously intracerebrally injected 
angiotensin II in conscious rats, known to pro-
duce a marked increase in water and sodium 
intake, as well as an increased natriuresis [98]. 
All these effects have been previously and 
exhaustively described [99–103]; however, the 
results obtained in our study showed that previous 
exposure to repeated amphetamine administra-
tion modified the described effects of angiotensin 

II i.c.v. on these parameters in a long-term man-
ner (1  week after amphetamine withdrawal) 
[104]. In this respect, it was found that repeated 
amphetamine exposure markedly decreased the 
sodium intake induced by angiotensin II; mean-
while, water intake was unaffected. Sodium 
intake behavior is likely to reflect the differential 
regulation of intracellular signaling pathways. In 
this regard, it has been hypothesized that differen-
tial AT1 receptors signaling pathways play sepa-
rable roles in water and saline intake stimulated 
by angiotensin II [105, 106]. There are results 
that support this hypothesis, demonstrating that G 
protein-dependent pathways appear to be more 
important for water intake stimulated by angio-
tensin II, whereas G protein-independent path-
ways may be more relevant for angiotensin 
II-stimulated sodium intake [107]. In accordance 
with this last fact are the results showing that 
repeated i.c.v. angiotensin II administration 
reduced the dipsogenic effect without affecting 
sodium intake [108]. Therefore, a possible expla-
nation for amphetamine exposure effects is the 
alteration of intracellular signaling pathway 
involved in the effects of angiotensin II on sodium 
intake. This altered response obtained in amphet-
amine-exposed animals may involve the desensi-
tization of AT1 receptors through internalization 
of these receptors [109]. This last is supported by 
the evidence showing that angiotensin II i.c.v. 
induces internalization of AT1 receptors [110]. 
Accordingly, a decrease in the response to angio-
tensin II after a persistent or repetitive stimulation 
of AT1 receptors has been described [111]. 
Moreover, it has been shown that the early induc-
ible genes, c-fos, c-jun, and delta-fos are involved 
in the control of transcription factors expression 
that ultimately mediate the desensitization to the 
angiotensin II signal [112]. In our laboratory, we 
found that angiotensin II i.c.v. induced a threefold 
increase in NAc and CPu neuronal activation; this 
effect was blunted by repeated amphetamine 
exposure. This decreased response could demon-
strate an AT1 receptor desensitization induced by 
repeated psychostimulant administration. In this 
regard, AT1 receptor desensitization-reduced Fos 
expression has been described as a consequence 
of repetitive angiotensin II i.c.v. administration in 
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different brain areas that co-expressed AT1 recep-
tors [112]. Interestingly, these results are in agree-
ment with those obtained in regard to the 
decreased response in sodium intake to angioten-
sin II i.c.v.

It is known that exogenous i.c.v. angiotensin II 
administration stimulates oxytocin release from 
the pituitary gland [113, 114]. It has been found 
that the increase of sodium intake through sodium 
deprivation or adrenalectomy decreases basal 
oxytocin levels; meanwhile, treatments that stim-
ulate oxytocin secretion (e.g., hypertonic saline, 
lithium chloride, and copper sulfate) inhibit 
sodium intake in sodium-deprived rats [115–
117]. Moreover, blockade of central oxytocin 
receptors before i.c.v. angiotensin II administra-
tion resulted in a potentiation of angiotensin 
II-induced sodium intake, although in the absence 
of exogenously administered angiotensin II, 
blockade of oxytocin receptors does not interfere 
with the dipsogenic properties of angiotensin II, 
nor does it stimulate sodium intake [115]. In rats, 
the oxytocin receptor antagonist administration-
induced sodium intake is blunted by AT1 receptor 
antagonist administration [118]. This evidence 
supports the idea of an inhibitory oxytocinergic 
tone involved in the activation or disinhibition of 
AT1 receptors [118].

The results obtained in our study using repeated 
amphetamine administration reveal a long-lasting 
effect of amphetamine exposure.

Moreover, it is possible to suggest that the 
decreased response in sodium intake induced by 
angiotensin II i.c.v. in amphetamine-exposed ani-
mals could be attributed to an increased oxytocin 
response to angiotensin II as a consequence of 
AT1 receptors altered functionality. This explana-
tion is supported by our results, showing that 
amphetamine exposure increased the number of 
Fos-oxytocin positive neurons in response to 
angiotensin II. The mechanisms by which angio-
tensin II i.c.v. induces natriuretic effects could 
involve brain oxytocin release [119]. It has been 
shown that angiotensin II i.c.v. activates oxytocin 
neurons in paraventricular and supraoptic nucleus 
[113–115]. In our study, the repeated amphet-
amine administration potentiated the activation of 
oxytocin neurons induced by angiotensin II i.c.v. 

in different oxytocinergic subnuclei of paraven-
tricular and supraoptic nucleus, possibly showing 
an increased oxytocin response to angiotensin II 
because of the reduced AT1 receptor functionality 
mentioned above. Therefore, the repeated amphet-
amine exposure could reduce AT1 receptor func-
tionality (desensitization-like) shown as a 
potentiated oxytocinergic response to i.c.v. angio-
tensin II that elicits a decrease in sodium intake, 
an increase in natriuresis, and decreases in plasma 
renin activity. These results are also supported by 
the increased number of Fos-oxytocin positive 
neurons in paraventricular and supraoptic nucleus 
in response to i.c.v. angiotensin II found in the 
amphetamine-exposed animals [104].

In conclusion, the results presented here sup-
port the view that long-lasting changes in brain 
RAS could be considered among the 
psychostimulant-induced neuroadaptations.
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