
Chapter 6
HJB Equations Through Backward
Stochastic Differential Equations

Marco Fuhrman and Gianmario Tessitore

This last chapter of the book completes the picture of the main methods used to study
second-order HJB equations in Hilbert spaces and related optimal control problems
bypresenting a survey of results that can be achievedwith the techniques ofBackward
SDEs in infinite dimension.

The chapter has been written independently and autonomously. In order to main-
tain some coherence with the notation used in the Backward SDE literature, the
notation used in this chapter is not always identical to that in the rest of the book.
This is explained in Sects. 6.1.1 and 6.1.2.

The chapter has the following structure.

• Section6.1 explains the basic notation and collects some useful results about gen-
eralized gradients and SDEs which are needed in the rest of the chapter.

• Section6.2 provides results about regular dependence of solutions of SDEs on the
data.

• Section6.3 presents results about well-posedness and regular dependence on the
data for Backward SDEs (BSDEs from now on) and Forward–Backward systems
(FBSDEs) in Hilbert spaces.

• In Sect. 6.4 existence and uniqueness of mild solutions of HJB equations through
FBSDEs are discussed.

• Section6.5 gives applications of the results of Sect. 6.4 to optimal control problems.
An example of a control problem with delay is studied in Sect. 6.6.

M. Fuhrman
Dipartimento di Matematica, Università degli studi di Milano, Milano, Italy

G. Tessitore (B)
Dipartimento di Matematica e Applicazioni, Università degli studi di Milano-Bicocca, Milano,
Italy
e-mail: gianmario.tessitore@unimib.it

© Springer International Publishing AG 2017
G. Fabbri et al., Stochastic Optimal Control in Infinite Dimension,
Probability Theory and Stochastic Modelling 82,
DOI 10.1007/978-3-319-53067-3_6

685



686 M. Fuhman and G. Tessitore

• Sections6.7–6.10 develop the same program for elliptic HJB equations and infinite
horizon control problems. An application to an infinite horizon optimal control
problem driven by a heat equation with additive noise is discussed in Sect. 6.11.

• Results for elliptic HJB equations with non-constant second-order coefficients and
some applications are collected in Sect. 6.12.

6.1 Complements on Forward Equations
with Multiplicative Noise

6.1.1 Notation on Vector Spaces and Stochastic Processes

The notation for Banach spaces and linear operators between them is the same as
that used in the other parts of the book, see, for instance, Appendix A.1.

In this chapter the letters �, H , K will always denote Hilbert spaces. The scalar
product is denoted, as usual, by 〈·, ·〉, with a subscript to specify the space, if neces-
sary. All Hilbert spaces are assumed to be real and separable.

We only consider stochastic differential equations driven by cylindrical Wiener
processes W . By a cylindrical Wiener process with values in a Hilbert space �,
defined on a complete probability space (�,F ,P), we mean a family W (t), t ≥ 0,
of linear mappings � → L2(�) such that

(i) for every u ∈ �, {W (t)u}t≥0 is a real Wiener process (admitting a continuous
modification);

(ii) for every u, v ∈ � and t, s ≥ 0, E (W (t)u · W (s)v) = min(t, s) 〈u, v〉�.
Recall that, in this case, when the noise space � has finite dimension d the Wiener
process can be naturally identified with a d-dimensional standard Wiener process
(β1, . . . ,βd), where βi (t) = W (t)ei and (e1, . . . , ed) denotes an orthonormal basis
of �. In other parts of the book Q-Wiener processes and in particular cylindrical
Wiener processes are introduced in a slightly different (but equivalent) way, see
Sect. 1.2.4 and in particular Remark 1.89.

Unless stated otherwise, {Ft }t≥0 will denote the natural filtration ofW , augmented
by the family N of P-null sets of F :

Ft = σ(W (s)u : s ∈ [0, t], u ∈ �) ∨ N .

The filtrationFt satisfies the usual conditions. All the concepts of measurability for
stochastic processes (e.g. adaptedness, predictability etc.) refer to this filtration. By
P we denote the predictable σ-field on� × [0,∞) or (by abuse of notation) its trace
on � × [0, T ].

For [a, b] ⊂ [0, T ] we use the notation

F[a,b] = σ(W (s)u − W (a)u : s ∈ [a, b], u ∈ �) ∨ N .
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To denote the value of a process X at time s, sometimes instead of X (s) the shortened
notation Xs will be used, especially in proofs. The short-hand “a.a. (a.e.)” means
“almost all (almost everywhere) with respect to the Lebesgue measure”.

Next we define several classes of stochastic processes with values in a Hilbert
space K .

• L2
P(� × [0, T ]; K ) denotes the space of equivalence classes of processes Y ∈

L2(� × [0, T ]; K ), admitting a predictable version. L2
P(� × [0, T ]; K ) is

endowed with the norm

|Y |2 = E

∫ T

0
|Y (s)|2ds.

• L p
P(�; L2([0, T ]; K )) denotes the space of equivalence classes of processes Y

such that the norm

|Y |p = E

(∫ T

0
|Y (s)|2ds

)p/2

is finite, and Y admits a predictable version.
• CP([0, T ], L2(�; K )) denotes the space of K -valued processes Y such that Y :

[0, T ] → L2(�; K ) is continuous and Y has a predictable modification, endowed
with the norm

|Y |2 = sup
s∈[0,T ]

E |Y (s)|2.

Elements of CP([0, T ], L2(�; K )) are identified up to modification.
• L p

P(�;C([0, T ], K )) denotes the space of predictable processes Y with continu-
ous paths in K , such that the norm

|Y |p = E sup
s∈[0,T ]

|Y (s)|p

is finite. Elements of L p
P(�;C([0, T ], K )) are identified up to indistinguishability.

Recall that, for a given element � of L2
P(� × [0, T ];L2(�, K )), the Itô sto-

chastic integral
∫ t
0 �(s) dW (s), t ∈ [0, T ], is a K -valued martingale belonging to

L2
P(�;C([0, T ], K )).
If � belongs to L2

P(� × [0, T ];�), the real-valued Itô stochastic integral
∫ t
0

〈�(s), dW (s)〉� is by definition the integral
∫ t
0 �(s)∗ dW (s), where �(ω, s)∗ ∈

�∗ denotes the element corresponding to �(ω, s) ∈ � by the Riesz isometry (i.e.,
�(ω, s)∗h = 〈�(ω, s), h〉�, h ∈ �).

The previous definitions have obvious extensions to processes defined on subin-
tervals of [0, T ].
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6.1.2 The Class G

In this section we introduce a class of maps acting among Banach spaces, possessing
suitable continuity and differentiability properties. Many assumptions in the follow-
ing sections will be stated in terms of membership in this class.

The class we are going to introduce has several useful properties. First, member-
ship in this class is often easy to verify: see Lemmas 6.4 and 6.6 below. Next, it is a
well-behaved class as far as chain rules are concerned. Finally, it is sufficiently large
to include operators commonly arising in applications to stochastic partial differen-
tial equations, such as Nemytskii (evaluation) operators; it is well known that the
Nemytskii operators are not Fréchet differentiable except in trivial cases.

In this subsection, X , Y , Z , V denote Banach spaces. We recall that for a mapping
F : X → V the directional derivative at a point x ∈ X in the direction h ∈ X is
defined as

∇F(x; h) = lim
s→0

F(x + sh) − F(x)

s
,

whenever the limit exists in the topology of V . F is called Gâteaux differentiable
at the point x if it has directional derivative in every direction at x and there exists
an element of L(X, V ), denoted ∇F(x) and called Gâteaux derivative, such that
∇F(x; h) = ∇F(x)h for every h ∈ X .

Remark 6.1 When V = R the Gâteaux derivative∇F(x) belongs toL(X,R) = X∗,
the dual space of X . If, in addition, X is a Hilbert space then it can be identified
canonically with X∗ and the Gâteaux derivative of F at x can be thought of as an
element of X that we denote by DF(x). Thus, DF(x) is the unique element of X such
that ∇F(x; h) = ∇F(x)h = 〈DF(x), h〉X for every h ∈ X . Similarly, in the same
circumstances, the second Gâteaux derivative will be identified with a (symmetric)
element of L(X), denoted by D2F(x). This convention is a little different from the
rest of the book, where the notation DF(x) is employed for the Fréchet derivative
of F at x . �

Definition 6.2 We say that a mapping F : X → V belongs to the class G1(X, V ) if
it is continuous, Gâteaux differentiable on X , and ∇F : X → L(X, V ) is strongly
continuous.

The last requirement of the definitionmeans that for everyh ∈ X themap∇F(·)h :
X → V is continuous. Note that ∇F : X → L(X, V ) is not continuous in general if
L(X, V ) is endowed with the norm operator topology; clearly, if this happens then
F is Fréchet differentiable on X . Some features of the class G1(X, V ) are collected
below.

Lemma 6.3 Suppose F ∈ G1(X, V ). Then

(i) (x, h)→∇F(x)h is continuous from X × X to V ;
(ii) if G ∈ G1(V, Z) thenG(F) ∈ G1(X, Z) and∇(G(F))(x) = ∇G(F(x))∇F(x).
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Proof (i) Let xn → x and hn → h in X . By the Banach–Steinhaus theorem we have
|∇F(xn)|L(X,V ) < L for every n and for a suitable constant L . Therefore

|∇F(xn)hn − ∇F(x)h| ≤ L|h − hn| + |∇F(xn)h − ∇F(x)h|

and the claim follows immediately.

(i i) First we notice that for all x, y ∈ H :

F(x + y) = F(x) +
∫ 1

0
∇F(x + r y)y dr. (6.1)

Therefore, given x , h ∈ X , s ∈ (0, 1], repeated application of (6.1) yields

G(F(x + sh)) − G(F(x))

=
∫ 1

0

[
∇G

(
F(x) + σ

∫ 1

0
∇F(x + srh)shdr

)∫ 1

0
∇F(x + srh)shdr

]
dσ.

Let g(s) = ∫ 1
0 ∇F(x + srh)hdr , K = {∇F(x + rh)h : r ∈ [0, 1]} and K̂ be the

closed convex hull of K . Clearly K , and hence K̂ , are compact subsets of V and
g(s) ∈ K̂ for all s ∈ [0, 1]. Moreover,

{F(x) + σs
∫ 1

0
∇F(x + srh)dr : σ ∈ [0, 1], s ∈ [0, 1]}

⊂ K̂1 := {F(x) + σk : σ ∈ [0, 1], k ∈ K̂ },

which is itself compact. By the dominated convergence theorem lims→0+ g(s) =
∇F(x)h and since, by the continuity of∇G, supz∈K̂1,k∈K̂ |∇G(z)k| < +∞, applying
again the dominated convergence theorem we can conclude that

lim
s→0+

G(F(x + sh)) − G(F(x))

s

=
∫ 1

0
lim
s→0+

[∇G(F(x) + σsg(s))g(s)] dσ = ∇G(F(x))∇F(x)h.

The proof that the map x→∇G(F(x))∇F(x) is strongly continuous is identical to
the proof of point (i). �

In addition to the ordinary chain rule in point (i i) above, a chain rule for theMalli-
avin derivative operator holds: see Sect. 6.2.2. Membership of a map in G1(X, V )

may be conveniently checked as shown in the following lemma.

Lemma 6.4 A map F : X → V belongs to G1(X, V ) provided the following condi-
tions hold:
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(i) the directional derivatives ∇F(x; h) exist at every point x ∈ X and in every
direction h ∈ X;

(ii) for every h, the mapping ∇F(·; h) : X → V is continuous;
(iii) for every x, the mapping h→∇F(x; h) is continuous from X to V .

Proof We have to show that F is continuous and the map h→∇F(x; h), where
∇F(x; h)denotes the directional derivative of F at afixedpoint x ∈ X in the direction
h ∈ X , is linear. To start, we notice that a version of formula (6.1) still holds under
the present assumptions, namely: F(x + y) = F(x) + ∫ 1

0 ∇F(x + r y; y) dr for all
x, y ∈ X .

First we show linearity. By definition of the directional derivative it is obvious that
for all ρ ≥ 0 and all x, h ∈ X : ∇F(x, ρh) = ρ∇F(x, h). Since, for fixed h, k ∈ X ,

F(x + s(h + k)) − F(x)

s
= F(x + s(h + k)) − F(x + sh)

s
+ F(x + sh) − F(x)

s
,

we have, by (6.1),

∇F(x; h + k) = lim
s→0+

∫ 1

0
∇F(x + sh + rsk; k) dr + ∇F(x; h),

provided the limit exists. The continuity of ∇F(·; k) implies that we can pass to the
limit under the integral, by a dominated convergence argument, obtaining∇F(x; h +
k) = ∇F(x; k) + ∇F(x; h). It follows, in particular, that∇F(x;−h) = −∇F(x; h)

and so ∇F(x, ρh) = ρ∇F(x, h) for all ρ ∈ R and all x, h ∈ X . Linearity is proved.
From now on, we denote the directional derivative ∇F(x; k) by ∇F(x)k.

Now we come to the continuity of F . Let yn → 0 in X and fix x ∈ X . By (6.1) we
have: F(x + yn) − F(x) = ∫ 1

0 ∇F(x + r yn)yn dr . We see that the set {x + r yn :
r ∈ [0, 1], n ∈ N} is a compact subset of X . Therefore (using again the Banach–
Steinhaus theorem) supr∈[0,1],n∈N |∇F(x + r yn)|L(X,V ) < +∞ and we can apply the
dominated convergence theorem to conclude that F(x + yn) − F(x) → 0. �

We need to generalize these definitions to functions depending on several vari-
ables. For a function F : X × Y → V the partial directional and Gâteaux derivatives
with respect to the first argument, at point (x, y) and in the direction h ∈ X , are
denoted ∇x F(x, y; h) and ∇x F(x, y), respectively, their definitions being obvious.

Definition 6.5 Wesay that amapping F : X × Y → V belongs to the classG1,0(X ×
Y, V ) if it is continuous, Gâteaux differentiable with respect to x on X × Y , and
∇x F : X × Y → L(X, V ) is strongly continuous.

As in Lemma 6.3 one can prove that for F ∈ G1,0(X × Y, V ) the mapping
(x, y, h)→∇x F(x, y)h is continuous from X × Y × X to V , and analogues of the
previously stated chain rules hold. The following result is proved in the same way
as Lemma 6.4 (but note that continuity is explicitly required).

Lemma 6.6 A continuous map F : X × Y → V belongs to G1,0(X × Y, V ) pro-
vided the following conditions hold:
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(i) the directional derivatives ∇x F(x, y; h) exist at every point (x, y) ∈ X × Y
and in every direction h ∈ X;

(ii) for every h, the mapping ∇F(·, ·; h) : X × Y → V is continuous;
(iii) for every (x, y), the mapping h→∇x F(x, y; h) is continuous from X to V .

The previous definitions and properties have obvious generalizations to slightly
different situations, provided obvious changes are made. For instance, the space Y
might be replaced by an interval [0, T ] or [0,∞). Another situation occurs when
F depends on additional arguments: for instance, we say that F : X × Y × Z → V
belongs to G1,1,0(X × Y × Z , V ) if it is continuous, Gâteaux differentiable with
respect to x and y on X × Y × Z , and ∇x F : X × Y × Z → L(X, V ) and ∇y F :
X × Y × Z → L(Y, V ) are strongly continuous.

We will make systematic use of a parameter-dependent contraction principle,
stated below as Proposition 6.7. It will be used to study regular dependence of solu-
tions to stochastic equations on their initial data, which is crucial to the investigation
of regularity properties of the nonlinear Kolmogorov equation which is the object of
this Chapter. The first part of the following proposition is proved in [582], Theorems
10.1, 10.2 (see also [106] Appendix C). The second part is an immediate corollary.

Proposition 6.7 (Parameter-dependent contraction principle) Let F : X × Y → X
be a continuous mapping satisfying

|F(x1, y) − F(x2, y)| ≤ α|x1 − x2|,

for some α ∈ [0, 1) and every x1, x2 ∈ X, y ∈ Y . Let φ(y) denote the unique fixed
point of the mapping F(·, y) : X → X. Then φ : Y → X is continuous. If, in addi-
tion, F ∈ G1,1(X × Y, X), then φ ∈ G1(Y, X) and

∇φ(y) = ∇x F(φ(y), y)∇φ(y) + ∇y F(φ(y), y), y ∈ Y.

More generally, let F : X × Y × Z → X be a continuous mapping satisfying

|F(x1, y, z) − F(x2, y, z)| ≤ α|x1 − x2|,

for someα ∈ [0, 1) and every x1, x2 ∈ X, y ∈ Y , z ∈ Z. Letφ(y, z) denote the unique
fixed point of the mapping F(·, y, z) : X → X. Then φ : Y × Z → X is continuous.
If, in addition, F ∈ G1,1,0(X × Y × Z , X), then φ ∈ G1,0(Y × Z , X) and

∇yφ(y, z) = ∇x F(φ(y, z), y, z)∇yφ(y, z) + ∇y F(φ(y, z), y, z), y ∈ Y, z ∈ Z .

(6.2)
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6.1.3 The Forward Equation: Existence, Uniqueness
and Regularity

Let W (t), t ∈ [0, T ], be a cylindrical Wiener process with values in a Hilbert space
�, defined on a probability space (�,F ,P). We fix an interval [t, T ] ⊂ [0, T ] and
we consider the Itô stochastic differential equation for an unknown process X (s),
s ∈ [t, T ], with values in a Hilbert space H :

{
dX (s) = AX (s) ds + b(s, X (s)) ds + σ(s, X (s)) dW (s), s ∈ [t, T ],
X (t) = x ∈ H.

(6.3)

The precise notion of solution will be given next. For the moment we emphasize the
fact thatW will only denote a cylindricalWiener process. Other cases can be reduced
to this one by standard reformulations; for instance, the case of a finite-dimensional
driving Brownian motion corresponds to the case where � has finite dimension.

We assume the following:

Hypothesis 6.8 (i) The operator A is the generator of a strongly continuous semi-
group et A, t ≥ 0, in the Hilbert space H .

(ii) The mapping b : [0, T ] × H → H is measurable and satisfies, for some con-
stant L > 0,

|b(t, x) − b(t, y)| ≤ L |x − y|, t ∈ [0, T ], x, y ∈ H.

(iii) σ is a mapping [0, T ] × H → L(�, H) such that for every v ∈ � the map
σv : [0, T ] × H → H is measurable, esAσ(t, x) ∈ L2(�, H) for every s > 0,
t ∈ [0, T ] and x ∈ H . Moreover, for every s > 0, t ∈ [0, T ], x, y ∈ H ,

|esAσ(t, x)|L2(�,H) ≤ L s−γ(1 + |x |),
|esAσ(t, x) − esAσ(t, y)|L2(�,H) ≤ L s−γ |x − y| (6.4)

and
|σ(t, x)|L(�,H) ≤ L (1 + |x |), (6.5)

for some constants L > 0 and γ ∈ [0, 1/2).
(iv) For every s > 0 and t ∈ [0, T ],

b(t, ·) ∈ G1(H, H), esAσ(t, ·) ∈ G1(H,L2(�, H)).

By a solution to Eq. (6.3) we mean anFt -adapted process X (s), s ∈ [t, T ], with
continuous paths in H , such that, P-a.s.

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X (r)) dr +

∫ s

t
e(s−r)Aσ(r, X (r)) dW (r), s ∈ [t, T ].

(6.6)
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To shorten the notation slightly, we will often write Xs and Ws instead of X (s),
W (s). We note that X is clearly a predictable process in H and that the measurability
assumption in Hypothesis 6.8-(iii) is needed to ensure that the integrand process
e(s−r)AG(r, X (r)), r ∈ [s, t], is a predictable process with values in L2(�, H)

(endowed with the Borel σ-field). To stress dependence on the initial data we denote
the solution by X (s; t, x). Note that X (s; t, x) isF[t,T ]-measurable, hence indepen-
dent ofFt .

The inequality (6.5) and Hypothesis 6.8-(iv) are needed to have additional reg-
ularity for the process X , but they are not used in Proposition 6.9 below. It is a
consequence of our assumptions that for every s > 0, t ∈ [0, T ], x, h ∈ H ,

|∇xb(t, x)h| ≤ L |h|, |∇x (e
sAσ(t, x))h|L2(�,H) ≤ L s−γ |h|. (6.7)

Proposition 6.9 Under the assumptions of Hypothesis 6.8-(i)-(i i)-(i i i), for every
p ∈ [2,∞) there exists a unique process X ∈ L p

P(�;C([t, T ], H)) which is a solu-
tion to (6.6). Moreover,

E sup
s∈[t,T ]

|X (s; t, x)|p ≤ C(1 + |x |)p, (6.8)

for some constant C depending only on p, γ, T, L and M := sups∈[0,T ] |esA|.
Proof The result is well known, see e.g. [177], Theorem 5.3.1. We include the proof
for completeness and because it will be useful in the following.We often write Xs for
X (s) and similar conventions are used for other stochastic processes. The argument
is as follows: we define a mapping � from L p

P(�;C([t, T ], H)) to itself by the
formula

�(X)s = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, Xr ) dr +

∫ s

t
e(s−r)Aσ(r, Xr ) dWr , s ∈ [t, T ],

and show that it is a contraction, under an equivalent norm. The unique fixed point
is the required solution.

For simplicity,we set t = 0 andwe treat only the caseb = 0, the general case being
handled in a similar way. Let us introduce the norm ‖X‖p = E sups∈[0,T ] e−βsp|Xs |p,
where β > 0 will be chosen later. In the space L p(�;C([0, T ], H)) this norm is
equivalent to the original one. We will use the so-called factorization method, see
[177], Theorem 5.2.5. Let us take p > 2 and α ∈ (0, 1) such that

1

p
< α <

1

2
− γ, and let c−1

α =
∫ s

r
(s − u)α−1(u − r)−αdu.

Then, by the stochastic Fubini theorem,
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�(X)s = esAx + cα

∫ s

0

∫ s

r
(s − u)α−1(u − r)−αe(s−u)Ae(u−r)A du σ(r, Xr ) dWr

= esAx + cα

∫ s

0
(s − u)α−1e(s−u)AYu du,

where

Yu =
∫ u

0
(u − r)−αe(u−r)Aσ(r, Xr ) dWr .

By the Hölder inequality, setting M = sups∈[0,T ] |esA|, p′ = p/(p − 1),

e−βs

∣∣∣∣
∫ s

0
(s − u)α−1e(s−u)AYu du

∣∣∣∣ ≤
(∫ s

0
e−p′β(s−u)(s − u)(α−1)p′

ds

) 1
p′ ·

·
(∫ s

0
e−pβu |e(s−u)AYu |p du

) 1
p

≤ M

(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (∫ T

0
e−pβu |Yu |p du

) 1
p

, (6.9)

and we obtain

‖�(X)‖ ≤ M |x | + Mcα

(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (

E

∫ T

0
e−pβu |Yu |p du

) 1
p

.

By the Burkholder–Davis–Gundy inequalities, taking into account the assumption
(6.4), we have, for some constant cp depending only on p,

E |Yu |p ≤ cpE

(∫ u

0
(u − r)−2α|e(u−r)Aσ(r, Xr )|2L2(�,H) dr

) p
2

≤ L pcpE

(∫ u

0
(u − r)−2α−2γ(1 + |Xr |)2 dr

) p
2

≤ L pcpE sup
r∈[0,u]

[(1 + |Xr |)pe−pβr ]
(∫ u

0
(u − r)−2α−2γe2βr dr

) p
2

,

which implies

e−pβu
E |Yu |p ≤ L pcp(1 + ‖X‖p)

(∫ u

0
(u − r)−2α−2γe−2β(u−r) dr

) p
2

≤ L pcp(1 + ‖X‖p)

(∫ T

0
r−2α−2γe−2βr dr

) p
2

.

We conclude that
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‖�(X)‖ ≤ M |x | + MLcα

(
T cp(1 + ‖X‖p)

) 1
p ·

·
(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (∫ T

0
r−2α−2γe−2βr dr

) 1
2

.

This shows that � is a well defined mapping on L p(�;C([0, T ], H)). If X , X1 are
processes belonging to this space, similar passages show that

‖�(X) − �(X1)‖ ≤ MLcα

(
T cp

) 1
p ‖X − X1‖·

·
(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (∫ T

0
r−2α−2γe−2βr dr

) 1
2

,

so that, for β sufficiently large, the mapping � is a contraction.
In particular, we obtain ‖X‖ ≤ C(1 + |x |), which proves the estimate (6.8). �

6.2 Regular Dependence on Data

6.2.1 Differentiability

For further developments we need to investigate the dependence of the solution
X (s; t, x) on the initial data x and t . We first reformulate Eq. (6.6) as an equation on
[0, T ]. We set

S(s) = esA for s ≥ 0, S(s) = I for s < 0, (6.10)

and we consider the equation

X (s) = S(s − t)x +
∫ s

0
1[t,T ](r)S(s − r)b(r, X (r)) dr

+
∫ s

0
1[t,T ](r)S(s − r)σ(r, X (r)) dW (r), (6.11)

for the unknown process X (s), s ∈ [0, T ]. Under the assumptions of Hypothesis 6.8,
Eq. (6.11) has a unique solution X ∈ L p

P(�;C([0, T ], H)) for every p ∈ [2,∞). It
clearly satisfies X (s) = x for s ∈ [0, t), and its restriction to the time interval [t, T ]
is the unique solution to (6.6).

From now on we denote by X (s; t, x), s ∈ [0, T ], the solution to (6.11).
Proposition 6.10 AssumeHypothesis 6.8. Then, for every p ∈ [2,∞), the following
hold.

(i) Themap (t, x)→X (·; t, x)belongs toG0,1
(
[0, T ] × H, L p

P(�;C([0, T ], H))
)
.
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(ii) Denoting by ∇x X the partial Gâteaux derivative, for every direction h ∈ H
the directional derivative process ∇x X (s; t, x)h, s ∈ [0, T ], solves, P-a.s., the
equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇x X (s; t, x)h = e(s−t)Ah +
∫ s

t
e(s−r)A∇xb(r, X (r; t, x))∇x X (r; t, x)h dr

+
∫ s

t
∇x (e

(s−r)Aσ(r, X (r; t, x)))∇x X (r; t, x)h dW (r), s ∈ [t, T ],
∇x X (s; t, x)h = h, s ∈ [0, t).

(6.12)
(iii) Finally, |∇x X (·; t, x)h|L p

P (�;C([0,T ],H)) ≤ c |h| for some constant c.
Proof Let us consider again the map� defined in the proof of Proposition 6.9. In our
present notation,� can be seen as a mapping from L p

P(�;C([0, T ], H)) × [0, T ] ×
H to L p

P(�;C([0, T ], H)):

�(X, t, x)s = S(s − t)x +
∫ s

0
1[t,T ](r)S(s − r)b(r, Xr ) dr

+
∫ s

0
1[t,T ](r)S(s − r)σ(r, Xr ) dWr ,

for s ∈ [0, T ]. By the arguments of the proof of Proposition 6.9, �(·, t, x) is a con-
traction in L p

P(�;C([0, T ], H)), under an equivalent norm, uniformly with respect
to t, x . The process X (·; t, x) is the unique fixed point of �(·, t, x). So, by the
parameter-dependent contraction principle (Proposition 6.7), it suffices to show that

� ∈ G1,0,1
(
L p
P(�;C([0, T ], H)) × [0, T ] × H, L p

P(�;C([0, T ], H))
)
.

By an obvious extension of Lemma 6.6, the proof is concluded by the following
steps.

Step 1. � is continuous. We have already noticed that �(·, t, x) is a contraction,
uniformly with respect to x ∈ H and t ∈ [0, T ], and so �(·, t, x) is continuous,
uniformly in t, x .Moreover, for fixed X it is easy to verify that�(X, ·, ·) is continuous
from [0, T ] × H to L p

P(�;C([0, T ], H)).
Step 2. The directional derivative ∇X�(X, t, x; N ) in the direction N ∈ L p

P(�;
C([0, T ], H)) is the process given by

∇X�(X, t, x; N )s =
∫ s

t
e(s−r)A∇xb(r, Xr )Nr dr

+
∫ s

t
∇x (e

(s−r)Aσ(r, Xr ))Nr dWr , s ∈ [t, T ],
∇X�(X, t, x; N )s = 0, s ∈ [0, t);

moreover, the mappings (X, t, x)→∇X�(X, t, x; N ) and N→∇X�(X, t, x; N ) are
continuous.
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We limit ourselves to proving this claim in the special case b = 0, the general case
being a straightforward extension. For fixed t ∈ [0, T ] and x ∈ H , for all s ∈ [t, T ]:

I ε
s := 1

ε
�(X + εN , t, x)s − 1

ε
�(X, t, x)s −

∫ s

t
∇x (e

(s−r)Aσ(r, Xr ))NrdWr

=
∫ s

t

(∫ 1

0

(∇x (e
(s−r)Aσ(r, Xr + ζεNr ))Nr − ∇x (e

(s−r)Aσ(r, Xr ))Nr
)
dζ

)
dWr.

Proceeding as in the proof of Proposition 6.9 (with β = 0) we get for 1/p < α <

1/2 − γ and for a suitable constant cp:

|I ε|p
L p
P (�;C([0,T ],H))

≤ cpE
∫ T

t
|Y ε

u |pdu,

where

Y ε
u =

∫ u

t
(u − r)−α

(∫ 1

0

(
∇x (e

(u−r)Aσ(r, Xr + ζεNr ))Nr

− ∇x (e
(u−r)Aσ(r, Xr ))Nr

)
dζ

)
dWr .

Therefore

E|Y ε
u |p ≤ cE

(∫ u

t
(u − r)−2α

∣∣∣∣
∫ 1

0

(
∇x (e

(u−r)Aσ(r, Xr + ζεNr ))Nr

− ∇x (e
(u−r)Aσ(r, Xr ))Nr

)
dζ

∣∣∣∣
2

L2(�,H)

dr

)p/2

for a suitable constant c. Since for all ε

∣∣∣∣
∫ 1

0
∇x (e

(u−r)Aσ(r, Xr + ζεNr ))Nrdζ

∣∣∣∣
L2(�,H)

≤ L(u − r)−γ |N |C([0,T ],H)

and ∇x (esAσ(t, x)v) is continuous in x then, by dominated convergence, we get
E
∫ T
t |Y ε

u |pdu → 0 and the claim follows.
Continuity of the mappings (X, t, x)→∇X�(X, t, x; N ) and N→∇X�(X, t,

x; N ) can be proved in a similar way.
Step 3. Finally, it is clear that the directional derivative ∇x�(X, t, x; h) in the

direction h ∈ H is the process given by

∇x�(X, t, x; h)s = e(s−t)Ah, s ∈ [t, T ],
∇x�(X, t, x; h)s = h, s ∈ [0, t),
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and that the mappings (X, t, x)→∇x�(X, t, x; h) and h→∇x�(X, t, x; h) are con-
tinuous.

To complete the proof we observe that the Eq. (6.12) is just a re-writing of (6.2)
and that the estimate in (i i i) is a trivial consequence of Eq. (6.12) and the fact
that |∇X�| is uniformly bounded by a constant <1, by the contraction property
of �. �

6.2.2 Differentiability in the Sense of Malliavin

In order to proceed further in the study of the properties of the solution to the forward
equation we need to introduce basic notions and tools of the Malliavin calculus. We
refer the reader to the book [468] for a detailed exposition; the paper [328] treats the
extensions to Hilbert space-valued random variables and processes. We will report
without proofs only the results that will be used in the sequel. This digression on
the Malliavin calculus ends after Lemma 6.12, when we come back to the forward
equation.

We also inform the reader that the aim of this entire section is just to prove
Proposition 6.17, whose statement can be understood after reading a few introductory
lines preceding it, and that no reference to the Malliavin calculus will be made in the
sections that follow.

Our starting point will be a cylindrical Wiener process {Wt }t≥0 on a real separable
Hilbert space �. For every (deterministic) function h ∈ L2([0, T ];�) the integral∫ T
0 h(t)∗ dWt will be denotedbyW (h),whereh(t)∗ ∈ �∗ denotes the imageofh(t) ∈

� under the Riesz isometry. We will also use the notationW (h) = ∫ T
0 〈h(t), dWt 〉�.

Given a Hilbert space K , let SK be the set of K -valued random variables F of the
form

F =
m∑
j=1

f j (W (h1), . . . ,W (hn))e j ,

where h1, . . . , hn ∈ L2([0, T ];�), (e j ) is a basis of K and f1, . . . fm are infinitely
differentiable functions R

n → R bounded together with all their derivatives. The
Malliavin derivative DMF of F ∈ SK is defined as the process DM

η F , η ∈ [0, T ],

DM
η F =

m∑
j=1

n∑
k=1

∂k f j (W (h1), . . . ,W (hn))e j ⊗ hk(η),

with values in L2(�, K ); by ∂k we denote the partial derivatives with respect to
the k-th variable and by e j ⊗ hk(η) the operator u→e j 〈hk(η), u〉�. It is known that
the operator DM : SK ⊂ L2(�; K ) → L2(� × [0, T ];L2(�, K )) is closable. We
denote by D

1,2(K ) the domain of its closure, and use the same letter to denote DM

and its closure:
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DM : D1,2(K ) ⊂ L2(�; K ) → L2(� × [0, T ];L2(�, K )).

The adjoint operator of DM,

δ : dom (δ) ⊂ L2(� × [0, T ];L2(�, K )) → L2(�; K ),

is called the Skorohod integral. Thus, δ acts on a certain subset of square-integrable
stochastic processes uη, η ∈ [0, T ], with values in L2(�, K ) (more precisely, on
equivalence classes up to the product measure P ⊗ dη) and its value at u is a square-
integrable random variable with values in K (more precisely, a P-equivalence class),
that will be denoted δ(u) or

∫ T
0 uη d̂Wη, because of its close connections with the Itô

integral (see, for instance, Proposition 6.11 below). We also need to introduce the
space L

1,2(L2(�, K )) of processes u ∈ L2(� × [0, T ];L2(�, K )) such that ur ∈
D

1,2(L2(�, K )) for a.e. r ∈ [0, T ], and there exists a measurable version of DM
η ur

satisfying

‖u‖2
L1,2(L2(�,K ))

= ‖u‖2L2(�×[0,T ];L2(�,K ))
+ E

∫ T

0

∫ T

0
‖DM

η ur‖2L2(�,L2(�,K )) dr dη < ∞.

The definition of L1,2(K ) for an arbitrary Hilbert space K (instead of L2(�, K )) is
entirely analogous.

In the following proposition we summarize all the properties that we need in the
sequel concerning the objects introduced above. We omit the proofs, which can be
found in [328] or, after appropriate reformulation, in [468] or [469]. In particular,
point 4 is proved in [328], Proposition 3.4. Point 5 can be found in [469], Theorem
3.2, or [328], Proposition 2.11.

Proposition 6.11 With the previous notation, the following holds.

(1) If F ∈ D
1,2(K ) isFt -adapted then DMF = 0 a.s. on � × (t, T ].

(2) If u is an (adapted) process belonging to L2
P(� × [0, T ];L2(�, K )) then u ∈

dom(δ) and the Skorohod integral δ(u) coincides with the Itô integral, i.e.,

∫ T

0
uη d̂Wη =

∫ T

0
uη dWη.

(3) If u ∈ L
1,2(L2(�, K )) then u ∈ dom(δ) and ‖δ(u)‖2L2(�;K )

≤ ‖u‖2
L1,2(L2(�,K ))

.
In particular, the Skorohod integral δ is a continuous linear operator from
L
1,2(L2(�, K )) to L2(�; K ).

(4) If u ∈ L
1,2(L2(�, K )), and for a.a. η the process {DM

η ur }r∈[0,T ] belongs to
dom(δ), and the map η→δ(DM

η u) belongs to L2(� × [0, T ];L2(�, K )), then
δ(u) ∈ D

1,2(K ) and DM
η δ(u) = uη + δ(DM

η u), i.e.,

DM
η

∫ T

0
ur d̂Wr = uη +

∫ T

0
DM

η ur d̂Wr .
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(5) If F ∈ D
1,2(R), u ∈ L2(� × [0, T ];L2(�,R)) � L2(� × [0, T ];�∗) belongs

to dom(δ) and Fu ∈ L2(� × [0, T ];�∗), then Fu ∈ dom(δ) and
δ(Fu) = Fδ(u) − 〈

DMF, u
〉
, which means

∫ T

0
Fuη d̂Wη = F

∫ T

0
uη d̂Wη −

∫ T

0

〈
DM

η F, uη

〉
L2(�,K )

dη,

provided the right-hand side belongs to L2(�;R).

In particular, if 0 ≤ a ≤ b ≤ T , ξ ∈ �, and upon taking uη = ξ∗1[a,b](η), we
have Fξ∗1[a,b] ∈ dom(δ) and

∫ b

a
F ξ∗d̂Wη = F

∫ b

a
ξ∗d̂Wη −

∫ b

a
DM

η Fξ dη = F(Wbξ − Waξ) −
∫ b

a
DM

η Fξ dη,

(6.13)
provided F ∈ D

1,2(R) and the right-hand side of (6.13) belongs to L2(�;R).

Finally, we need to define the space D
1,2
loc(K ). If F ∈ D

1,2(K ) and F = 0 on a
measurable subset A ⊂ � then 1ADMF = 0; this follows immediately from the
corresponding result for K = R

d ([469], Lemma 2.6). Therefore the following def-
inition is meaningful: we say that a random variable F : � → K belongs to the
space D1,2

loc(K ) if there exists an increasing sequence of measurable subsets �k ⊂ �

and elements Fk ∈ D
1,2(K ) such that ∪k�k = � P-a.s. and 1�k F = 1�k Fk . DMF :

� × [0, T ] → L2(�, K ) is then defined by requiring 1�k D
MF = 1�k D

MFk . The
following chain rule holds; the proof consists in standard approximation arguments
and is left to the reader.

Lemma 6.12 Suppose K , H are Hilbert spaces, ψ ∈ G1(K , H) and

sup
|x |≤n

|∇ψ(x)|L(K ,H) < ∞, n = 1, 2, . . . . (6.14)

(i) If F ∈ D
1,2
loc(K ) then ψ(F) ∈ D

1,2
loc(H).

(ii) If F ∈ D
1,2(K ) and supx∈K |∇ψ(x)|L(K ,H) < ∞ then ψ(F) ∈ D

1,2(H).
(iii) More generally, if F ∈ D

1,2(K ), (6.14) holds and

E |ψ(F)|2H < ∞, E

∫ T

0
|∇ψ(F)DM

η F |2L2(K ,H)dη < ∞,

then ψ(F) ∈ D
1,2(H).

In any of the cases (i)–(iii) we have DMψ(F) = ∇ψ(F)DMF.

After this digression on generalMalliavin calculus we come back to the properties
of the forward equation and consider again the solution X = {X (s; t, x)}s∈[t,T ] to
(6.6) with (t, x) fixed, denoted simply by (Xs). We set as before Xs = x , s ∈ [0, t).
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We will soon prove that X belongs to L
1,2(H). Then it is clear that the equality

DM
η Xs = 0 P-a.s. holds for a.a. η, t, s if s < t or η > s.

Proposition 6.13 Assume Hypothesis 6.8. Then the following properties hold.

(i) X ∈ L
1,2(H).

(ii) There exists a version of DMX such that for every η ∈ [0, T ), {DM
η Xs}s∈(s,T ]

is a predictable process inL2(�, H)with continuous paths satisfying, for every
p ∈ [2,∞),

sup
η∈[0,T ]

E

(
sup

s∈(η,T ]
(s − η)pγ |DM

η Xs |pL2(�,H)

)
≤ c, (6.15)

where c > 0 depends only on p, L , T, γ and M = sups∈[0,T ] |esA|; moreover,
P-a.s.

DM
η Xs = e(s−η)Aσ(η, Xη) +

∫ s

η

e(s−r)A∇xb(r, Xr )D
M
η Xr dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, Xr ))D

M
η Xr dWr , s ∈ (η, T ].

(6.16)

Moreover, Xs ∈ D
1,2(H) for every s ∈ [0, T ].

(iii) Given any element v of �, the process Qηs = DM
η Xsv is a solution to the

equation:

Qηs = e(s−η)Aσ(η, Xη)v +
∫ s

η

e(s−r)A∇xb(r, Xr )Qηr dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, Xr ))Qηr dWr , P-a.s.

(6.17)

for a.a. η, s with t ≤ η ≤ s ≤ T . It is unique in the sense that if {Qηs, t ≤ η ≤
s ≤ T } is another process with values in H such that {Qηs}s∈[η,T ] is predictable
for every η ∈ [t, T ] and E ∫ T

t

∫ T
η |Qηs |2dsdη < ∞ then, for a.a. η, s, we have

Qηs = DM
η Xsv P-a.s.

In order to prove this proposition we need some preparation. We start with the
following lemma.

Lemma 6.14 If X ∈ L
1,2(H) then the random processes

∫ s

0
e(s−r)Ab(r, Xr ) dr,

∫ s

0
e(s−r)Aσ(r, Xr ) dWr , s ∈ [0, T ],

belong to L1,2(H) and for a.a. η and s with η < s
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DM
η

∫ s

0
e(s−r)Ab(r, Xr ) dr =

∫ s

η

e(s−r)A∇xb(r, Xr )D
M
η Xr dr,

DM
η

∫ s

0
e(s−r)Aσ(r, Xr ) dWr = e(s−η)Aσ(s, Xs) +

∫ s

η
∇x (e

(s−r)Aσ(r, Xr ))D
M
η Xr dWr .

(6.18)

Proof We will prove only (6.18). Recall that, by Proposition 6.11-4, if u ∈ L
1,2

(L2(�, H)), and for a.a. η the process {DM
η ur }r∈[0,T ] belongs to dom(δ), and the

map η→δ(DM
η u) belongs to L2(� × [0, T ];L2(�, H)), then δ(u) ∈ D

1,2(H) and
DM

η δ(u) = uη + δ(DM
η u).

We fix s and we apply this result to the process ur = e(s−r)Aσ(r, Xr ) (we set
ur = 0 for r > s). First notice that

E

∫ T

0
|ur |2 dr = E

∫ s

0
|e(s−r)Aσ(r, Xr )|2L2(�,H) dr

≤ L2
E

∫ s

0
(s − r)−2γ(1 + |Xr |)2 dr.

The right-hand side is finite for a.a. s; indeed, by exchanging the integrals we verify
that ∫ T

0

(
E

∫ s

0
(s − r)−2γ(1 + |Xr |)2 dr

)
ds

≤
∫ T

0
r−2γ dr

∫ T

0
E (1 + |Xr |)2 dr < ∞,

since X ∈ L
1,2(H) ⊂ L2(� × [0, T ]; H). Next, for every r , by the chain rule for

the Malliavin derivative (Lemma 6.12-(i i)), DM
η ur = ∇x (e(s−r)Aσ(r, Xr ))DM

η Xr

for a.a. η < r , whereas DM
η ur = 0 for a.a. η > r , by adaptedness. Next, recalling

(6.7),

E

∫ T

0
|DM

η ur |2 dr = E

∫ s

η

|∇x (e
(s−r)Aσ(r, Xr ))D

M
η Xr |2L2(�,L2(�,H)) dr

≤ L2
E

∫ s

η

(s − r)−2γ |DM
η Xr |2L2(�,H) dr,

so that

E

∫ T

0

∫ T

0
|DM

η ur |2 dr dη ≤ L2
E

∫ s

0

∫ s

η

(s − r)−2γ |DM
η Xr |2L2(�,H) dr dη

= L2
∫ s

0
(s − r)−2γ

∫ r

0
E |DM

η Xr |2L2(�,H) dη dr.

The right-hand side is finite for a.a. s; indeed, by exchanging the integrals we verify
that
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∫ T

0

(∫ s

0
(s − r)−2γ

∫ r

0
E |DM

η Xr |2L2(�,H) dη dr

)
ds

≤
∫ T

0
r−2γ dr

∫ T

0

∫ r

0
E |DM

η Xr |2L2(�,H) dη dr

=
∫ T

0
r−2γ dr |DMX |2L2(�×[0,T ]×[0,T ];L2(�,H)) < ∞,

since X ∈ L
1,2(H). Now we recall that the Skorohod and the Itô integral coincide

for adapted integrands, so that

∫ T

0
E|δ(DM

η u)|2 dη =
∫ T

0
E

∣∣∣∣
∫ T

0
DM

η ur dWr

∣∣∣∣
2

dη = E

∫ T

0

∫ T

0
|DM

η ur |2 dr dη < ∞.

So for a.a. s we can apply the result mentioned above and since

δ(u) =
∫ s

0
e(s−r)Aσ(r, Xr ) dWr , δ(DM

η u) =
∫ s

η
∇x (e

(s−r)Aσ(r, Xr ))D
M
η Xr dWr ,

formula (6.18) is proved. The estimate

∫ T

0

∫ s

0
E

∣∣∣∣DM
η

∫ s

0
e(s−r)Aσ(r, Xr ) dWr

∣∣∣∣
2

dη ds

≤ 2
∫ T

0

∫ s

0
E|e(s−η)Aσ(η, Xη)|2L2(�,H) dη ds

+2
∫ T

0

∫ s

0
E

∫ s

η

|∇x (e
(s−r)Aσ(r, Xr ))D

M
η Xr |2L2(�,L2(�,H)) dr dη ds

≤ 2L2
∫ T

0
r−2γ dr

∫ T

0
E (1 + |Xr |)2 dr

+2L2
∫ T

0
r−2γ dr |DMX |2L2(�×[0,T ]×[0,T ];L2(�,H)) < ∞,

is a consequence of the previous passages, and shows that the process
∫ s
0 e(s−r)A

σ(r, Xr ) dWr , s ∈ [0, T ], belongs to L1,2(H). �

For η ∈ [0, T ) and for arbitrary predictable processes Xs , Qs , s ∈ [η, T ], with
values in H and L2(�, H) respectively, we define, for s ∈ [η, T ],

�1(X, Q)ηs =
∫ s

η

e(s−r)A∇xb(r, Xr )Qr dr,

�2(X, Q)ηs =
∫ s

η

∇x (e
(s−r)Aσ(r, Xr ))Qr dWr .

The same notation will be used when Qs , s ∈ [η, T ], is a process with values in H .
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Proof of Proposition 6.13. We fix t ∈ [0, T ). Let us consider the sequence Xn

defined as follows: X0 = 0,

Xn+1
s = e(s−t)Ax +

∫ s

t
e(s−r)Ab(r, Xn

r ) dr +
∫ s

t
e(s−r)Aσ(r, Xn

r ) dWr , s ∈ [t, T ],

and Xn
s = x for s < t . It follows from the proof of Proposition 6.9 that Xn converges

to the solution X of Eq. (6.6) in the space L p
P(�;C([0, T ], H)) hence, in particular,

in the space L2(� × [0, T ]; H). By Lemma 6.14, Xn ∈ L
1,2(H) and, for a.a. η and

s with η < s,

DM
η Xn+1

s = e(s−η)Aσ(η, Xn
η ) +

∫ s

η

e(s−r)A∇xb(r, X
n
r )D

M
η Xn

r dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, Xn

r ))D
M
η Xn

r dWr .

(6.19)

Setting I (Xn)ηs = e(s−η)Aσ(η, Xn
η ) for s > η and I (Xn)ηs = 0 for s < η, and

recalling the operators introduced above, we may write equality (6.19) as

DMXn+1 = I (Xn) + �1(X
n, DMXn) + �2(X

n, DMXn).

We note that I (Xn) is a bounded sequence in L2(� × [0, T ] × [0, T ];L2(�, H)),
since

E

∫ T

0

∫ s

0
|e(s−η)Aσ(η, Xn

η )|2L2(�,H) dη ds

≤ L2
E

∫ T

0

∫ s

0
(s − η)−2γ(1 + |Xn

η |)2 dη ds

≤ L2
∫ T

0
s−2γ ds

∫ T

0
E (1 + |Xn

η |)2 dη,

and Xn is a bounded sequence in L2(� × [0, T ]; H). Next we show that there exists
an equivalent norm ‖ · ‖ in L2(� × [0, T ] × [0, T ];L2(�, H)) such that

‖�1(X
n, DMXn)‖ + ‖�2(X

n, DMXn)‖ ≤ α‖DMXn‖, (6.20)

for someα ∈ [0, 1) independent ofn. For simplicityweonly consider the operator�2.
For a process (Zηs) ∈ L2(� × [0, T ] × [0, T ];L2(�, H)) we introduce the norm

‖Z‖2 =
∫ T

0

∫ T

0
E |Zηs |2L2(�,H)e

−β(s−η)ds dη,

where β > 0 will be chosen later. We have
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∫ T

η

E|�2(X
n, DMXn)ηs |2L2(�,H)e

−β(s−η) ds

=
∫ T

η

∫ s

η

E |∇x (e
(s−r)Aσ(r, Xn

r ))D
M
η Xn

r |2L2(�,L2(�,H)) dr e−β(s−η) ds

≤ L2
∫ T

η

∫ s

η

(s − r)−2γ
E |DM

η Xn
r |2L2(�,H) dr e−β(s−η) ds

= L2
∫ T

η

e−β(r−η)
E |DM

η Xn
r |2L2(�,H)

∫ T

r
(s − r)−2γ e−β(s−r) ds dr

≤ L2
∫ T

η

e−β(r−η)
E |DM

η Xn
r |2L2(�,H) dr

(
sup

r∈[η,T ]

∫ T

r
(s − r)−2γ e−β(s−r) ds

)
.

The supremum on the right-hand side can be estimated by
∫ T
0 r−2γ e−βr dr ; so we

obtain

‖�2(X
n, DMXn)‖2 ≤ L2

∫ T

0
r−2γ e−βr dr‖DMXn‖2.

Now to prove (6.20) it suffices to take β sufficiently large.
From (6.20) and from the fact that I (Xn) is bounded in L2(� × [0, T ] ×

[0, T ];L2(�, H)), it follows easily that the sequence DMXn is also bounded in
this space. Since, as mentioned before, Xn converges to X in L2(� × [0, T ]; H), it
follows from the closedness of the operator DM that X belongs to L

1,2(H). Point
(i) of Proposition 6.13 is now proved.

By Lemma 6.14, we can compute the Malliavin derivative of both sides of (6.6)
and we obtain, for a.a. η and s with η < s,

DM
η Xs = I (X)ηs + �1(X, DMX)ηs + �2(X, DMX)ηs, P-a.s., (6.21)

where
I (X)ηs = e(s−η)Aσ(η, Xη). (6.22)

Let us introduce the space K of processes Qηs , 0 ≤ η < s ≤ T , such that for every
η ∈ [t, T ), {Qηs}s∈(η,T ] is a predictable process in L2(�, H) with continuous paths,
and such that

sup
η∈[0,T ]

E

(
sup

s∈(η,T ]
e−β p(s−η)(s − η)pγ |Qηs |pL2(�,H)

)
< ∞. (6.23)

Here p ∈ [2,∞) is fixed and β > 0 is a parameter, to be chosen later. Let us consider
the equation: for every η ∈ [0, T ), P-a.s.,

Qηs = I (X)ηs + �1(X, Q)ηs + �2(X, Q)ηs, s ∈ (η, T ]. (6.24)
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We are going to prove that there exists a unique solution Q ∈ K of this equation.
Assume this for a moment. Then, subtracting (6.24) from (6.21), we obtain for a.a.
η and s with η < s

DM
η Xs − Qηs = �1(X, DMX − Q)ηs + �2(X, DMX − Q)ηs, P-a.s.

Repeating the passages that led to (6.20) we obtain

‖�1(X, DMX − Q)‖ + ‖�2(X, DMX − Q)‖ ≤ α‖DMX − Q‖,

for some α ∈ [0, 1). This proves that Q is a version of DMX . Then equality (6.24)
coincides with (6.16), and this proves point (i i) of the Proposition, except for the
last assertion.

Now we prove unique solvability of (6.24) in the spaceK. It suffices to show that
I (X) ∈ K and that �1(X, ·) + �2(X, ·) is a contraction in K. Since, for s > η,

|e(s−η)Aσ(η, Xη)|L2(�,H) ≤ L(s − η)−γ(1 + |Xη|),

we have

sup
η∈[0,T ]

E sup
s∈(η,T ]

(s − η)pγ |e(s−η)Aσ(η, Xη)|pL2(�,H) ≤ L p sup
η∈[0,T ]

E (1 + |Xη|)p,

which is finite, since X ∈ L p
P(�;C([0, T ], H)). This shows that I (X) ∈ K; the

contraction property for �1(X, ·) + �2(X, ·) requires a longer argument, and it is
postponed to Lemma 6.15 below.

The last assertion of point (i i) is clear for s ∈ [0, t], since Xs = x . For s ∈ (t, T ]
we take a sequence sn ↑ s such that Xsn ∈ D

1,2(H) and we note that by (6.15)
the sequence E

∫ T
0 |DM

η Xsn |2dη is bounded by a constant independent of n; since
Xsn → Xs in L2(�; H), it follows from the closedness of the operator DM that
Xs ∈ D

1,2(H).
Now we proceed to proving point (i i i) of the Proposition. Let us fix v ∈ � and

define the space S of processes {Qηs, t ≤ η ≤ s ≤ T }, with values in H , such that
{Qηs}s∈[η,T ] is predictable for every η ∈ [t, T ] and the norm

‖Q‖2 =
∫ T

t

∫ T

η

E |Qηs |2He−β(s−η)ds dη

is finite, where β > 0 is a parameter to be chosen later. Since I (X) (defined in (6.22))
belongs to the spaceK introduced above, I (X)v belongs to S and the equality (6.17)
is equivalent to the equality in the space S:

Q = I (X)v + �1(X, Q) + �2(X, Q). (6.25)
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It turns out that this equation has a unique solution in S: indeed, �1(X, ·) + �2(X, ·)
is a contraction in the space S if β is chosen sufficiently large, as it can be proved
by passages almost identical to those leading to (6.20). Finally, DMXv belongs
to S since DMX ∈ L2(� × [0, T ] × [0, T ];L2(�, H)), and applying both sides
of (6.16) to v we check that DMXv = I (X)v + �1(X, DMXv) + �2(X, DMXv).
Point (i i i) of the proposition is now proved. �

To complete the previous proof, it remains to state and prove the following lemma.

Lemma 6.15 For η ∈ [0, T ), let Xs, s ∈ [η, T ], be a predictable process in H and
let Qs, s ∈ (η, T ], be an L2(�, H)-valued continuous adapted process.

For p ∈ [2,∞) sufficiently large and for every β > 0, the following estimate
holds:

E

(
sup

s∈[η,T ]
(s − η)γ pe−β p(s−η)

(
|�1(X, Q)ηs |pL2(�,H) + |�2(X, Q)ηs |pL2(�,H)

))

≤ C(β)E

(
sup

s∈[η,T ]
(s − η)γ pe−β p(s−η)|Qs |pL2(�,H)

)
,

where C(β) depends on β, p, L, γ, T and M = sups∈[0,T ] |esA|, and is such that
C(β) → 0 as β → 0.

Proof For simplicity, we only consider the operator �2. Fixing η ∈ [0, T ) we intro-
duce the space of L2(�, H)-valued continuous adapted processes Qs , s ∈ (η, T ]
such that the norm

‖Q‖p
η := E sup

s∈[η,T ]
(s − η)γ pe−β p(s−η)|Qs |pL2(�,H)

is finite. We use the factorization method, see [177], Theorem 5.2.5. Let us take
p > 2 and α ∈ (0, 1) such that

1

p
< α <

1

2
− γ, and let c−1

α =
∫ s

r
(s − u)α−1(u − r)−αdu.

Then, by the stochastic Fubini theorem,

�2(X, Q)ηs = cα

∫ s

η

∫ s

r
(s − u)α−1(u − r)−α e(s−u)A∇x (e

(u−r)Aσ(r, Xr ))Qr du dWr

= cα

∫ s

η
(s − u)α−1e(s−u)AVu du,

where

Vu =
∫ u

η

(u − r)−α∇x (e
(u−r)Aσ(r, Xr ))Qr dWr .

By the Hölder inequality, setting M = sups∈[0,T ] |esA|, p′ = p/(p − 1),
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∣∣�2(X, Q)ηs
∣∣ ≤ cαM

∫ s

η

(s − u)α−1|Vu | du

≤ cαM

(∫ s

η

e−pβ(u−η)(u − η)γ p|Vu |p du
) 1

p

·
(∫ s

η

ep
′β(u−η)(u − η)−γ p′

(s − u)(α−1)p′
du

) 1
p′

.

‖�2(X, Q)‖p
η ≤ cpαM

p
∫ T

η

e−pβ(u−η)(u − η)γ pE |Vu |p du

· sup
s∈(η,T ]

(s − η)γ pe−β p(s−η)

(∫ s

η

ep
′β(u−η)(u − η)−γ p′

(s − u)(α−1)p′
du

) p
p′

.

Changing u into (u − η)/(s − η), it is easily seen that the supremum on the right-
hand side equals

sup
s∈(η,T ]

(s − η)pα−1e−β p(s−η)

(∫ 1

0
ep

′βu(s−η)u−γ p′
(1 − u)(α−1)p′

du

) p
p′

≤ a(β)p,

where we set

a(β) := sup
λ∈(0,T ]

λα− 1
p e−βλ

(∫ 1

0
ep

′βuλu−γ p′
(1 − u)(α−1)p′

du

) 1
p′

.

So we arrive at

‖�2(X, Q)‖η ≤ cαMa(β)

(∫ T

η

e−pβ(u−η)(u − η)γ pE |Vu |p du
) 1

p

.

By the Burkholder–Davis–Gundy inequalities, for some constant cp depending
only on p, we have

E |Vu |p ≤ cpE

(∫ u

η

(u − r)−2α|∇x (e
(u−r)Aσ(r, Xr ))Qr |2L2(�,L2(�,H)) dr

) p
2

≤ L pcpE

(∫ u

η

(u − r)−2α−2γ |Qr |2L2(�,H) dr

) p
2

≤ L pcp‖Q‖p
s

(∫ u

η

(u − r)−2α−2γ(r − η)−2γe2β(r−η) dr

) p
2

.

Changing r into (r − η)/(u − η) and taking into account thatβ > 0 andα + γ < 1/2
we obtain
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(u − η)γ pe−pβ(u−η)
E |Vu |p ≤ L pcp‖Q‖pη (u − η)p(−α−γ+1/2)

·
(∫ 1

0
(1 − r)−2α−2γr−2γe−2β(1−r)(r−η) dr

) p
2

≤ L pcp‖Q‖pη T p( 12−α−γ)

(∫ 1

0
(1 − r)−2α−2γr−2γ dr

) p
2

.

We conclude that

‖�2(X, Q)‖η ≤ cαMLc
1
p
p a(β)T

1
2 −α−γ+ 1

p

(∫ 1

0
(1 − r)−2α−2γr−2γ dr

) 1
2

‖Q‖η.

This inequality proves the lemma, since the property that a(β) → 0 as β → +∞
follows easily from the definition of a(β). �

The following result relates the Malliavin derivative of the process X with
∇x X (s; t, x), the partial Gâteaux derivative with respect to x (compare Proposition
6.10).

Proposition 6.16 Assume Hypothesis 6.8. Then for a.a. η, s such that t ≤ η ≤ s ≤
T we have

DM
η X (s; t, x) = ∇x X (s; η, X (η; t, x))σ(η, X (η; t, x)), P-a.s. (6.26)

Moreover, DM
η X (T ; t, x) = ∇x X (T ; η, X (η; t, x))σ(η, X (η; t, x)), P-a.s. for

a.a. η.

Proof Proposition 6.10 states that for every η ∈ [0, T ] and every direction h ∈ H the
directional derivative process ∇x X (s; η, x)h, s ∈ [η, T ], solves the equation: P-a.s.,

∇x X (s; η, x)h = e(s−η)Ah +
∫ s

η

e(s−r)A∇xb(r, X (r; η, x))∇x X (r; η, x)h dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, X (r; η, x))∇x X (r; η, x)h dWr , s ∈ [η, T ].

Given v ∈ � and t ∈ [0, η], we can replace x by X (η; t, x) and h byσ(η, X (η; t, x))v
in this equation, since X (η; t, x) isFη-measurable. Next we note the equality:P-a.s.,

X (r; η, X (η; t, x)) = X (r; t, x), r ∈ [η, T ],
which is a consequence of the uniqueness of the solution to (6.6), and we obtain:
P-a.s.,
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∇x X (s; η, X (η; t, x))σ(η, X (η; t, x))v = e(s−η)Aσ(η, X (η; t, x))v
+
∫ s

η
e(s−r)A∇xb(r, X (r; t, x))∇x X (r; η, X (η; t, x))σ(η, X (η; t, x))v dr

+
∫ s

η
∇x (e

(s−r)Aσ(r, X (r; t, x))∇x X (r; η, X (η; t, x))σ(η, X (η; t, x))v dWr , s ∈ [η, T ].

This shows that the process {∇x X (s; t, X (η; t, x))σ(η, X (η; t, x))v : t ≤ η ≤ s ≤
T } is a solution to Eq. (6.17). Then (6.26) follows from the uniqueness property.

To prove the last assertion, it suffices to take a sequence sn ↑ T such that (6.26)
holds for sn and let n → ∞. The conclusion follows from the regularity properties
of DMX and ∇x X stated above, as well as the closedness of the operator DM. �

Now, for ξ ∈ �, recall that Wξ = {W (τ )ξ}τ≥0 is a real Wiener process. Also
fix t ∈ [0, T ] and x ∈ H and set Xτ = X (τ ; t, x), τ ∈ [t, T ], for simplicity. Given
a function u : [0, T ] × H → R, we investigate the existence of the joint quadratic
variation of the process {u(τ , Xτ )}τ∈[t,T ] withWξ. As usual, this is defined for every
τ ∈ [t, T ] as the limit in probability of

n∑
i=1

(u(τi , Xτi ) − u(τi−1, Xτi−1))(W (τi )ξ − W (τi−1)ξ),

where {τi }, t = τ0 < τ1 < · · · < τn = τ , is an arbitrary subdivision of [t, τ ] whose
mesh tends to 0. The existence of the joint quadratic variation is not trivial. Indeed,
due to the occurrence of convolution type integrals in the definition of amild solution,
it is not obvious that the process X is a semimartingale. Moreover, even in this case,
the process u(·, X ·) might fail to be a semimartingale if u is not regular enough.
Nevertheless, the following result holds true. Its proof could be deduced from the
generalization of some results obtained in [469] to the infinite-dimensional case, but
we prefer to give a simpler direct proof.

Proposition 6.17 AssumeHypothesis 6.8, let u be a function in G0,1([0, T ] × H,R)

having polynomial growth together with its derivative ∇xu. Then the process
{u(τ , Xτ )}τ∈[t,T ] admits a joint quadratic variation process V with Wξ, given by

Vτ =
∫ τ

t
∇xu(s, Xs)σ(s, Xs)ξ ds, τ ∈ [t, T ].

Proof Let us write ūτ = u(τ , Xτ ), τ ∈ [t, T ], for simplicity. By Proposition 6.13
and the assumptions on u we can apply the chain rule for the Malliavin derivative
operator presented in Lemma 6.12 and conclude that, for every τ ∈ [t, T ], we have
ūτ ∈ D

1,2(R) and DMūτ = ∇xu(τ , Xτ )DMXτ . Taking into account (6.26), for a.e.
s ∈ [0, τ ] we obtain

DM
s ūτ ξ = ∇xu(τ , Xτ ) ∇x X (τ ; s, Xs) σ(s, Xs) ξ, P-a.s. (6.27)
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whereas DM
s ūτ ξ = 0 P-a.s., for a.e. s ∈ (τ , T ].

Let us now compute the joint quadratic variation of ū andWξ. Let t = τ0 < τ1 <

· · · < τn = τ be a subdivisionof [t, τ ] ⊂ [0, T ].Weuse formula (6.13) inProposition
6.11 with [a, b] = [τi−1, τi ] and F = ūτi − ūτi−1 and obtain

(ūτi − ūτi−1)(W (τi )ξ − W (τi−1)ξ) =
∫ τi

τi−1

(ūτi − ūτi−1)ξ
∗ d̂Ws

+
∫ τi

τi−1

DM
s (ūτi − ūτi−1)ξ ds,

where as usual we use the symbol d̂W to denote the Skorohod integral. We note
that DM

s ūτi−1 = 0 for s > τi−1, so recalling (6.27) and setting Un(s) = ∑n
i=1(ūτi −

ūτi−1) 1(τi−1,τi ](s) we obtain

n∑
i=1

(ūτi − ūτi−1)(W
ξ
τi

− W ξ
τi−1

)

=
∫ τ

t
Un(s) ξ∗ d̂Ws +

n∑
i=1

∫ τi

τi−1

∇xu(τi , Xτi ) ∇x X (τi ; s, Xs)σ(s, Xs)ξ ds.

By (6.27) and the continuity properties asserted in Proposition 6.10, it is easily ver-
ified that the maps τ→ūτ and τ→DMūτ ξ are continuous on [0, T ] with values in
L2(�;R) and L2(� × [0, T ];R), respectively. In particular, Un → 0 in L

1,2(R),
which implies that the Skorohod integral in the last equation tends to zero in
L2(�;R). Letting the mesh of the subdivision tend to 0 and using the continuity
properties of ∇xu, X , ∇x X , we obtain

n∑
i=1

(ūτi − ūτi−1)(W (τi )ξ − W (τi−1)ξ) → Vτ ,

in probability, which finishes the proof of the proposition. �

6.3 Backward Stochastic Differential Equations (BSDEs)

6.3.1 Well-Posedness

Some of the basic results on backward equations rely on the following well-known
representation theorem (see e.g. [350]). Recall that (Ft ) is the filtration generated by
the cylindrical Wiener process W , augmented in the usual way. We denote by E

Fs

the conditional expectation with respect toFs .
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Proposition 6.18 Let K beaHilbert spaceand T > 0. For arbitraryFT -measurable
ξ ∈ L2(�; K ) there exists a V ∈ L2

P(� × [0, T ];L2(�, K )) such that ξ = E ξ +∫ T
0 V (r) dW (r), P-a.s. Equivalently, for every s ∈ [0, T ],

E
Fsξ = ξ −

∫ T

s
V (r) dW (r), P-a.s.

Lemma 6.19 Assumeη ∈ L2(�; K ) isFT -measurable and f ∈ L2
P(�× [0, T ]; K ).

Then there exists a unique pair of processes Y (s), Z(s), s ∈ [0, T ], such that

(i) Y ∈ L2
P(� × [0, T ]; K ), Z ∈ L2

P(� × [0, T ];L2(�, K ));
(ii) for a.a. s ∈ [0, T ], P-a.s.,

Y (s) +
∫ T

s
Z(r) dW (r) =

∫ T

s
f (r) dr + η. (6.28)

Moreover, Y has a continuous version and for every β �= 0,

E

∫ T

0
e2βr |Z(r)|2dr ≤ 4

β
E

∫ T

0
e2βr | f (r)|2dr + 8 e2βTE |η|2,

E sup
s∈[0,T ]

e2βs |Y (s)|2 ≤ 4

β
E

∫ T

0
e2βr | f (r)|2dr + 8 e2βTE |η|2.

(6.29)

In particular, Y ∈ CP([0, T ], L2(�; K )).
If, in addition, there exists a p ∈ [2,∞) such that

E

(∫ T

0
| f (r)|2dr

)p/2

< ∞, E |η|p < ∞,

then for every δ such that 0 ≤ T − δ < T we have

E sup
s∈[T−δ,T ]

|Y (s)|p + E

(∫ T

T−δ
|Z(r)|2dr

)p/2

≤ cpδ
p/2

E

(∫ T

T−δ
| f (r)|2dr

)p/2

+ cpE |η|p,
(6.30)

where cp is a positive constant, depending only on p.

Proof We modify the argument in [350]. We write Ys instead of Y (s) etc. to shorten
notation.

Uniqueness. Assume that (6.28) holds. Then, taking conditional expectation with
respect toFs we obtain, for a.e. s,

Ys = E
Fsη +

∫ T

s
E
Fs fr dr. (6.31)
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If η = 0 and f = 0 this equality implies that Y = 0; from (6.28) it follows that∫ T
s Zr dWr = 0, which implies Z = 0 as well.

Existence. Define ξ = η + ∫ T
0 fr dr . Since ξ ∈ L2(�; K ) isFT -measurable, by

Proposition 6.18 there exists a Z ∈ L2
P(� × [0, T ];L2(�, K )) such that

E
Fsξ = ξ −

∫ T

s
Zr dWr ,

for every s ∈ [0, T ]. Now it suffices to define Ys = E
Fsξ − ∫ s

0 fr dr and Eq. (6.28)
is satisfied. The existence of a continuous version is immediate, since (6.28) implies

Ys − Y0 =
∫ s

0
Zr dWr −

∫ s

0
fr dr.

Estimates (6.29). Since η ∈ L2(�; K ) is FT -measurable, by Proposition 6.18
there exists an L ∈ L2

P(� × [0, T ];L2(�, K )) such that

E
Fsη = η −

∫ T

s
Lθ dWθ, (6.32)

for every s ∈ [0, T ]. Similarly, for a.a. r there exists a predictable process
{K (θ, r)}θ∈[0,r ] in L2

P(� × [0, r ];L2(�, K )) such that

E
Fs fr = fr −

∫ r

s
K (θ, r) dWθ, (6.33)

for s ∈ [0, r ]. We set K (θ, r) = 0 for θ ∈ (r, T ] and we can verify that the map
K : � × [0, T ] × [0, T ]→L2(�, K ) can be taken to beP × B([0, T ])-measurable,
where P is the predictable σ-field on � × [0, T ] and B([0, T ]) denotes the Borel
subsets of [0, T ]; the existence of such a version of K can be proved by approximating
f by simple processes and by a monotone class argument (or one can argue as in
[350], proof of Lemma 2.1). Substituting into (6.31) and applying the stochastic
Fubini theorem gives

Ys = η −
∫ T

s
Lθ dWθ +

∫ T

s

(
fr −

∫ r

s
K (θ, r) dWθ

)
dr

= η +
∫ T

s
fr dr −

∫ T

s
Lθ dWθ −

∫ T

s

(∫ T

θ

K (θ, r) dr

)
dWθ.

Comparing with the backward equation, we conclude by uniqueness that for a.a. θ,

Zθ = Lθ +
∫ T

θ

K (θ, r) dr.
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Now let β �= 0.
From (6.32) we deduce that

E

∫ T

0
e2βθ|Lθ|2 dθ ≤ e2βTE

∣∣∣∣
∫ T

0
Lθ dWθ

∣∣∣∣
2

= e2βTE
∣∣η − E

F0η
∣∣2

≤ 2e2βTE |η|2 + 2e2βTE |EF0η|2 ≤ 4e2βTE |η|2.

Next note that

∣∣∣∣
∫ T

θ
K (θ, r) dr

∣∣∣∣
2

≤
∫ T

θ
e−2βr dr

∫ T

θ
e2βr |K (θ, r)|2 dr ≤ e−2βθ

2β

∫ T

θ
e2βr |K (θ, r)|2 dr,

so that

E

∫ T

0
e2βθ

∣∣∣∣
∫ T

θ

K (θ, r) dr

∣∣∣∣
2

dθ ≤ 1

2β
E

∫ T

0

∫ T

θ

e2βr |K (θ, r)|2 dr dθ

= 1

2β

∫ T

0
e2βrE

∫ r

0
|K (θ, r)|2 dθ dr.

Since (6.33) yields

E

∫ r

0
|K (θ, r)|2 dθ = E

∣∣∣∣
∫ r

0
K (θ, r) dWθ

∣∣∣∣
2

= E
∣∣ fr − E

F0 fr
∣∣2

≤ 2E| fr |2 + 2E
∣∣EFs fr

∣∣2 ≤ 4E| fr |2,

the proof of the first inequality in (6.29) is finished. Now we prove the second one,
estimating separately the two terms on the right-hand side of (6.31). By the Doob
inequality for martingales,

E sup
s∈[0,T ]

e2βs |EFsη|2 ≤ e2βT 4E |η|2.

Next, since

(∫ T

s
| fr | dr

)2

≤
∫ T

s
e−2βr dr

∫ T

s
e2βr | fr |2 dr ≤ e−2βs

2β

∫ T

s
e2βr | fr |2 dr,

we obtain

eβs

∣∣∣∣
∫ T

s
E
Fs fr dr

∣∣∣∣ ≤ E
Fs

(
eβs
∫ T

s
| fr | dr

)
≤ 1√

2β
E
Fs

(∫ T

s
e2βr | fr |2 dr

)1/2

and by the Doob inequality,
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E sup
s∈[0,T ]

e2βs
∣∣∣∣
∫ T

s
E
Fs fr dr

∣∣∣∣
2

≤ 4

2β
E

∫ T

0
e2βr | fr |2 dr.

Estimates (6.30). Since, for s ∈ [T − δ, T ],
∫ T

s
| fr | dr ≤

(∫ T

s
| fr |2 dr

)1/2

(T − s)1/2 ≤
(∫ T

s
fr dr

)1/2

δ1/2,

it follows from (6.31) that

E sup
s∈[T−δ,T ]

|Ys |p ≤ cpE sup
s∈[T−δ,T ]

|EFsη|p

+ cpδ
p/2

E sup
s∈[T−δ,T ]

∣∣∣∣∣EFs

(∫ T

s
| fr |2 dr

)1/2
∣∣∣∣∣
p

≤ cpE |η|p + cpδ
p/2

E

(∫ T

T−δ

| fr |2 dr
)p/2

,

which proves the desired inequality on the process Y . To obtain a similar estimate
on Z we first set Z1

θ = ∫ T
θ K (θ, r) dr , so that Zθ = Lθ + Z1

θ .
From (6.32) it follows that E

Fsη − E
FT−δ η = ∫ s

T−δ Lθ dWθ, so by the
Burkholder–Davis–Gundy and the Doob inequalities,

E

(∫ T

T−δ

|Lθ|2dθ

) p
2

≤ cp E sup
s∈[T−δ,T ]

∣∣∣∣
∫ s

T−δ

Lθ dWθ

∣∣∣∣
p

= cp E sup
s∈[T−δ,T ]

|EFsη − E
FT−δ η|p ≤ cp E |η|p.

In order to prove a similar estimate for Z1 we first note that, setting Y 1
s = ∫ T

s E
Fs

fr dr , the pair (Y 1, Z1) is the solution corresponding to η = 0. Therefore

Y 1
s − Y 1

T−δ =
∫ s

T−δ

Z1
r dWr −

∫ s

T−δ

fr dr.

So we obtain

E

(∫ T

T−δ

|Z1
r |2dr

) p
2

≤ cp E sup
s∈[T−δ,T ]

∣∣∣∣
∫ s

T−δ

Z1
r dWr

∣∣∣∣
p

≤ cp E sup
s∈[T−δ,T ]

|Y 1
s |p + cp E

(∫ T

T−δ

| fr | dr
)p

.

For Y 1 we can use the estimate proved above with η = 0:
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E sup
s∈[T−δ,T ]

|EFs Y 1
s |p ≤ cpδ

p/2
E

(∫ T

T−δ

| fr |2 dr
)p/2

.

Finally, the required estimate follows from

∫ T

T−δ

| fr | dr ≤
(∫ T

T−δ

| fr |2 dr
)1/2

δ1/2.

�

Now we are concerned with the equation

Ys +
∫ T

s
Zr dWr =

∫ T

s
f (r,Yr , Zr ) dr + η. (6.34)

In the following Proposition K is a Hilbert space, the mapping f : � × [0, T ] ×
K × L2(�, K ) → K is assumed to be measurable with respect to P × B([0, T ] ×
K × L2(�, K )) and B(K ), respectively (we recall that by P we denote the pre-
dictable σ-field on � × [0, T ] and by B(�) the Borel σ-field of any topological
space �). η : � → K is assumed to be FT -measurable.

Proposition 6.20 Assume that

(i) there exists an L > 0 such that

| f (t, y1, z1) − f (t, y2, z2)| ≤ L(|y1 − y2| + |z1 − z2|),

P-a.s. for every t ∈ [0, T ], y1, y2 ∈ K , z1, z2 ∈ L2(�, K );
(ii) E

∫ T

0
| f (r, 0, 0)|2dr < ∞, E |η|2 < ∞.

Then there exists a unique pair of processes Y (s), Z(s), s ∈ [0, T ], such that

Y ∈ CP([0, T ], L2(�; K )), Z ∈ L2
P(� × [0, T ];L2(�, K ))

and (6.34) holds for s ∈ [0, T ].Moreover, Y has a continuous versionandE sups∈[0,T ]
|Y (s)|2 < ∞.

If, in addition, there exists a p ∈ [2,∞) such that

E

(∫ T

0
| f (r, 0, 0)|2dr

)p/2

< ∞, E |η|p < ∞, (6.35)

then we have Y ∈ L p
P(�;C([0, T ], K )), Z ∈ L p

P(� × [0, T ];L2(�, K )) and
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E sup
s∈[0,T ]

|Y (s)|p + E

(∫ T

0
|Z(r)|2dr

)p/2

≤ cE

(∫ T

0
| f (r, 0, 0)|2dr

)p/2

+ cE |η|p,
(6.36)

for some constant c > 0 depending only on p, L , T .
Finally assume that, for all λ in a metric space�, a function fλ is given satisfying

(6.35) and assumption i) with L independent of λ. Also assume that, as λ → λ0,

E

(∫ T

0
| fλ(r,Y, Z) − fλ0(r,Y, Z)|2dr

)p/2

→ 0 (6.37)

for all Y ∈ L p
P(�;C([0, T ], K )), Z ∈ L p

P(�; L2([0, T ];L2(�, K ))).
If we denote by (Y (λ, η), Z(λ, η)) the solution to (6.34) corresponding to f = fλ

and to the final data η ∈ L p(�,R) then the map (λ, η) → (Y (λ, η), Z(λ, η))

is continuous from � × L p(�;R) to L p
P(�;C([0, T ], K )) × L p

P(�; L2([0, T ];
L2(�, K ))).

Proof We let K = CP([0, T ], L2(�; K )) × L2
P(� × [0, T ];L2(�, K )) and we

define a mapping � : K → K by setting (Y, Z) = �(U, V ) if (Y, Z) is the pair sat-
isfying

Ys +
∫ T

s
Zr dWr =

∫ T

s
f (r,Ur , Vr ) dr + η, (6.38)

compare Lemma 6.19. The estimates (6.29) show that � is well defined, and it is a
contraction if K is endowed with the norm

|(Y, Z)|2K = E

∫ T

0
e2βr

(|Yr |2 + |Zr |2
)
dr,

provided β is sufficiently large. For simplicity, we only verify the contraction prop-
erty: if (U 1, V 1) ∈ K, (Y 1, Z1) = �(U 1, V 1) and we let Y = Y − Y 1, Z = Z − Z1,
U = U −U 1, V = V − V 1, f r = f (r,Ur , Vr ) − f (r,U 1

r , V 1
r ), we have

Y s +
∫ T

s
Zr dWr =

∫ T

s
f r dWr , (6.39)

so that by (6.29),

|(Y , Z)|2K ≤ T E sup
s∈[0,T ]

e2βs |Y s |2 + E

∫ T

0
e2βr |Zr |2 dr ≤ 8(1 + T )

β
E

∫ T

0
e2βr | f r |2dr

≤ 8(1 + T )L2

β
E

∫ T

0
e2βr (|Ur | + |Vr |)2dr ≤ 16(1 + T )L2

β
|(U , V )|2K.

Now we prove the estimate (6.36). We let Kp,δ = L p(�;C([T − δ, T ],R)) ×
L p(�; L2([T − δ, T ];L2(�,R))) and define � : Kp,δ → Kp,δ , setting (Y, Z) =
�(U, V ) if (Y, Z) is the pair satisfying Eq. (6.38) for s ∈ [T − δ, T ]. It is easily
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verified that � is well defined and it is a contraction in Kp,δ , provided δ > 0 is cho-
sen sufficiently small; indeed, arguing as before, we deduce from (6.39) and from
(6.30) the inequalities

|(Y , Z)|pK = E sup
s∈[T−δ,T ]

|Y s |p + E

(∫ T

T−δ

|Zr |2 dr
) p

2

≤ cpδ
p/2L p

E

(∫ T

T−δ

(|Ur | + |V r |)2dr
) p

2

≤ cp2
p/2δ pL pδ E sup

s∈[T−δ,T ]
|Us |p + cp(2δ)

p/2L p
E

(∫ T

T−δ

|V r |2dr
) p

2

≤ cp(2δ)
p/2L p(1 + δ p/2) |(U , V )|pK,

and the contraction property holds provided cp(2δ)p/2L p(1 + δ p/2) < 1. Repeating
this argument on intervals [T − δ, T − 2δ], [T − 2δ, T − 3δ] etc. shows that Y ∈
L p(�;C([0, T ],R)) and Z ∈ L p(�; L2([0, T ];L2(�,R))).

Next note that it follows from our assumptions that

| f (r, x, y)| ≤ | f (r, 0, 0)| + L(|x | + |y|).

Applying the estimate (6.30) to Eq. (6.34) we obtain

E sup
s∈[T−δ,T ]

|Ys |p + E

(∫ T

T−δ

|Zr |2dr
)p/2

≤ cpδ
p/2

E

(∫ T

T−δ

| f (r,Yr , Zr )|2dr
)p/2

+ cpE |η|p

≤ cpE |η|p + cp3
p−1δ p/2

E

(∫ T

T−δ

| f (r, 0, 0)|2dr
)p/2

+ cp3
p−1L pδ p/2

E

(∫ T

T−δ

|Yr |2dr
)p/2

+ cp3
p−1L pδ p/2

E

(∫ T

T−δ

|Zr |2dr
)p/2

≤ cpE |η|p + cp3
p−1δ p/2

E

(∫ T

T−δ

| f (r, 0, 0)|2dr
)p/2

+ cp3
p−1L pδ p

E sup
s∈[T−δ,T ]

|Ys |p + cp3
p−1L pδ p/2

E

(∫ T

T−δ

|Zr |2dr
)p/2

.

(6.40)

Choosing δ > 0 so small that α := cp3p−1L p(δ p + δ p/2) < 1 we obtain
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E sup
s∈[T−δ,T ]

|Ys |p + E

(∫ T

T−δ

|Zr |2dr
)p/2

≤ cpE |η|p + cp3
p−1δ p/2

E

(∫ T

T−δ

| f (r, 0, 0)|2dr
)p/2

+ α

[
E sup

s∈[T−δ,T ]
|Ys |p + E

(∫ T

T−δ

|Zr |2dr
)p/2

]
,

(6.41)

and it follows that

E sup
s∈[T−δ,T ]

|Ys |p + E

(∫ T

T−δ
|Zr |2dr

)p/2

≤ cE |η|p + cE

(∫ T

T−δ
| f (r, 0, 0)|2dr

)p/2

,

with c depending only on p and L . Next we note that for s ≤ T − δ,

Ys +
∫ T−δ

s
Zr dWr =

∫ T−δ

s
f (r,Yr , Zr ) dr + YT−δ,

and proceeding as before we obtain

E sup
s∈[T−2δ,T−δ]

|Ys |p + E

(∫ T−δ

T−2δ
|Zr |2dr

)p/2

≤ cE |YT−δ |p + cE

(∫ T−δ

T−2δ
| f (r, 0, 0)|2dr

)p/2

,

with the same choice of δ and the same value of c. After a finite number of steps we
arrive at (6.36).

Finally, the proof of the last assertion can be done in a straightforward way,
repeating the above argument. �

Remark 6.21 The mapping � defined in the previous proof was shown to be a con-
traction in the space K = CP([0, T ], L2(�; K )) × L2

P(� × [0, T ];L2(�, K )). In
a similar way, the estimates (6.29) allow us to show that � is well defined and it
is a contraction in the space L2

P(�;C([0, T ], K )) × L2
P(� × [0, T ];L2(�, K )) as

well as in the space L2
P(� × [0, T ]; K ) × L2

P(� × [0, T ];L2(�, K )). In particular,
uniqueness holds for Eq. (6.34) in the latter space, too. �

6.3.2 Regular Dependence on Data

Now we are dealing with the backward equation

Y (s) +
∫ T

s
Z(r) dW (r) =

∫ T

s
F(r, X (r),Y (r), Z(r)) dr + η, (6.42)
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on the time interval [0, T ], where η is a given FT -measurable real random variable
and X (s), s ∈ [0, T ], is a given predictable process. The mapping F : [0, T ] × H ×
K × L2(�, K ) → K is assumed to beBorelmeasurable. The solutionwe are looking
for is a pair of predictable processes Y (s), Z(s), s ∈ [0, T ], with values in K and
L2(�, K ), respectively.

We fix the following assumptions on F .

Hypothesis 6.22 (i) There exists an L > 0 such that

|F(t, x, y1, z1) − F(t, x, y2, z2)| ≤ L(|y1 − y2| + |z1 − z2|),

for every t ∈ [0, T ], x ∈ H , y1, y2 ∈ K , z1, z2 ∈ L2(�, K ).
(ii) For every t ∈ [0, T ], F(t, ·, ·, ·) ∈ G1,1,1(H × K × L2(�, K ), K ).
(iii) There exist L > 0 and m ≥ 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|(1 + |z|)(1 + |x | + |y|)m,

for every t ∈ [0, T ], x, h ∈ H , y ∈ K , z ∈ L2(�, K ).
(iv) There exists an L > 0 such that |F(t, 0, 0, 0)| ≤ L for every t ∈ [0, T ].

Conditions (i) and (i i) imply that the Gâteaux derivatives of F with respect to
y and z are uniformly bounded: for every point (x, y, z) and all directions k ∈ K ,
v ∈ L2(�, K ),

|∇y F(t, x, y, z)k| ≤ L |k|, |∇z F(t, x, y, z)v| ≤ L |v|.

Moreover, conditions (i)–(iv) imply that

|F(t, x, y, z)| ≤ L(1 + |x |m+1 + |z| + |y|). (6.43)

Finally, conditions (i) (i i) and (i i i) imply

|F(t, x1, y, z) − F(t, x2, y, z)| ≤ L(1 + |z|)(1 + |x1|m + |x2|m + |y|m)|x2 − x1|.
(6.44)

Remark 6.23 Instead of condition (i i i), in some of the statements below we will
assume that the stronger condition holds: there exists L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, t ∈ [0, T ], x, h ∈ H, y ∈ K , z ∈ L2(�, K ).

(6.45)
Whenever (6.45) is assumed to hold, this will be explicitly mentioned. �

To start we need the following general lemma that generalizes the classical result
on continuity of evaluation operators, see e.g. [10].
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Lemma 6.24 Let K1, K2 and K3 be Banach spaces and � : [0, T ] × K1 × K2 →
K3 be a measurable map such that, for all t ∈ [0, T ], �(t, ·) : K1 × K2 → K3 is
continuous

(i) Suppose that for some c > 0 and μ ≥ 1,

|�(t, v1, v2)|K3 ≤ c(1 + |v1|μK1
)(1 + |v2|K2), t ∈ [0, T ], v1 ∈ K1, v2 ∈ K2.

For all U ∈ Lr1
P(�;C([0, T ], K1)), V ∈ Lr2

P(�; L2([0, T ]; K2)) with r1, r2 ≥
1, let us define in the natural way the evaluation operator �(U, V )(t,ω) =
�(t,U (t,ω), V (t,ω)).
If μ/r1 + 1/r2 = 1/r3 and r1 ≥ μ then the evaluation operator is continu-
ous from Lr1

P(�;C([0, T ], K1)) × Lr2
P(�; L2([0, T ]; K2)) to L

r3
P(�; L2([0, T ];

K3)).
(ii) Similarly, if

|�(t, v1, v2)|K3 ≤ c(1 + |v1|μK1
+ |v2|K2), t ∈ [0, T ], v1 ∈ K1, v2 ∈ K2,

and r2 = μr1 then the evaluation operator is continuous from Lr1
P(�; L2([0, T ];

K2)) × Lr2
P(�;C([0, T ], K1)) to Lr1

P(�; L2([0, T ]; K3)).

Proof We prove only (i), the proof of (i i) being identical.
Step 1. Firstly we consider only dependence on t . Define the evaluation oper-

ator (denoted again by � by abuse of language): �(U ,V)(t) = �(t,U(t),V(t))
with U ∈ C([0, T ], K1), V ∈ L2([0, T ]; K2). We claim that � is continuous from
C([0, T ], K1) × L2([0, T ]; K2) to L2([0, T ]; K3). It is enough to prove that

∫ T

0
|�(t,Un(t),Vn(t)) − �(t,U(t),V(t))|2 dt → 0

for each pair of sequences Un , Vn with Un → U in C([0, T ], K1) and Vn → V in
L2([0, T ]; K2). Extracting a subsequence, if necessary, we can always assume that
∞∑
n=1

|Vn − V|L2([0,T ];K2) < +∞ and Vn(t) → V(t) for a.a. t ∈ [0, T ]. Let V∗(t) =
∞∑
n=1

|Vn(t) − V(t)|K2 . By construction V∗ ∈ L2([0, T ];R) and |Vn(t)|K2 ≤ |V(t)|K2

+ V∗(t). Therefore

|�(t,Un(t),Vn(t)) − �(t,U(t),V(t))|2

≤ L

(
1 + sup

n
|Un|μC([0,T ],K1)

)2 (
1 + |V(t)|K2 + V∗(t)

)2
,

for a suitable constant L . Since the right-hand term is a fixed summable function of
t ∈ [0, T ] the claim follows from the dominated convergence theorem. Finally, we
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observe that

|�(U ,V)|L2([0,T ];K3) ≤ L
(
1 + |U |μC([0,T ],K1)

) (
1 + |V|L2([0,T ];K2)

)

for a suitable constant L .
Step 2. Nowwe consider dependence onω. Let �̂ be a continuousmap K̂1 × K̂2 →

K̂3, with K̂i Banach spaces, i = 1, 2, 3, and |�̂(u, v)|K̂3
≤ L(1 + |u|μ

K̂1
)(1 + |v|K̂2

).

ForU ∈ Lr1(�; K̂1), V ∈ Lr2(�; K̂2) with μ/r1 + 1/r2 = 1/r3, we define the eval-
uation operator �̂(U, V )(ω) = �̂(U (ω), V (ω)) and claim that it is continuous from
Lr1(�; K̂1) × Lr2(�; K̂2) to Lr3(�; K̂3). Before proving the claim we notice that
it completes the proof of Lemma 6.24: indeed, it suffices to apply it to K̂1 =
C([0, T ], K1), K̂2 = L2([0, T ]; K2), K̂3 = L2([0, T ]; K3) and to the evaluation
operator introduced in Step 1.

The proof of the claim is similar to that of Step 1. It is enough to show that:

E

(∣∣∣�̂(Un, Vn) − �̂(U, V )

∣∣∣r3
K̂3

)
→ 0

for each pair of sequences Un in Lr1(�; K̂1) and Vn in Lr2(�; K̂2) with Un → U in
Lr1(�; K̂1) and Vn → V in Lr2(�; K̂2). Extracting a subsequence, if necessary, we
can assume that Un → U and Vn → V P-a.s., and

∞∑
n=1

|Un −U |Lr1 (�;K̂1)
< +∞,

∞∑
n=1

|Vn − V |Lr2 (�;K̂2)
< +∞.

Let:

U ∗ =
∞∑
n=1

|Un −U |K̂1
, V ∗ =

∞∑
n=1

|Vn − V |K̂2
.

By construction U ∗ ∈ Lr1(�;R) and V ∗ ∈ Lr2(�;R). Moreover:

|Un(ω)|K̂1
≤ |U (ω)|K̂1

+U ∗(ω), |Vn(ω)|K̂2
≤ |V (ω)|K̂2

+ V ∗(ω), P-a.s.

Therefore
∣∣∣�̂(Un(ω), Vn(ω)) − �̂(U (ω), V (ω))

∣∣∣r3
K̂3

≤ L
(
1 + |U (ω)|μr3

K̂1
+ (U ∗(ω))μr3

)

·
(
1 + |V (ω)|r3

K̂2
+ (V ∗(ω))r3

)
, P-a.s.,

for a suitable constant L . Since (μr3)/r1 + r3/r2 = 1 the left-hand term has finite
mean and the claim follows from the dominated convergence theorem. �

We are now in a position to show the existence and uniqueness and regular depen-
dence on data of the solution to Eq. (6.42). For p ≥ 2 we define:
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Kp = L p
P(�;C([0, T ], K )) × L p

P(�; L2([0, T ];L2(�, K ))),

endowed with the natural norm.

Proposition 6.25 Assume Hypotheses 6.8 and 6.22.

(i) If X ∈ Lρ
P(�;C([0, T ], H)), η ∈ Lr (�; K ) with ρ = r(m + 1), r ≥ 2 then

there exists a unique solution in Kr of Eq. (6.42), which we will denote by
(Y (·, X, η), Z(·, X, η)).

(ii) The following estimate holds:

E sup
s∈[0,T ]

|Y (s, X, η)|r +
(
E

∫ T

0
|Z(s, X, η)|2ds

)r/2

≤ c
(
1 + |X |ρ

Lρ
P (�;C([0,T ],H))

)
+ cE|η|r

(6.46)

for a suitable constant c depending only on ρ, r and F.
(iii) The map (X, η) → (Y (·, X, η), Z(·, X, η)) is continuous from Lρ

P(�;C
([0, T ], H)) × Lr (�; K ) to Kr .

(iv) The map (X, η) → (Y (·, X, η), Z(·, X, η)) is in G1,1(Lρ
P(�;C([0, T ], H)) ×

Lr (�;R),Kp) with r = (m + 2)p, p ≥ 2 (consequently ρ = p(m + 1)(m +
2)).
Moreover, for all X ∈ Lρ

P(�;C([0, T ], H)), η ∈ Lr (�; K ) the directional
derivative in the direction (N , ζ) with N ∈ Lρ

P(�;C([0, T ], H)) and ζ ∈
Lr (�; K ), which we will denote by (∇X,ηY (·, X, η)(N , ζ),∇X,ηZ(·, X, η)

(N , ζ)), is the unique solution in Kp of:

∇X,ηY (s, X, η)(N , ζ) +
∫ T

s
∇X,ηZ(r, X, η)(N , ζ)dWr

=
∫ T

s
∇x F(r, Xr ,Yr (X, η), Zr (X, η))Nrdr

+
∫ T

s
∇y F(r, Xr ,Yr (X, η), Zr (X, η))∇X,ηY (r, X, η)(N , ζ)dr

+
∫ T

s
∇z F(r, Xr ,Yr (X, η), Zr (X, η))∇X,ηZ(r, X, η)(N , ζ)dr + ζ.

(v) Finally, the following estimate holds:

E sup
s∈[0,T ]

|∇X,ηY (s, X, η)(N , ζ)|p + E

(∫ T

0
|∇X,ηZ(s, X, η)(N , ζ)|2ds

)p/2

≤ c|N |pLr
P (�;C([0,T ],H))

(
1 + |X |(m+1)2

Lρ
P (�;C([0,T ],H))

+ |η|m+1
Lr (�;K )

)p + c|ζ|pL p(�;K ).

(6.47)
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(vi) If, in addition, there exists an L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, t ∈ [0, T ], x, h ∈ H, y ∈ K , z ∈ L2(�, K ),

then the following estimate (stronger than (6.47)) holds:

E sup
s∈[0,T ]

|∇X,ηY (s, X, η)(N , ζ)|p + E

(∫ T

0
|∇X,ηZ(s, X, η)(N , ζ)|2ds

)p/2

≤ c|N |p
L p
P (�;C([0,T ],H))

+ c|ζ|pL p(�;K ).

(6.48)

Proof Let � = Lρ
P(�;C([0, T ], H)) and, for every X ∈ �,

fX (s, y, z) = F(s, Xs, y, z).

By (6.43) and Lemma 6.24-(i i) applied with K1 = H , K2 = K × L2(�, K ), U =
X , V = (Y, Z) we obtain that for all (Y, Z) ∈ Kr the map X → fX (Y, Z) is contin-
uous from � to Lr

P(�; L2([0, T ]; K )) and

E

(∫ T

0
| fX (s, 0, 0)|2ds

)r/2

≤ c

(
1 + E( sup

s∈[0,T ]
|Xs |r(m+1))

)
.

Therefore points (i)–(i i i) of the claim follow immediately from Proposition 6.20.
To deal with point (iv) it is convenient now to introduce another backward sto-

chastic equation; we will eventually show that it is satisfied by the derivatives of
(Y, Z)with respect to X and η. For all ζ ∈ L p(�; K ), X, N ∈ Lr

P(�;C([0, T ], H)),
(Y, Z) ∈ Kr we look for (Ŷ (X, N ,Y, Z , ζ), Ẑ(X, N ,Y, Z , ζ)) ∈ Kp solving:

Ŷs +
∫ T

s
Ẑr dWr =

∫ T

s
∇x F(r, Xr ,Yr , Zr )Nrdr∫ T

s
∇y F(r, Xr ,Yr , Zr )Ŷr dr +

∫ T

s
∇z F(r, Xr ,Yr , Zr )Ẑr dr + ζ.

(6.49)

By Hypothesis 6.22-(i i i) we have

E

(∫ T

0
|∇x F(r, Xr ,Yr , Zr )Nr |2dr

)p/2

≤ L|N |pLr
P (�;C([0,T ],H))

(
1 + |Z |Lr

P (�;L2([0,T ];L2(�,K )))

)p

·
(
1 + |X |mLr

P (�;C([0,T ],H)) + |Y |mLr
P (�;C([0,T ],H))

)p
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for a suitable constant L . Since ∇y F and ∇z F are bounded, by Proposition 6.20 the
Eq. (6.49) admits a unique solution in Kp. Moreover, by Lemma 6.24-(i), the map
(X, N ,Y, Z) → ∇x F(·, X(·),Y(·), Z(·))N(·) is continuous from the space

K # := Lr
P(�;C([0, T ], H)) × Lr

P(�;C([0, T ], H)) × Kr

to L p
P(�; L2([0, T ]; K )). Therefore, taking into account oncemore the boundedness

of ∇y F and ∇z F , we can apply the final statement of Proposition 6.20 with � = K #

and conclude that the map (X, N ,Y, Z , ζ) → (Ŷ (X, N ,Y, Z , ζ), Ẑ(X, N ,Y, Z , ζ))

is continuous from K # × L p(�; K ) to Kp and the estimate

E( sup
s∈[0,T ]

|Ŷs |p) + E

(∫ T

0
|Ẑr |2dr

)p/2

≤ c|N |pLr
P (�;C([0,T ],H))

(
1 + |Z |Lr

P (�;L2([0,T ];L2(�,K )))

)p

·
(
1 + |X |mLr

P (�;C([0,T ],H)) + |Y |mLr
P (�;C([0,T ],H))

)p + cE|ζ|p
(6.50)

holds for some constant c > 0.
It remains to prove that if X, N ∈ Lρ

P(�;C([0, T ], H)) and η, ζ ∈ Lr (�; K )

then the directional derivative of (Y (X, η), Z(X, η)) in the direction (N , ζ) is given
by

(Ŷ (X, N , Y (X, η), Z(X, η), ζ), Ẑ(X, N ,Y (X, η), Z(X, η), ζ)).

Let us define

Y
ε := 1

ε
[Y (X + εN , η + εζ) − Y (X, η)] − Ŷ (X, N ,Y (X, η), Z(X, η), ζ),

Z
ε := 1

ε
[Z(X + εN , η + εζ) − Z(X, η)] − Ẑ(X, N ,Y (X, η), Z(X, η), ζ).

For ε → 0 we show that Y
ε → 0 in L p

P(�;C([0, T ], K )) and Z
ε → 0 in L p

P(�;
L2([0, T ];L2(�, K ))). For short we let Y = Y (X, η), Z = Z(X, η), Y ε = Y (X +
εN , η + εζ), Z ε = Z(X + εN , η + εζ), Ŷ = Ŷ (X, N ,Y (X, η), Z(X, η), ζ), and
Ẑ = Ẑ(X, N ,Y (X, η), Z(X, η), ζ).

The proof will be done by induction, dividing the interval [0, T ] into subintervals
[T − δ, T ], [T − 2δ, T − δ] and so on, for a suitable δ depending only on F and p.
All the subintervals are treated in the same way (the proof for [T − δ, T ] being even
easier), so we concentrate on the second one, namely [T − 2δ, T − δ]. On such an
interval we have:

Y
ε

s +
∫ T−δ

s
Z

ε

r dr =
∫ T−δ

s
νε(r)dr + Y

ε

T−δ,
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where νε = νε
1 + νε

2 and:

νε
1(r) = 1

ε

[
F(r, Xr + εNr ,Y

ε
r , Z ε

r ) − F(r, Xr ,Y
ε
r , Z ε

r )
]− ∇x F(r, Xr ,Yr , Zr )Nr ,

νε
2(r) = 1

ε

[
F(r, Xr ,Y

ε
r , Z ε

r ) − F(r, Xr ,Yr , Zr )
]

− ∇y F(r, Xr ,Yr , Zr )Ŷr − ∇z F(r, Xr ,Yr , Zr )Ẑr .

By Proposition 6.20 we have:

E sup
s∈[T−2δ,T−δ]

|Y ε

s |p + E

(∫ T−δ

T−2δ
|Z ε

r |2dr
)p/2

≤ cpδ
p/2

2∑
i=1

E

(∫ T−δ

T−2δ
|νε

i (r)|2dr
)p/2

+ cpE|Y ε

T−δ|p

and by the inductive assumption E|Y ε

T−δ|p → 0.
We start to evaluate the integral terms on the right. We can write

νε
1(r) =

∫ 1

0
∇x F(r, Xr + ετNr ,Y

ε
r , Z ε

r )Nrdτ −
∫ 1

0
∇x F(r, Xr ,Yr , Zr )Nrdτ .

For all x, g, n ∈ H , y ∈ K , z ∈ L2(�, K ) let χ(x, g, n, y, z) = ∫ 1
0 ∇x F(x + τ

g, y, z)ndτ , so that νε
1(r) = χ(Xr , εNr , Nr ,Y ε

r , Z ε
r ) − χ(Xr , 0, Nr ,Yr , Zr ). More-

over, |χ(x, g, n, y, z)| ≤ L|n|(1 + |z|)(1 + |x |m + |g|m + |y|m) and χ is a contin-
uous map. Applying Lemma 6.24-(i) with K1 = H×3 × K K2 = L2(�, K ), r1 =
r2 = r , μ = m + 1 and taking into account that (X, εN , N ,Y ε) → (X, 0, N ,Y ) in
Lr
P(�,C([T − 2δ, T − δ], K1)) and Z ε → Z in Lr

P(�, L2([T − 2δ, T − δ], K2))

we immediately obtain E

(∫ T−δ

T−2δ |νε
1(r)|2dr

)p/2 → 0.

Dealing now with νε
2 we can rewrite νε

2 = νε
2.1 + νε

2.2 where:

νε
2.1(r) =

∫ 1

0

(
∇y F(r, Xr ,Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Ŷr

− ∇y F(r, Xr ,Yr , Zr )Ŷr

)
dτ

+
∫ 1

0

(
∇z F(r, Xr ,Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Ẑr

− ∇z F(r, Xr ,Yr , Zr )Ẑr

)
dτ ,
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νε
2.2(r) =

∫ 1

0
∇y F(r, Xr ,Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Y

ε

r dτ

+
∫ 1

0
∇z F(r, Xr ,Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Z

ε

r dτ .

Since∇y F and∇z F are bounded, by the dominated convergence theorem we imme-

diately obtain E

(∫ T−δ

T−2δ |νε
2.1(r)|2dr

)p/2 → 0. Moreover,

E

(∫ T−δ

T−2δ
|νε

2.2(r)|2dr
)p/2

≤ c

(
E sup

τ∈[T−2δ,T−δ]
|Y ε

τ |p + E

(∫ T−δ

T−2δ
|Z ε

r |2dr
)p/2

)

for a suitable constant c depending only on F , p T . Choosing δ such that cpcδ p/2 < 1
the claim follows immediately.

Finally, (6.47) follows plugging (6.46) into (6.50), and (6.48) is proved in the
same way, taking into account the additional assumption. �

6.3.3 Forward–Backward Systems

In this subsection we consider the system of stochastic differential equations

⎧⎪⎪⎨
⎪⎪⎩

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X (r)) dr +

∫ s

t
e(s−r)Aσ(r, X (r)) dW (r),

Y (s) +
∫ T

s
Z(r)dW (r) =

∫ T

s
F(r, X (r),Y (r), Z(r))dr + g(X (T )),

(6.51)
for s varying on the time interval [t, T ] ⊂ [0, T ]. As in Sect. 6.2 we extend the
domain of the solution setting X (s) = x for s ∈ [0, t). We assume that F : [0, T ] ×
H × R × L2(�,R) → R satisfies Hypothesis 6.22 with K = R. On the function
g : H → R we make the following assumptions:

Hypothesis 6.26 (i) g ∈ G1(H,R);
(ii) There exist L > 0 and m ≥ 0 such that, for every x, h ∈ H ,

|∇g(x)h| ≤ L |h| (1 + |x |)m .

For simplicity, and without any real loss of generality, we suppose that m is the
same as in Hypothesis 6.22. Notice that Hypothesis 6.26 implies that

|g(x)| ≤ c(1 + |x |m+1).
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In some of the statements below we will assume the stronger condition: |∇g(x)h| ≤
L|h|, for every x, h ∈ H .Whenever this is the case, this requirementwill be explicitly
mentioned.

We note that the system (6.51) is decoupled, i.e., the first equation does not contain
the solution (Y, Z) of the second one. Therefore, under the assumptions of Hypothe-
ses 6.8, 6.22 and 6.26 by Propositions 6.9 and 6.25 there exists a unique solution to
(6.51). We remark that the process X is F[t,T ]-measurable, so that Yt is measurable
both with respect toF[t,T ] andFt ; it follows that Yt is indeed deterministic (see also
[207]).

We denote the solution by (X (s; t, x),Y (s; t, x), Z(s; t, x)), s ∈ [t, T ], in order
to stress dependence on the parameters t ∈ [0, T ] and x ∈ H .

For later use we notice two useful identities: for t ≤ r ≤ T the equality: P-a.s.,

X (s; r, X (r; t, x)) = X (s; t, x), s ∈ [r, T ], (6.52)

is a consequence of the uniqueness of the solution to (6.6). Since the solution to the
backward equation is uniquely determined on an interval [r, T ] by the values of the
process X on the same interval, for t ≤ r ≤ T we have, P-a.s.,

Y (s; r, X (r; t, x)) = Y (s; t, x), for s ∈ [r, T ],
Z(s; r, X (r; t, x)) = Z(s; t, x) for a.a. s ∈ [r, T ]. (6.53)

Next we proceed to investigate regularity properties of the dependence on t and
x . To this end we first notice that with the notation of Propositions 6.10 and 6.25:

Y (s; t, x) = Y (s; X (·; t, x), g(X (T ; t, x))),

Z(s; t, x) = Z(s; X (·; t, x), g(X (T ; t, x))).

Moreover, as a consequence of Hypothesis 6.26, it can be easily proved that the map
η→g(η) belongs to the space G1(L p(�; H), Lq(�;R)), for every p ∈ [2,∞) and
for all q sufficiently large (depending on p andm). The following Proposition is then
an immediate consequence of Propositions 6.9, 6.10 and 6.25, and the chain rule for
the class G, stated in Lemma 6.3.

Proposition 6.27 Assume Hypotheses 6.8, 6.22 and 6.26. Recall the notation:

Kp = L p
P(�;C([0, T ],R)) × L p

P(�; L2([0, T ];L2(�,R))).

Then the map (t, x)→(Y (·, t, x), Z(·, t, x)) belongs to G0,1([0, T ] × H , Kp) for
all p ∈ [2,∞).

Denoting by ∇xY , ∇x Z the partial Gâteaux derivatives with respect to x, the
directional derivative process in the direction h ∈ H, {(∇xY (s; t, x)h,∇x Z(s; t,
x)h)}s∈[0,T ], solves the equation: P-a.s.,
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∇xY (s; t, x)h +
∫ T

s
∇x Z(r; t, x)h dWr

=
∫ T

s
∇x F(r, X (r; t, x),Y (r; t, x), Z(r; t, x))∇x X (r; t, x)h dr∫ T

s
∇y F(r, X (r; t, x),Y (r; t, x), Z(r; t, x))∇xY (r; t, x)h dr∫ T

s
∇z F(r, X (r; t, x),Y (r; t, x), Z(r; t, x))∇x Z(r; t, x)h dr

+∇g(X (T ; t, x))∇x X (T ; t, x)h, s ∈ [0, T ].

(6.54)

Finally, the following estimate holds:

[
E sup

s∈[0,T ]
|∇xY (s; t, x)h|p

] 1
p

+
⎡
⎣E

(∫ T

0
|∇x Z(r; t, x)h|2dr

) p
2

⎤
⎦

1
p

≤ c|h|(1 + |x |(m+1)2 ).

(6.55)

If, in addition, there exists an L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, |∇g(x)h| ≤ L|h|,

for every t ∈ [0, T ], x, h ∈ H, y ∈ R, z ∈ L2(�,R), then the following stronger
estimate holds:

[
E sup

s∈[0,T ]
|∇xY (s; t, x)h|p

]1/p

+
[
E

(∫ T

0
|∇x Z(r; t, x)h|2dr

)p/2
]1/p

≤ c|h|.
(6.56)

Proof We have already commented on the first two statements. The estimate (6.55)
follows from (6.47) applied with

X = X (·; t, x), N = ∇x X (·; t, x)h, η = g(X (T ; t, x)), ζ = ∇g(X (T ; t, x))∇x X (T ; t, x)h,

taking into account that by Propositions 6.9 and 6.10 we have

|N |Lρ
P (�;C([0,T ],H)) ≤ c|h|, |X |Lρ

P (�;C([0,T ],H)) ≤ c(1 + |x |),

and, by Hypothesis 6.26, we also obtain |η|Lr (�) ≤ c(1 + |x |)m+1, |ζ|L p(�) ≤ c|h|
(1 + |x |)m for a suitable constant c.

The estimate (6.56) is proved in a similar way, applying (6.48) instead of (6.47)
and taking into account that under the additional assumption we have |η|Lr (�) ≤
c(1 + |x |), |ζ|L p(�) ≤ c|h| for a suitable constant c. �

Proposition 6.28 AssumeHypotheses 6.8, 6.22and6.26. Then the functionu(t, x) =
Y (t, t, x) has the following properties:
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(i) u ∈ G0,1([0, T ] × H,R);
(ii) there exists a C > 0 such that |∇xu(t, x)h| ≤ C |h|(1 + |x |(m+1)2) for all t ∈

[0, T ], x ∈ H, h ∈ H;
(iii) if, in addition,

sup
t∈[0,T ],x∈H

|F(t, x, 0, 0)| < ∞, sup
x∈H

|g(x)| < ∞,

then supt∈[0,T ],x∈H |u(t, x)| < ∞;
(iv) similarly, if there exists an L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, |∇g(x)h| ≤ L|h|,

for every t ∈ [0, T ], x, h ∈ H, y ∈ R, z ∈ L2(�,R), then

|∇xu(t, x)h| ≤ c|h|

for a suitable constant c and all x, h ∈ H.

Proof (i) Since Y (t; t, x) is deterministic, we have u(t, x) = EY (t; t, x). So the
map (t, x) → u(t, x) can be written as a composition, letting u(t, x) = �3(�2(t, �1

(t, x))) with:

�1 : [0, T ] × H → L p
P(�;C([0, T ],R)), �1(t, x) = Y (·; t, x),

�2 : [0, T ] × L p
P(�;C([0, T ],R)) → L p(�;R), �2(t,U ) = U (t),

�3 : L p(�;R) → R, �3ζ = Eζ.

By Proposition 6.27, �1 ∈ G0,1. The inequality

|U (t) − V (s)|L p(�;R) ≤ |U (t) −U (s)|L p(�;R) + |U − V |L p
P (�;C([0,T ],R))

shows that �2 is continuous; moreover �2 is clearly linear in the second variable.
Finally, �3 is a bounded linear operator. Then the assertion follows from the chain
rule.

(i i) is an immediate consequence of the estimate in Proposition 6.27-(i i i): indeed,

|u(t, x)|2 = |Y (t; t, x)|2 = E |Y (t; t, x)|2 ≤ sup
s∈[t,T ]

E |Y (s; t, x)|2.

(i i i) Since (Y, Z) is a solution to the backward equation, the estimate in Propo-
sition 6.20 yields

sup
s∈[t,T ]

E |Y (s; t, x)|2 ≤ cE
∫ T

0
|F(r, X (r; t, x), 0, 0)|2dr + cE |g(X (T ; t, x))|2 ≤ c.
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(iv) follows immediately from (6.56). �

Corollary 6.29 For every t ∈ [0, T ], x ∈ H we have

Y (s; t, x) = u(s, X (s; t, x)), for s ∈ [u, T ], (6.57)

Z(s; t, x) = ∇xu(s, X (s; t, x))σ(s, X (s; t, x)), for a.a. s ∈ [u, T ]. (6.58)

Proof Setting s = r in the first equality of (6.53) we obtain (6.57).
To prove (6.58) we first write the backward equation in system (6.51) as

Ys = Yt +
∫ s

t
Zr dWr −

∫ s

t
F(r, Xr ,Yr , Zr ) dr, s ∈ [t, T ]

and by (6.57) this can be written

u(s, X (s; t, x)) = u(t, x) +
∫ s

t
Zr dWr −

∫ s

t
F(r, Xr ,Yr , Zr ) dr, s ∈ [t, T ].

(6.59)

Now we fix an arbitrary ξ ∈ � and take the joint quadratic variation of both sides
of (6.59) with the Wiener process Wξ. The joint quadratic variation of the left-hand
side is ∫ s

t
∇xu(r, X (r; t, x))σ(r, X (r; t, x))ξ dr, s ∈ [t, T ], (6.60)

by Proposition 6.17. Since the ordinary integral in (6.59) is a finite variation process,
the joint quadratic variation of Wξ and the right-hand side of (6.59) is

∫ s

t
Zrξ dr, s ∈ [t, T ]. (6.61)

Equating (6.60) and (6.61) we obtain (6.58). �

6.4 BSDEs and Mild Solutions to HJB

We denote by Bp(H) the set of measurable functions φ : H → R with polynomial
growth, i.e., such that supx∈H |φ(x)|(1 + |x |a)−1 < ∞ for some a > 0.

Let X (s; t, x), s ∈ [t, T ], denote the solution to the stochastic equation

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X (r)) dr +

∫ s

t
e(s−r)Aσ(r, X (r)) dW (r),

where A, b, σ, satisfy the assumptions in Hypothesis 6.8. The transition semigroup
Pt,s is defined for arbitrary φ ∈ Bp(H) and for 0 ≤ t ≤ s ≤ T by the formula



732 M. Fuhman and G. Tessitore

Pt,s[φ](x) = Eφ(X (s; t, x)), x ∈ H.

The estimate E sups∈[t,T ] |X (s; t, x)|p ≤ C(1 + |x |)p, see (6.8), shows that Pt,s
is well defined as a linear operator Bp(H) → Bp(H); the semigroup property
Pt,u Pu,s = Pt,s , t ≤ u ≤ s, is well known.

Let us denote by A(t) the (formal) generator of Pt,s :

A(t)[φ](x) = 1

2
Tr
(
σ(t, x)σ(t, x)∗D2φ(x)

)+ 〈Ax + b(t, x), Dφ(x)〉 ,

where Dφ and D2φ are first and secondGâteaux derivatives ofφ (here identifiedwith
elements of H and L(H), respectively). This definition is formal, since the domain
ofA(t) is not specified; however, if g : H → R is a sufficiently regular function, the
function v(t, x) = Pt,T [g](x) is a classical solution to the backward Kolmogorov
equation:

{ ∂v(t, x)

∂t
+ A(t)[v(t, ·)](x) = 0, t ∈ [0, T ], x ∈ H,

v(T, x) = g(x).

We refer to [179, 180, 582] for a detailed exposition. When g is not regular, the
function v(t, x) = Pt,T [g](x) can be considered as a generalized solution to the
backward Kolmogorov equation.

Here we are interested in a generalization of this equation, written formally as

⎧⎨
⎩

∂u(t, x)

∂t
+ A(t)[u(t, ·)](x) + F(t, x, u(t, x),∇x u(t, x)σ(t, x)) = 0, t ∈ [0, T ], x ∈ H,

u(T, x) = g(x).

(6.62)

We will refer to this equation as the nonlinear Kolmogorov equation. In the sequel
we will be mostly concerned with the case when F is a Hamiltonian function related
to an optimal control problem and in this case Eq. (6.62) is the Hamilton–Jacobi–
Bellman equation for the corresponding value function. However, the results given
in this section are more general, they do not rely on a control-theoretic interpretation
and may be of independent interest.

In (6.62) F : [0, T ] × H × R × �∗ → R is a given function satisfying Hypoth-
esis 6.22. Note that ∇xu(t, x), the Gâteaux derivative of u(t, x) with respect
to x , is an element of H∗, so that the composition ∇xu(t, x)σ(t, x) belongs to
�∗ = L(�,R) = L2(�,R). Thus, we are in the framework of Hypothesis 6.22 with
K = R.

Remark 6.30 A different formulation of Eq. (6.62) is possible, which differs only
notationally. We could start with a real-valued function F defined on [0, T ] × H ×
R × � and write the first equality in (6.62) as
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∂u(t, x)

∂t
+ A(t)[u(t, ·)](x) + F(t, x, u(t, x),σ(t, x)∗Dxu(t, x)) = 0,

where σ(t, x)∗ ∈ L(H, �) denotes the Hilbert space adjoint of σ(t, x) ∈ L(�, H).
We recall that Dx denotes the Gâteaux derivative identified with an element of H ,
so that ∇xu(t, x)h = 〈Dxu(t, x), h〉H for every h ∈ H . Of course, identifying �

with �∗ by the Riesz isometry, one checks immediately the equivalence of the two
formulations. �

Now we define the notion of solution to the nonlinear Kolmogorov equation. We
consider the variation of constants formula for (6.62):

u(t, x) =
∫ T

t
Pt,s[F(s, ·, u(s, ·),∇xu(s, ·)σ(s, ·))](x) ds + Pt,T [g](x), (6.63)

for t ∈ [0, T ] and x ∈ H , and we see that formula (6.63) is meaningful, provided
F(t, ·, ·, ·), u(t, ·) and ∇xu(t, ·) have polynomial growth (and, of course, provided
they satisfy appropriate measurability assumptions). We use this formula as a defin-
ition for the solution to (6.62):

Definition 6.31 We say that a function u : [0, T ] × H → R is a mild solution to
the nonlinear Kolmogorov equation (6.62) if the following conditions hold:

(i) u ∈ G0,1([0, T ] × H,R);
(ii) there exist C > 0 and d ∈ N such that |∇xu(t, x)h| ≤ C |h|(1 + |x |d) for all

t ∈ [0, T ], x ∈ H , h ∈ H ;
(iii) equality (6.63) holds.

Note that the specific form of the operator A(t) plays no role in this definition.
We are now ready to state the main result of this section.

Theorem 6.32 Assume thatHypothesis 6.8 holds, and let F, g be functions satisfying
the assumptions in Hypotheses 6.22 (with K = R) and 6.26. Then there exists a
unique mild solution to the nonlinear Kolmogorov equation (6.62).

The solution u is given by the formula

u(t, x) = Y (t; t, x),

where (X,Y, Z) is the solution to the forward–backward system (6.51).
If, in addition, supt∈[0,T ],x∈H |F(t, x, 0, 0)| < ∞ and g is bounded then u is also

bounded.
Similarly, if |∇x F | is uniformly bounded then |∇xu| is also uniformly bounded.

Proof Existence. By Proposition 6.28, the proposed solution u has the regularity
properties stated in Definition 6.31 and the last two statements of the claim hold. It
remains to verify that equality (6.63) holds. To this purpose we first fix t ∈ [0, T ]
and x ∈ H and write the backward equation of system (6.51) for s = t :
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Y (t; t, x) +
∫ T

t
Z(s; t, x) dWs

=
∫ T

t
F
(
s, X (s; t, x),Y (s; t, x), Z(s; t, x)

)
ds + g(X (T ; t, x)).

Taking the expectation we obtain

u(t, x) = E

∫ T

t
F
(
s, X (s; t, x),Y (s; t, x), Z(s; t, x)

)
ds + Pt,T [g](x).

By (6.57), (6.58) we have

u(t, x) = E

∫ T

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇x u(s, X (s; t, x)) σ(s, X (s; t, x))

)
ds

+ Pt,T [g](x)

and equality (6.63) follows.

Uniqueness. Let u be a mild solution. We look for a convenient expression for
the process u(r, X (r; t, x)), r ∈ [t, T ]. By (6.63) and the definition of Pr,s , for every
r ∈ [t, T ] and x ∈ H ,

u(r, x) = E [g(X (T ; r, x))]
+E

[∫ T

r
F
(
s, X (s; r, x), u(s, X (s; r, x)),∇xu(s, X (s; r, x))σ(s, X (s; r, x))

)
ds

]
.

Since X (s; r, x) isFr -independent, we can replace the expectation by the conditional
expectation given Fr :

u(r, x) = E
Fr [g(X (T ; r, x))]

+E
Fr

[∫ T

r
F
(
s, X (s; r, x), u(s, X (s; r, x)),∇xu(s, X (s; r, x))σ(s, X (s; r, x))

)
ds

]
.

For the same reason, we can replace x by X (r; t, x) and use the equality: P-a.s.

X (s; r, X (r; t, x)) = X (s; t, x), for s ∈ [r, T ].
We arrive at

u(r, X (r; t, x)) = E
Fr [g(X (T ; t, x))]

+E
Fr

[∫ T

r
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x)σ(s, X (s; t, x))

)
ds

]

= E
Fr [ξ]

−
∫ r

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds,
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where we have defined

ξ = g(X (T ; t, x))

+
∫ T

t
F
(
s, X (s; t, x), u(s, X (s; t, x))∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds.

We note that E
Ft [ξ] = u(t, x). Since ξ ∈ L2(�;R) is FT -measurable, by the

representation theorem recalled in Proposition 6.18, there exists a Z̃ ∈ L2
P(� ×

[t, T ];L2(�,R)) such that EFr [ξ] = ∫ r
t Z̃s dWs + u(t, x). We conclude that the

process u(r, X (r; t, x)), r ∈ [t, T ], is a (real) continuous semimartingalewith canon-
ical decomposition

u(r, X (r; t, x)) =
∫ r

t
Z̃s dWs

+u(t, x) −
∫ r

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds

(6.64)
into its continuous martingale part and continuous finite variation part. Let ξ ∈ �. By
Proposition 6.17, the joint quadratic variation process of u(r, X (r; t, x)) andW (r)ξ,
r ∈ [t, T ], is

∫ r

t
∇xu(s, X (s; t, x))σ(s, X (s; t, x))ξ ds, r ∈ [t, T ]. (6.65)

Taking into account the canonical decomposition (6.64), we note that the process
(6.65) can also be obtained as the joint quadratic variation process between W (r)ξ,
r ∈ [t, T ], and the process

∫ r
t Z̃s dWs . This yields the identity

∫ r

t
∇xu(s, X (s; t, x))σ(s, X (s; t, x))ξ ds =

∫ s

t
Z̃s ξ ds. r ∈ [t, T ].

Therefore, for a.a. s ∈ [t, T ], we have P-a.s.

∇xu(s, X (s; t, x))σ(s, X (s; t, x)) = Z̃s .

Substituting into (6.64) we obtain

u(r, X (r; t, x)) =
∫ r

t
∇xu(s, X (s; t, x))σ(s, X (s; t, x)) dWs + u(t, x)

+
∫ r

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds,

for r ∈ [t, T ]. Since u(T, X (T ; t, x)) = g(X (T ; t, x)), we also have



736 M. Fuhman and G. Tessitore

u(r, X (r; t, x)) +
∫ T

r
∇xu(s, X (s; t, x)) σ(s, X (s; t, x)) dWs = g(X (T ; t, x))

+
∫ T

r
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds,

for r ∈ [t, T ]. Comparing with the backward equation in (6.51) we note that the
pairs

(
Y (r; t, x), Z(r; t, x)

)
and

(
u(r, X (r; t, x)),∇xu(r, X (r; t, x)) σ(r, X (r; t, x))

)
,

for r ∈ [t, T ], solve the same equation. By uniqueness, we have in particular
Y (r; t, x) = u(r, X (r; t, x)), r ∈ [t, T ]. Setting r = t we obtain Y (t; t, x) =
u(t, x). �

6.5 Applications to Optimal Control Problems

We wish to apply the above results to perform the synthesis of the optimal control
for a general nonlinear control system. We will see that this approach allows great
generality, particularly with respect to degeneracy of the noise. To be able to use
non-smooth feedbacks we settle the problem in the framework of optimal control
problems formulated in the extended weak formulation, but we will present results
on the extended strong formulation as well.

Let again H ,�, denote real separable Hilbert spaces (the state space and the noise
space, respectively) and let � be a Polish space (the control space). For t ∈ [0, T ] a
generalized reference probability space is given by μ = (�,F ,F t

s ,P,W ), where

• (�,F ,P) is a complete probability space;
• {F t

s

}
s≥t is a filtration in it, satisfying the usual conditions;

• (W (s))s≥t is a cylindrical P-Wiener process in�, with respect to the filtrationF t
s ,

starting from W (t) = 0.

Given such μ, for every starting point x ∈ H we will consider the following
controlled state equation

⎧⎪⎨
⎪⎩
dX (s) =

(
AX (s) + b(s, X (s)) + σ(s, X (s))R(s, X (s), a(s))

)
ds

+ σ(s, X (s)) dW (s), s ∈ [t, T ],
X (t) = x ∈ H.

(6.66)
In (6.66), and below in this section, the equation is understood in the mild sense.
a(·) : � × [t, T ] → � is the control process, which is always assumed to be pro-
gressivelymeasurablewith respect to

{
F t

s

}
s≥t . On the coefficients A, b,σ, R precise

assumptionswill be formulated inHypothesis 6.33 below. In particular, to allowmore
generality, on the coefficient R we will only impose measurability and boundedness
assumptions, so that, in particular, we cannot guarantee the existence or uniqueness
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of the solution to the state equation for an arbitrary control process a(·). Therefore
the formulations of the control problems require some slight changes with respect to
the previous sections and is given as follows (the word extended is used to distinguish
such formulations, see Remark 2.6). We call (a(·), X (·)) an admissible control pair
if a(·) is an F t

s -progressively measurable process with values in � and X (·) is a
mild solution to (6.66) corresponding to a(·). To every admissible control pair we
associate the cost:

Jμ(t, x; a(·), X (·)) = E

∫ T

t
l(s, X (s), a(s)) ds + E g(X (T )),

where l, g are suitable real functions. The optimal control problem in the extended
strong formulation consists in minimizing the functional Jμ(t, x; a(·), X (·)) over all
admissible control pairs (a(·), X (·)), and characterizing the value function

V μ
t (x) = inf

(a(·),X (·))
Jμ(t, x; a(·), X (·)).

We will also address the optimal control problem in the extended weak formula-
tion, which consists in further minimizing with respect to all generalized reference
probability spaces, i.e., in characterizing the value function

V (t, x) = inf
μ

V μ
t (x).

Notice the occurrence of the operator σ in the control term of (6.66): this special
structure of the state equation is imposed by our techniques and seems to be essential
in different contexts as well (see [298]). The corresponding Hamiltonian function is
defined for all t ∈ [0, T ], x ∈ H , z ∈ �∗ setting

F0(t, x, z) = inf
a∈�

{l(t, x, a) + z R(t, x, a)}. (6.67)

Note that this differs from the Hamiltonian as introduced in the previous chapters.
In particular, the third argument z ranges over �∗ instead of H .

We make the following assumptions:

Hypothesis 6.33 The following holds:

(1) A, b and σ satisfy Hypothesis 6.8.
(2) R : [0, T ] × H × � → � is Borel measurable and |R(t, x, a)|� ≤ L for a suit-

able constant L > 0 and all t ∈ [0, T ], x ∈ H , a ∈ �.
(3) l : [0, T ] × H × � → R is continuous and |l(t, x, a)| ≤ L(1 + |x |m) for suit-

able constants L > 0, m ≥ 0 and all t ∈ [0, T ], x ∈ H , a ∈ �.
(4) g satisfies Hypothesis 6.26.
(5) Taking K = R (and noting thatL2(�,R) = �∗) the function F0 : [0, T ] × H ×

�∗ → R satisfies Hypothesis 6.22.
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(6) For all t ∈ [0, T ], x ∈ H and z ∈ �∗ we denote by �(t, x, z) ⊂ � the set of
elements a ∈ � such that the infimum in (6.67) is attained and we assume that
�(t, x, z) is non-empty. We will denote by γ a measurable selection of �, i.e., a
measurable function γ : [0, T ] × H × �∗ → � such that γ(t, x, z) ∈ �(t, x, z)
for every t ∈ [0, T ], x ∈ Hand z ∈ �∗. γ is not always assumed to exist.

The Hamilton–Jacobi–Bellman equation relative to the above stated problem is
written formally:

⎧⎨
⎩

∂v(t, x)

∂t
+ A(t)[v(t, ·)](x) + F0(t, x, ∇xv(t, x)σ(t, x)) = 0, t ∈ [0, T ], x ∈ H,

v(T, x) = g(x).
(6.68)

Notice the special form of this equation where the nonlinear term depends on ∇xv

only via the composition ∇xv σ: this is consistent with the definition of F0 given
above.

The Hamilton–Jacobi–Bellman equation takes the form of a nonlinear Kol-
mogorov equation as considered in the previous sections. In particular, under our
assumptions, it admits a unique mild solution in the sense specified by Theorem
6.32.

In the proof of our main results, Theorems 6.35 and 6.36 below, we will make use
of a classical tool in stochastic analysis, namely the Girsanov Theorem. We recall
its statement, in a form suitable for our purposes. Its infinite-dimensional version,
which we are about to state, can be found, for example, in [180].

Theorem 6.34 Let μ = (�,F ,F t
s ,P,W ) be a generalized reference probability

space, let R(r), r ∈ [t, T ], be an F t
s -progressively measurable process with values

in � such that
∫ T
t |R(r)|2�dr < ∞ P-a.s., and define

ρt (s) = exp

(
−
∫ s

t
〈R(r), dW (r)〉� − 1

2

∫ s

t
|R(r)|2� dr

)
, s ∈ [t, T ].

Then the following holds:

(1) ρt (·) is a P-supermartingale;
(2) if

E [ρt (T )] = 1 (6.69)

then ρt (·) is a P-martingale and we can define a probability P̃ setting P̃(A) =
E [1Aρ

t (T )], A ∈ F ;
(3) the process W̃ defined by

W̃ (s) = W (s) − W (t) +
∫ s

t
R(r) dr, s ∈ [t, T ], (6.70)

is a cylindrical Wiener process in � with respect toF t
s and P̃;
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(4) finally, if R is bounded in � then (6.69) holds and for every p ∈ [1,∞) we have

E [(ρt (T ))p] < ∞, Ẽ [(ρt (T ))−p] < ∞, (6.71)

where Ẽ denotes expectation with respect to P̃.

Note that (6.70) does not make sense as it is written since W , being a cylindrical
Wiener process, is not a genuine stochastic process taking values in�. (6.70) should
be understood as the equality W̃ (s)h = W (s)h − W (t)h + ∫ s

t 〈R(r), h〉� dr for any
h ∈ �. Nevertheless, in the following we will use a shortened notation as in (6.70).

We are in a position to prove the main results of this section:

Theorem 6.35 Assume Hypothesis 6.33 and let t ∈ [0, T ], x ∈ H.

(1) For all generalized reference probability spaces μ and all admissible control
pairs (a, X) we have Jμ(t, x; a(·), X (·)) ≥ v(t, x).
It follows that V μ

t (x) ≥ v(t, x) for every μ, and so V (t, x) ≥ v(t, x).
(2) For all μ and all admissible control pairs (a, X), the equality Jμ(t, x; a(·),

X (·)) = v(t, x) holds if and only if the following feedback law is satisfied:

a(s) ∈ �(s, X (s),∇xv(s, X (s))σ(s, X (s))), P-a.s. for a.a. s ∈ [t, T ].
(6.72)

Therefore, (6.72) implies the optimality of an admissible control pair in the
extended strong formulation with respect to a given generalized reference prob-
ability space μ. If such a control pair exists then V μ

t (x) = v(t, x).

Proof For allμ = (�,F ,F t
s ,P,W ) and admissible control pairs (a(·), X (·)), using

the boundedness of R, the Girsanov theorem ensures that there exists a probability
measure P̃ on � such that

W̃s := Ws − Wt +
∫ s

t
R(r, Xr , a(r)) dr, s ∈ [t, T ],

is a P̃-Wiener process (note that P̃ and W̃ depend on (a, X), but we neglect this
dependence in the notation). Equation (6.66) can be rewritten as:

{
dXs = AXs ds + b(s, Xs) ds + σ(s, Xs) dW̃s, s ∈ [t, T ],
Xt = x ∈ H,

(6.73)

which, as usual, is to be understood in the mild sense. The process X turns out to be
adapted to the filtration, denoted (F̃ t

s )s∈[t,T ], generated by W̃ and completed in the
usual way by means of null sets. In the filtered probability space (�,F , F̃ t

s , P̃) we
can consider the system of forward–backward equations on [t, T ]:



740 M. Fuhman and G. Tessitore

⎧⎪⎪⎨
⎪⎪⎩

X̃(s; t, x) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X̃(r; t, x)) dr +

∫ s

t
e(s−r)Aσ(r, X̃(r; t, x)) dW̃r ,

Ỹ (s; t, x) +
∫ T

s
Z̃(r; t, x)dW̃r =

∫ T

s
F0(r, X̃(r; t, x), Z̃(r; t, x))dr + g(X̃(T ; t, x)).

(6.74)
We notice that X̃(s; t, x) = Xs . Writing the backward equation in (6.74) for s = t
and with respect to the original process W we get:

Ỹ (t; t, x) +
∫ T

t
Z̃(r; t, x) dWr

=
∫ T

t

[
F0(r, Xr , Z̃(r; t, x)) − Z̃(r; t, x)R(r, Xr , a(r))

]
dr + g(XT ).

(6.75)

We note that

E

⎡
⎣
(∫ T

t
|Z̃(r; t, x)|2 dr

)1/2⎤
⎦ = Ẽ

⎡
⎣(ρt (T ))−1

(∫ T

t
|Z̃(r; t, x)|2 dr

)1/2⎤
⎦

≤
(
Ẽ [(ρt (T ))−2]

)1/2 (
Ẽ

∫ T

t
|Z̃(r; t, x)|2 dr

)1/2
< ∞

by (6.71). Therefore, by the Burkholder–Davis–Gundy inequalities, the stochastic
integral

∫ T
t Z̃(r; t, x) dWr has finite P-expectation, equal to zero. Now we recall the

equalities (6.57) and (6.58) which imply in the present notation that Ỹ (t; t, x) =
v(t, x) and

Z̃(s; t, x) = ∇xv(s, X̃(s; t, x))σ(s, X̃(s; t, x)) = ∇xv(s, Xs)σ(s, Xs).

Taking expectation with respect to the original probability P in (6.75) we obtain:

E g(XT ) − v(t, x) = −E

∫ T

t
F0(r, Xr ,∇xv(r, Xr )σ(r, Xr )) dr

+E

∫ T

t
∇xv(r, Xr )σ(r, Xr )R(r, Xr , a(r)) dr.

Adding and subtracting E

∫ T

t
l(r, Xr , a(r)) dr we conclude that:

Jμ(t, x; a(·), X (·)) = v(t, x) + E

∫ T

t

[
− F0(r, Xr , ∇xv(r, Xr )σ(r, Xr ))

+∇xv(r, Xr )σ(r, Xr )R(r, Xr , a(r)) + l(r, Xr , a(r))

]
dr.

(6.76)
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The above equality is known as the fundamental identity. By the definition of F0 and
� it implies immediately that v(t, x) ≤ Jμ(t, x; a(·), X (·)) and that equality holds
if and only if (6.72) holds. This proves all the conclusions of the theorem. �

Theorem 6.36 AssumeHypothesis 6.33, assume in addition that� admits ameasur-
able selection γ, and let t ∈ [0, T ], x ∈ H. Then there exists at least one generalized
reference probability space μ = (�,F ,F

t
s,P,W ) and an admissible control pair

(a(·), X(·)) for which the analogue of (6.72) holds. In particular, it follows that
V μ
t (x) = v(t, x) and so V (t, x) = v(t, x). In the space μ the process X is a mild

solution to the closed loop equation:

⎧⎪⎨
⎪⎩
dX(s) = AX(s) ds + σ(s, X(s)) R

(
s, X(s), γ(s, X(s),∇xv(s, X(s))σ(s, X(s)))

)
ds

+ b(s, X(s)) ds + σ(s, X(s)) dW (s), s ∈ [t, T ],
X(t) = x ∈ H,

(6.77)
the feedback law takes the form

a(s) = γ(s, X(s),∇xv(s, X(s))σ(s, X(s))), P-a.s. for a.a. s ∈ [t, T ],

and the pair (a(·), X(·)) is optimal for the control problem in the extended weak
formulation.

Proof We start by showing the existence of a extended weak solution to Eq. (6.77),
again by an application of the Girsanov theorem. We take an arbitrary generalized
reference probability space (�,F ,F

t
s,P,W ) and denote by X the mild solution on

[t, T ] of the (uncontrolled) equation
{
dXs = AXsdt + b(s, Xs)ds + σ(s, Xs)dWs,

Xt = x .

Recalling the boundedness assumption on R, we see that the Girsanov Theorem
provides a probability P on � under which the process

Ws := −
∫ s

t
R(r, Xr , γ(r, Xr , ∇xv(r, Xr )σ(r, Xr ))) dr + Ws − Wt , s ∈ [t, T ],

is a Wiener process. Then X is the mild solution to Eq. (6.77) relative to the
generalized reference probability space μ := (�,F ,F

t
s,P,W ). Setting a(s) :=

γ(s, Xs,∇xv(s, Xs)σ(s, Xs)), the feedback inclusion (6.72) holds by definition of
γ and all the required conclusions follow from Theorem 6.35. �

Remark 6.37 Slight changes in the arguments of Theorem 6.35 allow us to prove an
existence result for the control problem in the extended strong formulation, under
additional assumptions. More precisely, assume Hypothesis 6.33 and, in addition,
that the following holds:
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(i) |∇x F0(t, x, z)h| ≤ L|h| for a suitable constant L and all t ∈ [0, T ], x, h ∈ H
and z ∈ �∗.

(ii) supt∈[0,T ],x∈H |σ(t, x)|L(�,H) < ∞.
(iii) � admits a measurable selection γ; in addition the functions R(t, ·, a) : H →

�,γ(t, ·, ·) : H × �∗ → � and∇xv(t, ·) : H → H are globallyLipschitz, uni-
formlywith respect to t ∈ [0, T ], a ∈ � (Lipschitzianity of γ is understoodwith
respect to the metric defined in �).

Notice that, by the last statement in Theorem 6.32, (i) implies that |∇xv| is uniformly
bounded.

Now, given t ∈ [0, T ] and x ∈ H , fix an arbitrary generalized reference prob-
ability space μ = (�,F ,F

t
s,P,W ). Then Eq. (6.77) admits a unique mild solu-

tion X , since it has globally Lipschitz coefficients. If we define the control process
a(s) = γ(s, X(s),∇xv(s, X(s))σ(s, X(s))) we see that the pair (a(·), X(·)) is opti-
mal for the control problem in the extended strong formulation corresponding to μ,
namely

Jμ(t, x; a(·), X(·)) = V μ
t (x).

Also note that under the additional assumptions the state equation admits a unique
mild solution for an arbitrary control process, so the optimal control problem could
also be formulated in a more standard way as in the previous chapters, i.e., as a
minimization problem over a class of control processes. �

6.6 Application: Controlled Stochastic Equation with Delay

In this section we show how the previous results can be applied to perform the
synthesis of an optimal control for a stochastic differential equation in R

n with unit
delay:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx(s) =
[∫ 0

−1
x(s + θ) α(dθ) + f (s, x(s)) + r(s, x(s), a(s))

]
ds

+ σ0(s, x(s))dW (s), s ∈ [t, T ],

x(t) = y, x(t + θ) = β(θ), for θ ∈ (−1, 0),
(6.78)

and a cost functional of the form

Jμ(t, y,β; a(·), x(·)) = E

∫ T

t
h(s, x(s), a(s)) ds + E k(x(T )).

Here μ = (�,F ,F t
s ,P,W ) denotes a generalized reference probability space as

defined at the beginning of Sect. 6.5 and (a(·), x(·)) is an admissible control pair,
i.e., the control process a(·) is {F t

s

}
s≥t progressive with values in � ⊂ R

N and x(·)
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is a corresponding solution to Eq. (6.78). We will address the optimal control prob-
lem in the extended weak formulation, which consists in minimizing the functional
Jμ(t, y,β; a(·), x(·)) over all triples (μ, a(·), X (·)), and characterizing the value
function

V (t, y,β) = inf
(μ,a(·),x(·))

Jμ(t, y,β; a(·), x(·)).

We assume the following (other assumptions are needed andwill be stated below):

• y ∈ R
n , β ∈ L2((−1, 0);Rn);

• � is a Borel subset of RN ;
• α is an L(Rn,Rn)-valued finite measure on [−1, 0];
• f : [0, T ] × R

n → R
n is measurable, f (s, ·) ∈ C1(Rn) and there exists a constant

C > 0 such that

| f (s, 0)| ≤ C, |∇x f (s, x)| ≤ C, s ∈ [0, T ], x ∈ R
n;

• σ0 : [0, T ] × R
n → L(Rn,Rn) is measurable and, for t ∈ [0, T ], x ∈ R

n , σ0(s, x)
is invertible, we have σ0(s, ·) ∈ C1(Rn) and

|σ0(s, 0)| ≤ C, |∇xσ0(s, x)| ≤ C, |σ−1
0 (s, x)| ≤ C;

• r : [0, T ] × R
n × � → R

n is measurable, r(s, ·, a) ∈ C1(Rn) and, for some con-
stant m ≥ 0 and every s ∈ [0, T ], a ∈ �, x ∈ R

n ,

|r(s, x, a)| ≤ C, |∇xr(s, x, a)| ≤ C(1 + |x |)m .

• h : [0, T ] × R
n × � → R is continuous, h(s, ·, a) ∈ C1(Rn) and, for every s ∈

[0, T ], a ∈ �, x ∈ R
n ,

|h(s, x, a)| + |∇xh(s, x, a)| ≤ C(1 + |x |)m .

• k : Rn → R belongs to C1(Rn) and satisfies

|∇xk(x)| ≤ C(1 + |x |)m, x ∈ R
n.

We set H = R
n × L2((−1, 0);Rn), � = R

n ,

D(A) =
{(

y
β

)
∈ H : β ∈ W 1,2((−1, 0);Rn) and β(0) = y

}
,

A

(
y
β

)
=
(∫ 0

−1 β(θ)a(dθ)
dβ
dθ

)
.
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Then A generates a strongly continuous semigroup in H . Moreover, if we set, for
t ∈ [0, T ], y ∈ R

n , β ∈ L2((−1, 0);Rn), a ∈ �,

x =
(
y
β

)
, b

(
t,

(
y
β

))
=
(

f (t, y)
0

)
, σ

(
t,

(
y
β

))
=
(

σ0(t, y)
0

)
,

R

(
t,

(
y
β

)
, a

)
= σ−1

0 (t, y)r(t, y, a),

l

(
t,

(
y
β

)
, a

)
= h(t, y, a), g

(
y
β

)
= k(y),

then Eq. (6.78) is reformulated as

⎧⎪⎨
⎪⎩
dX (s) =

(
AX (s) + b(s, X (s)) + σ(s, X (s))R(s, X (s), a(s))

)
ds

+ σ(s, X (s)) dW (s), s ∈ [t, T ],
X (t) = x .

Noting the product form of the state space H , we will write X (s) = (x(s),
x(s + ·)) when we need to distinguish the two components of the solution process.
The functional to be minimized can be rewritten as

E

∫ T

t
l(s, X (s), a(s)) ds + E g(X (T )).

Remark 6.38 We see that the special form of the infinite-dimensional controlled
equation (6.66) arises naturally from thefinite-dimensional equation (6.78) of general
form. �

Taking into account that� is finite-dimensional, it is easy to check that the assump-
tions of Hypothesis 6.8 are satisfied. In particular, we may take γ = 0 in Hypothesis
6.8-(iii).

Nextwedefine, for s ∈ [0, T ], y ∈ R
n ,β ∈ L2((−1, 0);Rn), z ∈ (Rn)∗ (this nota-

tion means that z is considered as a row vector),

F0

(
s,

(
y
β

)
, z

)
= F00 (s, y, z) := inf

a∈�

{
h(s, y, a) + zσ−1

0 (s, y)r(s, y, a)
}
,

(6.79)

�

(
s,

(
y
β

)
, z

)
= �0 (s, y, z)

:= {a ∈ � : F00(s, y, a) = h(s, y, a) + zσ−1
0 (s, y)r(s, y, a)}.

(6.80)

We notice that F0 and � only depend on the finite-dimensional coordinate in H .
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The (linear) function z→zσ−1
0 (s, y)r(s, y, a) has a Lipschitz constant that only

depends on the uniform bounds imposed on r and σ−1
0 . It follows that F00(s, ·, a) is

Lipschitz on Rn with a Lipschitz constant that does not depend on (s, a).
Moreover, taking into account the growth conditions on the gradients of h, σ, r ,

it is easy to prove an estimate of the form

|∇y

[
h(s, y, a) + zσ−1

0 (s, y)r(s, y, a)
]
)| ≤ C(1 + |z|)(1 + |y|)m,

which implies a local Lipschitz estimate on the function in square parentheses and
hence on F00:

|F00(s, y, z) − F00(s, y
′, z)| ≤ C(1 + |z|)(1 + |y| + |y′|)m |y − y′|, (6.81)

for s ∈ [0, T ], z ∈ (Rn)∗ and y, y′ ∈ R
n .

To proceed further we also need the following assumptions.

• F00 is Borel measurable and, for every s ∈ [0, T ], F00(s, ·, ·) is of class C1.
• We assume that �0(s, y, z) �= ∅ and that there exists a measurable selection

γ0 of �0, i.e., a measurable function γ0 : [0, T ] × R
n × (Rn)∗ → � such that

γ0(s, y, z) ∈ �0(s, y, z) for every s ∈ [0, T ], y ∈ R
n and z ∈ (Rn)∗. It follows

that γ(s, (y,β), z) := γ0(s, y, z), defined on [0, T ] × H × (Rn)∗, is a measurable
selection of �.

We note that the local Lipschitz estimate (6.81) implies

|∇y F00(s, y, z)| ≤ C(1 + |z|)(1 + |y|)m

for s ∈ [0, T ], z ∈ (Rn)∗ and y ∈ R
n . Now it is easy to see that the conditions required

in Hypothesis 6.22 (in the case K = R) are all satisfied by F0 and that Hypothesis
6.33 holds.

As a consequence of Theorem 6.36 we have the following result.

Theorem 6.39 Under the previous assumptions there exists at least one generalized
reference probability space μ = (�,F ,F

t
s,P,W ) and an admissible control pair

(a(·), x(·)) for which

V (t, y,β) = Jμ(t, y,β; a(·), x(·)), t ∈ [0, T ], y ∈ R
n,β ∈ L2((−1, 0);Rn).

In particular, the triple (μ, a(·), x(·)) is optimal.
The value function V (t, y,β) = V (t, x) coincides with the function v(t, x)which

is the unique mild solution to the Hamilton–Jacobi–Bellman equation (6.68) in the
sense specified by Theorem 6.32.

In the space μ the process X given by X(s) = (x(s), x(s + ·)) is a mild solution
to the closed loop equation (6.77) and the optimal pair (a(·), X(·)) satisfies the
feedback law equality
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a(s) = γ(s, X(s),∇xv(s, X(s))σ(s, X(s)))
= γ0(s, x(s),∇μV (s, x(s), x(s + ·))σ0(s, x(s))) P-a.s. for a.a. s ∈ [t, T ].

6.7 Elliptic HJB Equation with Arbitrarily Growing
Hamiltonian

In this section we address the solvability of the nonlinear stationary Kolmogorov
equation:

Au(x) − λ u(x) + F(x, u(x), Du(x)σ) = 0, x ∈ H. (6.82)

We recall that, formally, the generator A of (Pt ) is the operator

Aφ(x) = 1

2
Tr
(
σσ∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

Our purpose is to extend the probabilistic techniques and BSDE representation to
cover elliptic equations such as (6.82).We consider a general nonlinearity F that will
only be assumed to be locally Lipschitz (with arbitrary growth) and no limitations
are made on the size of λ. On the other hand, we assume that F is bounded with
respect to x and that the noise is additive (that is, σ is independent of x).

We add the following standard piece of notation. If K is a Hilbert space, by
L p
P,loc(�; L2([0,∞); K )) we denote the space of processes Y : � × [0,∞) → K

such that Y restricted to [0, T ] is in L p
P(�; L2([0, T ]; K )), T > 0.

An analogous definition is given for L p
P,loc(�,C([0,+∞), H)).

The standing assumptions will be (as far as the linear part of the HJB equation,
or, equivalently the forward equation, is concerned):

Hypothesis 6.40 (i) The operator A is the generator of a strongly continuous
semigroup et A, t ≥ 0, in the Hilbert space H .

(ii) σ does not depend on x (that is, σ ∈ L(�, H)). Moreover, |et Aσ|L2(�,H) ≤
Lt−γeat , for a suitable γ ∈ [0, 1/2)).

(iii) b(·) ∈ G1(H, H) and |∇b(x)|L(H) ≤ L .
(iv) The operators A + ∇b(x) are dissipative (that is, 〈Ay, y〉 + 〈∇b(x)y, y〉 ≤ 0

for all x ∈ H and y ∈ D(A)).
(v) λ > 0,

and as far as the nonlinear part is concerned:

Hypothesis 6.41 (i) F is locally Lipschitz in z and y, that is, for all R > 0 there
exists a KR such that |F(x, y, z) − F(x, y′, z′)| ≤ KR(|z − z′| + |y − y′|),
∀x ∈ H , ∀y, y′ ∈ H , ∀z, z′ ∈ �∗ with |z| ≤ R, |z′| ≤ R, |y| ≤ R, |y′| ≤ R.

(ii) The map x → F(x, y, z) is continuous for all z ∈ �∗, y ∈ R.
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(iii) supx∈H |F(x, 0, 0)| := M < +∞.
(iv) F(·, ·, ·) ∈ G1(H × R × �∗,R) and |∇x F(x, y, z)|H∗ ≤ c, for a suitable con-

stant c > 0 and all x ∈ H , y ∈ R, z ∈ �∗.
(v) F is dissipative with respect to y, that is, ∇y F(x, y, z) ≤ 0 for all x ∈ H ,

y ∈ R, z ∈ �∗

Wewill also need to add the following Lipschitzianity assumption, which we will
eventually remove

Hypothesis 6.42 F is Lipschitz in z and y with constant κ:

|F(x, y, z) − F(x, y′, z′)| ≤ κ(|z − z′| + |y − y′|),∀x ∈ H, ∀y, y′ ∈ H,∀z, z′ ∈ �∗.

6.8 The Associated Forward–Backward System

We start from a known result on bounded solutions of Lipschitz BSDEs on an infinite
horizon, i.e., the following type of BSDE:

Y (τ ) = Y (T ) +
∫ T

τ
( f (ζ, Y (ζ), Z(ζ)) − λY (ζ))dζ −

∫ T

τ
Z(ζ)dW (ζ), 0 ≤ τ ≤ T < ∞,

(6.83)
where f : � × [0,∞) × R × �∗ → R is such that the process ( f (t, z))t≥0 is pro-
gressively measurable for all z ∈ �∗. We suppose the following:

Hypothesis 6.43 (i) f is uniformly Lipschitz in z with Lipschitz constant K :

∀t ≥ 0,∀y ∈ R,∀z, z′ ∈ �∗, | f (t, y, z) − f (t, y, z′)| ≤ K |z − z′|, P-a.s.

(ii) f is uniformly Lipschitz in y with Lipschitz constant k:

∀t ≥ 0,∀y, y′ ∈ R,∀z ∈ �∗, | f (t, y, z) − f (t, y′, z)| ≤ k|y − y′|, P-a.s.

(iii) f is dissipative with respect to y that is

∀t ≥ 0, ∀y, y′ ∈ R, ∀z, z′ ∈ �∗, ( f (t, y, z) − f (t, y′, z))(y − y′) ≤ 0, P-a.s.

(iv) There exists a constant M such that ∀t ≥ 0, | f (t, 0, 0)| ≤ M, P-a.s.
We denote supt≥0 | f (t, 0, 0)| by M .

Wenow turn to the existence anduniqueness of solution to (6.83) underHypothesis
6.43.

Lemma 6.44 Let us suppose that Hypothesis 6.43 holds. Then we have:

(i) There exists a solution (Y, Z) to the BSDE (6.83) such that Y is a continu-
ous process bounded by M

λ
, and Z ∈ L2

P,loc(�; L2([0,∞);�)) with E
∫∞
0 e−2εs
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|Zs |2ds < ∞ for all ε > 0. Moreover, the solution is unique in the class of
processes (Y, Z) such that Y is continuous and uniformly bounded, and Z
belongs to L2

P,loc(�; L2([0,∞);�)).
(ii) Denoting by (Y n, Zn) the unique solution to the following finite horizon BSDE:

Yn(τ ) =
∫ n

τ
( f (ζ, Yn(ζ), Zn(ζ)) − λYn(ζ))dζ −

∫ n

τ
Zn(ζ)dW (ζ), t ∈ [0, T ],

(6.84)
we have |Y n(τ )| ≤ M

λ
and the following convergence rate holds:

|Y n(τ ) − Y (τ )| ≤ M

λ
exp (−λ(n − τ )) . (6.85)

Moreover, ∀ε > 0

E

∫ +∞

0
e−2εζ |Zn(ζ) − Z(ζ)|2dζ → 0. (6.86)

Proof The result is contained in [79] and, under more general assumptions, in [518].
For the reader’s convenience we report the proof here.

We start from a priori estimates. Fixing T , suppose that (Y, Z) with Y ∈
L2
P(�;C([0, T ], K )) and Z ∈ L2

P,(�; L2([0, T ];�)) satisfy

Y (τ ) = Y (T ) +
∫ T

τ
( f (ζ, Y (ζ), Z(ζ)) − λY (ζ))dζ −

∫ T

τ
Z(ζ)dW (ζ), 0 ≤ τ ≤ T .

(6.87)
Applying Itô’s rule to e−λ(s−t)Ys , s ≥ t , we get

−ds
(
e−λ(s−t)Ys

) = e−λ(s−t) f (s,Ys, 0)ds − e−λ(s−t)Zs(−θsds + dW (s)),

where
θs = [ f (s,Ys, Zs) − f (s,Ys, 0)] |Zs |−2Z∗

s

is a bounded process. Thus by Girsanov’s Theorem there exists a probability P̃ (mean
value Ẽ) under which W̃ (t) = − ∫ s

t θr dr + W (s) is an �-valued Wiener process.
With respect to (W̃ (t)) the above equation reads:

−ds
(
e−λ(s−t)Ys

) = e−λ(s−t) f (s,Ys, 0)ds − e−λ(s−t)ZsdW̃ (s).

So applying Itô’s rule to
(
ε + e−2λ(s−t)|Ys |s

)1/2 := Ys , s ≥ t , we obtain

dsYs = Yse
−2λ(s−t) [−〈Ys, f (s, 0, 0)〉 − 〈Ys, f (s,Ys, 0) − f (s, 0, 0)〉] ds

+ Yse
−2λ(s−t) 〈Ys, Zs〉 dW̃ (s)

+ 1

2
Yse

−2λ(s−t)
[|Zs |2 − Y−2

s e−2λ(s−t) 〈Ys, Zs〉2
]
. (6.88)
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Taking into account the dissipativity of f with respect to Y and the fact that, by
construction,Y−1

s e−λ(s−t)|Ys | ≤ 1weobtain, integrating in [t, T ] and then computing
the conditional expectation with respect to P̃:

√
|Yt |2 + ε ≤ Ẽ

(√
e−2λ(T−t)|YT |2 + ε

∣∣∣Ft

)
+ Ẽ

(∫ T

t
e−λ(s−t)| f (s, 0, 0)|ds

∣∣∣Ft

)

and by dominated convergence, recalling that | f (s, 0, 0)| ≤ M :

|Yt | ≤ e−λ(T−t)
Ẽ

(
|YT |

∣∣∣Ft

)
+ M/λ.

In particular, if (Y n, Zn) is a solution to (6.84) then |Y n
t | ≤ M/λ for all t ≤ n.

Moreover, if (Y, Z) is a solution in the whole [0,∞) with Z ∈ L2
P,loc(�; L2([0,

∞);�)) and Y bounded then, letting T → ∞, we get again: |Yt | ≤ M/λ.

If now (Y (i), Z (i)), i = 1, 2, with Y (i) ∈ L2
P(�;C([0, T ], K )) and Z (i) ∈ L2

P,(�;
L2([0, T ];�)) are both solutions to Eq. (6.87) then, by the above computations,
applied this time to (Y (2)

t − Y (1)
t , Z (2) − Z (1)) we get

|Y (2)
T − Y (1)

T | ≤ e−λ(T−t)
Ẽ

(
|Y (2)

T − Y (1)
T |

∣∣∣Ft

)
, ∀t ∈ [0, T ].

Consequently, if m > n and (Y n, Zn) and (Ym, Zm) satisfy Eq. (6.84) then

|Y n
t − Ym

t | ≤ e−λ(n−t)
Ẽ

(
|Ym

n |
∣∣∣Ft

)
≤ e−λ(n−t)M/λ ∀t ∈ [0, T ]. (6.89)

In the same way, if (Y, Z) is a solution of (6.83) on the whole [0,∞) with Z ∈
L2
P,loc(�; L2([0,∞);�)) and we know that (Ys) is bounded, we get

|Yt − Y n
t | ≤ e−λ(n−t)M/λ.

We notice that the above relation immediately yields that if (Y (i), Z (i)), i = 1, 2,
are both solutions to Eq. (6.83) on the whole [0,∞) and we a priori know that both
(Y (1)

t ) and (Y (2)
t ) are bounded, then Y (1)

t = Y (2)
t , P-a.s., for all t ∈ [0, T ).

Concerning the estimate of the Z term we again fix T . If (Y, Z) with Y ∈
L2
P(�;C([0, T ], K )) and Z ∈ L2

P,(�; L2([0, T ];�)) satisfy (6.87) then, applying
Itô’s rule to e−2ε|Ys |2, (with 0 < ε < λ) and integrating between 0 and T , we get:
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∫ T

0
e−2εs |Zs |2ds + |Y0|2 = 2e−2εT |YT |2

+ 2
∫ T

0
e−2εs

[〈 f (s,Ys, Zs),Ys〉 − (λ − ε)|Ys |2
]
ds

−
∫ T

0
e−2εs 〈Ys, ZsdW (s)〉 .

Since E

(∫ T
0 e−2εs 〈Ys, Zs〉2 ds

)1/2 ≤ E

[
(supt∈[0,T ] |Yt |)

(∫ T
0 |Zs |2ds

)1/2]
< ∞,

the stochastic integral in the above formula is a martingale. Thus, computing the
expectation, taking into account the Lipschitzianity of f with respect to Z and its
dissipativity with respect to Y , we get

E

∫ T

0
e−2εs |Zs |2ds ≤ ce−2εT

E|YT |2 + cE
∫ T

0
e−2εs |Ys |2ds + cE

∫ T

0
e−2εs | f (s, 0, 0)|2ds,

where c is a constant depending only on f and ε.
In particular, if (Y, Z) is a solution on thewhole [0,∞)with Z ∈ L2

P,loc(�; L2([0,
∞);�)) and Y is bounded, then:

E

∫ ∞

0
e−2εs |Zs |2ds < +∞.

Similarly, if (Y (i), Z (i)), i = 1, 2, with Y (i) ∈ L2
P(�;C([0, T ], K )) and Z (i) ∈ L2

P,

(�; L2([0, T ];�)) are solutions to Eq. (6.87), then:

∫ T

0
e−2εs |Z (2)

s − Z (1)
s |2ds ≤ ce−2εT

E|Y (2)
T − Y (1)

T |2 + cE
∫ T

0
e−2εs |Y (2)

s − Y (1)
s |2ds.

In particular, ifm > n and (Y n, Zn) and (Ym, Zm) satisfy Eq. (6.84) then, exploiting
the estimates on Y n and Ym , we get, for all T < n

E

∫ T

0
e−2εt |Zn

t − Zm
t | ≤ ce−λ(n−T ),

and if (Y, Z) is a solution on the whole [0,∞) with Y bounded, then

E

∫ T

0
e−2εt |Zn

t − Zt | ≤ ce−λ(n−T ). (6.90)

Thus we have proved that, if a solution of Eq. (6.83) with (Y ) bounded on the whole
[0,+∞) exists, then it is unique and it satisfies estimates (6.85) and (6.86).

We now need to prove the existence of a bounded solution. By (6.89), fixing an
arbitrary T > 0, the sequence of continuous functions [0, T ] � t → Y n

t is, P almost
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surely, a Cauchy sequence in C([0, T ]). Thus there exists an adapted process with
continuous trajectories such that, for any T > 0:

sup
t∈[0,T ]

|Y n
t − Yt | → 0, P-a.s.

Notice that |Yt | ≤ M/λ.

Moreover, by (6.90), for any T > 0, the sequence (Zn) is Cauchy in L2
P(�; L2

([0, T ];�)), so there exists a Z ∈ L2
P,loc(�; L2([0,∞);�)) such that

E

∫ T

0
|Zt − Zn

t |2dt → 0.

To prove that (Y, Z) is the desired solution to Eq. (6.83) it is enough to observe that,
for any fixed 0 < t < T < n, we have

Y n(τ ) = Y n(T ) +
∫ T

τ

( f (ζ,Y n(ζ), Zn(ζ)) − λY n(ζ))dζ −
∫ T

τ

Zn(ζ)dWζ .

The claim then follows just by letting n → ∞ in the above formula. �

Now we come to the actual (Markovian) forward backward system. As far as the
forward equation is concerned we consider the following special case of (6.6):

X (s; x) = esAx +
∫ s

0
e(s−ζ)Ab(X (ζ; x))dζ +

∫ s

0
e(s−ζ)AσdW (ζ), s ≥ 0. (6.91)

We know that for every p ∈ [2,∞) and T > 0 there exists a unique process
X (·; x) ∈ L p

P(�;C([0, T ], H))which is a solution to (6.91). Moreover, for all fixed
T > 0, the map x → X (·; x) is continuous from H to L p

P(�;C([0, T ], H)).

E sup
τ∈[0,T ]

|X (τ ; x)|p ≤ C(1 + |x |)p, (6.92)

for some constant C depending only on T and pm.
We then consider the infinite horizon BSDE under the extra assumption (which

will be removed later) that F is Lipschitz with respect to z. Namely, we deal with
the equation (for 0 ≤ τ ≤ T < ∞)

Y (τ ; x) = Y (T ; x) +
∫ T

τ

(F(X (ζ; x),Y (ζ; x), Z(ζ; x)) − λY (ζ; x))dζ

−
∫ T

τ

Z(ζ; x)dW (ζ). (6.93)

Here X (·; x) is the unique mild solution to (6.91) starting with X (0; x) = x .
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Applying Lemma 6.44, we obtain:

Proposition 6.45 Let us suppose that Hypotheses 6.40–6.42 hold. Then we have:

(i) For any x ∈ H, there exists a solution (Y (·; x), Z(·; x)) to the BSDE (6.93) such
that Y (·; x) is a continuous process bounded by M/λ, and Z ∈ L2

P,loc(�; L2

([0,∞);�)) with E
∫∞
0 e−2λs |Z(s; x)|2ds < ∞. The solution is unique in the

class of processes (Y, Z) such that Y is continuous and bounded, and Z belongs
to L2

P,loc(�; L2([0,∞);�)).
(ii) Denoting by (Y n(·; x), Zn(·; x)) the unique solution of the following BSDE

(with finite horizon):

Y n(τ ; x) =
∫ n

τ

(F(X (ζ; x),Y n(ζ; x), Zn(ζ; x)) − λY n(ζ; x))dζ

−
∫ n

τ

Zn(ζ; x)dW (ζ), (6.94)

we have |Y n(ζ; x)| ≤ M
λ
and the following convergence rate holds:

|Y n(τ ; x) − Y (τ ; x)| ≤ M

λ
exp (−λ(n − τ )) . (6.95)

Moreover,

E

∫ +∞

0
e−2λζ |Zn(ζ; x) − Z(ζ; x)|2dζ → 0. (6.96)

(iii) For all T > 0 and p ≥ 1, the map x → (Y (·; x)∣∣[0,T ], Z(·; x)∣∣[0,T ]) is continu-
ous from H to the space L p

P(�;C([0, T ],R)) × L p
P(�; L2([0, T ];�)).

Proof Statements (i) and (ii) are immediate consequences of Lemma 6.44. Let us
prove (iii). If x ′

m → x as m → +∞ then

|Y (T ; x ′
m) − Y (T ; x)| ≤ |Y (T ; x ′

m) − Y n(T ; x ′
m)| + |Y n(T ; x ′

m) − Y n(T ; x)|
+|Y n(T ; x) − Y (T ; x)|

≤ 2
M

λ
exp (−λ(n − T )) + |Y n(T ; x ′

m) − Y n(T ; x)|.

Moreover, for fixed n, Y n(·; x ′
m) → Y n(·; x) in L p(�,FT ,P;R) (see Proposi-

tion 6.27) and notice that we are now dealing with a finite horizon BSDE. Thus
Y (T ; x ′

m) → Y (T ; x) in L p(�,FT ,P;R).
Now we can see that (Y (·; x)∣∣[0,T ], Z(·; x)∣∣[0,T ]) is the unique solution of the

following BSDE (with finite horizon):
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Y (τ ; x) = Y (T ; x) +
∫ T

τ

(F(X (ζ; x),Y (ζ; x), Z(ζ; x)) − λY (ζ; x))dζ

−
∫ T

τ

Z(ζ; x)dW (ζ),

and the same holds for (Y (·; x ′
m)
∣∣[0,T ], Z(·; x ′

m)
∣∣[0,T ]). So it is enough to apply again

the continuity result in Proposition 6.27 to conclude that (Y (·; x ′
m)
∣∣[0,T ], Z(·; x ′

m)∣∣[0,T ]) converges to (Y (·; x)∣∣[0,T ], Z(·; x)∣∣[0,T ]) in L p
P(�;C([0, T ],R)) × L p

P(�;
L2([0, T ];�)). �

Remark 6.46 We stress the fact that the uniform bound of Y does not depend on the
Lipschitz constant κ of F with respect to y and z (provided that F is dissipative with
respect to y). �

6.8.1 Differentiability of the BSDE and a Priori Estimate on
the Gradient

We need to study the regularity of Y (·, x). More precisely, we would like to show
that Y (0, x) belongs to G1(H,R). Moreover, we will obtain a crucial a priori bound
on the derivative ∇Y (0; x) independent of the Lipschitz constant of F with respect
to z.

Lemma 6.47 UnderHypothesis 6.40 themap x → X (·, x) isGâteaux differentiable
(that is, it belongs to G(H, L p

P(�,C([0, T ], H))). Moreover, denoting by ∇X (·, x)
the partial Gâteaux derivative, for every direction h ∈ H, the directional derivative
process ∇X (·, x)h, τ ∈ R, solves, P-a.s., the equation

∇X (τ ; x)h = eτ Ah +
∫ τ

0
eζA∇b(X (ζ; x))∇X (ζ; x)h dζ, τ ∈ R

+. (6.97)

Finally, P-a.s., |∇X (τ ; x)h| ≤ |h|, for all τ > 0.

Proof The first assertion and relation (6.97) is a special case of Proposition 6.10. To
prove the last assertion we proceed by a classical approximation argument (notice
that the equation for ∇X has no stochastic integral term). Let Jn := n(nI − A)−1 be
the Yosida approximation for n large enough. As is well known (see also Appendix
B.4.2) Jn ∈ L(H, D(A)), Jnx → x for all x ∈ H . Let Ln

t = Jn∇X (t; x)h, then, for
all T > 0, Ln ∈ L p

P(�;C([0, T ], D(A))) and satisfies

(Ln
t )

′ = ALn
t + Jn∇b(X (t; x))∇X (t; x)h.
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Computing d
dt |Ln

t |2, by Hypothesis 6.40 (iv) we get:

d

dt
|Ln

t |2 ≤ 2〈Ln
t ,
(
Jn∇b(Xx

t )∇X (t; x)h − ∇b(X (t; x))Jn∇x X (t; x)h)〉
and

|Ln
t |2 ≤ |Jnh|2+

+2
∫ t

0
〈Ln

s , (Jn∇b(X (s; x))∇X (s; x)h − ∇b(X (s; x))Jn∇x X (s; x)h)〉ds

and the claim follows by passing to the limit as n → ∞. �

The following is the main technical result of this section.

Theorem 6.48 UnderHypotheses6.40–6.42 themap x → Y (0; x)belongs toG1(H,R).
Moreover, |Y (0; x)| + |∇Y (0; x)| ≤ c, for a suitable constant c. We notice that the
constant c does not depend on the Lipschitz constant κ of F with respect to y and z

Proof The uniform bound on |Y (0; x)| is an immediate consequence of Proposition
6.45.

Coming now to differentiability, fix n ≥ 1, and let us consider the solution
(Y n(·; x), Zn(·; x)) of (6.94). Then, see Proposition 6.27, the map x → (Y n(·; x),
Zn(·; x)) is Gâteaux differentiable from H to L p

P(�; C([0, T ],R)) × L p
P(�;

L2([0, T ];�∗)), ∀p ∈ [2,∞). Denoting by ∇Y n(·; x)h,∇Zn(·; x)h the partial
Gâteaux derivatives with respect to x in the direction h ∈ H , the processes

{∇Y n(τ ; x)h}τ∈[0,n], {∇Zn(τ ; x)h}τ∈[0,n]

solve the following equation, P-a.s.,

∇Y n(τ ; x)h =
∫ n

τ

∇x F(X (ζ; x),Y n(ζ; x), Zn(ζ; x))∇X (ζ; x)h dζ

+
∫ n

τ

(−λ + ∇y F(X (ζ; x),Y n(ζ; x), Zn(ζ; x)))∇Y n(ζ; x)h dζ

+
∫ n

τ

∇z F(X (ζ; x),Y n(ζ; x), Zn(ζ; x)∇Zn(ζ; x)h dζ (6.98)

−
∫ n

τ

∇Zn(ζ; x)h dW (ζ).

We see that in the above formula, we are considering that Zn(·; x), ∇Z(·; x) have
values in �∗ and ∇z F has values in �∗∗. So if we identify �∗∗ and � we can assume
that ∇z F has values in � and Eq. (6.98) can be rewritten as:
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∇Yn(τ ; x)h =
∫ n

τ
∇x F(X (ζ; x),Yn(ζ; x), Zn(ζ; x))∇X (ζ; x)h dζ

+
∫ n

τ
(−λ + ∇y F(X (ζ; x), Yn(ζ; x), Zn(ζ; x)))∇Yn(ζ; x)h dζ

+
∫ n

τ
(∇Zn(ζ; x)h)

(∇z F(X (ζ; x), Yn(ζ; x), Zn(ζ; x)) dζ − dW (ζ)
)
.

By Hypotheses 6.41 and Lemma 6.47, we have that for all x, h ∈ H the following
holds P-a.s. for all n ∈ N and all ζ ∈ [0, n]:

∣∣∣∇x F(X (ζ; x),Yn(ζ; x), Zn(ζ; x))∇x X (ζ; x)h
∣∣∣ ≤ c|h|,

∇y F(X (ζ; x), Yn(ζ; x), Zn(ζ; x)) ≤ 0,
∣∣∣∇z F(X (ζ; x), Yn(ζ; x), Zn(ζ; x))

∣∣∣
�

≤ ĉ.

Therefore, by Lemma 6.44, we obtain:

sup
τ∈[0,n]

|∇Y n(τ ; x)| ≤ C |h|, P-a.s., (6.99)

where C does not depend on ĉ. Applying Itô’s formula to e−2λt |∇Y n(·; x)t h|2, we
get:

E

∫ ∞

0
e−2λt (|∇Y n(t; x)h|2 + |∇x Z

n(t; x)h|2)dt ≤ C |h|2. (6.100)

Let nowM2,−2λ be the Hilbert space of all pairs of {Ft }t≥0-adapted and measurable
processes (y, z), where y has values in R and z in �∗, such that

|(y, z)|2M2,−2λ := E

∫ ∞

0
e−2λt (|yt |2 + |zt |2)dt < +∞.

Fix x, h ∈ H , then there exists a subsequence of
(
∇Y n(·; x)h,∇Zn(·; x)h,∇Y n

(0; x)h
)
n∈N

which we still denote by itself, such that (∇xY n(·; x)h,∇Zn(·; x)h)

convergesweakly to (U 1(·; x, h), V 1(·; x, h)) inM2,−2λ and∇xY n(0; x)h converges
to ξ(x, h) ∈ R.

We define now

U 2(τ ; x, h) = ξ(x, h) −
∫ τ

0
∇x F(X (ζ; x),Y (ζ; x), Z(ζ; x))∇X (ζ; x) hdζ

−
∫ τ

0
(−λ + ∇y F(X (ζ; x),Y (ζ; x), Z(ζ; x))U 1(ζ; x, h)dζ

−
∫ τ

0
∇z F(X (ζ; x),Y (ζ; x), Z(ζ; x))V 1(ζ; x, h)dζ (6.101)

+
∫ τ

0
V 1(ζ; x, h)dW (ζ),
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where (Y (·; x), Z(·; x)) is the unique bounded solution to the backward equation
(6.93), see Proposition 6.45. Moreover, we rewrite (6.98) as follows:

∇Y n(τ ; x)h = ∇Y n(0; x)h −
∫ τ

0
∇x F(X (ζ; x),Y n(ζ; x), Zn(ζ; x))∇X (ζ; x)hdζ

+
∫ τ

0
(λ − ∇y F(X (ζ; x),Y n(ζ; x), Zn(ζ; x)))∇Y n(ζ; x)hdζ

−
∫ τ

0
∇z F(X (ζ; x),Y n(ζ; x), Zn(ζ; x))∇Zn(ζ; x)hdζ (6.102)

+
∫ τ

0
∇Zn(ζ; x)hdW (ζ).

Since, in particular, (Y n(·; x), Zn(·; x)) → (Y (·; x), Z(·; x)) in measure P × dt ;
∇x F , ∇y F , ∇z F are bounded and finally (∇Y n(·; x)h,∇Zn(·; x)h) ⇀ (Y (·; x),
Z(·; x))weakly inM2,−2λ, it is easy to show that∇Y n(·; x)h converges toU 2(·; x, h)

weakly in L2
P(� × [0, T ];R) for all T > 0. Thus U 2(t; x, h) = U 1(t; x, h), P-a.s.

for a.e. t ∈ R
+ and |U 2(t; x, h)| ≤ c|h|, P-a.s. for all t ∈ R

+ (this last assertion
follows from continuity of the trajectories of U 2(·; x, h) and from the fact that
|U 1(t; x, h)| ≤ c|h| P-a.s. for almost every t ∈ R

+). Therefore, coming back to
Eq. (6.101), we have that (U 2(·; x, h), V 1(·; x, h)) is the unique bounded solution in
R

+ of the equation

U (τ , x, h)=U (0, x, h) −
∫ τ

0
∇x F(X (ζ; x),Y (ζ; x), Z(ζ; x))∇X (ζ; x)hdζ

−
∫ τ

0
(−λ + ∇y F(X (ζ; x),Y (ζ; x), Z(ζ; x)))U (τ , x, h)dζ

−
∫ τ

0
∇z F(X (ζ; x),Y (ζ; x), Z(ζ; x))V (ζ, x, h)dζ (6.103)

+
∫ τ

0
V (ζ, x, h)dW (ζ).

Notice that in particular U (0, x, h) = ξ(x, h) is the limit of ∇Y n(·; x)0h (along
the chosen subsequence). The uniqueness of the solution to (6.103) (see Lemma
6.44) implies that in reality U (0, x, h) = limn→∞ ∇Y n(·; x)0h along the original
sequence.

Now let x ′
m → x . By (6.85), proceeding as in the proof of point (i i i) in Proposition

6.45,

|U (0, x, h) −U (0, x ′
m, h)| ≤ 2c

λ
e−λn|h| + |Un(0, x, h) −Un(0, x

′
m, h)|, (6.104)

where (Un(·, x, h), Vn(·, x, h)) ∈ L p
P(�;C([0, T ],R)) × L p

P(�; L2
P([0, T ];�)) is

the unique solution of the finite horizon BSDE:
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Un(τ , x, h)=
∫ n

τ

∇x F(X (ζ; x),Y (ζ; x), Z(ζ; x))∇X (ζ; x)hdζ

+
∫ n

τ

(−λ + ∇y F(X (ζ; x),Y (ζ; x), Z(ζ; x)))Un(τ , x, h)dζ

+
∫ n

τ

∇z F(X (ζ; x),Y (ζ; x), Z(ζ; x))Vn(ζ, x, h)dζ (6.105)

−
∫ n

τ

Vn(ζ, x, h)dW (ζ),

and similarly for (Un(·, x ′
m, h), Vn(·, x ′

m, h)). We now see that ∇x F , ∇y F , ∇z F are,
by assumptions, continuous and bounded. Moreover, the following statements on
continuous dependence on x hold:

the maps x → Xx , x → ∇Xxh are continuous from H to L p
P(�;C([0, T ], H))

(see Proposition 6.10);
the map x → Y x

∣∣[0,T ] is continuous from H to L p
P(�;C([0, T ],R)) (see Propo-

sition 6.45);
the map x → Zx

∣∣[0,T ] is continuous from H to L p
P(�; L2([0, T ];�)) (see Propo-

sition 6.45).
We can therefore apply to (6.105) the continuous dependence on data result

for finite horizon BSDEs (see Proposition 6.20) to obtain in particular that Un(0,
x ′
m, h) → Un(0, x, h) for all fixed n as m → ∞. And by (6.104) we can conclude
that U (0, x ′

m, h) → U (0, x, h) as m → ∞.
Summarizing, U (0, x, h) = limn→∞ ∇Y n(·; x)0h exists, moreover it is clearly

linear in h and satisfies |U (0, x, h)| ≤ C |h|. Finally, it is continuous in x for every
fixed h.

Lastly, for t > 0,

lim
t↘0

1

t
[Y (0; x + th) − Y (0; x)] = lim

t↘0

1

t
lim

n→+∞[Y n(0; x + th) − Y n(0; x)]

= lim
t↘0

lim
n→+∞

∫ 1

0
∇Y n(0; x + th)hdθ

= lim
t↘0

∫ 1

0
U (0, x + θth)hdθ = U (0, x)h

and the claim is proved. �

6.9 Mild Solution of the Elliptic PDE

Assuming that Hypothesis 6.40 holds, we define in the usual way the transition
semigroup (Pt )t≥0 associated to the process X :

Pt [φ](x) = E φ(X (t; 0, x), x ∈ H, (6.106)
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for every bounded measurable function g : H → R. Formally, the generator A of
(Pt ) is the operator

Aφ(x) = 1

2
Tr
(
σσ∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

In this section we address the solvability of the nonlinear stationary Kolmogorov
equation:

Au(x) − λ u(x) + F(x, u(x),∇u(x)σ) = 0, x ∈ H. (6.107)

Definition 6.49 Wesay that a function u : H → R is amild solution of the nonlinear
stationary Kolmogorov equation (6.107) if the following conditions hold:

(i) u ∈ G1(H,R) and ∃C > 0 such that |u(x)| ≤ C , |∇u(x)h| ≤ C |h|, for all
x, h ∈ H ;

(ii) the following equality holds, for every x ∈ H and T ≥ 0:

u(x) = e−λT PT [u](x) +
∫ T

0
e−λτ Pτ

[
F
(
·, u(·),∇u(·)σ

)]
(x) dτ . (6.108)

Remark 6.50 In order to motivate this definition one may consider the equation
Au − λu = −F , where u, F are elements of a Banach space and A is a generator
of a strongly continuous semigroup of bounded linear operators (Pt )t≥0: if λ is
sufficiently large, then

u =
∫ ∞

0
e−λτ Pτ F dτ ,

and, for arbitrary T ≥ 0, by a change of variable,

e−λT PT u =
∫ ∞

T
e−λτ Pτ F dτ = u −

∫ T

0
e−λτ Pτ F dτ .

�

Theorem 6.51 Assume that Hypothesis 6.40 and 6.41 hold, then Eq. (6.107) has a
unique mild solution given by the formula

u(x) = Y (0; x). (6.109)

Moreover, the following holds:

Y (τ ; x) = u(X (τ ; x)), Z(τ ; x) = ∇u(X (τ ; x))σ. (6.110)

Proof We initially assume that in addition F is Lipschitz with respect to z, uniformly
in x and y.
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We introduce the following equation, slightly more general than (6.91) since we
consider a general initial time t ≥ 0:

X (τ ) = e(τ−t)Ax +
∫ τ

t
e(τ−ζ)Ab(X (ζ)) dζ,+

∫ τ

t
e(τ−ζ)Aσ dW (ζ), (6.111)

for τ varying on an arbitrary time interval [t,∞) ⊂ [0,∞). We set X (τ ) = x for
τ ∈ [0, t) and we denote by {X (τ ; t, x)}τ≥0 the solution, to indicate dependence on
x and t . By an obvious extension of the results in the previous sections, we can solve
the backward equation (6.93) with X given by (6.111); we denote the corresponding
solution (Y, Z) by {(Y (τ ; t, x), Z(τ ; t, x))}τ≥0.

Thus, {(X (τ ; 0, x),Y (τ ; 0, x), Z(τ ; 0, x))}τ≥0 coincides with the process
{X (τ ; x),Y (τ ; x), Z(τ ; x), τ ≥ 0} occurring in relations (6.91) and (6.93). Note
that, for bounded measurable φ : H → R, we have

Pτ−t [φ](x) = E φ(X (τ ; t, x)), x ∈ H, 0 ≤ t ≤ τ ,

since the coefficients of Eq. (6.111) do not depend on time.
We first prove that u, given by (6.109), is a solution. The solutions of (6.111)

satisfy the well-known property: for 0 ≤ t ≤ s, P-a.s.,

X (τ ; s, X (s; t, x)) = X (τ ; t, x), for τ ∈ [s,∞).

Since the solution of the backward equation is uniquely determined on an interval
[s,∞) by the values of the process X on the same interval, for 0 ≤ t ≤ s we have,
P-a.s.,

Y (τ ; s, X (s; t, x)) = Y (τ ; t, x), for τ ∈ [s,∞),

Z(τ ; s, X (s; t, x)) = Z(τ ; t, x) for a.a. τ ∈ [s,∞).
(6.112)

In particular, for every τ ≥ 0,

Y (τ ; τ , X (τ ; 0, x)) = Y (τ ; 0, x), P-a.s. (6.113)

Since the coefficients of Eq. (6.111) do not depend on time, we have

X (·; 0, x) (d)= X (· + t; t, x), t ≥ 0,

where
(d)= denotes equality in distribution (both sides of the equality are viewed as

random elements with values in the space C(R+, H)). As a consequence we obtain

(Y (·; 0, x), Z(·; 0, x)) (d)= (Y (· + t; t, x), Z(· + t; t, x)), t ≥ 0,
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where both sides of the equality are viewed as random elements with values in the

space C(R+,R) × L2
loc(R

+;�∗). In particular, Y (0; 0, x) (d)= Y (t; t, x), and since
they are both deterministic we have

u(x) = Y (0; 0, x) = Y (t; t, x), x ∈ H, t ≥ 0.

Denoting for simplicity

(X (τ ),Y (τ ), Z(τ )) = (X (τ , 0, x),Y (τ , 0, x), Z(τ , 0, x)), τ ≥ 0,

it follows from (6.113) and path continuity that, P-a.s.,

u(X (τ )) = Y (τ ), τ ≥ 0.

It follows that, for all 0 < t < T ,

Y (t) = u(X (T )) −
∫ T

t
Z(ζ) dW (ζ) + λ

∫ T

t
Y (ζ) dζ +

∫ T

t
F(X (ζ),Y (ζ), Z(ζ)) dζ.

(6.114)
Thus by Corollary 6.29, considering the above equation as a BSDE on the finite
horizon [0, T ] with final condition, it follows that, P-a.s. for a.a. τ ≥ 0,

Z(τ ) = ∇u(X (τ ))σ.

We see that by Theorem 6.48 ∇u and consequently Z is bounded by a constant that
does not depend on the Lipschitz constant of F with respect to z.

Applying the Itô formula to the equation solved by (Y, Z) we get

e−λτY (τ ) − e−λT Y (T ) +
∫ T

τ

e−λζ Z(ζ) dW (ζ)

=
∫ T

τ

e−λζF(X (ζ),Y (ζ), Z(ζ)) dζ, 0 ≤ τ ≤ T < ∞,

and it follows that

∫ T

0
e−λτ Pτ

[
F
(
·, u(·),∇u(·)

)]
(x) dτ

= E

∫ T

0
e−λτ F(X (τ ), u(X (τ )),∇u(X (τ ))σ) dτ

= E

∫ T

0
e−λτ F(X (τ ),Y (τ ), Z(τ )) dτ

= E

[
Y (0) − e−λT Y (T ) +

∫ T

0
e−λτ Z(τ ) dW (τ )

]
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= u(x) − e−λT
E [u(XT )] = u(x) − e−λT PT [u](x).

This completes the proof of the existence part.
Now we prove the uniqueness of the solution. Assume that u is a solution. For

any y ∈ H , 0 ≤ τ ≤ T we have

u(y) = e−λ(T−τ ) PT−τ [u](y) +
∫ T−τ

0
e−λt Pt

[
F
(
·, u(·),∇u(·)σ

)]
(y) dt.

Set y = X (τ , 0, x), whichwe denote by X (τ ) for simplicity. By theMarkov property
of X , denoting by EFτ the conditional expectation with respect toFτ , we obtain

u(X (τ )) = e−λ(T−τ )
E
Fτ u(XT )

+
∫ T−τ

0
e−λt

E
Fτ F

(
X (t + τ ), u(X (t + τ )),∇u(X (t + τ ))σ

)
dt

and, by a change of variable,

e−λτ u(X (τ )) = e−λT
E
Fτ u(XT ) +

∫ T

τ
e−λζ

E
Fτ F

(
X (ζ), u(X (ζ)),∇u(X (ζ))σ

)
dζ.

Now let T > 0 be fixed and let us define

Fζ = F(X (ζ), u(X (ζ)),∇u(X (ζ))σ), ζ ∈ [0, T ],

ξ = e−λT u(XT ) +
∫ T

0
e−λζFζ dζ.

Then we obtain

e−λτu(X (τ )) = E
Fτ ξ + E

Fτ

∫ τ

0
e−λζFζ dζ = E

Fτ ξ +
∫ τ

0
e−λζFζ dζ,

where the last equality holds since
∫ τ

0 e−λζFζ dζ is Fτ -adapted. Notice that ξ is
square-integrable. Since Ft is generated by the Wiener process W , it follows that
there exists a square-integrable,Ft -predictable process Z̃(τ ), τ ∈ [0, T ], with values
in �∗, such that, P-a.s.,

E
Fτ ξ = E ξ +

∫ τ

0
Z̃(ζ) dW (ζ), τ ∈ [0, T ].

An application of the Itô formula gives
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u(X (τ )) = E ξ +
∫ τ

0
eλζ Z̃(ζ) dW (ζ) + λ

∫ τ

0
u(X (ζ)) dζ +

∫ τ

0
F(ζ) dζ.

(6.115)
This shows that u(X (τ )), τ ∈ [0, T ], is a semimartingale. For ξ ∈ �, we denote again
byW ξ the real Wiener processW ξ(τ ) := 〈ξ,W (τ )〉, τ ≥ 0. Let us consider the joint
quadratic variation process of W ξ with both sides of (6.115). Applying Proposition
6.17 (recall that u is by definition differentiable) we obtain, P-a.s.,

∫ τ

0
∇u(X (ζ))σξ dζ =

∫ τ

0
eλζ Z̃(ζ)ξ dζ, τ ∈ [0, T ], ξ ∈ �,

and we deduce that ∇u(X (τ )) ζ = eλτ Z̃(τ ), P-a.s. for almost all τ ∈ [0, T ]. Now
setting

Y ′(τ ) = u(X (τ )), Z ′(τ ) = eλτ∇u(X (τ ))σ, τ ≥ 0,

it follows from (6.115) that, P-a.s.,

Y (0) = Y ′(τ ) +
∫ τ

0
Z ′(ζ) dW (ζ) + λ

∫ τ

0
Y ′(ζ) dζ +

∫ τ

0
F(X (ζ),Y ′(ζ), Z ′(ζ)) dζ,

for τ ∈ [0, T ]. Since T is arbitrary, we conclude that the process (Y ′, Z ′) is a solution
of the backward equation, so that, by uniqueness, it must coincide with (Y, Z). In
particular,

u(x) = u(X0) = Y ′(0) = Y (0).

This concludes the proof of the theorem. �

6.10 Application to Optimal Control in an Infinite Horizon

We wish to apply the above results to perform the synthesis of the optimal control
for a general nonlinear control system on an infinite time horizon. To be able to
use non-smooth feedbacks we settle the problem in the framework of weak control
problems.

As above, by H , � we denote separable real Hilbert spaces.
Moreover, a generalized reference probability space is given by μ = (�,F ,

Fs,P,W ), where

• (�,F ,P) is a complete probability space;
• {Fs}s≥0 is a filtration in it, satisfying the usual conditions;
• (W (s))s≥0 is a cylindrical P-Wiener process in �, with respect to the filtrationFs

(notice that, since our problem is homogeneous in time, we always choose the initial
time t = 0).
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Given such μ, we call an admissible control pair the pair (a(·), X (·)) of pro-
gressively measurable processes with respect to {Fs}s≥0 such that: a is defined on
� × [0,∞) and takes its values in a fixed closed subset (not necessarily bounded)
� of a Banach space E. Moreover, a is uniformly bounded, that is belongs to
L∞(� × [0,∞),P ⊗ dt; E). Finally, X is the mild solution (on the whole [0,∞))
of the following state equation:

{
dX (τ ) = (AX (τ ) + b(X (τ ) + σR(a(τ ))) dτ + σ dW (τ ), τ ≥ 0,
Xa(0) = x ∈ H.

(6.116)
Notice that in the present case the assumptions on R will guarantee the existence and
uniqueness of the mild solution X given and control a satisfying the above, so we
work in the framework of the weak and strong formulations in the sense of Sect. 2.1.

To each admissible control pair we associate the cost:

Jμ(x; a(·), X (·)) = E

∫ +∞

0
e−λζ [l(X (ζ)) + |a(ζ)|2E ] dζ, (6.117)

where l : H × � → R. As in the finite horizon case we minimize the functional
Jμ(x; a(·)) over all admissible controls a(·) and characterize the value function

V μ(x) = inf
a

Jμ(x; a(·), X (·)).

We will also address the optimal control problem in the weak formulation, which
consists in further minimizing with respect to all generalized reference probability
spaces, i.e., in characterizing the value function

V (x) = inf
μ

V μ(x).

Notice the occurrence of the operator σ in the control term: this special structure of
the state equation is imposed by our techniques. Also notice that in contrast to what
happens in the previous sections of this Chapter we now restrict ourselves to R that
does not depend on x . This also ensures that for all a(·) ∈ Uμ

and x ∈ H Eq. (6.116)
admits a unique mild solution

We define in a classical way the Hamiltonian function relative to the above prob-
lem: for all x ∈ H , z ∈ �∗,

F0(x, z) = l(x) + inf{|a|2E + zR(a) : a ∈ �}
�(z) = {a ∈ � : |a|2E + zR(a) = inf

a∈�
{|a|2E + zR(a)}}. (6.118)

We will work in the following general setting:

Hypothesis 6.52 The following holds:

(1) A, b, σ and satisfy Hypothesis 6.40.
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(2) R : � → � is Lipschitz.
(3) l : H → R is uniformly Lipschitz, bounded and of class G1(H,R).
(4) F0 is of class G1(�∗,R).

Remark 6.53 Since R is Lipschitz inf{|a|2E + zR(a) : a ∈ �} is always a real num-
ber. Moreover, there exists a constant cR such that

inf{|a|2E + zR(a) : a ∈ �} = inf{|a|2E + zR(a) : a ∈ � ∩ BE (0, c|z|)}.
This immediately implies that �(z) ⊂ B(0, cR|z|) and that

∣∣∣ inf{|a|2E + zR(a) : a ∈ �} − inf{|a|2E + z′R(a) : a ∈ �}∣∣ ≤ c1,R(|z| + |z′|)|z − z′|.

So Hypothesis 6.41 holds true. �

Wesee that for allλ > 0 the cost functional iswell defined and Jμ(x; a(·), X (·)) <

∞ for all x ∈ H , all admissible control systems μ and all admissible control pairs
(a, X).

ByTheorem6.51, for allλ > 0 the stationaryHamilton–Jacobi–Bellman equation
relative to the above stated problem, namely:

Av(x) = λv(x) − F0(x,∇v(x)σ), x ∈ H, (6.119)

admits a unique mild solution, in the sense of Definition 6.49.
We are in a position to prove the main result of this section:

Theorem 6.54 AssumeHypothesis 6.52 and suppose that λ > 0. Then the following
holds

(1) For all generalized reference probability spaces and admissible pairs (a, X) we
have Jμ(x; a(·), X (·)) ≥ v(x). Therefore V μ(x) ≤ v(x).

(2) The equality Jμ(x; a(·), X (·)) = v(x) holds if and only if the following feedback
law is satisfied:

a(τ ) ∈ �(∇v(X (τ ))σ), P-a.s. for a.e. τ ≥ 0. (6.120)

Notice that since ∇v is bounded, if (6.120) holds then the control a is uniformly
bounded.

Proof Choose any generalized reference probability space μ and denote by ρ(T ) the
Girsanov density

ρ(T ) = exp

(
−
∫ T

0
〈R(a(ζ)), dW (ζ)〉� − 1

2

∫ T

0
|R(a(ζ))|2� dζ

)
, (6.121)
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Let P̃T be the probability measure onFT defined by P̃T = ρ(T ) P

∣∣∣
FT

and let ẼT be

the corresponding expectation. By Girsanov’s Theorem (see Theorem 6.34) under
P̃T the process

W̃τ :=
∫ τ

0
R(a(ζ)) dζ + Wτ , 0 ≤ τ ≤ T, (6.122)

is a cylindrical Wiener process. Equation (6.116) can be written:

{
dX (τ ) = AX (τ ) dτ + b(X (τ )) dτ + σ dW̃τ , τ ≥ 0,
X0 = x .

(6.123)

Let v be the uniquemild solution of Eq. (6.119). Consider the following finite horizon
Markovian forward–backward system (with respect to probability P̃T and to the
filtration generated by {W̃τ }τ∈[0,T ]).
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X̃(τ ; x) = eτ Ax +
∫ τ

0
e(τ−ζ)Ab(X̃(ζ; x)) dζ +

∫ τ

0
e(τ−ζ)Aσ dW̃ζ , τ ≥ 0,

Ỹ (τ ; x) − v(X̃(T ; x)) +
∫ T

τ
Z̃(ζ; x) dW̃ζ + λ

∫ T

τ
Ỹ (ζ; x) dζ

=
∫ T

τ
F0(X̃(ζ; x), Z̃(ζ; x)) dζ, 0 ≤ τ ≤ T,

(6.124)
and let (X̃(x), Ỹ (x), Z̃(x)) be its unique solutionwith the three processes predictable
relative to thefiltration generated by {W̃τ }τ∈[0,T ] and: ẼT supt∈[0,T ] |X̃(t; x)|2 < +∞,

Ỹ (x) bounded and continuous, ẼT
∫ T
0 |Z̃(t; x)|2dt < +∞.

Moreover, Theorem6.51 and uniqueness of the solution of system (6.124) together
with Theorem 6.32 yields

Ỹ (τ ; x) = v(X̃(τ ; x)), Z̃(τ ; x) = ∇v(X̃(τ ; x))σ. (6.125)

Comparing the forward equation in (6.124) with the state equation, rewritten
as (6.123), we get X̃(t; x) = Xt , t ∈ [0, T ], P-a.s. Applying the Itô formula to
e−λτ Ỹ (τ ; x), and restoring the original noise W , we get

Ỹ (0; x) +
∫ T

0
e−λζ Z̃(ζ; x) dWζ

=
∫ T

0
e−λζ

[
F0(X (ζ), Z̃(ζ; x)) − Z̃(ζ; x)R(a(ζ))

]
dζ + e−λT v(X (T )).

(6.126)
Using the identification in (6.125) and taking expectation with respect to P, (6.126)
yields
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e−λT
Ev(X̃(T ; x)) − v(x) = −E

∫ T

0
e−λζF0(X (ζ),∇v(X (ζ))σ) dζ

+E

∫ T

0
e−λζ∇v(X (ζ))ζR(a(ζ)) dζ.

Recalling that v is bounded, letting T → ∞, we conclude that

Jμ(x; a(·), X (·)) = v(x) − E

∫ ∞

0
e−λζF0(X (ζ),∇v(X (ζ))σ)dζ

−E

∫ ∞

0
e−λζ

[
∇xv(X (ζ))σR(a(ζ)) − l(X (ζ), a(ζ))

]
dζ.

The above equality is known as the fundamental relation and immediately implies
that v(x) ≤ Jμ(x; a(·)) and that equality holds if and only if (6.120) holds. �

Theorem 6.55 Assume Hypothesis 6.52 and that λ > 0. If �(x, z) is non-empty for
all x ∈ H and z ∈ �∗ and γ : �∗ → � is a measurable selection of � (which exists,
see Theorem 8.2.10, in [20]) then there exists a generalized reference probability
space μ̄ in which the closed loop equation

{
dX(τ ) = AX(τ ) dτ + σR(γ(∇v(X(τ ))σ) dτ + b(X(τ )) dτ + σ dW (τ ), τ ≥ 0,

X0 = x0 ∈ H,

(6.127)
admits a solution. Moreover, setting a(τ ) = γ(∇v(X(τ ))σ), the pair (a(·), X(·)) is
admissible and optimal for the control problem in the sense that

J μ̄(x; ā(·), X̄(·)) = v(x).

Consequently, we have v(x) = V̄ (x).

Proof The point here is to prove the existence of a weak (in the probabilistic sense)
solution to Eq. (6.127) in the whole [0,+∞), see also Sect. 4 in [274]. In order to do
this we realize a “canonical”-�-valued Wiener process. We choose a larger Hilbert
space�

′ ⊃ � in such a way that� is continuously and densely embedded in�
′
with

Hilbert–Schmidt inclusion operator J . By � we denote the space C([0,∞),�
′
) of

continuous functions ω : [0,∞) → �
′
endowed with the standard locally convex

topology and by B its Borel σ-field. Since JJ ∗ is nuclear on �
′
we know (see

[180]) that there exists a probability P on B such that W
′
t (ω) := ω(t) is a JJ ∗-

Wiener process in �
′
(that is, t → 〈

W
′
t , ξ

′ 〉
�

′ is a real-valued Wiener process for all
ξ

′ ∈ �
′
and E[〈W ′

t , ξ
′ 〉

�
′
〈
W

′
s, η

′ 〉
�

′ ] = 〈JJ ∗ξ ′
, η

′ 〉
�

′ (t ∧ s) for all ξ
′
, η

′ ∈ �
′
, t, s ∈

[0,∞)). We denote by E the P-completion of B and byFt , t ≥ 0, the P-completion
of Bt = σ

(
W

′
s : s ∈ [0, t]).

The�-valued cylindricalWiener process {W ξ
t : t ≥ 0, ξ ∈ �} can now be defined

as follows. For ξ in the image of J ∗J we take η such that ξ = J ∗J η and define
W ξ

s = 〈
W

′
s,J η

〉
�

′ . Thenwe observe thatE|W ξ
t |2 = t |J η|2

�
′ = t |ξ|2� and thatJ ∗J�
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is dense in � to deduce that the linear continuous mapping ξ → W ξ
s (with values

in L2(�,F ,P;R)) can be extended by continuity to the whole �. An appropriate
modification of {W ξ

t : t ≥ 0, ξ ∈ �} gives the required cylindrical Wiener process.
Now let X ∈ L p

P,loc(�,C([0,+∞), H)) be the mild solution of

{
dX (τ ) = AX (τ ) dτ + b(X (τ )) dτ + σ dW (τ )

X (0) = x
(6.128)

and let, ∀T > 0

ρ(T ) = exp

(
−
∫ T

0
〈R(γ(∇v(X (ζ))σ), dW (ζ)〉� − 1

2

∫ T

0
|R(γ(∇v(X (ζ))σ)|2� dζ

)
.

(6.129)

Recall that ∇v is bounded. Thus let P̂T be the probability onFT admitting ρ(T ) as
a density with respect to P. Since �

′
is a Polish space and P̂T+h coincides with P̂T

on BT , T, h ≥ 0, by known results (see [508], Chap.VIII, Sect. 1, Proposition 1.13)
there exists a probability P̂ on B such that the restriction on BT of P̂T and that of
P̂ coincide, T ≥ 0. Let Ê be the P̂-completion of B and F̂T be the P̂-completion of
BT . Moreover, let

Ŵ (t) := −
∫ t

0
R(γ(∇v(X (ζ))σ) dζ + W (t).

Since, for all T > 0, {Ŵt }t∈[0,T ] is a �-valued cylindrical Wiener process under
P̂T (see again Theorem 6.34) and the restriction of P̂T and of P̂ coincide on BT ,
modifying {Ŵt }t≥0 in a suitable way on a P̂-null probability set we can conclude that
μ̄ = (�, Ê, {F̂t }t≥0, P̂, {Ŵt }t≥0) is a generalized reference probability space and that
if we set ā(τ ) = γ(∇v(X (τ ))σ) then (ā(·), X (·)) is an admissible pair and (6.127)
is satisfied. Indeed, if we rewrite (6.128) in terms of {Ŵt }t≥0 we get

{
dX (τ ) = AX (τ ) dτ + b(X (τ )) dτ + G [R(γ(∇v(X (τ ))σ)) + dŴ (τ )],
X0 = x

and this concludes the proof. �

6.11 Application: The Heat Equation with Additive Noise

We show here how the previous results can be applied to a stochastic heat equation
with additive white noise in dimension 1. Let, for t ≥ 0, ξ ∈ [0, 1]:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t
x(t, ξ) = ∂2

∂ξ2
x(t, ξ) + f0(ξ, x(t, ξ)) + σ0(ξ)r(ξ) a(t, ξ) + σ0(ξ)

∂

∂t
W(t, ξ),

x(t, 0) = x(t, 1) = 0,

x(0, ξ) = x0(ξ),
(6.130)

where ∂
∂tW is a space-time white noise on R+ × [0, 1]. Moreover, we introduce the

cost functional:

J (x0, a(·), x(·)) = E

∫ ∞

0

∫ 1

0
e−λt

[
�0(ξ, x(t, ξ)) + |a(t, ξ)|2] dξ dt (6.131)

which we minimize over all progressive controls a : [0,∞) × [0, 1] → R bounded
in L2([0, 1]). By this we mean that there exists a suitable constant ca (depending on
the control a) such that:

∫ 1

0
a2(t, ξ)dξ ≤ ca, P ⊗ dt-a.s.

To fit the assumptions of our abstract results we will suppose that the functions f0,
σ0, r , �0 are all measurable and real-valued and moreover:

(1) f0 is defined on [0, 1] × R and
∫ 1
0 f 20 (ξ, 0)dξ < +∞.

Moreover, for a.a. ξ ∈ [0, 1], we require that f0(ξ, ·) ∈ C1(R) and

−L f ≤ ∂

∂η
f (ξ, η) ≤ 0

for a suitable constant L f > 0, almost all ξ ∈ [0, 1], and all η ∈ R.

(2) σ0 and r are bounded measurable functions from [0, 1] to R.
(3) �0 is defined on [0, 1] × R and, for a.a. ξ ∈ [0, 1], themap �0(ξ, ·) is inC1(R,R).

Moreover:

|�0(ξ, η)| ≤ c0(ξ),

∣∣∣∣ ∂

∂η
�0(ξ, η)

∣∣∣∣ ≤ c1(ξ), with
∫ 1

0

(
c0(ξ) + c21(ξ)

)
dξ < +∞.

(6.132)
(4) x0 ∈ L2([0, 1]).

To rewrite the above problem in the abstract way we set (with the notation of
Sect. 6.10): H = � = � = L2([0, 1]). By {W (t)}t≥0 we denote a cylindricalWiener
process in L2([0, 1]). Moreover, we define the operator A with domain D(A) by:

D(A) = W 2,2([0, 1]) ∩ W 1,2
0 ([0, 1]), (Ay)(ξ) = ∂2

∂ξ2
y(ξ), ∀y ∈ D(A),

where W 2,2([0, 1]) and W 1,2
0 ([0, 1]) are the usual Sobolev spaces, and we set
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b(x)(ξ) = f0(ξ, x(ξ)), (σz)(ξ) = σ0(ξ)z(ξ), R(a)(ξ) = (Ra)(ξ) = r(ξ)a(ξ),

l(x, a) =
∫ 1

0

[|a(ξ)|2 + �0(ξ, x(ξ))
]
dξ

for all x, z ∈ L2([0, 1]) a ∈ L∞([0, 1]) and a.a. ξ ∈ [0, 1].
Under the previous assumptions we know, see [177] Sect. 11.2.1, that A, b and σ

satisfy Hypothesis 6.40. Moreover, R is a bounded linear operator on L2([0, 1]) and

∇x l(x, a)h =
∫ 1

0

∂

∂η
�0(ξ, x(ξ))h(ξ)dξ.

Hence points 2 and 3 in Hypothesis 6.52 are satisfied.
We also notice that

inf
a∈H(|a|2H + z(Ra)) = inf

a∈H(|a|2H + (R∗z)a) = −1

4
|R∗z|2H∗ = −1

4

∫ 1

0
r2(ξ)z2(ξ)dξ.

So F0(x, z) = l(x) − 1
4 |R∗z|2 and, taking into account the regularity of �0, it

is immediate to see that point 4 in Hypothesis 6.40 is satisfied. In addition,
infa∈L2([0,1])(|a|2H + z(Ra)) is a minimum achieved for a = − 1

2r z.

As a consequence of Theorems 6.54 and 6.55 we have the following result.

Theorem 6.56 Under the previous assumptions, fixing λ > 0, there exists at least
one generalized reference probability space μ = (�,F ,F s,P,W ) and an admis-
sible control pair (a(·), x(·)) for which

V (x0) = Jμ(x0; a(·), x(·)), x0 ∈ L2([0, 1]).

In particular, the triple (μ, a(·), x(·)) is optimal.
The value function V (x0) coincides with the function v(x0), which is the unique

mild solution to theHamilton–Jacobi–Bellman equation (6.119) in the sense specified
by Definition 6.49 (see Theorem 6.51) where (with the standard identifications)

F0(x,∇v(x)σ) = l(x) − 1

4
|R∗∇v(x)σ|2H∗

=
∫ 1

0
�0(ξ, x(ξ))dξ − 1

4

∫ 1

0
r2(ξ)σ20(ξ)(∇v(x)(ξ))2dξ.

In the spaceμ the process (x(s, ·))s≥0 is amild solution to the closed loop equation

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t
x̄(t, ξ) = ∂2

∂ξ2
x̄(t, ξ) + f0(ξ, x̄(t, ξ)) − 1

2
σ20(ξ)r2(ξ)∇xv(t, x̄(t, ·))(ξ) + σ0(ξ)

∂

∂t
W(t, ξ),

x̄(t, 0) = x̄(t, 1) = 0,
x̄(0, ξ) = x0(ξ),

and the optimal pair (a(t, ·), x(t, ·)) satisfies the feedback law equality
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a(s, ξ) = −1

2
σ0(ξ)r(ξ)∇xv(t, x(t, ·))(ξ).

6.12 Elliptic HJB Equations with Non-constant Diffusion

In this section we wish to briefly expose the results on the probabilistic represen-
tation of the solution to an elliptic HJB equation when the second-order operator
Tr
(
σ(x)σ(x)∗D2φ(x)

)
depends on x . Namely, we will address the resolvability of

the following equation:

Au(x) − λ u(x) = F(x, u(x),∇u(x)σ(x)), x ∈ H,

where

Aφ(x) = 1

2
Tr
(
σ(x)σ(x)∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

The price to pay to allow σ to depend on x is that we will have to assume λ to be
large enough.

The detailed proofs of the results reported below can be founded in [285].
Our analysis here will be done on the weighted (in time) spaces that we introduce

below.

• L p
P(�; Lq

β(K )), defined for β ∈ R and p, q ∈ [1,∞), denotes the space of equiv-
alence classes of processes {Y (t)}t≥0, with values in K , such that the norm

|Y |p
L p
P (�;Lq

β(K ))
= E

(∫ ∞

0
eqβs |Y (s)|qK ds

)p/q

is finite, and Y admits a predictable version.
• Kp

β denotes the space L p
P(�; L2

β(K )) × L p
P(�; L2

β(L2(�, K ))). The norm of an
element (Y, Z) ∈ Kp

β is |(Y, Z)|Kp
β

= |Y |L p
P (�;L2

β(K )) + |Z |L p
P (�;L2

β(L2(�,K ))).

• Lq
P(�;Cη(K )), defined forη ∈ R andq ∈ [1,∞), denotes the space of predictable

processes {Y (t)}t≥0 with continuous paths in K , such that the norm

|Y |q
Lq
P (�;Cη(K ))

= E sup
τ≥0

eηqτ |Y (τ )|qK

is finite. Elements of Lq
P(�;Cη(K )) are identified up to indistinguishability.

• Finally, for η ∈ R and q ∈ [1,∞), we define Hq
η as the space Lq

P(�; Lq
η(K )) ∩

Lq
P(�;Cη(K )), endowed with the norm

|Y |Hq
η
= |Y |Lq

P (�;Lq
η (K )) + |Y |Lq

P (�;Cη(K )).
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Clearly, similar definitions and notations also apply to processes with values in
other Hilbert spaces, different from K .

As in the previous sections, we denote by {W (τ )}τ≥0 a cylindrical Wiener process
with values in a Hilbert space�, defined on a complete probability space (�,F ,P).
Now we consider the Itô stochastic differential equation for an unknown process
{X (τ ; x)}τ≥0 with values in a Hilbert space H :

X (τ ; x) = eτ Ax +
∫ τ

0
e(τ−s)Ab(X (s; x)) ds +

∫ τ

0
e(τ−s)Aσ(X (s; x)) dW (s), τ ≥ 0.

(6.133)

Hypothesis 6.57 (i) The operator A is the generator of a strongly continuous
semigroup et A, t ≥ 0, in the Hilbert space H . We denote by M and a two
constants such that |et A| ≤ Meat for t ≥ 0.

(ii) The mapping b : H → H satisfies, for some constant L > 0,

|b(x) − b(y)| ≤ L |x − y|, x, y ∈ H.

(iii) σ is a mapping from H to L(�, H) such that for every ξ ∈ � the map σ(·)ξ :
H → H is measurable, et Aσ(x) ∈ L2(�, H) for every t > 0 and x ∈ H , and

|et Aσ(x)|L2(�,H) ≤ L t−γeat (1 + |x |),
|et Aσ(x) − et Aσ(y)|L2(�,H) ≤ L t−γeat |x − y|, t > 0, x, y ∈ H,

(6.134)
|σ(x)|L(�,H) ≤ L (1 + |x |), x ∈ H, (6.135)

for some constants L > 0 and γ ∈ [0, 1/2).
(iv) For every t > 0, we have b(·) ∈ G1(H, H) and et Aσ(·) ∈ G1(H,L2(�, H)).

Proposition 6.58 Assume that Hypothesis 6.57 holds. Then for all q ∈ [1,∞) there
exists a constant η(q), depending also on γ, L , a, M, with the following properties:

(i) For all x ∈ H the process X (·; x), a solution of (6.133), is in Hq
η(q) (here

K = H).
(ii) For a suitable constant C > 0 we have

E sup
τ≥0

eη(q)qτ |X (τ ; x)|q + E

∫ ∞

0
eη(q)qs |X (s; x)|q ds ≤ C(1 + |x |)q .

(6.136)
(iii) The map x→X (·; x) belongs to G1(H,Hq

η(q)) and its derivative is uniformly
bounded:

|∇X (·; x)h|Hq
η(q)

≤ C |h|, x, h ∈ H, (6.137)

for a suitable constant C.
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Let us now denote by Fτ the natural filtration of {W (τ )}τ≥0 augmented in the
usual way. We again consider the system of stochastic differential equations: P-a.s.,
for 0 ≤ τ ≤ T < ∞
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X (τ ; x) = eτ Ax +
∫ τ

0
e(τ−s)Ab(X (s; x)) ds +

∫ τ

0
e(τ−s)Aσ(X (s; x)) dW (s),

Y (τ ; x) +
∫ T

τ

Z(s; x) dW (s) + λ

∫ T

τ

Y (s; x) ds

=
∫ T

τ

F(X (s; x),Y (s; x), Z(s; x)) ds.
(6.138)

Y is real-valued and Z takes values in �∗, F : H × R × �∗ → R is a given measur-
able function, x is in H and λ is a real number.

For any q ∈ [1,∞) we choose η(q) as in Proposition 6.58. Then, we know that
for every x ∈ H , there exists a unique solution {X (τ ; x)}τ≥0 inHq

η(q) of the forward
equation and the map x→X (·; x) belongs to G1(H,Hq

η(q)).
Then we fix p > 2 and choose q and β satisfying

q ≥ p(m + 1)(m + 2), β < η(q)(m + 1)(m + 2), β < 0. (6.139)

On F we shall ask the following

Hypothesis 6.59 (i) There exist μ ∈ R and nonnegative constants Ly, Lz such
that

|F(x, y1, z1) − F(x, y2, z2)| ≤ Ly|y1 − y2| + Lz|z1 − z2|,
〈F(x, y1, z) − F(x, y2, z), y1 − y2〉K ≤ −μ|y1 − y2|2,

for every x ∈ H , y1, y2 ∈ R, z, z1, z2 ∈ �∗.
(ii) F ∈ G1(H × R × �∗, K ).
(iii) There exist L > 0 and m ≥ 0 such that

|∇x F(x, y, z)h| ≤ Lx |h|(1 + |z|)(1 + |x | + |y|)m,

for every x, h ∈ H , y ∈ R, z ∈ �∗.

We have the following existence and uniqueness result (in the weighted spaces
introduced above).

Proposition 6.60 Assume that Hypothesis 6.57 holds and that F satisfies the con-
ditions in Hypothesis 6.59. For p > 2, β and q satisfying (6.139), and for every
λ > λ̂ = −(β + μ − L2

z/2), the following holds.

(i) For every x ∈ H there exists a unique solution (X (·; x),Y (·; x), Z(·; x)) of
the forward–backward system (6.138) such that X (·; x) ∈ Hq

η(q) and (Y (·; x),
Z(·; x)) ∈ Kp

β (here K = R and consequently L2(�, K ) is �∗). Moreover,
Y (·; x) ∈ L p

P(�;Cβ(R)).
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(ii) The maps x → X (·; x), x → (Y (·; x), Z(·; x)), x → Y (·; x) belong to the
spaces G1(H,Hq

η(q)), G1(H,Kp
β ) and G1(H, L p

P(�;Cβ(R))), respectively.
(iii) Setting u(x) = Y (0; x), we have u ∈ G1(H,R), and u and∇u have polynomial

growth. More precisely, there exists a constant C > 0 such that

|u(x)| ≤ C (1 + |x |)m+1, |∇u(x)h| ≤ C |h|(1 + |x |)[(m+1)2], x, h ∈ H.

Remark 6.61 Notice that we have shown that the system (6.138) admits a unique
solution (in suitable spacesHq

η(q),Kp
β with parameters satisfying p > 2 and condition

(6.139)) for all λ > λ̂ where

λ̂ = −μ + L2
z/2 − sup{η(q)(m + 1)(m + 2) ∧ 0 : q > 2(m + 1)(m + 2)}.

(6.140)
�

Remark 6.62 If, in addition to Hypothesis 6.59, we suppose that F(·, 0, 0) is
bounded and satisfies Hypothesis 6.59 with m = 0, then the above results can be
improved in the following way. Instead of asking (6.139) it is enough to require:
q > p > 2 and β < η(q) ∧ 0. Then the conclusions of Proposition 6.60 still hold
for λ > −(β + μ − L2

z/2). Thus instead of (6.140) we have

λ̂ = −μ + L2
z/2 − sup{η(q) ∧ 0 : q > 2}. (6.141)

Moreover, we have |u(x)| ≤ C and |∇xu(x)h| ≤ C |h| for all x, h ∈ H . �
Assuming that Hypothesis 6.57 holds and denoting by (X (τ ; x))τ≥0 the solution

of Eq. (6.133), we define in the usual way the transition semigroup (Pt )t≥0, associated
to the process X :

Pt [φ](x) = E φ(X (t; x)), x ∈ H, (6.142)

for every bounded measurable function φ : H → R. By Proposition 6.57, φ can be
taken unbounded, with polynomial growth. Formally, the generator A of (Pt ) is the
operator

Aφ(x) = 1

2
Tr
(
σ(x)σ(x)∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

We consider now the solvability of the nonlinear stationary Kolmogorov equation:

Au(x) − λ u(x) = F(x, u(x),∇u(x)σ(x)), x ∈ H, (6.143)

where the function F : H × R × �∗ → R satisfies the conditions inHypothesis 6.59
(with K = R) and λ is a given number (that will eventually be assumed to be large
enough). Note that, for x ∈ H , ∇u(x) belongs to H∗, so that ∇u(x)σ(x) is in �∗.

The definition of a mild solution has to be slightly modified in order to take into
account the polynomial growth:
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Definition 6.63 Wesay that a function u : H → R is amild solution of the nonlinear
stationary Kolmogorov equation (6.143) if the following conditions hold:

(i) u ∈ G1(H,R);
(ii) for all x ∈ H , h ∈ H , we have

|u(x)| ≤ C (1 + |x |)C , |∇xu(x)h| ≤ C |h| (1 + |x |)C ,

for some constant C > 0;
(iii) the following equality holds, for every x ∈ H and T ≥ 0:

u(x) = e−λT PT [u](x) −
∫ T

0
e−λτ Pτ

[
F
(
·, u(·),∇u(·)σ(·)

)]
(x) dτ .

(6.144)

Together with Eq. (6.133) we again consider the backward equation for 0 ≤ τ ≤
T < ∞

Y (τ ; x) − Y (T ; x) +
∫ T

τ

Z(s; x)) dW (s) + λ

∫ T

τ

Y (s; x) ds

= −
∫ T

τ

F(X (s; x),Y (s; x), Z(s; x)) ds,
(6.145)

where F : H × R × �∗ → R and λ are the same occurring in the nonlinear station-
ary Kolmogorov equation. Under the stated assumptions, Proposition 6.60 gives a
unique solution {(X (τ ; x),Y (τ ; x), Z(τ ; x))}τ≥0 of the forward–backward system
(6.138).

We can now state one of our main results.

Theorem 6.64 Assume thatHypothesis 6.57 holds and that F satisfies the conditions
in Hypothesis 6.59.

Then there exists a λ̂ ∈ R such that, for every λ > λ̂, the nonlinear stationary
Kolmogorov equation (6.143) has a unique mild solution. The solution u is given by
the formula

u(x) = Y (0; x), (6.146)

where {(X (τ ; x),Y (τ ; x), Z(τ ; x))}τ≥0 is the solution of the backward-forward sys-
tem 6.138), and it satisfies

|u(x)| ≤ C (1 + |x |)m+1, |∇u(x)h| ≤ C |h|(1 + |x |)[(m+1)2],

for some constant C and every x, h ∈ H.

Remark 6.65 The constant λ̂ in the statement of the theorem can be chosen equal to
(6.140). �
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Remark 6.66 From Remark 6.62 it follows immediately that if, in addition to
Hypothesis 6.57 and 6.59, we assume that F(·, 0, 0) is bounded and F satisfies
Hypothesis 6.59withm = 0, then λ̂ can be chosen equal to (6.141) instead of (6.140).
Moreover, in this case, we have |u(x)| ≤ C , |∇u(x)h| ≤ C |h| for some constant C
and every x, h ∈ H . �

Finally, we again apply the above results to a control problem. We mainly wish
to show here what frameworks can be covered.

Let again H and � denote real separable Hilbert spaces (the state space and
the noise space, respectively) and let � be a Polish space (the control space). For
t ∈ [0,+∞) a generalized reference probability space is given by μ = (�,F ,Fs,

P,W ), where

• (�,F ,P) is a complete probability space;
• (Fs)s≥0 is a filtration in it, satisfying the usual conditions;
• (W (s))s≥0 is a cylindrical P-Wiener process in�, with respect to the filtrationFs .

Given such μ, for every starting point x ∈ H we will consider the following
controlled state equation

⎧⎪⎨
⎪⎩
dX (s; x) = (AX (s; x) + b(X (s; x)) + σ(X (s; x))R(X (s; x), a(s))) ds

+ σ(X (s; x)) dW (s), s ∈ [0,∞),

X (0) = x ∈ H.

(6.147)
In (6.147) and below the equation is understood in the mild sense. a(·) : � ×

[0,+∞) → � is the control process, which is always assumed to be progressively
measurable with respect to {Fs}s≥0. On the coefficients A, b,σ, R precise assump-
tions will be formulated in Hypothesis 6.67 below. As in Sect. 6.5 we will impose
on R only measurability and boundedness assumptions. As mentioned, this requires
some care in the formulation of the control problem. We again call (a(·), X (·)) an
admissible control pair if a(·) is anFs-progressivelymeasurable process with values
in� and X (·) is a mild solution to (6.147) corresponding to a(·). To every admissible
control pair we associate the cost:

Jμ(x; a(·), X (·)) = E

∫ ∞

0
e−λsl(X (s; x), a(s)) ds,

where l is a suitable real function. As in the parabolic case, see Sect. 6.5, the optimal
control problem in the extended strong formulation consists in minimizing the func-
tional Jμ(x; a(·), X (·)) over all admissible control pairs (a, X), and characterizing
the value function

V μ(x) = inf
(a(·),X (·))

Jμ(x; a(·), X (·; x)).
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We will also address the optimal control problem in the extended weak formula-
tion, which consists in further minimizing with respect to all generalized reference
probability spaces, i.e., in characterizing the value function

V (x) = inf
μ

V μ(x).

The corresponding Hamiltonian function is defined for all x ∈ H , z ∈ �∗ setting

F0(x, z) = inf
a∈�

(l(x, a) + z R(x, a)) . (6.148)

We also define as usual

�(x, z) = {a ∈ � : F0(x, z) = l(x, a) + z R(x, a)}.

We make the following assumption.

Hypothesis 6.67 The following holds:

(1) A, b and σ satisfy Hypothesis 6.57.
(2) R : H × � → � is Borel measurable and |R(x, a)|� ≤ LR for a suitable con-

stant LR > 0 and all x ∈ H , a ∈ �.
(3) l : H × � → R is continuous and satisfies |l(x, u)| ≤ Kl(1 + |x |ml ) for suitable

constants Kl > 0, ml ≥ 0 and all x ∈ H , u ∈ �.
(4) F0 belongs to G1(H × �∗,R) and satisfies Hypothesis 6.59 (to avoid confusion

we denote by mF the constant m introduced in Hypothesis 6.59) We also notice
that by its definition F0 is Lipschitz with respect to z with Lipschitz constant
LR .

(5) Finally, we fix here p > 2, q and β satisfying (6.139) with m = mF , and such
that q > mF .

In the following η(q) is the constant introduced in Proposition 6.58.

Lemma 6.68 Assume that λ > 0 satisfies

λ >
LRml

2(q − ml)
− η(q)ml . (6.149)

Then the cost functional is well defined and J (x0; a(·), X (·)) < ∞ for all x0 ∈ H
and all generalized reference probability spaces.

By Theorem 6.64, for all λ > λ̂ (the constant λ̂ can be chosen equal to (6.140)
with Lz = LR) the stationary Hamilton–Jacobi–Bellman equation relative to the
above stated problem, written formally as

Av(x) = λv(x) + F0(x,∇v(x)σ(x)), x ∈ H, (6.150)
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admits a unique mild solution, in the sense of Definition 6.63, which we will denote
by v.

We are in a position to solve the control problem:

Theorem 6.69 Assume Hypothesis 6.67 and suppose that λ satisfies:

λ >

(
−β + L2

R

2

)
∨
(

−β + LR

2(p − 1)

)
∨
(

LRml

2(q − ml)
− η(q)ml

)
. (6.151)

Then the following holds

(1) For all generalized reference probability spaceμ and all admissible control pairs
(a(·), X (·)) we have Jμ(x; a(·), X (·)) ≥ v(x).
It follows that V μ(x) ≥ v(x) for every μ, and so V (x) ≥ v(x).

(2) For allμandall admissible control pairs (a, X), the equality Jμ(x; a(·), X (·)) =
v(x) holds if and only if the following feedback law is satisfied:

a(s) ∈ �(X (s),∇xv(X (s))σ(X (s))), P-a.s. for a.a. s ∈ [t, T ]. (6.152)

We again have existence of the optimal control in the extended weak formulation.

Theorem 6.70 If in addition to the assumptions of the above theorem we suppose
that �(x, z) is non-empty for all x ∈ H and z ∈ �∗. Let γ : H × �∗ → � be a
measurable selection of � (which exists, see Theorem 8.2.10, in [20]). Then there
exists at least one generalized reference probability spaceμ andanadmissible control
pair (a(·), X(·)) for which (6.152) holds. In particular, it follows that V μ

t (x) =
v(t, x) and so V (t, x) = v(t, x). In the space μ the process X is a mild solution to
the closed loop equation:

⎧⎪⎨
⎪⎩
dX(s) = AX(s) ds + σ(X(s)) R

(
X(s), γ(s, X(s),∇xv(X(s))σ(X(s)))

)
ds

+b(X(s)) ds + σ(X(s)) dW (s), s ∈ [t, T ],
X(0) = x ∈ H,

(6.153)
the feedback law takes the form

a(s) = γ(X(s),∇xv(X(s))σ(X(s))), P-a.s. for a.e. s ∈ [0, T ],

and the pair (a(·), X(·)) is optimal for the control problem in the extended weak
formulation.

Remark 6.71 If, in addition to points 1–4 of Hypothesis 6.67, we also assume that
l is bounded and Lipschitz in x uniformly in u ∈ U , then it is easily verified that
F0(·, 0) is bounded and F0 satisfies Hypothesis 6.59 with m = 0. Thus by Remark
6.62 the results of Theorem 6.69 can be improved in the following way.
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Instead of Hypothesis 6.67 point 5 it is enough to take q > p > 2 and β < η(q) ∧
0. Moreover, instead of (6.151) it is enough to assume

λ > −β +
(
L2
R

2
∨ LR

2(p − 1)

)
.

�

6.12.1 The Heat Equation with Multiplicative Noise

Finally, we show how the assumptions on the controlled heat equation in Sect. 6.11
have to be adapted to fit this last framework. We again consider a stochastic heat
equation with additive white noise in dimension 1 (for t ≥ 0, ξ ∈ [0, 1]):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t
x(t, ξ) = ∂2

∂ξ2
x(t, ξ) + f0(ξ, x(t, ξ))

+σ0(ξ, x(t, ξ))r(ξ) a(t, ξ) + σ0(ξ)
∂
∂tW(t, ξ),

x(t, 0) = x(t, 1) = 0,
x(0, ξ) = x0(ξ),

(6.154)
and the cost functional:

J (x0; a(·), x(·)) = E

∫ ∞

0

∫ 1

0
e−λt

[
�0(ξ, x(t, ξ)) + |a(t, ξ)|2] dξ dt. (6.155)

The assumptions and notations are the same as in Sect. 6.11 except that:

• σ0 depends on x as well. We assume that it is bounded, differentiable with respect
to x and Lipschitz with respect to x , uniformly in ξ.

• We relax the assumptions on �0. Namely, we assume that �0 is defined on [0, 1] ×
R. Moreover, for a.a. ξ ∈ [0, 1], the map �0(ξ, ·) is in C1(R,R) and

|�0(ξ, 0)| ≤ c0(ξ),

∣∣∣∣ ∂

∂η
�0(ξ, η)

∣∣∣∣ ≤ c1(ξ), with
∫ 1

0

(
c0(ξ) + c21(ξ)

)
dξ < +∞.

(6.156)
• We restrict our analysis to controls taking values in a ball of L2([0, 1]). Namely,
we assume: ∫ 1

0
a2(t, ξ)dξ ≤ 1, P ⊗ dt-a.s.

The problem can be rewritten in the abstract way exactly as in Sect. 6.11 with the
difference that now:

inf
a∈H :|a|≤1

(|a|2H + z(Ra)) = inf
a∈H :|a|≤1

(|a|2H + (R∗z)a) = �(R∗z),
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where (with the standard identifications):

�(p) =
{−(1/4)|p|2L2([0,1]) if |p|L2([0,1]) ≤ 2

−|p| + 1 if |p|L2([0,1]) > 2
, R∗z = r z.

In addition, infa∈H (|a|2H + z(Ra)) is a minimum achieved for a = ψ(R∗z) where

ψ(p) =
{−(1/2)p if |p|L2([0,1]) ≤ 2,

−p/|p| if |p|L2([0,1]) > 2.

So F0(x, z) = l(x) + �(R∗z) belongs toG1(H × H∗,R). As a consequence of The-
orems 6.69 and 6.70 we have the following result.

Theorem 6.72 Under the previous assumptionwe can find λ̂ such that, for allλ > λ̂,
there exists at least one generalized reference probability space μ = (�,F ,F s,

P,W ) and an admissible control pair (a(·), x(·)) for which

V (x0) = Jμ(x0; a(·), x(·)), x0 ∈ L2([0, 1]).

In particular, the triple (μ, a(·), x(·)) is optimal.
The value function V (x0) coincides with the function v(x0), which is the unique

mild solution to theHamilton–Jacobi–Bellman equation (6.150) in the sense specified
by Definition 6.63 (see Theorem 6.64) where (with the standard identifications)

F0(x, ∇vσ) = l(x) + �(R∗∇v(x)σ(x)) = �0(·, x(·)) + �(r(·)σ0(·, x(·))∇v(x)(·)).

In the spaceμ the process (x(s, ·))s≥0 is amild solution to the closed loop equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂t
x̄(t, ξ) = ∂2

∂ξ2
x̄(t, ξ) + f0(ξ, x̄(t, ξ)) + σ0(ξ, x̄(ξ))

∂

∂t
W(t, ξ)

+σ0(ξ, x̄(ξ))r(ξ)ψ (r(·)σ0(·, x̄(t, ·))∇v(x̄(t, ·))(·)) (ξ)dt,
x̄(t, 0) = x̄(t, 1) = 0,
x̄(0, ξ) = x0(ξ),

and the optimal pair (a(t, ·), x(t, ·)) satisfies the feedback law equality

a(t, ·) = ψ (r(·)σ0(·, x̄(t, ·))∇v(x̄(t, ·))(·)) .

6.13 Bibliographical Notes

The paper [475] by É. Pardoux and S. Peng is generally recognized as the starting
point of the theory of Backward Stochastic Differential Equations (BSDEs): there
the authors solved a general nonlinear BSDE under Lipschitz assumptions on the
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coefficients. Earlier results on the linear case were proved by several authors, in
particular by J-.M. Bismut and A. Bensoussan, in connection with the so-called Sto-
chastic Maximum Principle (in the sense of Pontryagin). Since the appearance of
[475], the theory began to develop quickly, motivated by applications to stochas-
tic optimal control, partial differential equations and mathematical finance. Some
standard references are [211, 420, 477, 575].

Here we limit ourselves to a bibliographical account of the main achievements
related to BSDEs driven by a Brownian motion in an infinite-dimensional context,
i.e., when at least one of the unknown processes (Y, Z) takes values in an infinite-
dimensional space or when the BSDE is coupled with another (forward) stochastic
differential equation with infinite-dimensional solution process.

To our knowledge, the first result on BSDEs when the process Y evolves in an
infinite-dimensional space is that of Bensoussan [45] concerning the linear case. A
highly non-trivial extension of the nonlinear case originally addressed by Pardoux
and Peng in the infinite-dimensional context is in [350], followed by [558] and by
some results in [284, 285]. The case of dissipative coefficients is considered in [129,
130]. A special class of backward equations, called of Volterra type, are studied in
the Hilbert space case in [11, 12].

The Stochastic Maximum Principle, which is not treated in this chapter, remains
one of the main sources of interest for studying BSDEs with infinite-dimensional
process Y . Although the equation is linear in this case, the occurrence of unbounded
coefficients often makes the study technically challenging. After the reference [45]
already mentioned, the papers [196, 349] treat the maximum principle for a general
controlled evolution equation in a Hilbert space. Applications to concrete controlled
stochastic PDEs can be found in [598] for equations linear in the state, and in [280].
The case of a controlled stochastic PDE with additive noise and dissipative drift is
treated in [282]. The treatise [414] is entirely devoted to the Stochastic Maximum
Principle in infinite dimension.

A special mention is deserved for the study of the stochastic backward Hamilton–
Jacobi–Bellman equation, introduced in [481] and further studied in [85]. Represen-
tation formulae for equations of similar type are proved in [549].

Many other cases of concrete stochastic PDEs of backward type have been studied,
as objects of intrinsic interest and not necessarily related to stochastic optimal control
problems, see for instance [197–199, 348, 419, 421, 504, 505, 552], and the subject
is developing quickly.

Very often a scalar BSDE (i.e., where the process Y is real-valued) is introduced,
coupled with a forward equation representing the dynamics of a controlled process
evolving in an infinite-dimensional case, driven by a finite- or infinite-dimensional
Brownian motion. This is the situation addressed in this chapter. As seen above,
the process Y is then related to the value function of the optimal control problem
and, in the Markovian case, it is used to represent or to construct a solution (in an
appropriate sense) to the corresponding Hamilton–Jacobi–Bellman (HJB) equation.
The first systematic study of this type for controlled stochastic equations in Hilbert
space is in [284–286]. More general coefficients (for instance, of dissipative type), or
more general growth conditions, were studied in [75–77, 351], see also [593–595].
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Often, better results are obtained by a combination of probabilistic arguments
on the BSDE and an analytic study of the HJB equation, as in [432, 433]. In [435,
438, 442] very general Hamiltonians are addressed. Smoothing effects of the HJB
equation, due to a nondegenerate diffusion coefficient of the controlled equation,
were studied in [283, 440].

The case of linear controlled evolution equations and quadratic cost also lead to
stochastic backward equations of Riccati type, when the coefficients are perturbed
by noise. In the infinite-dimensional framework we cite [333–335, 414, 415].

Applications to models with delay or memory effects can be found in several of
the previous references. Memory effects are explicitly studied by BSDE techniques
for the heat equation in [131] and for controlled stochastic Volterra equations in [63,
132]. Related results can be found in [600].

A special branch of the literature is devoted to the case when the controlled
equation is a stochastic PDEwith Brownian noise acting on the boundary conditions,
often in combination with a control process on the boundary as well. We mention
[181, 332, 437, 591, 592].Wealso cite [331] for a versionof theStochasticMaximum
Principle in this framework and [62] for the related case of dynamical boundary
conditions.

Although in the large majority of the mentioned papers the state space is a Hilbert
space, there are a few papers related to extensions to Banach space-valued processes:
see [281, 436, 596].

BSDEs can be used to address other stochastic optimization problems, even when
the controlled systems evolves in an infinite-dimensional space. In [182, 278] ergodic
optimal control problems are studied, whereas applications of BSDEs to the theory
of stochastic differential games are given in [274, 275], where games with an infinite
number of players are considered.

More specific topics are treated in [273] (connections with conditioned processes
in Hilbert spaces) and [330] (strongly coupled infinite-dimensional forward–
backward systems, i.e., when the forward equations depends on the unknown pair
(Y, Z) solution to the backward equation).
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