
Chapter 1
Preliminaries on Stochastic Calculus
in Infinite Dimension

1.1 Basic Probability

We recall some basic notions of measure theory and give a short introduction to
random variables and the theory of the Bochner integral.

1.1.1 Probability Spaces, σ-Fields

Definition 1.1 (π-system, σ-field) Consider a set � and denote by P(�) the power
set of �.

(i) A non-empty class of subsets of �, F ⊂ P(�), is called a π-system if it is
closed under finite intersections.

(ii) A class of subsets of �, F ⊂ P(�), is called a σ-field in � if � ∈ F and F
is closed under complements and countable unions.

(iii) A class of subsets of �, F ⊂ P(�), is called a λ-system if:

• � ∈ F ;
• if A, B ∈ F , A ⊂ B, then B \ A ∈ F ;
• if Ai ∈ F , i = 1, 2, ..., Ai ↑ A, then A ∈ F .

If G and F are two σ-fields in � and G ⊂ F , we say that G is a sub-σ-field of
F . Given a class C ⊂ P(�), the smallest σ-field containing C is called the σ-field
generated by C . It is denoted by σ(C ). A σ-field F in � is said to be countably
generated if there exists a countable class of subsetsC ⊂ P(�) such thatσ(C ) = F .

If C ⊂ P(�) and A ⊂ � we define C ∩ A := {B ∩ A : B ∈ C }. We denote by
σA(C ∩ A) the σ-field of subsets of A generated by C ∩ A. It is easy to see that
σA(C ∩ A) = σ(C ) ∩ A (see, for instance, [18], p. 5).
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2 1 Preliminaries on Stochastic Calculus in Infinite Dimension

For A ⊂ � we denote its complement by Ac := � \ A, and for A, B ⊂ � we
denote their symmetric difference by A�B := (A \ B) ∪ (B \ A). We will write
R

+ = [0,+∞), R
+ = [0,+∞) ∪ {+∞}, R = R ∪ {±∞}.

Theorem 1.2 Let G be a π-system and F be a λ-system in some set �, such that
G ⊂ F . Then σ(G ) ⊂ F .

Proof See [370], Theorem 1.1, p. 2. �

Corollary 1.3 Let G be a π-system and F be the smallest family of subsets of �

such that:

• G ⊂ F ;
• if A ∈ F then Ac ∈ F ;
• if Ai ∈ F , Ai ∩ A j = ∅ for i, j = 1, 2, ..., i 	= j , then ∪∞

i=1Ai ∈ F .

Then σ(G ) = F .

Proof Since σ(G ) satisfies the three conditions for F , we obviously have F ⊂
σ(G ). For the opposite inclusion it remains to observe that F is a λ-system. (For a
self-contained proof, see also [180], Proposition 1.4, p. 17.) �

Definition 1.4 (Measurable space) If � is a set and F is a σ-field in �, the pair
(�,F ) is called a measurable space.

Definition 1.5 (Probability measure, probability space) Consider a measurable
space (�,F ).A functionμ : F → [0,+∞) ∪ {+∞} is called ameasureon (�,F )

if μ(∅) = 0, and whenever Ai ∈ F , Ai ∩ A j = ∅ for i, j = 1, 2, ..., i 	= j , then

μ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

μ(Ai ).

The triplet (�,F ,μ) is called a measure space. If μ(�) < +∞ we say that μ is a
boundedmeasure. If� = ⋃∞

n=1 An , where An ∈ F ,μ(An) < +∞, n = 1, 2, ..., we
say that μ is a σ-finite measure. If μ(�) = 1 we say that μ is a probability measure.
We will use the symbol P to denote probability measures. The triplet (�,F , P) is
called a probability space.

Thus a probability measure is a σ-additive function P : F → [0, 1] such that
P(�) = 1.

Given ameasure space (�,F ,μ), we defineN := {F ⊂ � : ∃G ∈ F , F ⊂ G,

μ(G) = 0}. The elements ofN are called μ-null sets. IfN ⊂ F , the measure space
(�,F ,μ) is said to be complete. Theσ-fieldF := σ(F ,N ) is called the completion
ofF (with respect toμ). It is easy to see thatσ(F ,N ) = {A ∪ B : A ∈ F , B ∈ N }.
If G ⊂ F is another σ-field then σ(G ,N ) is called the augmentation of G by the
null sets ofF . The augmentation of G may be different from its completion, as the
latter is just the augmentation of G by the subsets of the sets of measure zero in G .
We also have σ(G ,N ) = {A ⊂ � : A�B ∈ N for some B ∈ G }.
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Let μ, ν be two measures on a measurable space (�,F ). We say that μ is
absolutely continuous with respect to ν (we write μ << ν) if for every A ∈ F such
that ν(A) = 0 we have μ(A) = 0. If μ << ν and ν << μ, we say that the measures
μ and ν are equivalent (we write μ ∼ ν). If there exists a set A ∈ F such that for
every B ∈ F we have μ(B) = μ(A ∩ B), we say that μ is concentrated on the set
A. If μ and ν are concentrated on disjoint sets we say that μ and ν are (mutually)
singular and we write μ ⊥ ν.

Lemma 1.6 Let μ1,μ2 be two bounded measures on a measurable space (�,F ),
and let G be a π-system in � such that � ∈ G and σ(G ) = F . Then μ1 = μ2 if and
only if μ1(A) = μ2(A) for every A ∈ G .

Proof See [370], Lemma 1.17, p. 9. �

Let �t , t ∈ T be a family of sets. We will denote the Cartesian product of the
family �t by ×t∈T �t . If T is finite (T = {1, ..., n}) or countable (T = N), we will
also write �1 × ... × �n , respectively �1 × �2 × .... If each �t is a topological
space, we endow ×t∈T �t with the product topology. If each �t has a σ-fieldFt , we
define the product σ-field ⊗t∈T Ft in ×t∈T �t as the σ-field generated by the one-
dimensional cylinder sets At × (×s 	=t�s

)
. IfT = {1, ..., n} (respectively,T = N)we

will just write ⊗t∈T Ft = F1 ⊗ ... ⊗ Fn (respectively, ⊗t∈T Ft = F1 ⊗ F2 ⊗ ...).
If S is a topological space, the σ-field generated by the open sets of S is called

the Borel σ-field. It will be denoted by B(S). If S is a metric space, unless stated
otherwise, its default σ-field will always be B(S). It is not difficult to see that if
S1, S2, ... are separable metric spaces, then

B(S1 × S2 × ...) = B(S1) ⊗ B(S2) ⊗ ....

If (S, ρ) is a metric space, A ⊂ S, and we consider (A, ρ) as a metric space, then
B(A) = A ∩ B(S). A complete separable metric space is called a Polish space. Also
B(R

+
) = σ(B(R+), {+∞}),B(R) = σ(B(R), {−∞}, {+∞}).

Ameasurable space (�,F ) is called countably determined (orF is called count-
ably determined) if there is a countable set F0 ⊂ F such that any two probability
measures on (�,F ) that agree onF0 must be the same. It follows from Lemma 1.6
that if F is countably generated then F is countably determined. If S is a Polish
space then B(S) is countably generated.

If (�i ,Fi ,μi ), i = 1, ..., n, are measure spaces, their product measure on (�1 ×
... × �n,F1 ⊗ ... ⊗ Fn) is denoted by μ1 ⊗ ... ⊗ μn .

If S is a metric space, a bounded measure μ on (S,B(S)) is called regular if

μ(A) = sup{μ(C) : C ⊂ A,C closed} = inf{μ(U ) : A ⊂ U,U open} ∀A ∈ B(S).

Every bounded measure on (S,B(S)) is regular (see [478], Chap. II, Theorem 1.2).
A bounded measure μ on (S,B(S)) is called tight if for every ε > 0 there exists
a compact set Kε ⊂ S such that μ(S \ Kε) < ε. If S is a Polish space then every
bounded measure on (S,B(S)) is tight (see [478], Chap. II, Theorem 3.2).
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We refer to [58, 61, 267, 370, 478] for more on the general theory of measure
and probability.

1.1.2 Random Variables

Definition 1.7 (Random variable) A measurable map X between two measurable
spaces (�,F ) and (�̃,G ) is a called a random variable. This means that X is a
random variable if X−1(A) ∈ F for every A ∈ G . We write it shortly as X−1(G ) ⊂
F . Sometimes we will just say that X isF/G -measurable.

If �̃ = R (resp. R+) and G is the Borel σ-field B(R) (resp. B(R+)) then X is said
to be a real random variable (resp. positive random variable).

If �, �̃ are topological spaces and F ,G are the Borel σ-fields then X is said to
be Borel measurable.

If (�,F ,μ) is a measure space and X, X1 : � → �̃, we say that X1 is a version
of X if X = X1 μ-a.e.

Given a random variable X : (�,F ) → (�̃,G ) we denote by σ(X) the smallest
sub-σ-field of F that makes X measurable, i.e. σ(X) := X−1(G ). It is called the
σ-field generated by X . Given a set of indices I and a family of random variables
Xi : (�,F ) → (�̃,G ), i ∈ I , the σ-field σ (Xi : i ∈ I ) generated by {Xi }i∈I is the
smallest sub-σ-field of F that makes all the functions Xi : (�,σ (Xi : i ∈ I )) →
(�̃,G ) measurable, i.e. σ (Xi : i ∈ I ) = σ

(
X−1
i (G ) : i ∈ I

)
.

Lemma 1.8 Let (�,F ) be a measurable space. Then:
(i) If (�̃,G ) is a measurable space, X : � → �̃, andC ⊂ G is such that σ(C ) =

G , then X is F/G -measurable if and only if X−1(C ) ⊂ F . Moreover, σ(X) =
σ(X−1(C )).

(ii) If Xn : � → R, n = 1, 2, ..., are random variables, then supn Xn, infn Xn,
lim supn Xn, lim infn Xn are random variables.

(iii) Let Xn : � → S, n = 1, 2, ..., be random variables, where S is a metric
space. Then:

• if S is complete then {ω : Xn(ω) converges} ∈ F ;
• if Xn → X on �, then X is a random variable.

(iv) Let (�i ,Fi ), i = 1, 2, be measurable spaces, and X : �1 × �2 → � be
(F1 ⊗ F2)/F -measurable. Then, for every ω1 ∈ �1, Xω1(·) = X (ω1, ·) isF2/F -
measurable, and, for every ω2 ∈ �2, Xω2(·) = X (·,ω2) isF1/F -measurable. �

Proof See, for instance, [370], Lemmas 1.4, 1.9, 1.10, and [520], Theorem 7.5,
p. 138. �

Theorem 1.9 Let (�,F ) and (�̃,G ) be two measurable spaces and (S, d) a Pol-
ish space. Let X : (�,F ) → (�̃,G ) and φ : (�,F ) → (S,B(S)) be two random
variables. Then φ is measurable as a map from (�,σ(X)) to (S,B(S)) if and only
if there exists a measurable map η : (�̃,G ) → (S,B(S)) such that φ = η ◦ X.
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Proof See [370], Lemma 1.13, p. 7, or [575] Theorem 1.7, p. 5. �
We refer to [58, 267, 370, 520] for more on measurability and for the general

theory of integration.

Definition 1.10 (Borel isomorphism) Let (�,F ) and (�̃,G ) be two measurable
spaces. A bijection f from � onto �̃ is called a Borel isomorphism if f is F/G -
measurable and f −1 is G /F -measurable. We then say that (�,F ) and (�̃,G ) are
Borel isomorphic.

Definition 1.11 (Standardmeasurable space) Ameasurable space (�,F ) is called
standard if it is Borel isomorphic to one of the following spaces:

(i) ({1, .., n},B({1, .., n})),
(ii) (N,B(N)),
(iii)

({0, 1}N,B({0, 1}N)
)
,

where we have the discrete topologies in {1, .., n} and N, and the product topology
in {0, 1}N.
The following theorem collects results that can be found in [478] (Chap. I, Theorems
2.8 and 2.12).

Theorem 1.12 If S is a Polish space, then (S,B(S)) is standard. If a Borel subset of
S is uncountable, then it is Borel isomorphic to {0, 1}N. Two Borel subsets of S are
Borel isomorphic if and only if they have the same cardinality. If (�,F ) is standard
and A ∈ F , then (A,F ∩ A) is standard.

In particular, we have the following result.

Theorem 1.13 If (�,F ) is standard, then it is Borel isomorphic to a closed subset
of [0, 1] (with its induced Borel sigma field).

Definition 1.14 (Simple random variable) Let (�,F ) be a measurable space, and
(S, d) be a metric space (endowed with the Borel σ-field induced by the distance).
A random variable X : (�,F ) → (S,B(S)) is called simple (or a simple function)
if it has a finite number of values.

Lemma 1.15 Let f : (�,F ) → S be a measurable function between a measur-
able space (�,F ) and a separable metric space (S, d) (endowed with the Borel
σ-field induced by the distance). Then there exists a sequence fn : � → S of simple,
F/B(S)-measurable functions, such that d ( f (ω), fn(ω)) is monotonically decreas-
ing to 0 for every ω ∈ �.

Proof See [180], Lemma 1.3, p. 16. �
Lemma 1.16 Let S be a Polish space with metric d. Let (�,F , P) be a complete
probability space and let G1,G2 ⊂ F be two σ-fields with the following property:
for every A ∈ G2 there exists a B ∈ G1 such that P(A�B) = 0. Let f : (�,G2) →
(S,B(S)) be a measurable function. Then there exists a function g : (�,G1) →
(S,B(S)) such that f = g, P-a.e., and simple functions gn : (�,G1) → (S,B(S))

such that d( f (ω), gn(ω)) monotonically decreases to 0, P-a.e.



6 1 Preliminaries on Stochastic Calculus in Infinite Dimension

Proof The proof follows the lines of the proof of Lemma 1.25, p. 13, in [370].
Step 1: Let us assume first that f = x1A (1A denotes the characteristic function
of the set A) for some A ∈ G2 and x ∈ S. By hypothesis, we can find B ∈ G1 s.t.
P(A�B) = 0 and then the claim is proved if we choose gn ≡ g = x1B . The same
argument holds for a simple function f .
Step 2: For the case of a general f , thanks to Lemma 1.15 we can find a sequence
of simple, G2-measurable functions fn such that d( f (ω), fn(ω)) monotonically
decreases to 0. By Step 1, we can find simple, G1-measurable functions gn such
that fn = gn , P-a.e. Thus the claim follows by taking g(ω) := lim gn(ω) if the limit
exists and g(ω) = s (for some s ∈ S) otherwise. �

Lemma 1.17 Let (�,F ) be a measurable space, and V ⊂ E be two real separable
Banach spaces such that the embedding of V into E is continuous. Then:

(i) B(E) ∩ V ⊂ B(V ) and B(V ) ⊂ B(E).
(ii) If X : � → V isF/B(V )-measurable, then it isF/B(E)-measurable.
(iii) If X : � → E is F/B(E)-measurable, then X · 1{X∈V } is F/B(V )-

measurable.
(iv) X : � → E is F/B(E)-measurable if and only if for every f ∈ E∗, f ◦ X is

F/B(R)-measurable.

Proof The embedding of V into E is continuous, so B(E) ∩ V ⊂ B(V ). Since the
embedding is also one-to-one, it follows from [478], Theorem 3.9, p. 21, thatB(V ) ⊂
B(E), which completes the proof of (i). Parts (i i) and (i i i) are direct consequences
of (i). f (�) is separable because E is separable, so Part (iv) is a particular case of
the Pettis theorem, see [488] Theorem 1.1. �

Lemma 1.18 Let (�,F ) be ameasurable space and (S1, ρ1), (S2, ρ2) be twometric
spaces with S1 separable. Let f : � × S1 → S2 be such that

(i) for each x ∈ S1, the function f (·, x) : � → S2 is F/B(S2)-measurable;
(ii) for each ω ∈ � the function f (ω, ·) : S1 → S2 is continuous.

Then f : � × S1 → S2 isF ⊗ B(S1)/B(S2)-measurable.

Proof See Lemma 4.51, p. 153 of [8]. �

Notation 1.19 If E is a Banach spacewe denote by | · |E its norm.Given twoBanach
spaces E and F , we denote by L(E, F) the Banach space of all continuous linear
operators from E to F . If E = F we will usually write L(E) instead of L(E, F). If
H is a Hilbert space we denote by 〈·, ·〉 its inner product. We will always identify H
with its dual via Riesz representation theorem. If V, H are two real separable Hilbert
spaces, we denote by L2(V, H) the space of Hilbert–Schmidt operators from V to
H (see Appendix B.3). The space L2(V, H) is a real separable Hilbert space with
the inner product 〈·, ·〉2, see Proposition B.25. �

Lemma 1.20 Let (�,F ) be ameasurable space and V, H be real separableHilbert
spaces. Suppose that F : � → L2(V, H) is a map such that for every v ∈ V , F(·)v
isF/B(H)-measurable. Then F isF/B(L2(V, H))-measurable.
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Proof Since L2(V, H) is separable, by Lemma 1.17-(iv) it is enough to show that
for every T ∈ L2(V, H)

ω→〈F(ω), T 〉2 =
+∞∑
k=1

〈F(ω)ek, T ek〉

is F/B(R)-measurable, where {ek} is any orthonormal basis of V . But this is clear
since for every ω

〈F(ω), T 〉2 = lim
n→+∞ FT

n (ω),

where

FT
n (ω) =

n∑
k=1

〈F(ω)ek, T ek〉

and FT
n (ω) is F/B(R)-measurable because it is a finite sum of functions that are

F/B(R)-measurable. �
Let I be an interval in R, E , F be two real Banach spaces, and let E be separable.

If f : I × E → F is Borel measurable then for every t ∈ I the function f (t, ·) :
E → F is Borel measurable (by Lemma 1.8-(iv)).

Assume now that, for all t ∈ I and for somem ≥ 0, f (t, ·) ∈ Bm(E, F) (the space
of Borel measurable functions with polynomial growth m, see Appendix A.2 for the
precise definition). It is not true in general that the function

I → Bm(E, F), t→ f (t, ·)

is Borel measurable. As a counterexample1 one can take the function

[0, 1] × L2(R) → L2(R), (t, x)→St x,

where (St )t≥0 is the semigroup of left translations. Indeed, the map

[0, 1] → L(L2(R)), t→St

is not measurable (see e.g. [180], Sect. 1.2). Since L(L2(R))⊂B1(L2(R), L2(R))

and the norm in L(L2(R)) is equivalent to the one induced by B1(L2(R), L2(R)),
the claim follows in a straightforward way.

On the other hand, we have the following useful result.

Lemma 1.21 Let I and � be two Polish spaces. Let μ be a measure defined on the
Borel σ-field B(I ) and denote by B(I ) the completion of B(I ) with respect to μ.
Let f : I × � → R be Borel measurable and such that for every t ∈ I , f (t, ·) is
bounded from below (respectively, above). Then the function

1This example has been suggested to us by Mauro Rosestolato.
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f : I → R, t→ inf
a∈�

f (t, a) (1.1)

(respectively, f : I → R, t→ supa∈� f (t, a)) is B(I )/B(R)-measurable.2

In particular, if I is an interval in R, E, F are two real Banach spaces with E
separable, if ρ : I × E → F is Borel measurable and, for all t ∈ I and for some
m ≥ 0, ρ(t, ·) ∈ Bm(E, F), then the function

ρ1 : I → R, t→‖ f (t, ·)‖Bm (E,F) (1.2)

is Lebesgue measurable.

Proof The first part is Example 7.4.2 in Volume 2 of [61] (recall that Polish spaces
are Souslin spaces, see [61], Definition 6.6.1, and so I × � is a Souslin space).

For the second claim, observe that since f is Borel measurable, the function

f : I × E → R, f (t, x) := |ρ(t, x)|F
1 + |x |mE

is also Borel measurable (since it is the product of a continuous function with the
composition of a continuous function and a Borel measurable function). The result
thus follows from part one. �

Definition 1.22 (Independence) Consider a probability space (�,F , P). Let I be
a set of indices, and Ci ⊂ F for all i ∈ I . We say that the families Ci , i ∈ I , are
independent if, for every finite subset J of I and every choice of Ai ∈ Ci , (i ∈ J ),
we have

P

(⋂
i∈J

Ai

)
=

∏
i∈J

P(Ai ).

If Ci ⊂ F is, for all i ∈ I , a π-system (resp. σ-field), the definition above gives
in particular the notion of independent π-systems (resp. σ-fields). Random variables
are said to be independent if they generate independent σ-fields. A random variable
X is independent of some σ-field G if σ(X) and G are independent σ-fields.

Lemma 1.23 Consider a probability space (�,F , P). Let Ci ⊂ F be a π-system
for every i ∈ I . If Ci , i ∈ I , are independent, then σ (Ci ) , i ∈ I , are independent.

Proof See [370] Lemma 2.6, p. 27. �

2Note that f is not always Borel measurable, see [61] Volume 2, Exercise 6.10.42(ii), p. 59.
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1.1.3 The Bochner Integral

Throughout this section (�,F ,μ) is a measure space where μ is σ-finite, and E is a
separable Banach space with norm | · |E . We endow E with the Borel σ-field B(E).

Lemma 1.24 Let X : (�,F ) → E be a random variable. Then the real-valued
function |X |E is measurable.

Proof See [180] Lemma 1.2, p. 16. �

Let p ≥ 1. We denote by L p(�,F ,μ; E) the quotient space of the set

L̃ p(�,F , μ; E) :=
{
X : (�,F ) → (E,B(E)) measurable :

∫
�

|X (ω)|pE dμ(ω) < +∞
}

with respect to the equivalence relationof equalityμ-a.e. L p(�,F ,μ; E) is aBanach
space when endowed with the norm

|X |L p(�,F ,μ;E) =
(∫

�

|X (ω)|pE dμ(ω)

)1/p

(see e.g. [191] Theorem 7.17 p. 104). We will often write L p(�,μ; E) or L p(�; E)

for L p(�,F ,μ; E) and denote the norm by |X |L p when the context is clear. If H is
a separable Hilbert space, then L2(�,F ,μ; H) is a Hilbert space as well, equipped
with the scalar product 〈X,Y 〉L2(�,F ,μ;H) = ∫

�
〈X (ω),Y (ω)〉H dμ(ω).

The space L∞(�,F ,μ; E) is the quotient space of the space of bounded
F/B(E)-measurable functions with respect to the relation of being equal a.e. It
is a Banach space equipped with the norm

|X |L∞(�,F ,μ;E) = ess sup
�

|X (ω)|E .

In the special case when � = I is an interval with endpoints a and b with a < b
(whichmay be±∞),F is the Borel σ-field of I , andμ is the Lebesguemeasure on I ,
wewill simplywrite L p(I ; E) or L p(a, b; E) for L p(I,F ,μ; E). Finally, we denote
by L p

loc(I ; E) the set of measurable functions f : I → E such that
∫
K | f (s)|pEds is

finite for every compact subset K of I .

Lemma 1.25 IfF is countably generated apart from null sets then L p(�,F ,μ; E)

is a separable Banach space.

Proof See [194], p. 92. �

Definition 1.26 (Bochner integral) Let X : (�,F ,μ) → E be a simple random
variable X = ∑N

i=1 xi1Ai , where xi ∈ E , Ai ∈ F ,μ(Ai ) < +∞. The Bochner inte-
gral of X is defined as
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∫
�

X (ω)dμ(ω) :=
N∑
i=1

xiμ(Ai ).

Let X be in L1(�,F ,μ; E). The Bochner integral of X is defined as

∫
�

X (ω)dμ(ω) := lim
n→+∞

∫
�

Xn(ω)dμ(ω),

where Xn : (�,F ,μ) → E are simple random variables such that

lim
n→+∞

∫
�

|X (ω) − Xn(ω)|Edμ(ω) = 0. (1.3)

Remark 1.27 It follows easily from Lemma 1.15 that, for X ∈ L1(�,F ,μ; E),
there always exists a sequence of simple random variables Xn : (�,F ,μ) → E as
in Definition 1.26, satisfying (1.3). �

Proposition 1.28 Let X ∈ L1(�,F ,μ; E). Then the Bochner integral of X is well
defined and does not depend on the choice of the sequence. Moreover,

∣∣∣∣
∫

�

X (ω)dμ(ω)

∣∣∣∣
E

≤
∫

�

|X (ω)|Edμ(ω). (1.4)

Proof See [180] Sect. 1.1 (in particular inequality (1.6), p. 19, and the part below
Lemma 1.5). The proof there is done for a probability measure μ, but the general
case is identical. �

Proposition 1.29 Assume that (�,F ,μ) is a complete measure space, E and F are
separable Banach spaces and A : D(A) ⊂ E → F is a closed operator (see Defini-
tion B.3). If X ∈ L1(�,F ,μ; E) and X ∈ D(A) a.s., then AX is an F-valued ran-
domvariable, and X is a D(A)-valued randomvariable,where D(A) is endowedwith
the graph norm of A (see Definition B.3). If, moreover,

∫
�

|AX (ω)|F dμ(ω) < +∞,
then

A
∫

�

X (ω)dμ(ω) =
∫

�

AX (ω)dμ(ω).

Proof The facts that X is a D(A)-valued random variable and AX is an F-valued
random variable follow from Lemma 1.17-(ii). For the last part, see the proof of
Proposition 1.6, Chap. 1 of [180]. �

Corollary 1.30 Assume that E and F are separable Banach spaces and T : E → F
is a continuous linear operator. If X ∈ L1(�,F ,μ; E), then

T
∫

�

X (ω)dμ(ω) =
∫

�

T X (ω)dμ(ω).
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Proof This is a particular case of Proposition 1.29. �
Remark 1.31 In this subsection we assumed that the space E is separable. This was
done for simplicity and since we will only need this case in the vast majority of the
book. However, the Bochner integral of a random variable X : (�,F ,μ) → E can
also be defined when E is non-separable, see Sect. II.2 of [190]. If E is non-separable
the definition of measurability is different. The random variable X is called measur-
able if there exists a sequence of simple random variables Xn : (�,F ,μ) → E such
that limn→+∞ |X (ω) − Xn(ω)|E = 0 μ-a.e. When E is separable this definition of
measurability is equivalent to ours. Most of the results on the Bochner integral still
hold in the non-separable case. In particular, Proposition 1.29 (hence also Corollary
1.30) still holds in the following form, which we will use later in Chap. 4 (see, for
example, the proof of Corollary 4.14 and of Theorem 4.80).

Let (�,F ,μ) be a complete measure space, E and F be Banach spaces
and A : D(A) ⊂ E → F be a closed operator. If X ∈ L1(�,F ,μ; E) and AX ∈
L1(�,F ,μ; F), then

A
∫

�

X (ω)dμ(ω) =
∫

�

AX (ω)dμ(ω).

This is Theorem 6, p. 47 of [190]. �
Theorem 1.32 Let (�1,F1) and (�2,F2) be two measurable spaces and μ1

(respectively μ2) be a σ-finite measure on (�1,F1) (respectively on (�2,F2)). Then
there exists a unique measure μ1 ⊗ μ2 onF1 ⊗ F2 such that, for every A ∈ F1 and
B ∈ F2 with finite measure,

(μ1 ⊗ μ2)(A × B) = μ1(A)μ2(B).

The measure μ1 ⊗ μ2 is σ-finite.

Proof See Theorem 8.2, p. 160 in Chap.VI, Sect. 8 of [397]. �
Theorem 1.33 (Fubini’s Theorem) Let (�1,F1) and (�2,F2) be two measurable
spaces and μ1 (respectively μ2) be a σ-finite measure on (�1,F1) (respectively on
(�2,F2)). Let E be a separable Banach space with norm | · |E .
(i) Let X be in L1(�1 × �2,F1 ⊗ F2,μ1 ⊗ μ2; E). Then, for μ1-almost every

ω1 ∈ �1, the function X (ω1, ·) is in L1(�2,F2,μ2; E), and the function given
by

ω1→
∫

�2

X (ω1,ω2)dμ2(ω2)

for μ1-almost all ω1 (and defined arbitrarily for other ω1) is in L1(�1,

F1,μ1; E). Moreover, we have∫
�1×�2

X (ω1,ω2)d(μ1 ⊗ μ2)(ω1,ω2) =
∫

�1

∫
�2

X (ω1,ω2)dμ1(ω1)dμ2(ω2).
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(ii) Let X : �1 × �2 → E be an F1 ⊗ F2-measurable map. Assume that, for μ1-
almost every ω1 ∈ �1, the function X (ω1, ·) is in L1(�2,F2,μ2; E) and that
the map given by

ω1→
∫

�2

|X (ω1,ω2)|dμ2(ω2)

for μ1-almost all ω1 (and defined arbitrarily for other ω1) is in L1(�1, R). Then
X is in L1(�1 × �2,F1 ⊗ F2,μ1 ⊗ μ2; E) and part (i) of the theorem applies.

Proof See Theorems 8.4, p. 162, and 8.7, p. 165 in Chap.VI, Sect. 8 of [397]. �

Theorem 1.34 Let E be a separable Banach space and μ be a bounded measure on
(E,B(E)). Then the set of uniformly continuous and bounded functions UCb(E) is
dense in L p(E,B(E),μ) for 1 ≤ p < +∞.

Proof By Lemma 1.15 and the monotone convergence theorem it is enough to prove
that every characteristic function 1A for some A ∈ B(E) can be approximated by
functions in UCb(E). Since μ is regular, for every ε > 0 we can find a closed set
C,C ⊂ A, and an open set U, A ⊂ U , such that μ(U \ C) < εp. Moreover, con-
sidering sets Un = {x ∈ U : dist(x : A) > 1/n} if necessary, we can assume that
dist(C,U ) > 0. Then the function

fε(x) := dist(x,U )

dist(x, A) + dist(x,U )

belongs to UCb(E) and |1A − fε|L p < ε. �

1.1.4 Expectation, Covariance and Correlation

Let (�,F , P) be a probability space and E be a separable Banach space with norm
| · |E .
Definition 1.35 (Expectation) Given X in L1(�,F , P; E), we denote by E[X ] the
(Bochner) integral

∫
�
X (ω)dP(ω). E[X ] is said to be the expectation (or the mean)

of X .

To define the covariance operator, we recall first that if x ∈ E , y ∈ F , where E, F
are Hilbert spaces, the operator x ⊗ y : F → E is defined by

(x ⊗ y)h = x〈y, h〉F .

Definition 1.36 (Covariance operator, correlation) Given a real, separable Hilbert
space H and X ∈ L2(�,F , P; H), the covariance operator of X is defined by
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Cov(X) := E

[
(X − E[X ]) ⊗ (X − E[X ])

]
.

For X,Y ∈ L2(�,F , P; H), the correlation of X and Y is the operator defined by

Cor(X,Y ) := E

[
(X − E[X ]) ⊗ (Y − E[Y ])

]
.

Remark 1.37 For X ∈ L2(�,F , P; H), the operatorCov(X) is positive, symmetric
and nuclear (see [180], p. 26). �

1.1.5 Conditional Expectation and Conditional Probability

Theorem 1.38 Consider a separable Banach space E, a probability space
(�,F , P) and a sub-σ-field G ⊂ F . There exists a unique contractive linear oper-
ator E[·|G ] : L1(�,F , P; E) → L1(�,G , P; E) such that∫

A
E[ξ|G ](ω)dP(ω) =

∫
A
ξ(ω)dP(ω) for all A ∈ G and ξ ∈ L1(�,F , P; E).

If E = H is a Hilbert space the restriction of E[·|G ] to L2(�,F , P; H) is the
orthogonal projection L2(�,F , P; H) → L2(�,G , P; H).

Proof See [180] Proposition 1.10, p. 26, and [458] Proposition V-2-5, pp. 102–
103. �

Definition 1.39 (Conditional expectation) Given X ∈ L1(�,F , P; E), the random
variable E[X |G ] ∈ L1(�,G , P; E), defined by Theorem 1.38, is called the condi-
tional expectation of X given G .

Definition 1.40 Let (�,F , P) be a probability space and let E be a separable
Banach space. A family H of integrable random variables X ∈ L1(�,F , P; E)

is called uniformly integrable if

lim
R→∞ sup

X∈H

∫
|X |E≥R

|X (ω)|EdP(ω) = 0.

The following proposition collects various properties of conditional expectation
(see e.g. [487] Proposition 3.15, p. 25, see also [572] Sect. 9.7, p. 88, for similar
properties for real-valued random variables).

Proposition 1.41 Let (�,F , P) be a probability space and let E be a separable
Banach space. The conditional expectation has the following properties:

(i) If X ∈ L1(�,F , P; E) is G -measurable, then E[X |G ] = X P-a.s.
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(ii) Given X ∈ L1(�,F , P; E) and two σ-fields G1 and G2 such that G1 ⊂ G2 ⊂
F ,

E

[
E
[
X |G1

]∣∣G2

]
= E

[
E
[
X |G2

]∣∣G1

]
= E

[
X |G1

]
P-a.s.

(iii) Let X ∈ L1(�,F , P; E). If X is independent of G , then E [X |G ] = E[X ] P-
a.s. Moreover, X is independent of G if and only if, for any bounded, Borel
measurable f : E → R, E [ f (X)|G ] = E f (X) P-a.s.

(iv) If X is G -measurable and ζ is a real-valued integrable random variable such
that ζX ∈ L1(�,F , P; E), then

E

[
ζX |G

]
= XE

[
ζ|G

]
P-a.s.

(v) If X ∈ L1(�,F , P; E) and ζ is an integrable, real-valued, G -measurable
random variable such that ζX ∈ L1(�,F , P; E), then

E

[
ζX |G

]
= ζE

[
X |G

]
P-a.s.

(vi) If X ∈ L1(�,F , P; E) and f : R → R is a convex function such that
E [| f (|X |E )|] < +∞, then

f
(∣∣∣E[

X |G
]∣∣∣

E

)
≤ E

[
f (|X |E ) |G

]
P -a.s.

(vii) If X, Xn ∈ L1(�,F , P; E) for every n ∈ N, the family (Xn)n∈N is uniformly
integrable and Xn

n→∞−−−→ X, P-a.s., then

E

[
Xn|G

]
n→∞−−−→ E

[
X |G

]
P -a.s.

(viii) Let X ∈ L1(�,F , P; E). Assume that Gn for n ∈ N is an increasing family
of σ-fields such that G = σ (Gn : n ∈ N) is a sub-σ-field of F . Then

E

[
X |Gn

]
n→∞−−−→ E

[
X |G

]
P -a.s.

(ix) Let Z be a separable Banach space and let T ∈ L(E, Z). Then

E[T X |G ] = TE[X |G ] P -a.s.

Proposition 1.42 Let (�,F , P) be a probability space. Then:

(i) If X,Y ∈ L1(�,F , P; R) and X ≥ Y , then

E[X |G ] ≥ E[Y |G ].
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(ii) (Conditional Fatou Lemma) If Xn ∈ L1(�,F , P; R) and Xn ≥ 0, then

E[lim inf
n→∞ Xn|G ] ≤ lim inf

n→∞ E[Xn|G ] P-a.s.

Proof See [572], Sect. 9.7, p. 88. �

Proposition 1.43 Let (E1,E1) and (E2,E2) be twomeasurable spaces andψ : E1 ×
E2 → R be a bounded measurable function. Let X1, X2 be two random variables in
a probability space (�,F , P) with values in (E1,E1) and (E2,E2) respectively, and
let G ⊂ F be a σ-field. If X1 is G -measurable and X2 is independent of G , then

E[ψ(X1, X2)|G ] = ψ̂(X1), P-a.s., (1.5)

where
ψ̂(x1) = E[ψ(x1, X2)], x1 ∈ E1. (1.6)

Proof See Proposition 1.12, p. 28 of [180]. �

Let (�,F , P)be a probability space, andG be a sub-σ-field ofF . The conditional
probability of A ∈ F given G is defined by

P(A|G )(ω) := E[1A|G ](ω).

Definition 1.44 Let (�,F , P) be a probability space, and G be a sub-σ-field ofF .
A function p : � × F → [0, 1] is called a regular conditional probability given G
if it satisfies the following conditions:

(i) for each ω ∈ �, p(ω, ·) is a probability measure on (�,F );
(ii) for each B ∈ F , the function p(·, B) is G -measurable;
(iii) for every A ∈ F , P(A|G )(ω) = p(ω, A), P-a.s.

It thus follows that, if X ∈ L1(�,F , P; E), where E is a separable Banach space,
then

E[X |G ](ω) =
∫

�

X (ω′)p(ω, dω′) P a.s.

Theorem 1.45 Let (�,F , P) be a probability space, where (�,F ) is a standard
measurable space. Then, for every sub-σ-field G ⊂ F , there exists a regular condi-
tional probability p(·, ·) given G . Moreover, if p′(·, ·) is another regular conditional
probability given G , then there exists a set N ∈ G , P(N ) = 0, such that, if ω /∈ N
then p(ω, A) = p′(ω, A) for all A ∈ F .

Moreover, if H is a countably determined sub-σ-field of G , then there exists a
P-null set N ∈ G such that, if ω /∈ N then p(ω, A) = 1A(ω) for every A ∈ H . In
particular, if (�1,F1) is a measurable space, F1 is countably determined, {x} ∈
F1 for all x ∈ �1 and ξ : (�,F ) → (�1,F1) is a G /F1-random variable, then
p

(
ω, {ω′ : ξ(ω) = ξ(ω′)}) = 1 for P-a.e. ω.
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Proof See Theorem 8.1, p. 147 in [478], or Theorems 3.1, 3.2, and the corollary
following them in [356] (see also [575] Proposition 1.9, p. 11). �

Notation 1.46 If the regular conditional probability exists, we will often write
P(·|G )(ω) or Pω for p(ω, ·). �

Definition 1.47 (Law of a random variable) Given a probability space (�,F , P),
a measurable space (�1,F1), and a random variable X : (�,F ) → (�1,F1), the
probability measure on (�1,F1) defined by

LP(X)(A) := P ({ω ∈ � : X (ω) ∈ A})

is called the law (or distribution)3 of X . We denote the law of X by LP(X).

Proposition 1.48 (Change of variables) Given a probability space (�,F , P), a
measurable space (�1,F1), a random variable X : (�,F ) → (�1,F1), and a
bounded Borel function ϕ : �1 → R we have

∫
�

ϕ(X (ω))dP(ω) =
∫

�1

ϕ(ω′)dLP(X)(ω′).

Definition 1.49 (Convergence of random variables) Consider a probability space
(�,F , P) and a Polish space (S, d) endowedwith the Borelσ-field. Let Xn : � → S
and X : � → S be random variables. We say that:

(i) Xn converges to X P-a.s. (and we write Xn → X P-a.s.) if limn→∞ d
(Xn(ω), X (ω)) = 0 P-a.s.

(ii) Xn converges to X in probability if, for every ε > 0, limn→+∞ P

{ω ∈ � : d(Xn(ω), X (ω)) > ε} = 0.
(iii) Xn converges to X in law if, for every bounded and continuous f : S → R,∫

S f (u)dLP(X)(u) = limn→∞
∫
S f (u)dLP(Xn)(u) (i.e. if E [ f (X)] =

limn→∞ E [ f (Xn)]).

Lemma 1.50 Consider a probability space (�,F , P) and a Polish space (S, d)

endowed with the Borel σ-field. Let Xn : � → S and X : � → S be random vari-
ables.

(i) If Xn converges to X P-a.s. then Xn converges to X in probability.
(ii) If Xn converges to X in probability then Xn converges to X in law.
(iii) If Xn converges to X in probability then it contains a subsequence Xnk such

that Xnk converges to X P-a.s.
(iv) (Egoroff’s theorem) If Xn converges to X P-a.s. then for every ε > 0, there

exists an �̃ ∈ F such that P(� \ �̃) < ε, and Xn converges uniformly to X
on �̃.

3In measure theory it is more often called the push-forward of P and denoted by X#P.
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(v) Let X, Xn ∈ L p(�,F , P; E), n ∈ N, p ≥ 1, and E be a separable Banach
space. If Xn converges to X in L p(�,F , P; E), then Xn converges to X in
probability.

Proof For (i), (i i) and (i i i) see, for instance, [370] Lemmas 4.2, p. 63 and 4.7, p. 66.
Part (iv) can be found, for instance, in [73] Theorem 2, p. 170, Sect. 4.5.4. Property
(v) is straightforward. �

Lemma 1.51 Let p > 1 and X, Xn ∈ L p(�,F , P; E), n ∈ N, for some separable
Banach space E. Suppose that, for some M > 0, E

[|Xn|pE
] ≤ M for all n ∈ N. If

Xn → X in probability, then E
[|X − Xn|E

] → 0.

Proof Since the sequence (Xn) is bounded in L p(�,F , P; E), it is uniformly inte-
grable (see e.g. [572], p. 127, Sect. 13.3). The claim follows, for example, from
Theorem 13.7, p. 131 of [572]. �

1.1.6 Gaussian Measures on Hilbert Spaces and the Fourier
Transform

In this section we recall the notions of Gaussian measure and the Fourier transform
for Hilbert space-valued random variables. For an extensive treatment of the subject
we refer to [180], Chap. 2, [153], Chap. 1 or [154], Chap. 1.

For a real separable Hilbert space H we denote byL1(H) the Banach space of the
trace class operators on H , by L+(H) the subspace (ofL(H)) of all bounded, linear,
self-adjoint, positive operators, and we set L+

1 (H) := L1(H) ∩ L+(H) (see Appen-
dix B.3). We will denote by M1(H) the set of probability measures on (H,B(H)).

Proposition 1.52 Consider a real, separable Hilbert space H with the Borel σ-field
B(H) and a probability measure P on (H,B(H)). If

∫
H |y| dP(y) < +∞, then we

can define

m :=
∫
H
y dP(y) ∈ H.

If
∫
H |y|2dP(y) < +∞, then there exists a unique Q ∈ L+

1 (H) such that

〈Qx, y〉 :=
∫
H

〈x, h − m〉 〈y, h − m〉 dP(h).

Proof See [153], p. 7. �

Definition 1.53 (Mean and covariance of ameasure on H )We callm and Q, defined
by Proposition 1.52, respectively the mean and the covariance of P. In other words,
the mean (respectively covariance) of P is the mean (respectively covariance) of the
identity random variable I : (H,B(H), P) → (H,B(H)).
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Definition 1.54 (Fourier transform of a measure) Let H be a Hilbert space and
B(H) be its Borel σ-field. Given a probability measure P on (H,B(H)) we define,
for x ∈ H ,

P̂(x) :=
∫
H
ei〈y,x〉dP(y).

We call P̂ : H → C the Fourier transform of P.

Proposition 1.55 Let H be a real, separable Hilbert space, B(H) be its Borel σ-
field, and P1 and P2 be two probability measures on (H,B(H)). If P̂1(x) = P̂2(x)
for all x ∈ H, then P1 = P2.

Proof See [153] Proposition 1.7, p. 6, or [180], Proposition 2.5, p. 35. �

Theorem 1.56 Let X1, ..., Xn be randomvariables in a real, separableHilbert space
H. The random variables are independent if and only if for every y1, ..., yn ∈ H

E

[
e[i

∑n
i=1〈Xi ,yi 〉]

]
=

n∏
i=1

E
[
e[i〈Xi ,yi 〉]] . (1.7)

Proof Obviously if X1, ..., Xn are independent then (1.7) holds. Also, Theorem 1.56
is well known if H = R

k . Let now k ∈ N and y j
i ∈ H, i = 1, ..., n, j = 1, ..., k, and

consider random variables Xk
i = (〈Xi , y1i 〉, ..., 〈Xi , yki 〉), i = 1, ..., n in R

k . There-
fore, if (1.7) holds then Xk

i , i = 1, ..., n, are independent for every k ∈ N and y j
i ∈ H,

j = 1, ..., k. Since cylindrical sets of the form {x : (〈x, y1i 〉, ..., 〈x, yki 〉) ∈ A ∈
B(Rk)} generate B(H) and are a π-system, the collection of sets {ω : (〈Xi , y1i 〉, ...,
〈Xi , yki 〉) ∈ A ∈ B(Rk)} over all k ∈ N and y j

i ∈ H, i = 1, ..., n, j = 1, ..., k, A ∈
B(Rk) is a π-system generating σ(Xi ). Thus, by Lemma 1.23, the sigma algebras
σ(X1), ...,σ(Xn) are independent. �

Theorem 1.57 Let H be a real, separable Hilbert space, B(H) be its Borel σ-
field, a ∈ H, and Q ∈ L+

1 (H). Then there exists a unique probability measure P on
(H,B(H)) such that

P̂(x) = ei〈a,x〉− 1
2 〈Qx,x〉.

The measure P has mean a and covariance Q.

Proof See [153] Theorem 1.12, p. 12. �

Definition 1.58 (Gaussian measure on H ) Let H be a real, separable Hilbert space,
B(H) be its Borel σ-field, a ∈ H , and Q ∈ L+

1 (H). The unique probability measure
P identified by Theorem 1.57 is called the Gaussian measure with mean a and
covariance Q, and is denoted byN (a, Q). When a = 0 we will denote it byNQ and
call it a centered Gaussian measure.

We now provide two useful results about Gaussian measures.
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Proposition 1.59 Let Q ∈ L+
1 (H). Then for all y, z ∈ H

∫
H
〈x, y〉〈x, z〉NQ(dx) = 〈Qy, z〉. (1.8)

Define, for y ∈ Q1/2(H), Qy ∈ L2(H,NQ) as

Qy(x) := 〈Q−1/2y, x〉, (1.9)

where Q−1/2 is the pseudoinverse of Q1/2 (see Definition B.1). The map (called the
“white noise function”, see e.g. [154] Sect.2.5)

y ∈ Q1/2(H) → Qy ∈ L2(H,NQ)

can be extended to H0 = Q1/2(H) = (ker Q)⊥ and it satisfies

∫
H
Qy(x)Qz(x)NQ(dx) = 〈y, z〉, y, z ∈ H0.

Moreover, for all m > 0 we have

∫
H

|x |2mNQ(dx) ≤ K (m)[Tr(Q)]m (1.10)

for some K (m) > 0, independent of Q.

Proof Formula (1.8) follows from Proposition 1.2.4 in [179].
The second statement is proved, when ker Q = {0}, in [154] Sect. 2.5.2 (see also

Sect. 1.2.4 of [179]). Since here we do not assume ker Q = {0}, we provide a proof.
First we observe that ker Q = ker Q1/2 and that Q1/2(H) is dense in (ker Q)⊥ since
Q1/2 is self-adjoint. Moreover, by Definition B.1, the pseudoinverse of Q1/2 is the
operator Q−1/2 : Q1/2(H) → (ker Q)⊥, hence the map y → Qy = 〈Q−1/2y, x〉 is
well defined for all y ∈ Q1/2(H). Furthermore, thanks to formula (1.8), we have, for
y1, y2 ∈ Q1/2(H)

∫
H
〈Q−1/2y1, x〉〈Q−1/2y2, x〉NQ(dx) = 〈Q(Q−1/2y1), Q

−1/2y2〉 = 〈y1, y2〉,

where we used that Q1/2Q−1/2y = y for all y ∈ Q1/2(H). Hence, for y1, y2 ∈
Q1/2(H), ∫

H
Qy1(x)Qy2(x)NQ(dx) = 〈y1, y2〉. (1.11)

In view of the above the map y → Qy = 〈Q−1/2y, x〉 is an isometry and can be
extended to Q1/2(H) = (ker Q)⊥ (endowed with the inner product inherited from
H ) and (1.11) extends to all y1, y2 ∈ (ker Q)⊥.
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We remark that as pointed out in [154] Sect. 2.5.2, for a generic y ∈ (ker Q)⊥ the
image Qy is an element of L2(H,NQ), hence an equivalence class of random vari-
ables defined NQ-a.e.; in particular, writing Qy(x) = 〈y, Q−1/2x〉, NQ-a.e., would
be misleading since, as proved in [154] Proposition 2.22, NQ(Q1/2(H)) = 0.

Concerning the third claim, byProposition 2.19, p. 50, of [180], it holds form ∈ N.
If k − 1 < m < k for k = 1, 2, ..., we use

∫
H

|x |2mNQ(dx) ≤
[∫

H
|x |2kNQ(dx)

]m/k

.

�

Theorem 1.60 (Cameron–Martin formula) Let H be a real, separable Hilbert
space. Let a1, a2 ∈ H and Q ∈ L+

1 (H). Then:

(1) The Gaussian measuresN (a1, Q) andN (a2, Q) are either singular or equiva-
lent.

(2) They are equivalent if and only if a1 − a2 ∈ Q1/2(H) and in this case

dN (a1, Q)

dN (a2, Q)
(x) = exp

(
〈Q−1/2(a1 − a2), Q

−1/2(x − a2)〉 − 1

2

∣∣∣Q−1/2(a1 − a2)
∣∣∣2)

for N (a2, Q)-a.e. x ∈ H.

Proof See Theorem 2.23, p. 53 of [180]. �

We now recall some results concerning compactness of a family of measures in
M1(H) (see e.g. Sect. 2.1 in [180] or [219, 478] for more on this).

Definition 1.61

(i) A sequence (Pn) inM1(H) is said to be weakly convergent to someP ∈ M1(H)

if, for every φ ∈ Cb(H),

lim
n→+∞

∫
H

φ(x)Pn(dx) =
∫
H

φ(x)P(dx).

(ii) A family �⊂M1(H) is said to be compact (respectively, relatively compact) if
an arbitrary sequence Pn of elements of � contains a subsequence Pnk weakly
convergent to a measure P ∈ � (respectively, to a measure P ∈ M1(H)).

(iii) A family �⊂M1(H) is said to be tight if for any ε > 0 there exists a compact
set Kε such that, for every P ∈ �,

P(Kε) > 1 − ε.

The following theorem (which also holds when H is a Polish space) is due to
Prokhorov.

Theorem 1.62 Let H be a real separable Hilbert space. A family �⊂M1(H) is
relatively compact if and only if it is tight.
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Proof See [180], the proof of Theorem 2.3. �

The next theorem gives a useful sufficient condition for compactness.

Theorem 1.63 Let H be a real separable Hilbert space and let {ei }i∈N be an ortho-
normal basis in H. A family �⊂M1(H) is relatively compact if

lim
N→+∞ sup

P∈�

∫
H

+∞∑
i=N

〈x, ei 〉2P(dx) = 0.

Proof See [478], the proof of Theorem VI.2.2. �

Concerning Gaussian measures, we have the following result (see Proposition
1.1.5 of [493]).

Proposition 1.64 Let NQn (n ∈ N) and NQ be centered Gaussian measures on H.
If limn→+∞ ‖Qn − Q‖L1(H) = 0, then the measures NQn converge weakly to NQ.

Proof Observe that if {ei }i is an orthonormal basis in H , it follows from (1.8) that
for any N ∈ N, ∫

H

+∞∑
i=N

〈x, ei 〉2NQn (dx) =
+∞∑
i=N

〈Qnei , ei 〉.

Since limn→+∞ ‖Qn − Q‖L1(H) = 0, the above formula implies in particular that
Theorem 1.63 applies and thus the sequence (NQn ) is relatively compact.

Moreover, from Theorem 1.57 and Definition 1.58 it is immediate that, as n →
+∞,

N̂Qn (x) = e− 1
2 〈Qnx,x〉 −→ e− 1

2 〈Qx,x〉 = N̂Q(x), ∀x ∈ H.

Take now a subsequence NQnk
weakly convergent to a probability measure P0. By

Definition 1.54 we must have

N̂Qnk
(x) → P̂0(x), ∀x ∈ H.

This implies that P̂0 = N̂Q and hence, by Proposition 1.55, that P0 = NQ . Since
this is true for any convergent subsequence, the claim now follows by a standard
contradiction argument. �

We conclude with a useful result about uniformity of weak convergence. The
result is also true if H is a Polish space, see [478], Theorem II.6.8.

Theorem 1.65 Let Pn be a sequence in M1(H) and P ∈ M1(H). Then Pn is weakly
convergent to P if and only if

lim
n→+∞ sup

φ∈C0

∣∣∣∣
∫
H

φ(x)Pn(dx) −
∫
H

φ(x)P(dx)

∣∣∣∣ = 0
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for every family C0 ⊂ Cb(H) which is equicontinuous at all points x ∈ H and uni-
formly bounded, i.e., for some constant M > 0, | f (x)| ≤ M for all x ∈ H and
f ∈ C0.

Proof See [478], the proof of Theorem II.6.8. �

1.2 Stochastic Processes and Brownian Motion

1.2.1 Stochastic Processes

Definition 1.66 (Filtration, usual conditions) Let t ≥ 0. A filtration
{
F t

s

}
s≥t

in a
complete probability space (�,F , P) is a family of σ-fields such that F t

s ⊂ F t
r ⊂

F whenever t ≤ s ≤ r .

(i) We say that
{
F t

s

}
s≥t is right-continuous if, for all s ≥ t , F t

s+ := ⋂
r>s F

t
r =

F t
s .

(ii) We say that
{
F t

s

}
s≥t

is left-continuous if, for all s > t ,F t
s− := σ

(⋃
r<s F

t
r

) =
F t

s . We say that
{
F t

s

}
s≥t is continuous if it is both left and right-continuous.

(iii) We say that
{
F t

s

}
s≥t satisfies the usual conditions if it is right-continuous and

complete, i.e. if F t
s contains all P-null sets of F for every s ≥ t .

We will often writeF t
s instead of

{
F t

s

}
s≥t . We also setF t+∞ := σ

(⋃
r<+∞ F t

r

)
.

Since we will mostly deal with filtrations satisfying the usual conditions we will
assume from now on that this property holds unless explicitly stated otherwise. For
this reason we include the usual conditions in the definition of a filtered probability
space.

Definition 1.67 (Filtered probability space) Let F t
s be a filtration satisfying

the usual conditions on a complete probability space (�,F , P). The 4-tuple(
�,F ,F t

s , P
)
is called a filtered probability space.

Notation 1.68 We use the following convention in this section. When we write
s ∈ [t, T ] we mean that s ∈ [t, T ] if T ∈ R, and s ∈ [t,+∞) if T = +∞. So [t, T ]
is understood to be [t,+∞) if T = +∞. �

Definition 1.69 (Stochastic process) Let T ∈ (0,+∞], t ∈ [0, T ) and (�,F )

and (�1,F1) be two measurable spaces. A family of random variables X (·) =
{X (s)}s∈[t,T ], X (s) : � → �1, is called a stochastic process in [t, T ]. If (�1,F1) =
(R,B(R)) then X (·) is called a real stochastic process.

Definition 1.70 Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probability space and

(�1,F1) be a measurable space. A stochastic process {X (s)}s∈[t,T ] : [t, T ] × � →
�1 is said to be:
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(i) Measurable, if the map (s,ω)→X (s)(ω) is B([t, T ]) ⊗ F/F1-measurable.
(ii) Adapted, if, for each s ∈ [t, T ], X (s) : � → �1 is an F t

s /F1-measurable
random variable.

(iii) Progressivelymeasurable, if for all s ∈ (t, T ], the restriction of X (·) to [t, s] ×
� is B([t, s]) ⊗ F t

s /F1-measurable.
(iv) Predictable, if the map (s,ω)→X (s)(ω) is P[t,T ]/F1-measurable, where

P[t,T ] is the σ-field (the predictable σ-field) in [t, T ] × � generated by all
sets of the form (s, r ] × A, t ≤ s < r ≤ T, A ∈ F t

s and {t} × A, A ∈ F t
t .

(v) If E is a separable Banach space (endowed with its Borel σ-field), the
process {X (s)}s∈[t,T ] : [t, T ] × � → E is called stochastically continuous at
s ∈ [t, T ] if for every ε, δ > 0 there exists ρ > 0 such that

P (|X (r) − X (s)| ≥ ε) ≤ δ, for all r ∈ (s − ρ, s + ρ) ∩ [t, T ].

(vi) If (S, d) is a metric space (endowed with its Borel σ-field), the process
{X (s)}s∈[t,T ] : [t, T ] × � → S is called continuous (respectively, right-
continuous, left-continuous), if for P-a.e. ω ∈ �, the function s→X (s)(ω)

is continuous (respectively, right-continuous, left-continuous).
(vii) If E is a separable Banach space (endowed with its Borel σ-field), the process

{X (s)}s∈[t,T ] : [t, T ] × � → E is called integrable (respectively square-
integrable) if E[|X (s)|] < +∞ (respectively E[|X (s)|2] < +∞) for all
s ∈ [t, T ]. The process is called uniformly integrable if it is integrable and
the family {X (s)}s∈[t,T ] is uniformly integrable (see Definition 1.40).

(viii) If E is a separable Banach space (endowed with the Borel σ-field induced
by the norm), the process {X (s)}s∈[t,T ] : [t, T ] × � → E is said to be mean
square continuous if E[|X (s)|2] < +∞ for all s ∈ [t, T ] and limr→s

E[|X (r) − X (s)|2] = 0 for all s ∈ [t, T ].
It is easy to see that if a process is mean square continuous then it is stochastically

continuous.
The concepts of adapted, progressivelymeasurable, and predictable processes can

be defined for any filtration G t
s . To emphasize the filtration used, we will refer to the

processes as G t
s -adapted, G

t
s -progressively measurable, and G t

s -predictable.
Progressive measurability can also be defined using the concept of progressively

measurable sets, see e.g. [447], p. 4, or [219], p. 71.We say that a set A ⊂ [t, T ] × �

is F t
s -progressively measurable if the function 1A is a progressively measurable

process. Equivalently this means that A ∩ ([t, s] × �) ∈ B([t, s]) ⊗ F t
s for every

s ∈ [t, T ]. It can be proved that theF t
s -progressively measurable sets form a σ-field

and that a process X (·) is progressively measurable if and only if it is measurable
with respect to the σ-field ofF t

s -progressively measurable sets.

Definition 1.71 (Stochastic equivalence,modification) Let (�,F , P) be a probabil-
ity space, and (�1,F1) be a measurable space. Processes X (·),Y (·) : [t, T ] × � →
�1 are called stochastically equivalent if for all s ∈ [t, T ], P(X (s) = Y (s)) = 1. In
this case, Y (·) is said to be amodification or version of X (·). The processes X (·) and
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Y (·) are called indistinguishable if P(X (s) = Y (s) : ∀s ∈ [t, T ]) = 1. We will also
say that Y (·) is an indistinguishable version of X (·).
Lemma 1.72 Let

(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probability space and let

{X (s)}s≥t be a process with values in a Polish space (S, d), endowed with the Borel
σ-field induced by the distance.

(i) If X (·) is B([t, T ]) ⊗ F/B(S)-measurable and F t
s -adapted, then X (·) has an

F t
s -progressively measurable modification.

(ii) If X (·) is F t
s -adapted and X (·) is left- (or right-) continuous for every ω, then

X (·) itself isF t
s -progressively measurable.

Proof Part (i): Since S is Borel isomorphic to a Borel subset A of R, without loss
of generality we can consider X (·) to be an R-valued process with values in A.
By [449], Theorem T46, p. 68, X (·) has an R-valued,F t

s -progressively measurable
modification X̃(·). Let a ∈ A. We define a process Y (·) by Y (s) := X̃(s)1X̃(s)∈A +
a1X̃(s)∈(R\A). The process Y (·) isF t

s -progressively measurable. Moreover, if X̃(s) =
X (s), then Y (s) = X (s), so Y (·) is a modification of X (·). Part (ii): See [449],
Theorem T47, p. 70, or [372], Proposition 1.13, p. 5. �

Lemma 1.73 Let (�,F , P) be a complete probability space and let {X (s)}s≥t be a
stochastic processwith values in a separable Banach space E endowedwith theBorel
σ-field. If X (·) is stochastically continuous then it has a measurable modification.

Proof See [180], Proposition 3.2. �

Lemma 1.74 Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probability space and let

{X (s)}s≥t be an adapted process with values in a separable Banach space E
endowed with the Borel σ-field. If X (·) is stochastically continuous then it has an
F t

s -progressively measurable modification.

Proof See [180], Proposition 3.6. It is also a corollary of Lemmas 1.72-(i) and
1.73. �

1.2.2 Martingales

Notation 1.75 Unless specified otherwise, anyBanach space E and anymetric space
(S, d) will be understood to be endowed with the Borel σ-field induced respectively
by the norm and by the distance. �

Definition 1.76 (Martingale) Let
(
�,F ,F t

s , P
)
be a filtered probability space, and

let M(·) be anF t
s -adapted and integrable process with values in a separable Banach

space E . Then M(·) is said to be a martingale if, for all r, s ∈ [t, T ], s ≤ r ,

E
[
M(r)|F t

s

] = M(s) P − a.s.
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If E = R, we say that M(s) is a submartingale (respectively, supermartingale) if

E
[
M(r)|F t

s

] ≥ M(s), (respectively, E
[
M(r)|F t

s

] ≤ M(s)) P − a.s.

Theorem 1.77 (Doob’s maximal inequalities) Let T > 0,
(
�,F ,F t

s , P
)
be a fil-

tered probability space, and H be a separable Hilbert space. Let M(·) be a
right-continuous H-valued martingale such that M(s) ∈ L p (�,F , P; H) for all
s ∈ [t, T ]. Then:
(i) If p ≥ 1, P

(
sups∈[t,T ] |M(s)| > λ

) ≤ 1
λp E [|M(T )|p], for all λ > 0.

(ii) If p > 1, E
[
sups∈[t,T ] |M(s)|p] ≤

(
p

p−1

)p
E [|M(T )|p].

Proof We observe that, if M(·) is a right-continuous H -valued martingale such that
M(s) ∈ L p (�,F , P; H), p ≥ 1, for all s ∈ [t, T ], then by Proposition 1.41-(vi),
|M(·)|p is a right-continuous R-valued submartingale with |M(s)| ∈ L p

(�,F , P; R) for all s ∈ [t, T ]. The claims now easily follow from [372] Theorem
3.8 (i) and (iii), pp. 13–14. �

In particular, we see that a right-continuous E-valued martingale M(·) is square-
integrable if and only if E|M(T )|2 < +∞.

Notation 1.78 (Square-integrable martingales) Let T ∈ (0,+∞), t ∈ [0, T ), let(
�,F ,F t

s , P
)
be a filtered probability space, and E be a separable Banach space.

The class of all continuous square-integrable martingales M : [t, T ] × � → E is
denoted by M2

t,T (E). �

If H is a separable Hilbert space thenM2
t,T (H) endowed with the scalar product

〈M, N 〉M2
t,T

:= E [〈M(T ), N (T )〉] .

is a Hilbert space (see [294], p. 22).

Theorem 1.79 (Angle bracket process, Quadratic variation process) Let T > 0, t ∈
[0, T ), H be a separable Hilbert space, and

(
�,F ,F t

s , P
)
be a filtered probability

space. For every M ∈ M2
t,T (H) there exists a unique (real) increasing, adapted,

continuous process starting from 0 at t , called the angle bracket process, and denoted
by 〈M〉t , such that |Ms |2 − 〈M〉s is a continuous martingale. Moreover, there exists
a unique L+

1 (H)-valued continuous adapted process starting from 0 at t , called the
quadratic variation of M, and denoted by 〈〈M〉〉s , such that, for all x, y ∈ H, the
process

〈Ms, x〉 〈Ms, y〉 −
〈
〈〈M〉〉s (x), y

〉
, s ∈ [t, T ]

is a continuous martingale. Moreover, 〈M〉s = Tr(〈〈M〉〉s).
Proof See [294], Definition 2.9 and Lemma 2.1, p. 22. �
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Theorem 1.80 (Burkholder–Davis–Gundy inequality) Let T > 0, t ∈ [0, T ), H be
a separable Hilbert space, and

(
�,F ,F t

s , P
)
be a filtered probability space. For

every p > 0 there exists a cp > 0 such that, for every M ∈ M2
t,T (H)with M(0) = 0,

c−1
p E

[
〈M〉p/2T

]
≤ E

[
sup

s∈[t,T ]
|M(s)|p

]
≤ cpE

[
〈M〉p/2T

]
.

Proof See [487], Theorem 3.49, p. 37. �

1.2.3 Stopping Times

Definition 1.81 (Stopping time) Consider a probability space (�,F , P) and a fil-
tration

{
F t

s

}
s≥t on �. A random variable τ : (�,F ) → [t,+∞] is said to be an

F t
s -stopping time if, for all s ≥ t ,

{τ ≤ s} := {ω ∈ � : τ (ω) ≤ s} ∈ F t
s .

Given a stopping time τ we denote by Fτ the sub-σ-field of F defined by

Fτ :=
{
A ∈ F : A ∩ {τ ≤ s} ∈ F t

s for all s ≥ t
}
.

Proposition 1.82 Let (�,F ,F t
s , P) be a filtered probability space.

(i) If τ and σ areF t
s -stopping times, so are τ ∧ σ, τ ∨ σ and τ + σ.

(ii) If σn (for n = 1, 2...) are F t
s -stopping times, then

sup
n

σn, inf
n

σn, lim sup
n

σn, lim inf
n

σn

are F t
s -stopping times.

(iii) For any F t
s -stopping time τ there exists a decreasing sequence of discrete-

valued F t
s -stopping times τn, such that limn→∞ τn = τ .

(iv) Let (S, d) be a metric space (endowed with the Borel σ-field induced by the
distance), and X : [t,+∞) × � → S bea continuous andF t

s -adapted process.
Let A ⊂ S be an open or a closed set. Then the hitting time

τA := inf{s ≥ t : X (s) ∈ A}

is a stopping time. (It is understood that inf{∅} = +∞.)

Proof (i) and (ii) see [372], Lemmas 2.9 and 2.11, p. 7. (iii) see [370], Lemma 7.4,
p. 122. (iv) see [575], Example 3.3, p. 24, or [452], Proposition 1.3.2, p. 12 (there
S = R

n , but the proofs are the same). �
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Proposition 1.83 Let
(
�,F ,

{
F t

s

}
s≥t , P

)
beafilteredprobability space, (�1,F1)

be a measurable space, X : [t,+∞) × � → �1 be an F t
s -progressively measur-

able process, and τ be an F t
s -stopping time. Then the random variable X (τ ),

(where X (τ )(ω) := X (τ (ω),ω)), is Fτ -measurable and the process defined, for
any s ∈ [t,+∞), by X (s ∧ τ ) isF t

s -progressively measurable.

Proof See [452], Proposition 1.3.5, p. 13, or [575], Proposition 3.5, p. 25. �

Theorem 1.84 (Doob’s optional sampling theorem) Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be

a filtered probability space, X : [t,+∞) × � → R be a right-continuous F t
s -

submartingale, and τ ,σ be two F t
s -stopping times with τ bounded. Then Xτ is

integrable and
E[Xτ |F t

σ] ≥ Xτ∧σ, P a.s.

If X+ (the positive part of the process) is uniformly integrable then the statement
extends to unbounded τ .

Proof See [370], Theorem 7.29, p. 135. �

Definition 1.85 (Localmartingale) Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probabil-

ity space. An
{
F t

s

}
s≥t -adapted process {X (s)}s≥t with values in a separable Banach

space E is said to be a local martingale if there exists an increasing sequence of
stopping times (τn)n∈N with P(τn ↑ +∞) = 1, such that the process {X (s ∧ τn)}s≥t

is a martingale for every n ∈ N.

1.2.4 Q-Wiener Processes

Definition 1.86 (Real Brownian motion) Given t ∈ R, a real stochastic process
β : [t,+∞) × � → R on a complete probability space (�,F , P) is a standard
(one-dimensional) real Brownian motion on [t,+∞) starting at 0, if

(1) β is continuous and β(t) = 0;
(2) for all t ≤ t1 < t2 < ... < tn the random variables β(t1), β(t2) − β(t1), ...,

β(tn) − β(tn−1) are independent;
(3) for all t ≤ t1 ≤ t2, β(t2) − β(t1) has a Gaussian distribution with mean 0 and

covariance t2 − t1.

Consider a real, separable Hilbert space � and Q ∈ L+(�). Define �0 :=
Q1/2(�) and let Q−1/2 be the pseudo-inverse of Q1/2 (see Definition B.1). �0

is a separable Hilbert space when endowed with the inner product 〈x, y〉�0
:=〈

Q−1/2x, Q−1/2y
〉
�
. Let �1 be an arbitrary real, separable Hilbert space such that

� ⊂ �1 with continuous embedding and �0 ⊂ �1 with Hilbert–Schmidt embed-
ding J : �0 ↪→ �1 (see Appendix B.3 on Hilbert–Schmidt operators). The operator
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Q1 := J J ∗ belongs toL+
1 (�1) and�0 is identical with the space Q

1
2
1 (�1) (see [180]

Proposition 4.7, p. 85).

Theorem 1.87 Consider the setting described above. Let {gk}k∈N be an orthonormal
basis of �0 and (βk)k∈N be a sequence of mutually independent, standard one-
dimensional Brownian motions βk : [t,+∞) × � → R on [t,+∞) starting at 0.
Then for every s ∈ [t,+∞) the series

WQ(s) :=
∞∑
k=1

gkβk(s) (1.12)

is convergent in L2(�,F , P;�1).

Proof See [180] Propositions 4.3, p. 82, and 4.7, p. 85. �

Definition 1.88 (Q-Wiener process) The process WQ defined by (1.12) is called a
Q-Wiener process on [t,+∞) starting at 0.

Remark 1.89 We will use the notation WQ to denote a Q-Wiener process. If Q is
trace-class, �1 = � is a canonical choice and it will be understood that WQ is a
�-valued process. If Q is not trace-class, writing WQ and calling it a Q-Wiener
process is a slight abuse of notation as it would be more precise to writeWQ1 and call
it a Q1-Wiener process with values in �1. However, even though the construction
we have described is not canonical if Tr(Q) = +∞, and the choice of �1 is not
unique, the class of the integrable processes is independent of the choice of �1 (see
[180] Sect. 4.1 and in particular Proposition 4.7). Moreover (see [180] Sect. 4.1.2),
for arbitrary a ∈ � the stochastic process

< a,W (s) >:=
∞∑
k=1

〈a, gk〉βk(s), s ≥ t,

is a real-valued Wiener process and

E < a,W (s1) >< b,W (s2) >= ((s1 − t) ∧ (s2 − t))〈Qa, b〉, a, b ∈ �.

For these reasons, even when Tr(Q) = +∞, we will still use the notationWQ . When
Q is the identity on � we will call it a cylindrical Wiener process in �. �

Proposition 1.90 Let � be a real, separable Hilbert space, Q ∈ L+(�) and let �0,
�1 and J be as described above. Let (�,F , P) be a complete probability space
and B : [t,+∞) × � → �1 be a stochastic process. Denote by F t,0

s the filtration
generated by B, i.e.

F t,0
s = σ(B(r) : t ≤ r ≤ s),

andF t
s := σ(F t,0

s ,N ), whereN is the class of theP-null sets. Then B is a Q-Wiener
process on [t,+∞) starting at 0 if and only if:
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(1) B(t) = 0.
(2) B has continuous trajectories.
(3) For all t ≤ t1 ≤ t2 the random variable B(t2) − B(t1) is independent of F t

t1 .
(4) LP (B(t2) − B(t1)) = N (0, (t2 − t1)Q1), where Q1 = J J ∗.

Proof The “only if” part follows from [180], Proposition 4.7, p. 85 (observe that
in [180] a Wiener process is in fact defined using the four properties (1)–(4)). The
“if” part is proved in [180] Proposition 4.3-(ii), p. 81 (if Tr(Q) = +∞ we apply the
proposition in the space �1). �

The existence of a process satisfying conditions (1)–(4) above can also be proved
using the Kolmogorov extension theorem (see [180], Proposition 4.4).

Remark 1.91 If WQ(s) = ∑∞
k=1 gkβk(s) for some orthonormal basis {gk}k∈N of �0,

it is easy to see that regardless of the choice of �1, F t,0
s = σ(βk(r) : t ≤ r ≤ s,

k ∈ N). Thus the filtration generated byWQ does not depend on the choice of �1. �

Definition 1.92 (Translated G t
s -Q-Wiener process) Let 0 ≤ t < T ≤ +∞. Let �

be a real, separable Hilbert space, Q ∈ L+(�) and let �0, �1 and J be as described
above. Let

(
�,F ,G t

s , P
)
be a filtered probability space. We say that a stochastic

process B : [t, T ] × � → �1 is a translated G t
s -Q-Wiener process on [t, T ] if:

(1) B has continuous trajectories.
(2) B is adapted to G t

s .
(3) For all t ≤ t1 < t2 ≤ T , B(t2) − B(t1) is independent of G t

t1 .
(4) LP (B(t2) − B(t1)) = N (0, (t2 − t1)Q1), where Q1 = J J ∗.

If we also have B(t) = 0 then we call B a G t
s -Q-Wiener process on [t, T ].

We remark that if B is a translatedG t
s -Q-Wiener process, then it is also a translated

F t
s -Q-Wiener process, whereF t

s is the augmented filtration generated by B. More-
over, ifWQ is a Q-Wiener process as in Definition 1.88 then it is also aF t

s -Q-Wiener
process, where F t

s is the augmented filtration generated by B.

Lemma 1.93 Let 0 ≤ t < T ≤ +∞. Let � be a real, separable Hilbert space, Q ∈
L+(�) and let �0 and �1 be as described above. Let (�,F , P) be a complete
probability space. Let B : [t, T ] × � → �1 be a continuous stochastic process such
that B(t) = 0. Then B is a Q-Wiener process on [t, T ] if and only if, for all a ∈ �1,
t ≤ t1 ≤ t2 ≤ T , we have

E
[
ei〈a,B(t2)−B(t1)〉�1 |F t

t1

] = e− 〈Q1a,a〉�1
2 (t2−t1). (1.13)

Proof (The proof uses the same arguments as in the finite-dimensional case, see
Proposition 1.2.7 of [452].)

The “only if” part: if B is a Q-Wiener process then, by Proposition 1.90-(4),
Theorem 1.57 and Definition 1.58,
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E
[
ei〈a,B(t2)−B(t1)〉�1

] = e− 〈Q1a,a〉�1
2 (t2−t1).

Moreover, since B(t2) − B(t1) is independent of F t
t1 ,

E
[
ei〈a,B(t2)−B(t1)〉�1

] = E
[
ei〈a,B(t2)−B(t1)〉�1 |F t

t1

]
.

The “if” part: We have to prove the four conditions in Proposition 1.90: (1)
and (2) are already in the assumptions of the lemma. Condition (4) follows easily
from (1.13), Theorem 1.57 and Definition 1.58. To prove condition (3), i.e. that
Y := B(t2) − B(t1) is independent of F t

t1 , observe that, for all Z : � → �1 which
areF t

t1 -measurable, one has, for all a, b ∈ �1,

E
[
ei〈a,Y 〉�1 ei〈b,Z〉�1

] = E
[
E

[
ei〈a,Y 〉�1 |F t

t1

]
ei〈b,Z〉�1

]
= e− 〈Q1a,a〉�1

2 (t2−t1) E
[
ei〈b,Z〉�1

] = E
[
ei〈a,Y 〉�1

]
E

[
ei〈b,Z〉�1

]
.

Since the above holds for all Z : � → �1 which are F t
t1 -measurable, and for all

a, b ∈ �1, we conclude that Y is independent of F t
t1 by Theorem 1.56. �

Lemma 1.94 Let F t,0
s and F t

s be the filtrations defined in Proposition 1.90 for a
Q-Wiener process WQ. ThenF t

s is right-continuous. Moreover, for all T > t ,F t,0
T ,

and consequently F t
T , are countably generated up to sets of measure zero. If the

trajectories of WQ are everywhere continuous then

F t,0
T = F t,0

T− = σ
(
WQ(si ) : i = 1, 2, ...

)
, (1.14)

where (si ), i = 1, 2, ... is any dense sequence in [t, T ), and hence the filtrationF t,0
s

is countably generated and left-continuous.

Proof The proof follows arguments from [513] and [372] (Sect. 2.7-A). Consider
τ > s and ε > 0. Since WQ(τ + ε) − WQ(s + ε) is independent of F t,0

s+ , for every
A ∈ F t,0

s+ and f ∈ Cb(�1)

E
(
1A f (WQ(τ + ε) − WQ(s + ε))

) = P(A)E f (WQ(τ + ε) − WQ(s + ε)).

Letting ε → 0 we thus have by the dominated convergence theorem that

E
(
1A f (WQ(τ ) − WQ(s))

) = P(A)E f (WQ(τ ) − WQ(s)). (1.15)

Now if B = B ⊂ �1 then there exist functions fn ∈ Cb(�1), 0 ≤ fn ≤ 1, such that
fn(x) → 1B(x) as n → +∞ for every x ∈ �1. Therefore (1.15) implies that

P(A ∩ {WQ(τ ) − WQ(s) ∈ B}) = P(A)P({WQ(τ ) − WQ(s) ∈ B})
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and since the sets {{WQ(τ ) − WQ(s) ∈ B} : B = B ⊂ �1} are aπ-systemgenerating
σ(WQ(τ ) − WQ(s)), it follows from Lemma 1.23 thatF t,0

s+ and σ(WQ(τ ) − WQ(s))
are independent.

Now let s = τ0 < τ1 < ... < τk ≤ T . We have σ(WQ(τi ) − WQ(s) :
i = 1, ..., k) = σ(WQ(τi ) − WQ(τi−1) : i = 1, ..., k). Let now A ∈ F t,0

s+ and Bi ∈
σ(WQ(τi ) − WQ(τi−1)), i = 1, ..., k. Since Bi is independent of A ∩ B1 ∩ ... ∩ Bi−1

∈ F t,0
τi−1

, i = 1, ..., k and B1, ..., Bk are independent

P(A ∩ B1 ∩ ... ∩ Bk) = P(A ∩ B1 ∩ ... ∩ Bk−1)P(Bk) = ...

= P(A ∩ B1)

k∏
i=2

P(Bi ) = P(A)

k∏
i=1

P(Bi ) = P(A)P(B1 ∩ ... ∩ Bk).

Therefore
⋃

σ(WQ(τi ) − WQ(s) : i = 1, ..., k) (where the union is taken over all
partitions s = τ0 < τ1 < ... < τk ≤ T ) is a π-system independent of F t,0

s+ and thus
Gs = σ(WQ(τ ) − WQ(s) : s ≤ τ ≤ T ) is independent of F t,0

s+ .
Since F t,0

T = σ(F t,0
s ,Gs), the family {As ∩ Bs : As ∈ F t,0

s , Bs ∈ Gs} is a π-
systemgeneratingF t,0

T . Let now A ∈ F t,0
s+ and let ξ be a version of 1A − E(1A|F t,0

s ).
Since ξ isF t,0

s+ -measurable, it is independent of Gs , so if As ∈ F t,0
s , Bs ∈ Gs then

E
(
ξ1As∩Bs

) = E
(
ξ1As1Bs

) = P(Bs)E
(
ξ1As

)
= P(Bs)

∫
As

ξdP = P(Bs)

[∫
As

1AdP −
∫
As

E(1A|F t,0
s )dP

]
= 0

by the definition of conditional expectation. This implies that
∫
D ξdP = 0 for every

D ∈ F t
T and thus ξ = 0, P-a.e. Therefore 1A = E(1A|F t,0

s ), P-a.e., i.e. if Ã =
E(1A|F t,0

s )−1(1) then Ã ∈ F t,0
s and P(A� Ã) = 0. This shows that F t,0

s+ ⊂ F t
s .

Now let A ∈ F t
s+, whichmeans that for every n ≥ 1, A ∈ F t

s+1/n and there exists

a Bn ∈ F t,0
s+1/n such that A�Bn ∈ N . Set

B =
+∞⋂
m=1

+∞⋃
n=m

Bn.

Then B ∈ F t,0
s+ ⊂ F t

s and

B \ A ⊂
(+∞⋃
n=1

Bn

)
\ A =

+∞⋃
n=1

(Bn \ A) ∈ N .

Moreover,
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A \ B = A ∩
(+∞⋂
m=1

+∞⋃
n=m

Bn

)c

= A ∩
(+∞⋃
m=1

+∞⋂
n=m

Bc
n

)

=
+∞⋃
m=1

+∞⋂
n=m

(A ∩ Bc
n) ⊂

+∞⋃
m=1

(A ∩ Bc
m) =

+∞⋃
m=1

(A \ Bm) ∈ N .

Thus A�B ∈ N , which implies that A ∈ F t
s , which completes the proof of the right

continuity.
To show thatF t,0

T is countably generated up to sets ofmeasure zerowe take a dense
sequence (si ), i = 1, 2, ..., in [t, T ). SinceB(�1) is countably generated (for instance
by open balls with rational radii centered at points of a countable dense set), each
σ(WQ(si )) is countably generated and so σ(WQ(si ) : i ≥ 1) is countably generated.
It remains to show that for every s ∈ (t, T ],σ(WQ(s)) ⊂ σ(N ,WQ(si ) : si < s). Let
�0 ⊂ �, P(�0) = 1 be such that WQ has continuous trajectories on [t, T ] for ω ∈
�0. Let A be an open subset of �1 and set An = {x ∈ A : dist(x, Ac) > 1/n}, n =
1, 2, .... Then An is open, An ⊂ An+1, and

⋃+∞
n=1 An = A. Let sik be a sequence

of si such that sik < s and sik → s as k → +∞. Then, using the continuity of the
trajectories of WQ , it is easy to see that

�0 ∩ WQ(s)−1(A) = �0 ∩
+∞⋃
n=1

+∞⋂
k=n

WQ(sik )
−1(An) ∈ σ(N ,WQ(si ) : si < s).

Therefore WQ(s)−1(A) ∈ σ(N ,WQ(si ) : si < s) and since the sets {WQ(s)−1(A) :
A is an open subset of �1} generate σ(WQ(s)), the result follows. If �0 = � then
we have above

WQ(s)−1(A) =
+∞⋃
n=1

+∞⋂
k=n

WQ(sik )
−1(An) ∈ σ(WQ(si ) : si < s).

The argument that σ(WQ(t)) ⊂ σ(WQ(si ) : i = 1, 2, ...) is similar (or we can just
assume that s1 = t). This yields (1.14). �

In fact the above argument shows that if S is a Polish space, T > t , and X :
[t, T ] × � → S is a stochastic process with everywhere continuous trajectories, then
the filtration generated by X , F X

s := σ(X (τ ) : t ≤ τ ≤ s) is countably generated
and left-continuous.

1.2.5 Simple and Elementary Processes

Definition 1.95 (F t
s -simple process) Let E be a Banach space (endowed with

the Borel σ-field) and let (�,F ,
{
F t

s

}
s∈[t,T ] , P) be a filtered probability space.

A process X : [t, T ] × (�,F , P) → E is called F t
s -simple if:
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(i) Case T = +∞: there exists a sequence of real numbers (tn)n∈N with t = t0 <

t1 < ... < tn < ... and limn→∞ tn = +∞, a constant C < +∞, and a sequence
of random variables ξn : � → E with supn≥0 |ξn(ω)|E ≤ C for every ω ∈ �,
such that ξn isF t

tn -measurable for every n ≥ 0, and

X (s)(ω) =
{

ξ0(ω) if s = t
ξi (ω) if s ∈ (ti , ti+1].

(ii) CaseT < +∞: there exist t = t0 < t1 < ... < tN = T , a constantC < +∞, and
random variables ξn : � → E for n = 0, ..., N − 1with sup0≤n≤N−1 |ξn(ω)|E ≤
C for every ω ∈ �, such that ξn isF t

tn -measurable, and

X (s)(ω) =
{

ξ0(ω) if s = t
ξi (ω) if s ∈ (ti , ti+1].

Definition 1.96 (F t
s -elementary process) Let T ∈ (0,+∞), t ∈ [0, T ). Let (S, d)

be a complete metric space (endowed with the Borel σ-field), and (�,F ,{
F t

s

}
s∈[t,T ] , P) be a filtered probability space. We say that a process X : [t, T ] ×

(�,F , P) → S isF t
s -elementary if there exist S-valued random variables ξ0, ξ1, ..,

ξN−1, and a sequence t = t0 < t1 < .. < tN = T , such that

(1) ξi has a finite numbers of values for every i ∈ {0, ..N − 1}.
(2) ξi isF t

ti -measurable for every i ∈ {0, ..N − 1}.
(3) X (s)(ω) = ξi (ω) for s ∈ (ti , ti+1] for i ∈ {0, ..N − 1}, and X (t) = ξ0.

Finally, we say that a process X : [t,+∞) × (�,F , P) → S is F t
s -elementary if

there exists T1 > t such that the restriction of X to [t, T1] is F t
s -elementary and

X (s) = 0 for s > T1.

It is immediate from the definitions that simple and elementary processes are
progressively measurable and predictable.

Remark 1.97 In Definitions 1.14, 1.95 and 1.96 we introduced the concepts of a
simple random variable,F t

s -simple process, andF
t
s -elementary process. The reader

should be aware that in the literature the use of these terms varies and the same word
is often used by different authors to mean different things. �

Lemma 1.98 Let E be a separable Banach space endowed with the Borel σ-
field, (�,F ,F t

s , P) be a filtered probability space and X : [t, T ] × � → E be
a bounded, measurable, F t

s -adapted process, where T ∈ [t,+∞) ∪ {+∞}. There
exists a sequence Xm(·) of F t

s -elementary E-valued processes on [t, T ] such that,
for every 1 ≤ p < +∞ and R > t ,

lim
m→+∞ E

∫ R∧T

t

∣∣Xm(s) − X (s)
∣∣p
E ds = 0. (1.16)
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The same claim holds if, instead of the Banach space, we consider E to be an interval
[a, b] ⊂ R or a countable closed subset of [a, b]. In these cases the norm | · |E in
(1.16) is replaced by | · |R.
Proof It is enough to prove the result for a single p ≥ 1. To obtain a sequence of
F t

s -simple processes Xm(·) with the required properties, the proof follows exactly
the proof of Lemma 3.2.4, p. 132, in [372] with obvious technical modifications
as we now have to deal with Bochner integrals in E . We then use Lemma 1.16 to
approximate the random variables ξi defining Xm(·) by simple random variables to
obtain F t

s -elementary approximating processes.
If E is a countable closed subset of [a, b], we first produce [a, b]-valued F t

s -
elementary approximating processes Xm(·). We then construct an E-valued F t

s -
elementary process Ym(·) from Xm(·) as follows. Let Xm(s) = ξi for s ∈ (ti , ti+1]
for i ∈ {0, ..N − 1}, and X (t) = ξ0. Let ξ̃i be defined in the following way. If
ξi (ω) ∈ E ,we set ξ̃i (ω) = ξi (ω). If ξi (ω) /∈ E ,we set ξ̃i (ω) = argminx∈E |ξ(ω) − x |
if argminx∈E |ξ(ω) − x | is a singleton. If argminx∈E |ξ(ω) − x | has two points
x1 < x2, we set ξ̃i (ω) = x1. Obviously ξ̃i is a simple, F t

ti -measurable process. We

now define Ym(s) = ξ̃i for s ∈ (ti , ti+1] for i ∈ {0, ..N − 1}, and X (t) = ξ̃0. Then,
since X (·) has values in E , it is easy to see that |Ym(s) − X (s)| ≤ 2|Xm(s) − X (s)|
for any s ∈ [t,+∞) and ω ∈ �. Therefore the result follows. �

Lemma 1.99 Let F t,0
s and F t

s be as in Proposition 1.90, T ∈ [t,+∞) ∪ {+∞},
and let a(·) : [t, T ] × � → S be an F t

s -progressively measurable process, where
(S, d) is a Polish space endowed with the Borel σ-field. Then there exists an F t,0

s -
progressively measurable and F t,0

s -predictable process a1(·) : [t, T ] × � → S,
such that a(·) = a1(·), dt ⊗ P-a.e. on [t, T ] × �.

Proof In light of Theorems 1.12 and 1.13 we can assume that S = [0, 1] or S is a
countable closed subset of [0, 1]. Using Lemma 1.98, we can find approximating
F t

s -elementary processes an(·) on [t, T ] of the form

an(t)(ω) =
{

ξn0 (ω) if s = t
ξni (ω) if s ∈ (ti , ti+1]

such that

sup
R≥t

lim
n→∞ E

∫ R∧T

t

∣∣a(s) − an(s)
∣∣2
R
ds = 0.

Using Lemma 1.16, we can change every ξni on a null-set to obtain a sequence of
F t,0

s -elementary processes an1 (·) that still satisfy

sup
R≥t

lim
n→∞ E

∫ R∧T

t

∣∣a(s) − an1 (s)
∣∣2
R
ds = 0.

Obviously the processes an1 (·) are F t,0
s -progressively measurable. We can now

extract a subsequence (still denoted by an1 (·)) such that an1 (·) → a(·) dt ⊗ P-
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a.e. on [t, T ] × �, and define a1(·) := lim infn→+∞ an1 (·). The process a1(·) is
F t,0

s -progressively measurable, F t,0
s -predictable, and a(·) = a1(·), dt ⊗ P-a.e. on

[t, T ] × �. �

1.3 The Stochastic Integral

Let T ∈ (0,+∞), and t ∈ [0, T ). Throughout the whole section � and H will
be two real, separable Hilbert spaces, Q will be an operator in L+(�),

(
�,F ,{

F t
s

}
s∈[t,T ] , P

)
will be a filtered probability space, andWQ will be a translatedF t

s -

Q-Wiener process on � on [0, T ]. The following concept will be used in Chap.2.

Definition 1.100 A 5-tuple μ :=
(
�,F ,

{
F t

s

}
s∈[t,T ] , P,WQ

)
described above is

called a generalized reference probability space.

A process X (·) will always be assumed to be defined on �, and the expressions
“adapted” and “progressively measurable” will always refer to the filtrationF t

s .

1.3.1 Definition of the Stochastic Integral

In this section we will assume that Tr(Q) < +∞. If Tr(Q) = +∞, the construc-
tion of the stochastic integral is the same, we just have to consider WQ as a �1-
valued Wiener process with nuclear covariance Q1 (see Sect. 1.2.4). This wayWQ is
not uniquely determined but Q1/2

1 (�1) = �0 = Q1/2(�), |x |�0 = |Q−1/2
1 x |�1 for all

possible extensions �1 and the class of integrands and the value of the integrals are
independent of the choice of the space�1 (see [180], Proposition 4.7 and Sect. 4.1.2).

We recall that we denote by L2(�0, H) the space of Hilbert–Schmidt operators
from�0 to H (seeAppendixB.3). It is equippedwith its Borelσ-fieldB(L2(�0, H)).
L2(�0, H) is a real, separable Hilbert space (see Proposition B.25), and L(�, H) is
dense in L2(�0, H) (see e.g. [294], pp. 24–25).

Definition 1.101 (The spaceN p
Q(t, T ; H))Given p ≥ 1,wedenote byN p

Q(t, T ; H)

the space of all L2(�0, H)-valued, progressively measurable processes X (·), such
that

|X (·)|N p
Q (t,T ;H) :=

(
E

∫ T

t
‖X (s)‖p

L2(�0,H)ds

)1/p

< ∞.

N p
Q(t, T ; H) is a Banach space if it is endowed with the norm | · |N p

Q (t,T ;H).

We remark that, as always, two processes in N p
Q(t, T ; H) are identified if they

are equal P ⊗ dt-a.e.
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Remark 1.102 In several classical references (see e.g. [180] or [491]), the theory of
stochastic integration is developed for predictable processes instead of progressively
measurable ones like in our case. However, it follows for instance from Lemma 1.99,
that for every L2(�0, H)-valued progressively measurable process X there exists a
predictable process X1 which is P ⊗ dt-a.e. equal to X . Thus, since we are working
with stochastic integrals with respect to Wiener processes (which are continuous),
the two concepts coincide. �

For an L(�, H)-valued, F t
s -simple process � on [t, T ], �(s) = �01{t}(s) +∑i=N−1

i=0 1(ti ,ti+1](s)�i , the stochastic integral with respect to WQ is defined by

∫ T

t
�(s)dWQ(s) :=

N−1∑
i=0

�i (WQ(ti+1) − WQ(ti )) ∈ L2(�; H).

Note that if we take� to be L2(�0, H)-valued, we cannot guarantee that the expres-
sion above is well defined, sinceL2(�0, H) contains genuinely unbounded operators
in � (see e.g. [294], p. 25, Exercise 2.7).

We now extend the stochastic integral to all processes in N 2
Q(t, T ; H) by the

following theorem.

Theorem 1.103 (Itô isometry) For every L(�, H)-valued, F t
s -simple process �

we have

E

∣∣∣∣
∫ T

t
�(s)dWQ(s)

∣∣∣∣
2

H

= E

∫ T

t
‖�(s)‖2L2(�0,H)ds.

Thus the stochastic integral is an isometry between the set of L(�, H)-valued,
F t

s -simple processes in N 2
Q(t, T ; H) and its image in L2(�; H). Moreover, since

L(�, H)-valued, F t
s -simple (and in fact elementary) processes are dense in N 2

Q

(t, T ; H), it can be uniquely extended to all processes in N 2
Q(t, T ; H). We denote

this unique extension by ∫ T

t
�(s)dWQ(s)

and call it the stochastic integral of � with respect to WQ.

Proof See [294], Propositions 2.1, 2.2, and Definition 2.10. See also [180], Propo-
sition 4.22 in the context of predictable processes. �

Proposition 1.104 For � ∈ N 2
Q(t, T ; H), consider the process

{
I (�) : [t, T ] × � → H
I (�)(r) := ∫ r

t �(s)dWQ(s) := ∫ T
t �(s)1[t,r ]dWQ(s).

I (�) is a continuous square-integrable martingale and I : N 2
Q(t, T ; H) → M2

t,T
(H) is an isometry. Moreover,
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〈〈I (�)〉〉s =
∫ s

t

(
�(s)Q

1
2

) (
�(s)Q

1
2

)∗
ds,

〈I (�)〉s =
∫ s

t
‖�(s)‖2L2(�0,H)ds.

Proof See [294] Theorem 2.3, p. 34. �

The definition of stochastic integral can be further extended to all L2(�0, H)-
valued progressively measurable processes �(·) such that

P

(∫ T

t
‖�(s)‖2L2(�0,H)ds < +∞

)
= 1. (1.17)

Lemma 1.105 Let {�(s)}s∈[t,T ] be an L2(�0, H)-valued progressively measurable
process satisfying (1.17). Then there exists a sequence �n of L(�, H)-valued F t

s -
simple processes such that

lim
n→∞

∫ T

t
‖�(s) − �n(s)‖2L2(�0,H)ds = 0 P − a.s. (1.18)

Moreover, there exists an H-valued random variable, denoted by I, such that

lim
n→∞

∫ T

t
�n(s)dWQ(s) = I in probability.

I does not depend on the choice of approximating sequence, more precisely,
given �1

n and �2
n satisfying (1.18), if I1 := limn→∞

∫ T
t �1

n(s)dWQ(s) and I2 :=
limn→∞

∫ T
t �2

n(s)dWQ(s), then I1 = I2 P − a.s.

Proof See [294], Lemmas 2.3, p. 39, and 2.6, p. 41. �

The process I defined by Lemma 1.105 is called the stochastic integral of � with
respect to WQ , and is denoted by

∫ T
t �(s)dWQ(s). We also set

∫ r
t �(s)dWQ(s) :=∫ T

t �(s)1[t,r ]dWQ(s).

Proposition 1.106 Let {�(s)}s∈[t,T ] be anL2(�0, H)-valued progressively measur-
able process satisfying (1.17). Then the process

{
I (�) : [t, T ] × � → H
I (�)(r) := ∫ r

t �(s)dWQ(s)

is a continuous local martingale.

Proof See [294], pp. 42–44. �
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Finally, we may extend the definition of stochastic integral to all processes (not
necessarily progressively measurable) that are dt ⊗ P-equivalent to progressively
measurable processes satisfying (1.17) in the sense of the following definition (see
also [372], p. 130).

Definition 1.107 We say that two processes �1 and �2 are dt ⊗ P-equivalent if
�1 = �2, dt ⊗ P-a.e. If � belongs to the equivalence class of a progressively mea-
surable process �1 satisfying (1.17),4 we set

∫ T

t
�(s)dWQ(s) :=

∫ T

t
�1(s)dWQ(s).

This definition is obviously independent of the choice of a representative process
�1. Thus a representative process defines the stochastic integral for the whole equiv-
alence class.

Example 1.108 Every L2(�0, H)-valued, F t
s -adapted, and B([t, T ]) ⊗ F -

measurable process � satisfying (1.17) is stochastically integrable, where
B([t, T ]) ⊗ F is the completion of B([t, T ]) ⊗ F with respect to dt ⊗ P. To see
this we need to find a progressively measurable process�1 which is equivalent to�.
First, let�2 be aB([t, T ]) ⊗ F -measurable process equivalent to� (which exists by
Lemma 1.16). Then, for a.e. s ∈ [t, T ], we have �2(s, ·) = �(s, ·) P-a.s. and, since
every F t

s is complete, also �2(s, ·) is F t
s -measurable for a.e. s. Thus there exists

an A ∈ B([t, T ]) of full measure such that �2(s, ·) isF t
s -measurable for s ∈ A. We

then define �3 = �21A. �3 is B([t, T ]) ⊗ F -measurable and F t
s -adapted, thanks

to Lemma 1.72 it has a progressively measurable modification �1 which is clearly
equivalent to �. �
Theorem 1.109 Let (E,G ,μ) be a measure space with bounded measure.
Let � : [t, T ] × � × E → L2(�0, H) be (B([t, T ]) ⊗ F t

T ⊗ G )/B(L2(�0, H))-
measurable. Suppose that, for any x ∈ E, {�(s, ·, x)}s∈[t,T ] is progressively mea-
surable and ∫

E
|�(·, ·, x)|N 2

Q(t,T ;H)dμ(x) < +∞.

Then:

(i)
∫ T

t
�(s, ·, ·)dWQ(s) has an F t

T ⊗ G /B(H)-measurable version.

(ii)
∫
E

�(·, ·, x)dμ(x) is progressively measurable.

(iii) The following equality holds P-a.s.:

∫
E

∫ T

t
�(s, ·, x)dWQ(s)dμ(x) =

∫ T

t

∫
E

�(s, ·, x)dμ(x)dWQ(s).

4Note that if a process X is progressively measurable and satisfies (1.17) and Y is dt ⊗ P-equivalent
to X , then Y must also satisfy (1.17) since for P-a.s. ω, X (·, ω) = Y (·, ω), a.e. on [t,T].
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Proof See Theorem 2.8, Sect. 2.2.6, p. 57 of [294] and Theorem 4.33, Sect. 4.5, p.
110 of [180]. �

1.3.2 Basic Properties and Estimates

Lemma 1.110 Let T > 0 and t ∈ [0, T ). Assume that� is inN 2
Q(t, T ; H) and that

τ is anF t
s -stopping time such that P(τ ≤ T ) = 1. Then P-a.s.

∫ T

t
1[t,τ ](r)�(r)dWQ(r) =

∫ τ

t
�(r)dWQ(r).

Proof See [294], Lemma 2.7, p. 43 (also [180], Lemma 4.24, p. 99). �

As a consequence of Theorem 1.80 and Proposition 1.104 we obtain the following
theorem (see also e.g. [177], Theorem 5.2.4, p. 58).

Theorem 1.111 (Burkholder–Davis–Gundy inequality for stochastic integrals) Let
T > 0 and t ∈ [0, T ). For every p ≥ 2, there exists a constant cp such that, for every
� in N p

Q(t, T ; H),

E

[
sup

s∈[t,T ]

∣∣∣∣
∫ s

t
�(r)dWQ(r)

∣∣∣∣
p
]

≤ cpE

[∫ T

t
‖�(r)‖2L2(�0,H)dr

]p/2

≤ cp(T − t)
p
2 −1

E

[∫ T

t
‖�(r)‖p

L2(�0,H)dr

]
.

Proposition 1.112 Let T > 0 and t ∈ [0, T ). Let A be the generator of a C0-
semigroup {er A, r ≥ 0} on H such that ‖er A‖ ≤ Meαr for every r ≥ 0 for some
α ∈ R, M > 0. Let p > 2 and � ∈ N p

Q(t, T ; H). Let An be the Yosida approxima-
tion of A. Then the stochastic convolution process

�(s) :=
∫ s

t
e(s−r)A�(r)dWQ(r), s ∈ [t, T ], (1.19)

has a continuous modification,

E

[
sup

s∈[t,T ]

∣∣∣∣
∫ s

t
e(s−r)A�(r)dWQ(r)

∣∣∣∣
p
]

≤ CE

[∫ T

t
‖�(r)‖p

L2(�0,H)dr

]
, (1.20)

where the constants c and C depend only on T − t , p, M, α, and

lim
n→∞ E

[
sup

s∈[t,T ]

∣∣∣∣
∫ s

t

(
e(s−r)An − e(s−r)A

)
�(r)dWQ(r)

∣∣∣∣
p
]

= 0. (1.21)
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If, moreover, A generates a C0-pseudo-contraction semigroup (i.e. M = 1 above,
see Appendix B.4) then the claims are also true for p = 2.

Proof See [294], Lemma3.3, p. 87. The claims for p=2 can be proved by repeating the
arguments of the proof of Proposition 3.3 of [543], which uses the Unitary Dilation
Theorem. �
Proposition 1.113 Let A be the generator of a C0-semigroup on H, T > 0, and
t ∈ [0, T ). Assume that� : [t, T ] × � → L2(�0, H) is a progressively measurable
process such that �(s) ∈ L2(�0, D(A)) P-a.s., for a.e. s ∈ [t, T ]. Assume that

P

(∫ T

t
‖�(s)‖2L2(�0,D(A))ds < +∞

)
= 1.

Then

P

(∫ T

t
�(s)dWQ(s) ∈ D(A)

)
= 1 (1.22)

and

A
∫ T

t
�(s)dWQ(s) =

∫ T

t
A�(s)dWQ(s), P − a.s. (1.23)

Proof We can assume without loss of generality that Q ∈ L+
1 (�). The proof

follows the proof of Proposition 3.1 (p. 76) of [294], however we present it
here to clarify a measurability issue. Indeed, we first need to show that � is an
L2(�0, D(A))-valued, progressively measurable process. To do this we take �n =
Jn�, where Jn = n(nI − A)−1 (see Definition B.40). Since Jn ∈ L(H, D(A)),
�n is an L2(�0, D(A))-valued, progressively measurable process. Moreover, it
is easy to see that if, for some s ∈ [t, T ] and ω ∈ �, �(s)(ω) ∈ L2(�0, D(A)),
then �n(s)(ω) → �(s)(ω) in L2(�0, D(A)). Therefore, defining V := {(s,ω) :
�n(s)(ω) converges in L2(�0, D(A))}, it follows from Lemma 1.8-(iii) that � is
equivalent to a progressively measurable process limn→+∞ 1V�n . The proof is now
done in two steps.
Step 1: The claim is true for F t

s -simple L(�, D(A))-valued processes.
Step 2: If � is a L2(�0, D(A))-valued progressively measurable process satisfying
the hypotheses of this proposition, we take a sequence of F t

s -simple L(�, D(A))-
valued processes �n approximating � in the sense of (1.18) so that

lim
n→+∞

∫ T

t
‖�(s) − �n(s)‖2L2(�0,D(A))ds = 0 P − a.s.

In particular we have

∫ T

t
�n(s)dWQ(s)

n→∞−−−→
∫ T

t
�(s)dWQ(s),
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A
∫ T

t
�n(s)dWQ(s) =

∫ T

t
A�n(s)dWQ(s)

n→∞−−−→
∫ T

t
A�(s)dWQ(s)

in probability, so the claim follows since A is a closed operator. �

In the rest of this section we explain how the factorization method is used to prove
continuity of trajectories of stochastic convolution processes.

Lemma 1.114 (Factorization Lemma) Let T > 0, t ∈ [0, T ), and 0 < α < 1. Let
A be the generator of a C0-semigroup {er A, r ≥ 0} on H. Consider a linear,
densely defined, closed operator A1 : D(A1)⊂H → H such that, for any r > 0,
er AH⊂D(A1), A1er A is bounded and A1er A = er A A1 on D(A1). Let � : [t, T ] ×
� → L2(�0, H) be progressively measurable and such that for every s ∈ [t, T ]

E

∫ s

t

∥∥A1e
(s−r)A�(r)

∥∥2

L2(�0,H)
dr < +∞.

Assume that, for all s ∈ [t, T ],
∫ s

t
(s − r)α−1

(∫ r

t
(r − h)−2α

E

[∥∥A1e
(r−h)A�(h)

∥∥2

L2(�0,H)

]
dh

)1/2

dr < +∞.

(1.24)
Then∫ s

t
A1e

(s−r)A�(r)dWQ(r) = sin(απ)

π

∫ s

t
(s − r)α−1e(s−r)AY�

α (r)dr P − a.s.

for all s ∈ [t, T ], where Y�
α (·) is aB([t, T ]) ⊗ F t

T /B(H)-measurable process which
is dt ⊗ P-equivalent to

∫ r

t
(r − h)−αA1e

(r−h)A�(h)dWQ(h).

Proof The statement is similar to [177], Theorem 5.2.5, p. 58, Sect. 5.2.1. We give
the proof for completeness.

We use the identity

∫ t

σ

(t − s)α−1(s − σ)−αds = π

sin(πα)
, for all σ ≤ s ≤ t, 0 < α < 1

(which can be proved by a simple direct computation). Define

X (r, h) = 1[t,r ](h)(r − h)−αA1e
(r−h)A�(h).

Since (1.24) implies
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∫ T

t

(
E

∫ T

t
‖X (r, h)‖2L2(�0,H) dh

)1/2

dr < +∞,

by the stochastic Fubini Theorem 1.109 (see also Theorem 4.33, p. 110 of [180]
or Theorem 2.8, p. 57 of [294]) there exists a B([t, T ]) ⊗ F t

T /B(H)-measurable
process Y�

α : [t, T ] × � → H such that

∫ T

t
X (r, h)dWQ(h) =

∫ r

t
(r − h)−αA1e

(r−h)A�(h)dWQ(h) = Y�
α (r), dt ⊗ P-a.e.

Then for every s ∈ [t, T ] the process Z�,s
α (·), defined for any r ∈ [t, s] by Z�,s

α (r) =
(s − r)α−1e(s−r)AY�

α (r), is jointly measurable and dt ⊗ P-equivalent to

(s − r)α−1e(s−r)A
∫ r

t
(r − h)−αA1e

(r−h)A�(h)dWQ(h)

on [t, s] × �. Thus fixing any s ∈ [t, T ] and applying the stochastic Fubini Theorem
on [t, s] × [t, s] × � (whose assumptions are satisfied by (1.24)) and noticing that
we can use the process Z�,s

α (·) in place of a process provided by the stochastic Fubini
Theorem (since it will give P-a.e. the same integrals) we obtain for P-a.e. ω

π

sin(πα)

∫ s

t
A1e

(s−h)A�(h)dWQ(h)

=
∫ s

t

∫ s

t
1[h,s](r)(s − r)α−1e(s−r)A(r − h)−αA1e

(r−h)A�(h)drdWQ(h)

=
∫ s

t
(s − r)α−1e(s−r)AY�

α (r)dr.

�

Lemma 1.115 Let A be the generator of aC0-semigroup {er A, r ≥ 0} on H, T > 0,
t ∈ [0, T ) and f ∈ L p(t, T ; H), p ≥ 1. Then:

(i) If either 1/p < α ≤ 1, or p = α = 1, then the function

Gα f (s) :=
∫ s

t
(s − r)α−1e(s−r)A f (r)dr

is in C([t, T ], H).
(ii) If the semigroup et A is analytic, λ ∈ R is such that (λI − A)−1 ∈ L(H), β > 0

and α > β + 1/p, then the function

Gα,β f (s) :=
∫ s

t
(s − r)α−1(λI − A)βe(s−r)A f (r)dr

is in C([t, T ], H).
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Proof Part (i): Let 1/p < α ≤ 1. Let t ≤ s1 ≤ s2 ≤ T and put h = s2 − s1. We have

∣∣∣∣
∫ s2

t
(s2 − r)α−1e(s2−r)A f (r)dr −

∫ s1

t
(s1 − r)α−1e(s1−r)A f (r)dr

∣∣∣∣
≤ I1 + I2 :=

∫ t+h

t

∣∣(s2 − r)α−1e(s2−r)A f (r)
∣∣ dr

+
∣∣∣∣
∫ s2

t+h
(s2 − r)α−1e(s2−r)A f (r)dr −

∫ s1

t
(s1 − r)α−1e(s1−r)A f (r)dr

∣∣∣∣ .
Set q := p

p−1 and let R > 0 be such that
∥∥esA∥∥ ≤ R for all s ∈ [0, T ]. Then

I1 ≤ R

(∫ h

0
(h − r)q(α−1)dr

)1/q (∫ T

t
| f (r)|pdr

)1/p

→ 0 as h → 0

since 0 ≥ q(α − 1) > −1. As regards I2, after a change of variables we have

I2 ≤
∫ s1

t
(s1 − r)α−1e(s1−r)A| f (r + h) − f (r)|dr

≤ R

(∫ T

t
(T − r)q(α−1)dr

)1/q (∫ T−h

t
| f (r + h) − f (r)|pdr

)1/p

→ 0 as h → 0.

The proof in the case p = α = 1 is straightforward.
Part (ii) follows from Proposition A.1.1 in Appendix A, p. 307 of [177]. �

Proposition 1.116 Let T > 0 and t ∈ [0, T ). Let A, A1, � satisfy the assump-
tions of Lemma 1.114 except (1.24). Assume that there exist 0 < α < 1, C > 0 and
p > 1

α
, p ≥ 2 such that

∫ T

t
E

(∫ r

t
‖(r − h)−αA1e

(r−h)A�(h)‖2L2(�0,H)dh

)p/2

dr < C. (1.25)

Then

�(s) :=
∫ s

t
A1e

(s−r)A�(r)dWQ(r), s ∈ [t, T ],

has a continuous modification.

Proof We follow the scheme of the proof of Theorem 5.2.6 in [177] (p. 59,
Sect. 5.2.1). We give some details because our claim is slightly more general.
Observe that using Hölder’s and Jensen’s inequalities we obtain
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∫ s

t
(s − r)α−1

(∫ r

t
(r − h)−2α

E

[∥∥∥A1e
(r−h)A�(h)

∥∥∥2
L2(�0,H)

]
dh

)1/2

dr

≤
(∫ s

t
(s − r)

(α−1)p
p−1

) p−1
p

(∫ s

t
E

(∫ r

t
(r − h)−2α

∥∥∥A1e
(r−h)A�(h)

∥∥∥2
L2(�0,H)

dh

)p/2
) 1

p

< +∞,

where we used (1.25) and that (1−α)p
p−1 < 1, which follows from p > 1/α. Therefore

the hypotheses of Lemma 1.114 are satisfied and thus we have

∫ s

t
A1e

(s−r)A�(r)dWQ(r) = sin(απ)

π

∫ s

t
(s − r)α−1e(s−r)AY�

α (r)dr P − a.s.

for all s ∈ [t, T ], where Y�
α (·) is defined in Lemma 1.114. The claimwill follow from

Lemma 1.115-(i) applied to a.e. trajectory. Thus we need to know that the process
Y�

α (·) has p-integrable trajectories a.s. This is guaranteed if

E

∫ T

t

∣∣Y�
α (s)

∣∣p ds < +∞.

However, from Theorem 1.111, we have

∫ T

t
E

([∣∣Y�
α (s)

∣∣p]) ds ≤ cp

∫ T

t
E

(∫ s

t
‖(s − r)−αA1e

(s−r)A�(r)‖2L2(�0,H)dr

)p/2

ds,

(1.26)
which is bounded thanks to (1.25). �

The factorization method can also be used to show the continuity of determin-
istic convolution integrals. The following lemma deals with a case which arises in
Sects. 1.5.2 and 1.5.3.

Lemma 1.117 Let T > 0, t ∈ [0, T ), and 0 < α < 1. Let A be the generator of a
C0-semigroup {er A, r ≥ 0} on H. Let φ be a function defined on [t, T ] such that,
for every s ∈ (0, T − t], es Aφ : [t, T ] → H is well defined, measurable and

|esAφ(r)| ≤ s−βg(r) for r ∈ [t, T ], (1.27)

where 0 ≤ β < 1, g ∈ Lq(t, T ; H), q > 1
1−β

. Then the function

ψ(s) =
∫ s

t
e(s−r)Aφ(r)dr

belongs to C([t, T ], H).

Proof Let 0 < α be such that α + β < 1 and q > 1
1−(α+β)

. We have, by the Fubini
Theorem 1.33,
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∫ s

t
e(s−r)Aφ(r)dr = sin(πα)

π

∫ s

t
(s − r)α−1e(s−r)AY (r)dr,

where

Y (r) =
∫ r

t
(r − h)−αe(r−h)Aφ(h)dh.

It remains to notice that, using (1.27) and Hölder’s inequality, we have for t ≤ r ≤ T

|Y (r)| ≤
∫ r

t
(r − h)−(α+β)g(h)dh ≤ CT |g|Lq (t,T ;H).

Thus the result follows from Lemma 1.115-(i). �

1.4 Stochastic Differential Equations

In this section we consider T > 0 and take H , �, Q, and a generalized reference
probability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) as in Sect. 1.3 (with t = 0). A is
the infinitesimal generator of a C0-semigroup on H , and � is a Polish space. We
will look at stochastic differential equations (SDEs) on the interval [0, T ], however
all results would be the same if, instead of [0, T ], we took an interval [t, T ], for
0 ≤ t < T .

1.4.1 Mild and Strong Solutions

Let b : [0, T ] × H × � → H and σ : [0, T ] × H × � → L2(�0, H). We consider
the following general stochastic differential equation (SDE)

{
dX (s) = (AX (s) + b(s, X (s)))ds + σ(s, X (s))dWQ(s) s ∈ (0, T ]
X (0) = ξ,

(1.28)

where ξ is an H -valuedF0-measurable random variable. To simplify the notation we
dropped the ω variable in (1.28) and we use this convention throughout the section.

Definition 1.118 (Strong solution of (1.28)) An H -valued progressivelymeasurable
process X (·) is called a strong solution of (1.28) if:

(i) For dt ⊗ P-a.e. (s,ω) ∈ [0, T ] × �, X (s)(ω) ∈ D(A).

(ii) P

(∫ T

0
(|X (s)| + |AX (s)| + |b(s, X (s))|) ds < +∞

)
= 1 and

P

(∫ T

0
‖σ(s, X (s))‖2L2(�0,H)ds < +∞

)
= 1.
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(iii) For every t ∈ [0, T ]

X (t) = ξ +
∫ t

0
AX (s) + b(s, X (s))ds +

∫ t

0
σ(s, X (s))dWQ(s) P-a.e.

Definition 1.119 (Mild solution of (1.28)) An H -valued progressively measurable
process X (·) is called a mild solution of (1.28) if:

(i) For every t ∈ [0, T ]

P

(∫ t

0

(|X (s)| + |e(t−s)Ab(s, X (s))|) ds < +∞
)

= 1

and

P

(∫ t

0
‖e(t−s)Aσ(s, X (s))‖2L2(�0,H)ds < +∞

)
= 1.

(ii) For every t ∈ [0, T ]

X (t) = et Aξ +
∫ t

0
e(t−s)Ab(s, X (s))ds +

∫ t

0
e(t−s)Aσ(s, X (s))dWQ(s) P-a.e.

In order for the above definitions to be meaningful, all the processes involved
must be well defined and have proper measurability properties so that the integrals
that appear in the definitions make sense.We do not want to analyze here the required
measurability properties in the most generality. Instead, we discuss one case which
will frequently appear in applications to optimal control in Remark 1.123 below.
Moreover, note that if An is the Yosida approximation of A, since by Lemma 1.17-
(i) D(A) ∈ B(H), it follows that the processes 1X (·)∈D(A)AnX (·) are progressively
measurable and they converge as n → +∞ to 1X (·)∈D(A)AX (·) for every (s,ω). Thus
the process AX (·) (understood as 1X (·)∈D(A)AX (·)) is progressively measurable.

Remark 1.120 In the definition of a mild solution we assumed that b : [0, T ] × H ×
� → H and σ : [0, T ] × H × � → L2(�0, H). However, Definition 1.119 may
still make sense even if b and σ do not have values in H and L2(�0, H), provided
that the terms e(t−s)Ab(s, X (s)) and e(t−s)Aσ(s, X (s)) have values in these spaces
when they are interpreted properly (see, for instance, Sect. 1.5.1 and also Remark
1.123). Therefore in the future when we are dealing with such cases, we will not
repeat the definition of a mild solution, instead we will just explain how to interpret
the above terms. �

Definition 1.121 (Weak mild solution of (1.28)) Assume that in (1.28) we have
b : [0, T ] × H → H and σ : [0, T ] × H → L2(�0, H). A weak mild solution of
(1.28) is defined to be any 6-tuple (�,F ,Fs,WQ, P, X (·)), where (�,F ,Fs, P)

is a filtered probability space, WQ is a translated Fs-Q-Wiener process on �, and
X (·) is a mild solution for (1.28) in the generalized reference probability space
(�,F ,Fs,WQ, P).
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Notation 1.122 In the existing literature, different authors often give different names
to the same notion of solution, and the same name does not always correspond to
the same definition. For instance, the weak mild solution introduced above is often
called a weak solution and in [180] Chap.8 it is called a martingale solution. �

Remark 1.123 Let � be a Polish space. Suppose that σ : [0, T ] × H × � →
L(�0, H) is such that for every u ∈ �0, the map (t, x, a) → σ(t, x, a)u is
B([0, T ]) ⊗ B(H) ⊗ B(�)/B(H)-measurable, and esAσ(t, x, a) ∈ L2(�0, H) for
every (t, x, a) and s > 0. It then follows fromLemma1.20 that, after possibly redefin-
ing it at s = 0, the map (s, t, x, a) → esAσ(t, x, a) is B([0, T ]) ⊗ B([0, T ]) ⊗
B(H) ⊗ B(�)/B(L2(�0, H))-measurable. Now, if X (·) : [0, T ] × � → H, a(·) :
[0, T ] × � → � areFs-progressively measurable, then for every t ∈ [0, T ],

(s,ω) → e(t−s)Aσ(s, X (s), a(s))

is an L2(�0, H)-valued Fs-progressively measurable process on [0, t] × �. If this
process is in N 2

Q(0, t; H) for every t then the process

Z(t) =
∫ t

0
e(t−s)Aσ(s, X (s), a(s))dWQ(s), t ∈ [0, T ]

is an H -valuedFt -adapted process. One way to argue that Z(·) has a progressively
measurable modification is the following.

Suppose that there is a constant K ≥ 0 such that

E|Z(t)| ≤ K for all t ∈ [0, T ]

and that for all 0 ≤ t ≤ h ≤ T

E

∫ h

t

∥∥e(h−s)Aσ(s, X (s), a(s))
∥∥2

L2(�0,H)
ds ≤ ρ(h − t)

for some modulus ρ. We have for 0 ≤ t ≤ h ≤ T

Z(h) − Z(t) = (
e(h−t)A − I

)
Z(t) +

∫ h

t
e(h−s)Aσ(s, X (s), a(s))dWQ(s).

Let {en} be an orthonormal basis of H . Then

〈Z(h) − Z(t), en〉 =
〈
Z(t), e(h−t)Aen − en

〉
+

〈∫ h

t
e(h−s)Aσ(s, X (s), a(s))dWQ(s), en

〉

and hence

E |〈Z(h) − Z(t), en〉| ≤ K |e(h−t)A∗
en − en| + √

ρ(h − t) ≤ ρn(h − t)
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for some modulus ρn . Therefore it is easy to see that the process 〈Z(t), en〉 is sto-
chastically continuous and thus, by Lemma 1.74, it has a progressively measurable
modification which we denote by Zn(·). The process Z̃(·) defined, for t ∈ [0, T ], by

Z̃(t) =
{∑+∞

n=1Zn(t)en if the limit exists,

0 otherwise

is a progressively measurable modification of Z(·). �

1.4.2 Existence and Uniqueness of Solutions

Definition 1.124 (The space M p
μ (t, T ; E)) In this definition T ∈ (0,+∞) ∪ {+∞}.

Let p ≥ 1 and 0 ≤ t < T . Given a Banach space E , we denote by Mp
μ (t, T ; E) the

space of all E-valued progressively measurable processes X (·) such that

|X (·)|Mp
μ (t,T ;E) :=

(
E

(∫ T

t
|X (s)|pds

))1/p

< +∞. (1.29)

Mp
μ (t, T ; E) is a Banach space endowed with the norm | · |Mp

μ (t,T ;E).

Note that in the notationMp
μ (t, T ; E)we emphasize the dependence on the gener-

alized reference probability space μ. Processes in Mp
μ (t, T ; E) are identified if they

are equal P ⊗ dt-a.e.
Let a : [0, T ] × � → � be an Fs-progressively measurable process (a control

process), where � is, as before, a Polish space. We consider the controlled SDE

{
dX (s) = (AX (s) + b(s, X (s), a(s))) ds + σ(s, X (s), a(s))dWQ(s)
X (0) = ξ.

(1.30)

This equation falls into the category of equations (1.28) with b(s, x,ω) := b(s, x, a
(s,ω)) andσ(s, x,ω) := σ(s, x, a(s,ω)). Thus strong,mild andweakmild solutions
of (1.30) are defined using the definitions for Eq. (1.28).

Hypothesis 1.125 The operator A is the generator of a strongly continuous semi-
group esA on H . The function b : [0, T ] × H × � → H is B([0, T ]) ⊗ B(H) ⊗
B(�)/B(H)-measurable, σ : [0, T ] × H × � → L2(�0, H) is B([0, T ]) ⊗ B(H)

⊗ B(�)/B(L2(�0, H))-measurable, and there exists a constant C > 0 such that
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|b(s, x, a) − b(s, y, a)| ≤ C |x − y| ∀x, y ∈ H, s ∈ [0, T ], a ∈ �,

(1.31)

‖σ(s, x, a) − σ(s, y, a)‖L2(�0,H) ≤ C |x − y| ∀x, y ∈ H, s ∈ [0, T ], a ∈ �,

(1.32)

|b(s, x, a)| ≤ C(1 + |x |) ∀x ∈ H, s ∈ [0, T ], a ∈ �,

(1.33)

‖σ(s, x, a)‖L2(�0,H) ≤ C(1 + |x |) ∀x ∈ H, s ∈ [0, T ], a ∈ �.

(1.34)

Definition 1.126 (The space Hμ
p(t, T ; E)) Let p ≥ 1 and 0 ≤ t < T . Given a

Banach space E , we denote by Hμ
p(t, T ; E) the set of all progressively measur-

able processes X : [t, T ] × � → E such that

|X (·)|Hμ
p(t,T ;E) :=

(
sup

s∈[t,T ]
E|X (s)|p

)1/p

< +∞. (1.35)

It is a Banach space with the norm | · |Hμ
p(t,T ;E).

Processes in Hμ
p(t, T ; E) are identified if they are equal P ⊗ dt-a.e. Therefore

the sup in the definition of Hμ
p(t, T ; E) must be understood as esssup. However,

we will keep the notation sup here and in all subsequent uses of this space. If the
generalized reference probability space μ is clear we will just write Mp(t, T ; E) and
Hp(t, T ; E) for simplicity.

Mild solutions inHμ
p(0, T ; E) (orMp

μ (0, T ; E)) of various versions of (1.30) will
be obtained as fixed points in these spaces of some maps. We point out that this will
not imply that every representative of the equivalence class is a mild solution. Since
a mild solution X (·) satisfies the integral equality in Definition 1.119-(ii) for every
t ∈ [0, T ], X (t) is prescribed by the right-hand side of this equality, which does not
depend on the choice of a representative of the equivalence class. Thus there is a
unique (up to a modification) representative of the equivalence class which is a mild
solution. We will then always be able to evaluate E|X (t)|p for the mild solution X (·)
for every t ∈ [0, T ] (and in fact compute theHμ

p(0, T ; E) norm of this representative
by taking the sup over all t ∈ [0, T ] instead of the esssup).

Theorem 1.127 Let ξ ∈ L p(�,F0, P) for some p ≥ 2, and let A, b and σ sat-
isfy Hypothesis 1.125. Let a(·) : [0, T ] → � be an Fs -progressively measurable
process. Then the SDE (1.30) has a unique, up to a modification, mild solution
X (·) ∈ Hp(0, T ; H). The solution is in fact unique among all processes such that

P

(∫ T
0 |X (s)|2ds < +∞

)
= 1, in particular among the processes in M2

μ(0, T ; H).

X (·) has a continuous modification. Given two continuous versions X1(·), X2(·) of
the solution, there exists a �̃ ⊂ �withP(�̃) = 1 s.t. X1(s) = X2(s) for all s ∈ [0, T ]
and ω ∈ �̃, i.e. they are indistinguishable.



50 1 Preliminaries on Stochastic Calculus in Infinite Dimension

Proof The proof can be found, for instance, in [180], Theorem 7.2, p. 188 or [294],
Theorems 3.3, p. 97, and 3.5, p. 105. For the last claim, we can take

�̃ :=
⋂

s∈Q∩[0,T ]
{ω ∈ � : X1(s)(ω) = X2(s)(ω)} .

Since X1(·) is a modification of X2(·), we have P(�̃) = 1, and since X1(·) and X2(·)
are continuous, it follows that X1(s)(ω) = X2(s)(ω) for all s ∈ [0, T ], ω ∈ �̃. �

We will denote the solution of (1.30) by X (·; ξ, a(·)) if we want to emphasize the
dependence on the initial datum and the control.

Corollary 1.128 Let ξ ∈ L p(�,F0, P) for some p ≥ 2, let A, b and σ satisfy
Hypothesis 1.125. If a1(·), a2(·) : [0, T ] × � → � are two progressively measur-
able processes such that a1(·) = a2(·), dt ⊗ P-a.e. on [0, T ] × �, then, P − a.e.,

X (s; ξ, a1(·)) = X (s; ξ, a2(·)) for all s ∈ [0, T ].

Proof Define Xi (·) := X (·; ξ, ai (·)). Using Theorem 1.103, Jensen’s inequality, and
sups∈[0,T ] ‖esA‖ ≤ C for someC ≥ 0, it follows that, for suitable positiveC1 andC2:

E
[|X1(s) − X2(s)|2

] ≤ C1

(∫ s

0
E|b(r, X1(r), a1(r)) − b(r, X2(r), a2(r))|2dr

+
∫ s

0
E‖σ(r, X1(r), a1(r)) − σ(r, X2(r), a2(r))‖2L2(�0,H)dr

)

≤ C2

∫ s

0
E|X1(r) − X2(r)|2dr, s ∈ [0, T ],

and the claim follows by using Gronwall’s lemma and the continuity of the trajecto-
ries. �

Remark 1.129 Above we assumed that the σ always takes values in L2(�0, H).
Existence and uniqueness results for SDEs with more general σ can be found, for
instance, in [294] Theorem 3.15, p. 143, or in [180] Theorem 7.5, p. 197. To treat
some specific examples we will also prove more general results in Sect. 1.5. �

1.4.3 Properties of Solutions

Theorem 1.130 Let ξ ∈ L p(�,F0, P) for some p ≥ 2, a : [0, T ] × � → � beFs -
progressively measurable, and let A, b and σ satisfy Hypothesis 1.125.

(i) Let X (·) = X (·; ξ, a(·)) be the unique mild solution of (1.30) (provided by
Theorem 1.127). Then, for any s ∈ [0, T ],
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sup
s∈[0,T ]

E
[|X (s)|p] ≤ Cp(T )(1 + E|ξ|p) if p ≥ 2, (1.36)

E

[
sup

s∈[0,T ]
|X (s)|p

]
≤ Cp(T )(1 + E|ξ|p) if p > 2, (1.37)

and

E

[
sup

r∈[0,s]
|X (r) − ξ|p

]
≤ ωξ(s) if p > 2, (1.38)

where Cp(T ) is a constant depending on p, T , C (from Hypothesis 1.125) and
M,α (where ‖er A‖ ≤ Merα for r ≥ 0), and ωξ is a modulus depending on the
same constants and on ξ (in particular they are independent of the process a(·)
and of the generalized reference probability space).

(ii) If ξ, η ∈ L p(�,F0, P) for p > 2, and X (·) = X (·; ξ, a(·)),Y (·) = Y (·; η, a(·))
are the solutions of (1.30), then, for all s ∈ [0, T ],

E

[
sup

s∈[0,T ]
|X (s) − Y (s)|2

]
≤ CT

(
E

[|ξ − η|p]) 2
p , (1.39)

where CT depends only on p, T , C, M, α.

Proof Part (i): For (1.36) and (1.37) we refer, for instance, to [180] Theorem 9.1,
p. 235, or [294], Lemma 3.6, p. 102, and Corollary 3.3, p. 104. Regarding (1.38), we
have that there is a constant c1 depending only on p and supt∈[0,T ] ‖et A‖, such that

E

[
sup

r∈[0,s]
|X (r) − ξ|p

]
≤ c

(
E

[
sup

r∈[0,s]

∣∣er Aξ − ξ
∣∣p]

+ E

[
sup

r∈[0,s]

(∫ r

0
|b(u, X (u), a(u))|du

)p]

+ E

[
sup

r∈[0,s]

∣∣∣∣
∫ r

0
e(r−u)Aσ(u, X (u), a(u))dWQ(u)

∣∣∣∣
p])

.

Using Hypothesis 1.125, (1.37), Hölder’s inequality, and Proposition 1.112, we see
that

E

[
sup

r∈[0,s]
|X (r) − ξ|p

]
≤ c2

(
E

[
sup

r∈[0,s]

∣∣er Aξ − ξ
∣∣p] +

∫ s

0

(
1 + E|ξ|p) dr).

Since supr∈[0,s]
∣∣er Aξ − ξ

∣∣p s→0+−−−→ 0 a.e., and supr∈[0,s]
∣∣er Aξ − ξ

∣∣p ≤ C1|ξ|p, the
result follows by the Lebesgue dominated convergence theorem.

Part (ii): See [180] Theorem 9.1, p. 235. �
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Theorem 1.131 Let ξ ∈ L p(�,F0, P) for some p > 2, and let A, b and σ satisfy
Hypothesis 1.125. Let a : [0, T ] × � → � be a progressively measurable process.
Let X (·) be the unique mild solution of (1.30). Consider the approximating equations

{
dXn(s) = (AnXn(s) + b(s, Xn(s), a(s))) ds + σ(s, Xn(s), a(s))dWQ(s)
Xn(0) = ξ,

(1.40)
where An is the Yosida approximation of A. Let Xn(·) be the solution of (1.40). Then

lim
n→∞ E

[
sup

s∈[0,T ]
|Xn(s) − X (s)|p

]
= 0. (1.41)

Proof See [180] Proposition 7.4, p. 196, or [294], Proposition 3.2, p. 101. �

The next proposition is a simpler version of Theorem 1.131 which will be useful
in the proofs of the results of Sect. 1.7.

Proposition 1.132 Let ξ ∈ L p(�,F0, P), f ∈ Mp
μ (0, T ; H), and� ∈ N p

Q(0, T ; H)

for some p ≥ 2. Let X (·) be the mild solution of

{
dX (s) = (AX (s) + f (s)) ds + �(s)dWQ(s)
X (0) = ξ

(1.42)

and Xn(·) be the solution of
{
dXn(s) = (AnXn(s) + f (s)) ds + �(s)dWQ(s)
Xn(0) = ξ,

(1.43)

where A generates a C0-semigroup and An is the Yosida approximation of A. Then,
if p > 2,

lim
n→∞ E

[
sup

s∈[0,T ]
|Xn(s) − X (s)|p

]
= 0. (1.44)

Moreover, for p ≥ 2, there exists an M > 0, independent of n, such that

sup
s∈[0,T ]

E
[|Xn(s)|p] ≤ M, sup

s∈[0,T ]
E

[|X (s)|p] ≤ M. (1.45)

Proof Observe first that the mild solution of (1.42) is well defined thanks to the
assumptions on ξ, f and �, and

X (s) = esAξ +
∫ s

0
e(s−r)A f (r)dr +

∫ s

0
e(s−r)A�(r)dWQ(r), s ∈ [0, T ].

The same is true for the mild solution of (1.43) (which is also a strong solution).
To prove (1.44), we write, for s ∈ [0, T ],
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Xn(s) − X (s) = (
esAn − esA

)
ξ +

∫ s

0

(
e(s−r)An − e(s−r)A

)
f (r)dr

+
∫ s

0

(
e(s−r)An − e(s−r)A

)
�(r)dWQ(r) =: I n1 (s) + I n2 (s) + I n3 (s).

It is enough to show that limn→∞ E
[
sups∈[0,T ] |I ni (s)|p] = 0 for i ∈ {1, 2, 3}. For

i = 3 this follows from (1.21). To prove it for i = 2, we observe that (B.15) implies
that if

ψn(r) := sup
s∈[r,T ]

∣∣(e(s−r)An − e(s−r)A
)
f (r)

∣∣ ,
then ψn(r)

n→∞−−−→ 0 a.e. on �. Moreover, thanks to (B.14), there exists a C1 such
that, for all t ∈ [0, T ] and all n, ∥∥et An

∥∥ ≤ C1, so ψn(r) ≤ 2C1| f (r)| for all n. Since∫ T
t | f (r)|dr < +∞ for almost every ω ∈ �, by the Lebesgue dominated conver-
gence theorem we have

sup
s∈[0,T ]

∣∣∣∣
∫ s

0

∣∣(e(s−r)An − e(s−r)A
)
f (r)

∣∣ dr ∣∣∣∣
p

≤ sup
s∈[0,T ]

∣∣∣∣
∫ s

0
ψn(r)dr

∣∣∣∣
p

≤
∣∣∣∣
∫ T

0
ψn(r)dr

∣∣∣∣
p

n→∞−−−→ 0

for a.e. ω ∈ �. Now observe that

sup
s∈[0,T ]

∣∣∣∣
∫ s

0

∣∣(e(s−r)An − e(s−r)A
)
f (r)

∣∣ dr ∣∣∣∣
p

≤ sup
s∈[0,T ]

∫ s

0
(2C1)

p | f (r)|p dr ≤
∫ T

0
(2C1)

p | f (r)|p dr,

and the last expression is integrable (on �), since f ∈ Mp
μ (0, T ; H). Therefore

we can apply the Lebesgue dominated convergence theorem, obtaining limn→∞ E[
sups∈[0,T ] |I n2 (s)|p] = 0. The claim for i = 1 follows again from (B.15) and the
Lebesgue dominated convergence theorem.

Estimates (1.45) are easy consequences of (B.14) and the assumptions on
ξ, f,�. �

1.4.4 Uniqueness in Law

Definition 1.133 (Finite-dimensional distributions) Let T > 0 and t ∈ [0, T ). Con-
sider a measurable space (�,F ), two probability spaces (�i ,Fi , Pi ) for i = 1, 2,
and two processes {Xi (s)}s∈[t,T ] : (�i ,Fi , Pi ) → (�,F ). We say that X1(·) and
X2(·) have the same finite-dimensional distributions on D ⊂ [t, T ] if for any
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t ≤ t1 < t2 < ... < tn ≤ T, ti ∈ D and A ∈ F ⊗ F ⊗ ... ⊗ F︸ ︷︷ ︸
n times

, we have

P1 {ω1 : (X1(t1), ..X1(tn))(ω1) ∈ A} = P2 {ω2 : (X2(t1), ..X2(tn))(ω2) ∈ A} .

In this case we write LP1(X1(·)) = LP2(X2(·)) on D. Often we will just write
LP1(X1(·)) = LP2(X2(·)), which should be understood as meaning that the finite-
dimensional distributions are the same on some set of full measure.

Theorem 1.134 Let H be a separableHilbert space. Let (�i ,Fi , Pi ) for i = 1, 2 be
two complete probability spaces, and (�̃, F̃ ) be a measurable space. Let ξi : �i →
�̃, i = 1, 2 be two random variables, and fi : [t, T ] × �i → H, i = 1, 2, be two
processes satisfying

P1

(∫ T

t
| f1(s)|ds < +∞

)
= P2

(∫ T

t
| f2(s)|ds < +∞

)
= 1

and, for some subset D ⊂ [t, T ] of full measure,

LP1 ( f1(·), ξ1) = LP2 ( f2(·), ξ2) on D.

Then

LP1

(∫ ·

t
f1(s)ds, ξ1

)
= LP2

(∫ ·

t
f2(s)ds, ξ2

)
on [t, T ]. (1.46)

Proof See [471] Theorem 8.3, where the theorem was proved for a more general
case of Banach space-valued processes. �

Theorem 1.135 Let
(
�1,F1,F 1,t

s , P1,WQ,1
)
and

(
�2,F2,F 2,t

s , P2,WQ,2
)
be

two generalized reference probability spaces. Let �i : [t, T ] × �i → L2(�0, H),
i = 1, 2, be twoF i,t

s -progressively measurable processes satisfying

P1

(∫ T

t
‖�1(s)‖2L2(�0,H)ds < +∞

)
= P2

(∫ T

t
‖�2(s)‖2L2(�0,H)ds < +∞

)
= 1.

Let (�̃, F̃ ) be a measurable space and ξi : �i → �̃, i = 1, 2, be two random vari-
ables. Assume that, for some subset D ⊂ [t, T ] of full measure,

LP1

(
�1(·),WQ,1(·), ξ1

) = LP2

(
�2(·),WQ,2(·), ξ2

)
on D.

Then

LP1

(∫ ·

t
�1(s)dWQ,1(s), ξ1

)
= LP2

(∫ ·

t
�2(s)dWQ,2(s), ξ2

)
on [t, T ]. (1.47)

Proof See [471] Theorem 8.6. �
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Consider now an operator A and mappings b,σ satisfying Hypothesis 1.125,
and x ∈ H . Let

(
�1,F1,F 1,t

s , P1,WQ,1
)
and

(
�2,F2,F 2,t

s , P2,WQ,2
)
be as in

Theorem 1.135. For i = 1, 2 consider an F i,t
s -progressively measurable process

ai : [t, T ] × �i → �.
Let p > 2 and let ζi ∈ L p(�i ,F

i,t
t , Pi ), i = 1, 2. Denote by Hp,i the Banach

space of all F i,t
s -progressively measurable processes Zi : [t, T ] × �i → H such

that (
sup

s∈[t,T ]
Ei |Zi (s)|p

)1/p

< +∞.

Let Ki : Hp,i → Hp,i be the continuous map (see [180], p. 189) defined as

Ki (Zi (·))(s) := e(s−t)Aζi +
∫ s

t
e(s−r)Ab(r, Zi (r), ai (r))dr

+
∫ s

t
e(s−r)Aσ(r, Zi (r), ai (r))dWQ,i (r).

(1.48)

Lemma 1.136 Consider the setting described above, and let θi : [t, T ] × �i →
H, i = 1, 2, be stochastic processes. If

LP1(Z1(·), a1(·),WQ,1(·), θ1(·), ζ1) = LP2(Z2(·), a2(·),WQ,2(·), θ2(·), ζ2)

on some subset D ⊂ [t, T ] of full measure, then

LP1(K1(Z1(·))(·), a1(·),WQ,1(·), θ1(·), ζ1)
= LP2(K2(Z2(·))(·), a2(·),WQ,2(·), θ2(·), ζ2) on D.

Proof Observe that, since we only have to check the finite-dimensional distribu-
tions, the claims of Theorems 1.134 and 1.135 hold even if ξ1 and ξ2 are stochastic
processes, with (1.46) and (1.47) then being true on some set of full measure. Let us
choose a partition (t1, .., tn), with t ≤ t1 < t2 < ... < tn ≤ T, tk ∈ D, k = 1, ..., n.
We need to show that

LP1(K1(Z1(·))(tk), a1(tk),WQ,1(tk), θ1(tk), ζ1 : k = 1, ..., n)

= LP2(K2(Z2(·))(tk), a2(tk),WQ,1(tk), θ2(tk), ζ2 : k = 1, ..., n).

(1.49)

Define f i (r) := 1[t,t1](r)e(t1−r)Ab(r, Zi (r), ai (r)) and �i (r) := 1[t,t1](r)e(t1−r)A

σ(r, Zi (r), ai (r)), i = 1, 2. We have
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LP1
( f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1)

= LP2
( f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2) on D,

and thus, by Theorem 1.134 applied with

ξ1(·) = ( f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1),

ξ2(·) = ( f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2),

LP1

(∫ t1

t
f 1(s)ds, f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1

)

= LP2

(∫ t1

t
f 2(s)ds, f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2

)
on D.

Now, applying Theorem 1.135 with

ξ1(·) =
(∫ t1

t
f 1(s)ds, f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1

)
,

ξ2(·) =
(∫ t1

t
f 2(s)ds, f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2

)
,

we obtain

LP1

(∫ t1

t
f 1(s)ds,

∫ t1

t
�1(s)dWQ,1(s), f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1

)

= LP2

(∫ t1

t
f 2(s)ds,

∫ t1

t
�2(s)dWQ,2(s), f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2

)

on D (we recall that the stochastic convolution terms in (1.48) and the stochastic
integrals above have continuous trajectories a.e.). In particular, this implies that

LP1(K1(Z1(·))(t1), f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1)
= LP2(K2(Z2(·))(t1), f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2) on D.

We now repeat the above procedure for t2, ..., tn which will yield (1.49) as its con-
sequence. �
Proposition 1.137 Let the operator A and the mappings b,σ satisfy Hypothesis
1.125. Let

(
�1,F1,F 1,t

s , P1,WQ,1
)
and

(
�2,F2,F 2,t

s , P2,WQ,2
)
be two gener-

alized reference probability spaces. Let ai : [t, T ] × �i → �, i = 1, 2 be an F i,t
s -

progressively measurable process, and let ζi ∈ L p(�i ,F
i,t
t , Pi ), i = 1, 2, p > 2.

Let LP1(a1(·),WQ,1(·), ζ1) = LP2(a2(·),WQ,1(·), ζ2) on some subset D ⊂ [0, T ] of
full measure. Denote by Xi (·), i = 1, 2, the unique mild solution of
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{
dXi (s) = (AXi (s) + b(s, Xi (s), ai (s))) ds + σ(s, Xi (s), ai (s))dWQ,i (s)
Xi (t) = ζi

(1.50)
on [t, T ]. Then LP1(X1(·), a1(·)) = LP2(X2(·), a2(·)) on D.

Proof It is known (see [180], proof of Theorem 7.2, pp. 188–193) that the mapKi is
a contraction inHp,i if [t, T ] is small enough. Thus if we divide [t, T ] into such small
intervals [t, T1], ...[Tk, T ], Xi (·) on [t, T1] is obtained as the limit inHp,i (restricted
to [t, T1]) of the iterates (Kn

i (x))(·). Therefore, using Lemma 1.136 and passing to
the limit as n → +∞ we obtain

LP1(1[t,T1](·)X1(·), a1(·),WQ,1(·)) = LP2(1[t,T1](·)X2(·), a2(·),WQ,1(·)) on D.

Without loss of generality we may assume that T1 ∈ D. The solutions on [T1, T2] are
obtained as the limits in Hp,i (restricted to [T1, T2]) of the iterates (Kn

i (Xi (T1)))(·),
where now

Ki (Zi (·))(s) := e(s−T1)AXi (T1) +
∫ s

T1

e(s−r)Ab(r, Zi (r), ai (r))dr

+
∫ s

T1

e(s−r)Aσ(r, Zi (r), ai (r))dWQ,i (r).

Thus, again using Lemma 1.136 and passing to the limit as n → +∞, it follows that

LP1(1[t,T2](·)X1(·), a1(·),WQ,1(·)) = LP2(1[t,T2](·)X2(·), a2(·),WQ,1(·)) on D.

We repeat the procedure to obtain the required claim. �

1.5 Further Existence and Uniqueness Results in Special
Cases

Throughout this section T > 0 is a fixed constant, H, �, Q, and the generalized
reference probability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) are as in Sect. 1.3 (with
t = 0), A is the infinitesimal generator of a C0-semigroup on H , and � is a Polish
space. As in previous sections we will only consider equations on the interval [0, T ],
however all results would be the same if instead of [0, T ] we took an interval [t, T ],
for 0 ≤ t < T .
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1.5.1 SDEs Coming from Boundary Control Problems

In this section we study SDEs that include equations coming from optimal control
problems with boundary control and noise. To see how they arise the reader can look
at the examples in Sects. 2.6.2 and 2.6.3, and Appendix C.We consider the following
SDE in H :⎧⎪⎨

⎪⎩
dX (s) = (

AX (s) + b(s, X (s), a(s)) + (λI − A)βGab(s)
)
ds

+σ(s, X (s), a(s))dWQ(s), s ∈ (0, T ]
X (0) = ξ.

(1.51)

Hypothesis 1.138

(i) A generates an analytic semigroup et A for t ≥ 0 and λ is a real constant such
that (λI − A)−1 ∈ L(H).

(ii) a : [0, T ] × � → � is progressively measurable, b(·, ·, ·) satisfies (1.31) and
(1.33).

(iii) �b is a Hilbert space and ab(·) : [0, T ] × � → �b is progressively measurable.
(iv) G ∈ L(�b, H).
(v) β ∈ [0, 1).
(vi) γ is a constant belonging to the interval

[
0, 1

2

)
, σ is a mapping such that (λI −

A)−γσ : [0, T ] × H × �b → L2(�0, H) is continuous. There exists a constant
C > 0 such that

‖(λI − A)−γσ(s, x, a)‖L2(�0,H) ≤ C(1 + |x |)

for all s ∈ [0, T ], x ∈ H, a ∈ � and

‖(λI − A)−γ[σ(s, x1, a) − σ(s, x2, a)]‖L2(�0,H) ≤ C |x1 − x2|

for all s ∈ [0, T ], x1, x2 ∈ H, a ∈ �.

Remark 1.139 Part (i) of Hypothesis 1.138 implies, thanks to (B.18), that for every
θ ≥ 0 there exists an Mθ > 0 such that

|(λI − A)θet Ax | ≤ Mθ

tθ
|x |, for every t ∈ (0, T ], x ∈ H. (1.52)

�

Following Remark 1.120, the definition of a mild solution of (1.51) is given by
Definition 1.119 in which the term∫ s

0
e(s−r)A(λI − A)βGab(r)dr
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is interpreted as ∫ s

0
(λI − A)βe(s−r)AGab(r)dr,

and the term ∫ s

0
e(s−r)Aσ(r, X (r), a(r))dWQ(r)

as ∫ s

0
(λI − A)γe(s−r)A(λI − A)−γσ(r, X (r), a(r))dWQ(r).

This is natural since (λI − A)βe(s−r)A is an extension of e(s−r)A(λI − A)β and
(λI − A)γe(s−r)A(λI − A)−γ = e(s−r)A.

Remark 1.140 SDEs of type (1.51) appear most frequently in optimal control prob-
lems of parabolic equations on a domain O ⊂ R

n with boundary control/noise, see
Sect. 2.6.2. More precisely, the cases β ∈ (

3
4 , 1

)
and β ∈ (

1
4 ,

1
2

)
are related respec-

tively to the Dirichlet and Neumann boundary control problems when one takes
�b = L2(∂O) (or some subset of it) and H = L2(O). γ ∈ (

1
4 ,

1
2

)
arises when one

treats problems with boundary noise of Neumann type where again �b = L2(∂O)

and H = L2(O). γ,β ∈ (
1
2 − ε, 1

2

)
arise in some specific Dirichlet boundary con-

trol/noise problems when one considers �b = L2(∂O) and a suitable weighted L2

space as H . �

Theorem 1.141 Assume that Hypothesis 1.138 holds, p ≥ 2, and let α := 1
2 − γ.

Suppose that

p >
1

α
(1.53)

and ab(·) ∈ Mq
μ(0, T ;�b) for someq ≥ p, q > 1

1−β
. Then, for every initial condition

ξ ∈ L2(�,F0, P), there exists a unique mild solution X (·) = X (·; 0, ξ, a(·), ab(·))
of (1.51) inH2(0, T ; H) with continuous trajectories P-a.s. If there exists a constant
C > 0 such that

‖(λI − A)−γσ(s, x, a)‖L2(�0,H) ≤ C (1.54)

for all s ∈ [0, T ], x ∈ H, a ∈ �, then the solution has continuous trajectories P-a.s.
without the restriction p > 1

α
. If ξ ∈ L p(�,F0, P) then X (·) ∈ Hp(0, T ; H) and

there exists a constant CT,p independent of ξ such that

sup
s∈[0,T ]

E|X (s)|p ≤ CT,p(1 + E|ξ|p). (1.55)

Proof Assume first that ξ ∈ L p(�,F0, P) where p ≥ 2 without the restriction
(1.53). Similarly to the proof of Theorem 1.127, we will show that for some
T0 ∈ (0, T ] the map
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K : Hp(0, T0) → Hp(0, T0),

K(Y )(s) = esAξ +
∫ s

0
e(s−r)Ab(r, Y (r), a(r))dr +

∫ s

0
(λI − A)βe(s−r)AGab(r)dr

+
∫ s

0
(λI − A)γe(s−r)A(λI − A)−γσ(r, Y (r), a(r))dWQ(r)

(1.56)
is well defined and is a contraction. The only difference between our case here and
that considered in Theorem 1.127 is the last two terms in (1.56).

First we prove that K maps Hp(0, T0) into Hp(0, T0). We only show how to
deal with the non-standard terms. For the third term in (1.56) we can argue as fol-
lows. If Mβ is the constant from (1.52) for θ = β, using (1.52), Hölder and Jensen’s
inequalities, and q ≥ p, q > 1

1−β
, we obtain

sup
s∈[0,T0]

E

∣∣∣∣
∫ s

0
(λI − A)βe(s−r)AGab(r)dr

∣∣∣∣
p

≤ sup
s∈[0,T0]

Mp
β ‖G‖p

E

(∫ s

0

1

(s − r)β
|ab(r)|dr

)p

≤ Mp
β ‖G‖p

(∫ T0

0

1

(T0 − r)
βq
q−1

dr

) p(q−1)
q

E

[∫ T0

0
|ab(r)|qdr

] p
q

≤ C1

(
E

[∫ T0

0
|ab(r)|qdr

]) p
q

< +∞.

(1.57)

As regards the stochastic integral term, using Theorem 1.111, (1.52), and Hypothesis
1.138-(vi), we estimate

sup
s∈[0,T0]

E

∣∣∣∣
∫ s

0
(λI − A)γe(s−r)A(λI − A)−γσ(r,Y (r), a(r))dWQ(r)

∣∣∣∣
p

≤ sup
s∈[0,T0]

C1E

∣∣∣∣
∫ s

0

1

(s − r)2γ
‖(λI − A)−γσ(r,Y (r), a(r))‖2L2(�0,H)dr

∣∣∣∣
p
2

≤ sup
s∈[0,T0]

C2

(∫ T0

0

1

(T0 − r)2γ
dr

) p
2 −1 ∫ s

0

1

(s − r)2γ
E[(1 + |Y (r)|)p]dr

≤ C3

(
1 + |Y |pHp(0,T0)

)
(1.58)

for some constant C3. Progressive measurability of all the terms appearing in the
definition of K(Y )(·) can be proved by using estimates similar to (1.57) and (1.58)
and arguing as in Remark 1.123.

Regarding the proof that, for T0 small enough, K is a contraction, the only non-
standard term to check is the stochastic convolution term, since the third term in
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(1.56) does not depend on X . Arguing as before we have that for X,Y ∈ Hp(0, T0),
thanks to Theorem 1.111, (1.52), Hypothesis 1.138-(vi), and Jensen’s inequality,

sup
s∈[0,T0]

E

∣∣∣∣
∫ s

0
(λI − A)γe(s−r)A(λI − A)−γ [σ(r, X (r), a(r)) − σ(r, Y (r), a(r))] dWQ(r)

∣∣∣∣
p

≤ sup
s∈[0,T0]

C1E

(∫ s

0

1

(s − r)2γ
∥∥(λI − A)−γ [σ(r, X (r), a(r)) − σ(r, Y (r), a(r))]

∥∥2
L2(�0,H)

dr

) p
2

≤ sup
s∈[0,T0]

C2E

(∫ s

0

1

(s − r)2γ
|X (r) − Y (r)|2dr

) p
2

≤ sup
s∈[0,T0]

C2

(∫ T0

0

1

(T0 − r)2γ
dr

) p
2 −1 ∫ s

0

1

(s − r)2γ
E[|X (r) − Y (r)|p]dr

≤ ω(T0)|X − Y |pHp(0,T0)
, (1.59)

where ω(r)
r→0+−−−→ 0. So for T0 small enough (which is independent of the initial

condition) we can apply the Banach fixed point theorem inHp(0, T0) as in the proof
of Theorem 1.127 (see also the proof of [180], Theorem 7.2, p. 188). The process can
now be reapplied on intervals [T0, 2T0], ..., [kT0, T ], where k = [T/T0], to obtain the
existence of a unique mild solution inHp(0, T ) in the sense of the integral equality
being satisfied for a.e. s ∈ [0, T ].

Estimate (1.55) follows from similar arguments using the growth assumptions on
b,σ in Hypothesis 1.138 and Gronwall’s lemma in the form given in Proposition
D.30.

We will now prove the continuity of the trajectories if condition (1.53) is satisfied.
We will only prove the continuity of the stochastic convolution term in (1.56) since
the continuity of the other terms is easier to show. In particular, the continuity of the
trajectories of the third term in (1.56) follows from Lemma 1.115-(ii).

Let now p > 1
α
. Hence there is an 0 < α′ < α such that p > 1

α′ . Then, for r ∈
[t, T ], using (1.52), (1.55), Hypothesis 1.138-(vi), and Jensen’s inequality

E

(∫ r

0
(r − h)−2α′ ∥∥∥(λI − A)γe(r−h)A(λI − A)−γσ(h, X (h), a(h))

∥∥∥2
L2(�0,H)

dh

) p
2

≤ E

(∫ r

0
(r − h)−2α′ ‖(λI − A)γe(r−h)A‖2L(H)

∥∥(λI − A)−γσ(h, X (h), a(h))
∥∥2
L2(�0,H)

ds

) p
2

≤ C1E

(∫ r

0
(r − h)−2α′

(r − h)−2γ(1 + |X (h)|)2dh
) p

2

≤ C1

(∫ T

0
(T − h)−2α′

(T − h)−2γdh

) p
2

sup
h∈[0,T ]

E[(1 + |X (h)|)p] =: C2 < +∞. (1.60)

Observe thatC2 does not depend on r ∈ [0, T ]. This proves (1.25) and thus the claim
follows from Proposition 1.116. When (1.54) holds, estimate (1.60) is easier and can
be done for any exponent p′ > 1/α in place of p, and thus (1.25) is always satisfied.

Finally, we need to discuss the continuity of the trajectories if ξ ∈ L2(�,F0, P).
We argue as in the proof of Theorem 7.2 of [180]. For n ≥ 1 we define the random
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variables

ξn =
{

ξ if |ξ| ≤ n
0 if |ξ| > n.

The solutions X (·; 0, ξ, a(·), ab(·)) and X (·; 0, ξn, a(·), ab(·)) on [0, T0] are obtained
as fixed points in H2(0, T0) and Hp(0, T0), with p large enough, of the same con-
traction map (1.56) with the second map having the term esAξn in place of esAξ.
Therefore both solutions can be obtained as limits of successive iterations start-
ing, say, from processes esAξ and esAξn , respectively. It is then easy to see that
we have X (·; 0, ξ, a(·), ab(·)) = X (·; 0, ξn, a(·), ab(·)), P-a.s. on {ω : |ξ(ω)| ≤ n}.
However, the solutions X (·; 0, ξn, a(·), ab(·)) have continuous trajectories. Thus
X (·; 0, ξ, a(·), ab(·)) has continuous trajectories P-a.s. on [0, T0] and we can then
continue the argument on intervals [T0, 2T0], .... �

Proposition 1.142 Let the assumptions of Theorem 1.141 be satisfied. Denote the
unique mild solution of (1.51) inHp(0, T ; H) by X (·) = X (·; 0, ξ, a(·), ab(·)).
(i) If ξ1 = ξ2 P-a.s., a1(·) = a2(·) dt ⊗ P-a.s. a1b(·) = a2b(·) dt ⊗ P-a.s., then P-

a.s., X (·; 0, ξ1, a1(·), a1b(·)) = X (·; 0, ξ2, a2(·), a2b(·)) on [0, T ].
(ii) Let

(
�1,F1,F 1

s , P1,WQ,1
)
and

(
�2,F2,F 2

s , P2,WQ,2
)
be two generalized

reference probability spaces. Let ζi ∈ L p(�i ,F
i
0, Pi ), i = 1, 2. Let (ai , aib) :[0, T ] × �i → � × �b, i = 1, 2 be F i

s -progressively measurable processes
satisfying the assumptions of Theorem 1.141. Suppose that LP1(a

1(·), a1b(·),
WQ,1(·), ζ1) = LP2(a

2(·), a2b(·),WQ,1(·), ζ2) on some subset D ⊂ [t, T ] of full
measure. Then LP1(X (·; 0, ζ1, a1(·), a1b(·)), a1(·), a1b(·)) = LP2(X (·; 0, ζ2,
a2(·), a2b(·)), a2(·), a2b(·)) on D.

(iii) The solution of (1.51) is unique in M p
μ (0, T ; H) as well.

Proof (i) If Xi (·) := X
(·; 0, ξi , ai (·), aib(·)), arguing as in (1.59) and using Hölder’s

inequality, we obtain, for s ∈ [0, T ],

E|X1(s) − X2(s)|p ≤ CT

∫ s

0
E|X1(r) − X2(r)|pdr,

and the claim follows by using Gronwall’s lemma (Proposition D.29), and the con-
tinuity of the trajectories.

(ii) The argument is the same as the one used to prove Lemma 1.136 and
Proposition 1.137, since in the current case the solution is also found by iterating the
map K.

(iii) The uniqueness in Mp
μ (0, T0; H) follows from the estimate in Part (i) above

and Proposition D.29. �
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1.5.2 Semilinear SDEs with Additive Noise

In this section we give more precise results for some semilinear SDEs with additive
noise, i.e. for Eq. (1.28) when the coefficient σ is constant and we have possible
unboundedness in the drift.

Hypothesis 1.143

(i) The linear operator A is the generator of a strongly continuous semigroup{
et A , , t ≥ 0

}
in H and, for suitable M ≥ 1 and ω ∈ R,

|et Ax | ≤ Meωt |x |, ∀t ≥ 0, x ∈ H. (1.61)

(ii) Q ∈ L+(�), σ ∈ L(�, H) and esAσQσ∗esA∗ ∈ L1(H) for all s > 0. Moreover,
for all t ≥ 0, ∫ t

0
Tr

[
esAσQσ∗esA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAσQσ∗esA

∗
ds, (1.62)

is of trace class for every t ≥ 0, i.e.

Tr [Qs] < +∞. (1.63)

Let WQ be a Q-Wiener process in � and consider the stochastic convolution
process defined, for s ≥ 0, as follows:

W A(s) =
∫ s

0
e(s−r)AσdWQ(r). (1.64)

Proposition 1.144 Suppose that Hypothesis 1.143 is satisfied. Then the process
W A(·) defined in (1.64) is a Gaussian process with mean 0 and covariance oper-
ator Qs, is mean square continuous and W A(·) ∈ Hμ

p(0, T ; H) for every p ≥ 2.
Moreover, if there exists a γ > 0 such that

∫ T

0
s−γTr

[
esAσQσ∗esA

∗]
ds < ∞, (1.65)

then W A(·) has continuous trajectories5 and, for p > 0,

5Without assuming (1.65) such continuity of trajectories may fail to hold, see e.g. [357].
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E

[
sup

0≤s≤T
|W A(s)|p

]
< +∞.

Proof See [180]Chap.5, Theorems5.2 and5.11. The fact thatW A(·) ∈ Hμ
p(0, T ; H)

for every p ≥ 2 follows from Theorem 1.111. The last estimate can be found, for
example, as a particular case of Proposition 3.2 in [284]. �

A completely analogous result holds for the stochastic convolution starting at a
point t ≥ 0, i.e.

W A(t, s) :=
∫ s

t
e(s−r)AσdWQ(r), s ≥ t. (1.66)

Let T > 0. We consider the SDE{
dX (s) = (AX (s) + b(s, X (s))) ds + σdWQ(s), s > 0

X (0) = ξ.
(1.67)

Hypothesis 1.145 p ≥ 1 and b(s, x) = b0(s, x, a1(s)) + a2(s), where:

(i) The process a1(·) : [0, T ] × � → � (where � is a given Polish space) is Fs-
progressively measurable. The map b0 : [0, T ] × H × � → H is Borel mea-
surable and there exists a non-negative function f ∈ L1(0, T ; R) such that

|b0(s, x, a1)| ≤ f (s)(1 + |x |) ∀s ∈ [0, T ], x ∈ H and a1 ∈ �.

|b0(s, x1, a1) − b0(s, x2, a1)| ≤ f (s)|x1 − x2|
∀s ∈ [0, T ], x1, x2 ∈ H and a1 ∈ �.

(ii) The process a2(·) is such that for all t > 0, the process (s,ω)→et Aa2(s,ω),
when interpreted properly, is Fs-progressively measurable on [0, T ] × � with
values in H , and

|et Aa2(s,ω)| ≤ t−βg(s,ω) ∀(t, s,ω) ∈ [0, T ] × [0, T ] × �, (1.68)

for some β ∈ [0, 1) and g ∈ Mq
μ(0, T ; R), where q ≥ p and q > 1

1−β
.

Hypothesis 1.145 covers some cases which are not standard and for which a
separate proof of existence and uniqueness of mild solutions of (1.67) is required.

Remark 1.146 Hypothesis 1.145-(ii) is satisfied, for example, when A is the gen-
erator of an analytic C0-semigroup and the process a2(·) is of the form a2(s) =
(λI − A)βa3(s), where λ ∈ R is such that (λI − A) is invertible, β ∈ (0, 1), a3(·) ∈
Mq

μ(0, T ; H), q ≥ p, q > 1
1−β

. In such cases the definition of a mild solution of
(1.67) is given by Definition 1.119 in which the formal term

∫ s

0
e(s−r)Aa2(r)dr =

∫ s

0
e(s−r)A(λI − A)βa3(r)dr



1.5 Further Existence and Uniqueness Results in Special Cases 65

appearing in the definition of a mild solution is interpreted as

∫ s

0
(λI − A)βe(s−r)Aa3(r)dr.

This is natural since (λI − A)βe(s−r)A is an extension of e(s−r)A(λI − A)β .
Another more general case where Hypothesis 1.145-(ii) is satisfied is when a2(·) :

[0, T ] × � → V ∗ is progressively measurable, where V ∗ denotes the topological
dual of V = D(A∗). In such a case the semigroup et A may be extended, by a standard
construction (see e.g. [232]), to the space V ∗. Denoting this extension still by et A,
the process et Aa2(·) : [0, T ] × � → V ∗ is well defined. If we further assume that
et Aa2(·) takes values in H and satisfies (1.68) for some β ∈ (0, 1), then Hypothesis
1.145-(ii) is satisfied. A similar and even slightly more general case has been studied
in [232] in a deterministic context. �

Proposition 1.147 Let ξ ∈ L p(�,F0, P) and Hypotheses 1.143 and 1.145 be sat-
isfied. Then Eq. (1.67) has a unique mild solution X (·; 0, ξ) ∈ Hμ

p(0, T ; H). The
solution satisfies, for some Cp(T ) > 0 independent of ξ,

sup
s∈[0,T ]

E
[|X (s; 0, ξ)|p] ≤ Cp(T )(1 + E[|ξ|p]). (1.69)

Moreover, if ξ1, ξ2 ∈ L p(�,F0, P), we have, P-a.s.,

|X (s; 0, ξ1) − X (s; 0, ξ2)| ≤ MeωT |ξ1 − ξ2|eMeωT
∫ s
0 f (r)dr , s ∈ [0, T ]. (1.70)

Finally, if (1.65) also holds for some γ > 0, then the solution X (·; 0, ξ) has P-a.s.
continuous trajectories, and if ξ = x ∈ H is deterministic we then have

E( sup
s∈[0,T ]

|X (s)|p) ≤ Cp(T )(1 + |x |p) (1.71)

for a suitable constant Cp(T ) > 0 independent of x. In particular, if g in Hypothesis
1.145-(ii) is in Mq

μ(0, T ; R) for every q ≥ 1, then estimate (1.69) holds for every
p > 0 and the same is true for (1.71) if ξ = x ∈ H.

Proof The proof of existence and uniqueness uses the same techniques employed
in the Lipschitz case (Theorem 1.127) but contains a small additional difficulty due
the presence of the term a2(·) and possible singularities in s of the Lipschitz norm
of b0(s, ·). We will writeHp(0, T ) forHμ

p(0, T ; H). For Y ∈ Hp(0, T ) we set

K(Y )(s) = e(s−t)Aξ +
∫ s

0
e(s−r)Ab0(r, Y (r), a1(r))dr +

∫ s

0
e(s−r)Aa2(r)dr + W A(s).

(1.72)
W A belongs to Hp(0, T ) thanks to Proposition 1.144. Hypotheses 1.145-(i) and
1.145-(ii) ensure, respectively, that the second and third term in the definition of the
mapK belong toHp(0, T ) as well (one can use the same arguments as these to obtain
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(1.57) when β ∈ (0, 1) and Hölder’s inequality if β = 0). So K mapsHp(0, T ) into
itself. For Y1, Y2 ∈ Hp(0, T ), s ∈ [0, T ],

|K(Y1)(s) − K(Y2)(s)| ≤ MeωT
∫ s

0
f (r)|Y1(r) − Y2(r)|dr,

which yields, for T0 ∈ (0, T ],

|K(Y1) − K(Y2)|pHp(0,T0)
≤ MeωT sup

s∈[0,T0]
E

[∫ s

0
f (r)|Y1(r) − Y2(r)|dr

]p

≤ MeωT

[∫ T0

0
f (r)dr

]p

sup
s∈[0,T0]

E|Y1(s) − Y2(s)|p

= MeωT

[∫ T0

0
f (r)dr

]p

|Y1 − Y2|pHp(0,T0)
.

(1.73)

Therefore, if T0 is sufficiently small, we can apply the contraction mapping principle
to find the unique mild solution of (1.67) inHp(0, T0). The existence and uniqueness
of a solution on thewhole interval [0, T ] follows, as usual, by repeating the procedure
a finite number of times, since the estimate (1.73) does not depend on the initial data,
and the number of steps does not blow up since f is integrable. Estimate (1.69)
follows from (1.72) applied to the solution X if we perform estimates similar to
those above and use Gronwall’s Lemma.

To show (1.70) we observe that if Z(s) = X (s; 0, ξ1) − X (s; 0, ξ2), then for s ∈
[0, T ]

Z(s) = esA(ξ1 − ξ2) +
∫ s

0
e(s−r)A[b0(r, X (r; 0, ξ1), a1(r)) − b0(r, X (r; 0, ξ2), a1(r))]dr.

By Hypothesis 1.145 we thus have

|Z(s)| ≤ MeωT |ξ1 − ξ2| + MeωT
∫ s

0
f (r)|Z(r)|dr, s ∈ [0, T ]

so that, by Gronwall’s inequality (see Proposition D.29),

|Z(s)| ≤ MeωT |ξ1 − ξ2|eMeωT
∫ s
0 f (r)dr ,

which gives the claim. The continuity of trajectories follows from Proposition 1.144,
Hypothesis 1.145 and Lemma 1.115 for the second and fourth terms in (1.72), and
from Lemma 1.117 for the

∫ s
0 e(s−r)Aa2(r)dr term.

The last estimate (1.71) follows by standard arguments (see the proof of (1.37) in
Theorem 1.130) if we use Proposition 1.144. This implies that if g ∈ Mq

μ(0, T ; R)

for any q > 0, (1.71) holds for any p ≥ 2. For p ∈ (0, 2), defining Zr (s) :=
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sups∈[0,T ] |X (s)|r , we have

E(Z p(s)) ≤ [E(Z p(s)
2/p)]p/2 ≤ (C(1 + |x |2))p/2 ≤ C1(1 + |x |p).

�

Proposition 1.148 Assume that Hypotheses 1.143, 1.145, together with (1.65), are
satisfied, and let a2(·) be as in Remark 1.146. Then:
(i) Let ξ1, ξ2 ∈ L2(�,F0, P), ξ1 = ξ2 P-a.s. Let (a11(·), a13(·)), (a21(·), a23(·)) be

two processes satisfying Hypothesis 1.145, together with Remark 1.146, such
that (a11(·), a13(·)) = (a21(·), a23(·)), dt ⊗ P-a.s. Then, denoting by Xi (·; 0, ξi )
the solution of (1.67) for b(s, x) = (λ − A)βai3(s) + b0(s, x, ai1(s)), we have
X1(·; 0, ξ1) = X2(·; 0, ξ2), P-a.s. on [0, T ].

(ii) Let
(
�1,F1,F 1

s , P1,WQ,1
)
and

(
�2,F2,F 2

s , P2,WQ,2
)
be two generalized

reference probability spaces. Let ξi ∈ L2(�i ,F
i
0, Pi ), i = 1, 2. Let ai1(·), ai3(·),

i = 1, 2, be processes on [0, T ] × �i satisfyingHypothesis 1.145, togetherwith
Remark 1.146. Suppose that LP1(a

1
1(·), a13(·),WQ,1(·), ξ1) = LP2(a

2
1(·), a23(·),

WQ,2(·), ξ2). Then LP1(X
1(·; 0, ξ1), a11(·), a13(·)) = LP2(X (·; 0, ξ2), a21(·),

a23(·)).
(iii) If f ∈ L2(0, T ; R) then the solution of (1.67) ensured by Proposition 1.147 is

unique in M2
μ(0, T ; H) as well.

Proof Parts (i) and (ii) are proved similarly as Proposition 1.142 (i)–(ii). Part (iii)
follows from (1.70), which is also true in this case. We also point out that if p =
2, f ∈ L2(0, T ; R) then K maps M2

μ(0, T ; H) into itself and is a contraction in
M2

μ(0, T0; H) for small T0. �

1.5.3 Semilinear SDEs with Multiplicative Noise

This section contains a result for a class of semilinear SDEs with multiplicative
noise. Let T > 0, and let H , �, � and a generalized reference probability space(
�,F , {Fs}s∈[0,T ] , P,W

)
be as in Sect. 1.3, where W (t), t ∈ [0, T ], is a cylindri-

cal Wiener process (so here �0 = �). We consider the following SDE in H for
s ∈ [0, T ]:{

dX (s) = AX (s) ds + b(s, X (s), a(s)) ds + σ(s, X (s), a(s)) dW (s),
X (0) = ξ.

(1.74)

Hypothesis 1.149

(i) The operator A generates a strongly continuous semigroup et A for t ≥ 0 in H .
(ii) a(·) is a �-valued progressively measurable process.
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(iii) b is a function such that, for all s ∈ (0, T ], esAb : [0, T ] × H × � → H is
measurable and there exist L ≥ 0 and γ1 ∈ [0, 1) such that, with f1(s) = Ls−γ1 ,

|esAb(t, x, a)| ≤ f1(s)(1 + |x |), (1.75)

|esA(b(t, x, a) − b(t, y, a))| ≤ f1(s)|x − y|, (1.76)

for any s ∈ (0, T ], t ∈ [0, T ], x, y ∈ H, a ∈ �.
(iv) The function σ : [0, T ] × H × � → L(�, H) is such that, for every v ∈ �,

the map σ(·, ·, ·)v : [0, T ] × H × � → H is measurable and, for every s > 0,
t ∈ [0, T ], a ∈ � and x ∈ H , esAσ(t, x, a) belongs to L2(�, H). Moreover,
there exists a γ2 ∈ [0, 1/2) such that, with f2(s) = Ls−γ2 ,

|esAσ(t, x, a)|L2(�,H) ≤ f2(s)(1 + |x |), (1.77)

|esAσ(t, x, a) − esAσ(t, y, a)|L2(�,H) ≤ f2(s)|x − y|, (1.78)

for every s ∈ (0, T ], t ∈ [0, T ], x, y ∈ H, a ∈ �.

Remark 1.150 Hypothesis 1.149-(iii) covers some cases where the term b is
unbounded, which arise, for example, from a stochastic heat equationwith a non-zero
boundary condition which may also depend on the state variable x (see the last part
of Example 4.222).

Moreover, Hypothesis 1.149-(iv) applies to cases, such as reaction-diffusion equa-
tions (see e.g. [177], Chap. 11 or, in our Chap.2, Sect. 2.6.1 and, in particular,
Eqs. (2.79) and (2.83), where the operator σ is a nonlinear Nemytskii type oper-
ator. Indeed, in such cases it is known that, when the underlying space is L2(O)

(O⊂R
n , open), the operator σ(t, ·) : H → L(H) is never Lipschitz continuous

while esAσ(t, ·) : H → L2(H) is so (see e.g. [177], proof of Theorem 11.2.4 and
Sect. 11.2.1, or [283], Remark 2.2). �

Remark 1.151 If in Hypothesis 1.125 we setWQ = Q1/2W̃ for a suitable cylindrical
Wiener process W̃ in �̃ = R(Q−1/2) and we substitute σ with σ̃ = σQ1/2, it is
easy to see that Hypothesis 1.149 is more general. However, we need to replace
� by �̃. A cylindrical Wiener process W in � may not be adapted to the original
filtration. Similarly, Hypothesis 1.149 is more general than Hypotheses 1.143 and
1.145, together with (1.65), if we take f bounded and a2(·) ≡ 0 there. �

The solution of Eq. (1.74) is defined in the mild sense of Definition 1.119, where
the convolution term∫ s

0
e(s−r)Aσ(r, X (r), a(r)) dW (r), s ∈ [0, T ],

makes sense thanks to (1.77) and Remark 1.123. Moreover, since s→esAb(t, x, a)

is continuous on (0, T ] for every t ∈ [0, T ], x ∈ H, a ∈ �, we have from Lemma
1.18 that e·Ab is B([0, T ]) ⊗ B([0, T ]) ⊗ B(H) ⊗ B(�)/B(H)-measurable.
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Theorem 1.152 Let Hypothesis 1.149 hold and let a(·) be a �-valued, progres-
sively measurable process. Let p ∈ [2,∞). Then, for every initial condition ξ ∈
L p(�,F0, P), the SDE (1.74) has a unique mild solution X (·) inHp(0, T ; H). The
solution satisfies

sup
s∈[0,T ]

E
[|X (s)|p] ≤ C0(1 + E[|ξ|p]) (1.79)

for some constant C0 > 0 independent of ξ and a(·). The mild solution X (·) has
continuous trajectories and, when ξ ≡ x ∈ H, we have

E

[
sup

s∈[0,T ]
|X (s)|p

]
≤ C(1 + |x |p), for all p > 0, (1.80)

for some constant C depending only on p, γ1, γ2, T, L and MT := sups∈[0,T ] |esA|.
Finally, when b and σ do not depend on a, mild solutions of (1.74) defined on

different generalized reference probability spaces have the same laws.

Proof Let p ≥ 2. The existence of a unique solution is proved using the Banach
contraction mapping theorem in Hp(0, T0) for some T0 ∈ (0, T ) small enough. We
define K : Hp(0, T ) → Hp(0, T ) by

K(Y )(s) := esAξ +
∫ s

0
e(s−r)Ab(r, Y (r), a(r))dr +

∫ s

0
e(s−r)Aσ(r, Y (r), a(r))dW (r).

(1.81)
We observe first that this expression belongs to Hp(0, T ). Thanks to (1.75), (1.77)
and Theorem 1.111, we have

E

∣∣∣∣
∫ s

0
e(s−r)Ab(r,Y (r), a(r))dr +

∫ s

0
e(s−r)Aσ(r,Y (r), a(r))dW (r)

∣∣∣∣
p

≤ Cp

(
E

∣∣∣∣
∫ s

0
[ f1(s − r)(1 + |Y (r)|)] dr

∣∣∣∣
p

+ E

∣∣∣∣
∫ s

0
e(s−r)Aσ(r,Y (r), a(r))dW (r)

∣∣∣∣
p )

≤ Cp

[∫ T

0
f1(r)dr

]p

sup
r∈[0,T ]

E(1 + |Y (r)|)p

+ Cp

[∫ T

0
f 22 (r)dr

] p
2

sup
r∈[0,T ]

E(1 + |Y (r)|)p,
(1.82)

where the constantCp depends only on p. Therefore, for any Y ∈ Hp(0, T ),K(Y ) ∈
Hp(0, T ). The estimates showing thatK is a contraction onHp(0, T0) for T0 ∈ (0, T ]
small enough are essentially the same. Using (1.76) and (1.78) instead of (1.75) and
(1.77) we obtain, for all Y1,Y2 ∈ Hp(0, T0),
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|K(Y1) − K(Y2)|pHp(0,T0)
≤ Cp

([∫ T0

0
f1(r)dr

]p

+
[∫ T0

0
f 22 (r)dr

] p
2
)

sup
r∈[0,T0]

E(|Y1(r) − Y2(r)|p),

and thusK is a contraction inHp(0, T0) if T0 ∈ (0, T ] is small enough. The existence
and uniqueness of solution inHp(0, T ) follows, as usual, by repeating the procedure
a finite number of times, since the estimate does not depend on the initial data, and
the number of steps does not blow up since f1 and f 22 are integrable. Estimate (1.79)
follows in a standard way by applying estimates like those in (1.82) to the fixed point
of the map K and using Gronwall’s lemma (see also the proof of Theorem 7.5 in
[180]).

The continuity of the trajectories and (1.80) are proved using the factorization
method similarly to the way it is done in the proof of Proposition 6.9 for p > 2. We
extend (1.80) to 0 < p ≤ 2 in the same way as in the proof of Proposition 1.147.
Uniqueness in law is proved similarly as in Proposition 1.137. �
Proposition 1.153 Assume that Hypothesis 1.149 holds. Let (t1, x1), (t2, x2) ∈
[0, T ] × H with t1 ≤ t2. Denote by X (·; t1, x1, a(·)), X (·; t2, x2, a(·)) the corre-
sponding mild solutions of (1.74) with the same progressively measurable process
a(·) and initial conditions X (ti ) = xi ∈ H, i = 1, 2. Then, for all s ∈ [t2, T ] we
have, setting γ3 := [2(1 − γ1)] ∧ [1 − 2γ2],

E[|X (s; t1, x1, a(·)) − X (s; t2, x2, a(·))|2] ≤

≤ C2
[|x1 − x2|2 + (1 + |x1|2)|t2 − t1|γ3 + |e(t2−t1)Ax1 − x1|2

] (1.83)

for some constant C2 depending only on γ1, γ2, T, L and M := sups∈[0,T ] |esA|.
Moreover, the term |e(t2−t1)Ax1 − x1|2 can be replaced by |e(t2−t1)Ax2 − x2|2.
Proof To simplify the notation we define Xi (s) := X (s; ti , xi , a(·)), b(r, Xi (r)) :=
b(r, Xi (r), a(r)),σ(r, Xi (r)) := σ(r, Xi (r), a(r)), i = 1, 2. By the definition of a
mild solution we have, for s ∈ [ti , T ],

Xi (s) = e(s−ti )Axi +
∫ s

ti

e(s−r)Ab(r, Xi (r))dr +
∫ s

ti

e(s−r)Aσ(r, Xi (r))dW (r),

hence
|X1(s) − X2(s)| ≤ |e(s−t1)Ax1 − e(s−t2)Ax2|

+
∣∣∣∣
∫ t2

t1

e(s−r)Ab(r, X1(r))dr

∣∣∣∣ +
∣∣∣∣
∫ s

t2

e(s−r)A (b(r, X1(r)) − b(r, X2(r))) dr

∣∣∣∣
+

∣∣∣∣
∫ t2

t1
e(s−r)Aσ(r, X1(r))dW (r)

∣∣∣∣ +
∣∣∣∣
∫ s

t2
e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))) dW (r)

∣∣∣∣ .
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Therefore

E|X1(s) − X2(s)|2 ≤ 5|e(s−t1)Ax1 − e(s−t2)Ax2|2

+ 5E

∣∣∣∣
∫ t2

t1
e(s−r)Ab(r, X1(r))dr

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ s

t2
e(s−r)A (b(r, X1(r)) − b(r, X2(r))) dr

∣∣∣∣2

+ 5E

∣∣∣∣
∫ t2

t1
e(s−r)Aσ(r, X1(r))dW (r)

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ s

t2
e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))) dW (r)

∣∣∣∣2 . (1.84)

To estimate the second and the third terms we use Jensen’s inequality applied to the
inner integral. Using Hypothesis 1.149-(ii) and (1.80) we then obtain

E

∣∣∣∣
∫ t2

t1

e(s−r)Ab(r, X1(r))dr

∣∣∣∣
2

≤ L2
E

∣∣∣∣
∫ t2

t1

(s − r)−γ1(1 + |X1(r)|)dr
∣∣∣∣
2

≤ L2

(∫ t2

t1

(s − r)−γ1dr

)∫ t2

t1

(s − r)−γ1E(1 + |X1(r)|)2dr

≤ 2L2[1 + C(1 + |x1|2)]
(∫ t2

t1

(s − r)−γ1dr

)2

≤ 2L2[1 + C(1 + |x1|)2)] 1

1 − γ1
(t1 − t2)

2(1−γ1).

In the same way we estimate the third term obtaining, by Hypothesis 1.149-(ii),

E

∣∣∣∣
∫ s

t2

e(s−r)A (b(r, X1(r)) − b(r, X2(r))) dr

∣∣∣∣
2

≤ L2

(∫ s

t2

(s − r)−γ1dr

)∫ s

t2

(s − r)−γ1E|X1(r) − X2(r)|2dr

≤ L2(s − t2)1−γ1

1 − γ1

∫ s

t2

(s − r)−γ1E|X1(r) − X2(r)|2dr.

The fourth and the fifth term of (1.84) are estimated using the isometry formula. We
have

E

∣∣∣∣
∫ t2

t1

e(s−r)Aσ(r, X1(r))dW (r)

∣∣∣∣
2

=
∫ t2

t1

E|e(s−r)Aσ(r, X1(r))|2L2(�,H)dr

≤ L2
∫ t2

t1

(s − r)−2γ2E(1 + |X1(r)|)2dr ≤ 2L2[1 + C(1 + |x1|2)]
∫ t2

t1

(s − r)−2γ2dr
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≤ 2L2[1 + C(1 + |x1|2)] 1

1 − 2γ2
(t1 − t2)

1−2γ2

and

E

∣∣∣∣
∫ s

t2

e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))) dW (r)

∣∣∣∣
2

=
∫ s

t2

E|e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))|2L2(�,H) dr

≤ L2
∫ s

t2

(s − r)−2γ2E|X1(r) − X2(r)|2dr.

Using all these estimates in (1.84) we obtain, for a suitable constant C1 > 0, for
γ3 := [2(1 − γ1)] ∧ [1 − 2γ2] and γ4 := γ1 ∨ [2γ2],

E|X1(s) − X2(s)|2 ≤ 5|e(s−t1)Ax1 − e(s−t2)Ax2|2 + C1(1 + |x1|2)|t2 − t1|γ3+

+C1

∫ s

t2

(s − r)−γ4E|X1(r) − X2(r)|2dr.

Observing that

|e(s−t1)Ax1 − e(s−t2)Ax2| ≤ M |x1 − x2| + |e(s−t2)A(e(t2−t1)Ax1 − x1)|,

we can thus apply Gronwall’s lemma in the form of Proposition D.30. It gives us

E|X1(s) − X2(s)|2 ≤ C2
[|x1 − x2|2 + (1 + |x1|2)|t2 − t1|γ3 + |e(t2−t1)Ax1 − x1|2

]
for some C2 > 0 with the required properties. �

Lemma 1.154 Assume that Hypothesis 1.149 holds. Fix a �-valued progressively
measurable process a(·). Let X be the unique mild solution of (1.74) described
in Theorem 1.152 with initial condition X (0) = x ∈ H. Define, for s ∈ [0, T ],
ψ(s) = b(s, X (s), a(s)),�(s) = σ(s, X (s), a(s)). Let {ei }i∈N be an orthonormal
basis of � and, for any k ∈ N, let Pk : � → � be the orthogonal projection onto
span{e1, ..., ek}. Let Xk be the unique mild solution of

{
dXk(s) = (AXk(s) + e

1
k Aψ(s))ds + e

1
k A�(s)PkdW (s),

Xk(0) = x .
(1.85)

Then, for any p > 0, there exists an Mp > 0 such that

sup
k∈N

E

[
sup

s∈[0,T ]
|Xk(s)|p

]
≤ Mp. (1.86)
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Moreover, for every s ∈ [0, T ],

lim
k→∞ E

[|Xk(s) − X (s)|2] = 0 (1.87)

and, for every ϕ ∈ Cm(H) (m ≥ 0),

lim
k→∞ E

[
ϕ(Xk(s))

] = E [ϕ(X (s))] , s ∈ [0, T ]. (1.88)

Proof It is easy to see, by using (1.80), that (1.86) is satisfied.
We now prove (1.87). We have, for s ∈ [0, T ],

E
∣∣X (s) − Xk(s)

∣∣2 ≤ 2E

∣∣∣∣
∫ s

0
e(s−r)A

(
ψ(r) − e

1
k Aψ(r)

)
dr

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
e(s−r)A�(r)(I − Pk)dW (r)

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
(I − e

1
k A)e(s−r)A�(r)PkdW (r)

∣∣∣∣
2

= I1 + I2 + I3.

We have for any k,

∣∣∣e(s−r)A
(
ψ(r) − e

1
k Aψ(r)

)∣∣∣ ≤ 2L(s − r)−γ1(1 + |X (r)|)

which is integrable on [0, s] for a.e. ω. Moreover,

∣∣∣e(s−r)A
(
ψ(r) − e

1
k Aψ(r)

)∣∣∣ → 0 as k → +∞

dr ⊗ P-a.s. Therefore it follows from the dominated convergence theorem that

∫ s

0
e(s−r)A

(
ψ(r) − e

1
k Aψ(r)

)
dr → 0 as k → +∞

P-a.s. Now by Hölder’s inequality

∣∣∣∣
∫ s

0
e(s−r)A

(
ψ(r) − e

1
k Aψ(r)

)
dr

∣∣∣∣
2

≤ 4L2

(∫ s

0
(s − r)−γ1dr

)(∫ s

0
(s − r)−γ1(1 + |X (r)|)2dr

)

which is integrable on �. Thus, using the dominated convergence theorem again we
conclude that limk→∞ I1 = 0.

Recall that �0 = �. To estimate I2, we set Qk := I − Pk . We have
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I2 = 4E

∣∣∣∣
∫ s

0
e(s−r)A�(r)(I − Pk)dW (r)

∣∣∣∣
2

= 4
∫ s

0
E

∥∥e(s−r)A�(r)Qk
∥∥2

L2(�,H)
dr

= 4
∫ s

0
E

∑
i∈N

〈
e(s−r)A�(r)Qkei , e

(s−r)A�(r)Qkei
〉
dr =: η(k).

Observe that∑
i∈N

〈
e(s−r)A�(r)Qkei , e

(s−r)A�(r)Qkei
〉

=
+∞∑

i=k+1

〈
e(s−r)A�(r)ei , e

(s−r)A�(r)ei
〉

≤
∑
i∈N

〈
e(s−r)A�(r)ei , e

(s−r)A�(r)ei
〉 = ∥∥e(s−r)A�(r)

∥∥2

L2(�,H)
.

Since the series above has nonnegative terms, we obtain

lim
k→∞

∥∥e(s−r)A�(r)Qk
∥∥2

L2(�,H)
= 0 dr ⊗ P-a.s.

Therefore, thanks to (1.80), Hypothesis 1.149 and the dominated convergence theo-
rem, we obtain

lim
k→∞ I2 ≤ lim

k→∞ η(k) = 0.

The term I3 is estimated similarly.
Thanks to (1.87), for any subsequence of Xk(s)we can extract a sub-subsequence

converging to X (s) almost everywhere and then, thanks to (1.86), (1.80) and the
dominated convergence theorem, we obtain (1.88) along the sub-subsequence. This
implies (1.88) for the whole sequence Xk(s). �
Remark 1.155 Observe that if b and σ satisfy Hypothesis 1.149, the functions
e

1
k Ab(s, x, a) and e

1
k Aσ(s, x, a)Pk satisfy Hypothesis 1.125. �

The last lemma concerns the additive noise case of Sect. 1.5.2, however we
included it here since its proof is similar to the proof of Lemma 1.154.

Let WQ be from Sect. 1.5.2. We know (see (1.12)) that WQ(s) = ∑+∞
n=1 gnβn(s),

s ≥ 0, where {gn} is an orthonormal basis of �0. Define en = Q−1/2gn, n ∈ N. Then
{en} is an orthonormal basis of �. Let P̃k be the orthogonal projection in �0 onto
span{g1, ..., gk} and Pk be the orthogonal projection in�onto span{e1, ..., ek}, k ∈ N.
It is easy to see that P̃k Q1/2 = Q1/2Pk as operators on �.

Lemma 1.156 Let Hypotheses 1.143 and 1.145 be satisfied and let q ≥ 2. Let X be
the unique mild solution of (1.67) described in Proposition 1.147 with initial condi-
tion X (0) = x ∈ H. Define for k,m ∈ N, Bk = {(s,ω) : |b0(s, X (s), a1(s))| ≤ k},
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Dm = {(s,ω) : |g(s,ω)| ≤ m}. There exists a sequence mk such that the sequence
Xk of the solutions of the SDE

{
dXk(s) = (

AXk(s) + ψk(s)
)
ds + σ P̃kdWQ(s), s > 0,

Xk(0) = x,
(1.89)

where ψk(s) = b0(s, X (s), a1(s))1Bk (s,ω) + e
1
k Aa2(s)1Dmk

(s,ω), satisfies the fol-
lowing.

(i) For any p ∈ [2, q] there exists an Mp > 0 such that

sup
k

sup
s∈[0,T ]

E
[|Xk(s)|p] , sup

s∈[0,T ]
E

[|X (s)|p] ≤ Mp. (1.90)

(ii) For every s ∈ [0, T ]
lim
k→∞ E

[|Xk(s) − X (s)|2] = 0.

Proof Part (i). The moment estimates are uniform in k (regardless of the choice
of mk) thanks to the following facts:

(a) Define W A,k(s) := ∫ s
0 e(s−r)Aσ P̃kdWQ(r), s ∈ [0, T ]. Given an orthonormal

basis {wn} of H , for any k ∈ N and s ∈ [0, T ], we have

0 ≤ Tr
((

esAσ P̃k Q1/2
) (

esAσ P̃k Q1/2
)∗)

= Tr
((
esAσQ1/2Pk

) (
esAσQ1/2Pk

)∗)
=

∑
n∈N

|PkQ1/2σ∗esA
∗
wn|2 ≤

∑
n∈N

|Q1/2σ∗esA
∗
wn|2 =

∑
n∈N

Tr
(
esAσQσ∗esA

∗)
.

(1.91)

Thus, by Theorem 1.111, it follows that for any k ∈ N and p ≥ 1,

sup
k

sup
s∈[0,T ]

E
[|W A,k(s)|p] < +∞.

Using (1.91) we also have, by the Lebesgue dominated convergence theorem,

∫ T

0
‖esAσ P̃k − esAσ‖2L2(�0,H)

ds =
∫ T

0

∑
n∈N

|(Pk − I )Q1/2σ∗esA∗
wn |2ds → 0.

(1.92)
(b) By the definition

|et Aψk(s)| ≤ f (s)(1 + |X (s)|) + t−βg(s,ω) for t, s ∈ [0, T ],ω ∈ �.
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Part (ii). The scheme of the proof is similar to that of (1.87). We choose mk such
that

E

∣∣∣∣
∫ T

0
kβg(r,ω)|1 − 1Dmk

(r,ω)|dr
∣∣∣∣
2

≤ 1

k
. (1.93)

We have for every s ∈ [0, T ],

E
∣∣X (s) − Xk(s)

∣∣2 ≤ 4E

∣∣∣∣
∫ s

0
e(s−r)Ab0(r, X (r), a1(r))(1 − 1Bk (r,ω))dr

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
e(s−r)A(a2(r) − e

1
k Aa2(r))dr

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
e( 1

k +s−r)Aa2(r)(1 − 1Dmk
(r,ω))dr

∣∣∣∣
2

+ 4E
∣∣W A,k(s) − W A(s)

∣∣2 = J1 + J2 + J3 + J4.

The term J1 converges to 0 as k → +∞ by Hypothesis 1.145, Hölder’s inequality,
(1.69) for p = 2 and the dominated convergence theorem. The term J2 converges to
0 by the same arguments as for the term I1 in the proof of Lemma 1.154. The term
J3 converges to 0 by (1.93) and finally J4 → 0 by (1.92). �

1.6 Transition Semigroups

Let T ∈ (0,+∞] and recall that, as before, when T = +∞ the notation [0, T ] and
[t, T ]means [0,+∞) and [t,+∞). Let H, �, Q, and the generalized reference prob-
ability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) be the same as in Sect. 1.3. Consider
for t ∈ [0, T ] the following SDE with non-random coefficients

{
dX (s) = (AX (s) + b(s, X (s))) ds + σ(s, X (s))dWQ(s)

X (t) = x ∈ H,
(1.94)

where b : [0, T ] × H → H and σ : [0, T ] × H → L2(�0, H). If Hypothesis 1.125,
where we drop the dependence on a in all conditions, (respectively, Hypothe-
ses 1.143 and 1.145 with a2(·) ≡ 0 and with no dependence on a1, respectively,
Hypothesis 1.149 with no dependence on a) is satisfied, then Theorem 1.127 (respec-
tively, Proposition 1.147, respectively, Theorem 1.152) ensures that (1.94) has a
unique mild solution X (·; t, x). Moreover, we also have uniqueness in law of the
solutions.

We will be using the spaces Bb(H) of bounded Borel measurable functions on H
and Bm(H),m > 0, of Borel measurable functions on H with at most polynomial
growth of order m, defined in AppendixA.2.

For any φ ∈ Bb(H) and t ≥ 0, s ∈ [t, T ], we define
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{
Pt,s[φ] : H → R

Pt,s[φ] : x→E[φ(X (s; t, x))]. (1.95)

It is not obvious that Pt,s[φ] ∈ Bb(H) and it has to be checked in each case. The
general argument is the following and we illustrate it in the case when Hypothesis
1.149 is satisfied. First, using (1.83) it is easy to see that Pt,s[φ] ∈ Cb(H) if φ ∈
UCb(H). Then, using the functions constructed in the proof of Theorem 1.34 and
the dominated convergence theorem, we get that Pt,s[φ] ∈ Bb(H) for every φ =
1A, A = A ⊂ H . This, together with Corollary 1.3 and the dominated convergence
theorem, allows us to extend Pt,s[φ] ∈ Bb(H) to every φ = 1A, A ∈ B(H). We can
then use Lemma 1.15 to conclude that Pt,s [φ] ∈ Bb(H) for everyφ ∈ Bb(H). Similar
arguments can be applied in the cases when Hypotheses 1.143 and 1.145 hold or if
Hypothesis 1.125 is satisfied.Moreover, thanks to estimates (1.36), (1.69) and (1.80),
Pt,s[φ] is then also well defined for any φ ∈ Bm(H), m > 0.

Theorem 1.157 (Markov property) Let T ∈ (0,+∞]. Let Hypothesis 1.149 be
satisfied with b and σ independent of a. Then for every φ ∈ Bm(H) (m ≥ 0) and
0 ≤ t ≤ s ≤ r ≤ T (with the last inequality strict when T = +∞),

Eφ(X (r; t, x)|Fs) = Ps,r [φ](X (s; t, x)) P − almost surely,

and
Pt,r [φ](x) = Pt,s

[
Ps,r [φ]] (x) for all x ∈ H. (1.96)

The same result is true if Hypotheses 1.143 and 1.145 hold without dependence on
a1 and with a2(·) = 0 or if Hypothesis 1.125 holds without the dependence on a in
all conditions.

Proof See [180], Theorem 9.14, p. 248, and Corollary 9.15, p. 249. The hypothe-
ses are a little different from these in [180], however the same arguments can be
easily adapted using the proof of Proposition 1.153. The proof in [180] is given for
φ ∈ Bb(H) but the argument is exactly the same when φ ∈ Bm(H) (m > 0) simply
recalling that the operator Pt,s is well defined on such functions thanks to estimate
(1.80). �

It follows from the uniqueness in law of the solutions of (1.94) that the operators
Pt,s do not depend on the choice of a generalized reference probability space μ. As
a consequence of the uniqueness in law we also have the following corollary.

Corollary 1.158 Let Hypothesis 1.149 be satisfied with b and σ independent of a
and of the time variable s. Equation (1.94) then reduces to

{
dX (s) = (AX (s) + b(X (s))) ds + σ(X (s))dWQ(s),

X (t) = x ∈ H.
(1.97)

Denote by X (·; t, x) the unique mild solution of this equation (defined on [t,+∞)).
In this case, for any φ ∈ Bm(H) (m ≥ 0) and 0 ≤ t ≤ s, we have
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Pt,s[φ](x) = P0,s−t [φ]. (1.98)

Hence, defining Ps[φ] as follows,
{
Ps[φ] : H → R

Ps[φ] : x→Eφ(X (s; 0, x)), (1.99)

we have

Ps+r [φ](x) = Ps [Pr [φ]] (x) for all x ∈ H, s, r ≥ 0. (1.100)

The same result is true if Hypotheses 1.143 and 1.145 hold without dependence on
a1 and with a2(·) = 0 or if Hypothesis 1.125 holds without the dependence on a in
all conditions.

Proof We only need to prove (1.98), which is an immediate consequence of the
uniqueness in law of the mild solutions of (1.97). Indeed, by the uniqueness in law,
for all s ≥ t ≥ 0 and x ∈ H , the random variables X (s; t, x) and X (s − t; 0, x) have
the same distributions, hence

Pt,s[φ](x) = E[φ(X (s; t, x))] = E[φ(X (s − t; 0, x))] = P0,s−t [φ](x). �

Definition 1.159 (Transition semigroup, (strong) Feller property) If (1.96) (respec-
tively, (1.100)) is satisfied we call Pt,s (respectively, Pt ) the two-parameter tran-
sition semigroup (respectively, one-parameter transition semigroup) associated to
Eq. (1.94).

We say that Pt,s (respectively, Pt ) possesses the Feller property if

Pt,s(Cb(H))⊂Cb(H) (respectively, Pt (Cb(H))⊂Cb(H))

and that Pt,s (respectively, Pt ) possesses the strong Feller property if

Pt,s(Bb(H))⊂Cb(H) (respectively, Pt (Bb(H))⊂Cb(H))

for all 0 ≤ t < s ≤ T (respectively t ∈ (0, T ]).
Lemma 1.160 Assume that (1.94) has uniquemild solutions X (·; t, x)which satisfy,
for every m ≥ 0, the estimate

E[|X (s; t, x)|m] ≤ C(m)(1 + |x |m), t ≥ 0, s ∈ [t, T ], x ∈ H, (1.101)

for some constantC(m). If theFeller property holds for the associated two-parameter
transition semigroup Pt,s (t ≥ 0, s ∈ [t, T ]), then we also have
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Pt,s(Cm(H))⊂Cm(H) ∀m ≥ 0

while, if the strong Feller property holds, we also have

Pt,s(Bm(H))⊂Cm(H) ∀m ≥ 0.

Proof Let φ ∈ Bm(H) and define, for k ∈ N,

φk(x) = φ(x)1|x |≤k + φ

(
k
x

|x |
)
1|x |>k .

It is clear that φk ∈ Bb(H), it coincides with φ on {|x | ≤ k} and if φ is continuous
so is φk . Moreover, when k → +∞, φk converges to φ uniformly on bounded sets.
Assumenow that the strongFeller property holds (the argument for theFeller property
is exactly the same). In this case Pt,s[φk] is continuous, hence, to get the claim, it
is enough to show that Pt,s[φk] converges to Pt,s[φk] uniformly on bounded sets.
Indeed,

Pt,s[φk − φ](x) = E [(φk − φ)(X (s; t, x))]
= E

[(
φ

(
k
X (s; t, x)

|X (s; t, x)|
)

− φ(X (s; t, x))
)
1|X (s;t,x)|>k

]
≤ 2E

[‖φ‖Bm (1 + |X (s; t, x)|m)1|X (s;t,x)|≥k
]
.

Hence, for any p > 1 we have by (1.101)

Pt,s[φk − φ](x) ≤ 2‖φ‖Bm

[
E(1 + |X (s; t, x)|m)p

]1/p [
E1|X (s;t,x)|≥k

]1−1/p

≤ C(1 + |x |m)

[
E|X (s; t, x)|

k

]1−1/p

≤ C(1 + |x |m)

[
1 + |x |

k

]1−1/p

which converges to 0 uniformly on bounded sets. �

Remark 1.161 Estimate (1.101) is satisfied in two important cases:

• when Hypothesis 1.149 is satisfied with b and σ independent of a;
• when Hypotheses 1.143 and 1.145 hold without dependence on a1 and with
a2(·) = 0.

This follows from the growth estimates of Theorem 1.152 and Proposition 1.147.�

Theorem 1.162 Assume that Hypothesis 1.149 is satisfied. Then for every φ ∈
Cm(H) (m ≥ 0), the function Pt,s[φ] : H → R belongs to Cm(H). The same holds
if we assume that Hypotheses 1.143 and 1.145 hold without dependence on a1 and
with a2(·) = 0.

Proof The result is a consequence of the continuous dependence and growth esti-
mates of Theorem 1.152 and Propositions 1.153 and 1.147. �
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1.7 Itô’s and Dynkin’s Formulae

In this section we assume that T > 0, H, �, Q, and the generalized reference prob-
ability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) are the same as in Sect. 1.3. The oper-
ator A is the generator of a C0-semigroup on H , and� is a Polish space. The various
Itô’s and Dynkin’s formulae presented in this section are used in proving existence
of viscosity solutions (Chap.3) and verification theorems (Chaps. 4 and 5).

Given a function F : [0, T ] × H → R, we denote by Ft the derivative of F(t, x)
with respect to t and by DF and D2F the first and second-order Fréchet derivatives
with respect to x .

Theorem 1.163 (Itô’s Formula) Assume that� is a process inN 2
Q(0, T ; H), f is an

H-valued progressively measurable (P-a.s.) Bochner integrable process on [0, T ],
and define, for s ∈ [0, T ],

X (s) := X (0) +
∫ s

0
f (r)dr +

∫ s

0
�(r)dWQ(r),

where X (0) is anF0-measurable H-valued random variable. Consider F : [0, T ] ×
H → R and assume that F and its derivatives Ft , DF, D2F are continuous and
bounded on bounded subsets of [0, T ] × H. Let τ be anFs -stopping time. Then, for
P-a.e. ω,

F(s ∧ τ , X (s ∧ τ )) = F(0, X (0)) +
∫ s∧τ

0
Ft (r, X (r))dr

+
∫ s∧τ

0
〈DF(r, X (r)), f (r)〉 dr +

∫ s∧τ

0

〈
DF(r, X (r)),�(r)dWQ(r)

〉
+ 1

2

∫ s∧τ

0
Tr

[(
�(r)Q1/2

) (
�(r)Q1/2

)∗
D2F(r, X (r))

]
dr on [0, T ].

(1.102)

Proof See [294], Theorems 2.9 and 2.10. See also, under the assumption of uniform
continuity on bounded sets of F and its derivatives, [180] Theorem 4.32, p. 106. �

Proposition 1.164 Let F : [0, T ] × H → R and x ∈ H. Assume that F and its
derivatives Ft , DF, D2F are continuous and bounded on bounded subsets of
[0, T ] × H. Suppose that DF : [0, T ] × H → D(A∗) and that A∗DF is con-
tinuous and bounded on bounded subsets of [0, T ] × H. Let f ∈ Mp

μ (0, T ; H),
� ∈ N p

Q(0, T ; H) for some p > 2. Let X (·) be the unique mild solution of (1.42)
such that X (0) = x and τ be an Fs -stopping time. Then, for P-a.e. ω,
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F(s ∧ τ , X (s ∧ τ )) = F(0, x) +
∫ s∧τ

0
Ft (r, X (r))dr

+
∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
dr +

∫ s∧τ

0
〈DF(r, X (r)), f (r)〉 dr

+ 1

2

∫ s∧τ

0
Tr

[(
�(r)Q1/2

) (
�(r)Q1/2

)∗
D2F(r, X (r))

]
dr

+
∫ s∧τ

0

〈
DF(r, X (r)),�(r)dWQ(r)

〉
on [0, T ].

(1.103)

Proof Since both sides of (1.103) are continuous processes, it is enough to prove the
formula for a single s. We approximate X (·) by the sequence Xn(·) introduced in
Proposition 1.132. By definition Xn(·) solves the integral equation

Xn(s) =
∫ s

0

(
AnX

n(r) + f (r)
)
dr +

∫ s

0
�(r)dWQ(r).

For any R > 0 such that |x | < R define the stopping times

τ̂ R := inf {s ∈ [0, T ] : |X (s)| > R} , τ̂ R
n := inf {s ∈ [0, T ] : |Xn(s)| > R + 1}

and denote by τ R and τ R
n , respectively,

τ R := min(τ , τ̂ R), τ R
n := min(τ , τ̂ R, τ̂ R

n ).

Observe that, thanks to (1.44), up to extracting a subsequence of Xn (still denoted
by Xn), sups∈[0,T ] |Xn(s) − X (s)|p converges to 0 on some set �̃ with P(�̃) = 1. It
is then easy to see that on �̃ we have

lim
n→∞ τ R

n = τ R .

We deduce that, for ω ∈ �̃,

lim
n→∞ 1[0,s∧τ R

n ] = 1[0,s∧τ R ], pointwise on [0, T ]. (1.104)

We can apply Itô’s formula (1.102) to the approximating problem (A∗
n is the adjoint

of An) obtaining, once we rewrite it using Lemma 1.110,

F(s ∧ τ R
n , Xn(s ∧ τ R

n )) = F(0, x) +
∫ s

0
1[0,s∧τ R

n ](r)Ft(r, X
n(r))dr

+
∫ s

0
1[0,s∧τ R

n ](r)
〈
A∗
nDF(r, Xn(r)), Xn(r)

〉
dr
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+
∫ s

0
1[0,s∧τ R

n ](r)
〈
DF(r, Xn(r)), f (r)

〉
dr

+ 1

2

∫ s

0
1[0,s∧τ R

n ](r)Tr
[(

�(r)Q1/2
) (

�(r)Q1/2
)∗

D2F(r, Xn(r))
]
dr

+
∫ s

0
1[0,s∧τ R

n ](r)
〈
DF(r, Xn(r)),�(r)dWQ(r)

〉
. (1.105)

By the local boundedness of F and its derivatives, it follows that for P-a.e. ω all the
integrands of the deterministic integrals in (1.105) are dominated for n ∈ N by inte-
grable functions. Regarding the term containing A∗

nDF(r, Xn(r)), recall from (B.11)
that An = Jn A are uniformly bounded as linear operators from D(A) (endowed with
the graph norm) to H . Moreover, thanks to (1.104), (1.44) and the continuity of F
and its derivatives, we know that these integrands converge to the corresponding ones
in (1.103) (with τR instead of τ ) on [0, s], P-a.s. We can thus conclude, by using the
Lebesgue dominated convergence theorem, that the deterministic integrals in (1.105)
converge to their counterparts in (1.103).

To justify the convergence of the stochastic integral we observe that, with

In :=
∫ s

0
1[0,s∧τ R

n ](r)
〈
DF(r, Xn(r)),�(r)dWQ(r)

〉
,

I :=
∫ s

0
1[0,s∧τ R ](r)

〈
DF(r, X (r)),�(r)dWQ(r)

〉
,

we have

E |In − I |2

≤
∫ s

0
E‖�(r)‖2L2(�0,H)

∣∣∣1[0,s∧τ R
n ](r)DF(r, Xn(r)) − 1[0,s∧τ R ](r)DF(r, X (r))

∣∣∣2 dr → 0

as n → +∞ by the dominated convergence theorem. Therefore, up to a subsequence,
we have limn→+∞ In = I , P-a.s.

It now remains to let R → +∞ to obtain the claim. �

Proposition 1.165 Let b and σ satisfy Hypothesis 1.125 and let a : [t, T ] → � be
a progressively measurable process. Let X (·) be the unique mild solution of (1.30)
such that X (0) = x ∈ H. Consider F : [0, T ] × H → R. Assume that F and its
derivatives Ft , DF, D2F are continuous on [0, T ] × H. Suppose that DF : [0, T ] ×
H → D(A∗) and that A∗DF is continuous on [0, T ] × H. Moreover, suppose that
there exist C ≥ 0, N ≥ 0 such that

|F(s, x)| + |DF(s, x)| + |Ft (s, x)| + ‖D2F(s, x)‖
+ |A∗DF(s, x)| ≤ C(1 + |x |)N (1.106)

for all x ∈ H, s ∈ [0, T ]. Let τ be an Fs -stopping time. Then:
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(i) For P-a.e. ω,

F(s ∧ τ , X (s ∧ τ )) = F(0, x) +
∫ s∧τ

0
Ft (r, X (r))dr

+
∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
dr +

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 dr

+ 1

2

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q1/2

) (
σ(r, X (r), a(r))Q1/2

)∗
D2F(r, X (r))

]
dr

+
∫ s∧τ

0

〈
DF(r, X (r)), σ(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.107)

(ii) Let η be a real process solving

{
dη(s) = b̃(s)ds
η(0) = η0 ∈ R,

where b̃ : [0, T ] → R is bounded and progressively measurable. Then, for
P-a.e. ω,

F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ ) = F(0, x)η0 +
∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+
∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
η(r)dr +

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr

+
∫ s∧τ

0

〈
DF(r, X (r))η(r), σ(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.108)

In particular, for s ∈ [0, T ],
E [F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ )] = F(0, x)η0 + E

∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+ E

∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
η(r)dr + E

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2
E

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

)(
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr.

(1.109)

Proof Part (i) follows directly from Proposition 1.164 applied with f (s) :=
b(s, a(s), X (s)) and �(s) := σ(s, a(s), X (s)), s ∈ [0, T ], by noticing that, thanks
to (1.33), (1.34) and (1.37), we have f ∈ Mp

μ (0, T ; H) and � ∈ N p
Q(0, T ; H) for

every p ≥ 1.
Part (i i) is a corollary of (i). We introduce the Hilbert space Ĥ := H × R (with

the usual inner product), and set

Â =
(
A
0

)
, b̂ =

(
b
b̃

)
, σ̂ =

(
σ 0
0 0

)
.

Then the process
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X̂(s) =
(
X (s)
η(s)

)

is the mild solution of the SDE⎧⎪⎪⎨
⎪⎪⎩
d X̂(s) =

(
Â X̂(s) + b̂(s, X̂(s), a(s))

)
ds + σ̂(s, X̂(s), a(s))dWQ(s)

X̂(0) =
(
x
η0

)
.

Therefore, (1.108) follows from (1.107) applied to the function F̂(s, x̂) = F(s, x)η0,
where x̂ = (x, η0). Taking expectation in (1.108) we obtain (1.109). �

Proposition 1.166 Let Hypothesis 1.125 be satisfied and A be maximal dissipative.
Let a : [t, T ] → � be a progressively measurable process. Let X (·) be the unique
mild solution of (1.30) such that X (0) = x ∈ H. Let F ∈ C1,2([0, T ] × H) be of the
form F(t, x) = ϕ(t, |x |) for some ϕ(t, r) ∈ C1,2([0, T ] × R), where ϕ(t, ·) is even
and non-decreasing on [0,+∞). Moreover, suppose that there exist C ≥ 0, N ≥ 0
such that

|F(s, x)| + |DF(s, x)| + |Ft (s, x)| + ‖D2F(s, x)‖ ≤ C(1 + |x |)N (1.110)

for all x ∈ H, s ∈ [0, T ]. Let τ be an Fs -stopping time. Then:

(i) For P-a.e. ω,

F(s ∧ τ , X (s ∧ τ )) ≤ F(0, x) +
∫ s∧τ

0

[
Ft (r, X (r)) + 〈b(r, X (r), a(r)), DF(r, X (r))〉

+ 1

2
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

] ]
dr

+
∫ s∧τ

0

〈
DF(r, X (r)), b(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.111)

(ii) If η is as in part (ii) of Proposition 1.165 and η is positive then, for P-a.e. ω,

F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ ) ≤ F(0, x)η0 +
∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+
∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr

+
∫ s∧τ

0

〈
DF(r, X (r))η(r), σ(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.112)

In particular, for s ∈ [0, T ],
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E [F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ )] ≤ F(0, x)η0

+ E

∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+ E

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2
E

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr.

(1.113)

Proof (i) We set, for s ∈ [0, T ], f (s) := b(s, a(s), X (s)) and �(s) := σ(s, a(s),
X (s)) and consider the approximation Xn(·) of X (·) as in Proposition 1.132.
Observe that, thanks to (1.33), (1.34) and (1.37) we have f ∈ Mp

μ (0, T ; H) and
� ∈ N p

Q(0, T ; H) for every p ≥ 1 so the assumptions of Proposition 1.132 are sat-
isfied.

We observe that DF(s, x) = ∂ϕ
∂r (s, |x |) x

|x | and, since ϕ(s, ·) is non-decreasing on
[0,+∞), ∂ϕ

∂r (s, r) ≥ 0. Therefore, since A, and thus An , is dissipative,

〈
AnX

n(s), DF(r, Xn(s))
〉 = ∂ϕ

∂r
(s, |Xn(s)|) 1

|Xn(s)|
〈
AnX

n(s), Xn(s)
〉 ≤ 0

(1.114)
for every s ≥ 0.

Hence, defining for any R > |x | the stopping times τ R
n as in Proposition 1.164,

applying Itô’s formula for Xn(·) and using (1.114), we obtain

F(s ∧ τ R
n , Xn(s ∧ τ R

n )) = F(0, x) +
∫ s∧τ R

n

0

[
Ft (r, X

n(r)) + 〈
An X

n(r), DF(r, Xn(r))
〉

+ 〈
f (r), DF(r, Xn(r))

〉 + 1

2
Tr

[(
�(r)Q

1
2

) (
�(r)Q

1
2

)∗
D2F(r, Xn(r))

] ]
dr

+
∫ s∧τ R

n

0

〈
DF(r, Xn(r)), b(r, Xn(r), a(r))dWQ(r)

〉

≤ F(0, x) +
∫ s∧τ R

n

0

[
Ft (r, X

n(r)) + 〈
f (r), DF(r, Xn(r))

〉
+ 1

2
Tr

[(
�(r)Q

1
2

) (
�(r)Q

1
2

)∗
D2F(r, Xn(r))

] ]
dr

+
∫ s∧τ R

n

0

〈
DF(r, Xn(r)), b(r, Xn(r), a(r))dWQ(r)

〉
. (1.115)

It remains to pass to the limit as n → +∞ and R → +∞ in (1.115). This is done
following the same arguments as in the proof of Proposition 1.164.

(i i) The proof combines the proof of (i) with the arguments used in the proof of
Proposition 1.165-(i i). �
Remark 1.167 Propositions 1.165 and 1.166 are used toworkwith viscosity solution
test functions in Chap.3. In particular, parts (ii) of them are useful when discount
factors are present (see e.g. Lemma3.65). �
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The next two non-standard versions of Dynkin’s formula will be used to prove
verification theorems in Chaps. 4 and 5.

Proposition 1.168 Let Q = I . Assume that Hypothesis 1.149 is satisfied. Assume
that there exists λ ∈ R, λ ∈ �(A) such that (λI − A)−1b : [0, T ] × H × � → H is
measurable. Suppose moreover that there exists a C > 0 such that, for all (t, x, a) ∈
[0, T ] × H × �, { |(λI − A)−1b(t, x, a)| ≤ C(1 + |x |)

‖σ(t, x, a)‖L(�,H) ≤ C(1 + |x |). (1.116)

Fix a�-valued progressively measurable process a(·). Let X be the uniquemild solu-
tion of (1.74) described in Theorem 1.152 such that X (0) = x ∈ H. Let F : [0, T ] ×
H → R be such that F and its derivatives Ft , DF, D2F are continuous in [0, T ] ×
H. Suppose that DF : [0, T ] × H → D(A∗), that A∗DF is continuous in
[0, T ] × H, that D2F : [0, T ] × H → L1(H) is continuous, and that there exist
C > 0 and N ≥ 1 such that

|F(s, x)| + |DF(s, x)| + |Ft (s, x)| + ‖D2F(s, x)‖L1(H)

+ |A∗DF(s, x)| ≤ C(1 + |x |)N . (1.117)

Then, for any s ∈ [0, T ],

E [F(s, X (s))] = F(0, x) + E

∫ s

0
Ft (r, X (r))dr + E

∫ s

0

〈
A∗DF(r, X (r)), X (r)

〉
dr

+ E

∫ s

0

〈
(λI − A∗)DF(r, X (r)), (λI − A)−1b(r, X (r), a(r))

〉
dr

+ 1

2
E

∫ s

0
Tr

[
σ(r, X (r), a(r))σ(r, X (r), a(r))∗D2F(r, X (r))

]
dr. (1.118)

Proof We approximate the process X (·) by the processes Xk(·) from Lemma 1.154.
Observe that, thanks to Hypothesis 1.149 and to (1.80), the processes r→e

1
k Ab(r,

X (r), a(r)) and r→e
1
k Aσ(r, X (r), a(r)) belong respectively to Mp

μ (0, T ; H) and
N p

I (0, T ; H) for all p ≥ 1. Thus we can apply Proposition 1.164 obtaining, for
s ∈ [0, T ],

E
[
F(s, Xk(s))

] = F(0, x) +
∫ s

0
E Ft (r, X

k(r))dr

+
∫ s

0
E

〈
A∗DF(r, Xk(r)), Xk(r)

〉
dr +

∫ s

0
E

〈
DF(r, Xk(r)), e

1
k Ab(r)

〉
dr

+ 1

2

∫ s

0
ETr

[(
e

1
k Aσ(r)Pk

) (
e

1
k Aσ(r)Pk

)∗
D2F(r, Xk(r))

]
dr,

(1.119)
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where we use the notation b(r) := b(r, X (r), a(r)), σ(r) := σ(r, X (r), a(r)). The
claim will follow if we can pass to the limit as k → +∞ in each term of this expres-
sion. We will only show how to prove the convergence of the last two terms since
the arguments for the other terms are similar and simpler.

Using (1.80), (1.86), (1.87) and the dominated convergence theorem it is easy to
see that

lim
k→∞ |X (·) − Xk(·)|M2

μ(0,T ;H) = 0.

Therefore we can find a subsequence, still denoted by Xk(·), that converges to X (·)
dt ⊗ P-a.e.

Using the assumptions it is obvious that

〈
DF(r, Xk(r)), e

1
k Ab(r)

〉
=

〈
(λI − A∗)DF(r, Xk(r)), e

1
k A(λI − A)−1b(r)

〉
→ 〈

(λI − A∗)DF(r, X (r)), (λI − A)−1b(r)
〉

dt ⊗ P − a.e.

as k → +∞. Moreover, thanks to (1.80), (1.86), (1.116) and (1.117),

∫ s

0
E

∣∣∣〈(λI − A∗)DF(r, Xk(r)), e
1
k A(λI − A)−1b(r)

〉∣∣∣2 dr
≤ C1

∫ s

0
E

[(
1 + |Xk(r)|2N ) (

1 + |X (r)|2)] dr ≤ C2

for some C1 and C2 independent of k. Similarly we obtain

∫ s

0
E

∣∣〈(λI − A∗)DF(r, X (r)), (λI − A)−1b(r)
〉∣∣2 dr ≤ C3

for some C3. Therefore it follows from Lemma 1.51 that

lim
k→+∞

∫ s

0
E

〈
DF(r, Xk(r)), e

1
k Ab(r)

〉
dr

=
∫ s

0
E

〈
(λI − A∗)DF(r, X (r)), (λI − A)−1b(r)

〉
dr.

Regarding the last term in (1.119),

Tr
[
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗D2F(r, Xk(r))

]
− Tr

[
σ(r)σ(r)∗D2F(r, X (r))

]
= I1 + I2 := Tr

[
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗

(
D2F(r, Xk(r)) − D2F(r, X (r))

)]
+ Tr

[(
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗ − σ(r)σ(r)∗

)
D2F(r, X (r))

]
.
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By Proposition B.26, (1.116) and the assumptions for D2F we have

|I1| ≤ C4(1 + |X (r)|)2‖D2F(r, Xk(r)) − D2F(r, X (r))‖L1(H) → 0 as k → +∞

dt ⊗ P-a.e. Let {e1, e2, ...} be an orthonormal basis of eigenvectors of D2F(r, X (r))
and λ1,λ2, ... be the corresponding eigenvalues. Then

Tr
[
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗D2F(r, X (r))

]

=
∞∑
n=1

λn

∣∣∣Pkσ(r)∗e
1
k A

∗
en

∣∣∣2
�

→
∞∑
n=1

λn

∣∣σ(r)∗en
∣∣2
�

= Tr
[
σ(r)σ(r)∗D2F(r, X (r))

]
as k → +∞

dt ⊗ P-a.e. Therefore limk→+∞(I1 + I2) = 0 dt ⊗ P-a.e. Since, by (1.80), (1.86),
(1.116) and (1.117), we also have

∫ s

0
E |I1 + I2|2dr ≤ C5

for some constant C5 independent of k, the convergence of the last term in (1.119)
now follows from Lemma 1.51. �

Proposition 1.169 Let Hypotheses 1.143 and 1.145 be satisfied and let q ≥ 2.
Consider λ ∈ R such that (λI − A) is invertible and (λI − A)−1 ∈ L(H). Assume
that (λI − A)−1a2(·) ∈ M1

μ(0, T ; H). Let X be the unique mild solution of (1.67)
described in Proposition 1.147 such that X (0) = x ∈ H. Let F : [0, T ] × H → R

be such that F and its derivatives Ft , DF, D2F are continuous in [0, T ] × H.
Suppose that DF : [0, T ] × H → D(A∗), A∗DF is continuous in [0, T ] × H,
D2F : [0, T ] × H → L1(H) is continuous and there exists a C > 0 such that
(1.117) holds with N = 0. Then, for any s ∈ [0, T ],

E [F(s, X (s))] = F(0, x) + E

∫ s

0
Ft (r, X (r))dr

+ E

∫ s

0

〈
A∗DF(r, X (r)), X (r)

〉
dr + E

∫ s

0
〈DF(r, X (r)), b0(r, X (r), a1(r))〉 dr

+ E

∫ s

0

〈
(λI − A∗)DF(r, X (r)), (λI − A)−1a2(r)

〉
dr

+ 1

2
E

∫ s

0
Tr

[
σQσ∗D2F(r, X (r))

]
dr.

Proof We approximate X using the processes Xk defined in Lemma 1.156. It is
immediate to see that ψk ∈ Mp

μ (0, T ; H) and σ P̃k ∈ N p
Q(0, T ; H) for all p ≥ 1 so

we can apply Proposition 1.164 obtaining for every s ∈ [0, T ],
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E

[
F(s, Xk(s))

]
= F(0, x) + E

∫ s

0
Ft (r, X

k(r))dr + E

∫ s

0

〈
A∗DF(r, Xk(r)), Xk(r)

〉
dr

+ E

∫ s

0
1Bk (r, ω)

〈
DF(r, Xk(r)), b0(r, X (r), a1(r))

〉
dr

+ E

∫ s

0
1Dmk

(r, ω)
〈
(λI − A∗)DF(r, Xk(r)), e

1
k A(λI − A)−1a2(r)

〉
dr

+ 1

2
E

∫ s

0
Tr

[
(σQ1/2Pk)(σQ1/2Pk)∗D2F(r, Xk(r))

]
dr, (1.120)

where Bk , Dmk and Pk are introduced in Lemma 1.156 and in the paragraph before
it.

We need to check the convergence of each term of this expression. Using parts (i)
and (ii) of Lemma 1.156 we have

lim
k→∞ |X (·) − Xk(·)|M1

μ(0,T ;H) = 0.

Therefore we can find a subsequence of Xk , still denoted by Xk , that converges
dt ⊗ P-a.e. to X . The proof proceeds using the same arguments (and even simpler)
as those in the proof of Proposition 1.169. We only look at the two middle terms of
the right-hand side of (1.120) that are a little different. We observe that

∣∣∣∣E
∫ s

0

〈
(λI − A∗)DF(r, Xk(r)),

(
1 − 1Dmk

(r,ω)e
1
k A

)
(λI − A)−1a2(r)

〉
dr

∣∣∣∣
converges to zero thanks to the dominated convergence (recall that, by assumption,
(1.117) holds with N = 0). Regarding the fourth term observe that

1Bk (r,ω)
〈
DF(r, Xk(r)), b0(r, X (r), a1(r))

〉
converges to

〈DF(r, X (r)), b0(r, X (r), a1(r))〉

dt ⊗ P-a.e. as k → +∞. Moreover, since DF is bounded, Hypothesis 1.145-(i)
implies

∣∣1Bk (r,ω)
〈
DF(r, Xk(r)), b0(r, X (r), a1(r))

〉∣∣ ≤ C f (r)(1 + |X (r)|)

for all k ∈ N. Thus the result follows by the dominated convergence theorem. �

1.8 Bibliographical Notes

Section1.1 contains elements of basic probability and measure theory. Classical ref-
erences include, for example, [18, 58, 61, 267, 370, 478, 520].We refer in particular
to [58, 61, 267, 370] for the general theory of measure and probability (Sect. 1.1.1)
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and to [58, 61, 267, 520] for results on measurability (Sects. 1.1.2 and 1.1.3). For
the Bochner integral and the integration of Banach-valued functions (Sect. 1.1.3),
the reader can consult [190, 191, 194, 397]; some results, useful from the stochastic
calculus perspective are contained in [180]. For Sects. 1.1.4 and 1.1.5 conditional
expectation for Banach-valued random variables the reader can refer to [180, 356,
370, 478, 572]. Gaussian measure in Hilbert spaces (Sect. 1.1.6) and Fourier trans-
form are nicely introduced in [153, 180] and a more extended study of the subject is
contained in [391].

Generalities about stochastic processes,martingales and stopping times inSect. 1.2
can be found in many different books, e.g. [356, 372, 384, 447–449, 503, 508, 572],
while for Hilbert-valued martingales (Sect. 1.2.2) the reader may consult [180, 294,
487]. For standard Wiener and Q-Wiener processes and related results we refer to
[124, 180, 294, 372, 447, 448, 452]. The material of Sect. 1.2.4 is based on [180].
Definition 1.92, which not contained in the standard literature, is introduced here
because it is useful to study stochastic control problems. The presentation of Lemma
1.94 is based on [372, 513]. The material of Sect. 1.2.5 is loosely based on [180,
294, 372].

The material of Sect. 1.3 is based on [177, 180, 294] (see also [124, 491]). These
books present the theory in Hilbert spaces while [447, 448] (see also [192]) present
the Banach space case.

The presentation of Sect. 1.4 on solutions of stochastic differential equations in
Hilbert spaces is also based on [180, 294]. In particular, [180] is a standard reference
in the theory. Other references on strong andmild solutions are, for example, in [124,
177, 413] while a good introduction to variational solutions is in [124, 387, 413,
491, 519]. The reader is also referred to [180] for more on weak mild solutions.
Section1.4.4, containing some results about uniqueness in law, uses the approach
of [471]. For a different approach to weak uniqueness based on the theorem of
Yamada–Watanabe, we refer the reader to [491], Appendix E.

Section1.5 contains existence and uniqueness results for stochastic differential
equations with special unbounded terms and cylindrical additive noise. They are
more or less common knowledge, however we presented proofs since no complete
references seem to be available in the literature.

Classical results on transition semigroups (Sect. 1.6) can be found in [180]. The
statements here are a little modified and extended so that they may be used in our
applications to optimal control, mainly in Chap.4.

Section1.7 contains various versions of Itô’s andDynkin’s formulae (Propositions
1.164–1.166) in connection with mild solutions for functions that have properties of
test functions used in the definition of a viscosity solution (Definition3.32). Such
results have been known and used in the viscosity solution literature, however com-
plete proofs are available only in [374]. The statements here are slightlymore general
than those in [374] andwe presented proofs for the reader’s convenience. The last two
results of Sect. 1.7 (Propositions 1.168 and 1.169) are used to prove the verification
theorems of Sects. 4.8 and 5.5. They have been used in the literature (e.g. in [306])
but without complete proofs, hence we provide them for completeness. We finally
recall that Itô’s formula related to variational solutions of linear stochastic parabolic
equations is proved in [467].
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