
Chapter 5
Mild Solutions in L2 Spaces

This chapter is devoted to the presentation of the L2 theory for the existence and
uniqueness of mild solutions for a class of second-order infinite-dimensional HJB
equations in Hilbert spaces through a perturbation approach. As in the previous
chapter, the concept of mild solution concerns the HJB equation in an integral form
that uses the transition semigroup associated to the linear part of the equation.

In the previous chapter the perturbation approach was used in Banach spaces
of regular (at least differentiable in the x variable, in a suitable sense) real-valued
functions defined on a Hilbert space H . The space where we seek the solutions here
is a space of functions which are square-integrable (with their x derivative defined
in a suitable sense) with respect to a suitable reference measure m on H .

One of the main reasons for the development of the L2 theory is the need to
study HJB equations without the smoothing Hypothesis 4.76 about the behavior of
the transition semigroup, which was used in the previous chapter (see Sect. 4.1 for
a discussion). Indeed, once the existence of the reference measure is postulated, the
estimates that allow us to ensure, in the L2 framework, the applicability of a fixed
point argument, can be proved under weaker assumptions (see Sect. 5.1 for details).

As for the mild solutions in spaces of continuous functions, the L2 theory can
be applied to obtain optimal synthesis. The class of applicable infinite-dimensional
stochastic optimal control problems includes cases which cannot be treated in the
context presented in Chap.4, like the stochastic delay differential equations and first-
order SPDEs. On the other hand, specific hypotheses ensuring the existence of the
reference measure m and the compatibility of the Hamiltonian with it, need to be
satisfied. Moreover, the synthesis provided by the L2 theory is less regular.

The approach we describe was mostly developed in [3, 4, 125, 298]. We will
mainly follow [298].

The chapter is organized as follows:

• In Sect. 5.1 we describe the main ideas of the L2 method.
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606 5 Mild Solutions in L2 Spaces

• In Sect. 5.2 we recall some classical results about invariant measures and other
preliminary facts.

• Sections5.3 and 5.4 are devoted to parabolic HJB equations. Section5.3 contains
existence and uniqueness results, while in Sect. 5.4 a result on approximation of
mild solutions by classical solutions is provided.

• In Sect. 5.5 we apply the results of Sects. 5.3 and 5.4 to perform the optimal synthe-
sis for stochastic optimal control problems, while in Sect. 5.6 we provide specific
examples related to those of Chap.2.

• In Sect. 5.7 we describe complementary results, mainly from [3, 4], which cover
an additional class of problems. This section also contains existence and unique-
ness results for a family of elliptic HJB equations without applications to control
problems.

• Section5.8 contains bibliographical notes.

5.1 Introduction to the Methods

We briefly sketch the main ideas of the method developed in the next sections. We
consider a class of second-order infinite-dimensional HJB equations of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt + 1

2
Tr
[
QD2v

]+ 〈Ax + b(x), Dv〉 + F (t, x, Dv) + l(t, x) = 0,

t ∈ [0, T ), x ∈ D(A)

v(T, x) = g(x), x ∈ H,

(5.1)

and

λv − 1

2
Tr [QD2v] − 〈Ax, Dv〉 − F(x, Dv) = g, x ∈ H, (5.2)

where T > 0 is fixed, A is the generator of a C0-semigroup on a real separable
Hilbert space H , Q ∈ L+(H), and b : H → R, l : [0, T ] × H → R, g : H → R,
F : [0, T ] × H × H → R (or F : H × H → R) are measurable functions. Further
hypotheses on b, l, g and F will be introduced later.

Since the results available in the literature up to now are mainly oriented towards
the evolutionary HJB equation (5.1), we devote most of the chapter to the theory in
this case, limiting the treatment of the stationary equation (5.2) to Sect. 5.7.3.

Given a reference measure on H , the basic idea is to introduce mild and strong
solutions of (5.1) and (5.2) in the space of real square-integrable functions on [0, T ] ×
H (or on H ). If H were a finite-dimensional space, the Lebesgue measure would be
the natural choice for the reference measure but in infinite dimension the situation is
more delicate. We consider the following stochastic evolution equation
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⎧
⎨

⎩

dX (s) = (AX (s) + b(X (s))) ds + dWQ(s), s ≥ 0,

X (0) = x ∈ H,

(5.3)

we suppose it admits a mild solution and an invariant measure m and we work in
the space L2(H,B,m) where B is the completion of the Borel σ-field B(H) with
respect to m.

Under suitable assumptions on the operators A and Q and on the function b (see,
e.g., [180] Chap.9), the solution w of the following Kolmogorov equation

⎧
⎪⎨

⎪⎩

wt = 1

2
Tr [QD2w] + 〈Ax + b(x), Dw〉 ,

w(0, x) = φ(x)

(5.4)

can be associated to the transition semigroup Pt of the solution X (·; x) of (5.3) as
follows:

w(t, x) = Pt [φ](x) = Eφ(X (t, x)) (5.5)

for any bounded continuous φ.
The semigroup Pt extends to a strongly continuous semigroup of contractions on

L2(H,B,m) with generator A, whose explicit expression on regular functions is

Aφ(x) = 1

2
Tr [QD2φ] + 〈Ax + b(x), Dφ〉 ; (5.6)

this fact is recalled in Lemma5.37.
The original HJB equation (5.1) can be seen as a perturbation of (5.4) and, by for-

mally applying the variation of parameters formula, it can be written in the following
integral (mild) form

u(t, x) = PT−t [g](·) +
∫ T

t
Ps−t [l(s, ·) + F (s, ·, Du(s, ·))] (x)ds. (5.7)

To prove the existence and uniqueness of mild solutions in spaces of continuous
functions we needed, as a key assumption, a smoothing property for the transition
semigroup Pt of the following form1: there exist C > 0 and θ ∈ (0, 1) such that for
every ϕ ∈ Bb(X), s > t , x ∈ H ,

|DPt−s[ϕ](x)| ≤ C(1 ∨ (s − t)−θ)‖ϕ‖0
(or a similar hypothesis which uses an operator G and an integrable function γ,
see Sect. 4.1.1 for details). This assumption was needed to prove the existence and

1See Hypothesis4.76.
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uniqueness of the solutionusing afixedpoint theorem in aBanach spaceof continuous
and differentiable functions (see e.g. Theorem 4.80).

In the L2 setting, an important role is played by the space W 1,2
Q (H,m) which

is, formally, the Sobolev space of functions which admit a weak derivative in
L2
(
H,B,m

)
, endowed with the norm

|φ|2
W 1,2

Q
=
∫

H
|φ|2dm +

∫

H

∣
∣Q1/2Dφ

∣
∣2 dm.

In fact, the definition of such a space is more complicated (see Definition5.11) due
to the fact that the operator Q1/2D is not assumed to be closable in L2

(
H,B,m

)
.

We work in this framework because Q1/2D is not closable in some relevant cases,
such as, for example, in the case of delay equations (see Sect. 5.6). The existence
and uniqueness result is found by applying a fixed point argument in the space

L2
(
0, T ;W 1,2

Q (H,m)
)
(see Theorem5.35). In this new context a milder smooth-

ing property is required (see estimate (5.36) in Proposition5.20) and, thanks to the
properties of the invariant measure m, it can be verified without strong requirements
on the data A, b and Q. This is the main reason why the L2 theory developed in the
present chapter allows us to deal with equations and control problems which cannot
be treated by the techniques of Chap. 4.

More precisely:

(i) We do not need any smoothing properties of the Ornstein–Uhlenbeck semi-
group associated with (A, Q) (see Remark5.21). Therefore we do not impose
any restrictions on Q: it is possible, for example, to take Q a one-dimensional
projection.

(ii) g, l ∈ L2(H,B,m): they are not necessarily continuous, bounded or with poly-
nomial growth.

This generality comes at a price. Similarly toChap. 6 and differently fromChap.4,we
can only dealwith a class ofHamiltonians of the form F (t, x, p) = F0

(
t, x, Q1/2 p

)
.

If we look at this restriction in terms of the optimal control problems we can study,
it means that we are only able to deal with problems where the control appears in the
state equation via a term of the form Q1/2R(t, x, a(t)) (see (5.78)). This assumption
may seem restrictive, but in fact it is quite natural in many control problems when
the operator Q is degenerate. It implies that the system should be controlled by
feedback taking values in the same space in which the noise disturbing the system
is concentrated. Let us note that if Q1/2 = 0 then both the control and the noise
disappear. A natural interpretation of this fact is that the uncontrolled system is in
fact deterministic and the noise is brought into the system only by the control.

Another drawback is the fact that mild solutions found in the setting of this chapter
possess weaker regularity properties due to the choice of the spaces. In particular, if
Q is very degenerate (e.g. a finite-dimensional projection) the measure substantially
ignores most of the space H . However, despite this weak regularity, when (5.7) is the
HJB equation related to a stochastic optimal control problem, one can characterize
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its solution as the value function of the problem and use it to perform the optimal
synthesis.

5.2 Preliminaries and the Linear Problem

5.2.1 Notation

As usual we denote by H a real separable Hilbert space with the norm | · | and the
inner product 〈·, ·〉 and by Q an element of L+(H). B(H) is the Borel σ-field of H .
The function spaces C(H),UC(H), Cb(H),UCb(H), Cb(H, H), Ck

b (H), Ck
0 (Rn),

… are defined in Appendix A.

5.2.2 The Reference Measure m and the Main Assumptions
on the Linear Part

We will work under the following set of assumptions.

Hypothesis 5.1 (A) A is the generator of a strongly continuous semigroup{
et A, t ≥ 0

}
on a real separable Hilbert space H . M ≥ 1 and ω ∈ R are two

real constants such that

∥
∥et A

∥
∥ ≤ Meωt , ∀t ≥ 0.

(B) Q ∈ L+(H), and μ0 = (
�,F , {Ft }t≥0,P,WQ

)
is every generalized reference

probability space (see Definition1.100).
(C) esAQesA

∗ ∈ L1(H) for all s > 0. Moreover, for every t ≥ 0,

∫ t

0
Tr
[
esAQesA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAQesA

∗
ds,

is of trace class for every t ≥ 0.
(D) The function b : H → H is continuous and Gâteaux differentiable, its Gâteaux

differential ∇b is strongly continuous and

‖∇b‖0 = sup
x∈H

‖∇b(x)‖ ≤ K < +∞.
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Proposition 5.2 Let Hypothesis 5.1 be satisfied. Then:

(i) The equation

⎧
⎨

⎩

dX (s) = (AX (s) + b(X (s))) ds + dWQ(s), s ∈ [0, T ],

X (0) = x ∈ H
(5.8)

has a unique mild solution X (·; x) ∈ Hμ0
p (0, T ; H) (see Definition1.126) for all

p ≥ 1. We also have
lim
s→0

E |X (s, x) − x |2 = 0. (5.9)

(ii) There exists a B([0, T ]) ⊗ B(H) ⊗ F/B(H)-measurable function

{ [0, T ] × H × � → H
(s, x,ω)→X̃(s; x)(ω)

such that, for every x ∈ H, X̃(·; x) is a version of the solution X (·; x). Thus in
the future we will not make a distinction between X (·; x) and X̃(·; x).

Proof Part (i), except (5.9), is proved in Theorem 1.147 (observe that b is globally
Lipschitz continuous thanks to Hypothesis 5.1-(D) and Theorem D.18). To prove
(5.9) we can observe that, using Hypotheses 5.1-(A) and (D),

E |X (s, x) − x |2 ≤ 3
∣
∣
∣esAx − x

∣
∣
∣
2 + 3C

∫ s

0
E

(
1 + |X (r)|2

)
dr

+ 3E
∣
∣
∣W A(s)

∣
∣
∣
2
, s ∈ [0, T ],

where C is a constant depending only on b. The first term converges to zero when
s → 0, the second goes to zero because X (·; x) ∈ Hμ0

2 (0, T ; H) while the term
concerning the stochastic convolution converges to zero thanks to its mean square
continuity ensured by Proposition1.144.

Part (ii) is proved in Proposition5.44 for a more general controlled version of the
equation (even though Proposition5.44 is in a later section, its proof is independent).

�

The transition semigroup Ps, s ≥ 0, associated to (5.8) is defined for every φ ∈
Cb(H) as2 {

Ps[φ] : H → R

Ps[φ] : x→Eφ(X (s; x)), (5.10)

2In Sect. 1.6 we define the semigroup directly on all the functions of Bb(H). The arguments of the
present chapter are more transparent if we start by defining the semigroup only on Cb(H). Since it
will be extended (Proposition5.9) to L p(H,B,m), and (Lemma5.10), for any φ ∈ L p(H,B,m),
Pt [φ](x) = Eφ(X (t; x)), the two approaches are equivalent.
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where X (s; x) is the solution of (5.8) at time s. It follows from Proposition1.147
that Ps(Cb(H)) ⊂ Cb(H) (see Theorem1.162) and Ps has the semigroup property
in Cb(H) as was remarked in Corollary1.158. Moreover, Ps does not depend on μ0

so the theory developed in this chapter is independent of the choice of μ0.
In the setting described by Hypothesis5.1, we can introduce the notion of an

invariant measure.

Definition 5.3 (Invariant measure) Let Pt be the transition semigroup introduced
in (5.10). A probability measure m on (H,B(H)) is said to be an invariant measure
for (5.8) if, for any φ ∈ Cb(H) and t ≥ 0,

∫

H
Pt [φ](x)dm(x) =

∫

H
φ(x)dm(x). (5.11)

If Hypothesis5.1 holds, we formulate the following assumption.

Hypothesis 5.4 There exists an invariant measure m for Eq. (5.8). Moreover,

∫

H
|x |2 dm(x) < ∞. (5.12)

We denote by B the completion (see Sect. 1.1.1) of the Borel σ-field B(H) with
respect to the measure m.

Notation 5.5 L p spaces have been introduced in Sect. 1.1.3. In order to distinguish
the norms in L p(H,B,m) and L p(H,B,m; H) (i.e., the L p norms computed using
the measurem) from other L p-norms that appear in this chapter, we will denote them
by | · |L p

m
and by | · |L p

m,H
.

We first recall some density results that we will use frequently.

Lemma 5.6 Suppose that A satisfies Hypothesis 5.1 (A). Denote by EA(H) the lin-
ear subspace of UCb(H) given by the linear span of the set of all real parts of
the functions ei〈x,h〉 for some h ∈ D(A∗). Then, for any f ∈ UCb(H) there exists a
multi-sequence

(
fn1,n2,n3

)

n1,n2,n3∈N in EA(H) such that

‖ fn1,n2,n3‖0 ≤ ‖ f ‖0, for any n1, n2, n3 ∈ N

and
lim

n1→+∞ lim
n2→+∞ lim

n3→+∞ fn1,n2,n3(x) = f (x), for any x ∈ H.

Proof See Lemma 6.2.3, p. 112 in [179]. �

Lemma 5.7 Given any bounded measure m̄ defined on the Borel σ-field B(H) of
H, denoting by Bm̄ the completion of B(H) with respect to m̄, we have the following
density results:
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(i) UCb(H) and UCk
b (H), for any integer k > 0, are dense in L2(H,Bm̄, m̄).

(ii) Let A be the generator of a C0-semigroup on H and let A∗ be its adjoint. Then
FCk,A∗

0 (H), defined in (A.4), is dense in L2(H,Bm̄, m̄) for any integer k ≥ 0.
(iii) For every ψ ∈ L2(0, T ; L2(H,Bm̄, m̄)) there exists a sequence ψn : [0, T ] →

FC2,A∗
0 (H) such that

⎧
⎨

⎩

ψn ∈ C ([0, T ],UCb(H)) ,

Dψn, A∗Dψn ∈ C ([0, T ],UCb(H, H)) ,

D2ψn ∈ C ([0, T ],UCb(H,L1(H))) ,

and
ψn

n→+∞−→ ψ in L2
(
0, T ; L2

(
H,Bm̄, m̄

))
.

Proof Part (i): UCb(H) is dense in L2(H,Bm̄, m̄) thanks to Theorem1.34. The
density of UCk

b (H) in L2(H,Bm̄, m̄) for k > 0 will be proved below.
Part (ii):Given f ∈ L2(H,Bm̄, m̄) and anyn ∈ Nweneed tofind f̃n ∈ FCk,A∗

0 (H)

with | f − f̃n|L2(H,Bm̄ ,m̄) ≤ 1
n . Thanks to the already recalled density of UCb(H)

in L2(H,Bm̄, m̄) we can suppose that f ∈ UCb(H) and we can then consider an
approximating multi-sequence fn1,n2,n3 ∈ EA(H) from Lemma5.6. We define, for
any x ∈ H , for n1 ∈ N, fn1(x) := limn2→+∞ limn3→+∞ fn1,n2,n3(x) and, for n1, n2 ∈
N, fn1,n2(x) := limn3→+∞ fn1,n2,n3(x) so that, pointwise, f = limn1→+∞ fn1 . Using
Egoroff’s Theorem (Lemma1.50-(iv))we canfind n1 such that | f − fn1 |L2(H,Bm̄ ,m̄) ≤
1
6n , then n2 such that | fn1 − fn1,n2 |L2(H,Bm̄ ,m̄) ≤ 1

6n and n3 such that
| fn1,n2 − fn1,n2,n3 |L2(H,Bm̄ ,m̄) ≤ 1

6n . We denote such an fn1,n2,n3 by fn and we have
| f − fn|L2(H,Bm̄ ,m̄) ≤ 1

2n . The function fn is a linear combination of real parts of func-

tions ei〈x,hi 〉 for some hi ∈ D(A∗), i = 1, . . . , kn , so it does not belong toFCk,A∗
0 (H)

and we need to modify it.
Let λ : R → [0, 1] be a C∞ function compactly supported in (−2, 2) and identi-

cally equal to 1 in the interval [−1, 1]. We choose δ > 0 and we replace the real part
of each term ei〈x,hi 〉 in the linear combination by the real part of ei〈x,hi 〉λ (δ 〈x, hi 〉).
We call the new function f̃n . It belongs toFCk,A∗

0 (H) and if we choose δ small enough
we have | fn − f̃n|L2(H,Bm̄ ,m̄) ≤ 1

2n . It then follows that | f − f̃n|L2(H,Bm̄ ,m̄) ≤ 1
n .

The density of UCk
b (H) claimed in Part (i) now follows from Part (ii).

The proof of Part (iii) follows by applying the results of Part (ii) to the Hilbert

space H̃ := R × H , with the operator Ã :=
(
1 0
0 A

)

(having domain R × D(A))

and the measure m̃ := 1[0,T ]dt ⊗ m̄, where dt is the Lebesgue measure on R. �

Lemma 5.8 The following results hold:

(i) If b satisfies Hypothesis 5.1-(D), there exists a sequence (bn) ⊂C2(H, H) such
that

sup
n

‖Dbn‖0 ≤ K < +∞, (5.13)
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and for all h, x ∈ H and for any sequence xn of elements of H converging to x,

lim
n→∞ bn(xn) = b(x), lim

n→∞ Dbn(xn)(h) = ∇b(x)(h).

(ii) If b satisfies Hypothesis 5.1-(D) and ‖b‖0 < +∞, then the sequence in Part (i)
can be chosen such that

sup
n

‖bn‖0 ≤ l < +∞. (5.14)

(iii) Given φ ∈ C1
b(H), there exists a sequence (φn) ⊂ UC2

b (H) such that

sup
n

‖φn‖0 ≤ l < +∞, sup
n

‖Dφn‖0 ≤ l < +∞, (5.15)

and, for all x ∈ H,

lim
n→∞ φn(x) = φ(x), lim

n→∞ Dφn(x) = Dφ(x).

Proof We only prove (i) since the proofs of (ii) and (iii) use the same arguments.
The proof is based on a standard procedure of mollification over finite-dimensional
subspaces (see e.g. the proof of Lemma 1.2, p. 164 of [486]). Take an orthonormal
basis {en} of H and, for z ∈ H , let z = ∑∞

i=1 zi ei . For every n ∈ N let Pn be the
orthogonal projection onto the n-dimensional subspace of H spanned by {e1, . . . en}.
Define

�n : H → R
n, �nz = (z1, . . . , zn),

Qn : Rn → H, Qn(z1, . . . , zn) = z1e1 + · · · + znen,

and recall that Pn = Qn ◦ �n . Given a family of C∞ mollifiers ηn : Rn → R with
support in B(0, 1/n), we define

bn(z) =
∫

Rn

b(Qny)ηn(�nz − y)dy =
∫

Rn

b(Pnz − Qny)ηn(y)dy.

From the first equality above, we easily conclude that bn ∈ C∞(H, H). We have, in
particular,

bn(xn) =
∫

Rn

b(Pnxn − Qny)ηn(y)dy.

From this equation, the fact that Pnxn → x and the continuity of b we can conclude
that

lim
n→∞ bn(xn) = b(x).

Fix z ∈ H . For any h ∈ H with |h| = 1 and τ > 0 we have
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bn(z + τh) − bn(z)

τ
= 1

τ

∫

Rn

[b(Pn(z + τh) − Qny) − b(Pnz − Qny)] ηn(y)dy

=
∫

Rn

[∫ 1

0
∇b(Pn(z + rτh) − Qny)(h)dr

]

ηn(y)dy,

(5.16)

where in last equality we used Theorem D.18. In particular,

bn(xn + τh) − bn(xn)

τ
=
∫

Rn

[∫ 1

0
∇b(Pn(xn + rτh) − Qny)(h)dr

]

ηn(y)dy.

(5.17)
Since bn ∈ C∞(H, H) the left-hand side of the previous equality converges, when

τ → 0, to Dbn(xn)(h) while, thanks to the strong continuity of ∇b, the right-hand
side converges to

∫

Rn ∇b(Pnxn − Qny)(h)ηn(y)dy. Taking the limits of the two
expressions when n → ∞ we get (again thanks to the strong continuity of ∇b)

lim
n→∞ Dbn(xn)(h) = ∇b(x)(h).

Thanks to the last equality in (5.16), for any z ∈ H , we also have
∣
∣
∣
bn(z+τh)−bn(z)

τ

∣
∣
∣ ≤

‖∇b‖0 and then, letting τ → 0, we obtain

sup
n

‖Dbn‖0 ≤ ‖∇b‖0.
�

Proposition 5.9 Let p ∈ [1,+∞). Assume that Hypotheses 5.1 and 5.4 hold. Then
Pt , defined on Cb(H) by (5.10), extends to a strongly continuous semigroup of con-
tractions on L p(H,B,m). Moreover, for any φ ∈ L p(H,B,m) and t ≥ 0, the rela-
tion (5.11) holds.

Proof We follow the proof of Theorem 10.1.5, p. 209 of [179], where the statement is
proved for theOrnstein–Uhlenbeck case. Givenφ ∈ Cb(H), for any x ∈ H , thanks to
Jensen’s inequality we have |Pt [φ](x)|p ≤ |Pt [|φ|p] (x)|. Thus, sincem is invariant,

∫

H
|Pt [φ](x)|pdm(x) ≤

∫

H
|Pt

[|φ|p] (x)|dm(x) =
∫

H
|φ|p(x)dm(x),

where the last expression is finite since φ is bounded and m is a finite measure.
Thanks to the density of Cb(H) in L p(H,B,m) (Theorem1.34), Pt extends to a
contraction on L p(H,B,m) for any t ≥ 0.

To prove the strong continuity we observe first that it follows easily from the
Lebesgue dominated convergence theorem and (5.9) that for every φ ∈ Cb(H) and
x ∈ H , we have limt→0+ Pt [φ](x) = φ(x). Moreover, since ‖Pt [φ]‖0 ≤ ‖φ‖0, we
then obtain, again using the Lebesgue dominated convergence theorem,

lim
t→0+

Pt [φ] = φ in L p(H,B,m).
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Since Pt is a semigroup of contractions on L p(H,B,m) this implies strong continuity
for every φ ∈ L p(H,B,m).

To show the last claim, let φ ∈ L p(H,B,m) and let φn ∈ Cb(H) be a sequence
such that φn → φ in L p(H,B,m). We have, in particular,

∫

H φn(x) dm(x) →
∫

H φ(x) dm(x). Moreover, since for any t ≥ 0, Pt ∈ L(L p(H,B,m)), Pt [φn] →
Pt [φ] in L p(H,B,m) and, in particular,

∫

H Pt [φn](x) dm(x) → ∫

H Pt [φ](x) dm(x),
so (5.11) follows letting n → ∞ because it holds for the elements of Cb(H). �

In the previous proposition we extended, for any t ≥ 0, the operator Pt to the
whole space L p(H,B,m) by continuity. In other words, given φ ∈ L p(H,B,m),
Pt [φ] is defined as the limit in L p(H,B,m) of Pt [φn], where φn is a (any) sequence
of elements of Cb(H) converging to φ in L p(H,B,m). In the following lemma we
show that this limit is indeed equal to Eφ(X (t; x)) (which will be proved to be a
well-defined expression) even for non-bounded and non-Borel measurable elements
of L p(H,B,m).

Lemma 5.10 Let p ∈ [1,+∞). Assume thatHypotheses 5.1 and 5.4 hold. Consider
φ ∈ L p(H,B,m) and t ∈ [0, T ]. Then the function

{
H × � → R

(x,ω)→φ(X (t; x)(ω))

is B(H) ⊗ F/B(R)-measurable, where B(H) ⊗ F is the completion of the σ-field
B(H) ⊗ F w.r.t. the measure m ⊗ P. Moreover, x→Eφ(X (t; x)) is a B/B(R)-
measurable function and

Pt [φ](x) = Eφ(X (t; x)) for m-a.e. x ∈ H. (5.18)

Proof Suppose first that φ is Borel-measurable and φ ≥ 0. By Proposition5.44
we can assume that (t, x,ω)→φ(X (t; x)(ω)) is a B[0, T ] ⊗ B(H) ⊗ F/B(H)-
measurable function and then (see Lemma1.8(iv)), for any t ∈ [0, T ], (x,ω)→
φ(X (t; x)(ω)) is B(H) ⊗ F/B(H)-measurable so that the function (x,ω)→φ
(X (t; x)(ω)), being the composition of a B(H) ⊗ F/B(H)-measurable function
and a B(H)/B(R)-measurable function, is B(H) ⊗ F/B(R)-measurable. The
(Borel) measurability of x→Eφ(X (t; x)) then follows (see e.g. Lemma 1.26, p. 14 of
[370]). Moreover, if we consider φn := φ ∧ n, thanks to the monotone convergence
theorem, we have

Eφ(X (t; x)) = lim
n→∞Eφn(X (t; x)) = lim

n→∞ Pt [φn](x), x ∈ H

(the limit can also be +∞ for certain x). Since (again by monotone convergence)
we have limn→∞ φn := φ in L p(H,B,m), we also have

lim
n→∞ Pt [φn] = Pt [φ]
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in L p(H,B,m) and then, extracting if necessary a subsequence, m-a.e. Thus we
obtain (5.18).

As a second step we consider a positive φ ∈ L p(H,B,m). By Lemma1.16 we
can find φ̃ ∈ L p(H,B(H),m) and V ∈ B(H),m(V ) = 0 such that φ(x) = φ̃(x) for
any x ∈ H \ V . Denoting by 1V the characteristic function of V we have

∫

H
P {X (t; x)(ω) ∈ V } dm(x) =

∫

H
E [1V (X (t; x))] dm(x)

=
∫

H
Pt [1V ](x)dm(x) =

∫

H
1V (x)dm(x) = 0. (5.19)

So the functions (x,ω)→φ(X (t; x)(ω) and (x,ω)→φ̃(X (t; x)(ω) disagree only
on a subset of H × � which has m ⊗ P-measure 0 and thus, since we have already
observed that (x,ω)→φ̃(X (t; x)(ω) is F ⊗ B/B(R)-measurable, (x,ω)→φ
(X (t; x)(ω) isF ⊗ B/B(R)-measurable.

Therefore (see e.g.Theorem 2.39, p. 68of [267])E [φ(X (t; x))] = E

[
φ̃(X (t; x))

]

is well defined for m-a.e. x ∈ H and the function x→E

[
φ̃(X (t; x))

]
is B/B(R)-

measurable. However, for m-a.e. x ∈ H , Pt [φ](x) = Pt [φ̃](x) = E

[
φ̃(X (t; x))

]
=

E [φ(X (t; x))], which establishes (5.18).
The proof for a non-positive function follows by the previous arguments after

decomposing the function into the sum of its positive and negative parts. �

5.2.3 The OperatorA

From now on we fix the constant p of Proposition5.9 and Lemma5.10 equal to 2
and work in the space L2(H,B,m).

Let Hypotheses5.1 and 5.4 be satisfied and let Pt be defined as in (5.10). We
denote byA the generator of Pt as a strongly continuous semigroup on L2(H,B,m)

(see Proposition5.9). Its domain is denoted by D(A)⊂L2(H,B,m).
Wewill often use the elements of the spaceFC2,A∗

0 (H) to approximate less regular
functions and it will be useful to know how to calculate explicitly the operator A
on them. Indeed, as proved in Lemma5.37, FC2,A∗

0 (H)⊂D (A) and for any φ ∈
FC2,A∗

0 (H) we have

Aφ(x) = 1

2
Tr
[
QD2φ(x)

]+ 〈
x, A∗Dφ(x)

〉+ 〈b(x), Dφ(x)〉 . (5.20)
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5.2.4 The Gradient Operator DQ and the Space W1,2
Q (H,m)

Let Q be an operator satisfying Hypothesis5.1-(B). We then introduce the following
operator DQ .

Definition 5.11 (The operator DQ and the space W 1,2
Q (H,m)) We define the oper-

ator
DQφ := Q1/2Dφ, φ ∈ C1

b(H), (5.21)

where Dφ denotes the Fréchet derivative of φ.
For φ ∈ C1

b(H) we define the norm

|φ|2
W 1,2

Q
= |φ|2L2

m
+ ∣
∣DQφ

∣
∣2
L2
m,H

.

The completion of C1
b(H) with respect to the norm |·|W 1,2

Q
will be denoted by

W 1,2
Q (H,m).

The space W 1,2
Q (H,m) may be identified with the subspace of L2(H,B,m) ×

L2(H,B,m; H) which consists of all pairs

(ψ, �) ∈ L2(H,B,m) × L2(H,B,m; H)

such that there exists a sequence (φn) ⊂ C1
b(H) with the property

φn → ψ, in L2(H,B,m)

and
DQφn → �, in L2(H,B,m; H).

In the cases where the operator DQ is closable (as an unbounded operator
from its domain C1

b(H) ⊂ L2(H,B,m) to L2(H,B,m; H)), for any two pairs
(ψ1, �1), (ψ2, �2) ∈ W 1,2

Q (H,m) such that ψ1 = ψ2 in L2(H,B,m) we also have

�1 = �2, so that W
1,2
Q (H,m) is naturally embedded in L2(H,B,m).

If DQ is not closable then we can find a sequence (φn) ⊂ C1
b(H) such that

φn → 0 in L2(H,B,m) and DQφn → � �= 0, in L2(H,B,m; H).

Therefore, elements of W 1,2
Q (H,m) cannot be identified, in general, with functions

of L2(H,B,m) (e.g., the above element (0,�)).3 This means that the structure of

3For this reason, since we are interested in a definition that also works when the operator DQ is
non-closable, we do not work in the space W 1,2(H,m) defined (see e.g. Chap.9, p. 196 of [179])
as the linear space of all functions φ ∈ L2(H,B,m) such that Dφ ∈ L2(H,B,m; H).
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the Sobolev space changes significantly when we want to take into account the case
of non-closable DQ .

Observe that, in any case, even when DQ is not closable, it can be extended
to a well-defined continuous operator from W 1,2

Q (H,m) (endowed with the norm

described in Definition5.11) to L2(H,B,m; H). Indeed, if |φn|2W 1,2
Q

→ 0 then
∣
∣DQφn

∣
∣2
L2
m,H

→ 0. We denote the continuous extension of DQ from W 1,2
Q (H,m) to

L2(H,B,m; H) again by DQ . When DQ is not closable, considering the charac-
terization of W 1,2

Q (H,m) as a subspace of L2(H,B,m) × L2(H,B,m; H) and the
notation described above, we have DQ(ψ, �) = �.

The notation we use here is a little different from the one used in Chap.4. Indeed,
to be consistent with the notation of Chap.4, we should write DQ1/2

instead of DQ .
We choose to use this notation for two reasons: it is simpler and, even if not very
intuitive, it is fairly standard in the literature.

Sometimes in the literature the notation DQ is used for different operators. We
want to underline in particular the difference with respect to Chap.9 of [179] where
DQ is used for the Malliavin derivative, which is again an operator of the form
Q

1
2 D for some Q ∈ L+

1 (H). The difference is that, in our case Q is the covariance
operator of the Wiener process, while in [179] it is the covariance operator of the
(Gaussian) reference measure. When b = 0 and ω < 0, the operator used in [179] is
Q∞ = ∫ +∞

0 esAQesA
∗
ds.

Remark 5.12 When (5.8) is linear (if b = 0) and ω < 0, the problem of closability
of DQ can be approached using some characterizations that can be found in the liter-
ature. A negative result ensuring the non-closability of the operator is, for example,
Theorem 3.5 of [299], which allows us to prove that DQ is not closable, for example,
in the two cases recalled in Sect. 5.6.

When the operator Q is injective, a characterization of closability is given by The-
orem 6.1 of [299], which shows that the closability of the operator DQ is equivalent
to the closability of the operator Z : D(Z)⊂H → H given by

{
D(Z) = Q1/2

∞ (H)

Z
(
Q1/2

∞ x
)

= Q
1
2 x .

In the particular case considered, for example, in [3, 4, 125] (see also Exam-
ple 4.46 and Sect. 4.8.3.1) the generator of the semigroup is

Ax =
+∞∑

n=1

−αn 〈en, x〉 en, x ∈ D(A),

for some orthonormal basis {en} and 0 < α1 ≤ α2 ≤ α3 . . . . Moreover Q is given
by
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Qx =
+∞∑

i=n

qn 〈en, x〉 en, x ∈ H,

for a sequence of positive eigenvalues qn . The expression for Z is given, for any
y = Q1/2

∞ x , by

Zy = Q
1
2 Q−1/2

∞ y =
+∞∑

n=1

√
qn

√
2αn

qn
〈en, y〉 en

=
+∞∑

n=1

−√2αn 〈en, y〉 en = √
2(−A)1/2y.

Thus, since Q1/2
∞ (H)⊂D

(
(−A)1/2

)
and since (−A)1/2 is closed (see Theorem B.53-

(i)), Z admits a closed extension and so (see Theorem 5.4(a), p. 91 of [569])
it is closable. Therefore, thanks to Theorem 6.1 of [299], the operator DQ is
closable. �

5.2.5 The OperatorR

Let Q be an operator satisfying Hypothesis5.1-(B) and let DQ be defined as in
Definition5.11.We introduce and study here the properties of the operatorR defined
below (Definition5.19).

We begin by studying the regularity of the solution X (·; x) of (5.8) with respect
to the initial datum. We use Proposition6.7. The following lemma specifies it in the
particular case we are interested in.

Lemma 5.13 LetHμ0
2 (0, T ; H)be the spacedefined inDefinition 1.126. LetK : H ×

Hμ0
2 (0, T ; H) → Hμ0

2 (0, T ; H) be a continuous mapping satisfying, for some α ∈
[0, 1),

|K(x, X) − K(x,Y )|Hμ0
2 (0,T ;H) ≤ α |K(x, X) − K(x,Y )|Hμ0

2 (0,T ;H) (5.22)

for all x ∈ H and X,Y ∈ Hμ0
2 (0, T ; H). Then:

(i) There exists a unique mapping ϕ : H → Hμ0
2 (0, T ; H) such that

ϕ(x) = K(x,ϕ(x)), for every x ∈ H,

and it is continuous.
(ii) Suppose that, for any (x, X) ∈ H × Hμ0

2 (0, T ; H) and for any h ∈ H there
exists the directional derivative of K with respect to x in the direction h and
that, for any fixed h, the mapping
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{
H × Hμ0

2 (0, T ; H) → Hμ0
2 (0, T ; H)

(x, X)→∇xK(x, X; h)

is continuous. Assume that, for any (x, X), h→∇xK(x, X; h) is continuous from
H toHμ0

2 (0, T ; H). Suppose also that for any (x, X) ∈ H × Hμ0
2 (0, T ; H) and

for anyY ∈ Hμ0
2 (0, T ; H) there exists the directional derivative ofKwith respect

to X in the direction Y and that, for any fixed Y , the mapping

{
H × Hμ0

2 (0, T ; H) → Hμ0
2 (0, T ; H)

(x, X)→∇XK(x, X; Y )

is continuous. Assume that, for any (x, X), Y→∇XK(x, X; Y ) is continuous
from Hμ0

2 (0, T ; H) to Hμ0
2 (0, T ; H). Then, for any x ∈ H, there exists the

Gâteaux derivative ∇ϕ(x). Moreover, (x, h)→∇ϕ(x)(h) is continuous as a
mapping from H × H toHμ0

2 (0, T ; H) and it satisfies the equation

∇ϕ(x)(h) = ∇xK(x,ϕ(x); h) + ∇XK(x,ϕ(x); ∇ϕ(x)(h)), x, h ∈ H.

Proof This is a particular case of Proposition6.7. In the claim of part (ii) we also
made use of Lemma6.4 (in a two-variable version) to verify the hypothesis “F ∈
G1,1(X × Y ; X)” of Proposition6.7 for our spaces and of Lemma6.3 to derive the
continuity properties of ∇ϕ. �

Lemma 5.14 Let Hypothesis 5.1 be satisfied and let x, h ∈ H. Denote by X (·; x)
the solution of (5.8). Then:

(i) X (·; x) is Gâteaux differentiable as a mapping from H to Hμ0
2 (0, T ; H) and

x→∇X (·; x) is strongly continuous. For any h ∈ H the (directional derivative)
process ζx,h(·) := ∇X (·; x)h is the unique mild solution inHμ0

2 (0, T ; H) of the
following equation

{
dζx,h(s)

ds = (A + ∇b(X (s; x)) ζx,h(s)
ζx,h(0) = h

(5.23)

on [0, T ]. The process ζx,h(·) has P-a.s. continuous trajectories.
(ii) There exist universal constants α, a > 0, α also depends on K , such that

∣
∣ζx,h(s)

∣
∣ ≤ aeαs |h|

for any s ≥ 0. Therefore the solution to (5.23) defines, for any x ∈ H, ω ∈ �

and s ≥ 0, a bounded operator ζx (s) : H → H, ζx (s)h = ζx,h(s).
(iii) For any h ∈ H there exists a B([0, T ]) ⊗ B(H) ⊗ F/B(H)-measurable func-

tion { [0, T ] × H × � → H
(s, x,ω)→ζ̃x,h(s)(ω)

(5.24)
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such that, for every x ∈ H, ζ̃x,h(·) is a version of ζx,h(·). Thus in the future we
will not make a distinction between ζ̃x,h(·), ζx,h(·), and ∇X (·; x)h.

Proof Since other similar results appearing in the book are proved for slightly dif-
ferent sets of hypotheses,4 we provide the proofs.

To prove part (i), except for the P-a.s. continuity of the trajectories of ζx,h(·), we
use Proposition6.7 in the particular case stated in Lemma5.13. The mapping K is
defined as

K(x, X)(s) = esAx +
∫ s

0
e(s−r)Ab(X (r))dr + W A(s), s ∈ [0, T ],

whereW A is defined in (1.64). It is shown in the proof of Proposition1.147 that if T
is small enough then (5.22) is satisfied. The joint continuity of K is straightforward.

To verify the hypotheses of part (ii) of Lemma5.13, we follow the arguments used
in Sect. 9.1.1 of [180] (we repeat them because our hypotheses are a little different).
The directional derivatives with respect to x are not a problem since one can easily
see that ∇xK(x, X; h) = e·Ah which is jointly continuous in all three variables.

As regards the directional derivative ∇XK(x, X; Y ), we begin by showing that
for any X,Y ∈ Hμ0

2 (0, T ; H) and any x ∈ H ,

∇XK(x, X; Y )(s) =
∫ s

0
e(s−r)A∇b(X (r))Y (r)dr, s ∈ [0, T ].

Indeed, we have

sup
s∈[0,T ]

E

∣
∣
∣
∣
1

ε
(K(x, X + εY ) − K(x, X)) (s) −

∫ s

0
e(s−r)A∇b(X (r))Y (r)dr

∣
∣
∣
∣

2

= sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A

[
1

ε
(b(X (r) + εY (r)) − b(X (r)) − ∇b(X (r))Y (r))

]

dr

∣
∣
∣
∣

2

.

Using Theorem D.18 the last expression above becomes

sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A

[∫ 1

0
∇b(X (r) + θεY (r))Y (r) − ∇b(X (r))Y (r)dθ

]

dr

∣
∣
∣
∣

2

≤ T
(
M max{eωT , 1}

)2
E

∫ T

0

[∫ 1

0
|∇b(X (r) + θεY (r))Y (r) − ∇b(X (r))Y (r)|2 dθ

]

dr

which, thanks to the boundedness of ∇b and its strong continuity, converges to 0
when ε → 0 by the Lebesgue dominated convergence theorem. We now prove the
continuity properties of ∇XK(x, X; Y ). We first fix (x, X) and we consider Yn → Y

4In particular, in Propositions4.61 and 6.10 we work in L p
P (�;C([0, T ], H)), while here we use

Hμ0
2 (0, T ; H). Indeed, in the mentioned propositions it is assumed that Tr

[
esAQesA

∗] ≤ Cβs−2β

for some β ∈ [0, 1/2) and Cβ > 0.
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inHμ0
2 (0, T ; H). We have, using Hypothesis5.1 and Hölder’s inequality,

|∇XK(x, X; Yn) − ∇XK(x, X; Y )|2Hμ0
2 (0,T ;H)

= sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A∇b(X (r))(Yn(r) − Y (r))dr

∣
∣
∣
∣

2

≤ K 2
(
M max{eωT , 1}

)2
sup

s∈[0,T ]
sE
∫ s

0
|Yn(r) − Y (r)|2dr ≤ C |Yn − Y |2Hμ0

2 (0,T ;H)
→ 0

as n → +∞. To prove the strong continuity property we fix Y and suppose, to
the contrary, that there are δ > 0 and a sequence (xn, Xn) such that xn → x in H ,
Xn → X inHμ0

2 (0, T ; H) but |∇XK(xn, Xn; Y ) − ∇XK(x, X; Y )|2Hμ0
2 (0,T ;H)

≥ δ for
any n ∈ N. We have

|∇XK(xn, Xn; Y ) − ∇XK(x, X; Y )|2Hμ0
2 (0,T ;H)

= sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A [∇b(Xn(r)) − ∇b(X (r))] Y (r)dr

∣
∣
∣
∣

2

≤ CE

∫ T

0
|[∇b(Xn(r)) − ∇b(X (r))] Y (r)|2 dr,

where C is a constant depending only on M , ω, T and K . For every n ∈ N the inte-
grand in the last line above is dominated by 4K 2|Y (r)|2, moreover, since Xn → X
in Hμ0

2 (0, T ; H) we can extract a subsequence Xnk which converges to X , dr ⊗ P-
a.e., and we can conclude using the Lebesgue dominated convergence theorem
that

∣
∣∇XK(xnk , Xnk ; Y ) − ∇XK(x, X; Y )

∣
∣2
Hμ0

2 (0,T ;H)
→ 0 as k → +∞, which con-

tradicts our hypothesis.
Thus part (i) follows fromLemma5.13. The continuity of the trajectories of ζx,h(·)

is a consequence of Lemma1.115.
To prove part (ii) we observe that, thanks to Hypothesis5.1 (A) and (D), we have,

for all s ∈ [0, T ],
∣
∣ζx,h(s)

∣
∣ ≤ ∣

∣M max{eωT , 1}∣∣ |h| + M max{eωT , 1}
∫ s

0
K |ζx,h(r)|dr

and hence the conclusion follows from Gronwall’s lemma (Proposition D.29).
To prove the claim of part (iii), we use the result of Proposition5.44 (even though

Proposition5.44 is in a later section, its proof is independent). Let (s, x,ω)→X̃(s; x)
(ω) be the B([t, T ]) ⊗ B(H) ⊗ F/B(H)-measurable function found in Proposi-
tion5.44 (we consider here the case when t = 0 and R = 0). Observe that, by con-
struction, X̃ satisfies (1.70) for any s ∈ [0, T ], any x, y ∈ H and any ω ∈ � and in
particular it is continuous in the variable x for any choice of (s,ω) ∈ [0, T ] × �.

We denote by ζ̃x,h(·) the unique solution of
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ζ̃x,h(s) = eAsh +
∫ s

0
e(s−r)A∇b(X̃(r; x))ζ̃x,h(r) dr, s ∈ [0, T ].

We remark that ζ̃x,h(s) is defined for every (s,ω) ∈ [0, T ] × �. Since X̃(·; x) is a
version of X (·; x), ζ̃x,h(·) is a version of ζx,h(·). Moreover, we claim that, for any
choice of (s,ω) ∈ [0, T ] × �, ζ̃x,h(s) is continuous in the variable x . To prove this
we fix ω ∈ � and consider x ∈ H and any sequence xn in H converging to x . We
have
∣
∣
∣ζ̃x,h(s)(ω) − ζ̃xn ,h(s)(ω)

∣
∣
∣ ≤ I n1 (s) + I n2 (s)

:=
∣
∣
∣
∣

∫ s

0
e(s−r)A

(
∇b(X̃(r; x))(ω) − ∇b(X̃(r; xn))(ω)

)
ζ̃x,h(r)(ω) dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s

0
e(s−r)A∇b(X̃(r; xn))(ω)

(
ζ̃x,h(r)(ω) − ζ̃xn ,h(r)(ω)

)
dr

∣
∣
∣
∣ , s ∈ [0, T ].

I n1 (s) converges to zero, uniformly for s ∈ [0, T ], thanks to the Lebesgue domi-
nated convergence theorem as Hypothesis 5.1 (A) and (D) and part (ii) give the uni-
form bound and the continuity of x→X̃(r; x)(ω) gives the pointwise convergence.
Thus the convergence (which is indeed uniform in s and thus even stronger than

what we need) of
∣
∣
∣ζ̃x,h(s)(ω) − ζ̃xn ,h(s)(ω)

∣
∣
∣ → 0 follows from Gronwall’s Lemma

(using again Hypothesis5.1 (A) and (D) which gives |e(s−r)A∇b(X̃(r; xn))(ω)| ≤
K
(
M ∨ MeωT

)
independently of s, r, n,ω).

Since ζ̃x,h(·) has continuous trajectories and is a version of ζx,h(·)∈Hμ0
2 (0, T ; H),

it itself belongs toHμ0
2 (0, T ; H). In particular, for every x ∈ H , ζ̃x,h(·) isB([0, T ]) ⊗

F/B(H)-measurable as function of the variables s and ω. Moreover, we proved
that, for any fixed (s,ω) ∈ [0, T ] × �, ζ̃x,h(s)(ω) is a continuous function of the
variable x . It then follows from Lemma1.18, that ζ̃x,h(s)(ω) is B([t, T ]) ⊗ B(H) ⊗
F/B(H)-measurable. �

Lemma 5.15 Assume that Hypotheses 5.1 and 5.4 hold. Fix t ∈ [0, T ]. Given φ ∈
C1
b(H), Pt [φ] ∈ Cb(H), Pt [φ] is Gâteaux differentiable at any x ∈ H and

〈∇Pt [φ](x), h〉 = E
(〈(

ζx (t)
)∗

Dφ(X (t; x)), h〉) , h ∈ H. (5.25)

Moreover, ∇Pt [φ] is strongly continuous and

sup
x∈H

|∇Pt [φ](x)| < +∞. (5.26)

Proof The continuity of Pt [φ] follows from Theorem1.162. Differentiating Pt [φ]
and using its definition we obtain

〈∇Pt [φ](x), h〉 = E 〈Dφ(X (t; x)),∇(X (t; x))h〉
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so (5.25) follows from Lemma5.14. The strong continuity of the differential can be
proved as follows. Given h ∈ H and t > 0, consider a sequence xn of elements of
H converging to x ∈ H . We have

〈∇Pt [φ](x), h〉 − 〈∇Pt [φ](xn), h〉
= E

(〈
Dφ(X (t; x)), ζx,h(t)

〉)− E
(〈
Dφ(X (t; xn)), ζxn ,h(t)

〉)

≤ E
∣
∣
〈
Dφ(X (t; x)) − Dφ(X (t; xn)), ζx,h(t)

〉∣
∣

+E
∣
∣
〈
Dφ(X (t; xn)), ζxn ,h(t) − ζx,h(t)

〉∣
∣

≤ I1(n) + I2(n) := aeαt |h|E |Dφ(X (t; x)) − Dφ(X (t; xn))|
+‖Dφ‖0 E

∣
∣ζxn ,h(t) − ζx,h(t)

∣
∣ ,

where aeαt |h| is introduced in Lemma5.14.
I1(n) converges to 0 when n → +∞ thanks to the dominated convergence the-

orem, the boundedness and the continuity of Dφ and (1.70). Observe that, since
{xn}n∈N is countable, we can find a subset of � of measure 1 where (1.70) holds for
any n (with xn and x as ξ1 and ξ2, respectively, moreover f (r) appearing in (1.70)
is, in our case, just a positive constant independent of r ).

For I2(n) observe that

E
∣
∣ζxn ,h(t) − ζx,h(t)

∣
∣

= E

∣
∣
∣
∣

∫ t

0
e(t−s)A

(∇b(X (s, xn))ζ
xn ,h(s) − ∇b(X (s, x))ζx,h(s)

)
ds

∣
∣
∣
∣

≤ E

[

C
∫ t

0

∣
∣(∇b(X (s, x) − ∇b(X (s, xn))) ζx,h(s)

∣
∣ ds

+C
∫ t

0

∣
∣∇b(X (s, xn))

(
ζx,h(s) − ζxn ,h(s)

)∣
∣ ds

]

≤ E

[

C
∫ t

0

∣
∣(∇b(X (s, x) − ∇b(X (s, xn))) ζx,h(s)

∣
∣ ds

]

+CK
∫ t

0
E
∣
∣
(
ζxn ,h(s)

)− (
ζx,h(s)

)∣
∣ ds (5.27)

for some positive constant C coming from Hypothesis5.1-(A) and with K from
Hypothesis5.1-(D). Thanks to the strong continuity of∇b, the boundedness of ‖∇b‖0
and of |ζx,h(s)| (Hypothesis5.1-(D) and Lemma5.14), (1.70) (recall again that we
can find a subset of � of measure 1 where (1.70) holds for any n) and the dominated
convergence theorem, the term

E

[

C
∫ t

0

∣
∣(∇b(X (s, x) − ∇b(X (s, xn))) ζx,h(s)

∣
∣ ds

]
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converges to 0 when n → ∞. Thus we can apply Gronwall’s Lemma to (5.27) and
conclude that I2(n) converges to 0 when n → +∞. This concludes the proof of the
strong continuity of DPt [φ].

The bound (5.26) follows from the bound for the Gâteaux differential of X proved
in Lemma5.14 and the hypotheses on φ. �

Corollary 5.16 Assume that Hypotheses5.1 and 5.4 hold. For any φ ∈ C1
b(H),

Pt [φ] ∈ W 1,2
Q (H,m). In particular, DQ Pt [φ] is well defined and it equals

Q1/2∇Pt [φ].
Proof Thanks to Lemma5.15, Pt [φ] satisfiesHypothesis 5.1-(D) and it is bounded so
we can apply to it Lemma5.8-(i)(ii). The conclusion follows by the characterization
of W 1,2

Q (H,m) given after Definition5.11. �

Lemma 5.17 Let Hypothesis 5.1 be satisfied, let bn be as in Part (i) of Lemma5.8,
let x ∈ H and X (·) = X (·; x) be the solution of (5.8). The following hold:

(i) If, for some sequence xn converging to x in H, we denote by Xn(·) = Xn(·; xn)
the unique solution of the equation

{
dXn(s) = (AXn(s) + bn (Xn(s))) dt + dWQ(s),
X (0) = xn,

(5.28)

then, for any p > 1,

lim
n→∞ sup

t∈[0,T ]
E |Xn(t; xn) − X (t; x)|p = 0. (5.29)

(ii) Let Xn(·), xn be as in Part (i) above. Denote by ζxn ,h
n (·) the solution of (5.23),

where X (·) is replaced by Xn(·), b by bn and x by xn. Then, for any p > 1,

lim
n→∞ sup

t∈[0,T ]
E

(

sup
|h|≤1

∣
∣ζx,h(t) − ζxn ,h

n (t)
∣
∣

)p

= 0. (5.30)

Proof For Part (i) we observe that for any t ∈ [0, T ]

Xn(t; xn) − X (t; x) = et A(xn − x) +
∫ t

0
e(t−s)A(bn(Xn(s; xn)) − b(X (s; x)))ds

= et A(xn − x) +
∫ t

0
e(t−s)A

([bn(Xn(s; xn)) − bn(X (s; x))]
+[bn(X (s; x)) − b(X (s; x))])ds

and thus
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E|Xn(t; xn) − X (t; x)|p

≤ CT |xn − x |p + CT

∫ t

0
l pE|Xn(s; xn) − X (s; x)|pds

+CT

∫ T

0
E|bn(X (s; x)) − b(X (s; x))|pds

for a constantCT depending on T . For any s ∈ [0, T ] the expressionE|bn(X (s; x)) −
b(X (s; x))|p converges to 0 thanks to Lemma1.51 if we use Lemma5.8 and the
uniformmoment estimates of (1.69). The claim thus follows by applying Gronwall’s
Lemma.

The argument for Part (ii) is similar. Indeed, for any t ∈ [0, T ],

(ζ
xn ,h
n (t) − ζx,h(t)) =

∫ t

0
e(t−s)A[Dbn(Xn(s; xn))ζxn ,hn (s) − ∇b(X (s; x))ζx,h(s)]ds

=
∫ t

0
e(t−s)A[Dbn(Xn(s; xn)(ζxn,hn (s) − ζx,h(s))

+(Dbn(Xn(s; xn)) − ∇b(X (s; x)))ζx,h(s)]ds.

So,

sup
|h|≤1

∣
∣ζxn ,h

n (t) − ζx,h(t)
∣
∣ ≤ CT

∫ t

0

[

‖Dbn(Xn(s; xn)‖ sup
|h|≤1

∣
∣ζxn ,h

n (s) − ζx,h(s)
∣
∣

+|(Dbn(Xn(s; xn)) − ∇b(X (s; x)))ζx,h(s)|ds.

By taking the p-th powers and the expectations of the two sides and then using (5.13)
we obtain, for a different constant CT ,

E

(

sup
|h|≤1

∣
∣ζxn ,h
n (t) − ζx,h(t)

∣
∣

)p

≤ CT

∫ t

0
K p

E

(

sup
|h|≤1

∣
∣ζxn ,h

n (s) − ζx,h(s)
∣
∣

)p

ds + In,

where

In := CT

∫ T

0
E

[

|(Dbn(Xn(s; xn)) − ∇b(X (s; x)))ζx,h(s)|p
]

ds.

All we need to do now is to prove that In converges to 0. Then the claim will be a
direct consequence of Gronwall’s Lemma. To show this it is enough to show that for
any subsequence Ink there exists a sub-subsequence converging to 0.

Let us then consider a subsequence of Xn (denoted again by Xn). Thanks to (5.29),

∫ T

0
E
[|Xn(s, xn) − X (s, x)|p] ds n→∞−−−→ 0
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and then we can extract a subsequence (denoted again by Xn) such that Xn(·, xn)(·)
converges (ds ⊗ P)-a.e. to X (·, x)(·) (ds denotes the Lebesgue measure on R).
So, using Lemma5.8-(i), |(Dbn(Xn(·; xn)) − ∇b(X (·; x)))ζx,h(·)|p converges to 0,
(ds ⊗ P)-a.e. Since, by (5.13) and the bound on |ζx,h | given by Lemma5.14, these
functions are bounded uniformly in n, we can thus conclude using the dominated
convergence theorem that In → 0. �

Lemma 5.18 Assume that Hypotheses 5.1 and 5.4 hold and φ ∈ C1
b(H). Then, for

any t ∈ [0, T ],

φ (X (t; x)) = Pt [φ](x) +
∫ t

0

〈∇Pt−s[φ](X (s; x)), dWQ(s)
〉

P a.e. (5.31)

Proof Step 1. The claim is proved for b ∈ UC2
b (H, H) and φ ∈ UC2

b (H) in [582],
Lemma 6.11, p. 181.

To extend the result to the general case, in the next step we will consider φ ∈
UC2

b (H) and b which satisfies Hypothesis5.1-(D), and in the third step we will
prove the result in full generality.

Step 2. Consider φ ∈ UC2
b (H) and b satisfying Hypothesis5.1-(D). Let bn be

the sequence found in Part (i) of Lemma5.8, Xn(t; x) be the solution of (5.28)
with xn = x , and Pn

t [φ](x) = Eφ (Xn(t; x)), t ≥ 0, be the corresponding transition
semigroup.

Thanks to (5.29) (with xn = x), up to extracting a subsequence,

lim
n→+∞ Xn(s; x) = X (s; x) for ds ⊗ P-almost any (s,ω) ∈ [0, T ] × �. (5.32)

Observe now that, for any x ∈ H ,

lim
n→∞ Pn

t [φ](x) = Pt [φ](x). (5.33)

Indeed, we have

∣
∣Pn

t [φ](x) − Pt [φ](x)∣∣ = E |φ(Xn(t; x)) − φ(X (t; x))| ≤ CE |Xn(t; x) − X (t; x)|2

so the claim follows from (5.29). Observe also that by Lemma5.15 we have

∇Pt [φ](x) = E
((

ζx (t)
)∗

Dφ(X (t; x))) , ∇Pn
t [φ](x) = E

((
ζxn (t)

)∗
Dφ(Xn(t; x))

)
.

Thus, using (5.29), (5.30), and a universal bound on ‖ζx
n (t)‖ given by Lemma5.14,

we easily obtain that

sup
n,x,t

(|∇Pn
t [φ](x)| + |∇Pt [φ](x)|) ≤ C (5.34)
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for some constant C . We can then conclude using the dominated convergence the-
orem if we can show that for almost every s ∈ [0, t], limn→∞ ∇Pn

t−s[φ](Xn(s; x)
(ω)) = ∇Pt−s[φ](X (s; x)(ω)) for P-a.e. ω. In fact, we prove this convergence for
any (s,ω) where (5.32) holds.

Given (s,ω) ∈ [0, t] × � where the convergence (5.32) holds, we rewrite it as
yn := Xn(s, x)(ω), yn

n→∞−−−→ y := X (s, x)(ω) in H . By Lemma5.15,

∣
∣∇Pn

t−s[φ](yn) − ∇Pt−s[φ](y)∣∣
= sup

h∈H, |h|≤1

∣
∣
〈∇Pn

t−s[φ](yn) − ∇Pt−s[φ](y), h〉∣∣

≤ I n1 + I n2 := sup
h∈H, |h|≤1

∣
∣E
〈
Dφ(yn), ζ

yn ,h
n (t − s) − ζ y,h(t − s)

〉∣
∣

+ sup
h∈H, |h|≤1

∣
∣E
〈
Dφ(yn) − Dφ(y), ζ y,h(t − s)

〉∣
∣ .

We have

I n1 ≤ ‖Dφ‖0
(

E sup
h∈H, |h|≤1

∣
∣ζ yn ,h

n (t − s) − ζ y,h(t − s)
∣
∣

)

,

which converges to 0 by (5.30). Moreover, I n2 → 0 thanks to the boundedness of
ζ y(t − s) given by Lemma5.14 and the continuity of Dφ.

The result is thus true for any φ ∈ UC2
b (H) and b satisfying Hypothesis5.1-(D).

Step 3. Assume now that b satisfies Hypothesis5.1-(D) and φ ∈ C1
b(H). Let φn

be the approximating sequence described in Part (iii) of Lemma5.8. We have, for
any x ∈ H ,

lim
n→∞ Pt [φn](x) = Pt [φ](x). (5.35)

Indeed,
|Pt [φn](x) − Pt [φ](x)| = E |φn(X (t; x)) − φ(X (t; x))| ,

which converges to 0 thanks to Lemma5.8-(iii) and the dominated convergence
theorem. Moreover, for any x ∈ H , by Lemma5.15,

|∇Pt−s[φn](x) − ∇Pt−s[φ](x)|
= sup

h∈H, |h|≤1
|〈∇Pt−s[φn](x) − ∇Pt−s[φ](x), h〉|

= sup
h∈H, |h|≤1

∣
∣E
〈
Dφn(x) − Dφ(x), ζx,h(t − s)

〉∣
∣

≤ |Dφn(x) − Dφ(x)| sup
h∈H, |h|≤1

E
∣
∣ζ y,h(t − s)

∣
∣ ,

which converges to 0 thanks to Lemmas5.8-(iii) and 5.14. �

We define the operator R as follows.
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Definition 5.19 (The operator R) Given φ ∈ C1
b(H), we define for any t ∈ [0, T ],

(Rφ)(t) := DQPt [φ].

The operator R is well defined thanks to Corollary5.16.
The next proposition provides an identity which allows us to extend the operator

R to the whole space L2(H,B,m).

Proposition 5.20 Assume that Hypotheses 5.1 and 5.4 hold. For every φ ∈ C1
b(H)

∫ T

0

∣
∣DQPt [φ]∣∣2L2

m
dt = |φ|2L2

m
− |PT [φ]|2L2

m
. (5.36)

Moreover, the operator R has a unique extension to a bounded operator

R : L2(H,B,m) → L2
(
0, T ; L2(H,B,m)

)
,

with

|(Rφ)|2
L2(0,T ;L2(H,B,m))

=
∫ T

0
|(Rφ)(t)|2L2

m
dt = |φ|2L2

m
− |PT [φ]|2L2

m
(5.37)

for any φ ∈ L2(H,B,m).

Proof Let φ ∈ C1
b(H). Then (5.31) yields

E[φ2(X (T, x))] = (PT [φ](x))2 +
∫ T

0
E
∣
∣Q1/2∇PT−t [φ](X (t, x))

∣
∣2 dt.

Recall that, by Corollary5.16, since φ ∈ C1
b(H), we have DQPt [φ] = Q1/2∇Pt [φ].

Thus, integrating the previous identity with respect to m and rearranging the terms
we get

∫ T

0

∫

H
E
∣
∣DQPt [φ](X (t, x))

∣
∣2 dm(x)dt

=
∫ T

0

∫

H
E[φ2(X (T, x))dm(x)]−

∫ T

0

∫

H
(PT [φ](x))2 dm(x),

so, by using the invariant measure property (5.11), we obtain (5.36) for all φ ∈
C1
b(H). The result follows thanks to the density of C1

b(H) in L2(H,B,m)

(Lemma5.7-(i)). �

Remark 5.21 In the particular case where b = 0, the operator A reduces to the
Ornstein–Uhlenbeckoperator and the semigroup Pt is called theOrnstein–Uhlenbeck
semigroup. In particular, if ‖eAt‖ ≤ Me−ωt with M ∈ R and ω > 0 (the condition
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assumed in the whole remark), the invariant measure for Pt is the Gaussian measure
N (0, Q∞), where

Q∞ :=
∫ +∞

0
esAQesA

∗
ds.

In this case there are links between the closability of the operator DQ , the smooth-
ing properties of the semigroup Pt and the characteristics of certain controllability
problems:

(1) If we consider the following linear controlled system,

dX (t)

dt
= AX (t) + Q1/2a(t), X (0) = 0, (5.38)

the set of points of H that can be reached by the system in an infinite time using
a control in the set L2(0,+∞; H) is equal to Q1/2

∞ (H) (see [584], Theorem 2.3,
page 210) and it can be proved (see [299], Theorem 6.1) that the closability of
the operator DQ is equivalent to the density of the set

{
x ∈ H : Q1/2x ∈ Q1/2

∞ (H)
}

in H .
(2) Fix t > 0. The null-controllability in time t of the system

dX (t)

dt
= AX (t) + Q1/2a(t), X (0) = x,

is defined as the capability, by choosing a suitable control in L2(0, t; H), of
reaching at time t the point 0, given any initial condition x ∈ H . The null-
controllability of the described system (see [584], Theorem 2.3, p. 210) is equiv-
alent to the condition

et A (H)⊂Q1/2
t (H) .

This condition is equivalent (see Theorem 2.23, p. 53 of [180]) to the fact that all
the transition probabilities are mutually absolutely continuous and (see Theorem
9.26, p. 260 and Remark 9.29, p. 265 of [180]) to the fact that the semigroup Pt
is strong Feller (see Definition1.159).
By the results of Sect. 4.3.1, given φ ∈ L2(H,B,m), it can be seen that ∇Pt [φ]
is well defined for t > 0 if and only if (5.39) is satisfied (see Hypothesis 4.29,
Remark 4.30 and Theorem 4.37). In this case (see Proposition 10.3.1, page
218 of [179]) the singularity of |∇Pt [φ]|L2

m,H
at t = 0+, similarly to the one

of |∇Pt [φ]|0, is estimated from above by ‖� (t) ‖, where as in (4.59), � (t) :=
Q−1/2

t et A. Similarly, DQPt [φ] is well defined for φ ∈ L2(H,B,m) and t > 0 if
and only if

et AQ1/2 (H) ⊂Q1/2
t (H) , (5.39)
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i.e. if and only if every point of Q1/2 (H) is null controllable in time t (see again
Hypothesis4.29, Remark4.30 and Theorem4.41 when G = Q1/2). In this case
the singularity of

∣
∣DQPt [φ]∣∣L2

m,H
at 0+ has the same behavior as the norm of the

operator
�Q1/2(t) := Q−1/2

t et AQ1/2.

More on this subject can be found in [120], Sect. 10.3 of [179], Sect. 5.3 of [431,
432].

The observations of part (2) are useful to provide examples where the approach
of the previous chapter cannot be applied while the theory of this chapter works.
This is the case when the hypotheses of this chapter hold but (5.39) does not hold or
when it holds but ‖�Q1/2(t)‖ is not integrable at 0+. Such examples are, for instance,
delay equations (see Sect. 5.6.1), where the semigroup can never be strong Feller for
t smaller than the delay appearing in the equation (r in Sect. 5.6.1) or certain classes
of second-order SPDEs in the whole space, see Sect. 5.6.3. �
Remark 5.22 If DQ is closable in L2(H,B,m) then R(φ)(t) = DQPt [φ](t) for all
t > 0 andφ ∈ L2(H,B,m). In this case (5.36) is easier to obtain and the whole study
of the HJB equation (5.1) is simpler. This is true, in particular, when Q is boundedly
invertible. �

5.2.6 Two Key Lemmas

Here we use Proposition5.20 to provide two estimates that will be essential in the
following. We begin with an estimate regarding the convolution of Pt .

Lemma 5.23 Assume that Hypotheses 5.1 and 5.4 hold and let Pt be defined as in
(5.10). Given f ∈ L2

(
0, T ; L2(H,B,m)

)
we define

G1 f (t) :=
∫ T

t
Ps−t [ f (s)] ds, t ∈ [0, T ],

and

G2 f (t) :=
∫ T

t
R ( f (s)) (s − t) ds, t ∈ [0, T ].

Then ∫ T

0
|G1 f (t)|2L2

m
dt ≤ T 2

∫ T

0
| f (t)|2L2

m
dt, (5.40)

G2 f (t) ∈ L2(H,B,m; H) for almost every t ∈ [0, T ] and
∫ T

0
|G2 f (t)|2L2

m,H
dt ≤ T

∫ T

0
| f (t)|2L2

m
dt. (5.41)
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Proof For the first estimate, observe that

∫ T

0
|G1 f (t)|2L2

m
dt =

∫ T

0

∣
∣
∣
∣

∫ T

t
Ps−t [ f (s)]ds

∣
∣
∣
∣

2

L2
m

dt

≤
∫ T

0

(∫ T

t
|Ps−t [ f (s)]|L2

m
ds

)2

dt ≤
∫ T

0

(∫ T

0
| f (s)|L2

m
ds

)2

dt

≤
∫ T

0
T
∫ T

0
| f (s)|2L2

m
dsdt = T 2

∫ T

0
| f (s)|2L2

m
ds.

We prove the second inequality. Assume first that f ∈ C1
b([0, T ] × H) and f (t) ∈

FC1
0(H) (defined in Sect. A.2) for all t ≥ 0. Then DQPs−t [ f (s)] is well defined for

s ≥ t and so is DQG1(t) for t > 0. Moreover,

∫ T

0
|G2 f (t)|2L2

m,H
dt ≤

∫ T

0

(∫ T

t

∣
∣DQPs−t [ f (s)]

∣
∣
L2
m,H

ds

)2

dt

≤
∫ T

0
T
∫ T

t

∣
∣DQPs−t [ f (s)]

∣
∣2
L2
m,H

dsdt = T
∫ T

0

∫ s

0

∣
∣DQPr [ f (s)]

∣
∣2
L2
m,H

drds

≤
∫ T

0
T
∫ T

0

∣
∣DQPr [ f (s)]

∣
∣2
L2
m,H

drdt.

Hence by (5.36),
∫ T

0
|G2(t)|2L2

m,H
dt ≤ T

∫ T

0
| f (t)|2L2

m
dt.

If f ∈ L2
(
0, T ; L2(H,B,m)

)
is arbitrary, then, thanks to Lemma5.7 applied to

the space [0, T ] × H , there exists a sequence fn ∈ C1
b([0, T ] × H), with fn(t) ∈

FC1
0(H) for any t ∈ [0, T ], which converges to f in L2

(
0, T ; L2(H,B,m)

)
.

Repeating the above arguments for

Gn
1(t) =

∫ T

t
Ps−t [ fn(s)]ds

we find that

∫ T

0

∣
∣DQ

(
Gn

1(t) − Gm
1 (t)

)∣
∣2
L2
m,H

dt ≤ T
∫ T

0
| fn(t) − fm(t)|2L2

m
dt.

Hence the sequence DQGn
1 is convergent in L2

(
0, T ; L2(H,B,m; H)

)
. Moreover,

by the Fubini Theorem,
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∫ T

0

∣
∣DQG

n
1(t) − G2(t)

∣
∣2
L2
m,H

dt

=
∫ T

0

∣
∣
∣
∣

∫ T

t

[
DQPs−t [ fn(s)]ds − R ( f (s)) (s − t)

]
ds

∣
∣
∣
∣

2

L2
m,H

dt

≤ T
∫ T

0
ds
∫ T

0

∣
∣DQPt [ fn(s)] − R ( f (s)) (t)

∣
∣2
L2
m,H

dt

= T
∫ T

0
ds
∫ T

0
|R ( fn(s) − f (s)) (t)|2L2

m,H
dt,

which gives, by Proposition5.20,

∫ T

0

∣
∣DQG

n
1(t) − G2(t)

∣
∣2
L2
m,H

dt

≤ T
∫ T

0

[
| fn(s) − f (s)|2L2

m
− |PT [ fn(s) − f (s)]|2L2

m

]
ds

≤ T
∫ T

0
| fn(s) − f (s)|2L2

m
ds, (5.42)

so that DQGn
1 is convergent in L2

(
0, T ; L2(H,B,m; H)

)
to G2 and (5.41) holds.

�

The following corollary can be deduced from the proof of Lemma5.23.

Corollary 5.24 Assume that Hypotheses5.1 and 5.4 hold. Let fn → f be in
L2
(
0, T ; L2(H,B,m)

)
. Then, by (5.42), there exists a subsequence fnk such that

for a.e. (s, t) ∈ [0, T ] × [0, T ] and s ≤ t ,

DQ Pt−s[ fnk (s)] → R ( f (s)) (t − s) in L2(H,B,m; H).

This fact will be useful in Sect.5.5.

Wenowextend the operator DQ to all functions u that aremild solutions to suitable
Cauchy problems.

Consider g ∈ L2
(
H,B,m

)
and f ∈ L2

(
0, T ; L2

(
H,B,m

))
. Consider the

Cauchy problem:

⎧
⎨

⎩

ut (t) + Au(t) + f (t) = 0 t ∈ [0, T ),

u(T, x) = g(x)
(5.43)
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and define the mild solution of (5.43) as

u(t) = PT−t [g] +
∫ T

t
Ps−t [ f (s)]ds, t ∈ [0, T ]. (5.44)

We denote by ϒA(0, T ) the set of all the functions in L2
(
0, T ; L2

(
H,B,m

))
that

can be written in the form (5.44) for some f, g as above. The functions in ϒA(0, T )

belong to C
(
[0, T ] , L2

(
H,B,m

))
.

For the functions in ϒA(0, T ) we define the operator D̃Q by

(D̃Qu)(t) := R(g)(T − t) +
∫ T

t
R ( f (s)) (s − t) ds, t ∈ [0, T ]. (5.45)

Observe that D̃Q is well defined on ϒA(0, T ). Indeed, if we have PT−t [g1] +
∫ T
t Ps−t [ f1(s)]ds = PT−t [g2] + ∫ T

t Ps−t [ f2(s)]ds then, taking t = T we obtain

g1 = g2 and then,
∫ T
t Ps−t [ f1(s)]ds = ∫ T

t Ps−t [ f2(s)]ds so that
∫ T
t R ( f1 (s)) (s − t)

ds = ∫ T
t R ( f2 (s)) (s − t) ds.

The following proposition gives a continuity result for D̃Q .

Proposition 5.25 Suppose thatHypotheses 5.1 and5.4hold.Consider two sequences
gn⊂L2 (H,m) and fn⊂L2

(
0, T ; L2

(
H,B,m

))
such that

gn −→ g in L2
(
H,B,m

)
,

fn −→ f in L2
(
0, T ; L2

(
H,B,m

))
.

Then, setting

un(t) = PT−t [gn] +
∫ T

t
Ps−t [ fn(s)]ds, t ∈ [0, T ], (5.46)

and

D̃Qun(t) = R(gn)(T − t) +
∫ T

t
R ( fn (s)) (s − t) ds, t ∈ [0, T ],

we have
un −→ u in C

(
[0, T ] , L2

(
H,B,m

))
, (5.47)

D̃Qun −→ D̃Qu in L2
(
0, T ; L2

(
H,B,m; H)) . (5.48)

Proof We start with the first claim. Subtracting (5.44) from (5.46) we get

un (t) − u (t) = PT−t [gn − g] +
∫ T

t
Ps−t [ fn(s) − f (s)] ds
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so that, by the strong continuity of Pt ,

|un (t) − u (t)|2L2
m

≤ CT

[

|gn − g|2L2
m

+
∫ T

t
| fn(s) − f (s)|2L2

m
ds

]

,

which gives (5.47) by taking the supremum over [0, T ]. To prove (5.48) we observe
that we have

D̃Q (un (t) − u (t)) = R (gn − g) (T − t) +
∫ T

t
R ( fn(s) − f (s)) (s − t) ds

so that, by (5.37) and (5.41),

∫ T

0

∣
∣
∣D̃Qun (t) − D̃Qu (t)

∣
∣
∣
2

L2
m,H

≤ |gn − g|2L2
m

+ T
∫ T

0
| fn(s) − f (s)|2L2

m
ds,

which shows (5.48). �

Remark 5.26 If g and f are differentiable functions, the operator DQ is well
defined on the functions u of the form (5.44). In (5.45) we define the oper-
ator D̃Q on all the functions of the form (5.44), where g ∈ L2

(
H,B,m

)
and

f ∈ L2
(
0, T ; L2

(
H,B,m

))
. Thus Proposition5.25 asserts that the operator D̃Q

extends DQ on ϒA(0, T ) “without closability problems” if the functions in the
approximating sequence have the form (5.46). �

5.3 The HJB Equation

In this sectionwe study the existence anduniqueness of solutions to theHJBequation5

{
ut + Au + F0

(
t, x, DQu

)+ l(t, x) = 0,
u(T, x) = g(x)

(5.49)

with g ∈ L2(H,B,m). Observe that this corresponds to F in (5.1) having the form
F (t, x, p) = F0

(
t, x, Q1/2 p

)
.We assume that the following conditions are satisfied.

Hypothesis 5.27 (A) F0 : [0, T ] × H × H → R is Leb ⊗ B ⊗ B/B(R)-
measurable (where Leb is the σ-field of Lebesgue measurable sets in R) and
there exists an L ∈ R such that

5Following the notation we use for HJB equations throughout the book, in the first line of (5.49)
we only explicitly mention the dependence on t and x of the functions F0 and l while we do not do
so for ut , DQu and Au.
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|F0(t, x, p) − F0(t, x, q)| ≤ L|p − q| and |F0(t, x, p)| ≤ L(1 + |p|)
(5.50)

for all t ∈ [0, T ] and x, p, q ∈ H .
(B) l ∈ L2

(
0, T ; L2(H,B,m)

)
and g ∈ L2(H,B,m).

Using the semigroup Pt defined in (5.10) and the variation of constants formula,
as was done in Chap.4, we can formally rewrite Eq. (5.49) in the following mild
form:

u(t) = PT−t [g] +
∫ T

t
Ps−t

[
F0
(
s, ·, DQu(s)

)]
ds +

∫ T

t
Ps−t [l(s)] ds, 0 ≤ t ≤ T,

(5.51)
where for simplicity we have written DQu(s), l(s) for DQu(s, ·), l(s, ·) and a similar
convention is used later for other functions. We use this integral form to define a
solution.

We will prove the existence of the solution of the HJB equation using a fixed

point argument in the space L2
(
0, T ;W 1,2

Q (H,m)
)
. We can identify any element

of L2
(
0, T ;W 1,2

Q (H,m)
)

with an element (v, V ) in L2
(
0, T ; L2(H,B,m)

)×
L2
(
0, T ; L2(H,B,m; H)

)
. Ifv(t) ∈ C1

b(H) for almost every t , thenV (t) = DQv(t)

for almost every t and the norm of (v, V ) = (v, DQv) in L2
(
0, T ;W 1,2

Q (H,m)
)
can

be written explicitly as follows

|(v, DQv)|2
L2
(
0,T ;W 1,2

Q

) =
∫ T

0

(
|v(t)|2L2

m
+ ∣
∣DQv(t)

∣
∣2
L2
m,H

)
dt.

To avoid any confusion in the notation we will always denote the elements of

L2
(
0, T ;W 1,2

Q (H,m)
)
as pairs.

Definition 5.28 By a solution of Eq. (5.51) (ormild solution of Eq. (5.49)), wemean
a pair of functions

(u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)

⊂ L2 (0, T ; L2(H,B,m)
)× L2 (0, T ; L2(H,B,m; H)

)

such that, for a.e. t ∈ [0, T ] and m-a.e.

u(t) = PT−t [g] +
∫ T

t
Ps−t [F0 (s, ·,U (s))] ds +

∫ T

t
Ps−t [l(s)] ds, (5.52)

and

U (t) = R(g)(T − t) +
∫ T

t
R (F0(s, ·,U (s))) (s − t)ds +

∫ T

t
R (l(s)) (s − t)ds.

(5.53)
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Remark 5.29 By the definition of D̃Qu in (5.45) andDefinition5.28 we immediately
get U = D̃Qu. �
Remark 5.30 If DQ were closable, then it would be natural to define the solution of

Eq. (5.51) as an element of L2
(
0, T ;W 1,2

Q (H,m)
)
such that (5.51) is satisfied for

a.e. t ∈ [0, T ] and m-a.e. But DQ may not be closable, so elements of W 1,2
Q (H,m)

are not functions in general, but pairs of functions belonging to the product space
L2(H,B,m) × L2(H,B,m; H).

Note that the second equation (5.53) is an obvious consequence of (5.52) if the
operator DQ is closable and, in this case, U = DQu. �

We will introduce a suitable nonlinear operator M which will allow us to use
the fixed point argument. It will be defined in terms of a certain operator M1 and
its derivative. Both of these operators will be initially defined on a subspace of

L2
(
0, T ; L2(H,B,m)

)
and then extended to L2

(
0, T ;W 1,2

Q (H,m)
)
. To make the

distinction we will denote the extensions using the “overline”: M1 and DQM1. As

emphasized before, since the elements of L2
(
0, T ;W 1,2

Q (H,m)
)
can be identified

with a subspace of L2
(
0, T ; L2(H,B,m)

)× L2
(
0, T ; L2(H,B,m; H)

)
, we will

use a one-argument notation for the non-extended operators (e.g. M1(u)) and a
two-argument notation for the extended ones (e.g.M1(u,U )).

Given g, l and F0 satisfying Hypothesis5.27, we define the operator M1 as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(M1) =
{

v ∈ L2
(
0, T ; L2(H,B,m)

)

: v(t) ∈ C1
b (H) for a.e. t and |(v, DQv)|

L2
(
0,T ;W 1,2

Q

) < ∞
}

,

M1v(t) = PT−t [g] +
∫ T

t
Ps−t

[
F0
(
s, ·, DQv(s)

)]
ds +

∫ T

t
Ps−t [l(s)] ds, t ≤ T .

Remark 5.31 If g, l and F0 are regular enough, then we can directly define DQM1.
If g ∈ L2(H,B,m), l ∈ L2(0, T ; L2(H,B,m)) and F0

(
s, x, DQv(s)

) ∈
L2(0, T ; L2(H,B,m)) we can use Lemma5.23 to define D̃QM1v ∈
L2
(
0, T ; L2

(
H,B,m; H)

))
and it can be written as follows:

D̃QM1v(t) = R(g)(T − t) +
∫ T

t
R (

F0(s, ·, DQv(s))
)
(s − t)ds +

∫ T

t
R (l(s)) (s − t)ds

on [0, T ]. In the following lemma we extend by continuity the operator DQM1

to L2
(
0, T ;W 1,2

Q (H,m)
)

obtaining DQM1. Since the definitions of D̃QM1v

and DQM1 coincide on D(M1), they coincide once DQM1 is extended to L2
(
0, T ;W 1,2

Q (H,m)
)
. �
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Lemma 5.32 Assume that Hypotheses 5.1, 5.4 and 5.27 hold. ThenM1 extends to
a Lipschitz mapping

M1 : L2
(
0, T ;W 1,2

Q (H,m)
)

→ L2 (0, T ; L2(H,B,m)
)

with Lipschitz constant LT . The mapping DQM1 : D(M1) → L2
(
0, T ; L2

(
H,B,m; H)

))
extends to a Lipschitz mapping

DQM1 : L2
(
0, T ;W 1,2

Q (H,m)
)

→ L2 (0, T ; L2 (H,B,m; H))

with Lipschitz constant LT 1/2.

Proof Since |F0(t, x, p)| ≤ L(1 + |p|) for all t ∈ [0, T ] and x, p ∈ H , it follows
from Lemma5.23 that M1v ∈ L2

(
0, T ; L2(H,B,m)

)
and DQM1v ∈ L2 (0, T ;

L2 (H,B,m)
)
for every v ∈ D(M1).

Given v1 and v2 in D(M1), we have

M1 (v1 − v2) (t) =
∫ T

t
Ps−t

[
F0
(
s, ·, DQv1(s)

)− F0
(
s, ·, DQv2(s)

)]
ds, t ∈ [0, T ],

and therefore, since ‖Pt‖ ≤ 1 and by Hypothesis5.27-(A),

|M1 (v1 − v2) (t)|L2
m

≤ L
∫ T

t

∣
∣DQv1(s) − DQv2(s)

∣
∣
L2
m,H

ds, t ∈ [0, T ].

Hence,

∫ T

0
|M1 (v1 − v2) (t)|2L2

m
dt ≤ L2T 2

∫ T

0

∣
∣DQv1(t) − DQv2(t)

∣
∣2
L2
m,H

dt.

It follows that M1 may be extended to the whole space L2
(
0, T ;W 1,2

Q (H,m)
)

by continuity and the resulting mapping is Lipschitz continuous with constant LT .
Similarly, for v1 and v2 in D(M1) and t ∈ [0, T ],

DQM1 (v1 − v2) (t) =
∫ T

t
DQ Ps−t

[
F0
(
s, ·, DQv1(s)

)− F0
(
s, ·, DQv2(s)

)]
ds.

Using the notation introduced in Lemma5.23 we obtain

∫ T

0

∣
∣DQM1 (v1 − v2) (t)

∣
∣2
L2
m,H

dt

=
∫ T

0

∣
∣G2

(
F0
(
t, ·, DQv1(t)

)− F0
(
t, ·, DQv2(t)

))∣
∣2
L2
m,H

dt
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≤ T
∫ T

0

∣
∣F0

(
t, ·, DQv1(t)

)− F0
(
t, ·, DQv2(t)

)∣
∣2
L2
m
dt

≤ L2T
∫ T

0

∣
∣DQ (v1(t) − v2(t))

∣
∣2
L2
m,H

dt,

and therefore DQM1 extends to a Lipschitz continuous mapping on

L2
(
0, T ;W 1,2

Q (H,m)
)
with constant LT 1/2. �

Remark 5.33 The operatorsM1 and DQM1 depend only on the second component

of the elements of L2
(
0, T ;W 1,2

Q (H,m)
)
but it is convenient for us to define them

on L2
(
0, T ;W 1,2

Q (H,m)
)
to apply the fixed point argument below. �

Taking into account the extensions of the operatorsM1 and DQM1 provided by
Lemma5.32 we can define the operator

{
M : L2

(
0, T ;W 1,2

Q (H,m)
)

→ L2
(
0, T ;W 1,2

Q (H,m)
)

M(u,U ) = (M1(u,U ), DQM1(u,U )).

Remark 5.34 UsingProposition5.20 andLemma5.23wefind that for a.e. t ∈ [0, T ],

M1(u,U )(t) = PT−t [g] +
∫ T

t
Ps−t [F0(s, ·,U (s))] ds +

∫ T

t
Ps−t [l(s)]ds

(5.54)
and

DQM1(u,U )(t)

= R(g)(T − t) +
∫ T

t
R (F0(s, ·,U (s))) (s − t)ds +

∫ T

t
R (l(s)) (s − t)ds.

(5.55)

�

Theorem 5.35 Assume that Hypotheses 5.1, 5.4 and 5.27 hold. Then for every g ∈
L2(H,B,m) there exists a unique mild solution (u,U ) to Eq. (5.49) in the sense of
Definition5.28. Moreover, u ∈ C

([0, T ], L2(H,B,m)
)
and U = D̃Qu.

Proof We apply the Banach Fixed Point Theorem to the mapping M in the space

L2
(
0, T ;W 1,2

Q (H,m)
)
endowedwith the norm | · |

L2
(
0,T ;W 1,2

Q

)when T is sufficiently

small. By Lemma5.32, for any (v1, V1), (v2, V2) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
,
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∫ T

0

∣
∣M1(v1(t), V1(t)) − M1(v2(t), V2(t))

∣
∣2
L2
m
dt

≤ L2T 2|(v1, V1) − (v2, V2)|2
L2
(
0,T ;W 1,2

Q

) (5.56)

and

∫ T

0

∣
∣DQM1(v1(t), V1(t)) − DQM1(v2(t), V2(t))

∣
∣2
L2
m,H

dt

≤ L2T |(v1, V1) − (v2, V2)|2
L2
(
0,T ;W 1,2

Q

). (5.57)

From (5.56) and (5.57) we have

|M(v1, V1) − M(v2, V2)|L2
(
0,T ;W 1,2

Q

)

≤ L
√
T (T + 1)|(v1, V1) − (v2, V2)|L2

(
0,T ;W 1,2

Q

),

(5.58)

thus M is a strict contraction for T sufficiently small. Thus we obtain a unique
solution on a small time interval. The rest follows by standard iteration. Finally,
denoting the solution by (u,U ), since F0 (s, ·,U (s)) ∈ L2

(
0, T ; L2(H,B,m)

)
and

Pt is a C0-semigroup, we find that u ∈ C
([0, T ], L2(H,B,m)

)
thanks to (5.54).

The last statement is an immediate consequence of the definitions (see
Remark5.29). �

Remark 5.36 Observe that the uniqueness of the solution stated in Theorem 5.35
has to be understood with respect to the reference measure m whose support can
also be very thin. This is one of the drawbacks of the method. For results about
existence of non-degenerate invariant measures, see Sect. 5.6 and the comments in
the bibliographical notes. �

5.4 Approximation of Mild Solutions

We now show, following the approach of Chap.4, that the mild solution of the HJB
equation can be obtained as a limit of classical solutions. Thus we need to introduce
the concept of a classical solution.

We introduce the operator A1 which is defined similarly to the operator A1 in
(4.141):



5.4 Approximation of Mild Solutions 641

⎧
⎪⎪⎨

⎪⎪⎩

D(A1) =
{

φ ∈ UC2
b (H) : A∗Dφ ∈ UCb(H, H) and D2φ ∈ UCb(H,L1(H))

}

A1φ = 1
2 Tr[QD2φ] + 〈x, A∗Dφ〉 + 〈b(x), Dφ〉 .

(5.59)
It is easy to see that D(A1) endowed with the norm

‖φ‖D(A1) := ‖φ‖0 + ‖Dφ‖0 + ‖A∗Dφ‖0 + sup
x∈H

‖D2φ(x)‖L1(H) (5.60)

is a Banach space.
In Sect. 5.2.3 we introduced the operatorA as the generator of the C0-semigroup

Pt on L2(H,B,m) (see Proposition5.9). In the following lemma we study its rela-
tions with the operator A1.

Lemma 5.37 Let Hypotheses 5.1 and 5.4 hold. Then:

(i) FC2,A∗
0 (H) ⊂ D(A1).

(ii) D(A1) is embedded in D(A). Moreover, for any φ ∈ D(A1),

Aφ(x) = 1

2
Tr
[
QD2φ(x)

]+ 〈
x, A∗Dφ(x)

〉+ 〈b(x), Dφ(x)〉 . (5.61)

(iii) If we consider the Banach space structure on D(A1) described above and the
graph norm on D(A), the embedding D(A1) ⊂ D(A) is continuous.

Proof Part (i) follows straightforwardly from the definitions of FC2,A∗
0 (H) and

D(A1).
Part (ii):We choose φ ∈ D(A1) and we start by showing that, for any x ∈ H ,

lim
t→0

Pt [φ](x) − φ(x)

t
= 1

2
Tr
[
QD2φ(x)

]+ 〈
x, A∗Dφ(x)

〉+ 〈b(x), Dφ(x)〉 .

(5.62)
Indeed, applying Dynkin’s formula (Proposition1.169), we have

Pt [φ](x) − φ(x)

t
= Eφ(X (t; x)) − φ(x)

t

= 1

t
E

∫ t

0

[
1

2
Tr
[
QD2φ(X (s; x))]+ 〈

X (s; x), A∗Dφ(X (s; x))〉

+〈b(X (s; x)), Dφ(X (s; x))〉
]

ds.

(5.63)

We need to show that every term in the right-hand side of (5.63) converges to the
corresponding one in (5.62). Let us look at the middle term. We define

I 1t (x) := 1

t

∫ t

0

[〈
X (s; x), A∗Dφ(X (s; x))〉− 〈

x, A∗Dφ(x)
〉]
ds.
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Let σ be a modulus of continuity of A∗Dφ which we can assume to be concave. We
have

∣
∣I 1t (x)

∣
∣ ≤ 1

t

∫ t

0
E
[ ∣
∣
〈
X (s; x) − x, A∗Dφ(X (s; x))〉∣∣

+ ∣∣〈x, A∗Dφ(X (s; x)) − A∗Dφ(x)
〉∣
∣
]
ds

≤ 1

t

∫ t

0

(‖A∗Dφ‖0E |X (s; x) − x | + |x |Eσ (|X (s; x) − x |)) ds

≤ 1

t

∫ t

0

(‖A∗Dφ‖0E |X (s; x) − x | + |x |σ (E |X (s; x) − x |)) ds,

where we used Jensen’s inequality to obtain the last inequality. The last line above
converges to 0 as t → 0 by (5.9). The convergence of other terms in (5.62) is proved
similarly.

We now need to show that the convergence takes place in L2(H,B,m). We see
that, thanks to (1.69) and since ‖A∗Dφ‖0 is finite, we have supt∈(0,1]

(
E[I 1t (x)])2 ≤

g(x) = C1 + C2|x |2 for some positive constants C1,C2. Since g ∈ L1(H,B,m)

by (5.12), we can thus use the dominated convergence theorem to conclude that
limt→0 E[I 1t (·)] = 0 in L2(H,B,m). We argue similarly to get the convergence of
the other terms. Therefore φ ∈ D(A) and (5.61) holds.

Part (iii): Given φ ∈ D(A1) we have

|φ|2D(A) = |φ|2L2
m

+ |Aφ|2L2
m

≤ |φ|2L2
m

+ 3

∣
∣
∣
∣
1

2
Tr
[
QD2φ

]
∣
∣
∣
∣

2

L2
m

+ 3
∣
∣
〈·, A∗Dφ(·)〉∣∣2L2

m
+ 3 |〈b(·), Dφ(·)〉|2L2

m

≤ ‖φ‖20 + 3

4
‖Q‖2L(H) sup

x∈H
‖D2φ(x)‖2L1(H)

+3‖A∗Dφ‖20
∫

H
|x |2 dm(x) + 3‖Dφ‖20

∫

H
(|b(0)| + K |x |)2 dm(x).

Thanks to (5.12) there exists a constant C , depending only on m, b and Q such that
the last expression is smaller than C‖φ‖2D(A1)

. This concludes the proof. �

The concept of a classical solution of (5.49) is also similar to the one introduced
in Definition4.129, however here we limit our interest to functions belonging to
ϒA(0, T ) to be able to define D̃Q .

Definition 5.38 A function u ∈ ϒA(0, T ) is a classical solution of (5.49) if u has
the following regularity properties
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(·, x) ∈ C1([0, T ]), ∀x ∈ H and ut ∈ Cb([0, T ] × H),

u(t, ·) ∈ D(A1), ∀t ∈ [0, T ] and supt∈[0,T ] ‖u(t, ·)‖D(A1) < +∞,

u,A1u ∈ Cb([0, T ] × H),

Du, A∗Du, D̃Qu ∈ Cb([0, T ] × H, H),

D2u ∈ Cb([0, T ] × H,L1(H)),

(where D̃Q is defined in (5.45)) and satisfies

{
ut + A1u + F0

(
t, x, D̃Qu

)
+ l(t, x) = 0, t ∈ [0, T ), f or m − a.e. x ∈ H,

u(T, x) = g(x), f or m − a.e. x ∈ H.

(5.64)

Definition 5.39 A function u ∈ ϒA(0, T ) is a strong solution of Eq. (5.49) if

(u, D̃Qu) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)

and there exist sequences (un), (ln) ⊂
L2
(
0, T ;W 1,2

Q (H,m)
)
and gn ⊂ FC2,A∗

0 (H) such that for every n ∈ N, un is the

classical solution of the Cauchy problem

⎧
⎨

⎩

wt + Aw + F0(t, x, DQw) + ln(t, x) = 0,

w(T, x) = gn(x),
(5.65)

and the following limits hold as n → +∞:

gn −→ g in L2
(
H,B,m

)

ln −→ l in L2
(
0, T ; L2

(
H,B,m

))

un −→ u in C
(
[0, T ] , L2

(
H,B,m

))

D̃Qun −→ D̃Qu in L2
(
0, T ; L2

(
H,B,m; H)) .

In principle we can have several strong solutions of Eq. (5.49), depending on the
choice of the approximating sequences. Nevertheless we will see that in our case,
if a strong solution exists, it is unique. See the discussion that follows the proof of
Theorem5.41 for more on this.

Theorem 5.40 Assume that Hypotheses 5.1, 5.4 and 5.27 hold. If u is a strong
solution of (5.49) then the pair (u,U ) := (u, D̃Qu) is a mild solution of Eq. (5.49).

Proof Let un, ln, gn be its approximating sequences as in Definition5.39. Recalling
that Pt is a strongly continuous semigroup on L2(H,B,m) (see Proposition5.9),
using Lemma5.37 and the properties of classical solutions demanded in Defini-
tion5.38, we can compute, for a fixed t ∈ [0, T ], the derivative in the variable s of
Ps−t [un(s)] (as a mapping from [t, T ] to L2(H,B,m)). We get
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d

ds
Ps−t [un(s)] = Ps−t [Aun(s)] + Ps−t

[
d

ds
un(s)

]

= Ps−t [Aun(s)] + Ps−t

[(
−A1un(s) − F0

(
s, ·, D̃Qun(s)

)
− ln(s)

)]

= Ps−t

[(
−F0

(
s, ·, D̃Qun(s)

)
− ln(s)

)]
, s ∈ [t, T ].

Integrating both sides of this expression over [t, T ], using that un(T ) = gn and
reordering the terms we obtain for every n

un(t) = PT−t [gn] +
∫ T

t
Ps−t

[
F0(s, ·, D̃Qun(s)) + ln(s)

]
ds.

Setting ψn(s) = F0(s, ·, D̃Qun(s)) + ln(s), the last expression becomes

un(t) = PT−t [gn] +
∫ T

t
Ps−t [ψn(s)] ds,

where gn ∈ FC2,A∗
0 (H), ψn ∈ L2

(
0, T ; L2

(
H,B,m

))
,

gn
n→+∞−→ g in L2(H,B,m),

and, thanks to Hypothesis5.27-(A),

ψn
n→+∞−→ F0(·, ·, D̃Qu) + l in L2

(
0, T ; L2

(
H,B,m

))
.

We can now apply Proposition5.25 and pass to the limit as n → +∞ to get the claim.
�

Theorem 5.41 Assume that Hypotheses 5.1, 5.4 and 5.27 hold and suppose b = 0.

If the pair (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
is a mild solution of Eq. (5.49) then

U = D̃Qu and u is a strong solution of (5.49).

Proof In the particular case b = 0 the semigroup Pt simplifies to the Ornstein–
Uhlenbeck semigroup studied in Sect.B.7.2. The notation used in other parts of the
book in this case is Rt but here, to be consistent with the general notation used in
the chapter, we continue to denote the semigroup by Pt . Hypotheses5.1-(A)-(B)-
(C) imply HypothesisB.79, needed in all the results of Sect.B.7 used in this proof.
Observe that, if b = 0, the operator A1 defined in (5.59) reduces to the operator A0

defined in (B.36).
As argued in Remark5.29 we immediately get U = D̃Qu. Let gn , ψn be two

sequences such that
gn ∈ FC2,A∗

0 (H) , (5.66)
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ψn : [0, T ] → FC2,A∗
0 (H) , (5.67)

ψn and A1ψn belong to C ([0, T ],UCb(H)) , (5.68)

gn
n→+∞−→ g in L2(H,B,m) (5.69)

and
ψn

n→+∞−→ F0(·, ·, D̃Qu) + l in L2
(
0, T ; L2

(
H,B,m

))
. (5.70)

These sequences exist thanks to Lemma5.7.
Since (u,U ) = (u, D̃Qu) is a mild solution of (5.49) we have

u(t) = PT−t [g] +
∫ T

t
Ps−t

[
F0(s, ·, D̃Qu(s)) + l (s)

]
ds.

If we set

un(t, x) = PT−t [gn] +
∫ T

t
Ps−t [ψn(s)] ds, (5.71)

by Proposition5.25 we obtain that

un
n→+∞−→ u in C

(
[0, T ] , L2

(
H,B,m

))
, (5.72)

D̃Qun
n→+∞−→ D̃Qu in L2

(
0, T ; L2

(
H,B,m; H)) . (5.73)

The latter, thanks to Hypotheses5.27-(A), implies in particular that

F0(·, ·, D̃Qun)
n→+∞−→ F0(·, ·, D̃Qu) in L2

(
0, T ; L2

(
H,B,m

))
.

So, thanks to (5.70), if we set

ln = ψn − [F0(·, ·, D̃Qun)], (5.74)

we get

ln
n→+∞−→ l in L2

(
0, T ; L2

(
H,B,m

))
. (5.75)

We can now apply Proposition B.91-(ii). Observe that the existence of the function
g0 demanded in the hypotheses of this proposition can be easily found thanks to (5.68)
and the constant C in (B.33) and (B.35) is here equal to zero. The time is reversed
(t in Proposition B.91 corresponds to our T − t for any t ∈ [0, T ]). It thus follows
that un satisfies in the classical sense the approximating HJB equation
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⎧
⎨

⎩

(un)t + Aun + F0(t, x, DQun) + ln(t, x) = 0

u(T, x) = gn(x).
(5.76)

Given the regularity of un , gn and ψn , D̃Qun = DQun and then the fact that D̃Qun ∈
Cb([0, T ] × H, H), not directly stated in Proposition B.91, follows from Dun ∈
Cb([0, T ] × H, H) and the continuity of Q.

This, together with the convergences (5.69), (5.72), (5.73) and (5.75), shows that
u is a strong solution in the sense of Definition5.39. �

Theorem5.35 shows that, under Hypotheses5.1, 5.4 and 5.27, there exists a
unique mild solution (u,U ) of Eq. (5.49). Theorem5.40 ensures that, under the same
hypotheses, any strong solution is also a mild solution so, in particular there exists at
most one strong solution of (5.49) and, whenever it exists, it can be identified with
the mild solution. Theorem5.41 proves, under the additional assumption b = 0, the
reverse implication, ensuring in particular the existence of a (unique) strong solution
in this case. This result was stated in [298] (see in particular Proposition 4.3) without
the assumption b = 0 but the proof of the regularity of the un in the general case was
not complete.

In Sect. 5.5,wework again underHypotheses5.1, 5.4 and 5.27 butwe also suppose
that a strong solution exists or, equivalently, that the mild solution of the equation is
also strong. This is always the case if b = 0.

5.5 Application to Stochastic Optimal Control

We apply the results on abstract HJB equations from previous sections to study a
family of optimal control problems.

5.5.1 The State Equation

We work, as usual, in a real separable Hilbert space H which will be both the state
space and the noise space (see Sect. 1.2.4), that is we have� = H . The control space
	 is a closed ball in a real separable Banach space E :

	 = B�(0). (5.77)

The linear operators A, Q and the function b satisfy Hypothesis5.1. As in Chap.2,

the notation μ :=
(
�μ,F μ,

{
F t

μ,s

}

s∈[t,T ] ,P
μ,W μ

Q

)
(or without the index μ if the

context is clear) will be used to denote a generalized reference probability space (see
Definition1.100). We limit our attention here to the case where the σ-fields of the
filtration F t

μ,s are countably generated up to sets of measure zero. This holds, for



5.5 Application to Stochastic Optimal Control 647

example, for filtrations generated by Wiener processes, see Lemma1.94. We recall
that the generalized reference probability spaces μ used in Sect. 5.5 may be different
from μ0 in Hypothesis5.1.

We consider a stochastic controlled system governed by the state equation

{
dX (s)=

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s), a(s))

)
ds+dWQ(s),

X (t) = x, x ∈ H,
(5.78)

where R and a satisfy the following hypothesis.

Hypothesis 5.42 We assume that:

(i) R : [0, T ] × H × 	 → H is Borel measurable and there exists an MR > 0 such
that

sup
(s,x,a)∈[0,T ]×H×	

|R(s, x, a)| ≤ MR < +∞,

and, for all s ∈ [0, T ], a ∈ 	, x, y ∈ H ,

|R(s, x, a) − R(s, y, a)| ≤ MR|x − y|.

(ii) For every t ∈ [0, T ] and a generalized reference probability space μ on [t, T ],
the σ-fields of the filtration {F t

μ,s}s∈[t,T ] are countably generated up to sets of
measure zero. 	 is as in (5.77) and the control processes a(·) : [t, T ] × � → 	

belong to the set

Uμ
t := {

a(·) : [t, T ] × � → 	 : a(·) is F t
s − progressively measurable

}
.

(5.79)

We recall that the control processes in Uμ
t depend on the choice of the general-

ized reference probability space (Definition1.100) μ because they are progressively
measurable with respect to the filtration {F s

t }s∈[t,T ] that depends on the choice of μ.
See Sect. 2.1.1 for more on this.

Remark 5.43 The boundedness of R is imposed to be able to solve later, in
Theorem 5.55, the closed loop equationusingGirsanov’s theorem.Asimilar approach
is also used in Sect. 6.5. �

Proposition 5.44 LetHypotheses 5.1 and 5.42 be satisfied. Then, for any t ∈ [0, T ],
x ∈ H, a(·) ∈ Uμ

t , the state equation (5.78) has a unique solution X (·; t, x, a(·)) ∈
Hμ

p(t, T ; H) (see Definition1.126) for all p ≥ 1. In particular, X (·; t, x, a(·)) ∈
Mp

μ (t, T ; H) (defined in (1.29)) for all p ≥ 1.
Moreover, there exists a B([t, T ]) ⊗ B(H) ⊗ F/B(H)-measurable function

{ [t, T ] × H × � → H
(s, x,ω)→X̃(s; t, x, a(·))(ω)

(5.80)
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such that, for every x ∈ H, X̃(·; t, x, a(·)) is a version of the solution X (·; t, x, a(·)).
Thus in the future we will not make a distinction between X (·; t, x, a(·)) and
X̃(·; t, x, a(·)).
Proof The result, except for the last claim, follows from Proposition1.147. The
whole term

[
Q1/2b(X (s)) + Q1/2R(s, X (s), a(s))

]
corresponds to the term b0 in

Hypothesis1.145, a(·) plays the role of a1(·) and we have no a2(·).
To prove the last claim, we consider a countable dense subset S := {xn}n∈N of

H . Thanks to (1.70) we can find �2⊂� with P(�2) = 1 such that (1.70) holds with
ξ1 = x1 and ξ2 = x2 for any s ∈ [t, T ] and ω ∈ �2. Similarly, for every N > 2 we
can find a subset �N⊂� with P(�N ) = 1 such that (1.70) is satisfied for any choice
ξ1 = xi , ξ2 = x j , i, j = 1, . . . , N , for all s ∈ [t, T ] and ω ∈ �N . If we define�∞ =⋂

n≥1 �n we have again P(�∞) = 1. Given s ∈ [t, T ] and ω ∈ �∞, we define, for
any x ∈ H ,

X̃(s; t, x, a(·))(ω) := lim
n→∞ X (s; t, yn, a(·))(ω), (5.81)

where yn is a sequence of elements of S such that yn → x (the limit exists and it
does not depend on the chosen sequence yn , again thanks to (1.70) and the choice
of �∞). We define X̃(s; t, x, a(·))(ω) = 0 for (s, x,ω) ∈ [t, T ] × H × (� \ �∞).
The pointwise convergence (5.81) and the progressive measurability (and thus the
B([t, T ]) ⊗ F/B(H)-measurability) of X ensures that (see Lemma1.8(iii)), for
any x ∈ H , the restriction of X̃(·; t, x, a(·))(·) to [t, T ] × �∞ is B([t, T ]) ⊗ (F ∩
�∞)/B(H)-measurable. This fact, the completeness ofF and the fact that X̃ is con-
stant on [t, T ] × H × (� \ �∞) give easily theB([t, T ]) ⊗ F/B(H)-measurability
of X̃(·; t, x, a(·))(·) on [t, T ] × �. Moreover, by construction, for any s ∈ [t, T ] and
ω ∈ �, x→X̃(s; t, x, a(·))(ω) is continuous so that (see Lemma1.18) the function
defined in (5.80) is B([t, T ]) ⊗ B(H) ⊗ F/B(H)-measurable. �

5.5.2 The Optimal Control Problem and the HJB Equation

Let Hypotheses5.1, 5.4 and 5.42 be satisfied. We study an optimal control problem
in its strong formulation (see Sect. 2.1.1 for details) so that the generalized reference
probability space μ is fixed. We consider the following cost functional

Jμ(t, x; a(·)) = E

{∫ T

t
l(s, X (s; t, x, a(·))) + h2(a(s))ds + g(X (T ; t, x, a(·)))

}

(5.82)
whichwewant tominimize over the control setUμ

t . In this expression X (s; t, x, a(·))
represents the mild solution of (5.78) at time s which, as always, we will often denote
by X (s). The functions l, h2 and g satisfy the following hypothesis.

Hypothesis 5.45 l : [0, T ] × H → R and g : H → R satisfy Hypothesis5.27-(B)
while h2 : 	 → R is Borel measurable and bounded.
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The value function of the problem depends on μ and it is defined as in (2.4):

V μ
t (x) = inf

a(·)∈Uμ
t

Jμ(t, x; a(·)). (5.83)

The HJB equation corresponding to the described optimal control problem is

⎧
⎨

⎩

vt + Av + F0(t, x, DQv) + l(t, x) = 0

v(T, x) = g(x),
(5.84)

where the operator A is defined in Sect. 5.2.3 and the Hamiltonian F0 is given by

F0(t, x, p) = inf
a∈	

{〈R(t, x, a), p〉 + h2(a)} =: inf
a∈	

F0,CV (t, x, p, a). (5.85)

Wewill suppose that F0 satisfies Hypothesis 5.27-(A). Indeed, thanks to Hypothe-
ses5.42 and 5.45, the Lipschitz continuity and growth conditions (5.50) are always
satisfied but the Leb ⊗ B ⊗ B/B(R)measurabilitymay not always be ensured.How-
ever, when R does not depend on t and x , the Hamiltonian F0 is just a function
from H to R and Lemma1.21 then guarantees that it is B/B(R)-measurable, so that
Hypothesis5.27-(A) is satisfied. Hypothesis 5.27-(A) is also always true if R(t, x, ·)
is continuous for every t and x due to the separability of 	.

5.5.3 The Verification Theorem

We now show how to obtain a verification theorem and an explicit expression for
optimal controls in feedback form.

Lemma 5.46 Let t ∈ [0, T ], x ∈ H, μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a gen-

eralized reference probability space on [t, T ] and let a(·) ∈ Uμ
t . Assume that

Hypotheses 5.1, 5.4, 5.42 and 5.45 hold. Define

ρa(·) = exp

(

−
∫ T

t

〈
R(r, X (r; t, x, a(·)), a(r)), dWQ(r)

〉

−1

2

∫ T

t
|R(r, X (r; t, x, a(·)), a(r))|2 dr

)

.

Then:

(i) The measure P̃ on (�,F ) defined by setting dP̃(A) := ρa(·)(T )dP(ω), that is,
for any A ∈ F ,

P̃(A) :=
∫

A
ρa(·)(ω) dP(ω),
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is a probability measure on �, in particular E[ρa(·)] = 1.
(ii) There exists a positive constant c̃ < +∞ such that

E

[(
ρa(·)

)−1
]

≤ c̃, for any x ∈ H (5.86)

and we have
dP(A) := (

ρa(·)
)−1

dP̃(ω). (5.87)

(iii) Denote by X (·; t, x) the solution of
⎧
⎨

⎩

dX (s) = (AX (s) + b(X (s))) ds + dWQ(s), s ∈ [0, T ],

X (t) = x ∈ H.

(5.88)

For any s ∈ [t, T ], LP(X (s; t, x)) = L
P̃
(X (s; t, x, a(·))).

(iv) For any nonnegative w ∈ L2(H,B(H),m), for any s ∈ [t, T ],
∫

H
Ew(X (s; t, x, a(·)))dm(x) ≤ √

c̃

(∫

H
Ew2(X (s; t, x))dm(x)

)1/2
= √

c̃|w|L2
m
,

(5.89)
where c̃ is the constant introduced in (5.86).

Proof Most of the statements of the lemma are corollaries of the Girsanov Theorem.
Part (i): Given the boundedness of R the claim follows from Proposition 10.17

and Theorem 10.14 of [180].
Part (ii): Observe first that if we replace R(s, X (s; t, x, a(·)), a(s)) by −R(s, X

(s; t, x, a(·)), a(s)) we have again a bounded function so that the results of Part (i)
hold: we get

E exp

(∫ T

t

〈
R(s, X (s; t, x, a(·)), a(s)), Q−1/2dWQ(s)

〉

−1

2

∫ T

t
|R(s, X (s; t, x, a(·)), a(s))|2 ds

)

= 1.

(5.90)

Since by Hypothesis5.42 there exists an MR ∈ R such that |R(s, X (s; t, x, a(·)),
a(s))| ≤ MR for any choice of s ∈ [t, T ], x ∈ H and any a(·),

E

[(
ρa(·)

)−1
]

= E exp

(∫ T

t

〈
R(r, X (r; t, x, a(·)), a(r)), dWQ(r)

〉

+1

2

∫ T

t
|R(r, X (r; t, x, a(·)), a(r))|2 dr

)

≤

e(T−t)M2
RE exp

(∫ T

t

〈
R(r, X (r; t, x, a(·)), a(r)), dWQ(r)

〉
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−1

2

∫ T

t
|R(r, X (r; t, x, a(·)), a(r))|2 dr

)

= e(T−t)M2 =: c̃,

where in the last step we used (5.90).
The second claim follows by the strict positivity of ρa(·) as a corollary of the

Radon–Nikodym Theorem (see [18], p. 64).
Part (iii): Thanks to Theorem 10.14 of [180] we know that the process defined by

W̃Q(s) = WQ(s) − WQ(t) +
∫ s

t
Q

1
2 R(r, X (r; t, x, a(·)), a(r))dr, s ∈ [t, T ],

is a Q-Wiener process in H with respect to {F t
s }s≥t and the probability measure P̃.

We have

X (s; t, x, a(·)) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r; t, x, a(·)))dr

+
∫ s

t
e(s−r)AQ

1
2 R(r, X (r; t, x, a(·)), a(r))dr +

∫ s

t
e(s−r)AdWQ(r)

= e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r; t, x, a(·)))dr +

∫ s

t
e(s−r)AQ

1
2 R(r, X (r; t, x, a(·)), a(r))dr

+
∫ s

t
e(s−r)AdW̃Q(r) −

∫ s

t
e(s−r)AQ

1
2 R(r, X (r; t, x, a(·)), a(r))dr

= e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r; t, x, a(·)))dr +

∫ s

t
e(s−r)AdW̃Q(r), s ∈ [t, T ],

so X (·; t, x, a(·)) solves the same equation as X (·; t, x). The claim thus follows
thanks to Proposition1.148-(ii).

Part (iv): For any s ∈ [t, T ], the joint measurability of the function (x,ω)→
w(X (s; t, x, a(·))(ω)) follows by the Borel measurability of w and by the measura-
bility of X stated in Proposition5.44.

Usingfirst (5.87) and then theCauchy–Schwarz inequalitywehave, for s ∈ [t, T ],
∫

H
Ew(X (s; t, x, a(·)))dm(x) =

∫

H

∫

�

w(X (s; t, x, a(·))(ω))dP(ω)dm(x)

=
∫

�

w(X (s; t, x, a(·))(ω))
(
ρa(·)(ω)

)−1
dP̃(ω)dm(x)

≤
(∫

H

∫

�

(
ρa(·)(ω)

)−2
dP̃(ω)dm(x)

)1/2 (∫

H

∫

�

w2(X (s; t, x, a(·))(ω))dP̃(ω)dm(x)

)1/2

=
(∫

H

∫

�

(
ρa(·)(ω)

)−1
dP(ω)dm(x)

)1/2 (∫

H

∫

�

w2(X (s; t, x)(ω))dP(ω)dm(x)

)1/2

,

where in the last step we used, in the two terms, respectively Part (i) and Part (iii).
Therefore, by (5.86) and then using the definition of the transition semigroup, the
fact that it does not depend on a generalized reference probability space, and the
property of the invariant measure (observe that w2 belongs to L1(H,B(H),m) so
we refer to Proposition5.9 for p = 1), we obtain
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∫

H
Ew(X (s; t, x, a(·)))dm(x) ≤ √

c̃

(∫

H
Ew2(X (s; t, x))dm(x)

)1/2

= √
c̃

(∫

H
Ps−t

[|w(·)|2] (x)dm(x)

)1/2

= √
c̃

(∫

H
|w(x)|2dm(x)

)1/2

= √
c̃|w|L2

m
,

which gives the claim. �

The result of Part (iv) of Lemma5.46 will be extended to a general w ∈
L2(H,B,m) in Corollary5.48.

Lemma 5.47 Let t ∈ [0, T ], μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a generalized

reference probability space on [t, T ] and a(·) ∈ Uμ
t . Assume that Hypotheses 5.1,

5.4, 5.42 and 5.45 hold.
Consider a B/B(R)-measurable function φ : H → R (respectively, a B/B(H)-

measurable function φ : H → H) and s ∈ [t, T ]. Then the function

{
H × � → R

(x,ω)→φ(X (s; t, x, a(·))(ω)

is B(H) ⊗ F/B(R)-measurable (respectively, B(H) ⊗ F/B(H)-measurable),
where B(H) ⊗ F is the completion of the σ-field B(H) ⊗ F w.r.t. the measure
m ⊗ P.

Similarly, given aB([t, T ]) ⊗ B/B(R)-measurable functionφ : [t, T ] × H → R,
the function { [t, T ] × H × � → R

(s, x,ω)→φ(s, X (s; t, x, a(·))(ω)

is B([t, T ]) ⊗ B(H) ⊗ F/B(R)-measurable, where B([t, T ]) ⊗ B(H) ⊗ F is the
completion of the σ-field B([t, T ]) ⊗ B(H) ⊗ F w.r.t. the measure ds ⊗ m ⊗ P.

Proof The proof follows the same arguments as those used in the proof of
Lemma5.10. We give it for completeness.

If φ : H → R is Borel-measurable the statement follows from the measurabil-
ity of the solutions of (5.78) stated in Proposition5.44. If φ : H → R is B/B(R)-
measurable, let φ̃ : H → R be a B/B(R)-measurable function and V ∈ B(H),

m(V ) = 0 be such that φ(x) = φ̃(x) for all x ∈ H \ V . Then

0 ≤
∫

H
P {X (s; t, x, a(·))(ω) ∈ V } dm(x)

=
∫

H
E [1V (X (s; t, x, a(·)))] dm(x) ≤ √

c̃

(∫

H
E
[
12V (X (s; t, x))] dm(x)

)1/2

= √
c̃

(∫

H
|1V (x)|2 dm(x)

)1/2

= √
c̃ (m(V ))1/2 = 0, (5.91)
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where we used (5.89) and then the property of the invariant measure. This fact shows
that the functions (x,ω)→φ(X (t, x)(ω) and (x,ω)→φ̃(X (t, x)(ω) are m ⊗ P-e.e.
equal on H × �. Thus, since (x,ω)→φ̃(X (t, x)(ω) is F ⊗ B/B(R)-measurable,
(x,ω)→φ(X (t, x)(ω) isF ⊗ B/B(R)-measurable.

The same proof applies if φ : H → H is a B/B(H)-measurable function.
Similarly, if φ : [t, T ] × H → R is B([t, T ]) ⊗ B/B(R)-measurable we can find

(again by Lemma1.16, recalling that B([t, T ]) ⊗ B⊂B([t, T ]) ⊗ B)) a B([t, T ]) ⊗
B/B(R)-measurable function φ̃ : [t, T ] × H → R and V ∈ B([t, T ]) ⊗ B(H) such
that (ds ⊗ m)(V ) = 0 and φ(s, x) = φ̃(s, x) for all (s, x) ∈ [t, T ] × H \ V . If we
define Vs := {x ∈ H : (s, x) ∈ V } then Vs ∈ B(H) andm(Vs) = 0 for almost every
s ∈ [0, T ]. Instead of (5.91) we now have

0 ≤
∫ T

t

∫

H
P {(s, X (s; t, x, a(·))(ω)) ∈ V } dm(x)ds

=
∫ T

t

∫

H
P {X (s; t, x, a(·))(ω) ∈ Vs} dm(x)ds

=
∫ T

t

∫

H
E
[
1Vs (X (s; t, x, a(·)))] dm(x)

≤ √
c̃
∫ T

t

(∫

H

∣
∣1Vs (x)

∣
∣2 dm(x)

)1/2

ds = 0

and the proof ends as before. �

Corollary 5.48 Let t ∈ [0, T ], x ∈ H, μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a gen-

eralized reference probability space on [t, T ] and let a(·) ∈ Uμ
t . Assume that

Hypotheses 5.1, 5.4, 5.42 and 5.45 hold. Then, for any w ∈ L2(H,B,m), the map
x→Ew (X (s; t, x, a(·))) belongs to L1

(
H,B,m

)
and for almost every s ∈ [t, T ],

∫

H
Ew(X (s; t, x, a(·)))dm(x) ≤ √

c̃

(∫

H
Ew2(X (s; t, x))dm(x)

)1/2

= √
c̃|w|L2

m
,

where c̃ is the constant introduced in (5.86).

Proof The statements about the joint measurability proved in Lemma5.47 allow us,
in particular, to ensure the measurability in s and x of integrals with respect to ω and
then to extend Lemma5.46-(iv) to any w ∈ L2

(
H,B,m

)
. �

Lemma 5.49 Assume that Hypotheses 5.1, 5.4, 5.42, 5.45 hold and let a(·) ∈ Uμ
t .

Then, for every s ∈ [t, T ] and w ∈ L2
(
H,B,m

)
(respectively, L2

(
H,B,m; H)), the map x→Ew (X (s; t, x, a(·))) belongs to L1

(
H,B,m

)
(respec-

tively, L1
(
H,B,m; H)). Moreover, given a sequence wn converging to w in

L2
(
H,B,m

)
(respectively in L2

(
H,B,m; H)), the sequenceEwn (X (s; t, x, a(·)))

converges to Ew (X (s; t, x, a(·))) in L1
(
H,B,m

)
(respectively, L1

(
H,B,m; H)).
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Similarly, given w ∈ L2
(
t, T ; L2

(
H,B,m

))
(respectively, L2

(
t, T ; L2

(
H,B,

m; H))), the map (s, x) →Ew (s, X (s; t, x, a(·))) belongs to L1
(

(t, T )×
H,B([t, T ]) ⊗ B, ds ⊗ m

)
(respectively, L1

(
(t, T ) ×H,B([t, T ])⊗B, ds⊗m; H

)
),

where ds is the Lebesguemeasure on [t, T ] andB([t, T ]) ⊗ B is the completion of the
σ-field B([t, T ]) ⊗ B w.r.t. ds ⊗ m. Moreover, given a sequence wn converging to w

in L2
(
t, T ; L2

(
H,B,m

))
(respectively, L2

(
t, T ; L2

(
H,B,m; H))), the sequence

Ewn (s, X (s; t, x, a(·))) converges to Ew (s, X (s; t, x, a(·))) in L1
(

(t, T ) × H,

B([t, T ]) ⊗ B, ds ⊗ m
)

(respectively, L1
(
(t, T ) × H,B([t, T ]) ⊗ B, ds

⊗m; H
)
).

Proof The statements about joint measurability of the various functions involved fol-
low from Lemma5.47, Corollary5.48 or can be proved by similar arguments. Recall,
for the case whenw ∈ L2

(
t, T ; L2

(
H,B,m

))
, that there exists (see Theorem 11.47,

p. 427 of [8]) a w̃ ∈ L2
([t, T ] × H,B([t, T ]) ⊗ B, ds ⊗ m

)
, uniquely determined

up to a ds ⊗ m-null set, such that, for a.e. s ∈ [t, T ], w̃(s, ·) = w(s)(·) m-a.e.
We only prove the remaining statements related to w ∈ L2

(
t, T ; L2

(
H,B,m

))
,

the others being similar. Invoking Corollary5.48 and Hölder’s inequality, we obtain

∫ T

t

∫

H
E |w (s, X (s; t, x, a(·)))| dm(x) ds

≤ CT

(∫ T

t

∫

H
E |w (s, X (s; t, x))|2 dm(x) ds

)1/2

= CT

(∫ T

t

∫

H
|w (s, ·)|2 (x) dm(x) ds

)1/2

< +∞

and the first claim follows. The statements about the convergence follow using the
same arguments as indeed we have

∫ T

t

∫

H
|Ewn (s, X (s; t, x, a(·))) − Ew (s, X (s; t, x, a(·)))| dm(x) ds

≤ CT

(∫ T

t

∫

H
|wn (s, ·) − w (s, ·)|2 (x) dm(x) ds

)1/2
n→∞−−−→ 0.

Similar estimates give the other claims. �

We are now ready to prove the fundamental identity.

Lemma 5.50 Let t ∈ [0, T ], μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a generalized

reference probability space on [t, T ] and let a(·) ∈ Uμ
t . Assume that Hypotheses 5.1,

5.4, 5.27, 5.42, 5.45 hold. Suppose that the mild solution (u,U ) ∈
L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong solution. Then the following identity

holds for m-a.e. x ∈ H:
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u(t, x) + E

∫ T

t
F0,CV

(
s, X (s), D̃Qu(s, X (s)), a(s)

)
− F0

(
s, X (s), D̃Qu(s, X (s))

)
ds

= E

{∫ T

t
[l(s, X (s)) + h2(a(s))]ds + g(X (T ))

}

= Jμ(t, x; a(·)), (5.92)

where X (·) := X (·; t, x, a(·)) denotes the mild solution of (5.78).
Proof We denote by gn and ψn the approximating sequences of g and F0 + l char-
acterized in (5.66), (5.67), (5.68), (5.69) and (5.70). We set

un(t, x) = PT−t [gn] +
∫ T

t
Ps−t [ψn(s)]ds.

We know that un satisfies in the classical sense the approximating HJB equation

⎧
⎨

⎩

(un)t + Aun + F0(t, x, D̃Qun) + ln(t, x) = 0

un(T, x) = gn(x), x ∈ H,

(5.93)

where

ln(t, x) := ψn(t, x) − F0(t, x, D̃Qun)
n→+∞−→ l in L2 (0, T ; L2(H,B,m; H)

)
.

By Dynkin’s formula (see Proposition1.169) and (5.78) we obtain

Eun(T, X (T )) − un(t, x)

= E

∫ T

t

[

(un)s(s, X (s)) + 〈X (s), A∗Dun(s, X (s))〉 + 1

2
Tr
[
QD2un(s, X (s))

]
]

ds

+E

∫ T

t

[〈
Dun(s, X (s)), b(X (s)) + Q

1
2 R(s, X (s), a(s))

〉]
ds. (5.94)

Then, using (5.93) and the notation F0,CV introduced in (5.85), we get

Egn(X (T )) − un(t, x) = E

∫ T

t

[

F0,CV

(
s, X (s), D̃Qun(s, X (s)), a(s)

)

−F0(s, X (s), D̃Qun(s, X (s))) − ln(s, X (s)) − h2(a(s))

]

ds.

(5.95)

We now pass to the limit as n → +∞ in (5.95). We use (5.69), (5.70) and the
convergences of the sequences un and D̃Qun prescribed by Definition 5.39 (indeed
they are proved explicitly in our context in (5.72) and (5.73)). Thanks to Lemma5.49
it thus follows that, for m-a.e. x ∈ H ,
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Eg(X (T )) − u(t, x) = E

∫ T

t

[

F0,CV (s, X (s), D̃Qu(s, X (s)), a(s))

−F0(s, X (s), D̃Qu(s, X (s))) − l(s, X (s)) − h2(a(s))

]

ds,

which gives (5.92) after rearranging the terms. �

Lemma 5.51 Let t ∈ [0, T ], μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a generalized

reference probability space on [t, T ] satisfying Hypothesis5.42 and let 	 be as
in (5.77). For any p ≥ 1 there exists a countable subset NUμ

t of Uμ
t dense in Uμ

t

endowed with the M p
μ (t, T ; E) norm.

Proof A possible choice for NUμ
t is a set of elementary processes (see Defini-

tion1.96). Indeed, in the construction of Lemma1.98 we can clearly limit the choice
of the times ti appearing in Definition1.96 to those of a dense and countable subset
of [t, T ] and the choice of theF t

ti -random variables to those of a dense and countable
subset {ξtij } j∈N of L p(�,F t

ti ,P; E) (this subset exists thanks to Lemma1.25). Since

we look for processes belonging to Uμ
t (and thus having images in B�(0)), instead of

{ξtij } j∈N we consider the random variables ξ̃tij :=
(

max
{ |ξtij |

�
, 1
})−1

ξtij . They create

a required dense set of B�(0)-valued processes. This can be seen by observing that

if x, y ∈ E , |x |E ≤ � and |y|E > �, if ỹ :=
(
max

{ |y|
�

, 1
})−1

y, we have

|x − ỹ|E ≤ |x − y|E + |y − ỹ|E ≤ 2|x − y|E ,

where the last inequality follows from the fact that ỹ is among the elements of B�(0)
nearest to y, so |x − y|E ≥ |y − ỹ|E . �

In the following lemma we give a sufficient condition to ensure that the functional
Jμ(t, x; ·) is continuous with respect to the Mp

μ (t, T ; E) norm.

Lemma 5.52 Suppose that Hypotheses5.42-(i) and 5.45 hold and that R, l, g and
h2 satisfy the following additional conditions:

(i) There exists an MR > 0 such that

|R(s, x, a1) − R(s, y, a2)| ≤ MR(|x − y| + |a1 − a2|)∀ s ∈ [0, T ], x, y ∈ H, a1, a2 ∈ 	.

(ii) For some C, q > 0,

|l(t, x)| ≤ C(1 + |x |q), for all t ∈ [0, T ], x ∈ H,

|g(x)| ≤ C(1 + |x |q), for all x ∈ H.

(iii) h2 : 	 → R is continuous.
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Then for every t ∈ [0, T ], x ∈ H and every generalized reference probability space
μ on [t, T ], the functional Jμ(t, x; ·) is continuous with respect to the M p

μ (t, T ; E)

norm, for any p > q. In other words, for any sequence of controls an(·) in Uμ
t

converging to a(·) ∈ Uμ
t such that

lim
n→∞ |an(·) − a(·)|p

M p
μ

= lim
n→∞E

∫ T

t
|an(s) − a(s)|pEds = 0, (5.96)

we have
lim
n→∞ J (t, x; an(·)) = J (t, x; a(·)). (5.97)

Moreover,

lim
n→∞ sup

s∈[t,T ]

[
E|X (s; t, x, an(·)) − X (s; t, x, a(·))|p] = 0. (5.98)

Proof We denote, for s ∈ [t, T ], X (s; t, x, an(·)) by Xn(s) and X (s; t, x, a(·)) by
X (s) and also denote by N a positive constant such that ‖et A‖ ≤ N for any t ∈ [0, T ]
and supx∈H |∇b(x)| ≤ N . We have, for any s ∈ [t, T ],

|Xn(s) − X (s)| ≤
∣
∣
∣
∣

∫ s

t
e(t−r)A(b(Xn(r)) − b(X (r)))dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s

t
e(t−r)A(R(r, Xn(r), an(r)) − R(r, X (r), a(r)))dr

∣
∣
∣
∣

≤ N 2
∫ s

t
|Xn(r) − X (r)|dr + NMR

∫ s

t
(|an(r) − a(r)| + |Xn(r) − X (r)|)dr

and then, for s ∈ [t, T ],

E
[|Xn(s) − X (s)|p]

≤ 3p−1(N 2p + N pM p
R)T 1/p

∫ s

t
E|Xn(τ ) − X (τ )|pdr + 3p−1T 1/p|an(·) − a(·)|p

M p
μ

and we obtain (5.98) using (5.96) and Gronwall’s Lemma (Proposition D.29).
It follows from (5.96) and an easy application of the Lebesgue dominated con-

vergence theorem that E
∫ T
t h2(an(s))ds converges to E

∫ T
t h2(a(s))ds.

So to show (5.97) it remains to prove the convergence of the term

E

{∫ T
t l(s, Xn(s))ds + g(Xn(T ))

}
. We define the following linear operators:

{
Sn : L2(H,B,m) × L2(t, T ; L2(H,B,m)) → R

Sn(g, l) := E

{∫ T
t l(s, Xn(s))ds + g(Xn(T ))

}
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and {
S : L2(H,B,m) × L2(t, T ; L2(H,B,m)) → R

S(g, l) := E

{∫ T
t l(s, X (s))ds + g(X (T ))

}
.

Since the constant c̃ appearing in (5.89) only depends on MR (introduced in Hypoth-
esis 5.42(i)) we know from (5.89) that the family {Sn} is equi-continuous. Using
the Lebesgue dominated convergence theorem and (5.98) it is easy to see that,
for any (g, l) ∈ Cb(H) × Cb([t, T ] × H), we have Sn(g, l)

n→∞−−−→ S(g, l). Since
Cb(H) × Cb([t, T ] × H) is dense in L2(H,B,m) × L2(t, T ; L2(H,B,m)) and
{Sn} is equi-continuous, we can conclude that S(g, l) = limn→∞ Sn(g, l) for any
(g, l) ∈ L2(H,B,m) × L2(t, T ; L2(H,B,m)), which completes the proof of (5.97).

�

Theorem 5.53 (Verification Theorem, Sufficient Condition) Let p ≥ 1 and let
Hypotheses 5.1, 5.4, 5.27, 5.42, 5.45 hold. Suppose that the mild solution (u,U ) ∈
L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong solution. Then the following are

true:

(i) For any t ∈ [0, T ] and any generalized reference probability space μ =(
�μ,F μ,

{
F μ,s

t

}

s∈[t,T ] ,P
μ
)
satisfying Hypothesis 5.42, if Jμ(t, x; ·) is con-

tinuous with respect to the M p
μ (t, T ; E) norm, then there exists a set Zμ

t with
m(Zμ

t ) = 1 such that, for all x ∈ Zμ
t and all a(·) ∈ Uμ

t we have

u(t, x) ≤ V μ
t (x) ≤ Jμ(t, x; a(·)). (5.99)

(ii) Choose t ∈ [0, T ]. Let μ̂ be a generalized reference probability space satis-
fying Hypothesis 5.42 such that J μ̂(t, x; ·) is continuous with respect to the
M p

μ̂ (t, T ; E) norm. Let x be in Z μ̂
t . Let a

∗(·) ∈ U μ̂
t be such that, denoting by

X∗(·) the corresponding state, we have

a∗(s) ∈ argmin
a∈	

F0,CV (s, X∗(s), D̃Qu(s, X∗(s)), a), (5.100)

for almost every s ∈ [t, T ] and P-almost surely. Then, the pair (a∗(·), X∗(·)) is
μ̂-optimal at (t, x) and u(t, x) = V μ̂

t (x) = J μ̂(t, x; a∗(·)).
Proof Part (i): We fix t ∈ [0, T ]. By definition, for every a ∈ 	, F0,CV (·, a) −
F0(·) ≥ 0 everywhere so for any a(·) ∈ Uμ

t , by (5.92), v(t, x) ≤ Jμ(t, x; a(·)) form-
a.e. x ∈ H . Thanks to Lemma5.51we can then choose a countable subset NUμ

t dense
in Uμ

t in the Mp
μ norm containing minimizing sequences for any x ∈ H (observe that

the set of the controls depends on t but it does not depend on the initial datum x). By
taking the infimum over a(·) in NUμ

t in the right-hand side of (5.92) we obtain (i).
Part (ii): Since
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E

∫ T

t

[
F0,CV

(
s, X∗(s), D̃Qu(s, X∗(s)), a∗(s)

)

−F0

(
s, X∗(s), D̃Qu(s, X∗(s))

) ]
ds = 0,

by (5.92) we thus get
u(t, x) = J μ̂(t, x; a∗(·)). (5.101)

Since (5.99) is satisfied at (t, x) because x ∈ Z μ̂
t , it follows that (a∗(·), X∗(·)) is

μ̂-optimal at (t, x) and u(t, x) = V μ̂
t (x). �

5.5.4 Optimal Feedbacks

Similarly to what we observed in Sect. 2.5.1 for the regular case and in Sect. 4.8 for
mild solutions in spaces of continuous functions, we use the fundamental identity
and the verification theorem to characterize optimal feedbacks in the L2 framework.

We consider the hypotheses of Theorem5.53 and we look at the, possibly multi-
valued (and not always defined), function

{
� : (0, T ) × H → P(	)

� : (s, x)→ argmina∈	 F0,CV (s, x, D̃Qu(s, x), a),
(5.102)

where (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
is the mild solution of (5.84). The corre-

sponding Closed Loop Equation is

{
dX (s) ∈

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s),�(s, X (s)))

)
ds+dWQ(s),

X (t) = x, x ∈ H.

(5.103)
Similarly to Sect. 4.8 we have the following corollary of Theorem5.53.

Corollary 5.54 Let p ≥ 1 and let Hypotheses 5.1, 5.4, 5.27, 5.42, 5.45 hold. Sup-

pose that themild solution (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong

solution.
Choose t ∈ [0, T ] and x ∈ H. Assume that, on [t, T ) × H, the feedback map �

defined in (5.103) admits a measurable selection φt : [t, T ) × H → 	. Then:

(i) The Closed Loop Equation

{
dX (s)=

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s),φt (s, X (s)))

)
ds+dWQ(s),

X (t) = x,
(5.104)
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has a weak mild solution (see Definition1.121) Xφt (·; t, x) in a suitable gener-
alized reference probability space μ (and unique in such a space); the elements
of the filtration F t

μ̄,s are countably generated up to sets of measure zero.
(ii) Suppose that the generalized reference probability space μ̄ from part (i) is

such that J μ̄(t, x; ·) is continuous with respect to the M p
μ̄ (t, T ; E) norm and

that x in Z μ̄
t . Define, for s ∈ [t, T ), aφt (s) = φt (s, Xφt (s; t, x)). Then the

pair (aφt (·), Xφt (·; t, x)) is μ-optimal at (t, x) and u(t, x) = V μ
t (x). If, finally,

�(s, x) is a singleton for any (s, x) ∈ (t, T ) × H, then aφt (·) is the unique μ̄-
optimal control.

Proof Part (i) follows from Theorem6.36. We can always take the filtration to be the
one generated by the Wiener process to ensure that the elements of the filtration are
countably generated up to sets of measure zero.

All the statements of part (ii) follow immediately from Theorem5.53-(ii) except
for the uniqueness of optimal controls. If (â(·), X̂(·)) is another optimal pair at (t, x)
with generalized reference probability spaceμ, we immediately have, byLemma5.50
and the fact that u(t, x) = V μ

t (x),

E

∫ T

t

[
F0,CV

(
s, X̂(s), D̃Qu(s, X̂(s)), â(s)

)
− F0

(
s, X̂(s), D̃Qu(s, X̂(s))

)]
ds = 0.

This implies that, for a.e. s ∈ [t, T ] and P-a.s., we have â(s) = φt (s, X̂(s)). Unique-
ness of solutions of (5.104) in μ gives the claim. �

We conclude with a result in a specific case.

Theorem 5.55 Let p ≥ 1and letHypotheses 5.1, 5.4, 5.27, 5.42, 5.45 hold. Suppose

that the mild solution (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong

solution. Suppose also that:

(i) E = H and R(t, x, a) ≡ a, hence F0,CV does not depend on t and x and it is
given by

F0,CV (p, a) = 〈a, p〉 + h2(a).

(ii) h2 : 	 → R is strictly convex and lower semicontinuous.
(iii) F0(p) := infa∈	 (〈a, p〉 + h2(a)) is differentiable.

Then, for any t ∈ [0, T ] and x ∈ H, there exists a generalized reference prob-
ability space μ (where the elements of the filtration F t

μ,s are countably generated
up to sets of measure zero) and a control a∗(·) ∈ Uμ

t which satisfies, together with
the corresponding trajectory X∗(·) := X (·; t, x, a∗(·)), the relation

a∗(s) = DpF0(D̃Qu(s, X∗(s))), s ∈ [t, T ]. (5.105)

If x ∈ Zμ
t and Jμ(t, x; ·) is continuous with respect to the M p

μ (t, T ; H) norm, then
the control a∗(·) is μ-optimal.
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Proof We extend the function h2 : 	 → R to a function h̃2 : H → R ∪ {+∞} by
defining h̃2(a) = +∞ for any a /∈ B�(0). One can easily see that a→h̃2(a) is strictly
convex and lower semicontinuous on H . Moreover (see e.g. Proposition 2.19, p. 77
of [39]), the function

h̃∗
2 : H → R, h̃∗

2(p) := sup
a∈H

(
〈a, p〉 − h̃2(a)

)

is convex and lower semicontinuous on H . Thanks to the way we extended h2, we
necessarily have supa∈H

( 〈a,−p〉 − h̃2(a)
) = supa∈	

( 〈a,−p〉 − h2(a)
)
and thus

h̃∗
2(−p) = −F0(p) for any p ∈ H .
Let now p ∈ H . It follows from the lower semi-continuity of h̃2, its convexity

and the fact that its value is +∞ on H \ B�(0), that argmina∈H
(
〈a, p〉 + h̃2(a)

)
is

non-empty (Theorem 2.11 page 72 of [39]). Since h̃2 is strictly convex it is single-
valued (see p. 84 of [39]). Thanks to the way we extended h2, this unique point a∗
where the minimum is attained belongs to 	 so it is also the unique minimizer of the
problem

inf
a∈	

(〈a, p〉 + h2(a)) .

Moreover (see [39], Proposition 2.33, p. 84), a∗ must be in the sub-differential
(Definition 2.30, p. 82 of [39]) of h̃∗

2(·) at −p which is equal to the super-differential
of F0(·) at p. Since by hypothesis F0 is differentiable, we must have a∗ = DpF0(p)
(see Proposition 2.40, p. 87 of [39]).

We now define the feedback control by

a(t) = DpF0(D̃Qu(t, X (t))). (5.106)

Consider, for s ∈ [t, T ], the closed loop equation in the mild form

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)A

[
b(X (r)) + Q

1
2 DpF0(D̃Qu(s, X (s)))

]
dr

+
∫ s

t
e(r−s)AdWQ(r).

(5.107)

There exists (Theorem6.36, where the selection is given by (5.106)) a generalized
reference probability space μwhere this equation has a mild solution X∗(·). We then
take

a∗(s) = DpF0(D̃Qu(s, X∗(s))), s ∈ [t, T ],

and we conclude thanks to Theorem5.53. �
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5.5.5 Continuity of the Value Function and Non-degeneracy
of the Invariant Measure

The results we have described so far show one of the intrinsic limitations of the L2

approach. Indeed, they can only describe the behavior of the value function in the
support of the invariant measure. Such a support can be, in principle, very small.
Also the verification theorem and construction of optimal feedbacks hold only on
sets of full measure which may change with the generalized reference probability
space. To remedy this we are going to introduce a non-degeneracy hypothesis. The
non-degeneracy hypothesis, coupled with some continuity assumptions, will help
us refine previous results and prove a number of propositions concerning the weak
formulation of the optimal control problem (see Sect. 2.1.2).

Hypothesis 5.56 The invariant measure in Hypothesis5.4 is non-degenerate. In
other words, for any non-void open set O⊂H , m(O) > 0.

Recall that in the weak formulation of the optimal control problem the generalized
reference probability space μ varies with the controls so that the set of admissible
controls becomes

U t :=
⋃

μ

Uμ
t ,

where Uμ
t is the set of admissible controls for a given generalized reference proba-

bility space μ defined in (5.79). The value function for the optimal control problem
in the weak formulation is then

V (t, x) = inf
a(·)∈U t

Jμ(t, x; a(·)).

Corollary 5.57 Let the hypotheses of Lemma5.50 and Hypothesis5.56 be satisfied.
Suppose moreover that, for any choice of t,μ and a(·), the functions u(t, x) and
Jμ(t, x, a(·)) are continuous in the x variable. Then, for every (t, x) ∈ [0, T ] × H
and any generalized reference probability space μ on [t, T ], we have

u(t, x) ≤ V (t, x) ≤ V μ
t (x).

Proof Lemma5.50 ensures that, for any choice of t,μ and a(·), u(t, x) ≤ Jμ(t, x,
a(·)) for m-almost every x ∈ H . For any y ∈ H we consider the sequence of balls
B1/n(y), where n ∈ N. Given the non-degeneracy of m, m

(
B1/n(y)

)
> 0 and then

u(t, ·) cannot be strictly bigger than Jμ(t, ·, a(·)) on B1/n(y). We can thus obtain a
sequence yn converging to y such that u(t, yn) ≤ Jμ(t, yn, a(·)). By continuity we
get u(t, y) ≤ Jμ(t, y, a(·)). Taking the infimum over a(·) and μ we have the claim.

�

More precise results can be obtained under stronger continuity assumptions.
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Corollary 5.58 Let the assumptions of Corollary5.57 be satisfied. Suppose that,
for any choice of t , μ and a ∈ 	, the functions D̃Qu(t, ·), R(t, ·, a), l(t, ·) and
F0(t, ·, ·) are continuous. Suppose that there exist C > 0 and N ∈ N such that, for
all (t, x), |D̃Qu(t, x)|, |l(t, x)| ≤ C(1 + |x |N ). Then the fundamental identity (5.92)
holds for any (t, x) ∈ [0, T ] × H, any generalized reference probability space μ and
any a(·) ∈ Uμ

t .

Proof Lemma5.50 ensures that, for any choice of t,μ and a(·), we have, for m-a.e.
x ∈ H ,

u(t, x) + E

∫ T

t
F0,CV

(
s, X (s), D̃Qu(s, X (s)), a(s)

)

−F0

(
s, X (s), D̃Qu(s, X (s))

)
ds = Jμ(t, x; a(·)),

(5.108)

where X (s) := X (s; t, x, a(·)), for s ∈ [t, T ], is the mild solution of (5.78). Thus,
as we did in the proof of Lemma5.57, thanks to the non-degeneracy of m, for every
x ∈ H we can find a sequence yn converging to x in H such that

u(t, yn) + E

∫ T

t
F0,CV

(
s, X (s; t, yn, a(·)), D̃Qu(s, X (s; t, yn, a(·))), a(s)

)

−F0

(
s, X (s; t, yn, a(·)), D̃Qu(s, X (s; t, yn, a(·)))

)
ds = Jμ(t, yn; a(·)).

(5.109)

We need to show that, taking the limit n → ∞, every term of (5.109) converges to the
respective term in (5.108). The convergence of Jμ(t, yn; a(·)) and u(t, yn) follows
from their continuity in the x variable.

The terms inside the integral converge pointwise to the respective terms in (5.108)
P-a.s. and for almost any s thanks to (1.70) and the various continuity hypotheses.
The convergence of the integral thus follows from Lemma1.51, the uniformmoment
bounds from (1.69), the polynomial growth of |D̃Qu(t, ·)| and l(t, ·), the boundedness
of R and the bounds on the growth of b and F0. �

Using this result we find the counterparts of Theorem5.53, Corollary5.54 and
Theorem5.55 as follows.

Theorem 5.59 (Verification Theorem, Sufficient Condition) Let the assumptions of
Corollary5.58 be satisfied. Choose (t, x) ∈ [0, T ] × H and denote by μ̂ a general-
ized reference probability space. Let a∗(·) ∈ U μ̂

t be such that, denoting by X∗(·) the
corresponding state, we have

a∗(s) ∈ argmin
a∈	

F0,CV (s, X∗(s), D̃Qu(s, X∗(s)), a) (5.110)

for almost every s ∈ [t, T ] and P-almost surely. Then the pair (a∗(·), X∗(·)) is opti-
mal at (t, x) for the weak formulation (and so in the μ̂-strong formulation) and
u(t, x) = V (t, x) = V μ̂

t (x) = J μ̂(t, x; a∗(·)).
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Proof The proof is identical to the proof of Theorem 4.197 if we use Corollary5.58.
�

Corollary 5.60 Let the assumptions of Corollary5.58 be satisfied. Choose (t, x) ∈
[0, T ] × H. Assume, moreover, that on [t, T ) × H the feedback map � defined in
(5.102) admits a measurable selection φt : [t, T ) × H → 	. Then:

(i) The Closed Loop Equation

{
dX (s)=

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s),φt (s, X (s)))

)
ds+dWQ(s),

X (t) = x,
(5.111)

has a weak mild solution (see Definition1.121) Xφt (·; t, x) in a suitable gener-
alized reference probability space μ and it is unique in this space if (5.111) is
considered as an equation with the control process aφt (s) := φ(s, Xφt (s; t, x)),
s ∈ [t, T ).

(ii) The pair (aφt (·), Xφt (·; t, x)) is optimal for the weak formulation (and a for-
tiori μ-optimal) at (t, x) and u(t, x) = V (t, x) = V μ

t (x) = J μ̄(t, x; aφt (·)). If,
finally, �(s, x) a singleton for any (s, x) ∈ (t, T ) × H, then aφt is the unique
μ-optimal control.

Proof The proof is the same as that of Corollary5.54 but we have to use Corol-
lary5.58 instead of Lemma5.50. �

Observe that, in the above corollary, if the uniqueness of solutions of (5.111) is
not guaranteed, the optimality of the pair (aφt (·), Xφt (·; t, x)) needs to be understood
in terms of the extended weak formulation introduced in Remark2.6.

Theorem 5.61 Let the assumptions of Corollary5.58 be satisfied.
Suppose also that:

(i) E = H and R(t, x, a) ≡ a, hence F0,CV does not depend on t and x and it is
given by

F0,CV (p, a) = 〈a, p〉 + h2(a).

(ii) h2 : 	 → R is strictly convex and lower semicontinuous.
(iii) F0(p) := infa∈	 (〈a, p〉 + h2(a)) is differentiable.

Then, for any t ∈ [0, T ] and x ∈ H, there exists a generalized reference prob-
ability space μ (where the elements of the filtration F t

μ,s are countably generated
up to sets of measure zero) and a control a∗(·) ∈ Uμ

t which satisfies, together with
the corresponding trajectory X∗(·) := X (·; t, x, a∗(·)), the relation

a∗(s) = DpF0(D̃Qu(s, X∗(s))), s ∈ [t, T ].

a∗(·) is an optimal control for the weak formulation at (t, x) and the unique μ-
optimal control at (t, x). For any t ∈ [0, T ] and x ∈ H, u(t, x) equals the value
function V (t, x).
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Proof The proof follows the same arguments as these used in the proof of Theo-
rem5.55. In the very last step we use Corollary5.60 instead of Theorem5.53. �

5.6 Examples

We show how the L2-theory we have developed so far can be used to treat some
specific optimal control problems.

5.6.1 Optimal Control of Delay Equations

Let us consider a simple controlled one-dimensional linear stochastic differential
equation with a delay r > 0:

⎧
⎨

⎩

dy(s) = (β0y(s) + β1y(s − r) + α(s)) ds + σdW0(s),
y(t) = x0,
y(t + θ) = x1(θ), θ ∈ [−r, 0),

(5.112)

where σ > 0, β0,β1 ∈ R are given constants; W0 is a one-dimensional standard
Brownianmotiondefinedona complete probability space (�,F ,P); and

{
F t

s

}

s∈[t,T ]
is the augmented filtration generated byW0. The control α(·) is anF t

s -progressively
measurable process with values in the interval 	 = [0, R] for some R > 0. We
assume that x1(·) ∈ L2(−r, 0).

As recalled in Sect. 2.6.8, Eq. (5.112) can be rewritten as a linear evolution equa-
tion in the Hilbert space H = R × L2 (−r, 0) of the following form:

⎧
⎨

⎩

dX (s) = (A1X (s) + B1a(s)) dt + GdW0(s),

X (t) =
(
x0
x1

)

:=
(
y0
y1

)

∈ H,
(5.113)

where a(·) = α(·), A1 is a suitable generator of a C0-semigroup on H ; B1 : R → H

and G : R → H are continuous operators B1w0 =
(

w0

0

)

and Gw0 =
(

σw0

0

)

(further details can be found in Sect. 2.6.8). Finally, considering Q ∈ L+(H) =
L+(R × L2(−τ , 0)) defined as Q :=

(
σ2 0
0 0

)

, we can rewrite the equation once

more obtaining

⎧
⎨

⎩

dX (s) = (
A1X (s) + Q1/2 1

σ
B1a(s)

)
ds + dWQ(s),

X (t) =
(
x0
x1

)

:=
(
y0
y1

)

∈ H,
(5.114)

which is the form required by (5.78).
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Proposition 5.62 Assume that σ �= 0, that β0 < 1 and denote by γ a real number
in (0,π) such that γ coth γ = β0. Assume that

β0 < −β1 <

√

γ2 + β2
0 . (5.115)

Then Eq. (5.113) and (5.114) have a unique invariant measure m which is non-
degenerate.

Proof See Remark 10.2.6(i), Chap. 10 of [177]. �

Proposition 5.63 Consider the operator DQ := Q1/2D defined on C1
b(H)⊂L2

(H,B,m). Then:

(i) DQ is not closable in L2(H,B,m).
(ii) Hypothesis5.1 holds.

Proof Part (i) is proved in [299], Sect. 7.2, pp. 15–16. The second statement can
easily be verified. �

Thanks to Part (ii) of Proposition 5.63, the whole theory developed so far in this
chapter can be applied even if the operator DQ is not closable in the classical sense.

Remark 5.64 We considered a simple one-dimensional case of controlled stochas-
tic delay equations for simplicity of presentation. In fact, this framework can be
applied to more general cases like semilinear d-dimensional equations presented in
Sect. 2.6.8. Conditions to guarantee the existence of a nontrivial invariant measure
for the multidimensional case can be found in Sect. 10.3 of [177] (see, in particular,
Theorem 10.2.5(i)). Using the same methodology, problems with cost functions f0
and g0 depending also on the history of the state y can be treated as well. �

5.6.2 Control of Stochastic PDEs of First Order

The second example is an optimal control problem driven by a first-order stochastic
PDE similar to the one considered in Sect. 2.6.7. This kind of equation is important
in financial modeling since it provides a description of the time evolution of forward
rates under the non-arbitrage assumption; we refer the reader to Sect. 2.6.7 and [303].

Fix κ > 0. The state space H we consider here is given by the followingweighted
L2 space of real-valued functions defined on [0,+∞):

H :=
{

f : [0,+∞) → R measurable :
∫ +∞

0
f 2(ξ)e−κξdξ < +∞

}

.

In particular, if κ = 0, H = L2 (R). The inner product on H is given by
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〈 f, g〉H :=
∫ +∞

0
f (ξ)g(ξ)e−κξdξ

and the induced norm will be denoted by | · |H .
The following result can be easily proved.

Proposition 5.65 The semigroup S(t) defined as

S(t) f (ξ) := f (t + ξ), ξ ≥ 0

is a C0-semigroup on H. Its generator is given by

{
D(A) = H 1

κ (0,∞) :=
{
f ∈ L2

ρ : d f
dξ

∈ L2
ρ

}

A = d
dξ

(where d f
dξ

denotes the distribution derivative of f here). Moreover,

‖S(t)‖L(H) ≤ e−κt .

We consider the following equation, studied for instance in [303],

dX (t) = (AX (t) + b(X (t)) + Bh1(a(t))) dt + τdW0(t), (5.116)

where W0 is a one-dimensional Brownian motion; τ ∈ H ∩ Bb([0,+∞),R); B ∈
L(H) and h1 : 	 → R; a(t) = a(t, ·) ∈ H is a control process and b is an operator
defined on H as follows

b(x)(ξ) = −τ (x(ξ))
∫ ξ

0

1

1 + ex(r)
τ (r)dr − 1

2
|τ (ξ)|2 1

1 + ex(ξ)
τ (ξ)

∫ ξ

0
τ (r)dr.

In order to apply the L2 theory we need to ensure the existence of an invariant
measure for the uncontrolled version of (5.116). This is the content of the following
lemma.

Lemma 5.66 If
‖τ‖0 + |τ |H |τeκ·|H ≤ κ,

then there exists a non-degenerate invariant measure m for

dX (t) = (AX (t) + b(X (t))) dt + τdW0(t).

Proof See Proposition 3.2 in [303]. �

Observe that τdW0(t) is of the form dWQ(t) prescribed by Hypothesis5.1-(B)
if we consider, for instance, the operator Qx = τ 〈τ , x〉. In this case one can easily
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see that Hypothesis 5.1-(C) is satisfied as well. To verify Hypothesis5.42 we need
Bh1(a(t)) to be of the form Q1/2R for some R satisfying Hypothesis5.42-(i). This
is the case if we take B = Q

1
2 and h1 : 	 → H some bounded Borel measurable

function. 	 needs to be specified, as in (5.77), as a closed ball of a real separable
Banach space.

Remark 5.67 The operator
(
DQ,C1

b(H)
)
is not always closable in L2(H,B,m) (see,

e.g., Paragraph 7.1, pp. 13–14 of [299]). �

5.6.3 Second-Order SPDEs in the Whole Space

The third example regards a stochastic controlled parabolic equation in the whole
space (see Sects. 2.6.1 and 2.6.2 for stochastic controlled parabolic equations in
bounded domains).We consider the problem using a weighted L2 space as the under-
lying Hilbert space. For simplicity we limit our observations to the one-dimensional
case.

We denote by H the weighted L2(R) space L2 (R, ρκ(ξ)dz), where the weight
ρκ(ξ) = e−κ|ξ| with κ > 0.

The inner product and the norm in H are denoted by 〈·, ·〉H and | · |H , respectively.
Fix λ > 0 and define A(0) = 
 − λI , where 
 : D(
)⊂L2 (R) → L2 (R) is the
Laplacian with domain D(
), which is the Sobolev space H 2(R). Let S(0)(t) denote
the C0-semigroup on L2 (R) generated by A(0). The semigroup S(0)(t) is self-adjoint
on L2 (R) and ∥

∥S(0)(t)
∥
∥ ≤ e−λt . (5.117)

Proposition 5.68
{
S(0)(t), t ≥ 0

}
can be uniquely extended to a C0-semigroup{

S(κ)(t), t ≥ 0
}
on H. Moreover,

∥
∥S(κ)(t)

∥
∥
L(H)

≤ e(
1
2 κ2−λ)t , t ≥ 0. (5.118)

Proof See Proposition 9.4.1, p. 187 of [177]. �
We denote by A(κ) the generator of

{
S(κ)(t), t ≥ 0

}
.

Consider the controlled equation

dX (t) = (
AX (κ)(t) + J R(X (t)) − Ja(t)

)
dt + JdW (t), (5.119)

where W is a standard cylindrical Wiener process on L2 (R); J is the embedding
L2 (R) ↪→ H and a(·) is a control process taking values in L2 (R). Assume that the
Lipschitz continuous map R : L2 (R) → L2 (R) extends to a map H → H which
satisfies Hypothesis 5.42-(i).

The following equation is the uncontrolled counterpart of (5.119)

dX (t) = A(κ)X (t)dt + JdW (t). (5.120)
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Proposition 5.69 For any κ > 0 and λ > 0 the solution of (5.120) is well defined
in H and it admits a non-degenerate invariant measure m.

Proof For the existence of the invariant measure, see Proposition 9.4.6, page 191 of
[177]. In [119], Sect. 4.3, it is proved that the invariant measure can be chosen to be
non-degenerate. �

It can be shown that the transition semigroup for this process is not strongly Feller,
hence it violates the smoothing property required, for example, in Hypothesis 4.76.
Thus the theory of the HJB equations developed in Chap. 4 does not apply in this
case. Nevertheless, we can study the problem using the results of this chapter.

Remark 5.70 We observe that the family of optimal controls described by the state
equation (5.78) needs to satisfy the structural condition described in Chap.2: the
image of the drift is always contained in the image of Q1/2. The same kind of
structure is also present in the state equation of the parabolic problem studied in
[225] and described in (2.104). In that case the same operator B acts on the drift and
on the diffusion but it is unbounded, so the theory described in this chapter cannot be
used. Still, such a similarity in the structure suggests that some further development
of the theory will probably be able to treat such a case. �

5.7 Results in Special Cases

In this section we present further results about existence and uniqueness of solutions
of HJB equations when a certain “commutative assumption” for the operators A and
Q is satisfied. We will indeed suppose (see Hypothesis5.71-(D) for a more precise
statement) that there exists an orthonormal basis of H made of eigenvectors of both
A and Q.

The problem was studied in [3, 4, 123, 125] in this case. In this section we recall
some results, mainly from [4, 123]. We omit the proofs. An element of interest of
the approaches developed in [4, 125] is the use of variational solutions of the HJB
equations. In this kind of approach the solution is defined via the duality pairing
of the candidate solution with regular functions. Since the duality is obtained by
extending an L2 inner product on H , the use of this scheme is strictly linked to the
identification of a reference measure on H .

5.7.1 Parabolic HJB Equations

We consider the following set of assumptions (similar to Hypothesis 5.1).

Hypothesis 5.71 (A) A is the generator of a strongly continuous semigroup{
et A, t ≥ 0

}
on a real separable Hilbert space H and there exist constants

M ≥ 1 and ω > 0 such that
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∥
∥et A

∥
∥ ≤ Me−ωt , ∀t ≥ 0.

(B) Q ∈ L+(H), T > 0 and μ :=
(
�μ,F μ,

{
Fμ,s

}

s∈[0,T ] ,P
μ,W μ

Q

)
is a general-

ized reference probability space.
(C) esAQesA

∗ ∈ L1(H) for all s > 0. Moreover, for all t ≥ 0,

∫ t

0
Tr
[
esAQesA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAQesA

∗
ds,

is of trace class for every t ≥ 0.
(D) There exists an orthonormal basis {e1, e2, . . .} of H made of elements of D(A)

such that

Ax =
+∞∑

n=1

−αn 〈en, x〉 en, x ∈ D(A),

for some eigenvalues 0 < α1 ≤ α2 ≤ α3 . . . and

Qx =
+∞∑

i=n

qn 〈en, x〉 en, x ∈ H,

for a sequence of nonnegative eigenvalues qn .

If Hypothesis5.71 holds, the existence of an invariant measure m associated with
the following Ornstein–Uhlenbeck process

⎧
⎨

⎩

dX (s) = AX (s)ds + dWQ(s), 0 ≤ s ≤ T,

X (0) = x ∈ H
(5.121)

is proved, for example, in [180], Theorem 11.30, page 325. Observe that, differently
from what we did in previous sections, here the reference measure is the invariant
measure of the homogeneous Cauchy problem (which coincides with that of previous
sections if b = 0 in (5.3)). For any φ ∈ Cb(H), the notation6 Pt [φ](x) will be used

6In Chap.4 and in Appendix B, when the transition semigroup reduces to the Ornstein–Uhlenbeck
case, the notation Rt is used. In this section, and in the proof of Theorem5.41, we keep the notation
Pt even for the Ornstein–Uhlenbeck case because the semigroup plays exactly the same role, from
the perspective of the L2 approach to the HJB equation, as the semigroup Pt in Sect. 5.3 and,
differently from Chap.4 and Appendix B, the two semigroups never appear at the same time, so
there is no possibility of confusion.
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to denote the transition semigroup Pt for (5.121):

Pt [φ](x) = Eφ(X (t, x)).

Denoting by B the completion of the Borel σ-field B(H) with respect to m, Pt
extends to a strongly continuous semigroup of contractions on L2(H,B,m)with the
generator ⎧

⎨

⎩

A : D(A)⊂L2(H,B,m) → L2(H,B,m)

A : φ→Aφ,

whose explicit expression on regular functions is

Aφ(x) = 1

2
Tr [QD2φ] + 〈Ax, Dφ〉 . (5.122)

When Hypothesis 5.71, and in particular its part (D), is satisfied, Remark5.12
ensures that the operator DQ introduced in Definition5.11 is closable so that the
closability problem we mentioned in Sect. 5.2.4 is no longer an issue. Therefore we
work here with more conventional Sobolev spaces. We introduce them now together
with some notations that will be useful in the variational approach to the solution
of the HJB equation described below. Denote by H the space L2(H,B,m), by V
the Sobolev space W 1,2(H,m) made of all functions f of L2(H,B,m) such that
Df ∈ L2(H,B,m), and by V∗ its dual. Identifying H with its dual, one gets the
following Gelfand triple

V ⊂ H ⊂ V∗.

Given T > 0 we introduce

WT :=
{

f : f ∈ L2(0, T ;V),
d

dt
f ∈ L2(0, T ;V∗)

}

.

It follows, for instance, from Theorem 1.2.15 of [5] that WT⊂C([0, T ],H). In
particular, given f ∈ WT , f (T ) is a well-defined element of H and thus an m-a.e.
defined function from H to R. We will use this fact in the following, in particular in
the statements of Theorems5.78 and 5.79.

Lemma 5.72 Let Hypothesis5.71 be satisfied. The operator A : D(A)⊂H → H
extends uniquely to a linear operator Ã ∈ L(V,V∗) such that, for any φ,ψ ∈ V ,

〈
Ãφ,ψ

〉

〈V∗,V〉
=
〈
φ, Ãψ

〉

〈V,V∗〉
= 1

2

∫

H

〈√
QDφ,

√
QDψ

〉

H
dm(x).

Finally, Ã satisfies the following coercivity estimate: there exist α,β > 0 such that,
for any φ ∈ V ,
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−
〈
Ãφ,φ

〉

〈V∗,V〉
≥ α|φ|2V − β|φ|2H (5.123)

and (5.123) holds in particular if one considers α = 1/2 and β = 1/2.

Proof See [3], Lemma 4.2, p. 111. For the last statement, see [4], p. 503. �

Given a measurable map G : V → V∗, a function f ∈ L2(0, T ;V∗) and g ∈ H
we consider the equation

{
ut + Au + G (u) + f (t, x) = 0,
u(T, x) = g(x).

(5.124)

Definition 5.73 A function u ∈ WT is a solution of (5.124) in the variational sense,
if for any ψ ∈ V and any t ∈ [0, T ],

〈u(t),ψ〉 = 〈g,ψ〉 +
∫ T

t

〈
Ãu(s),ψ

〉

〈V∗,V〉
ds +

∫ T

t
〈Gu(s),ψ〉〈V∗,V〉 ds

+
∫ T

t
〈 f (s),ψ〉〈V∗,V〉 ds. (5.125)

Theorem 5.74 Assume that Hypothesis5.71 is satisfied. Assume that G : V → V∗
and there exists a positive constant K < α (where α is the constant from (5.123))
such that:

(G1) |G(ξ)|V∗ ≤ K (1 + |ξ|V) for all ξ ∈ V ,
(G2) |G(ξ) − G(η)|V∗ ≤ K |ξ − η|V for all ξ, η ∈ V .
Then, for every g ∈ H and f ∈ L2(0, T ;V∗) the evolution equation (5.124) has a
unique solution in WT in the sense of Definition 5.73.

Proof See Theorem 5.2 in [3]. �

One can remove the restriction K < α assuming a stronger regularity of the func-
tion G.

Theorem 5.75 Assume that Hypothesis5.71 is satisfied. Assume that G : V → H
and there exists a positive constant K such that:

(G1) |G(ξ)|H ≤ K (1 + |ξ|V) for all ξ ∈ V ,
(G2) |G(ξ) − G(η)|H ≤ K |ξ − η|V for all ξ, η ∈ V .
Then, for every g ∈ H and f ∈ L2(0, T ;V∗) the evolution equation (5.124) has a
unique solution in WT in the sense of Definition 5.73.

Proof See Theorem 5.3 in [3]. �
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5.7.2 Applications to Finite Horizon Optimal Control
Problems

Let Hypothesis 5.71 be satisfied. We denote by 	 the closed ball B�(0) of radius �
in H . Given some generalized reference probability space μ := (�μ,F μ,
{
Fμ,s

}

s∈[0,T ] ,P
μ,W μ

Q

)
we consider the class of admissible controls given by

Uμ
0 = {

a(·) : [0, T ] → 	 : a(·) is Fμ,s − progressively measurable
}
. (5.126)

We consider the optimal control problem, in the weak formulation, characterized
by the state equation

{
dX (s) = (AX (s) + b(X (s)) + B(X (s))a(s)) ds + dW μ

Q(s), 0 ≤ s ≤ T
X (0) = x, x ∈ H,

(5.127)
and the target functional

Jμ(x; a(·)) = E
μ

{∫ T

0
[ f (s, X (s; 0, x, a(·))) + h(a(s))]ds + g(X (T ; 0, x, a(·)))

}

.

(5.128)
The hypotheses on the functions b : H → H , B : H → L(H), f , h and g are spec-
ified below.

Since we are interested in the weak formulation of the problem, we let the gener-
alized reference probability space μ vary and we consider the set of controls given by

U0 :=
⋃

μ

Uμ
0 , (5.129)

where Uμ
0 is defined in (5.126). The value function of the problem is

V 0(x) = inf
a(·)∈U0

Jμ(x; a(·)). (5.130)

The corresponding HJB equation is

⎧
⎨

⎩

vt + Av + 〈b(x), Dv〉 + F(x, Dv) + f (t, x) = 0,

v(T, x) = g(x), x ∈ H,

(5.131)

where the Hamiltonian F is given by

F(x, p) = inf
a∈	

{〈B(x)a, p〉 + h(a)} . (5.132)

If we introduce
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G(v)(x) := 〈b(x), Dv(x)〉 + F(x, Dv(x)),

equation (5.131) can be rewritten in the form (5.124),

{
vt + Av + G (v) + f (t, x) = 0,
v(T, x) = g(x)

(5.133)

and Theorems5.74 and 5.75 can be applied. One gets the following propositions, as
corollaries.

Proposition 5.76 Assume that Hypothesis5.71 is satisfied. Suppose that b and
x→B(x)a, for any a ∈ 	, are Borel measurable maps from H to H, have images
in

√
Q(H) and there exist two positive constants k1 and k2 such that

|Q−1/2b(x)| ≤ k1(1 + |x |) for all x ∈ H (5.134)

and
‖B∗(x)Q−1/2‖L(H) ≤ k2(1 + |x |) for all x ∈ H, (5.135)

where Q−1/2 denotes the pseudoinverse of Q1/2. Moreover, assume that h : 	 → R

is measurable and bounded. Then, for any g ∈ H and f ∈ L2(0, T ;V∗), (5.133) has
a unique solution v ∈ WT , provided that k1 and k2 are sufficiently small.

Proof See Corollary 4.3 in [4]. �

One can remove the restrictions on k1 and k2 if the regularity of b and B is stronger.

Proposition 5.77 Assume that Hypothesis5.71 is satisfied. Suppose that b and
x→B(x)a, for any a ∈ 	, are Borel measurable maps from H to H, have images
in

√
Q(H), and that

sup
x∈H

|Q−1/2b(x)| < +∞ (5.136)

and
sup
x∈H

‖B∗(x)Q−1/2‖L(H) < +∞, (5.137)

where Q−1/2 denotes the pseudoinverse of Q1/2. Moreover, assume that h : 	 → R

is measurable and bounded. Then, for any g ∈ H and f ∈ L2(0, T ;V∗), (5.133) has
a unique solution v ∈ WT .

Proof See Corollary 4.4 in [4]. �

We now state two results that ensure the existence of an optimal control and
characterize the value function as the unique variational solution of theHJB equation.

Theorem 5.78 Assume that the hypotheses of Proposition 5.76 are satisfied. More-
over, assume that:
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(i) f ∈ L2(0, T ;V∗).
(ii) b : H → H and B : H → L(H) are Lipschitz-continuous.
(iii) h : 	 → R is lower semicontinuous.

Then, for each initial datum x ∈ H, there exists an optimal control for the optimal
control problem (5.127)–(5.129). Moreover, if v ∈ WT⊂C([0, T ],H) is the unique
solution of (5.133) and V 0 is the value function defined in (5.130), we have v(0, x) =
V 0(x) for m-a.e. x ∈ H.

Proof See Theorem 5.4 in [4]. �

Theorem 5.79 Assume that the hypotheses of Proposition 5.77 are satisfied. More-
over, assume that:

(i) f ∈ L2(0, T ;H).
(ii) b : H → H and B : H → L(H) are Lipschitz-continuous.
(iii) h : 	 → R is lower semicontinuous.

Then, for each initial datum x ∈ H, there exists an optimal control for the optimal
control problem (5.127)–(5.129) and the unique solution of (5.133) is given by the
value function defined in (5.130). Moreover, if v ∈ WT⊂C([0, T ],H) is the unique
solution of (5.133) and V 0 the value function defined in (5.130), we have v(0, x) =
V 0(x) for m-a.e. x ∈ H.

Proof See Theorem 5.2 in [4]. �

Remark 5.80 We can compare the results and the assumptions of this last section
with those obtained in the previous parts of the chapter. We observe that:

(i) In this section, differently from Sects. 5.2–5.4, the “commutative” Hypothe-
sis 5.71-(D) is needed.

(ii) The Gâteaux differentiability of b, which was demanded in part (D) of Hypoth-
esis 5.1 and then required in Sects. 5.2–5.4, is not needed here.

(iii) In the formulation of the state equation (5.78) we find Q1/2 in front of the
coefficient B. Even if in this respect the state equation (5.127) seems more
general, the situation is not much different since Hypotheses (5.134)–(5.135)
or (5.136)–(5.137) are needed.

(iv) While in Sect. 5.2 we consider the invariant measure m related to the non-
homogeneous Cauchy problem (5.3) (see Hypothesis5.4), here m represents
the invariant measure associated with the homogeneous stochastic equation
(5.121). Still, as discussed after Theorem5.41, in Sect. 5.4 the mild solution of
the HJB equation can be characterized as a strong solution only if b = 0 and the
properties of strong solutions are needed (see Sect. 5.5) to identify the solution
of the HJB equation and the value function of the optimal control problem.

(v) The results in Sects. 5.2–5.4 refer to the case where the operator DQ can be non-
closable. Conversely, as observed inRemark5.12,Hypothesis5.71, in particular
Hypothesis5.71-(D), implies the closability of the operator DQ .

�
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5.7.3 Elliptic HJB Equations

In this section we present some results regarding the use of L2 theory for the elliptic
equation (5.2). They aremainly taken from [125]which, to the best of our knowledge,
is the only article where an L2-approach for HJB equations arising from optimal
control problemswith infinite horizon is developed. A variational solution of theHJB
equation, different from the one given in Definition5.73, is used. The identification
of the solution with the value function is not provided.

We introduce the following set of assumptions.

Hypothesis 5.81 (A) A is the generator of a strongly continuous semigroup{
et A, t ≥ 0

}
on a real separable Hilbert space H and there exist constants

M ≥ 1 and ω > 0 such that

∥
∥et A

∥
∥ ≤ Me−ωt , ∀t ≥ 0.

Moreover, A is self-adjoint and A−1 ∈ L(H).
(B) Q ∈ L+(H) and Tr[A−1Q] < +∞.
(C) There exists a reflexiveBanach spaceV with D(A)⊂V⊂H having the following

property: A extends to a continuous operator A : V → V ∗ (where V ∗ is the dual
of V ).

(D) μ := (
�,F , {Fs}s∈[0,+∞) ,P,WQ

)
is a generalized reference probability

space.
(E) There exists an orthonormal basis {e1, e2, . . .} of H made of elements of D(A)

such that

Ax =
+∞∑

n=1

−αn 〈en, x〉 en, x ∈ D(A)

for some eigenvalues 0 < α1 < α2 < α3 . . . and

Qx =
+∞∑

i=n

qn 〈en, x〉 en, x ∈ H,

for a sequence of nonnegative eigenvalues qn .

We consider the following SDE

⎧
⎨

⎩

dX (s) = AX (s)ds + dWQ(s), s > 0,

X (0) = x ∈ H
(5.138)

and denote by X (·; x) its mild solution at time t (the existence and the uniqueness
of the solution are provided, for instance, by Theorem1.147).
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Proposition 5.82 Suppose that Hypothesis5.81 is satisfied. Then there exists a
unique invariant measure m for (5.138). The measure m is a centered Gaussian
measure supported in V with covariance operator � := − 1

2 A
−1Q.

Proof See Theorem 6.2.1, p. 97 of [177]. �

We denote by B the completion of the Borel σ-field B(H) with respect to m
and byH the Hilbert space L2(H,B,m). We also denote by Pt , t ≥ 0, the transition
semigroup (indeed the Ornstein–Uhlenbeck semigroup) associated to (5.138). For
any φ ∈ Cb(H) it is given by

Pt [φ](x) = Eφ(X (t, x)).

Proposition 5.83 Suppose that Hypothesis5.81 is satisfied. Then Pt extends to
a strongly continuous semigroup of contractions on L2(H,B,m). Its generator
A : D(A)⊂L2(H,B,m) → L2(H,B,m) is self-adjoint.

Proof The first part of the proposition is a particular case of Proposition5.9. The last
claim is part of Lemma 2.4 of [125]. �

Notation 5.84 Denote by I the set of all sequences � = (�1, �2, . . .) ∈ N
N such that

�i = 0, except for a finite number of indices. �

Definition 5.85 Let {en} be the orthonormal basis of H introduced in Hypothe-
sis 5.81-(E). For j = 0, 1, 2 . . ., denote by h j the standard j-th one-dimensional
Hermite polynomials

h j (ξ) := (−1) j√
n! e

ξ2

2

d j
(
e

−ξ2

2

)

dξ j
, ξ ∈ R.

Given � ∈ I we define

K�(x) :=
∏

i∈N
h�i

(〈
x, �−1/2ei

〉

H

)
, x ∈ H,

the Hermite polynomial on H of index �.

Proposition 5.86 Suppose that Hypothesis5.81 is satisfied. The set of the Hermite
polynomials K� is an orthonormal basis in L2(H,B,m). Moreover, for any � ∈ I,
K� ∈ D(A) and

A(K�) = 	�K�,

where 	� := −∑i �iαi (it is a finite sum), and the αi are from Hypothesis5.81-(E).

Proof See Theorem 9.1.5, p. 191 of [179] and Lemma 2.2 of [125]. �
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Definition 5.87 We define the following function spaces:

(i) The Gauss–Sobolev space of order k, for k = 1, 2, . . ., is the spaceHk defined
by

Hk :=
⎧
⎨

⎩
φ ∈ H :

(
∑

�∈I
(1 − 	�)

k 〈φ, K�〉2H
)1/2

= |(I − A)k/2φ|H < +∞
⎫
⎬

⎭

(observe that the expression is well defined since all αi and �i are nonnegative
and then 	� ≤ 0).

(ii) We denote by H∗
k the dual of Hk .

(iii) Given the weight ρn(x) := (
1 + |x |2)n for x ∈ H , we denote byH0,n the space

H0,n :=
{

f ∈ H :
∫

H
f 2(x)ρn(x)dm(x)

}

endowed with the usual L2-weighted Hilbert space structure.
(iv) Given k = 1, 2, . . . and n = 0, 1, . . ., we denote by Hk,n the space

Hk,n := Hk ∩ H0,n,

and byH∗
k,n its dual.

Observe that, for any φ ∈ D(A), we have

∑

�∈I
|	�|2 〈φ, K�〉2H =

∑

�∈I
〈Aφ, K�〉2H = |Aφ|2H < +∞

so one can easily see that D(A) ⊂ H1.A can be extended to the whole spaceH1 as
is shown in the next lemma.

Lemma 5.88 Suppose that Hypothesis5.81 is satisfied. ThenA extends to a contin-
uous linear operator from H1 toH∗

1.

Proof See Lemma 2.4 of [125]. �

Hypothesis 5.89 (i) 	 is a Polish space.
(ii) R̃ : V × 	 → H is Borel measurable and such that, for some n ≥ 0 and R0 >

0,
|R̃(x, a)| ≤ R0(1 + |x |2)n/2 for all (x, a) ∈ V × 	.

We denote by R : V × 	 → Q1/2(H) the function R := Q
1
2 R̃.

(iii) λ : H → R
+ is Borel measurable and there exist two real constants λ0,λ1 > 0

such that

λ0(1 + |x |2)n ≤ λ(x) ≤ λ1(1 + |x |2)n for all x ∈ H.
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(iv) l : V × 	 → R is Borel measurable and there exists a c0 > 0 such that

|l(x, a)| ≤ c0(1 + |x |2)n/2 for all (x, a) ∈ V × 	.

We are interested in studying the HJB equation

(λ(x)I − A) v − F(v) = 0, (5.139)

where
F(v)(x) := inf

a∈	
{〈R(x, a), Dv(x)〉 + l(x, a)} .

Remark 5.90 The HJB equation (5.139) is associated with the optimal control prob-
lem characterized by:

(i) The state equation

{
dX (s) = (AX (s) + R(X (s), a(s))) ds + dWQ(s), s > 0,
X (0) = x, x ∈ H.

(ii) The cost functional

∫ +∞

0
e
∫ t
0 −λ(X (s))dsl(X (t), a(t))dt.

(iii) The set of admissible controls

U0 = {a(·) : [0,+∞) → 	 : a(·) is Fs-progressively measurable} .

�

In order to define and study the solution of (5.139) we introduce the nonlinear
operator

M (v) := (λ(x)I − A) v − F(v)

which, thanks to Lemma5.88, can be defined for any v ∈ H1,n .We have the following
regularity result for M .

Lemma 5.91 Under Hypotheses5.81 and 5.89 the operator M is locally bounded
and Lipschitz continuous fromH1,n toH∗

1,n.Moreover, ifλ0 > R2
0/2, then there exists

a δ > 0 such that, for any f, g ∈ H1,n,

〈M ( f ) − M (g), f − g〉〈H∗
1,n ,H1,n〉 ≥ δ| f − g|2H1,n

.

Proof See Lemmas 4.1 and 4.2 of [125].
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Definition 5.92 The function v ∈ H1,n is a solution of (5.139) if

〈M (v), f 〉〈H∗
1,n ,H1,n〉 = 0

for any f ∈ H1,n .

Theorem 5.93 If Hypotheses5.81 and 5.89 are satisfied and λ0 > R2
0/2 then

Eq. (5.139) has a unique solution v in the sense of the Definition 5.92. Moreover,
v ∈ H2,n.

Proof See Theorem 4.3 of [125]. �

5.8 Bibliographical Notes

In this chapter we focused our attention on HJB equations in L2 spaces with respect
to the invariant measure of an SDE with addictive noise and globally Lipschitz
continuous drift independent of time. A number of existence results for various
abstract classes of SDEs of this form can be found in the literature, for instance:
for linear systems in [164, 354, 355], Sect. 6.2 of [177] and Sect. 11.5 of [180]; for
the dissipative case in [164, 174, 426, 427, 533], Sects. 6.3 and 6.4 of [177] and
Sect. 11.6 of [180]; for the case of a compact semigroup in [56, 164] and Sect. 11.7
of [180]; for equations with additive noise and weakly continuous drift in [120].7

Some approximation lemmas are presented in Sect. 5.2.2. Lemma5.6 is a standard
approximation result for uniformly continuous functions. Observe that in fact we do
no need the approximating sequence to be in EA(H), a weaker regularity would
be enough for our purposes. The technique of mollification over finite-dimensional
subspaces used to prove the pointwise convergences of Lemma 5.8 is well known
(see e.g. Lemma 1.2, page 164 of [486] or [410]); we also use this kind of approach
in the proof of LemmaB.78. The approximation result of Lemma5.7 (especially its
part (iii)) is ad hoc for the approximation of HJB equations in L2 spaces. Even if we
are not able to quote directly a specific published result, the proof uses completely
standard arguments. Observe that the claim holds for any L2 space on H w.r.t. any
bounded measure, so the fact that we are working with an invariant measure of
(5.8) plays no role. Obviously this specific measure is essential in Proposition5.9.
The claim of Proposition5.9 is proved for the Ornstein–Uhlenbeck case (the proof is
exactly the same), together with some characterization of the domain of the generator
(the operator A defined at the beginning of Sect. 5.2.3), in [148, 149, 176], see also
[121, 122, 152, 153, 184, 270, 297], Chap. 7 of [294] and Chap.10 of [179]. We
alsomention, respectively, [417, 446] and [19] for the finite-dimensional and Banach
space cases.

Lemma5.37 provides a way to approximate elements of D(A) even when its
explicit characterization is missing. The space FC2,A∗

0 (H) is used because we can

7For uniqueness results the reader is referred to the review [443] and the references there.
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explicitly compute the operatorA in it (as well as other operators that will be defined
later) and it is dense in L2(H,B,m). Other possible choices can be found in the
literature, for example in Chap.9 of [179] or in Chap.8 of [153], the authors use, for
the Gaussian case, a space of exponential functions. Using FC2,A∗

0 (H) is consistent
with other similar approximations employed in the book, in particular in Chap. 4, see
e.g. Hypotheses4.133 and 4.141.

In Definition5.11 we introduce a notion of Sobolev space for the case when the
derivative operator Q1/2D is non-closable. Sobolev spaces in infinite dimension with
respect to Gaussian measures are studied, for example, in [153, 484], Chap. 10 and
[179], Chaps. 9 and 10. Sobolev spaces with respect to Gibbs measures are studied
in [150, 151, 171, 172], Chap. 11 of [153] and Chap.12 of [179]. In all of these
cases the derivative operator is closable. Regarding the non-closable case needed
here (see, in particular, Sect. 5.2.4) there is much less in the literature, the readers
may consult [298, 299]. The closability of DQ is related to the closability of the
associated Dirichlet form, see [270, 509] for more on this and [422] for a general
introduction to Dirichlet forms.

For somecomments about the results ofLemma5.14 and adiscussionof the related
literature, the readers may check the proof of Proposition4.61 and Remark4.62.
The proofs of Lemmas5.15 and 5.17 are standard but we could not find precise
references. Results similar to Lemma5.18 are often used in the literature as a step to
prove Bismut–Elworthy–Li formulae, see for instance [486, 582] or [180], Sect. 9.4
(original results for the finite-dimensional case are, for example, in [60, 216]). In its
proof, which expands the ideas contained in Step 1 of the proof of Proposition 2.4 of
[298], the claim of Lemma 6.11 of [582], originally proved there for b ∈ UC2

b (H, H)

and ϕ ∈ UC2
b (H), is extended. Results similar to Proposition 5.20 are given in [179]

(they follow as corollaries of the proofs of Propositions 10.5.2 and 11.2.17) or in
[184] (see p. 241);we followhere the arguments of [298].More details and references
about the claims of Remarks5.21 are given in Sect. 4.3.1.3 and in the bibliographical
notes of Chap.4.

Sections5.3 and 5.4 contain the main results of the chapter. We generalize the
theorems contained in [298] to take into account Hamiltonians dependent on x ∈ H
and t ∈ [0, T ]. In [298] only Hamiltonians of the form F0(DQu)were studied. Apart
from this the setting is the same, beginning with Definition5.28 of a mild solution.
The main arguments used to prove the key result of Sect. 5.3, i.e. Theorem5.35, are
the same as those used in the proof of Theorem 3.7 of [298]. The proofs of Theorems
5.40 and 5.41 follow the lines of the proof of Proposition 4.3 of [298]. The literature
on solutions of HJB equations in L2 spaces is not very extensive and this chapter
contains most of the published results (in Sects. 5.3, 5.4 and then in Sect. 5.7), so we
cannot present a long genealogy of the results. However, many ideas and techniques
have been used before to studyHJB equations in spaces of regular functions discussed
in Chap.4. Thus we refer the reader to Sects. 4.4 and 4.5 and to the bibliographical
notes of Chap.4 for more.

The structure of Sect. 5.5 follows the structure of Sect. 4.8, starting from the proof
of the fundamental identity (Lemma5.50) and its use to obtain a verification the-
orem and optimal feedbacks (Theorem 5.53, Corollary5.54, Theorem 5.55); the
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counterparts in Sect. 4.8 are Lemma4.196, Theorem4.197, Corollary4.198 and The-
orem4.201. We refer the reader to the bibliographical notes of Chap.4 for references
on the subject. Compared to [298], the generalization of the Hamiltonian studied in
Sects. 5.3 and 5.4 allows us to consider in Sect. 5.5 a more general optimal control
problem, where the function R appearing in (5.78) also depends on s and X (s) in
addition to a(s). Lemmas5.46 and 5.49 are similar to results in [298], other proofs
of the section are new. Proposition5.44 is a standard existence and uniqueness result
for solutions of stochastic evolution equations in Hilbert spaces, see the references
mentioned in Chap.1. Lemma5.46 is a corollary of Girsanov’s Theorem, the reader
is referred, for example, to [44, 180, 382, 383, 448, 483, 580] for more on its
Hilbert space formulations and various consequences. Because of the L2 context,
the result of Lemma5.50 holds only m-almost everywhere. This is the main rea-
son for introducing additional hypotheses (namely the boundedness of 	 used in
Lemma5.51 and the continuity of Jμ(t, x; ·)) that we need in the proofs of Theo-
rems5.53 and 5.55. The formulations of the results of Sect. 5.5.5 are new even if the
use of the non-degeneracy hypothesis, together with some continuity assumptions,
was already suggested in Remark 3.10 of [298].

In Sect. 5.6 we show how some of the examples from Sect. 2.6 can be treated using
the approach introduced in this chapter. We focus in particular on the existence of
a (possibly non-degenerate) invariant measure, which is the key assumption needed
here. For material on invariant measures for stochastic delay differential equations,
besides Chap.10 of [177, 299] which were already mentioned in Sect. 5.6.1, we
refer the reader to [56, 338, 562]; for first-order stochastic equations, especially
those connected to financial problems, results can be found in [299, 303, 430, 522,
553, 565] and Chap.20 of [487].

The material of Sect. 5.7 essentially comes from [3, 4, 125]. More precisely, the
results described in Sect. 5.7.1 (in particular Theorems5.74 and 5.75) are proved in
[3] (the two mentioned theorems correspond to Theorems 5.2 and 5.3 of [3]) while
the content of Sect. 5.7.2 comes from [4]. Theorems5.78 and 5.79 are Theorems 5.4
and 5.2, respectively, in [4]. Section5.7.3 is based on the results obtained in [125] and
the main theorem (Theorem 5.93) is Theorem 4.3 of [125]. In [123] the author uses
a similar technique to deal with the Kolmogorov equation while in [125], Sect. 3, the
authors study the related unbounded case. Even if we use in various parts of the book
the variational solution of the state equation, this is the only section where we use the
notion of a variational solution of the HJB equation (see Definitions5.73 and 5.92).
Indeed, it naturally needs some reference measure on the Hilbert state space and it
is then linked to the study of HJB equations in the L2 space. As far as we know, the
above mentioned papers are the only ones that use this kind of notion of solution in
the context of optimal control but, in the same spirit, a characterization of the value
function for optimal stopping time problems, in terms of variational inequalities, is
given in [38, 116], see also [125, 581, 583].

We also mention the recent paper [574] where the L2 theory for HJB equations in
Hilbert spaces, employing the ideas discussed in Sects. 5.1–5.5, is used to study an
infinite horizon optimal control problem with boundary noise and boundary control.
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The key prerequisite for the approach developed in this chapter is clearly the the-
ory of invariant measures for infinite-dimensional PDEs. The results we use in this
chapter concern invariant measures for SDEs with addictive noise, but the existing
generalizations can be employed to develop applications to optimal control theory
for other classes of stochastic partial differential equations in the spirit of the the-
ory described here. In particular, the existence results for invariant measures for
SPDEs with multiplicative noise (see, e.g., [218], Chap. 6 and Sect. 11.2 of [177] and
Sect. 11.4 of [180]) and extensions to stochastic Burgers, Euler and Navier–Stokes
equations (e.g. [7, 59, 81, 82, 159, 161, 253, 256, 336, 337, 389, 390, 515, 570,
571] and Chaps. 14 and 15 of [177]), stochastic reaction-diffusion equations (see
for instance [109, 110]), stochastic porous media equations (as in [32, 169]) and
stochastic nonlinear damped wave equations [31] can be a starting point in the study
of optimal control problems driven by such state equations.

Results about invariantmeasures for transition semigroups for stochastic evolution
equations in Banach spaces (such as those contained in [83, 292]) can be exploited to
extend the techniques presented in this chapter to the Banach space case. Similarly
the studies of SPDEs in domains/half-spaces and related invariant measures (see,
e.g., [19, 165, 166, 494, 495, 497, 498, 546]) can be used as a first step to try to
apply the methods to problems with state constraints. Another possible extension of
the results presented here is the case of locally Lipschitz continuous Hamiltonians,
following the results and the techniques introduced in [105, 307, 438].
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