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Preface

The main objective of this book is to give an overview of the theory of Hamilton–
Jacobi–Bellman (HJB) partial differential equations (PDEs) in infinite-dimensional
Hilbert spaces and its applications to stochastic optimal control of
infinite-dimensional processes and related fields. Both areas have developed very
rapidly in the last few decades. While there exist several excellent monographs on
this subject in finite-dimensional spaces (see e.g., [263, 264, 385, 453, 468, 490,
576]), much less has been written in infinite-dimensional spaces. A good account
of the infinite-dimensional case in the deterministic context can be found in [404]
(see also [562] on optimal control of deterministic PDEs). Other books that touch
on the subject are [29, 179, 468]. We attempt to fill this gap in the literature.
Infinite-dimensional diffusion processes appear naturally and are used to model
phenomena in physics, biology, chemistry, economics, mathematical finance,
engineering, and many other areas (see e.g., [124, 177, 180, 372, 569]). This book
investigates the PDE approach to their stochastic optimal control; however,
infinite-dimensional PDEs can also be used to study other properties of such pro-
cesses as large deviations, invariant measures, stochastic viability, stochastic dif-
ferential games for infinite-dimensional diffusions, etc. (see [86, 177, 179, 249, 251,
261, 465, 467, 542, 544]).

To illustrate the main theme of the book, let us begin with a model distributed
parameter stochastic optimal control problem. We want to control a process (called
the state) given by an abstract stochastic differential equation in a real, separable
Hilbert space H

dXðsÞ ¼ ðAXðsÞþ bðs;XðsÞ; aðsÞÞÞdsþ rðs;XðsÞ; aðsÞÞdWðsÞ; s[ t� 0
XðtÞ ¼ x 2 H;

�

where A is the generator of a C0 semigroup in H, b; r are some functions, and W
is a so-called Q-Wiener process1 in H. The functions að�Þ, called controls, are

1Q is a suitable self-adjoint positive operator in H, the covariance operator for W .
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stochastic processes with values in some metric space K, which satisfy certain
measurability properties. The above abstract stochastic differential equation is very
general and includes various semilinear stochastic PDEs, as well as other equations
which can be rewritten as stochastic functional evolution equations, for instance,
stochastic differential delay equations. In a most typical optimal control problem we
want to find a control að�Þ, called optimal, which minimizes a cost functional

Jðt; x; að�ÞÞ ¼ E

Z T

t
lðs;XðsÞ; aðsÞÞdsþ gðXðTÞÞ

� �

(for some T [ t) among all admissible controls for some functions
l : ½0; T� � H � K ! R, g : H ! R.

The dynamic programming approach to the above problem is based on studying
the properties of the so-called value function

Vðt; xÞ ¼ inf
að�Þ

Jðt; x; að�ÞÞ

and characterizing it as a solution of a fully nonlinear PDE, the associated HJB
equation. Since the state XðsÞ evolves in the infinite-dimensional space H, this PDE
is defined in ½0; T � � H. The link between the value function V and the HJB
equation is established by the Bellman principle of optimality known as the
dynamic programming principle (DPP),

V t; xð Þ ¼ inf
að�Þ

E

Z g

t
l s;X sð Þ; a sð Þð ÞdsþV g;X gð Þð Þ

� �
; for all g 2 ½t; T�:

Heuristically, the DPP can be used to define a two-parameter nonlinear evolution
system and the associated HJB equation

Vt þ Ax;DVh iþ infa2Kf12 Tr ðrðt; x; aÞQ1
2Þðrðt; x; aÞQ1

2Þ�D2V
h i

þ bðt; x; aÞ;DVh iþ lðt; x; aÞg ¼ 0;
VðT ; xÞ ¼ gðxÞ

8><
>:

ð1Þ

is its generating equation. Such a PDE is called infinite-dimensional or a PDE in
infinitely many variables. We also call it unbounded since it has a term with an
unbounded operator A which is well defined only on the domain of A. Other terms
may also be undefined for some values of DV and D2V , the Fréchet derivatives of
V , which we may identify with elements of H and with bounded, self-adjoint
operators in H respectively. In particular, the term Tr½ðrQ1

2ÞðrQ1
2Þ�D2V � is well

defined only if ðrQ1
2ÞðrQ1

2Þ�D2V is of trace class.
The main idea is to use the HJB equation to study the properties of the value

function, find conditions for optimality, obtain formulas for synthesis of optimal

viii Preface



feedback controls, etc. This approach turned out to be very successful for
finite-dimensional problems because of its clarity and simplicity and thanks to the
developments of the theory of fully nonlinear elliptic and parabolic PDEs, in par-
ticular the introduction of the notion of a viscosity solution and advances in reg-
ularity theory. However, even there many open questions remain, especially if the
HJB equations are degenerate. We hope the dynamic programming approach will
be equally valuable for infinite-dimensional problems even though a complete
theory is not available yet.

Equation (1) is an example of a fully nonlinear second-order PDE of (degen-
erate) parabolic type. In this book, we will deal with more general and different
versions of such equations and their degenerate elliptic counterparts. If K is a
singleton, (1) is just a terminal value problem for a linear Kolmogorov equation. If
K is not a singleton but the diffusion coefficient r is independent of the control
parameter a, (1) is semilinear. The theory of linear equations (and some special
semilinear equations) has been studied by many authors and can be found in the
books [29, 106, 179, 583]. The emphasis of this book is on semilinear and fully
nonlinear equations.

There are several notions of solution applicable to PDEs in Hilbert spaces which
are discussed in this book: classical solutions, strong solutions, mild solutions in the
space of continuous functions, solutions in L2ðlÞ, and viscosity solutions. Classical
solutions are the most regular ones. This notion of solution requires C1;2 regularity
in the Fréchet sense and imposes additional conditions so that all terms in the
equation make sense pointwise for ðt; xÞ 2 ½0; T � � H. When classical solutions
exist, we can apply the classical dynamic programming approach to obtain verifi-
cation theorems and the synthesis of optimal feedback controls. Unfortunately, in
almost all interesting cases it is not possible to find such solutions; however, they
are very useful as a theoretical tool in the theory. The notions of strong solutions,
mild solutions in the space of continuous functions, and solutions in L2ðlÞ are
introduced and studied only for semilinear equations and define solutions which
have at least first derivative (in some suitable sense). Verification theorems and
synthesis of optimal feedback controls can still be developed within their frame-
work. The notion of viscosity solutions is the most general and applies to fully
nonlinear equations; however, at the current stage there are no results on verifi-
cation theorems and synthesis of optimal feedback controls.

Infinite-dimensional problems present unique challenges, and among them are
the lack of local compactness and no equivalent of Lebesgue measure. This means
that standard finite-dimensional elliptic and parabolic techniques which are based
on measure theory cannot be carried over to the infinite-dimensional case.
Moreover, the equations are mostly degenerate and contain unbounded terms which
are singular. So the methods to find regular solutions to PDEs in infinite dimension
like ours tend to be global and are based on semigroup theory, smoothing properties
of transition semigroups (like the Ornstein–Uhlenbeck semigroups), fixed point
techniques, and stochastic analysis. These methods are mostly restricted to equa-
tions of semilinear type. On the other hand, the notion of a viscosity solution is
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perfectly suited for fully nonlinear equations. It is local, and it does not require any
regularity of solutions except continuity. As in finite dimension, it is based on a
maximum principle through the idea of “differentiation by parts,” i.e., replacing the
nonexisting derivatives of viscosity subsolutions (respectively, supersolutions) by
the derivatives of smooth test functions at points where their graphs touch the
graphs of subsolutions (respectively, supersolutions) from above (respectively,
below). However, as the readers will see, this idea has to be carried out very
carefully in infinite dimension.

This book includes chapters on the most important topics in HJB equations and
the DPP approach to infinite-dimensional stochastic optimal control.

Chapter 1 contains the basic material on infinite-dimensional stochastic calculus
which is needed in subsequent chapters. It is, however, not intended to be an intro-
duction to stochastic calculus, which the reader is expected to have some familiarity
with. Chapter 1 is included to make the book more self-contained. Most of the results
presented there are well known; hence, we only provide references where the reader
can find proofs and more information about concepts, examples, etc. We provide proofs
only in cases where we could not find good references in the literature.

In Chap. 2, we introduce a general stochastic optimal control problem and prove a
key result in the theory, namely the dynamic programming principle. We formulate
it in an abstract and general form so that it can be used in many cases without the
need to prove it again. Solutions of stochastic PDEs must be interpreted in various
ways (strong, mild, variational, etc.), and our formulation of the DPP tries to capture
this phenomenon. Our proof of the DPP is based on standard ideas; however, we
have tried to avoid heavy probabilistic methods regarding weak uniqueness of
solutions of stochastic differential equations. Our proof is thus more analytical.

We also introduce many examples of stochastic optimal control problems which
can be studied in the framework of the approach presented in the book. They should
give the readers an idea of the range and applicability of the material.

Chapter 3 is devoted to the theory of viscosity solutions. The reader should keep
in mind the following principle when it comes to unbounded PDEs in infinite
dimension: There is no single definition of viscosity solutions that applies to all
equations. This is due to the fact that there are many different PDEs which contain
different unbounded operators and terms which are continuous in various norms.
Also the solutions have to be continuous with respect to weaker topologies.
However, the main idea of the notion of viscosity solutions is always the same as
we described before. What changes is the choice of test functions, spaces,
topologies, and the interpretation of various terms in the equation. In this book, we
focus on the notion of a so-called B-continuous viscosity solution which was
introduced by Crandall and Lions in [141, 142] for first-order equations and later
adapted to second-order equations in [539]. The key result in the theory is the
comparison principle, which is very technical. Its main component is the so-called
maximum principle for semicontinuous functions. The proof of such a result in
finite dimension was first obtained in [370] and was later simplified and generalized
in [137–139, 360]. It is heavily based on measure theory and is not applicable to
infinite dimension. Thus, the theory uses a finite-dimensional reduction technique
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introduced by Lions in [413]. It restricts the class of equations which can be
considered; in particular, they have to be highly degenerated in the second-order
terms. We present three techniques to obtain the existence of viscosity solutions.
The first and most important for this book is the DPP and the stochastic optimal
control interpretation, showing directly that the value function is a viscosity solu-
tion. This technique applies to HJB equations. The other techniques are
finite-dimensional approximations and Perron’s method. Both can be applied to
more general equations, for instance, Isaacs equations associated to two-player,
zero-sum stochastic differential games; however, they have limitations of their own.
Moreover, we discuss other topics in the theory of viscosity solutions such as
consistency and singular perturbations. Several special equations are also studied in
this book because of their importance and because they are good examples to show
how the definition of viscosity solutions and some techniques can be adjusted to
particular cases. They are the HJB equations for the optimal control of the Duncan–
Mortensen–Zakai equation, stochastic Navier–Stokes equations, and stochastic
boundary control. In particular, the last one also contains ideas on how to handle
HJB equations which may be nondegenerate, for instance, if Q is not of trace class.
Finally, we present applications to the infinite-dimensional Black–Scholes–
Barenblatt equations of mathematical finance.

Chapter 4 is devoted to the theory of mild and strong solutions in spaces of
continuous functions through fixed point techniques based on the smoothing
properties of transition semigroups such as Ornstein–Uhlenbeck semigroups. This
theory applies only to semilinear equations, i.e., when the coefficient r does not
depend on the control parameter a, and historically it was the first approach
introduced in the literature. The theory was initiated by Barbu and Da Prato [29]
and later improved and developed in various papers, see e.g., [89, 90, 105, 107,
302, 307, 308, 311].

Chapter 4 is divided into four main parts. In the first part (Sects. 4.2 and 4.3), we
present the basic tools needed for the analysis: the theory of generalized gradients
and the smoothing of transition semigroups. In the second part (Sects. 4.4–4.7), we
develop the theory for a general type of semilinear HJB equation (parabolic and
elliptic) without connection with optimal control problems. The main idea behind
this approach is the following. Consider the HJB equation (1) in the semilinear case
when the coefficient r is time-independent:

Vt þAV þ infa2Kf bðt; x; aÞ;DVh iþ lðt; x; aÞg ¼ 0;
VðT ; xÞ ¼ gðxÞ;

�
ð2Þ

where A is the linear operator

Au ¼ Ax;Duh iþ 1
2
Tr ðrðxÞQ1

2ÞðrðxÞQ1
2Þ�D2u

h i
:
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If such an operator generates a semigroup etA then, by the variation of constants
formula, one can rewrite Eq. (2) in the integral form as

Vðt; xÞ ¼ eðT�tÞAgðxÞþ
Z T

t
eðT�sÞAFðs; �Þ

� �
ðxÞds;

where Fðs; xÞ :¼ infa2K bðs; x; aÞ;DVh iþ lðs; x; aÞf g. The solution of this integral
equation is called a mild solution and is obtained by fixed point techniques. To
define it, the solution must at least have a first-order spatial Gâteaux derivative,
possibly only in some directions needed to give sense to the nonlinear term, the
so-called G-derivative. Thus, one needs suitable smoothing properties of the
semigroup etA (which is the Ornstein–Uhlenbeck semigroup in the simplest case).
Since this semigroup is not strongly continuous, except in very special cases, one
needs to use the theory of p-semigroups introduced in [493] or that of weakly
continuous (or K-continuous) semigroups [101, 108, 301]. Sects. 4.4 and 4.5
consider a general type of operator A, possibly depending on t, while Sects. 4.6 and
4.7 focus on the case when A is of Ornstein–Uhlenbeck type, where stronger results
can be proved.

In the third part (Sect. 4.8), we develop a connection with stochastic optimal
control problems. The fact that mild solutions have a first-order spatial derivative
allows us to give a meaning to formulae for optimal feedbacks. However, the proofs
of the verification theorems and optimal feedback formulae cannot be done
straightforwardly as one needs to apply Itô’s formula in infinite dimension, which
requires smooth functions. For this reason (following [307]), we introduce the
notion of a strong solution of the HJB equation (2) as a suitable limit of classical
solutions and prove that any mild solution is also a strong solution.

The fourth and last part of the chapter (Sects. 4.9 and 4.10) deals with some
special equations. In Sect. 4.9, we show how the techniques developed in the
previous sections can be adapted to HJB equations and analysis of optimal control
problems for the stochastic Burgers equation, stochastic Navier–Stokes equations
and stochastic reaction diffusion equations. In Sect. 4.10, we discuss some equa-
tions for which explicit representations of the solutions can be found. Such cases
are always of interest in applications.

Chapter 5 is devoted to a relatively new and promising theory of mild and strong
solutions in spaces of L2 functions with respect to a suitable measure l (see [3, 4,
125, 299]). The contents of this chapter are similar to the previous one as the main
ideas behind the definition of mild and strong solutions of HJB equations are the
same. The difference is in the fact that the reference space is not the space of
continuous functions but the space of square-integrable functions with respect to the
measure l. The results are similar: existence and uniqueness of solutions of HJB
equations through fixed point arguments, verification theorem through approxi-
mations, and existence of optimal feedbacks. The advantage of this approach is that
the results require weaker assumptions on the data, thus enlarging the range of
possible applications, including the control of delay equations; however, at a cost of
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weaker statements, for example, the first-order spatial derivative is now defined in a
Sobolev weak sense and is not in general a Gâteaux or Fréchet derivative. The main
tools used here are the theory of invariant measures for infinite-dimensional
stochastic differential equations and the properties of transition semigroups in the
space of integrable functions with respect to such measures.

Chapter 6 is devoted to a different and in many respects complementary tech-
nique of Backward Stochastic Differential Equations (BSDEs). The chapter was
written independently and autonomously by M. Fuhrman and G. Tessitore, who are
well-recognized experts in the field. We are grateful for their invaluable contribu-
tion. BSDEs are Itô type equations in which the initial condition is replaced by a
final condition and a new unknown process appears corresponding to a suitable
martingale term. In the nonlinear, finite-dimensional case BSDEs were introduced
in [476] while their direct connection with optimal stochastic control was first
investigated in [212] and [483]. Since then, the general theory of BSDEs has
developed considerably, see [78, 80, 210, 378, 421, 475]. Besides stochastic con-
trol, applications were given to many fields, for instance, to optimal stopping,
stochastic differential games, nonlinear partial differential equations and many
topics related to mathematical finance. Infinite-dimensional BSDEs have also been
considered, see for instance, [130, 285, 331, 351, 477]. The interest for us is that
BSDEs provide an alternative way to represent the value function of an optimal
control problem and consequently to study the corresponding HJB equation and to
solve the control problem. It turns out that the most suitable notion of solution for
the HJB equation is, in this context, that of a mild solution on spaces of continuous
functions but, unlike in Chap. 4, the BSDE method seems particularly adapted to
treating degenerate cases in which the transition semigroup has no smoothing
properties. The price to pay is that normally we need more regular coefficients and a
structural condition (imposing, roughly speaking, that the control acts within the
image of the noise). If these requirements are satisfied, the BSDE techniques are
revealed to be very flexible. In particular, in Chap. 6 we will show how they allow
us to treat both parabolic and elliptic HJB equations (see [77, 286, 352, 436, 478]).
The parabolic case is treated for nonconstant diffusion and Lipschitz nonlinearity,
while the elliptic case is considered for a constant diffusion operator with locally
Lipschitz (with respect to the gradient) nonlinearity and a mild dissipativity
assumption (with respect to the solution). We also report (without proofs) the
results of [286] concerning elliptic HJB equations with nonconstant diffusion, a
globally Lipschitz Hamiltonian and strong dissipativity. A detailed discussion of the
literature on BSDEs in infinite dimension is contained in the bibliographical notes
of Chap. 6.

It is impossible to cover all aspects of the theory of HJB equations in infinite
dimension and its connections to stochastic optimal control. In particular, the theory
of integro-PDEs is an emerging area which is not presented in the book. We do not
discuss first-order equations and extensions to Banach spaces. Equations in the
space of probability measures is another emerging topic. We have chosen a
selection of topics which give a broad overview of the field and enough information
so that the readers can start exploring the subject on their own. There are already
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enough important applications to justify the interest in the subject. The readers
should not be restricted to the boundaries drawn by the book. We hope that this
book will spur interest and research in the field among theoretical and applied
mathematicians, and that it will be useful to all kinds of scientists and researchers
working in areas related to stochastic control.

Suggestions for reading. The readers who are familiar with probability and
stochastic analysis in infinite dimension can skip Chap. 1 and go directly to Chap. 2.
Chapter 2 is needed for the understanding of the other chapters; however, some
material in Sect. 2.3 related to technical details of the proof of the dynamic pro-
gramming principle can be omitted during the first reading. Chaps. 3–6 are to a large
extent independent of each other, and hence the reader can pass from Chap. 2
directly to any of them.

Marseille, France Giorgio Fabbri
Rome, Italy Fausto Gozzi
Atlanta, GA, USA Andrzej Święch
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Chapter 1
Preliminaries on Stochastic Calculus
in Infinite Dimension

1.1 Basic Probability

We recall some basic notions of measure theory and give a short introduction to
random variables and the theory of the Bochner integral.

1.1.1 Probability Spaces, σ-Fields

Definition 1.1 (π-system, σ-field) Consider a set � and denote by P(�) the power
set of �.

(i) A non-empty class of subsets of �, F ⊂ P(�), is called a π-system if it is
closed under finite intersections.

(ii) A class of subsets of �, F ⊂ P(�), is called a σ-field in � if � ∈ F and F
is closed under complements and countable unions.

(iii) A class of subsets of �, F ⊂ P(�), is called a λ-system if:

• � ∈ F ;
• if A, B ∈ F , A ⊂ B, then B \ A ∈ F ;
• if Ai ∈ F , i = 1, 2, ..., Ai ↑ A, then A ∈ F .

If G and F are two σ-fields in � and G ⊂ F , we say that G is a sub-σ-field of
F . Given a class C ⊂ P(�), the smallest σ-field containing C is called the σ-field
generated by C . It is denoted by σ(C ). A σ-field F in � is said to be countably
generated if there exists a countable class of subsetsC ⊂ P(�) such thatσ(C ) = F .

If C ⊂ P(�) and A ⊂ � we define C ∩ A := {B ∩ A : B ∈ C }. We denote by
σA(C ∩ A) the σ-field of subsets of A generated by C ∩ A. It is easy to see that
σA(C ∩ A) = σ(C ) ∩ A (see, for instance, [18], p. 5).
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2 1 Preliminaries on Stochastic Calculus in Infinite Dimension

For A ⊂ � we denote its complement by Ac := � \ A, and for A, B ⊂ � we
denote their symmetric difference by A�B := (A \ B) ∪ (B \ A). We will write
R

+ = [0,+∞), R
+ = [0,+∞) ∪ {+∞}, R = R ∪ {±∞}.

Theorem 1.2 Let G be a π-system and F be a λ-system in some set �, such that
G ⊂ F . Then σ(G ) ⊂ F .

Proof See [370], Theorem 1.1, p. 2. �

Corollary 1.3 Let G be a π-system and F be the smallest family of subsets of �

such that:

• G ⊂ F ;
• if A ∈ F then Ac ∈ F ;
• if Ai ∈ F , Ai ∩ A j = ∅ for i, j = 1, 2, ..., i 	= j , then ∪∞

i=1Ai ∈ F .

Then σ(G ) = F .

Proof Since σ(G ) satisfies the three conditions for F , we obviously have F ⊂
σ(G ). For the opposite inclusion it remains to observe that F is a λ-system. (For a
self-contained proof, see also [180], Proposition 1.4, p. 17.) �

Definition 1.4 (Measurable space) If � is a set and F is a σ-field in �, the pair
(�,F ) is called a measurable space.

Definition 1.5 (Probability measure, probability space) Consider a measurable
space (�,F ).A functionμ : F → [0,+∞) ∪ {+∞} is called ameasureon (�,F )

if μ(∅) = 0, and whenever Ai ∈ F , Ai ∩ A j = ∅ for i, j = 1, 2, ..., i 	= j , then

μ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

μ(Ai ).

The triplet (�,F ,μ) is called a measure space. If μ(�) < +∞ we say that μ is a
boundedmeasure. If� = ⋃∞

n=1 An , where An ∈ F ,μ(An) < +∞, n = 1, 2, ..., we
say that μ is a σ-finite measure. If μ(�) = 1 we say that μ is a probability measure.
We will use the symbol P to denote probability measures. The triplet (�,F , P) is
called a probability space.

Thus a probability measure is a σ-additive function P : F → [0, 1] such that
P(�) = 1.

Given ameasure space (�,F ,μ), we defineN := {F ⊂ � : ∃G ∈ F , F ⊂ G,

μ(G) = 0}. The elements ofN are called μ-null sets. IfN ⊂ F , the measure space
(�,F ,μ) is said to be complete. Theσ-fieldF := σ(F ,N ) is called the completion
ofF (with respect toμ). It is easy to see thatσ(F ,N ) = {A ∪ B : A ∈ F , B ∈ N }.
If G ⊂ F is another σ-field then σ(G ,N ) is called the augmentation of G by the
null sets ofF . The augmentation of G may be different from its completion, as the
latter is just the augmentation of G by the subsets of the sets of measure zero in G .
We also have σ(G ,N ) = {A ⊂ � : A�B ∈ N for some B ∈ G }.
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Let μ, ν be two measures on a measurable space (�,F ). We say that μ is
absolutely continuous with respect to ν (we write μ << ν) if for every A ∈ F such
that ν(A) = 0 we have μ(A) = 0. If μ << ν and ν << μ, we say that the measures
μ and ν are equivalent (we write μ ∼ ν). If there exists a set A ∈ F such that for
every B ∈ F we have μ(B) = μ(A ∩ B), we say that μ is concentrated on the set
A. If μ and ν are concentrated on disjoint sets we say that μ and ν are (mutually)
singular and we write μ ⊥ ν.

Lemma 1.6 Let μ1,μ2 be two bounded measures on a measurable space (�,F ),
and let G be a π-system in � such that � ∈ G and σ(G ) = F . Then μ1 = μ2 if and
only if μ1(A) = μ2(A) for every A ∈ G .

Proof See [370], Lemma 1.17, p. 9. �

Let �t , t ∈ T be a family of sets. We will denote the Cartesian product of the
family �t by ×t∈T �t . If T is finite (T = {1, ..., n}) or countable (T = N), we will
also write �1 × ... × �n , respectively �1 × �2 × .... If each �t is a topological
space, we endow ×t∈T �t with the product topology. If each �t has a σ-fieldFt , we
define the product σ-field ⊗t∈T Ft in ×t∈T �t as the σ-field generated by the one-
dimensional cylinder sets At × (×s 	=t�s

)
. IfT = {1, ..., n} (respectively,T = N)we

will just write ⊗t∈T Ft = F1 ⊗ ... ⊗ Fn (respectively, ⊗t∈T Ft = F1 ⊗ F2 ⊗ ...).
If S is a topological space, the σ-field generated by the open sets of S is called

the Borel σ-field. It will be denoted by B(S). If S is a metric space, unless stated
otherwise, its default σ-field will always be B(S). It is not difficult to see that if
S1, S2, ... are separable metric spaces, then

B(S1 × S2 × ...) = B(S1) ⊗ B(S2) ⊗ ....

If (S, ρ) is a metric space, A ⊂ S, and we consider (A, ρ) as a metric space, then
B(A) = A ∩ B(S). A complete separable metric space is called a Polish space. Also
B(R

+
) = σ(B(R+), {+∞}),B(R) = σ(B(R), {−∞}, {+∞}).

Ameasurable space (�,F ) is called countably determined (orF is called count-
ably determined) if there is a countable set F0 ⊂ F such that any two probability
measures on (�,F ) that agree onF0 must be the same. It follows from Lemma 1.6
that if F is countably generated then F is countably determined. If S is a Polish
space then B(S) is countably generated.

If (�i ,Fi ,μi ), i = 1, ..., n, are measure spaces, their product measure on (�1 ×
... × �n,F1 ⊗ ... ⊗ Fn) is denoted by μ1 ⊗ ... ⊗ μn .

If S is a metric space, a bounded measure μ on (S,B(S)) is called regular if

μ(A) = sup{μ(C) : C ⊂ A,C closed} = inf{μ(U ) : A ⊂ U,U open} ∀A ∈ B(S).

Every bounded measure on (S,B(S)) is regular (see [478], Chap. II, Theorem 1.2).
A bounded measure μ on (S,B(S)) is called tight if for every ε > 0 there exists
a compact set Kε ⊂ S such that μ(S \ Kε) < ε. If S is a Polish space then every
bounded measure on (S,B(S)) is tight (see [478], Chap. II, Theorem 3.2).
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We refer to [58, 61, 267, 370, 478] for more on the general theory of measure
and probability.

1.1.2 Random Variables

Definition 1.7 (Random variable) A measurable map X between two measurable
spaces (�,F ) and (�̃,G ) is a called a random variable. This means that X is a
random variable if X−1(A) ∈ F for every A ∈ G . We write it shortly as X−1(G ) ⊂
F . Sometimes we will just say that X isF/G -measurable.

If �̃ = R (resp. R+) and G is the Borel σ-field B(R) (resp. B(R+)) then X is said
to be a real random variable (resp. positive random variable).

If �, �̃ are topological spaces and F ,G are the Borel σ-fields then X is said to
be Borel measurable.

If (�,F ,μ) is a measure space and X, X1 : � → �̃, we say that X1 is a version
of X if X = X1 μ-a.e.

Given a random variable X : (�,F ) → (�̃,G ) we denote by σ(X) the smallest
sub-σ-field of F that makes X measurable, i.e. σ(X) := X−1(G ). It is called the
σ-field generated by X . Given a set of indices I and a family of random variables
Xi : (�,F ) → (�̃,G ), i ∈ I , the σ-field σ (Xi : i ∈ I ) generated by {Xi }i∈I is the
smallest sub-σ-field of F that makes all the functions Xi : (�,σ (Xi : i ∈ I )) →
(�̃,G ) measurable, i.e. σ (Xi : i ∈ I ) = σ

(
X−1
i (G ) : i ∈ I

)
.

Lemma 1.8 Let (�,F ) be a measurable space. Then:
(i) If (�̃,G ) is a measurable space, X : � → �̃, andC ⊂ G is such that σ(C ) =

G , then X is F/G -measurable if and only if X−1(C ) ⊂ F . Moreover, σ(X) =
σ(X−1(C )).

(ii) If Xn : � → R, n = 1, 2, ..., are random variables, then supn Xn, infn Xn,
lim supn Xn, lim infn Xn are random variables.

(iii) Let Xn : � → S, n = 1, 2, ..., be random variables, where S is a metric
space. Then:

• if S is complete then {ω : Xn(ω) converges} ∈ F ;
• if Xn → X on �, then X is a random variable.

(iv) Let (�i ,Fi ), i = 1, 2, be measurable spaces, and X : �1 × �2 → � be
(F1 ⊗ F2)/F -measurable. Then, for every ω1 ∈ �1, Xω1(·) = X (ω1, ·) isF2/F -
measurable, and, for every ω2 ∈ �2, Xω2(·) = X (·,ω2) isF1/F -measurable. �

Proof See, for instance, [370], Lemmas 1.4, 1.9, 1.10, and [520], Theorem 7.5,
p. 138. �

Theorem 1.9 Let (�,F ) and (�̃,G ) be two measurable spaces and (S, d) a Pol-
ish space. Let X : (�,F ) → (�̃,G ) and φ : (�,F ) → (S,B(S)) be two random
variables. Then φ is measurable as a map from (�,σ(X)) to (S,B(S)) if and only
if there exists a measurable map η : (�̃,G ) → (S,B(S)) such that φ = η ◦ X.
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Proof See [370], Lemma 1.13, p. 7, or [575] Theorem 1.7, p. 5. �
We refer to [58, 267, 370, 520] for more on measurability and for the general

theory of integration.

Definition 1.10 (Borel isomorphism) Let (�,F ) and (�̃,G ) be two measurable
spaces. A bijection f from � onto �̃ is called a Borel isomorphism if f is F/G -
measurable and f −1 is G /F -measurable. We then say that (�,F ) and (�̃,G ) are
Borel isomorphic.

Definition 1.11 (Standardmeasurable space) Ameasurable space (�,F ) is called
standard if it is Borel isomorphic to one of the following spaces:

(i) ({1, .., n},B({1, .., n})),
(ii) (N,B(N)),
(iii)

({0, 1}N,B({0, 1}N)
)
,

where we have the discrete topologies in {1, .., n} and N, and the product topology
in {0, 1}N.
The following theorem collects results that can be found in [478] (Chap. I, Theorems
2.8 and 2.12).

Theorem 1.12 If S is a Polish space, then (S,B(S)) is standard. If a Borel subset of
S is uncountable, then it is Borel isomorphic to {0, 1}N. Two Borel subsets of S are
Borel isomorphic if and only if they have the same cardinality. If (�,F ) is standard
and A ∈ F , then (A,F ∩ A) is standard.

In particular, we have the following result.

Theorem 1.13 If (�,F ) is standard, then it is Borel isomorphic to a closed subset
of [0, 1] (with its induced Borel sigma field).

Definition 1.14 (Simple random variable) Let (�,F ) be a measurable space, and
(S, d) be a metric space (endowed with the Borel σ-field induced by the distance).
A random variable X : (�,F ) → (S,B(S)) is called simple (or a simple function)
if it has a finite number of values.

Lemma 1.15 Let f : (�,F ) → S be a measurable function between a measur-
able space (�,F ) and a separable metric space (S, d) (endowed with the Borel
σ-field induced by the distance). Then there exists a sequence fn : � → S of simple,
F/B(S)-measurable functions, such that d ( f (ω), fn(ω)) is monotonically decreas-
ing to 0 for every ω ∈ �.

Proof See [180], Lemma 1.3, p. 16. �
Lemma 1.16 Let S be a Polish space with metric d. Let (�,F , P) be a complete
probability space and let G1,G2 ⊂ F be two σ-fields with the following property:
for every A ∈ G2 there exists a B ∈ G1 such that P(A�B) = 0. Let f : (�,G2) →
(S,B(S)) be a measurable function. Then there exists a function g : (�,G1) →
(S,B(S)) such that f = g, P-a.e., and simple functions gn : (�,G1) → (S,B(S))

such that d( f (ω), gn(ω)) monotonically decreases to 0, P-a.e.
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Proof The proof follows the lines of the proof of Lemma 1.25, p. 13, in [370].
Step 1: Let us assume first that f = x1A (1A denotes the characteristic function
of the set A) for some A ∈ G2 and x ∈ S. By hypothesis, we can find B ∈ G1 s.t.
P(A�B) = 0 and then the claim is proved if we choose gn ≡ g = x1B . The same
argument holds for a simple function f .
Step 2: For the case of a general f , thanks to Lemma 1.15 we can find a sequence
of simple, G2-measurable functions fn such that d( f (ω), fn(ω)) monotonically
decreases to 0. By Step 1, we can find simple, G1-measurable functions gn such
that fn = gn , P-a.e. Thus the claim follows by taking g(ω) := lim gn(ω) if the limit
exists and g(ω) = s (for some s ∈ S) otherwise. �

Lemma 1.17 Let (�,F ) be a measurable space, and V ⊂ E be two real separable
Banach spaces such that the embedding of V into E is continuous. Then:

(i) B(E) ∩ V ⊂ B(V ) and B(V ) ⊂ B(E).
(ii) If X : � → V is F/B(V )-measurable, then it isF/B(E)-measurable.
(iii) If X : � → E is F/B(E)-measurable, then X · 1{X∈V } is F/B(V )-

measurable.
(iv) X : � → E is F/B(E)-measurable if and only if for every f ∈ E∗, f ◦ X is

F/B(R)-measurable.

Proof The embedding of V into E is continuous, so B(E) ∩ V ⊂ B(V ). Since the
embedding is also one-to-one, it follows from [478], Theorem 3.9, p. 21, thatB(V ) ⊂
B(E), which completes the proof of (i). Parts (i i) and (i i i) are direct consequences
of (i). f (�) is separable because E is separable, so Part (iv) is a particular case of
the Pettis theorem, see [488] Theorem 1.1. �

Lemma 1.18 Let (�,F ) be ameasurable space and (S1, ρ1), (S2, ρ2) be twometric
spaces with S1 separable. Let f : � × S1 → S2 be such that

(i) for each x ∈ S1, the function f (·, x) : � → S2 is F/B(S2)-measurable;
(ii) for each ω ∈ � the function f (ω, ·) : S1 → S2 is continuous.

Then f : � × S1 → S2 isF ⊗ B(S1)/B(S2)-measurable.

Proof See Lemma 4.51, p. 153 of [8]. �

Notation 1.19 If E is a Banach spacewe denote by | · |E its norm.Given twoBanach
spaces E and F , we denote by L(E, F) the Banach space of all continuous linear
operators from E to F . If E = F we will usually write L(E) instead of L(E, F). If
H is a Hilbert space we denote by 〈·, ·〉 its inner product. We will always identify H
with its dual via Riesz representation theorem. If V, H are two real separable Hilbert
spaces, we denote by L2(V, H) the space of Hilbert–Schmidt operators from V to
H (see Appendix B.3). The space L2(V, H) is a real separable Hilbert space with
the inner product 〈·, ·〉2, see Proposition B.25. �

Lemma 1.20 Let (�,F ) be ameasurable space and V, H be real separableHilbert
spaces. Suppose that F : � → L2(V, H) is a map such that for every v ∈ V , F(·)v
isF/B(H)-measurable. Then F is F/B(L2(V, H))-measurable.
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Proof Since L2(V, H) is separable, by Lemma 1.17-(iv) it is enough to show that
for every T ∈ L2(V, H)

ω→〈F(ω), T 〉2 =
+∞∑
k=1

〈F(ω)ek, T ek〉

is F/B(R)-measurable, where {ek} is any orthonormal basis of V . But this is clear
since for every ω

〈F(ω), T 〉2 = lim
n→+∞ FT

n (ω),

where

FT
n (ω) =

n∑
k=1

〈F(ω)ek, T ek〉

and FT
n (ω) is F/B(R)-measurable because it is a finite sum of functions that are

F/B(R)-measurable. �
Let I be an interval in R, E , F be two real Banach spaces, and let E be separable.

If f : I × E → F is Borel measurable then for every t ∈ I the function f (t, ·) :
E → F is Borel measurable (by Lemma 1.8-(iv)).

Assume now that, for all t ∈ I and for somem ≥ 0, f (t, ·) ∈ Bm(E, F) (the space
of Borel measurable functions with polynomial growth m, see Appendix A.2 for the
precise definition). It is not true in general that the function

I → Bm(E, F), t→ f (t, ·)

is Borel measurable. As a counterexample1 one can take the function

[0, 1] × L2(R) → L2(R), (t, x)→St x,

where (St )t≥0 is the semigroup of left translations. Indeed, the map

[0, 1] → L(L2(R)), t→St

is not measurable (see e.g. [180], Sect. 1.2). Since L(L2(R))⊂B1(L2(R), L2(R))

and the norm in L(L2(R)) is equivalent to the one induced by B1(L2(R), L2(R)),
the claim follows in a straightforward way.

On the other hand, we have the following useful result.

Lemma 1.21 Let I and � be two Polish spaces. Let μ be a measure defined on the
Borel σ-field B(I ) and denote by B(I ) the completion of B(I ) with respect to μ.
Let f : I × � → R be Borel measurable and such that for every t ∈ I , f (t, ·) is
bounded from below (respectively, above). Then the function

1This example has been suggested to us by Mauro Rosestolato.
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f : I → R, t→ inf
a∈�

f (t, a) (1.1)

(respectively, f : I → R, t→ supa∈� f (t, a)) is B(I )/B(R)-measurable.2

In particular, if I is an interval in R, E, F are two real Banach spaces with E
separable, if ρ : I × E → F is Borel measurable and, for all t ∈ I and for some
m ≥ 0, ρ(t, ·) ∈ Bm(E, F), then the function

ρ1 : I → R, t→‖ f (t, ·)‖Bm (E,F) (1.2)

is Lebesgue measurable.

Proof The first part is Example 7.4.2 in Volume 2 of [61] (recall that Polish spaces
are Souslin spaces, see [61], Definition 6.6.1, and so I × � is a Souslin space).

For the second claim, observe that since f is Borel measurable, the function

f : I × E → R, f (t, x) := |ρ(t, x)|F
1 + |x |mE

is also Borel measurable (since it is the product of a continuous function with the
composition of a continuous function and a Borel measurable function). The result
thus follows from part one. �

Definition 1.22 (Independence) Consider a probability space (�,F , P). Let I be
a set of indices, and Ci ⊂ F for all i ∈ I . We say that the families Ci , i ∈ I , are
independent if, for every finite subset J of I and every choice of Ai ∈ Ci , (i ∈ J ),
we have

P

(⋂
i∈J

Ai

)
=

∏
i∈J

P(Ai ).

If Ci ⊂ F is, for all i ∈ I , a π-system (resp. σ-field), the definition above gives
in particular the notion of independent π-systems (resp. σ-fields). Random variables
are said to be independent if they generate independent σ-fields. A random variable
X is independent of some σ-field G if σ(X) and G are independent σ-fields.

Lemma 1.23 Consider a probability space (�,F , P). Let Ci ⊂ F be a π-system
for every i ∈ I . If Ci , i ∈ I , are independent, then σ (Ci ) , i ∈ I , are independent.

Proof See [370] Lemma 2.6, p. 27. �

2Note that f is not always Borel measurable, see [61] Volume 2, Exercise 6.10.42(ii), p. 59.
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1.1.3 The Bochner Integral

Throughout this section (�,F ,μ) is a measure space where μ is σ-finite, and E is a
separable Banach space with norm | · |E . We endow E with the Borel σ-field B(E).

Lemma 1.24 Let X : (�,F ) → E be a random variable. Then the real-valued
function |X |E is measurable.

Proof See [180] Lemma 1.2, p. 16. �

Let p ≥ 1. We denote by L p(�,F ,μ; E) the quotient space of the set

L̃ p(�,F , μ; E) :=
{
X : (�,F ) → (E,B(E)) measurable :

∫
�

|X (ω)|pE dμ(ω) < +∞
}

with respect to the equivalence relationof equalityμ-a.e. L p(�,F ,μ; E) is aBanach
space when endowed with the norm

|X |L p(�,F ,μ;E) =
(∫

�

|X (ω)|pE dμ(ω)

)1/p

(see e.g. [191] Theorem 7.17 p. 104). We will often write L p(�,μ; E) or L p(�; E)

for L p(�,F ,μ; E) and denote the norm by |X |L p when the context is clear. If H is
a separable Hilbert space, then L2(�,F ,μ; H) is a Hilbert space as well, equipped
with the scalar product 〈X, Y 〉L2(�,F ,μ;H) = ∫

�
〈X (ω), Y (ω)〉H dμ(ω).

The space L∞(�,F ,μ; E) is the quotient space of the space of bounded
F/B(E)-measurable functions with respect to the relation of being equal a.e. It
is a Banach space equipped with the norm

|X |L∞(�,F ,μ;E) = ess sup
�

|X (ω)|E .

In the special case when � = I is an interval with endpoints a and b with a < b
(whichmay be±∞),F is the Borel σ-field of I , andμ is the Lebesguemeasure on I ,
wewill simplywrite L p(I ; E) or L p(a, b; E) for L p(I,F ,μ; E). Finally, we denote
by L p

loc(I ; E) the set of measurable functions f : I → E such that
∫
K | f (s)|pEds is

finite for every compact subset K of I .

Lemma 1.25 IfF is countably generated apart from null sets then L p(�,F ,μ; E)

is a separable Banach space.

Proof See [194], p. 92. �

Definition 1.26 (Bochner integral) Let X : (�,F ,μ) → E be a simple random
variable X = ∑N

i=1 xi1Ai , where xi ∈ E , Ai ∈ F ,μ(Ai ) < +∞. The Bochner inte-
gral of X is defined as
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∫
�

X (ω)dμ(ω) :=
N∑
i=1

xiμ(Ai ).

Let X be in L1(�,F ,μ; E). The Bochner integral of X is defined as

∫
�

X (ω)dμ(ω) := lim
n→+∞

∫
�

Xn(ω)dμ(ω),

where Xn : (�,F ,μ) → E are simple random variables such that

lim
n→+∞

∫
�

|X (ω) − Xn(ω)|Edμ(ω) = 0. (1.3)

Remark 1.27 It follows easily from Lemma 1.15 that, for X ∈ L1(�,F ,μ; E),
there always exists a sequence of simple random variables Xn : (�,F ,μ) → E as
in Definition 1.26, satisfying (1.3). �

Proposition 1.28 Let X ∈ L1(�,F ,μ; E). Then the Bochner integral of X is well
defined and does not depend on the choice of the sequence. Moreover,

∣∣∣∣
∫

�

X (ω)dμ(ω)

∣∣∣∣
E

≤
∫

�

|X (ω)|Edμ(ω). (1.4)

Proof See [180] Sect. 1.1 (in particular inequality (1.6), p. 19, and the part below
Lemma 1.5). The proof there is done for a probability measure μ, but the general
case is identical. �

Proposition 1.29 Assume that (�,F ,μ) is a complete measure space, E and F are
separable Banach spaces and A : D(A) ⊂ E → F is a closed operator (see Defini-
tion B.3). If X ∈ L1(�,F ,μ; E) and X ∈ D(A) a.s., then AX is an F-valued ran-
domvariable, and X is a D(A)-valued randomvariable,where D(A) is endowedwith
the graph norm of A (see Definition B.3). If, moreover,

∫
�

|AX (ω)|F dμ(ω) < +∞,
then

A
∫

�

X (ω)dμ(ω) =
∫

�

AX (ω)dμ(ω).

Proof The facts that X is a D(A)-valued random variable and AX is an F-valued
random variable follow from Lemma 1.17-(ii). For the last part, see the proof of
Proposition 1.6, Chap.1 of [180]. �

Corollary 1.30 Assume that E and F are separable Banach spaces and T : E → F
is a continuous linear operator. If X ∈ L1(�,F ,μ; E), then

T
∫

�

X (ω)dμ(ω) =
∫

�

T X (ω)dμ(ω).
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Proof This is a particular case of Proposition 1.29. �
Remark 1.31 In this subsection we assumed that the space E is separable. This was
done for simplicity and since we will only need this case in the vast majority of the
book. However, the Bochner integral of a random variable X : (�,F ,μ) → E can
also be defined when E is non-separable, see Sect. II.2 of [190]. If E is non-separable
the definition of measurability is different. The random variable X is called measur-
able if there exists a sequence of simple random variables Xn : (�,F ,μ) → E such
that limn→+∞ |X (ω) − Xn(ω)|E = 0 μ-a.e. When E is separable this definition of
measurability is equivalent to ours. Most of the results on the Bochner integral still
hold in the non-separable case. In particular, Proposition 1.29 (hence also Corollary
1.30) still holds in the following form, which we will use later in Chap. 4 (see, for
example, the proof of Corollary 4.14 and of Theorem 4.80).

Let (�,F ,μ) be a complete measure space, E and F be Banach spaces
and A : D(A) ⊂ E → F be a closed operator. If X ∈ L1(�,F ,μ; E) and AX ∈
L1(�,F ,μ; F), then

A
∫

�

X (ω)dμ(ω) =
∫

�

AX (ω)dμ(ω).

This is Theorem 6, p. 47 of [190]. �
Theorem 1.32 Let (�1,F1) and (�2,F2) be two measurable spaces and μ1

(respectively μ2) be a σ-finite measure on (�1,F1) (respectively on (�2,F2)). Then
there exists a unique measure μ1 ⊗ μ2 onF1 ⊗ F2 such that, for every A ∈ F1 and
B ∈ F2 with finite measure,

(μ1 ⊗ μ2)(A × B) = μ1(A)μ2(B).

The measure μ1 ⊗ μ2 is σ-finite.

Proof See Theorem 8.2, p. 160 in Chap.VI, Sect. 8 of [397]. �
Theorem 1.33 (Fubini’s Theorem) Let (�1,F1) and (�2,F2) be two measurable
spaces and μ1 (respectively μ2) be a σ-finite measure on (�1,F1) (respectively on
(�2,F2)). Let E be a separable Banach space with norm | · |E .
(i) Let X be in L1(�1 × �2,F1 ⊗ F2,μ1 ⊗ μ2; E). Then, for μ1-almost every

ω1 ∈ �1, the function X (ω1, ·) is in L1(�2,F2,μ2; E), and the function given
by

ω1→
∫

�2

X (ω1,ω2)dμ2(ω2)

for μ1-almost all ω1 (and defined arbitrarily for other ω1) is in L1(�1,

F1,μ1; E). Moreover, we have∫
�1×�2

X (ω1,ω2)d(μ1 ⊗ μ2)(ω1,ω2) =
∫

�1

∫
�2

X (ω1,ω2)dμ1(ω1)dμ2(ω2).
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(ii) Let X : �1 × �2 → E be an F1 ⊗ F2-measurable map. Assume that, for μ1-
almost every ω1 ∈ �1, the function X (ω1, ·) is in L1(�2,F2,μ2; E) and that
the map given by

ω1→
∫

�2

|X (ω1,ω2)|dμ2(ω2)

for μ1-almost all ω1 (and defined arbitrarily for other ω1) is in L1(�1, R). Then
X is in L1(�1 × �2,F1 ⊗ F2,μ1 ⊗ μ2; E) and part (i) of the theorem applies.

Proof See Theorems 8.4, p. 162, and 8.7, p. 165 in Chap.VI, Sect. 8 of [397]. �

Theorem 1.34 Let E be a separable Banach space and μ be a bounded measure on
(E,B(E)). Then the set of uniformly continuous and bounded functions UCb(E) is
dense in L p(E,B(E),μ) for 1 ≤ p < +∞.

Proof By Lemma 1.15 and the monotone convergence theorem it is enough to prove
that every characteristic function 1A for some A ∈ B(E) can be approximated by
functions in UCb(E). Since μ is regular, for every ε > 0 we can find a closed set
C,C ⊂ A, and an open set U, A ⊂ U , such that μ(U \ C) < εp. Moreover, con-
sidering sets Un = {x ∈ U : dist(x : A) > 1/n} if necessary, we can assume that
dist(C,U ) > 0. Then the function

fε(x) := dist(x,U )

dist(x, A) + dist(x,U )

belongs to UCb(E) and |1A − fε|L p < ε. �

1.1.4 Expectation, Covariance and Correlation

Let (�,F , P) be a probability space and E be a separable Banach space with norm
| · |E .
Definition 1.35 (Expectation) Given X in L1(�,F , P; E), we denote by E[X ] the
(Bochner) integral

∫
�
X (ω)dP(ω). E[X ] is said to be the expectation (or the mean)

of X .

To define the covariance operator, we recall first that if x ∈ E , y ∈ F , where E, F
are Hilbert spaces, the operator x ⊗ y : F → E is defined by

(x ⊗ y)h = x〈y, h〉F .

Definition 1.36 (Covariance operator, correlation) Given a real, separable Hilbert
space H and X ∈ L2(�,F , P; H), the covariance operator of X is defined by
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Cov(X) := E

[
(X − E[X ]) ⊗ (X − E[X ])

]
.

For X, Y ∈ L2(�,F , P; H), the correlation of X and Y is the operator defined by

Cor(X, Y ) := E

[
(X − E[X ]) ⊗ (Y − E[Y ])

]
.

Remark 1.37 For X ∈ L2(�,F , P; H), the operatorCov(X) is positive, symmetric
and nuclear (see [180], p. 26). �

1.1.5 Conditional Expectation and Conditional Probability

Theorem 1.38 Consider a separable Banach space E, a probability space
(�,F , P) and a sub-σ-field G ⊂ F . There exists a unique contractive linear oper-
ator E[·|G ] : L1(�,F , P; E) → L1(�,G , P; E) such that∫

A
E[ξ|G ](ω)dP(ω) =

∫
A
ξ(ω)dP(ω) for all A ∈ G and ξ ∈ L1(�,F , P; E).

If E = H is a Hilbert space the restriction of E[·|G ] to L2(�,F , P; H) is the
orthogonal projection L2(�,F , P; H) → L2(�,G , P; H).

Proof See [180] Proposition 1.10, p. 26, and [458] Proposition V-2-5, pp. 102–
103. �

Definition 1.39 (Conditional expectation) Given X ∈ L1(�,F , P; E), the random
variable E[X |G ] ∈ L1(�,G , P; E), defined by Theorem 1.38, is called the condi-
tional expectation of X given G .

Definition 1.40 Let (�,F , P) be a probability space and let E be a separable
Banach space. A family H of integrable random variables X ∈ L1(�,F , P; E)

is called uniformly integrable if

lim
R→∞ sup

X∈H

∫
|X |E≥R

|X (ω)|EdP(ω) = 0.

The following proposition collects various properties of conditional expectation
(see e.g. [487] Proposition 3.15, p. 25, see also [572] Sect. 9.7, p. 88, for similar
properties for real-valued random variables).

Proposition 1.41 Let (�,F , P) be a probability space and let E be a separable
Banach space. The conditional expectation has the following properties:

(i) If X ∈ L1(�,F , P; E) is G -measurable, then E[X |G ] = X P-a.s.
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(ii) Given X ∈ L1(�,F , P; E) and two σ-fields G1 and G2 such that G1 ⊂ G2 ⊂
F ,

E

[
E
[
X |G1

]∣∣G2

]
= E

[
E
[
X |G2

]∣∣G1

]
= E

[
X |G1

]
P-a.s.

(iii) Let X ∈ L1(�,F , P; E). If X is independent of G , then E [X |G ] = E[X ] P-
a.s. Moreover, X is independent of G if and only if, for any bounded, Borel
measurable f : E → R, E [ f (X)|G ] = E f (X) P-a.s.

(iv) If X is G -measurable and ζ is a real-valued integrable random variable such
that ζX ∈ L1(�,F , P; E), then

E

[
ζX |G

]
= XE

[
ζ|G

]
P-a.s.

(v) If X ∈ L1(�,F , P; E) and ζ is an integrable, real-valued, G -measurable
random variable such that ζX ∈ L1(�,F , P; E), then

E

[
ζX |G

]
= ζE

[
X |G

]
P-a.s.

(vi) If X ∈ L1(�,F , P; E) and f : R → R is a convex function such that
E [| f (|X |E )|] < +∞, then

f
(∣∣∣E[

X |G
]∣∣∣

E

)
≤ E

[
f (|X |E ) |G

]
P -a.s.

(vii) If X, Xn ∈ L1(�,F , P; E) for every n ∈ N, the family (Xn)n∈N is uniformly
integrable and Xn

n→∞−−−→ X, P-a.s., then

E

[
Xn|G

]
n→∞−−−→ E

[
X |G

]
P -a.s.

(viii) Let X ∈ L1(�,F , P; E). Assume that Gn for n ∈ N is an increasing family
of σ-fields such that G = σ (Gn : n ∈ N) is a sub-σ-field of F . Then

E

[
X |Gn

]
n→∞−−−→ E

[
X |G

]
P -a.s.

(ix) Let Z be a separable Banach space and let T ∈ L(E, Z). Then

E[T X |G ] = TE[X |G ] P -a.s.

Proposition 1.42 Let (�,F , P) be a probability space. Then:

(i) If X, Y ∈ L1(�,F , P; R) and X ≥ Y , then

E[X |G ] ≥ E[Y |G ].
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(ii) (Conditional Fatou Lemma) If Xn ∈ L1(�,F , P; R) and Xn ≥ 0, then

E[lim inf
n→∞ Xn|G ] ≤ lim inf

n→∞ E[Xn|G ] P-a.s.

Proof See [572], Sect. 9.7, p. 88. �

Proposition 1.43 Let (E1,E1) and (E2,E2) be twomeasurable spaces andψ : E1 ×
E2 → R be a bounded measurable function. Let X1, X2 be two random variables in
a probability space (�,F , P) with values in (E1,E1) and (E2,E2) respectively, and
let G ⊂ F be a σ-field. If X1 is G -measurable and X2 is independent of G , then

E[ψ(X1, X2)|G ] = ψ̂(X1), P-a.s., (1.5)

where
ψ̂(x1) = E[ψ(x1, X2)], x1 ∈ E1. (1.6)

Proof See Proposition 1.12, p. 28 of [180]. �

Let (�,F , P)be a probability space, andG be a sub-σ-field ofF . The conditional
probability of A ∈ F given G is defined by

P(A|G )(ω) := E[1A|G ](ω).

Definition 1.44 Let (�,F , P) be a probability space, and G be a sub-σ-field ofF .
A function p : � × F → [0, 1] is called a regular conditional probability given G
if it satisfies the following conditions:

(i) for each ω ∈ �, p(ω, ·) is a probability measure on (�,F );
(ii) for each B ∈ F , the function p(·, B) is G -measurable;
(iii) for every A ∈ F , P(A|G )(ω) = p(ω, A), P-a.s.

It thus follows that, if X ∈ L1(�,F , P; E), where E is a separable Banach space,
then

E[X |G ](ω) =
∫

�

X (ω′)p(ω, dω′) P a.s.

Theorem 1.45 Let (�,F , P) be a probability space, where (�,F ) is a standard
measurable space. Then, for every sub-σ-field G ⊂ F , there exists a regular condi-
tional probability p(·, ·) given G . Moreover, if p′(·, ·) is another regular conditional
probability given G , then there exists a set N ∈ G , P(N ) = 0, such that, if ω /∈ N
then p(ω, A) = p′(ω, A) for all A ∈ F .

Moreover, if H is a countably determined sub-σ-field of G , then there exists a
P-null set N ∈ G such that, if ω /∈ N then p(ω, A) = 1A(ω) for every A ∈ H . In
particular, if (�1,F1) is a measurable space, F1 is countably determined, {x} ∈
F1 for all x ∈ �1 and ξ : (�,F ) → (�1,F1) is a G /F1-random variable, then
p

(
ω, {ω′ : ξ(ω) = ξ(ω′)}) = 1 for P-a.e. ω.
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Proof See Theorem 8.1, p. 147 in [478], or Theorems 3.1, 3.2, and the corollary
following them in [356] (see also [575] Proposition 1.9, p. 11). �

Notation 1.46 If the regular conditional probability exists, we will often write
P(·|G )(ω) or Pω for p(ω, ·). �

Definition 1.47 (Law of a random variable) Given a probability space (�,F , P),
a measurable space (�1,F1), and a random variable X : (�,F ) → (�1,F1), the
probability measure on (�1,F1) defined by

LP(X)(A) := P ({ω ∈ � : X (ω) ∈ A})

is called the law (or distribution)3 of X . We denote the law of X by LP(X).

Proposition 1.48 (Change of variables) Given a probability space (�,F , P), a
measurable space (�1,F1), a random variable X : (�,F ) → (�1,F1), and a
bounded Borel function ϕ : �1 → R we have

∫
�

ϕ(X (ω))dP(ω) =
∫

�1

ϕ(ω′)dLP(X)(ω′).

Definition 1.49 (Convergence of random variables) Consider a probability space
(�,F , P) and a Polish space (S, d) endowedwith the Borelσ-field. Let Xn : � → S
and X : � → S be random variables. We say that:

(i) Xn converges to X P-a.s. (and we write Xn → X P-a.s.) if limn→∞ d
(Xn(ω), X (ω)) = 0 P-a.s.

(ii) Xn converges to X in probability if, for every ε > 0, limn→+∞ P

{ω ∈ � : d(Xn(ω), X (ω)) > ε} = 0.
(iii) Xn converges to X in law if, for every bounded and continuous f : S → R,∫

S f (u)dLP(X)(u) = limn→∞
∫
S f (u)dLP(Xn)(u) (i.e. if E [ f (X)] =

limn→∞ E [ f (Xn)]).

Lemma 1.50 Consider a probability space (�,F , P) and a Polish space (S, d)

endowed with the Borel σ-field. Let Xn : � → S and X : � → S be random vari-
ables.

(i) If Xn converges to X P-a.s. then Xn converges to X in probability.
(ii) If Xn converges to X in probability then Xn converges to X in law.
(iii) If Xn converges to X in probability then it contains a subsequence Xnk such

that Xnk converges to X P-a.s.
(iv) (Egoroff’s theorem) If Xn converges to X P-a.s. then for every ε > 0, there

exists an �̃ ∈ F such that P(� \ �̃) < ε, and Xn converges uniformly to X
on �̃.

3In measure theory it is more often called the push-forward of P and denoted by X#P.
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(v) Let X, Xn ∈ L p(�,F , P; E), n ∈ N, p ≥ 1, and E be a separable Banach
space. If Xn converges to X in L p(�,F , P; E), then Xn converges to X in
probability.

Proof For (i), (i i) and (i i i) see, for instance, [370] Lemmas 4.2, p. 63 and 4.7, p. 66.
Part (iv) can be found, for instance, in [73] Theorem 2, p. 170, Sect. 4.5.4. Property
(v) is straightforward. �

Lemma 1.51 Let p > 1 and X, Xn ∈ L p(�,F , P; E), n ∈ N, for some separable
Banach space E. Suppose that, for some M > 0, E

[|Xn|pE
] ≤ M for all n ∈ N. If

Xn → X in probability, then E
[|X − Xn|E

] → 0.

Proof Since the sequence (Xn) is bounded in L p(�,F , P; E), it is uniformly inte-
grable (see e.g. [572], p. 127, Sect. 13.3). The claim follows, for example, from
Theorem 13.7, p. 131 of [572]. �

1.1.6 Gaussian Measures on Hilbert Spaces and the Fourier
Transform

In this section we recall the notions of Gaussian measure and the Fourier transform
for Hilbert space-valued random variables. For an extensive treatment of the subject
we refer to [180], Chap.2, [153], Chap.1 or [154], Chap.1.

For a real separable Hilbert space H we denote byL1(H) the Banach space of the
trace class operators on H , by L+(H) the subspace (ofL(H)) of all bounded, linear,
self-adjoint, positive operators, and we set L+

1 (H) := L1(H) ∩ L+(H) (see Appen-
dix B.3). We will denote by M1(H) the set of probability measures on (H,B(H)).

Proposition 1.52 Consider a real, separable Hilbert space H with the Borel σ-field
B(H) and a probability measure P on (H,B(H)). If

∫
H |y| dP(y) < +∞, then we

can define

m :=
∫
H
y dP(y) ∈ H.

If
∫
H |y|2dP(y) < +∞, then there exists a unique Q ∈ L+

1 (H) such that

〈Qx, y〉 :=
∫
H

〈x, h − m〉 〈y, h − m〉 dP(h).

Proof See [153], p. 7. �

Definition 1.53 (Mean and covariance of ameasure on H )We callm and Q, defined
by Proposition 1.52, respectively the mean and the covariance of P. In other words,
the mean (respectively covariance) of P is the mean (respectively covariance) of the
identity random variable I : (H,B(H), P) → (H,B(H)).
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Definition 1.54 (Fourier transform of a measure) Let H be a Hilbert space and
B(H) be its Borel σ-field. Given a probability measure P on (H,B(H)) we define,
for x ∈ H ,

P̂(x) :=
∫
H
ei〈y,x〉dP(y).

We call P̂ : H → C the Fourier transform of P.

Proposition 1.55 Let H be a real, separable Hilbert space, B(H) be its Borel σ-
field, and P1 and P2 be two probability measures on (H,B(H)). If P̂1(x) = P̂2(x)
for all x ∈ H, then P1 = P2.

Proof See [153] Proposition 1.7, p. 6, or [180], Proposition 2.5, p. 35. �

Theorem 1.56 Let X1, ..., Xn be randomvariables in a real, separableHilbert space
H. The random variables are independent if and only if for every y1, ..., yn ∈ H

E

[
e[i

∑n
i=1〈Xi ,yi 〉]

]
=

n∏
i=1

E
[
e[i〈Xi ,yi 〉]] . (1.7)

Proof Obviously if X1, ..., Xn are independent then (1.7) holds. Also, Theorem 1.56
is well known if H = R

k . Let now k ∈ N and y j
i ∈ H, i = 1, ..., n, j = 1, ..., k, and

consider random variables Xk
i = (〈Xi , y1i 〉, ..., 〈Xi , yki 〉), i = 1, ..., n in R

k . There-
fore, if (1.7) holds then Xk

i , i = 1, ..., n, are independent for every k ∈ N and y j
i ∈ H,

j = 1, ..., k. Since cylindrical sets of the form {x : (〈x, y1i 〉, ..., 〈x, yki 〉) ∈ A ∈
B(Rk)} generate B(H) and are a π-system, the collection of sets {ω : (〈Xi , y1i 〉, ...,
〈Xi , yki 〉) ∈ A ∈ B(Rk)} over all k ∈ N and y j

i ∈ H, i = 1, ..., n, j = 1, ..., k, A ∈
B(Rk) is a π-system generating σ(Xi ). Thus, by Lemma 1.23, the sigma algebras
σ(X1), ...,σ(Xn) are independent. �

Theorem 1.57 Let H be a real, separable Hilbert space, B(H) be its Borel σ-
field, a ∈ H, and Q ∈ L+

1 (H). Then there exists a unique probability measure P on
(H,B(H)) such that

P̂(x) = ei〈a,x〉− 1
2 〈Qx,x〉.

The measure P has mean a and covariance Q.

Proof See [153] Theorem 1.12, p. 12. �

Definition 1.58 (Gaussian measure on H ) Let H be a real, separable Hilbert space,
B(H) be its Borel σ-field, a ∈ H , and Q ∈ L+

1 (H). The unique probability measure
P identified by Theorem 1.57 is called the Gaussian measure with mean a and
covariance Q, and is denoted byN (a, Q). When a = 0 we will denote it byNQ and
call it a centered Gaussian measure.

We now provide two useful results about Gaussian measures.
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Proposition 1.59 Let Q ∈ L+
1 (H). Then for all y, z ∈ H

∫
H
〈x, y〉〈x, z〉NQ(dx) = 〈Qy, z〉. (1.8)

Define, for y ∈ Q1/2(H), Qy ∈ L2(H,NQ) as

Qy(x) := 〈Q−1/2y, x〉, (1.9)

where Q−1/2 is the pseudoinverse of Q1/2 (see Definition B.1). The map (called the
“white noise function”, see e.g. [154] Sect.2.5)

y ∈ Q1/2(H) → Qy ∈ L2(H,NQ)

can be extended to H0 = Q1/2(H) = (ker Q)⊥ and it satisfies

∫
H
Qy(x)Qz(x)NQ(dx) = 〈y, z〉, y, z ∈ H0.

Moreover, for all m > 0 we have

∫
H

|x |2mNQ(dx) ≤ K (m)[Tr(Q)]m (1.10)

for some K (m) > 0, independent of Q.

Proof Formula (1.8) follows from Proposition 1.2.4 in [179].
The second statement is proved, when ker Q = {0}, in [154] Sect. 2.5.2 (see also

Sect. 1.2.4 of [179]). Since here we do not assume ker Q = {0}, we provide a proof.
First we observe that ker Q = ker Q1/2 and that Q1/2(H) is dense in (ker Q)⊥ since
Q1/2 is self-adjoint. Moreover, by Definition B.1, the pseudoinverse of Q1/2 is the
operator Q−1/2 : Q1/2(H) → (ker Q)⊥, hence the map y → Qy = 〈Q−1/2y, x〉 is
well defined for all y ∈ Q1/2(H). Furthermore, thanks to formula (1.8), we have, for
y1, y2 ∈ Q1/2(H)

∫
H
〈Q−1/2y1, x〉〈Q−1/2y2, x〉NQ(dx) = 〈Q(Q−1/2y1), Q

−1/2y2〉 = 〈y1, y2〉,

where we used that Q1/2Q−1/2y = y for all y ∈ Q1/2(H). Hence, for y1, y2 ∈
Q1/2(H), ∫

H
Qy1(x)Qy2(x)NQ(dx) = 〈y1, y2〉. (1.11)

In view of the above the map y → Qy = 〈Q−1/2y, x〉 is an isometry and can be
extended to Q1/2(H) = (ker Q)⊥ (endowed with the inner product inherited from
H ) and (1.11) extends to all y1, y2 ∈ (ker Q)⊥.
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We remark that as pointed out in [154] Sect. 2.5.2, for a generic y ∈ (ker Q)⊥ the
image Qy is an element of L2(H,NQ), hence an equivalence class of random vari-
ables defined NQ-a.e.; in particular, writing Qy(x) = 〈y, Q−1/2x〉, NQ-a.e., would
be misleading since, as proved in [154] Proposition 2.22, NQ(Q1/2(H)) = 0.

Concerning the third claim, byProposition 2.19, p. 50, of [180], it holds form ∈ N.
If k − 1 < m < k for k = 1, 2, ..., we use

∫
H

|x |2mNQ(dx) ≤
[∫

H
|x |2kNQ(dx)

]m/k

.

�

Theorem 1.60 (Cameron–Martin formula) Let H be a real, separable Hilbert
space. Let a1, a2 ∈ H and Q ∈ L+

1 (H). Then:

(1) The Gaussian measuresN (a1, Q) andN (a2, Q) are either singular or equiva-
lent.

(2) They are equivalent if and only if a1 − a2 ∈ Q1/2(H) and in this case

dN (a1, Q)

dN (a2, Q)
(x) = exp

(
〈Q−1/2(a1 − a2), Q

−1/2(x − a2)〉 − 1

2

∣∣∣Q−1/2(a1 − a2)
∣∣∣2)

for N (a2, Q)-a.e. x ∈ H.

Proof See Theorem 2.23, p. 53 of [180]. �

We now recall some results concerning compactness of a family of measures in
M1(H) (see e.g. Sect. 2.1 in [180] or [219, 478] for more on this).

Definition 1.61

(i) A sequence (Pn) inM1(H) is said to be weakly convergent to someP ∈ M1(H)

if, for every φ ∈ Cb(H),

lim
n→+∞

∫
H

φ(x)Pn(dx) =
∫
H

φ(x)P(dx).

(ii) A family �⊂M1(H) is said to be compact (respectively, relatively compact) if
an arbitrary sequence Pn of elements of � contains a subsequence Pnk weakly
convergent to a measure P ∈ � (respectively, to a measure P ∈ M1(H)).

(iii) A family �⊂M1(H) is said to be tight if for any ε > 0 there exists a compact
set Kε such that, for every P ∈ �,

P(Kε) > 1 − ε.

The following theorem (which also holds when H is a Polish space) is due to
Prokhorov.

Theorem 1.62 Let H be a real separable Hilbert space. A family �⊂M1(H) is
relatively compact if and only if it is tight.
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Proof See [180], the proof of Theorem 2.3. �

The next theorem gives a useful sufficient condition for compactness.

Theorem 1.63 Let H be a real separable Hilbert space and let {ei }i∈N be an ortho-
normal basis in H. A family �⊂M1(H) is relatively compact if

lim
N→+∞ sup

P∈�

∫
H

+∞∑
i=N

〈x, ei 〉2P(dx) = 0.

Proof See [478], the proof of Theorem VI.2.2. �

Concerning Gaussian measures, we have the following result (see Proposition
1.1.5 of [493]).

Proposition 1.64 Let NQn (n ∈ N) and NQ be centered Gaussian measures on H.
If limn→+∞ ‖Qn − Q‖L1(H) = 0, then the measures NQn converge weakly to NQ.

Proof Observe that if {ei }i is an orthonormal basis in H , it follows from (1.8) that
for any N ∈ N, ∫

H

+∞∑
i=N

〈x, ei 〉2NQn (dx) =
+∞∑
i=N

〈Qnei , ei 〉.

Since limn→+∞ ‖Qn − Q‖L1(H) = 0, the above formula implies in particular that
Theorem 1.63 applies and thus the sequence (NQn ) is relatively compact.

Moreover, from Theorem 1.57 and Definition 1.58 it is immediate that, as n →
+∞,

N̂Qn (x) = e− 1
2 〈Qnx,x〉 −→ e− 1

2 〈Qx,x〉 = N̂Q(x), ∀x ∈ H.

Take now a subsequence NQnk
weakly convergent to a probability measure P0. By

Definition 1.54 we must have

N̂Qnk
(x) → P̂0(x), ∀x ∈ H.

This implies that P̂0 = N̂Q and hence, by Proposition 1.55, that P0 = NQ . Since
this is true for any convergent subsequence, the claim now follows by a standard
contradiction argument. �

We conclude with a useful result about uniformity of weak convergence. The
result is also true if H is a Polish space, see [478], Theorem II.6.8.

Theorem 1.65 Let Pn be a sequence in M1(H) and P ∈ M1(H). Then Pn is weakly
convergent to P if and only if

lim
n→+∞ sup

φ∈C0

∣∣∣∣
∫
H

φ(x)Pn(dx) −
∫
H

φ(x)P(dx)

∣∣∣∣ = 0
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for every family C0 ⊂ Cb(H) which is equicontinuous at all points x ∈ H and uni-
formly bounded, i.e., for some constant M > 0, | f (x)| ≤ M for all x ∈ H and
f ∈ C0.

Proof See [478], the proof of Theorem II.6.8. �

1.2 Stochastic Processes and Brownian Motion

1.2.1 Stochastic Processes

Definition 1.66 (Filtration, usual conditions) Let t ≥ 0. A filtration
{
F t

s

}
s≥t

in a
complete probability space (�,F , P) is a family of σ-fields such that F t

s ⊂ F t
r ⊂

F whenever t ≤ s ≤ r .

(i) We say that
{
F t

s

}
s≥t is right-continuous if, for all s ≥ t , F t

s+ := ⋂
r>s F

t
r =

F t
s .

(ii) We say that
{
F t

s

}
s≥t

is left-continuous if, for all s > t ,F t
s− := σ

(⋃
r<s F

t
r

) =
F t

s . We say that
{
F t

s

}
s≥t is continuous if it is both left and right-continuous.

(iii) We say that
{
F t

s

}
s≥t satisfies the usual conditions if it is right-continuous and

complete, i.e. if F t
s contains all P-null sets of F for every s ≥ t .

We will often writeF t
s instead of

{
F t

s

}
s≥t . We also setF t+∞ := σ

(⋃
r<+∞ F t

r

)
.

Since we will mostly deal with filtrations satisfying the usual conditions we will
assume from now on that this property holds unless explicitly stated otherwise. For
this reason we include the usual conditions in the definition of a filtered probability
space.

Definition 1.67 (Filtered probability space) Let F t
s be a filtration satisfying

the usual conditions on a complete probability space (�,F , P). The 4-tuple(
�,F ,F t

s , P
)
is called a filtered probability space.

Notation 1.68 We use the following convention in this section. When we write
s ∈ [t, T ] we mean that s ∈ [t, T ] if T ∈ R, and s ∈ [t,+∞) if T = +∞. So [t, T ]
is understood to be [t,+∞) if T = +∞. �

Definition 1.69 (Stochastic process) Let T ∈ (0,+∞], t ∈ [0, T ) and (�,F )

and (�1,F1) be two measurable spaces. A family of random variables X (·) =
{X (s)}s∈[t,T ], X (s) : � → �1, is called a stochastic process in [t, T ]. If (�1,F1) =
(R,B(R)) then X (·) is called a real stochastic process.

Definition 1.70 Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probability space and

(�1,F1) be a measurable space. A stochastic process {X (s)}s∈[t,T ] : [t, T ] × � →
�1 is said to be:
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(i) Measurable, if the map (s,ω)→X (s)(ω) is B([t, T ]) ⊗ F/F1-measurable.
(ii) Adapted, if, for each s ∈ [t, T ], X (s) : � → �1 is an F t

s /F1-measurable
random variable.

(iii) Progressivelymeasurable, if for all s ∈ (t, T ], the restriction of X (·) to [t, s] ×
� is B([t, s]) ⊗ F t

s /F1-measurable.
(iv) Predictable, if the map (s,ω)→X (s)(ω) is P[t,T ]/F1-measurable, where

P[t,T ] is the σ-field (the predictable σ-field) in [t, T ] × � generated by all
sets of the form (s, r ] × A, t ≤ s < r ≤ T, A ∈ F t

s and {t} × A, A ∈ F t
t .

(v) If E is a separable Banach space (endowed with its Borel σ-field), the
process {X (s)}s∈[t,T ] : [t, T ] × � → E is called stochastically continuous at
s ∈ [t, T ] if for every ε, δ > 0 there exists ρ > 0 such that

P (|X (r) − X (s)| ≥ ε) ≤ δ, for all r ∈ (s − ρ, s + ρ) ∩ [t, T ].

(vi) If (S, d) is a metric space (endowed with its Borel σ-field), the process
{X (s)}s∈[t,T ] : [t, T ] × � → S is called continuous (respectively, right-
continuous, left-continuous), if for P-a.e. ω ∈ �, the function s→X (s)(ω)

is continuous (respectively, right-continuous, left-continuous).
(vii) If E is a separable Banach space (endowed with its Borel σ-field), the process

{X (s)}s∈[t,T ] : [t, T ] × � → E is called integrable (respectively square-
integrable) if E[|X (s)|] < +∞ (respectively E[|X (s)|2] < +∞) for all
s ∈ [t, T ]. The process is called uniformly integrable if it is integrable and
the family {X (s)}s∈[t,T ] is uniformly integrable (see Definition 1.40).

(viii) If E is a separable Banach space (endowed with the Borel σ-field induced
by the norm), the process {X (s)}s∈[t,T ] : [t, T ] × � → E is said to be mean
square continuous if E[|X (s)|2] < +∞ for all s ∈ [t, T ] and limr→s

E[|X (r) − X (s)|2] = 0 for all s ∈ [t, T ].
It is easy to see that if a process is mean square continuous then it is stochastically

continuous.
The concepts of adapted, progressivelymeasurable, and predictable processes can

be defined for any filtration G t
s . To emphasize the filtration used, we will refer to the

processes as G t
s -adapted, G

t
s -progressively measurable, and G t

s -predictable.
Progressive measurability can also be defined using the concept of progressively

measurable sets, see e.g. [447], p. 4, or [219], p. 71.We say that a set A ⊂ [t, T ] × �

is F t
s -progressively measurable if the function 1A is a progressively measurable

process. Equivalently this means that A ∩ ([t, s] × �) ∈ B([t, s]) ⊗ F t
s for every

s ∈ [t, T ]. It can be proved that theF t
s -progressively measurable sets form a σ-field

and that a process X (·) is progressively measurable if and only if it is measurable
with respect to the σ-field ofF t

s -progressively measurable sets.

Definition 1.71 (Stochastic equivalence,modification) Let (�,F , P) be a probabil-
ity space, and (�1,F1) be a measurable space. Processes X (·), Y (·) : [t, T ] × � →
�1 are called stochastically equivalent if for all s ∈ [t, T ], P(X (s) = Y (s)) = 1. In
this case, Y (·) is said to be amodification or version of X (·). The processes X (·) and
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Y (·) are called indistinguishable if P(X (s) = Y (s) : ∀s ∈ [t, T ]) = 1. We will also
say that Y (·) is an indistinguishable version of X (·).
Lemma 1.72 Let

(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probability space and let

{X (s)}s≥t be a process with values in a Polish space (S, d), endowed with the Borel
σ-field induced by the distance.

(i) If X (·) is B([t, T ]) ⊗ F/B(S)-measurable and F t
s -adapted, then X (·) has an

F t
s -progressively measurable modification.

(ii) If X (·) is F t
s -adapted and X (·) is left- (or right-) continuous for every ω, then

X (·) itself is F t
s -progressively measurable.

Proof Part (i): Since S is Borel isomorphic to a Borel subset A of R, without loss
of generality we can consider X (·) to be an R-valued process with values in A.
By [449], Theorem T46, p. 68, X (·) has an R-valued,F t

s -progressively measurable
modification X̃(·). Let a ∈ A. We define a process Y (·) by Y (s) := X̃(s)1X̃(s)∈A +
a1X̃(s)∈(R\A). The process Y (·) isF t

s -progressively measurable. Moreover, if X̃(s) =
X (s), then Y (s) = X (s), so Y (·) is a modification of X (·). Part (ii): See [449],
Theorem T47, p. 70, or [372], Proposition 1.13, p. 5. �

Lemma 1.73 Let (�,F , P) be a complete probability space and let {X (s)}s≥t be a
stochastic processwith values in a separable Banach space E endowedwith theBorel
σ-field. If X (·) is stochastically continuous then it has a measurable modification.

Proof See [180], Proposition 3.2. �

Lemma 1.74 Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probability space and let

{X (s)}s≥t be an adapted process with values in a separable Banach space E
endowed with the Borel σ-field. If X (·) is stochastically continuous then it has an
F t

s -progressively measurable modification.

Proof See [180], Proposition 3.6. It is also a corollary of Lemmas 1.72-(i) and
1.73. �

1.2.2 Martingales

Notation 1.75 Unless specified otherwise, anyBanach space E and anymetric space
(S, d) will be understood to be endowed with the Borel σ-field induced respectively
by the norm and by the distance. �

Definition 1.76 (Martingale) Let
(
�,F ,F t

s , P
)
be a filtered probability space, and

let M(·) be anF t
s -adapted and integrable process with values in a separable Banach

space E . Then M(·) is said to be a martingale if, for all r, s ∈ [t, T ], s ≤ r ,

E
[
M(r)|F t

s

] = M(s) P − a.s.
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If E = R, we say that M(s) is a submartingale (respectively, supermartingale) if

E
[
M(r)|F t

s

] ≥ M(s), (respectively, E
[
M(r)|F t

s

] ≤ M(s)) P − a.s.

Theorem 1.77 (Doob’s maximal inequalities) Let T > 0,
(
�,F ,F t

s , P
)
be a fil-

tered probability space, and H be a separable Hilbert space. Let M(·) be a
right-continuous H-valued martingale such that M(s) ∈ L p (�,F , P; H) for all
s ∈ [t, T ]. Then:
(i) If p ≥ 1, P

(
sups∈[t,T ] |M(s)| > λ

) ≤ 1
λp E [|M(T )|p], for all λ > 0.

(ii) If p > 1, E
[
sups∈[t,T ] |M(s)|p] ≤

(
p

p−1

)p
E [|M(T )|p].

Proof We observe that, if M(·) is a right-continuous H -valued martingale such that
M(s) ∈ L p (�,F , P; H), p ≥ 1, for all s ∈ [t, T ], then by Proposition 1.41-(vi),
|M(·)|p is a right-continuous R-valued submartingale with |M(s)| ∈ L p

(�,F , P; R) for all s ∈ [t, T ]. The claims now easily follow from [372] Theorem
3.8 (i) and (iii), pp. 13–14. �

In particular, we see that a right-continuous E-valued martingale M(·) is square-
integrable if and only if E|M(T )|2 < +∞.

Notation 1.78 (Square-integrable martingales) Let T ∈ (0,+∞), t ∈ [0, T ), let(
�,F ,F t

s , P
)
be a filtered probability space, and E be a separable Banach space.

The class of all continuous square-integrable martingales M : [t, T ] × � → E is
denoted by M2

t,T (E). �

If H is a separable Hilbert space thenM2
t,T (H) endowed with the scalar product

〈M, N 〉M2
t,T

:= E [〈M(T ), N (T )〉] .

is a Hilbert space (see [294], p. 22).

Theorem 1.79 (Angle bracket process, Quadratic variation process) Let T > 0, t ∈
[0, T ), H be a separable Hilbert space, and

(
�,F ,F t

s , P
)
be a filtered probability

space. For every M ∈ M2
t,T (H) there exists a unique (real) increasing, adapted,

continuous process starting from 0 at t , called the angle bracket process, and denoted
by 〈M〉t , such that |Ms |2 − 〈M〉s is a continuous martingale. Moreover, there exists
a unique L+

1 (H)-valued continuous adapted process starting from 0 at t , called the
quadratic variation of M, and denoted by 〈〈M〉〉s , such that, for all x, y ∈ H, the
process

〈Ms, x〉 〈Ms, y〉 −
〈
〈〈M〉〉s (x), y

〉
, s ∈ [t, T ]

is a continuous martingale. Moreover, 〈M〉s = Tr(〈〈M〉〉s).
Proof See [294], Definition 2.9 and Lemma 2.1, p. 22. �
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Theorem 1.80 (Burkholder–Davis–Gundy inequality) Let T > 0, t ∈ [0, T ), H be
a separable Hilbert space, and

(
�,F ,F t

s , P
)
be a filtered probability space. For

every p > 0 there exists a cp > 0 such that, for every M ∈ M2
t,T (H)with M(0) = 0,

c−1
p E

[
〈M〉p/2T

]
≤ E

[
sup

s∈[t,T ]
|M(s)|p

]
≤ cpE

[
〈M〉p/2T

]
.

Proof See [487], Theorem 3.49, p. 37. �

1.2.3 Stopping Times

Definition 1.81 (Stopping time) Consider a probability space (�,F , P) and a fil-
tration

{
F t

s

}
s≥t on �. A random variable τ : (�,F ) → [t,+∞] is said to be an

F t
s -stopping time if, for all s ≥ t ,

{τ ≤ s} := {ω ∈ � : τ (ω) ≤ s} ∈ F t
s .

Given a stopping time τ we denote by Fτ the sub-σ-field of F defined by

Fτ :=
{
A ∈ F : A ∩ {τ ≤ s} ∈ F t

s for all s ≥ t
}
.

Proposition 1.82 Let (�,F ,F t
s , P) be a filtered probability space.

(i) If τ and σ areF t
s -stopping times, so are τ ∧ σ, τ ∨ σ and τ + σ.

(ii) If σn (for n = 1, 2...) are F t
s -stopping times, then

sup
n

σn, inf
n

σn, lim sup
n

σn, lim inf
n

σn

are F t
s -stopping times.

(iii) For any F t
s -stopping time τ there exists a decreasing sequence of discrete-

valued F t
s -stopping times τn, such that limn→∞ τn = τ .

(iv) Let (S, d) be a metric space (endowed with the Borel σ-field induced by the
distance), and X : [t,+∞) × � → S bea continuous andF t

s -adapted process.
Let A ⊂ S be an open or a closed set. Then the hitting time

τA := inf{s ≥ t : X (s) ∈ A}

is a stopping time. (It is understood that inf{∅} = +∞.)

Proof (i) and (ii) see [372], Lemmas 2.9 and 2.11, p. 7. (iii) see [370], Lemma 7.4,
p. 122. (iv) see [575], Example 3.3, p. 24, or [452], Proposition 1.3.2, p. 12 (there
S = R

n , but the proofs are the same). �
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Proposition 1.83 Let
(
�,F ,

{
F t

s

}
s≥t , P

)
beafilteredprobability space, (�1,F1)

be a measurable space, X : [t,+∞) × � → �1 be an F t
s -progressively measur-

able process, and τ be an F t
s -stopping time. Then the random variable X (τ ),

(where X (τ )(ω) := X (τ (ω),ω)), is Fτ -measurable and the process defined, for
any s ∈ [t,+∞), by X (s ∧ τ ) isF t

s -progressively measurable.

Proof See [452], Proposition 1.3.5, p. 13, or [575], Proposition 3.5, p. 25. �

Theorem 1.84 (Doob’s optional sampling theorem) Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be

a filtered probability space, X : [t,+∞) × � → R be a right-continuous F t
s -

submartingale, and τ ,σ be two F t
s -stopping times with τ bounded. Then Xτ is

integrable and
E[Xτ |F t

σ] ≥ Xτ∧σ, P a.s.

If X+ (the positive part of the process) is uniformly integrable then the statement
extends to unbounded τ .

Proof See [370], Theorem 7.29, p. 135. �

Definition 1.85 (Localmartingale) Let
(
�,F ,

{
F t

s

}
s≥t , P

)
be a filtered probabil-

ity space. An
{
F t

s

}
s≥t -adapted process {X (s)}s≥t with values in a separable Banach

space E is said to be a local martingale if there exists an increasing sequence of
stopping times (τn)n∈N with P(τn ↑ +∞) = 1, such that the process {X (s ∧ τn)}s≥t

is a martingale for every n ∈ N.

1.2.4 Q-Wiener Processes

Definition 1.86 (Real Brownian motion) Given t ∈ R, a real stochastic process
β : [t,+∞) × � → R on a complete probability space (�,F , P) is a standard
(one-dimensional) real Brownian motion on [t,+∞) starting at 0, if

(1) β is continuous and β(t) = 0;
(2) for all t ≤ t1 < t2 < ... < tn the random variables β(t1), β(t2) − β(t1), ...,

β(tn) − β(tn−1) are independent;
(3) for all t ≤ t1 ≤ t2, β(t2) − β(t1) has a Gaussian distribution with mean 0 and

covariance t2 − t1.

Consider a real, separable Hilbert space � and Q ∈ L+(�). Define �0 :=
Q1/2(�) and let Q−1/2 be the pseudo-inverse of Q1/2 (see Definition B.1). �0

is a separable Hilbert space when endowed with the inner product 〈x, y〉�0
:=〈

Q−1/2x, Q−1/2y
〉
�
. Let �1 be an arbitrary real, separable Hilbert space such that

� ⊂ �1 with continuous embedding and �0 ⊂ �1 with Hilbert–Schmidt embed-
ding J : �0 ↪→ �1 (see Appendix B.3 on Hilbert–Schmidt operators). The operator
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Q1 := J J ∗ belongs toL+
1 (�1) and�0 is identical with the space Q

1
2
1 (�1) (see [180]

Proposition 4.7, p. 85).

Theorem 1.87 Consider the setting described above. Let {gk}k∈N be an orthonormal
basis of �0 and (βk)k∈N be a sequence of mutually independent, standard one-
dimensional Brownian motions βk : [t,+∞) × � → R on [t,+∞) starting at 0.
Then for every s ∈ [t,+∞) the series

WQ(s) :=
∞∑
k=1

gkβk(s) (1.12)

is convergent in L2(�,F , P;�1).

Proof See [180] Propositions 4.3, p. 82, and 4.7, p. 85. �

Definition 1.88 (Q-Wiener process) The process WQ defined by (1.12) is called a
Q-Wiener process on [t,+∞) starting at 0.

Remark 1.89 We will use the notation WQ to denote a Q-Wiener process. If Q is
trace-class, �1 = � is a canonical choice and it will be understood that WQ is a
�-valued process. If Q is not trace-class, writing WQ and calling it a Q-Wiener
process is a slight abuse of notation as it would be more precise to writeWQ1 and call
it a Q1-Wiener process with values in �1. However, even though the construction
we have described is not canonical if Tr(Q) = +∞, and the choice of �1 is not
unique, the class of the integrable processes is independent of the choice of �1 (see
[180] Sect. 4.1 and in particular Proposition 4.7). Moreover (see [180] Sect. 4.1.2),
for arbitrary a ∈ � the stochastic process

< a,W (s) >:=
∞∑
k=1

〈a, gk〉βk(s), s ≥ t,

is a real-valued Wiener process and

E < a,W (s1) >< b,W (s2) >= ((s1 − t) ∧ (s2 − t))〈Qa, b〉, a, b ∈ �.

For these reasons, even when Tr(Q) = +∞, we will still use the notationWQ . When
Q is the identity on � we will call it a cylindrical Wiener process in �. �

Proposition 1.90 Let � be a real, separable Hilbert space, Q ∈ L+(�) and let �0,
�1 and J be as described above. Let (�,F , P) be a complete probability space
and B : [t,+∞) × � → �1 be a stochastic process. Denote by F t,0

s the filtration
generated by B, i.e.

F t,0
s = σ(B(r) : t ≤ r ≤ s),

andF t
s := σ(F t,0

s ,N ), whereN is the class of theP-null sets. Then B is a Q-Wiener
process on [t,+∞) starting at 0 if and only if:
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(1) B(t) = 0.
(2) B has continuous trajectories.
(3) For all t ≤ t1 ≤ t2 the random variable B(t2) − B(t1) is independent of F t

t1 .
(4) LP (B(t2) − B(t1)) = N (0, (t2 − t1)Q1), where Q1 = J J ∗.

Proof The “only if” part follows from [180], Proposition 4.7, p. 85 (observe that
in [180] a Wiener process is in fact defined using the four properties (1)–(4)). The
“if” part is proved in [180] Proposition 4.3-(ii), p. 81 (if Tr(Q) = +∞ we apply the
proposition in the space �1). �

The existence of a process satisfying conditions (1)–(4) above can also be proved
using the Kolmogorov extension theorem (see [180], Proposition 4.4).

Remark 1.91 If WQ(s) = ∑∞
k=1 gkβk(s) for some orthonormal basis {gk}k∈N of �0,

it is easy to see that regardless of the choice of �1, F t,0
s = σ(βk(r) : t ≤ r ≤ s,

k ∈ N). Thus the filtration generated byWQ does not depend on the choice of �1. �

Definition 1.92 (Translated G t
s -Q-Wiener process) Let 0 ≤ t < T ≤ +∞. Let �

be a real, separable Hilbert space, Q ∈ L+(�) and let �0, �1 and J be as described
above. Let

(
�,F ,G t

s , P
)
be a filtered probability space. We say that a stochastic

process B : [t, T ] × � → �1 is a translated G t
s -Q-Wiener process on [t, T ] if:

(1) B has continuous trajectories.
(2) B is adapted to G t

s .
(3) For all t ≤ t1 < t2 ≤ T , B(t2) − B(t1) is independent of G t

t1 .
(4) LP (B(t2) − B(t1)) = N (0, (t2 − t1)Q1), where Q1 = J J ∗.

If we also have B(t) = 0 then we call B a G t
s -Q-Wiener process on [t, T ].

We remark that if B is a translatedG t
s -Q-Wiener process, then it is also a translated

F t
s -Q-Wiener process, whereF t

s is the augmented filtration generated by B. More-
over, ifWQ is a Q-Wiener process as in Definition 1.88 then it is also aF t

s -Q-Wiener
process, where F t

s is the augmented filtration generated by B.

Lemma 1.93 Let 0 ≤ t < T ≤ +∞. Let � be a real, separable Hilbert space, Q ∈
L+(�) and let �0 and �1 be as described above. Let (�,F , P) be a complete
probability space. Let B : [t, T ] × � → �1 be a continuous stochastic process such
that B(t) = 0. Then B is a Q-Wiener process on [t, T ] if and only if, for all a ∈ �1,
t ≤ t1 ≤ t2 ≤ T , we have

E
[
ei〈a,B(t2)−B(t1)〉�1 |F t

t1

] = e− 〈Q1a,a〉�1
2 (t2−t1). (1.13)

Proof (The proof uses the same arguments as in the finite-dimensional case, see
Proposition 1.2.7 of [452].)

The “only if” part: if B is a Q-Wiener process then, by Proposition 1.90-(4),
Theorem 1.57 and Definition 1.58,
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E
[
ei〈a,B(t2)−B(t1)〉�1

] = e− 〈Q1a,a〉�1
2 (t2−t1).

Moreover, since B(t2) − B(t1) is independent of F t
t1 ,

E
[
ei〈a,B(t2)−B(t1)〉�1

] = E
[
ei〈a,B(t2)−B(t1)〉�1 |F t

t1

]
.

The “if” part: We have to prove the four conditions in Proposition 1.90: (1)
and (2) are already in the assumptions of the lemma. Condition (4) follows easily
from (1.13), Theorem 1.57 and Definition 1.58. To prove condition (3), i.e. that
Y := B(t2) − B(t1) is independent of F t

t1 , observe that, for all Z : � → �1 which
are F t

t1 -measurable, one has, for all a, b ∈ �1,

E
[
ei〈a,Y 〉�1 ei〈b,Z〉�1

] = E
[
E

[
ei〈a,Y 〉�1 |F t

t1

]
ei〈b,Z〉�1

]
= e− 〈Q1a,a〉�1

2 (t2−t1) E
[
ei〈b,Z〉�1

] = E
[
ei〈a,Y 〉�1

]
E

[
ei〈b,Z〉�1

]
.

Since the above holds for all Z : � → �1 which are F t
t1 -measurable, and for all

a, b ∈ �1, we conclude that Y is independent of F t
t1 by Theorem 1.56. �

Lemma 1.94 Let F t,0
s and F t

s be the filtrations defined in Proposition 1.90 for a
Q-Wiener process WQ. ThenF t

s is right-continuous. Moreover, for all T > t ,F t,0
T ,

and consequently F t
T , are countably generated up to sets of measure zero. If the

trajectories of WQ are everywhere continuous then

F t,0
T = F t,0

T− = σ
(
WQ(si ) : i = 1, 2, ...

)
, (1.14)

where (si ), i = 1, 2, ... is any dense sequence in [t, T ), and hence the filtrationF t,0
s

is countably generated and left-continuous.

Proof The proof follows arguments from [513] and [372] (Sect. 2.7-A). Consider
τ > s and ε > 0. Since WQ(τ + ε) − WQ(s + ε) is independent of F t,0

s+ , for every
A ∈ F t,0

s+ and f ∈ Cb(�1)

E
(
1A f (WQ(τ + ε) − WQ(s + ε))

) = P(A)E f (WQ(τ + ε) − WQ(s + ε)).

Letting ε → 0 we thus have by the dominated convergence theorem that

E
(
1A f (WQ(τ ) − WQ(s))

) = P(A)E f (WQ(τ ) − WQ(s)). (1.15)

Now if B = B ⊂ �1 then there exist functions fn ∈ Cb(�1), 0 ≤ fn ≤ 1, such that
fn(x) → 1B(x) as n → +∞ for every x ∈ �1. Therefore (1.15) implies that

P(A ∩ {WQ(τ ) − WQ(s) ∈ B}) = P(A)P({WQ(τ ) − WQ(s) ∈ B})
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and since the sets {{WQ(τ ) − WQ(s) ∈ B} : B = B ⊂ �1} are aπ-systemgenerating
σ(WQ(τ ) − WQ(s)), it follows from Lemma 1.23 thatF t,0

s+ and σ(WQ(τ ) − WQ(s))
are independent.

Now let s = τ0 < τ1 < ... < τk ≤ T . We have σ(WQ(τi ) − WQ(s) :
i = 1, ..., k) = σ(WQ(τi ) − WQ(τi−1) : i = 1, ..., k). Let now A ∈ F t,0

s+ and Bi ∈
σ(WQ(τi ) − WQ(τi−1)), i = 1, ..., k. Since Bi is independent of A ∩ B1 ∩ ... ∩ Bi−1

∈ F t,0
τi−1

, i = 1, ..., k and B1, ..., Bk are independent

P(A ∩ B1 ∩ ... ∩ Bk) = P(A ∩ B1 ∩ ... ∩ Bk−1)P(Bk) = ...

= P(A ∩ B1)

k∏
i=2

P(Bi ) = P(A)

k∏
i=1

P(Bi ) = P(A)P(B1 ∩ ... ∩ Bk).

Therefore
⋃

σ(WQ(τi ) − WQ(s) : i = 1, ..., k) (where the union is taken over all
partitions s = τ0 < τ1 < ... < τk ≤ T ) is a π-system independent of F t,0

s+ and thus
Gs = σ(WQ(τ ) − WQ(s) : s ≤ τ ≤ T ) is independent of F t,0

s+ .
Since F t,0

T = σ(F t,0
s ,Gs), the family {As ∩ Bs : As ∈ F t,0

s , Bs ∈ Gs} is a π-
systemgeneratingF t,0

T . Let now A ∈ F t,0
s+ and let ξ be a version of 1A − E(1A|F t,0

s ).
Since ξ isF t,0

s+ -measurable, it is independent of Gs , so if As ∈ F t,0
s , Bs ∈ Gs then

E
(
ξ1As∩Bs

) = E
(
ξ1As1Bs

) = P(Bs)E
(
ξ1As

)
= P(Bs)

∫
As

ξdP = P(Bs)

[∫
As

1AdP −
∫
As

E(1A|F t,0
s )dP

]
= 0

by the definition of conditional expectation. This implies that
∫
D ξdP = 0 for every

D ∈ F t
T and thus ξ = 0, P-a.e. Therefore 1A = E(1A|F t,0

s ), P-a.e., i.e. if Ã =
E(1A|F t,0

s )−1(1) then Ã ∈ F t,0
s and P(A� Ã) = 0. This shows that F t,0

s+ ⊂ F t
s .

Now let A ∈ F t
s+, whichmeans that for every n ≥ 1, A ∈ F t

s+1/n and there exists

a Bn ∈ F t,0
s+1/n such that A�Bn ∈ N . Set

B =
+∞⋂
m=1

+∞⋃
n=m

Bn.

Then B ∈ F t,0
s+ ⊂ F t

s and

B \ A ⊂
(+∞⋃
n=1

Bn

)
\ A =

+∞⋃
n=1

(Bn \ A) ∈ N .

Moreover,
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A \ B = A ∩
(+∞⋂
m=1

+∞⋃
n=m

Bn

)c

= A ∩
(+∞⋃
m=1

+∞⋂
n=m

Bc
n

)

=
+∞⋃
m=1

+∞⋂
n=m

(A ∩ Bc
n) ⊂

+∞⋃
m=1

(A ∩ Bc
m) =

+∞⋃
m=1

(A \ Bm) ∈ N .

Thus A�B ∈ N , which implies that A ∈ F t
s , which completes the proof of the right

continuity.
To show thatF t,0

T is countably generated up to sets ofmeasure zerowe take a dense
sequence (si ), i = 1, 2, ..., in [t, T ). SinceB(�1) is countably generated (for instance
by open balls with rational radii centered at points of a countable dense set), each
σ(WQ(si )) is countably generated and so σ(WQ(si ) : i ≥ 1) is countably generated.
It remains to show that for every s ∈ (t, T ],σ(WQ(s)) ⊂ σ(N ,WQ(si ) : si < s). Let
�0 ⊂ �, P(�0) = 1 be such that WQ has continuous trajectories on [t, T ] for ω ∈
�0. Let A be an open subset of �1 and set An = {x ∈ A : dist(x, Ac) > 1/n}, n =
1, 2, .... Then An is open, An ⊂ An+1, and

⋃+∞
n=1 An = A. Let sik be a sequence

of si such that sik < s and sik → s as k → +∞. Then, using the continuity of the
trajectories of WQ , it is easy to see that

�0 ∩ WQ(s)−1(A) = �0 ∩
+∞⋃
n=1

+∞⋂
k=n

WQ(sik )
−1(An) ∈ σ(N ,WQ(si ) : si < s).

Therefore WQ(s)−1(A) ∈ σ(N ,WQ(si ) : si < s) and since the sets {WQ(s)−1(A) :
A is an open subset of �1} generate σ(WQ(s)), the result follows. If �0 = � then
we have above

WQ(s)−1(A) =
+∞⋃
n=1

+∞⋂
k=n

WQ(sik )
−1(An) ∈ σ(WQ(si ) : si < s).

The argument that σ(WQ(t)) ⊂ σ(WQ(si ) : i = 1, 2, ...) is similar (or we can just
assume that s1 = t). This yields (1.14). �

In fact the above argument shows that if S is a Polish space, T > t , and X :
[t, T ] × � → S is a stochastic process with everywhere continuous trajectories, then
the filtration generated by X , F X

s := σ(X (τ ) : t ≤ τ ≤ s) is countably generated
and left-continuous.

1.2.5 Simple and Elementary Processes

Definition 1.95 (F t
s -simple process) Let E be a Banach space (endowed with

the Borel σ-field) and let (�,F ,
{
F t

s

}
s∈[t,T ] , P) be a filtered probability space.

A process X : [t, T ] × (�,F , P) → E is called F t
s -simple if:
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(i) Case T = +∞: there exists a sequence of real numbers (tn)n∈N with t = t0 <

t1 < ... < tn < ... and limn→∞ tn = +∞, a constant C < +∞, and a sequence
of random variables ξn : � → E with supn≥0 |ξn(ω)|E ≤ C for every ω ∈ �,
such that ξn isF t

tn -measurable for every n ≥ 0, and

X (s)(ω) =
{

ξ0(ω) if s = t
ξi (ω) if s ∈ (ti , ti+1].

(ii) CaseT < +∞: there exist t = t0 < t1 < ... < tN = T , a constantC < +∞, and
random variables ξn : � → E for n = 0, ..., N − 1with sup0≤n≤N−1 |ξn(ω)|E ≤
C for every ω ∈ �, such that ξn isF t

tn -measurable, and

X (s)(ω) =
{

ξ0(ω) if s = t
ξi (ω) if s ∈ (ti , ti+1].

Definition 1.96 (F t
s -elementary process) Let T ∈ (0,+∞), t ∈ [0, T ). Let (S, d)

be a complete metric space (endowed with the Borel σ-field), and (�,F ,{
F t

s

}
s∈[t,T ] , P) be a filtered probability space. We say that a process X : [t, T ] ×

(�,F , P) → S isF t
s -elementary if there exist S-valued random variables ξ0, ξ1, ..,

ξN−1, and a sequence t = t0 < t1 < .. < tN = T , such that

(1) ξi has a finite numbers of values for every i ∈ {0, ..N − 1}.
(2) ξi isF t

ti -measurable for every i ∈ {0, ..N − 1}.
(3) X (s)(ω) = ξi (ω) for s ∈ (ti , ti+1] for i ∈ {0, ..N − 1}, and X (t) = ξ0.

Finally, we say that a process X : [t,+∞) × (�,F , P) → S is F t
s -elementary if

there exists T1 > t such that the restriction of X to [t, T1] is F t
s -elementary and

X (s) = 0 for s > T1.

It is immediate from the definitions that simple and elementary processes are
progressively measurable and predictable.

Remark 1.97 In Definitions 1.14, 1.95 and 1.96 we introduced the concepts of a
simple random variable,F t

s -simple process, andF
t
s -elementary process. The reader

should be aware that in the literature the use of these terms varies and the same word
is often used by different authors to mean different things. �

Lemma 1.98 Let E be a separable Banach space endowed with the Borel σ-
field, (�,F ,F t

s , P) be a filtered probability space and X : [t, T ] × � → E be
a bounded, measurable, F t

s -adapted process, where T ∈ [t,+∞) ∪ {+∞}. There
exists a sequence Xm(·) of F t

s -elementary E-valued processes on [t, T ] such that,
for every 1 ≤ p < +∞ and R > t ,

lim
m→+∞ E

∫ R∧T

t

∣∣Xm(s) − X (s)
∣∣p
E ds = 0. (1.16)
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The same claim holds if, instead of the Banach space, we consider E to be an interval
[a, b] ⊂ R or a countable closed subset of [a, b]. In these cases the norm | · |E in
(1.16) is replaced by | · |R.
Proof It is enough to prove the result for a single p ≥ 1. To obtain a sequence of
F t

s -simple processes Xm(·) with the required properties, the proof follows exactly
the proof of Lemma 3.2.4, p. 132, in [372] with obvious technical modifications
as we now have to deal with Bochner integrals in E . We then use Lemma 1.16 to
approximate the random variables ξi defining Xm(·) by simple random variables to
obtain F t

s -elementary approximating processes.
If E is a countable closed subset of [a, b], we first produce [a, b]-valued F t

s -
elementary approximating processes Xm(·). We then construct an E-valued F t

s -
elementary process Ym(·) from Xm(·) as follows. Let Xm(s) = ξi for s ∈ (ti , ti+1]
for i ∈ {0, ..N − 1}, and X (t) = ξ0. Let ξ̃i be defined in the following way. If
ξi (ω) ∈ E ,we set ξ̃i (ω) = ξi (ω). If ξi (ω) /∈ E ,we set ξ̃i (ω) = argminx∈E |ξ(ω) − x |
if argminx∈E |ξ(ω) − x | is a singleton. If argminx∈E |ξ(ω) − x | has two points
x1 < x2, we set ξ̃i (ω) = x1. Obviously ξ̃i is a simple, F t

ti -measurable process. We

now define Ym(s) = ξ̃i for s ∈ (ti , ti+1] for i ∈ {0, ..N − 1}, and X (t) = ξ̃0. Then,
since X (·) has values in E , it is easy to see that |Ym(s) − X (s)| ≤ 2|Xm(s) − X (s)|
for any s ∈ [t,+∞) and ω ∈ �. Therefore the result follows. �

Lemma 1.99 Let F t,0
s and F t

s be as in Proposition 1.90, T ∈ [t,+∞) ∪ {+∞},
and let a(·) : [t, T ] × � → S be an F t

s -progressively measurable process, where
(S, d) is a Polish space endowed with the Borel σ-field. Then there exists an F t,0

s -
progressively measurable and F t,0

s -predictable process a1(·) : [t, T ] × � → S,
such that a(·) = a1(·), dt ⊗ P-a.e. on [t, T ] × �.

Proof In light of Theorems 1.12 and 1.13 we can assume that S = [0, 1] or S is a
countable closed subset of [0, 1]. Using Lemma 1.98, we can find approximating
F t

s -elementary processes an(·) on [t, T ] of the form

an(t)(ω) =
{

ξn0 (ω) if s = t
ξni (ω) if s ∈ (ti , ti+1]

such that

sup
R≥t

lim
n→∞ E

∫ R∧T

t

∣∣a(s) − an(s)
∣∣2
R
ds = 0.

Using Lemma 1.16, we can change every ξni on a null-set to obtain a sequence of
F t,0

s -elementary processes an1 (·) that still satisfy

sup
R≥t

lim
n→∞ E

∫ R∧T

t

∣∣a(s) − an1 (s)
∣∣2
R
ds = 0.

Obviously the processes an1 (·) are F t,0
s -progressively measurable. We can now

extract a subsequence (still denoted by an1 (·)) such that an1 (·) → a(·) dt ⊗ P-
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a.e. on [t, T ] × �, and define a1(·) := lim infn→+∞ an1 (·). The process a1(·) is
F t,0

s -progressively measurable, F t,0
s -predictable, and a(·) = a1(·), dt ⊗ P-a.e. on

[t, T ] × �. �

1.3 The Stochastic Integral

Let T ∈ (0,+∞), and t ∈ [0, T ). Throughout the whole section � and H will
be two real, separable Hilbert spaces, Q will be an operator in L+(�),

(
�,F ,{

F t
s

}
s∈[t,T ] , P

)
will be a filtered probability space, andWQ will be a translatedF t

s -

Q-Wiener process on � on [0, T ]. The following concept will be used in Chap. 2.

Definition 1.100 A 5-tuple μ :=
(
�,F ,

{
F t

s

}
s∈[t,T ] , P,WQ

)
described above is

called a generalized reference probability space.

A process X (·) will always be assumed to be defined on �, and the expressions
“adapted” and “progressively measurable” will always refer to the filtrationF t

s .

1.3.1 Definition of the Stochastic Integral

In this section we will assume that Tr(Q) < +∞. If Tr(Q) = +∞, the construc-
tion of the stochastic integral is the same, we just have to consider WQ as a �1-
valued Wiener process with nuclear covariance Q1 (see Sect. 1.2.4). This wayWQ is
not uniquely determined but Q1/2

1 (�1) = �0 = Q1/2(�), |x |�0 = |Q−1/2
1 x |�1 for all

possible extensions �1 and the class of integrands and the value of the integrals are
independent of the choice of the space�1 (see [180], Proposition 4.7 and Sect. 4.1.2).

We recall that we denote by L2(�0, H) the space of Hilbert–Schmidt operators
from�0 to H (seeAppendixB.3). It is equippedwith its Borelσ-fieldB(L2(�0, H)).
L2(�0, H) is a real, separable Hilbert space (see Proposition B.25), and L(�, H) is
dense in L2(�0, H) (see e.g. [294], pp. 24–25).

Definition 1.101 (The spaceN p
Q(t, T ; H))Given p ≥ 1,wedenote byN p

Q(t, T ; H)

the space of all L2(�0, H)-valued, progressively measurable processes X (·), such
that

|X (·)|N p
Q (t,T ;H) :=

(
E

∫ T

t
‖X (s)‖p

L2(�0,H)ds

)1/p

< ∞.

N p
Q(t, T ; H) is a Banach space if it is endowed with the norm | · |N p

Q (t,T ;H).

We remark that, as always, two processes in N p
Q(t, T ; H) are identified if they

are equal P ⊗ dt-a.e.
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Remark 1.102 In several classical references (see e.g. [180] or [491]), the theory of
stochastic integration is developed for predictable processes instead of progressively
measurable ones like in our case. However, it follows for instance from Lemma 1.99,
that for every L2(�0, H)-valued progressively measurable process X there exists a
predictable process X1 which is P ⊗ dt-a.e. equal to X . Thus, since we are working
with stochastic integrals with respect to Wiener processes (which are continuous),
the two concepts coincide. �

For an L(�, H)-valued, F t
s -simple process � on [t, T ], �(s) = �01{t}(s) +∑i=N−1

i=0 1(ti ,ti+1](s)�i , the stochastic integral with respect to WQ is defined by

∫ T

t
�(s)dWQ(s) :=

N−1∑
i=0

�i (WQ(ti+1) − WQ(ti )) ∈ L2(�; H).

Note that if we take � to be L2(�0, H)-valued, we cannot guarantee that the expres-
sion above is well defined, sinceL2(�0, H) contains genuinely unbounded operators
in � (see e.g. [294], p. 25, Exercise 2.7).

We now extend the stochastic integral to all processes in N 2
Q(t, T ; H) by the

following theorem.

Theorem 1.103 (Itô isometry) For every L(�, H)-valued, F t
s -simple process �

we have

E

∣∣∣∣
∫ T

t
�(s)dWQ(s)

∣∣∣∣
2

H

= E

∫ T

t
‖�(s)‖2L2(�0,H)ds.

Thus the stochastic integral is an isometry between the set of L(�, H)-valued,
F t

s -simple processes in N 2
Q(t, T ; H) and its image in L2(�; H). Moreover, since

L(�, H)-valued, F t
s -simple (and in fact elementary) processes are dense in N 2

Q

(t, T ; H), it can be uniquely extended to all processes in N 2
Q(t, T ; H). We denote

this unique extension by ∫ T

t
�(s)dWQ(s)

and call it the stochastic integral of � with respect to WQ.

Proof See [294], Propositions 2.1, 2.2, and Definition 2.10. See also [180], Propo-
sition 4.22 in the context of predictable processes. �

Proposition 1.104 For � ∈ N 2
Q(t, T ; H), consider the process

{
I (�) : [t, T ] × � → H
I (�)(r) := ∫ r

t �(s)dWQ(s) := ∫ T
t �(s)1[t,r ]dWQ(s).

I (�) is a continuous square-integrable martingale and I : N 2
Q(t, T ; H) → M2

t,T
(H) is an isometry. Moreover,



1.3 The Stochastic Integral 37

〈〈I (�)〉〉s =
∫ s

t

(
�(s)Q

1
2

) (
�(s)Q

1
2

)∗
ds,

〈I (�)〉s =
∫ s

t
‖�(s)‖2L2(�0,H)ds.

Proof See [294] Theorem 2.3, p. 34. �

The definition of stochastic integral can be further extended to all L2(�0, H)-
valued progressively measurable processes �(·) such that

P

(∫ T

t
‖�(s)‖2L2(�0,H)ds < +∞

)
= 1. (1.17)

Lemma 1.105 Let {�(s)}s∈[t,T ] be an L2(�0, H)-valued progressively measurable
process satisfying (1.17). Then there exists a sequence �n of L(�, H)-valued F t

s -
simple processes such that

lim
n→∞

∫ T

t
‖�(s) − �n(s)‖2L2(�0,H)ds = 0 P − a.s. (1.18)

Moreover, there exists an H-valued random variable, denoted by I, such that

lim
n→∞

∫ T

t
�n(s)dWQ(s) = I in probability.

I does not depend on the choice of approximating sequence, more precisely,
given �1

n and �2
n satisfying (1.18), if I1 := limn→∞

∫ T
t �1

n(s)dWQ(s) and I2 :=
limn→∞

∫ T
t �2

n(s)dWQ(s), then I1 = I2 P − a.s.

Proof See [294], Lemmas 2.3, p. 39, and 2.6, p. 41. �

The process I defined by Lemma 1.105 is called the stochastic integral of � with
respect to WQ , and is denoted by

∫ T
t �(s)dWQ(s). We also set

∫ r
t �(s)dWQ(s) :=∫ T

t �(s)1[t,r ]dWQ(s).

Proposition 1.106 Let {�(s)}s∈[t,T ] be anL2(�0, H)-valued progressively measur-
able process satisfying (1.17). Then the process

{
I (�) : [t, T ] × � → H
I (�)(r) := ∫ r

t �(s)dWQ(s)

is a continuous local martingale.

Proof See [294], pp. 42–44. �
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Finally, we may extend the definition of stochastic integral to all processes (not
necessarily progressively measurable) that are dt ⊗ P-equivalent to progressively
measurable processes satisfying (1.17) in the sense of the following definition (see
also [372], p. 130).

Definition 1.107 We say that two processes �1 and �2 are dt ⊗ P-equivalent if
�1 = �2, dt ⊗ P-a.e. If � belongs to the equivalence class of a progressively mea-
surable process �1 satisfying (1.17),4 we set

∫ T

t
�(s)dWQ(s) :=

∫ T

t
�1(s)dWQ(s).

This definition is obviously independent of the choice of a representative process
�1. Thus a representative process defines the stochastic integral for the whole equiv-
alence class.

Example 1.108 Every L2(�0, H)-valued, F t
s -adapted, and B([t, T ]) ⊗ F -

measurable process � satisfying (1.17) is stochastically integrable, where
B([t, T ]) ⊗ F is the completion of B([t, T ]) ⊗ F with respect to dt ⊗ P. To see
this we need to find a progressively measurable process�1 which is equivalent to�.
First, let�2 be aB([t, T ]) ⊗ F -measurable process equivalent to� (which exists by
Lemma 1.16). Then, for a.e. s ∈ [t, T ], we have �2(s, ·) = �(s, ·) P-a.s. and, since
every F t

s is complete, also �2(s, ·) is F t
s -measurable for a.e. s. Thus there exists

an A ∈ B([t, T ]) of full measure such that �2(s, ·) isF t
s -measurable for s ∈ A. We

then define �3 = �21A. �3 is B([t, T ]) ⊗ F -measurable and F t
s -adapted, thanks

to Lemma 1.72 it has a progressively measurable modification �1 which is clearly
equivalent to �. �
Theorem 1.109 Let (E,G ,μ) be a measure space with bounded measure.
Let � : [t, T ] × � × E → L2(�0, H) be (B([t, T ]) ⊗ F t

T ⊗ G )/B(L2(�0, H))-
measurable. Suppose that, for any x ∈ E, {�(s, ·, x)}s∈[t,T ] is progressively mea-
surable and ∫

E
|�(·, ·, x)|N 2

Q(t,T ;H)dμ(x) < +∞.

Then:

(i)
∫ T

t
�(s, ·, ·)dWQ(s) has an F t

T ⊗ G /B(H)-measurable version.

(ii)
∫
E

�(·, ·, x)dμ(x) is progressively measurable.

(iii) The following equality holds P-a.s.:

∫
E

∫ T

t
�(s, ·, x)dWQ(s)dμ(x) =

∫ T

t

∫
E

�(s, ·, x)dμ(x)dWQ(s).

4Note that if a process X is progressively measurable and satisfies (1.17) and Y is dt ⊗ P-equivalent
to X , then Y must also satisfy (1.17) since for P-a.s. ω, X (·, ω) = Y (·, ω), a.e. on [t,T].
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Proof See Theorem 2.8, Sect. 2.2.6, p. 57 of [294] and Theorem 4.33, Sect. 4.5, p.
110 of [180]. �

1.3.2 Basic Properties and Estimates

Lemma 1.110 Let T > 0 and t ∈ [0, T ). Assume that� is inN 2
Q(t, T ; H) and that

τ is anF t
s -stopping time such that P(τ ≤ T ) = 1. Then P-a.s.

∫ T

t
1[t,τ ](r)�(r)dWQ(r) =

∫ τ

t
�(r)dWQ(r).

Proof See [294], Lemma 2.7, p. 43 (also [180], Lemma 4.24, p. 99). �

As a consequence of Theorem 1.80 and Proposition 1.104 we obtain the following
theorem (see also e.g. [177], Theorem 5.2.4, p. 58).

Theorem 1.111 (Burkholder–Davis–Gundy inequality for stochastic integrals) Let
T > 0 and t ∈ [0, T ). For every p ≥ 2, there exists a constant cp such that, for every
� in N p

Q(t, T ; H),

E

[
sup

s∈[t,T ]

∣∣∣∣
∫ s

t
�(r)dWQ(r)

∣∣∣∣
p
]

≤ cpE

[∫ T

t
‖�(r)‖2L2(�0,H)dr

]p/2

≤ cp(T − t)
p
2 −1

E

[∫ T

t
‖�(r)‖p

L2(�0,H)dr

]
.

Proposition 1.112 Let T > 0 and t ∈ [0, T ). Let A be the generator of a C0-
semigroup {er A, r ≥ 0} on H such that ‖er A‖ ≤ Meαr for every r ≥ 0 for some
α ∈ R, M > 0. Let p > 2 and � ∈ N p

Q(t, T ; H). Let An be the Yosida approxima-
tion of A. Then the stochastic convolution process

�(s) :=
∫ s

t
e(s−r)A�(r)dWQ(r), s ∈ [t, T ], (1.19)

has a continuous modification,

E

[
sup

s∈[t,T ]

∣∣∣∣
∫ s

t
e(s−r)A�(r)dWQ(r)

∣∣∣∣
p
]

≤ CE

[∫ T

t
‖�(r)‖p

L2(�0,H)dr

]
, (1.20)

where the constants c and C depend only on T − t , p, M, α, and

lim
n→∞ E

[
sup

s∈[t,T ]

∣∣∣∣
∫ s

t

(
e(s−r)An − e(s−r)A

)
�(r)dWQ(r)

∣∣∣∣
p
]

= 0. (1.21)
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If, moreover, A generates a C0-pseudo-contraction semigroup (i.e. M = 1 above,
see Appendix B.4) then the claims are also true for p = 2.

Proof See [294], Lemma3.3, p. 87. The claims for p=2 can be proved by repeating the
arguments of the proof of Proposition 3.3 of [543], which uses the Unitary Dilation
Theorem. �
Proposition 1.113 Let A be the generator of a C0-semigroup on H, T > 0, and
t ∈ [0, T ). Assume that� : [t, T ] × � → L2(�0, H) is a progressively measurable
process such that �(s) ∈ L2(�0, D(A)) P-a.s., for a.e. s ∈ [t, T ]. Assume that

P

(∫ T

t
‖�(s)‖2L2(�0,D(A))ds < +∞

)
= 1.

Then

P

(∫ T

t
�(s)dWQ(s) ∈ D(A)

)
= 1 (1.22)

and

A
∫ T

t
�(s)dWQ(s) =

∫ T

t
A�(s)dWQ(s), P − a.s. (1.23)

Proof We can assume without loss of generality that Q ∈ L+
1 (�). The proof

follows the proof of Proposition 3.1 (p. 76) of [294], however we present it
here to clarify a measurability issue. Indeed, we first need to show that � is an
L2(�0, D(A))-valued, progressively measurable process. To do this we take �n =
Jn�, where Jn = n(nI − A)−1 (see Definition B.40). Since Jn ∈ L(H, D(A)),
�n is an L2(�0, D(A))-valued, progressively measurable process. Moreover, it
is easy to see that if, for some s ∈ [t, T ] and ω ∈ �, �(s)(ω) ∈ L2(�0, D(A)),
then �n(s)(ω) → �(s)(ω) in L2(�0, D(A)). Therefore, defining V := {(s,ω) :
�n(s)(ω) converges in L2(�0, D(A))}, it follows from Lemma 1.8-(iii) that � is
equivalent to a progressively measurable process limn→+∞ 1V�n . The proof is now
done in two steps.
Step 1: The claim is true for F t

s -simple L(�, D(A))-valued processes.
Step 2: If � is a L2(�0, D(A))-valued progressively measurable process satisfying
the hypotheses of this proposition, we take a sequence of F t

s -simple L(�, D(A))-
valued processes �n approximating � in the sense of (1.18) so that

lim
n→+∞

∫ T

t
‖�(s) − �n(s)‖2L2(�0,D(A))ds = 0 P − a.s.

In particular we have

∫ T

t
�n(s)dWQ(s)

n→∞−−−→
∫ T

t
�(s)dWQ(s),
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A
∫ T

t
�n(s)dWQ(s) =

∫ T

t
A�n(s)dWQ(s)

n→∞−−−→
∫ T

t
A�(s)dWQ(s)

in probability, so the claim follows since A is a closed operator. �

In the rest of this section we explain how the factorization method is used to prove
continuity of trajectories of stochastic convolution processes.

Lemma 1.114 (Factorization Lemma) Let T > 0, t ∈ [0, T ), and 0 < α < 1. Let
A be the generator of a C0-semigroup {er A, r ≥ 0} on H. Consider a linear,
densely defined, closed operator A1 : D(A1)⊂H → H such that, for any r > 0,
er AH⊂D(A1), A1er A is bounded and A1er A = er A A1 on D(A1). Let � : [t, T ] ×
� → L2(�0, H) be progressively measurable and such that for every s ∈ [t, T ]

E

∫ s

t

∥∥A1e
(s−r)A�(r)

∥∥2

L2(�0,H)
dr < +∞.

Assume that, for all s ∈ [t, T ],
∫ s

t
(s − r)α−1

(∫ r

t
(r − h)−2α

E

[∥∥A1e
(r−h)A�(h)

∥∥2

L2(�0,H)

]
dh

)1/2

dr < +∞.

(1.24)
Then∫ s

t
A1e

(s−r)A�(r)dWQ(r) = sin(απ)

π

∫ s

t
(s − r)α−1e(s−r)AY�

α (r)dr P − a.s.

for all s ∈ [t, T ], where Y�
α (·) is aB([t, T ]) ⊗ F t

T /B(H)-measurable process which
is dt ⊗ P-equivalent to

∫ r

t
(r − h)−αA1e

(r−h)A�(h)dWQ(h).

Proof The statement is similar to [177], Theorem 5.2.5, p. 58, Sect. 5.2.1. We give
the proof for completeness.

We use the identity

∫ t

σ

(t − s)α−1(s − σ)−αds = π

sin(πα)
, for all σ ≤ s ≤ t, 0 < α < 1

(which can be proved by a simple direct computation). Define

X (r, h) = 1[t,r ](h)(r − h)−αA1e
(r−h)A�(h).

Since (1.24) implies
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∫ T

t

(
E

∫ T

t
‖X (r, h)‖2L2(�0,H) dh

)1/2

dr < +∞,

by the stochastic Fubini Theorem 1.109 (see also Theorem 4.33, p. 110 of [180]
or Theorem 2.8, p. 57 of [294]) there exists a B([t, T ]) ⊗ F t

T /B(H)-measurable
process Y�

α : [t, T ] × � → H such that

∫ T

t
X (r, h)dWQ(h) =

∫ r

t
(r − h)−αA1e

(r−h)A�(h)dWQ(h) = Y�
α (r), dt ⊗ P-a.e.

Then for every s ∈ [t, T ] the process Z�,s
α (·), defined for any r ∈ [t, s] by Z�,s

α (r) =
(s − r)α−1e(s−r)AY�

α (r), is jointly measurable and dt ⊗ P-equivalent to

(s − r)α−1e(s−r)A
∫ r

t
(r − h)−αA1e

(r−h)A�(h)dWQ(h)

on [t, s] × �. Thus fixing any s ∈ [t, T ] and applying the stochastic Fubini Theorem
on [t, s] × [t, s] × � (whose assumptions are satisfied by (1.24)) and noticing that
we can use the process Z�,s

α (·) in place of a process provided by the stochastic Fubini
Theorem (since it will give P-a.e. the same integrals) we obtain for P-a.e. ω

π

sin(πα)

∫ s

t
A1e

(s−h)A�(h)dWQ(h)

=
∫ s

t

∫ s

t
1[h,s](r)(s − r)α−1e(s−r)A(r − h)−αA1e

(r−h)A�(h)drdWQ(h)

=
∫ s

t
(s − r)α−1e(s−r)AY�

α (r)dr.

�

Lemma 1.115 Let A be the generator of aC0-semigroup {er A, r ≥ 0} on H, T > 0,
t ∈ [0, T ) and f ∈ L p(t, T ; H), p ≥ 1. Then:

(i) If either 1/p < α ≤ 1, or p = α = 1, then the function

Gα f (s) :=
∫ s

t
(s − r)α−1e(s−r)A f (r)dr

is in C([t, T ], H).
(ii) If the semigroup et A is analytic, λ ∈ R is such that (λI − A)−1 ∈ L(H), β > 0

and α > β + 1/p, then the function

Gα,β f (s) :=
∫ s

t
(s − r)α−1(λI − A)βe(s−r)A f (r)dr

is in C([t, T ], H).
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Proof Part (i): Let 1/p < α ≤ 1. Let t ≤ s1 ≤ s2 ≤ T and put h = s2 − s1. We have

∣∣∣∣
∫ s2

t
(s2 − r)α−1e(s2−r)A f (r)dr −

∫ s1

t
(s1 − r)α−1e(s1−r)A f (r)dr

∣∣∣∣
≤ I1 + I2 :=

∫ t+h

t

∣∣(s2 − r)α−1e(s2−r)A f (r)
∣∣ dr

+
∣∣∣∣
∫ s2

t+h
(s2 − r)α−1e(s2−r)A f (r)dr −

∫ s1

t
(s1 − r)α−1e(s1−r)A f (r)dr

∣∣∣∣ .
Set q := p

p−1 and let R > 0 be such that
∥∥esA∥∥ ≤ R for all s ∈ [0, T ]. Then

I1 ≤ R

(∫ h

0
(h − r)q(α−1)dr

)1/q (∫ T

t
| f (r)|pdr

)1/p

→ 0 as h → 0

since 0 ≥ q(α − 1) > −1. As regards I2, after a change of variables we have

I2 ≤
∫ s1

t
(s1 − r)α−1e(s1−r)A| f (r + h) − f (r)|dr

≤ R

(∫ T

t
(T − r)q(α−1)dr

)1/q (∫ T−h

t
| f (r + h) − f (r)|pdr

)1/p

→ 0 as h → 0.

The proof in the case p = α = 1 is straightforward.
Part (ii) follows from Proposition A.1.1 in Appendix A, p. 307 of [177]. �

Proposition 1.116 Let T > 0 and t ∈ [0, T ). Let A, A1, � satisfy the assump-
tions of Lemma 1.114 except (1.24). Assume that there exist 0 < α < 1, C > 0 and
p > 1

α
, p ≥ 2 such that

∫ T

t
E

(∫ r

t
‖(r − h)−αA1e

(r−h)A�(h)‖2L2(�0,H)dh

)p/2

dr < C. (1.25)

Then

�(s) :=
∫ s

t
A1e

(s−r)A�(r)dWQ(r), s ∈ [t, T ],

has a continuous modification.

Proof We follow the scheme of the proof of Theorem 5.2.6 in [177] (p. 59,
Sect. 5.2.1). We give some details because our claim is slightly more general.
Observe that using Hölder’s and Jensen’s inequalities we obtain
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∫ s

t
(s − r)α−1

(∫ r

t
(r − h)−2α

E

[∥∥∥A1e
(r−h)A�(h)

∥∥∥2
L2(�0,H)

]
dh

)1/2

dr

≤
(∫ s

t
(s − r)

(α−1)p
p−1

) p−1
p

(∫ s

t
E

(∫ r

t
(r − h)−2α

∥∥∥A1e
(r−h)A�(h)

∥∥∥2
L2(�0,H)

dh

)p/2
) 1

p

< +∞,

where we used (1.25) and that (1−α)p
p−1 < 1, which follows from p > 1/α. Therefore

the hypotheses of Lemma 1.114 are satisfied and thus we have

∫ s

t
A1e

(s−r)A�(r)dWQ(r) = sin(απ)

π

∫ s

t
(s − r)α−1e(s−r)AY�

α (r)dr P − a.s.

for all s ∈ [t, T ], where Y�
α (·) is defined in Lemma 1.114. The claimwill follow from

Lemma 1.115-(i) applied to a.e. trajectory. Thus we need to know that the process
Y�

α (·) has p-integrable trajectories a.s. This is guaranteed if

E

∫ T

t

∣∣Y�
α (s)

∣∣p ds < +∞.

However, from Theorem 1.111, we have

∫ T

t
E

([∣∣Y�
α (s)

∣∣p]) ds ≤ cp

∫ T

t
E

(∫ s

t
‖(s − r)−αA1e

(s−r)A�(r)‖2L2(�0,H)dr

)p/2

ds,

(1.26)
which is bounded thanks to (1.25). �

The factorization method can also be used to show the continuity of determin-
istic convolution integrals. The following lemma deals with a case which arises in
Sects. 1.5.2 and 1.5.3.

Lemma 1.117 Let T > 0, t ∈ [0, T ), and 0 < α < 1. Let A be the generator of a
C0-semigroup {er A, r ≥ 0} on H. Let φ be a function defined on [t, T ] such that,
for every s ∈ (0, T − t], es Aφ : [t, T ] → H is well defined, measurable and

|esAφ(r)| ≤ s−βg(r) for r ∈ [t, T ], (1.27)

where 0 ≤ β < 1, g ∈ Lq(t, T ; H), q > 1
1−β

. Then the function

ψ(s) =
∫ s

t
e(s−r)Aφ(r)dr

belongs to C([t, T ], H).

Proof Let 0 < α be such that α + β < 1 and q > 1
1−(α+β)

. We have, by the Fubini
Theorem 1.33,
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∫ s

t
e(s−r)Aφ(r)dr = sin(πα)

π

∫ s

t
(s − r)α−1e(s−r)AY (r)dr,

where

Y (r) =
∫ r

t
(r − h)−αe(r−h)Aφ(h)dh.

It remains to notice that, using (1.27) and Hölder’s inequality, we have for t ≤ r ≤ T

|Y (r)| ≤
∫ r

t
(r − h)−(α+β)g(h)dh ≤ CT |g|Lq (t,T ;H).

Thus the result follows from Lemma 1.115-(i). �

1.4 Stochastic Differential Equations

In this section we consider T > 0 and take H , �, Q, and a generalized reference
probability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) as in Sect. 1.3 (with t = 0). A is
the infinitesimal generator of a C0-semigroup on H , and � is a Polish space. We
will look at stochastic differential equations (SDEs) on the interval [0, T ], however
all results would be the same if, instead of [0, T ], we took an interval [t, T ], for
0 ≤ t < T .

1.4.1 Mild and Strong Solutions

Let b : [0, T ] × H × � → H and σ : [0, T ] × H × � → L2(�0, H). We consider
the following general stochastic differential equation (SDE)

{
dX (s) = (AX (s) + b(s, X (s)))ds + σ(s, X (s))dWQ(s) s ∈ (0, T ]
X (0) = ξ,

(1.28)

where ξ is an H -valuedF0-measurable random variable. To simplify the notation we
dropped the ω variable in (1.28) and we use this convention throughout the section.

Definition 1.118 (Strong solution of (1.28)) An H -valued progressivelymeasurable
process X (·) is called a strong solution of (1.28) if:

(i) For dt ⊗ P-a.e. (s,ω) ∈ [0, T ] × �, X (s)(ω) ∈ D(A).

(ii) P

(∫ T

0
(|X (s)| + |AX (s)| + |b(s, X (s))|) ds < +∞

)
= 1 and

P

(∫ T

0
‖σ(s, X (s))‖2L2(�0,H)ds < +∞

)
= 1.
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(iii) For every t ∈ [0, T ]

X (t) = ξ +
∫ t

0
AX (s) + b(s, X (s))ds +

∫ t

0
σ(s, X (s))dWQ(s) P-a.e.

Definition 1.119 (Mild solution of (1.28)) An H -valued progressively measurable
process X (·) is called a mild solution of (1.28) if:

(i) For every t ∈ [0, T ]

P

(∫ t

0

(|X (s)| + |e(t−s)Ab(s, X (s))|) ds < +∞
)

= 1

and

P

(∫ t

0
‖e(t−s)Aσ(s, X (s))‖2L2(�0,H)ds < +∞

)
= 1.

(ii) For every t ∈ [0, T ]

X (t) = et Aξ +
∫ t

0
e(t−s)Ab(s, X (s))ds +

∫ t

0
e(t−s)Aσ(s, X (s))dWQ(s) P-a.e.

In order for the above definitions to be meaningful, all the processes involved
must be well defined and have proper measurability properties so that the integrals
that appear in the definitions make sense.We do not want to analyze here the required
measurability properties in the most generality. Instead, we discuss one case which
will frequently appear in applications to optimal control in Remark 1.123 below.
Moreover, note that if An is the Yosida approximation of A, since by Lemma 1.17-
(i) D(A) ∈ B(H), it follows that the processes 1X (·)∈D(A)AnX (·) are progressively
measurable and they converge as n → +∞ to 1X (·)∈D(A)AX (·) for every (s,ω). Thus
the process AX (·) (understood as 1X (·)∈D(A)AX (·)) is progressively measurable.

Remark 1.120 In the definition of a mild solution we assumed that b : [0, T ] × H ×
� → H and σ : [0, T ] × H × � → L2(�0, H). However, Definition 1.119 may
still make sense even if b and σ do not have values in H and L2(�0, H), provided
that the terms e(t−s)Ab(s, X (s)) and e(t−s)Aσ(s, X (s)) have values in these spaces
when they are interpreted properly (see, for instance, Sect. 1.5.1 and also Remark
1.123). Therefore in the future when we are dealing with such cases, we will not
repeat the definition of a mild solution, instead we will just explain how to interpret
the above terms. �

Definition 1.121 (Weak mild solution of (1.28)) Assume that in (1.28) we have
b : [0, T ] × H → H and σ : [0, T ] × H → L2(�0, H). A weak mild solution of
(1.28) is defined to be any 6-tuple (�,F ,Fs,WQ, P, X (·)), where (�,F ,Fs, P)

is a filtered probability space, WQ is a translated Fs-Q-Wiener process on �, and
X (·) is a mild solution for (1.28) in the generalized reference probability space
(�,F ,Fs,WQ, P).
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Notation 1.122 In the existing literature, different authors often give different names
to the same notion of solution, and the same name does not always correspond to
the same definition. For instance, the weak mild solution introduced above is often
called a weak solution and in [180] Chap. 8 it is called a martingale solution. �

Remark 1.123 Let � be a Polish space. Suppose that σ : [0, T ] × H × � →
L(�0, H) is such that for every u ∈ �0, the map (t, x, a) → σ(t, x, a)u is
B([0, T ]) ⊗ B(H) ⊗ B(�)/B(H)-measurable, and esAσ(t, x, a) ∈ L2(�0, H) for
every (t, x, a) and s > 0. It then follows fromLemma1.20 that, after possibly redefin-
ing it at s = 0, the map (s, t, x, a) → esAσ(t, x, a) is B([0, T ]) ⊗ B([0, T ]) ⊗
B(H) ⊗ B(�)/B(L2(�0, H))-measurable. Now, if X (·) : [0, T ] × � → H, a(·) :
[0, T ] × � → � are Fs-progressively measurable, then for every t ∈ [0, T ],

(s,ω) → e(t−s)Aσ(s, X (s), a(s))

is an L2(�0, H)-valued Fs-progressively measurable process on [0, t] × �. If this
process is in N 2

Q(0, t; H) for every t then the process

Z(t) =
∫ t

0
e(t−s)Aσ(s, X (s), a(s))dWQ(s), t ∈ [0, T ]

is an H -valuedFt -adapted process. One way to argue that Z(·) has a progressively
measurable modification is the following.

Suppose that there is a constant K ≥ 0 such that

E|Z(t)| ≤ K for all t ∈ [0, T ]

and that for all 0 ≤ t ≤ h ≤ T

E

∫ h

t

∥∥e(h−s)Aσ(s, X (s), a(s))
∥∥2

L2(�0,H)
ds ≤ ρ(h − t)

for some modulus ρ. We have for 0 ≤ t ≤ h ≤ T

Z(h) − Z(t) = (
e(h−t)A − I

)
Z(t) +

∫ h

t
e(h−s)Aσ(s, X (s), a(s))dWQ(s).

Let {en} be an orthonormal basis of H . Then

〈Z(h) − Z(t), en〉 =
〈
Z(t), e(h−t)Aen − en

〉
+

〈∫ h

t
e(h−s)Aσ(s, X (s), a(s))dWQ(s), en

〉

and hence

E |〈Z(h) − Z(t), en〉| ≤ K |e(h−t)A∗
en − en| + √

ρ(h − t) ≤ ρn(h − t)
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for some modulus ρn . Therefore it is easy to see that the process 〈Z(t), en〉 is sto-
chastically continuous and thus, by Lemma 1.74, it has a progressively measurable
modification which we denote by Zn(·). The process Z̃(·) defined, for t ∈ [0, T ], by

Z̃(t) =
{∑+∞

n=1Zn(t)en if the limit exists,

0 otherwise

is a progressively measurable modification of Z(·). �

1.4.2 Existence and Uniqueness of Solutions

Definition 1.124 (The space M p
μ (t, T ; E)) In this definition T ∈ (0,+∞) ∪ {+∞}.

Let p ≥ 1 and 0 ≤ t < T . Given a Banach space E , we denote by Mp
μ (t, T ; E) the

space of all E-valued progressively measurable processes X (·) such that

|X (·)|Mp
μ (t,T ;E) :=

(
E

(∫ T

t
|X (s)|pds

))1/p

< +∞. (1.29)

Mp
μ (t, T ; E) is a Banach space endowed with the norm | · |Mp

μ (t,T ;E).

Note that in the notationMp
μ (t, T ; E)we emphasize the dependence on the gener-

alized reference probability space μ. Processes in Mp
μ (t, T ; E) are identified if they

are equal P ⊗ dt-a.e.
Let a : [0, T ] × � → � be an Fs-progressively measurable process (a control

process), where � is, as before, a Polish space. We consider the controlled SDE

{
dX (s) = (AX (s) + b(s, X (s), a(s))) ds + σ(s, X (s), a(s))dWQ(s)
X (0) = ξ.

(1.30)

This equation falls into the category of equations (1.28) with b(s, x,ω) := b(s, x, a
(s,ω)) andσ(s, x,ω) := σ(s, x, a(s,ω)). Thus strong,mild andweakmild solutions
of (1.30) are defined using the definitions for Eq. (1.28).

Hypothesis 1.125 The operator A is the generator of a strongly continuous semi-
group esA on H . The function b : [0, T ] × H × � → H is B([0, T ]) ⊗ B(H) ⊗
B(�)/B(H)-measurable, σ : [0, T ] × H × � → L2(�0, H) is B([0, T ]) ⊗ B(H)

⊗ B(�)/B(L2(�0, H))-measurable, and there exists a constant C > 0 such that
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|b(s, x, a) − b(s, y, a)| ≤ C |x − y| ∀x, y ∈ H, s ∈ [0, T ], a ∈ �,

(1.31)

‖σ(s, x, a) − σ(s, y, a)‖L2(�0,H) ≤ C |x − y| ∀x, y ∈ H, s ∈ [0, T ], a ∈ �,

(1.32)

|b(s, x, a)| ≤ C(1 + |x |) ∀x ∈ H, s ∈ [0, T ], a ∈ �,

(1.33)

‖σ(s, x, a)‖L2(�0,H) ≤ C(1 + |x |) ∀x ∈ H, s ∈ [0, T ], a ∈ �.

(1.34)

Definition 1.126 (The space Hμ
p(t, T ; E)) Let p ≥ 1 and 0 ≤ t < T . Given a

Banach space E , we denote by Hμ
p(t, T ; E) the set of all progressively measur-

able processes X : [t, T ] × � → E such that

|X (·)|Hμ
p(t,T ;E) :=

(
sup

s∈[t,T ]
E|X (s)|p

)1/p

< +∞. (1.35)

It is a Banach space with the norm | · |Hμ
p(t,T ;E).

Processes in Hμ
p(t, T ; E) are identified if they are equal P ⊗ dt-a.e. Therefore

the sup in the definition of Hμ
p(t, T ; E) must be understood as esssup. However,

we will keep the notation sup here and in all subsequent uses of this space. If the
generalized reference probability space μ is clear we will just write Mp(t, T ; E) and
Hp(t, T ; E) for simplicity.

Mild solutions inHμ
p(0, T ; E) (orMp

μ (0, T ; E)) of various versions of (1.30) will
be obtained as fixed points in these spaces of some maps. We point out that this will
not imply that every representative of the equivalence class is a mild solution. Since
a mild solution X (·) satisfies the integral equality in Definition 1.119-(ii) for every
t ∈ [0, T ], X (t) is prescribed by the right-hand side of this equality, which does not
depend on the choice of a representative of the equivalence class. Thus there is a
unique (up to a modification) representative of the equivalence class which is a mild
solution. We will then always be able to evaluate E|X (t)|p for the mild solution X (·)
for every t ∈ [0, T ] (and in fact compute theHμ

p(0, T ; E) norm of this representative
by taking the sup over all t ∈ [0, T ] instead of the esssup).

Theorem 1.127 Let ξ ∈ L p(�,F0, P) for some p ≥ 2, and let A, b and σ sat-
isfy Hypothesis 1.125. Let a(·) : [0, T ] → � be an Fs -progressively measurable
process. Then the SDE (1.30) has a unique, up to a modification, mild solution
X (·) ∈ Hp(0, T ; H). The solution is in fact unique among all processes such that

P

(∫ T
0 |X (s)|2ds < +∞

)
= 1, in particular among the processes in M2

μ(0, T ; H).

X (·) has a continuous modification. Given two continuous versions X1(·), X2(·) of
the solution, there exists a �̃ ⊂ �withP(�̃) = 1 s.t. X1(s) = X2(s) for all s ∈ [0, T ]
and ω ∈ �̃, i.e. they are indistinguishable.
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Proof The proof can be found, for instance, in [180], Theorem 7.2, p. 188 or [294],
Theorems 3.3, p. 97, and 3.5, p. 105. For the last claim, we can take

�̃ :=
⋂

s∈Q∩[0,T ]
{ω ∈ � : X1(s)(ω) = X2(s)(ω)} .

Since X1(·) is a modification of X2(·), we have P(�̃) = 1, and since X1(·) and X2(·)
are continuous, it follows that X1(s)(ω) = X2(s)(ω) for all s ∈ [0, T ], ω ∈ �̃. �

We will denote the solution of (1.30) by X (·; ξ, a(·)) if we want to emphasize the
dependence on the initial datum and the control.

Corollary 1.128 Let ξ ∈ L p(�,F0, P) for some p ≥ 2, let A, b and σ satisfy
Hypothesis 1.125. If a1(·), a2(·) : [0, T ] × � → � are two progressively measur-
able processes such that a1(·) = a2(·), dt ⊗ P-a.e. on [0, T ] × �, then, P − a.e.,

X (s; ξ, a1(·)) = X (s; ξ, a2(·)) for all s ∈ [0, T ].

Proof Define Xi (·) := X (·; ξ, ai (·)). Using Theorem1.103, Jensen’s inequality, and
sups∈[0,T ] ‖esA‖ ≤ C for someC ≥ 0, it follows that, for suitable positiveC1 andC2:

E
[|X1(s) − X2(s)|2

] ≤ C1

(∫ s

0
E|b(r, X1(r), a1(r)) − b(r, X2(r), a2(r))|2dr

+
∫ s

0
E‖σ(r, X1(r), a1(r)) − σ(r, X2(r), a2(r))‖2L2(�0,H)dr

)

≤ C2

∫ s

0
E|X1(r) − X2(r)|2dr, s ∈ [0, T ],

and the claim follows by using Gronwall’s lemma and the continuity of the trajecto-
ries. �

Remark 1.129 Above we assumed that the σ always takes values in L2(�0, H).
Existence and uniqueness results for SDEs with more general σ can be found, for
instance, in [294] Theorem 3.15, p. 143, or in [180] Theorem 7.5, p. 197. To treat
some specific examples we will also prove more general results in Sect. 1.5. �

1.4.3 Properties of Solutions

Theorem 1.130 Let ξ ∈ L p(�,F0, P) for some p ≥ 2, a : [0, T ] × � → � beFs -
progressively measurable, and let A, b and σ satisfy Hypothesis 1.125.

(i) Let X (·) = X (·; ξ, a(·)) be the unique mild solution of (1.30) (provided by
Theorem 1.127). Then, for any s ∈ [0, T ],
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sup
s∈[0,T ]

E
[|X (s)|p] ≤ Cp(T )(1 + E|ξ|p) if p ≥ 2, (1.36)

E

[
sup

s∈[0,T ]
|X (s)|p

]
≤ Cp(T )(1 + E|ξ|p) if p > 2, (1.37)

and

E

[
sup

r∈[0,s]
|X (r) − ξ|p

]
≤ ωξ(s) if p > 2, (1.38)

where Cp(T ) is a constant depending on p, T , C (from Hypothesis 1.125) and
M,α (where ‖er A‖ ≤ Merα for r ≥ 0), and ωξ is a modulus depending on the
same constants and on ξ (in particular they are independent of the process a(·)
and of the generalized reference probability space).

(ii) If ξ, η ∈ L p(�,F0, P) for p > 2, and X (·) = X (·; ξ, a(·)),Y (·) = Y (·; η, a(·))
are the solutions of (1.30), then, for all s ∈ [0, T ],

E

[
sup

s∈[0,T ]
|X (s) − Y (s)|2

]
≤ CT

(
E

[|ξ − η|p]) 2
p , (1.39)

where CT depends only on p, T , C, M, α.

Proof Part (i): For (1.36) and (1.37) we refer, for instance, to [180] Theorem 9.1,
p. 235, or [294], Lemma 3.6, p. 102, and Corollary 3.3, p. 104. Regarding (1.38), we
have that there is a constant c1 depending only on p and supt∈[0,T ] ‖et A‖, such that

E

[
sup

r∈[0,s]
|X (r) − ξ|p

]
≤ c

(
E

[
sup

r∈[0,s]

∣∣er Aξ − ξ
∣∣p]

+ E

[
sup

r∈[0,s]

(∫ r

0
|b(u, X (u), a(u))|du

)p]

+ E

[
sup

r∈[0,s]

∣∣∣∣
∫ r

0
e(r−u)Aσ(u, X (u), a(u))dWQ(u)

∣∣∣∣
p])

.

Using Hypothesis 1.125, (1.37), Hölder’s inequality, and Proposition 1.112, we see
that

E

[
sup

r∈[0,s]
|X (r) − ξ|p

]
≤ c2

(
E

[
sup

r∈[0,s]

∣∣er Aξ − ξ
∣∣p] +

∫ s

0

(
1 + E|ξ|p) dr).

Since supr∈[0,s]
∣∣er Aξ − ξ

∣∣p s→0+−−−→ 0 a.e., and supr∈[0,s]
∣∣er Aξ − ξ

∣∣p ≤ C1|ξ|p, the
result follows by the Lebesgue dominated convergence theorem.

Part (ii): See [180] Theorem 9.1, p. 235. �
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Theorem 1.131 Let ξ ∈ L p(�,F0, P) for some p > 2, and let A, b and σ satisfy
Hypothesis 1.125. Let a : [0, T ] × � → � be a progressively measurable process.
Let X (·) be the unique mild solution of (1.30). Consider the approximating equations

{
dXn(s) = (AnXn(s) + b(s, Xn(s), a(s))) ds + σ(s, Xn(s), a(s))dWQ(s)
Xn(0) = ξ,

(1.40)
where An is the Yosida approximation of A. Let Xn(·) be the solution of (1.40). Then

lim
n→∞ E

[
sup

s∈[0,T ]
|Xn(s) − X (s)|p

]
= 0. (1.41)

Proof See [180] Proposition 7.4, p. 196, or [294], Proposition 3.2, p. 101. �

The next proposition is a simpler version of Theorem 1.131 which will be useful
in the proofs of the results of Sect. 1.7.

Proposition 1.132 Let ξ ∈ L p(�,F0, P), f ∈ Mp
μ (0, T ; H), and� ∈ N p

Q(0, T ; H)

for some p ≥ 2. Let X (·) be the mild solution of

{
dX (s) = (AX (s) + f (s)) ds + �(s)dWQ(s)
X (0) = ξ

(1.42)

and Xn(·) be the solution of
{
dXn(s) = (AnXn(s) + f (s)) ds + �(s)dWQ(s)
Xn(0) = ξ,

(1.43)

where A generates a C0-semigroup and An is the Yosida approximation of A. Then,
if p > 2,

lim
n→∞ E

[
sup

s∈[0,T ]
|Xn(s) − X (s)|p

]
= 0. (1.44)

Moreover, for p ≥ 2, there exists an M > 0, independent of n, such that

sup
s∈[0,T ]

E
[|Xn(s)|p] ≤ M, sup

s∈[0,T ]
E

[|X (s)|p] ≤ M. (1.45)

Proof Observe first that the mild solution of (1.42) is well defined thanks to the
assumptions on ξ, f and �, and

X (s) = esAξ +
∫ s

0
e(s−r)A f (r)dr +

∫ s

0
e(s−r)A�(r)dWQ(r), s ∈ [0, T ].

The same is true for the mild solution of (1.43) (which is also a strong solution).
To prove (1.44), we write, for s ∈ [0, T ],
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Xn(s) − X (s) = (
esAn − esA

)
ξ +

∫ s

0

(
e(s−r)An − e(s−r)A

)
f (r)dr

+
∫ s

0

(
e(s−r)An − e(s−r)A

)
�(r)dWQ(r) =: I n1 (s) + I n2 (s) + I n3 (s).

It is enough to show that limn→∞ E
[
sups∈[0,T ] |I ni (s)|p] = 0 for i ∈ {1, 2, 3}. For

i = 3 this follows from (1.21). To prove it for i = 2, we observe that (B.15) implies
that if

ψn(r) := sup
s∈[r,T ]

∣∣(e(s−r)An − e(s−r)A
)
f (r)

∣∣ ,
then ψn(r)

n→∞−−−→ 0 a.e. on �. Moreover, thanks to (B.14), there exists a C1 such
that, for all t ∈ [0, T ] and all n, ∥∥et An

∥∥ ≤ C1, so ψn(r) ≤ 2C1| f (r)| for all n. Since∫ T
t | f (r)|dr < +∞ for almost every ω ∈ �, by the Lebesgue dominated conver-
gence theorem we have

sup
s∈[0,T ]

∣∣∣∣
∫ s

0

∣∣(e(s−r)An − e(s−r)A
)
f (r)

∣∣ dr ∣∣∣∣
p

≤ sup
s∈[0,T ]

∣∣∣∣
∫ s

0
ψn(r)dr

∣∣∣∣
p

≤
∣∣∣∣
∫ T

0
ψn(r)dr

∣∣∣∣
p

n→∞−−−→ 0

for a.e. ω ∈ �. Now observe that

sup
s∈[0,T ]

∣∣∣∣
∫ s

0

∣∣(e(s−r)An − e(s−r)A
)
f (r)

∣∣ dr ∣∣∣∣
p

≤ sup
s∈[0,T ]

∫ s

0
(2C1)

p | f (r)|p dr ≤
∫ T

0
(2C1)

p | f (r)|p dr,

and the last expression is integrable (on �), since f ∈ Mp
μ (0, T ; H). Therefore

we can apply the Lebesgue dominated convergence theorem, obtaining limn→∞ E[
sups∈[0,T ] |I n2 (s)|p] = 0. The claim for i = 1 follows again from (B.15) and the
Lebesgue dominated convergence theorem.

Estimates (1.45) are easy consequences of (B.14) and the assumptions on
ξ, f,�. �

1.4.4 Uniqueness in Law

Definition 1.133 (Finite-dimensional distributions) Let T > 0 and t ∈ [0, T ). Con-
sider a measurable space (�,F ), two probability spaces (�i ,Fi , Pi ) for i = 1, 2,
and two processes {Xi (s)}s∈[t,T ] : (�i ,Fi , Pi ) → (�,F ). We say that X1(·) and
X2(·) have the same finite-dimensional distributions on D ⊂ [t, T ] if for any
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t ≤ t1 < t2 < ... < tn ≤ T, ti ∈ D and A ∈ F ⊗ F ⊗ ... ⊗ F︸ ︷︷ ︸
n times

, we have

P1 {ω1 : (X1(t1), ..X1(tn))(ω1) ∈ A} = P2 {ω2 : (X2(t1), ..X2(tn))(ω2) ∈ A} .

In this case we write LP1(X1(·)) = LP2(X2(·)) on D. Often we will just write
LP1(X1(·)) = LP2(X2(·)), which should be understood as meaning that the finite-
dimensional distributions are the same on some set of full measure.

Theorem 1.134 Let H be a separableHilbert space. Let (�i ,Fi , Pi ) for i = 1, 2 be
two complete probability spaces, and (�̃, F̃ ) be a measurable space. Let ξi : �i →
�̃, i = 1, 2 be two random variables, and fi : [t, T ] × �i → H, i = 1, 2, be two
processes satisfying

P1

(∫ T

t
| f1(s)|ds < +∞

)
= P2

(∫ T

t
| f2(s)|ds < +∞

)
= 1

and, for some subset D ⊂ [t, T ] of full measure,

LP1 ( f1(·), ξ1) = LP2 ( f2(·), ξ2) on D.

Then

LP1

(∫ ·

t
f1(s)ds, ξ1

)
= LP2

(∫ ·

t
f2(s)ds, ξ2

)
on [t, T ]. (1.46)

Proof See [471] Theorem 8.3, where the theorem was proved for a more general
case of Banach space-valued processes. �

Theorem 1.135 Let
(
�1,F1,F 1,t

s , P1,WQ,1
)
and

(
�2,F2,F 2,t

s , P2,WQ,2
)
be

two generalized reference probability spaces. Let �i : [t, T ] × �i → L2(�0, H),
i = 1, 2, be twoF i,t

s -progressively measurable processes satisfying

P1

(∫ T

t
‖�1(s)‖2L2(�0,H)ds < +∞

)
= P2

(∫ T

t
‖�2(s)‖2L2(�0,H)ds < +∞

)
= 1.

Let (�̃, F̃ ) be a measurable space and ξi : �i → �̃, i = 1, 2, be two random vari-
ables. Assume that, for some subset D ⊂ [t, T ] of full measure,

LP1

(
�1(·),WQ,1(·), ξ1

) = LP2

(
�2(·),WQ,2(·), ξ2

)
on D.

Then

LP1

(∫ ·

t
�1(s)dWQ,1(s), ξ1

)
= LP2

(∫ ·

t
�2(s)dWQ,2(s), ξ2

)
on [t, T ]. (1.47)

Proof See [471] Theorem 8.6. �
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Consider now an operator A and mappings b,σ satisfying Hypothesis 1.125,
and x ∈ H . Let

(
�1,F1,F 1,t

s , P1,WQ,1
)
and

(
�2,F2,F 2,t

s , P2,WQ,2
)
be as in

Theorem 1.135. For i = 1, 2 consider an F i,t
s -progressively measurable process

ai : [t, T ] × �i → �.
Let p > 2 and let ζi ∈ L p(�i ,F

i,t
t , Pi ), i = 1, 2. Denote by Hp,i the Banach

space of all F i,t
s -progressively measurable processes Zi : [t, T ] × �i → H such

that (
sup

s∈[t,T ]
Ei |Zi (s)|p

)1/p

< +∞.

Let Ki : Hp,i → Hp,i be the continuous map (see [180], p. 189) defined as

Ki (Zi (·))(s) := e(s−t)Aζi +
∫ s

t
e(s−r)Ab(r, Zi (r), ai (r))dr

+
∫ s

t
e(s−r)Aσ(r, Zi (r), ai (r))dWQ,i (r).

(1.48)

Lemma 1.136 Consider the setting described above, and let θi : [t, T ] × �i →
H, i = 1, 2, be stochastic processes. If

LP1(Z1(·), a1(·),WQ,1(·), θ1(·), ζ1) = LP2(Z2(·), a2(·),WQ,2(·), θ2(·), ζ2)

on some subset D ⊂ [t, T ] of full measure, then

LP1(K1(Z1(·))(·), a1(·),WQ,1(·), θ1(·), ζ1)
= LP2(K2(Z2(·))(·), a2(·),WQ,2(·), θ2(·), ζ2) on D.

Proof Observe that, since we only have to check the finite-dimensional distribu-
tions, the claims of Theorems 1.134 and 1.135 hold even if ξ1 and ξ2 are stochastic
processes, with (1.46) and (1.47) then being true on some set of full measure. Let us
choose a partition (t1, .., tn), with t ≤ t1 < t2 < ... < tn ≤ T, tk ∈ D, k = 1, ..., n.
We need to show that

LP1(K1(Z1(·))(tk), a1(tk),WQ,1(tk), θ1(tk), ζ1 : k = 1, ..., n)

= LP2(K2(Z2(·))(tk), a2(tk),WQ,1(tk), θ2(tk), ζ2 : k = 1, ..., n).

(1.49)

Define f i (r) := 1[t,t1](r)e(t1−r)Ab(r, Zi (r), ai (r)) and �i (r) := 1[t,t1](r)e(t1−r)A

σ(r, Zi (r), ai (r)), i = 1, 2. We have
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LP1
( f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1)

= LP2
( f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2) on D,

and thus, by Theorem 1.134 applied with

ξ1(·) = ( f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1),

ξ2(·) = ( f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2),

LP1

(∫ t1

t
f 1(s)ds, f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1

)

= LP2

(∫ t1

t
f 2(s)ds, f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2

)
on D.

Now, applying Theorem 1.135 with

ξ1(·) =
(∫ t1

t
f 1(s)ds, f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1

)
,

ξ2(·) =
(∫ t1

t
f 2(s)ds, f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2

)
,

we obtain

LP1

(∫ t1

t
f 1(s)ds,

∫ t1

t
�1(s)dWQ,1(s), f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1

)

= LP2

(∫ t1

t
f 2(s)ds,

∫ t1

t
�2(s)dWQ,2(s), f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2

)

on D (we recall that the stochastic convolution terms in (1.48) and the stochastic
integrals above have continuous trajectories a.e.). In particular, this implies that

LP1(K1(Z1(·))(t1), f 1(·),�1(·), Z1(·), a1(·),WQ,1(·), θ1(·), ζ1)
= LP2(K2(Z2(·))(t1), f 2(·),�2(·), Z2(·), a2(·),WQ,2(·), θ2(·), ζ2) on D.

We now repeat the above procedure for t2, ..., tn which will yield (1.49) as its con-
sequence. �
Proposition 1.137 Let the operator A and the mappings b,σ satisfy Hypothesis
1.125. Let

(
�1,F1,F 1,t

s , P1,WQ,1
)
and

(
�2,F2,F 2,t

s , P2,WQ,2
)
be two gener-

alized reference probability spaces. Let ai : [t, T ] × �i → �, i = 1, 2 be an F i,t
s -

progressively measurable process, and let ζi ∈ L p(�i ,F
i,t
t , Pi ), i = 1, 2, p > 2.

Let LP1(a1(·),WQ,1(·), ζ1) = LP2(a2(·),WQ,1(·), ζ2) on some subset D ⊂ [0, T ] of
full measure. Denote by Xi (·), i = 1, 2, the unique mild solution of
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{
dXi (s) = (AXi (s) + b(s, Xi (s), ai (s))) ds + σ(s, Xi (s), ai (s))dWQ,i (s)
Xi (t) = ζi

(1.50)
on [t, T ]. Then LP1(X1(·), a1(·)) = LP2(X2(·), a2(·)) on D.

Proof It is known (see [180], proof of Theorem 7.2, pp. 188–193) that the mapKi is
a contraction inHp,i if [t, T ] is small enough. Thus if we divide [t, T ] into such small
intervals [t, T1], ...[Tk, T ], Xi (·) on [t, T1] is obtained as the limit inHp,i (restricted
to [t, T1]) of the iterates (Kn

i (x))(·). Therefore, using Lemma 1.136 and passing to
the limit as n → +∞ we obtain

LP1(1[t,T1](·)X1(·), a1(·),WQ,1(·)) = LP2(1[t,T1](·)X2(·), a2(·),WQ,1(·)) on D.

Without loss of generality we may assume that T1 ∈ D. The solutions on [T1, T2] are
obtained as the limits in Hp,i (restricted to [T1, T2]) of the iterates (Kn

i (Xi (T1)))(·),
where now

Ki (Zi (·))(s) := e(s−T1)AXi (T1) +
∫ s

T1

e(s−r)Ab(r, Zi (r), ai (r))dr

+
∫ s

T1

e(s−r)Aσ(r, Zi (r), ai (r))dWQ,i (r).

Thus, again using Lemma 1.136 and passing to the limit as n → +∞, it follows that

LP1(1[t,T2](·)X1(·), a1(·),WQ,1(·)) = LP2(1[t,T2](·)X2(·), a2(·),WQ,1(·)) on D.

We repeat the procedure to obtain the required claim. �

1.5 Further Existence and Uniqueness Results in Special
Cases

Throughout this section T > 0 is a fixed constant, H, �, Q, and the generalized
reference probability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) are as in Sect. 1.3 (with
t = 0), A is the infinitesimal generator of a C0-semigroup on H , and � is a Polish
space. As in previous sections we will only consider equations on the interval [0, T ],
however all results would be the same if instead of [0, T ] we took an interval [t, T ],
for 0 ≤ t < T .
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1.5.1 SDEs Coming from Boundary Control Problems

In this section we study SDEs that include equations coming from optimal control
problems with boundary control and noise. To see how they arise the reader can look
at the examples in Sects. 2.6.2 and 2.6.3, and Appendix C.We consider the following
SDE in H :⎧⎪⎨

⎪⎩
dX (s) = (

AX (s) + b(s, X (s), a(s)) + (λI − A)βGab(s)
)
ds

+σ(s, X (s), a(s))dWQ(s), s ∈ (0, T ]
X (0) = ξ.

(1.51)

Hypothesis 1.138

(i) A generates an analytic semigroup et A for t ≥ 0 and λ is a real constant such
that (λI − A)−1 ∈ L(H).

(ii) a : [0, T ] × � → � is progressively measurable, b(·, ·, ·) satisfies (1.31) and
(1.33).

(iii) �b is a Hilbert space and ab(·) : [0, T ] × � → �b is progressively measurable.
(iv) G ∈ L(�b, H).
(v) β ∈ [0, 1).
(vi) γ is a constant belonging to the interval

[
0, 1

2

)
, σ is a mapping such that (λI −

A)−γσ : [0, T ] × H × �b → L2(�0, H) is continuous. There exists a constant
C > 0 such that

‖(λI − A)−γσ(s, x, a)‖L2(�0,H) ≤ C(1 + |x |)

for all s ∈ [0, T ], x ∈ H, a ∈ � and

‖(λI − A)−γ[σ(s, x1, a) − σ(s, x2, a)]‖L2(�0,H) ≤ C |x1 − x2|

for all s ∈ [0, T ], x1, x2 ∈ H, a ∈ �.

Remark 1.139 Part (i) of Hypothesis 1.138 implies, thanks to (B.18), that for every
θ ≥ 0 there exists an Mθ > 0 such that

|(λI − A)θet Ax | ≤ Mθ

tθ
|x |, for every t ∈ (0, T ], x ∈ H. (1.52)

�

Following Remark 1.120, the definition of a mild solution of (1.51) is given by
Definition 1.119 in which the term∫ s

0
e(s−r)A(λI − A)βGab(r)dr
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is interpreted as ∫ s

0
(λI − A)βe(s−r)AGab(r)dr,

and the term ∫ s

0
e(s−r)Aσ(r, X (r), a(r))dWQ(r)

as ∫ s

0
(λI − A)γe(s−r)A(λI − A)−γσ(r, X (r), a(r))dWQ(r).

This is natural since (λI − A)βe(s−r)A is an extension of e(s−r)A(λI − A)β and
(λI − A)γe(s−r)A(λI − A)−γ = e(s−r)A.

Remark 1.140 SDEs of type (1.51) appear most frequently in optimal control prob-
lems of parabolic equations on a domain O ⊂ R

n with boundary control/noise, see
Sect. 2.6.2. More precisely, the cases β ∈ (

3
4 , 1

)
and β ∈ (

1
4 ,

1
2

)
are related respec-

tively to the Dirichlet and Neumann boundary control problems when one takes
�b = L2(∂O) (or some subset of it) and H = L2(O). γ ∈ (

1
4 ,

1
2

)
arises when one

treats problems with boundary noise of Neumann type where again �b = L2(∂O)

and H = L2(O). γ,β ∈ (
1
2 − ε, 1

2

)
arise in some specific Dirichlet boundary con-

trol/noise problems when one considers �b = L2(∂O) and a suitable weighted L2

space as H . �

Theorem 1.141 Assume that Hypothesis 1.138 holds, p ≥ 2, and let α := 1
2 − γ.

Suppose that

p >
1

α
(1.53)

and ab(·) ∈ Mq
μ(0, T ;�b) for someq ≥ p, q > 1

1−β
. Then, for every initial condition

ξ ∈ L2(�,F0, P), there exists a unique mild solution X (·) = X (·; 0, ξ, a(·), ab(·))
of (1.51) inH2(0, T ; H) with continuous trajectories P-a.s. If there exists a constant
C > 0 such that

‖(λI − A)−γσ(s, x, a)‖L2(�0,H) ≤ C (1.54)

for all s ∈ [0, T ], x ∈ H, a ∈ �, then the solution has continuous trajectories P-a.s.
without the restriction p > 1

α
. If ξ ∈ L p(�,F0, P) then X (·) ∈ Hp(0, T ; H) and

there exists a constant CT,p independent of ξ such that

sup
s∈[0,T ]

E|X (s)|p ≤ CT,p(1 + E|ξ|p). (1.55)

Proof Assume first that ξ ∈ L p(�,F0, P) where p ≥ 2 without the restriction
(1.53). Similarly to the proof of Theorem 1.127, we will show that for some
T0 ∈ (0, T ] the map



60 1 Preliminaries on Stochastic Calculus in Infinite Dimension

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K : Hp(0, T0) → Hp(0, T0),

K(Y )(s) = esAξ +
∫ s

0
e(s−r)Ab(r, Y (r), a(r))dr +

∫ s

0
(λI − A)βe(s−r)AGab(r)dr

+
∫ s

0
(λI − A)γe(s−r)A(λI − A)−γσ(r, Y (r), a(r))dWQ(r)

(1.56)
is well defined and is a contraction. The only difference between our case here and
that considered in Theorem 1.127 is the last two terms in (1.56).

First we prove that K maps Hp(0, T0) into Hp(0, T0). We only show how to
deal with the non-standard terms. For the third term in (1.56) we can argue as fol-
lows. If Mβ is the constant from (1.52) for θ = β, using (1.52), Hölder and Jensen’s
inequalities, and q ≥ p, q > 1

1−β
, we obtain

sup
s∈[0,T0]

E

∣∣∣∣
∫ s

0
(λI − A)βe(s−r)AGab(r)dr

∣∣∣∣
p

≤ sup
s∈[0,T0]

Mp
β ‖G‖p

E

(∫ s

0

1

(s − r)β
|ab(r)|dr

)p

≤ Mp
β ‖G‖p

(∫ T0

0

1

(T0 − r)
βq
q−1

dr

) p(q−1)
q

E

[∫ T0

0
|ab(r)|qdr

] p
q

≤ C1

(
E

[∫ T0

0
|ab(r)|qdr

]) p
q

< +∞.

(1.57)

As regards the stochastic integral term, using Theorem 1.111, (1.52), and Hypothesis
1.138-(vi), we estimate

sup
s∈[0,T0]

E

∣∣∣∣
∫ s

0
(λI − A)γe(s−r)A(λI − A)−γσ(r, Y (r), a(r))dWQ(r)

∣∣∣∣
p

≤ sup
s∈[0,T0]

C1E

∣∣∣∣
∫ s

0

1

(s − r)2γ
‖(λI − A)−γσ(r, Y (r), a(r))‖2L2(�0,H)dr

∣∣∣∣
p
2

≤ sup
s∈[0,T0]

C2

(∫ T0

0

1

(T0 − r)2γ
dr

) p
2 −1 ∫ s

0

1

(s − r)2γ
E[(1 + |Y (r)|)p]dr

≤ C3

(
1 + |Y |pHp(0,T0)

)
(1.58)

for some constant C3. Progressive measurability of all the terms appearing in the
definition of K(Y )(·) can be proved by using estimates similar to (1.57) and (1.58)
and arguing as in Remark 1.123.

Regarding the proof that, for T0 small enough, K is a contraction, the only non-
standard term to check is the stochastic convolution term, since the third term in
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(1.56) does not depend on X . Arguing as before we have that for X, Y ∈ Hp(0, T0),
thanks to Theorem 1.111, (1.52), Hypothesis 1.138-(vi), and Jensen’s inequality,

sup
s∈[0,T0]

E

∣∣∣∣
∫ s

0
(λI − A)γe(s−r)A(λI − A)−γ [σ(r, X (r), a(r)) − σ(r, Y (r), a(r))] dWQ(r)

∣∣∣∣
p

≤ sup
s∈[0,T0]

C1E

(∫ s

0

1

(s − r)2γ
∥∥(λI − A)−γ [σ(r, X (r), a(r)) − σ(r, Y (r), a(r))]

∥∥2
L2(�0,H)

dr

) p
2

≤ sup
s∈[0,T0]

C2E

(∫ s

0

1

(s − r)2γ
|X (r) − Y (r)|2dr

) p
2

≤ sup
s∈[0,T0]

C2

(∫ T0

0

1

(T0 − r)2γ
dr

) p
2 −1 ∫ s

0

1

(s − r)2γ
E[|X (r) − Y (r)|p]dr

≤ ω(T0)|X − Y |pHp(0,T0)
, (1.59)

where ω(r)
r→0+−−−→ 0. So for T0 small enough (which is independent of the initial

condition) we can apply the Banach fixed point theorem inHp(0, T0) as in the proof
of Theorem 1.127 (see also the proof of [180], Theorem 7.2, p. 188). The process can
now be reapplied on intervals [T0, 2T0], ..., [kT0, T ], where k = [T/T0], to obtain the
existence of a unique mild solution inHp(0, T ) in the sense of the integral equality
being satisfied for a.e. s ∈ [0, T ].

Estimate (1.55) follows from similar arguments using the growth assumptions on
b,σ in Hypothesis 1.138 and Gronwall’s lemma in the form given in Proposition
D.30.

We will now prove the continuity of the trajectories if condition (1.53) is satisfied.
We will only prove the continuity of the stochastic convolution term in (1.56) since
the continuity of the other terms is easier to show. In particular, the continuity of the
trajectories of the third term in (1.56) follows from Lemma 1.115-(ii).

Let now p > 1
α
. Hence there is an 0 < α′ < α such that p > 1

α′ . Then, for r ∈
[t, T ], using (1.52), (1.55), Hypothesis 1.138-(vi), and Jensen’s inequality

E

(∫ r

0
(r − h)−2α′ ∥∥∥(λI − A)γe(r−h)A(λI − A)−γσ(h, X (h), a(h))

∥∥∥2
L2(�0,H)

dh

) p
2

≤ E

(∫ r

0
(r − h)−2α′ ‖(λI − A)γe(r−h)A‖2L(H)

∥∥(λI − A)−γσ(h, X (h), a(h))
∥∥2
L2(�0,H)

ds

) p
2

≤ C1E

(∫ r

0
(r − h)−2α′

(r − h)−2γ(1 + |X (h)|)2dh
) p

2

≤ C1

(∫ T

0
(T − h)−2α′

(T − h)−2γdh

) p
2

sup
h∈[0,T ]

E[(1 + |X (h)|)p] =: C2 < +∞. (1.60)

Observe thatC2 does not depend on r ∈ [0, T ]. This proves (1.25) and thus the claim
follows from Proposition 1.116. When (1.54) holds, estimate (1.60) is easier and can
be done for any exponent p′ > 1/α in place of p, and thus (1.25) is always satisfied.

Finally, we need to discuss the continuity of the trajectories if ξ ∈ L2(�,F0, P).
We argue as in the proof of Theorem 7.2 of [180]. For n ≥ 1 we define the random
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variables

ξn =
{

ξ if |ξ| ≤ n
0 if |ξ| > n.

The solutions X (·; 0, ξ, a(·), ab(·)) and X (·; 0, ξn, a(·), ab(·)) on [0, T0] are obtained
as fixed points in H2(0, T0) and Hp(0, T0), with p large enough, of the same con-
traction map (1.56) with the second map having the term esAξn in place of esAξ.
Therefore both solutions can be obtained as limits of successive iterations start-
ing, say, from processes esAξ and esAξn , respectively. It is then easy to see that
we have X (·; 0, ξ, a(·), ab(·)) = X (·; 0, ξn, a(·), ab(·)), P-a.s. on {ω : |ξ(ω)| ≤ n}.
However, the solutions X (·; 0, ξn, a(·), ab(·)) have continuous trajectories. Thus
X (·; 0, ξ, a(·), ab(·)) has continuous trajectories P-a.s. on [0, T0] and we can then
continue the argument on intervals [T0, 2T0], .... �

Proposition 1.142 Let the assumptions of Theorem 1.141 be satisfied. Denote the
unique mild solution of (1.51) inHp(0, T ; H) by X (·) = X (·; 0, ξ, a(·), ab(·)).
(i) If ξ1 = ξ2 P-a.s., a1(·) = a2(·) dt ⊗ P-a.s. a1b(·) = a2b(·) dt ⊗ P-a.s., then P-

a.s., X (·; 0, ξ1, a1(·), a1b(·)) = X (·; 0, ξ2, a2(·), a2b(·)) on [0, T ].
(ii) Let

(
�1,F1,F 1

s , P1,WQ,1
)
and

(
�2,F2,F 2

s , P2,WQ,2
)
be two generalized

reference probability spaces. Let ζi ∈ L p(�i ,F
i
0, Pi ), i = 1, 2. Let (ai , aib) :[0, T ] × �i → � × �b, i = 1, 2 be F i

s -progressively measurable processes
satisfying the assumptions of Theorem 1.141. Suppose that LP1(a

1(·), a1b(·),
WQ,1(·), ζ1) = LP2(a

2(·), a2b(·),WQ,1(·), ζ2) on some subset D ⊂ [t, T ] of full
measure. Then LP1(X (·; 0, ζ1, a1(·), a1b(·)), a1(·), a1b(·)) = LP2(X (·; 0, ζ2,
a2(·), a2b(·)), a2(·), a2b(·)) on D.

(iii) The solution of (1.51) is unique in M p
μ (0, T ; H) as well.

Proof (i) If Xi (·) := X
(·; 0, ξi , ai (·), aib(·)), arguing as in (1.59) and using Hölder’s

inequality, we obtain, for s ∈ [0, T ],

E|X1(s) − X2(s)|p ≤ CT

∫ s

0
E|X1(r) − X2(r)|pdr,

and the claim follows by using Gronwall’s lemma (Proposition D.29), and the con-
tinuity of the trajectories.

(ii) The argument is the same as the one used to prove Lemma 1.136 and
Proposition 1.137, since in the current case the solution is also found by iterating the
map K.

(iii) The uniqueness in Mp
μ (0, T0; H) follows from the estimate in Part (i) above

and Proposition D.29. �
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1.5.2 Semilinear SDEs with Additive Noise

In this section we give more precise results for some semilinear SDEs with additive
noise, i.e. for Eq. (1.28) when the coefficient σ is constant and we have possible
unboundedness in the drift.

Hypothesis 1.143

(i) The linear operator A is the generator of a strongly continuous semigroup{
et A , , t ≥ 0

}
in H and, for suitable M ≥ 1 and ω ∈ R,

|et Ax | ≤ Meωt |x |, ∀t ≥ 0, x ∈ H. (1.61)

(ii) Q ∈ L+(�), σ ∈ L(�, H) and esAσQσ∗esA∗ ∈ L1(H) for all s > 0. Moreover,
for all t ≥ 0, ∫ t

0
Tr

[
esAσQσ∗esA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAσQσ∗esA

∗
ds, (1.62)

is of trace class for every t ≥ 0, i.e.

Tr [Qs] < +∞. (1.63)

Let WQ be a Q-Wiener process in � and consider the stochastic convolution
process defined, for s ≥ 0, as follows:

W A(s) =
∫ s

0
e(s−r)AσdWQ(r). (1.64)

Proposition 1.144 Suppose that Hypothesis 1.143 is satisfied. Then the process
W A(·) defined in (1.64) is a Gaussian process with mean 0 and covariance oper-
ator Qs, is mean square continuous and W A(·) ∈ Hμ

p(0, T ; H) for every p ≥ 2.
Moreover, if there exists a γ > 0 such that

∫ T

0
s−γTr

[
esAσQσ∗esA

∗]
ds < ∞, (1.65)

then W A(·) has continuous trajectories5 and, for p > 0,

5Without assuming (1.65) such continuity of trajectories may fail to hold, see e.g. [357].



64 1 Preliminaries on Stochastic Calculus in Infinite Dimension

E

[
sup

0≤s≤T
|W A(s)|p

]
< +∞.

Proof See [180]Chap. 5, Theorems5.2 and5.11. The fact thatW A(·) ∈ Hμ
p(0, T ; H)

for every p ≥ 2 follows from Theorem 1.111. The last estimate can be found, for
example, as a particular case of Proposition 3.2 in [284]. �

A completely analogous result holds for the stochastic convolution starting at a
point t ≥ 0, i.e.

W A(t, s) :=
∫ s

t
e(s−r)AσdWQ(r), s ≥ t. (1.66)

Let T > 0. We consider the SDE{
dX (s) = (AX (s) + b(s, X (s))) ds + σdWQ(s), s > 0

X (0) = ξ.
(1.67)

Hypothesis 1.145 p ≥ 1 and b(s, x) = b0(s, x, a1(s)) + a2(s), where:

(i) The process a1(·) : [0, T ] × � → � (where � is a given Polish space) is Fs-
progressively measurable. The map b0 : [0, T ] × H × � → H is Borel mea-
surable and there exists a non-negative function f ∈ L1(0, T ; R) such that

|b0(s, x, a1)| ≤ f (s)(1 + |x |) ∀s ∈ [0, T ], x ∈ H and a1 ∈ �.

|b0(s, x1, a1) − b0(s, x2, a1)| ≤ f (s)|x1 − x2|
∀s ∈ [0, T ], x1, x2 ∈ H and a1 ∈ �.

(ii) The process a2(·) is such that for all t > 0, the process (s,ω)→et Aa2(s,ω),
when interpreted properly, is Fs-progressively measurable on [0, T ] × � with
values in H , and

|et Aa2(s,ω)| ≤ t−βg(s,ω) ∀(t, s,ω) ∈ [0, T ] × [0, T ] × �, (1.68)

for some β ∈ [0, 1) and g ∈ Mq
μ(0, T ; R), where q ≥ p and q > 1

1−β
.

Hypothesis 1.145 covers some cases which are not standard and for which a
separate proof of existence and uniqueness of mild solutions of (1.67) is required.

Remark 1.146 Hypothesis 1.145-(ii) is satisfied, for example, when A is the gen-
erator of an analytic C0-semigroup and the process a2(·) is of the form a2(s) =
(λI − A)βa3(s), where λ ∈ R is such that (λI − A) is invertible, β ∈ (0, 1), a3(·) ∈
Mq

μ(0, T ; H), q ≥ p, q > 1
1−β

. In such cases the definition of a mild solution of
(1.67) is given by Definition 1.119 in which the formal term

∫ s

0
e(s−r)Aa2(r)dr =

∫ s

0
e(s−r)A(λI − A)βa3(r)dr
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appearing in the definition of a mild solution is interpreted as

∫ s

0
(λI − A)βe(s−r)Aa3(r)dr.

This is natural since (λI − A)βe(s−r)A is an extension of e(s−r)A(λI − A)β .
Another more general case where Hypothesis 1.145-(ii) is satisfied is when a2(·) :

[0, T ] × � → V ∗ is progressively measurable, where V ∗ denotes the topological
dual of V = D(A∗). In such a case the semigroup et A may be extended, by a standard
construction (see e.g. [232]), to the space V ∗. Denoting this extension still by et A,
the process et Aa2(·) : [0, T ] × � → V ∗ is well defined. If we further assume that
et Aa2(·) takes values in H and satisfies (1.68) for some β ∈ (0, 1), then Hypothesis
1.145-(ii) is satisfied. A similar and even slightly more general case has been studied
in [232] in a deterministic context. �

Proposition 1.147 Let ξ ∈ L p(�,F0, P) and Hypotheses 1.143 and 1.145 be sat-
isfied. Then Eq. (1.67) has a unique mild solution X (·; 0, ξ) ∈ Hμ

p(0, T ; H). The
solution satisfies, for some Cp(T ) > 0 independent of ξ,

sup
s∈[0,T ]

E
[|X (s; 0, ξ)|p] ≤ Cp(T )(1 + E[|ξ|p]). (1.69)

Moreover, if ξ1, ξ2 ∈ L p(�,F0, P), we have, P-a.s.,

|X (s; 0, ξ1) − X (s; 0, ξ2)| ≤ MeωT |ξ1 − ξ2|eMeωT
∫ s
0 f (r)dr , s ∈ [0, T ]. (1.70)

Finally, if (1.65) also holds for some γ > 0, then the solution X (·; 0, ξ) has P-a.s.
continuous trajectories, and if ξ = x ∈ H is deterministic we then have

E( sup
s∈[0,T ]

|X (s)|p) ≤ Cp(T )(1 + |x |p) (1.71)

for a suitable constant Cp(T ) > 0 independent of x. In particular, if g in Hypothesis
1.145-(ii) is in Mq

μ(0, T ; R) for every q ≥ 1, then estimate (1.69) holds for every
p > 0 and the same is true for (1.71) if ξ = x ∈ H.

Proof The proof of existence and uniqueness uses the same techniques employed
in the Lipschitz case (Theorem 1.127) but contains a small additional difficulty due
the presence of the term a2(·) and possible singularities in s of the Lipschitz norm
of b0(s, ·). We will write Hp(0, T ) forHμ

p(0, T ; H). For Y ∈ Hp(0, T ) we set

K(Y )(s) = e(s−t)Aξ +
∫ s

0
e(s−r)Ab0(r, Y (r), a1(r))dr +

∫ s

0
e(s−r)Aa2(r)dr + W A(s).

(1.72)
W A belongs to Hp(0, T ) thanks to Proposition 1.144. Hypotheses 1.145-(i) and
1.145-(ii) ensure, respectively, that the second and third term in the definition of the
mapK belong toHp(0, T ) as well (one can use the same arguments as these to obtain
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(1.57) when β ∈ (0, 1) and Hölder’s inequality if β = 0). So K mapsHp(0, T ) into
itself. For Y1, Y2 ∈ Hp(0, T ), s ∈ [0, T ],

|K(Y1)(s) − K(Y2)(s)| ≤ MeωT
∫ s

0
f (r)|Y1(r) − Y2(r)|dr,

which yields, for T0 ∈ (0, T ],

|K(Y1) − K(Y2)|pHp(0,T0)
≤ MeωT sup

s∈[0,T0]
E

[∫ s

0
f (r)|Y1(r) − Y2(r)|dr

]p

≤ MeωT

[∫ T0

0
f (r)dr

]p

sup
s∈[0,T0]

E|Y1(s) − Y2(s)|p

= MeωT

[∫ T0

0
f (r)dr

]p

|Y1 − Y2|pHp(0,T0)
.

(1.73)

Therefore, if T0 is sufficiently small, we can apply the contraction mapping principle
to find the unique mild solution of (1.67) inHp(0, T0). The existence and uniqueness
of a solution on thewhole interval [0, T ] follows, as usual, by repeating the procedure
a finite number of times, since the estimate (1.73) does not depend on the initial data,
and the number of steps does not blow up since f is integrable. Estimate (1.69)
follows from (1.72) applied to the solution X if we perform estimates similar to
those above and use Gronwall’s Lemma.

To show (1.70) we observe that if Z(s) = X (s; 0, ξ1) − X (s; 0, ξ2), then for s ∈
[0, T ]

Z(s) = esA(ξ1 − ξ2) +
∫ s

0
e(s−r)A[b0(r, X (r; 0, ξ1), a1(r)) − b0(r, X (r; 0, ξ2), a1(r))]dr.

By Hypothesis 1.145 we thus have

|Z(s)| ≤ MeωT |ξ1 − ξ2| + MeωT
∫ s

0
f (r)|Z(r)|dr, s ∈ [0, T ]

so that, by Gronwall’s inequality (see Proposition D.29),

|Z(s)| ≤ MeωT |ξ1 − ξ2|eMeωT
∫ s
0 f (r)dr ,

which gives the claim. The continuity of trajectories follows from Proposition 1.144,
Hypothesis 1.145 and Lemma 1.115 for the second and fourth terms in (1.72), and
from Lemma 1.117 for the

∫ s
0 e(s−r)Aa2(r)dr term.

The last estimate (1.71) follows by standard arguments (see the proof of (1.37) in
Theorem 1.130) if we use Proposition 1.144. This implies that if g ∈ Mq

μ(0, T ; R)

for any q > 0, (1.71) holds for any p ≥ 2. For p ∈ (0, 2), defining Zr (s) :=
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sups∈[0,T ] |X (s)|r , we have

E(Z p(s)) ≤ [E(Z p(s)
2/p)]p/2 ≤ (C(1 + |x |2))p/2 ≤ C1(1 + |x |p).

�

Proposition 1.148 Assume that Hypotheses 1.143, 1.145, together with (1.65), are
satisfied, and let a2(·) be as in Remark 1.146. Then:
(i) Let ξ1, ξ2 ∈ L2(�,F0, P), ξ1 = ξ2 P-a.s. Let (a11(·), a13(·)), (a21(·), a23(·)) be

two processes satisfying Hypothesis 1.145, together with Remark 1.146, such
that (a11(·), a13(·)) = (a21(·), a23(·)), dt ⊗ P-a.s. Then, denoting by Xi (·; 0, ξi )
the solution of (1.67) for b(s, x) = (λ − A)βai3(s) + b0(s, x, ai1(s)), we have
X1(·; 0, ξ1) = X2(·; 0, ξ2), P-a.s. on [0, T ].

(ii) Let
(
�1,F1,F 1

s , P1,WQ,1
)
and

(
�2,F2,F 2

s , P2,WQ,2
)
be two generalized

reference probability spaces. Let ξi ∈ L2(�i ,F
i
0, Pi ), i = 1, 2. Let ai1(·), ai3(·),

i = 1, 2, be processes on [0, T ] × �i satisfyingHypothesis 1.145, togetherwith
Remark 1.146. Suppose that LP1(a

1
1(·), a13(·),WQ,1(·), ξ1) = LP2(a

2
1(·), a23(·),

WQ,2(·), ξ2). Then LP1(X
1(·; 0, ξ1), a11(·), a13(·)) = LP2(X (·; 0, ξ2), a21(·),

a23(·)).
(iii) If f ∈ L2(0, T ; R) then the solution of (1.67) ensured by Proposition 1.147 is

unique in M2
μ(0, T ; H) as well.

Proof Parts (i) and (ii) are proved similarly as Proposition 1.142 (i)–(ii). Part (iii)
follows from (1.70), which is also true in this case. We also point out that if p =
2, f ∈ L2(0, T ; R) then K maps M2

μ(0, T ; H) into itself and is a contraction in
M2

μ(0, T0; H) for small T0. �

1.5.3 Semilinear SDEs with Multiplicative Noise

This section contains a result for a class of semilinear SDEs with multiplicative
noise. Let T > 0, and let H , �, � and a generalized reference probability space(
�,F , {Fs}s∈[0,T ] , P,W

)
be as in Sect. 1.3, where W (t), t ∈ [0, T ], is a cylindri-

cal Wiener process (so here �0 = �). We consider the following SDE in H for
s ∈ [0, T ]:{

dX (s) = AX (s) ds + b(s, X (s), a(s)) ds + σ(s, X (s), a(s)) dW (s),
X (0) = ξ.

(1.74)

Hypothesis 1.149

(i) The operator A generates a strongly continuous semigroup et A for t ≥ 0 in H .
(ii) a(·) is a �-valued progressively measurable process.
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(iii) b is a function such that, for all s ∈ (0, T ], esAb : [0, T ] × H × � → H is
measurable and there exist L ≥ 0 and γ1 ∈ [0, 1) such that, with f1(s) = Ls−γ1 ,

|esAb(t, x, a)| ≤ f1(s)(1 + |x |), (1.75)

|esA(b(t, x, a) − b(t, y, a))| ≤ f1(s)|x − y|, (1.76)

for any s ∈ (0, T ], t ∈ [0, T ], x, y ∈ H, a ∈ �.
(iv) The function σ : [0, T ] × H × � → L(�, H) is such that, for every v ∈ �,

the map σ(·, ·, ·)v : [0, T ] × H × � → H is measurable and, for every s > 0,
t ∈ [0, T ], a ∈ � and x ∈ H , esAσ(t, x, a) belongs to L2(�, H). Moreover,
there exists a γ2 ∈ [0, 1/2) such that, with f2(s) = Ls−γ2 ,

|esAσ(t, x, a)|L2(�,H) ≤ f2(s)(1 + |x |), (1.77)

|esAσ(t, x, a) − esAσ(t, y, a)|L2(�,H) ≤ f2(s)|x − y|, (1.78)

for every s ∈ (0, T ], t ∈ [0, T ], x, y ∈ H, a ∈ �.

Remark 1.150 Hypothesis 1.149-(iii) covers some cases where the term b is
unbounded, which arise, for example, from a stochastic heat equationwith a non-zero
boundary condition which may also depend on the state variable x (see the last part
of Example 4.222).

Moreover, Hypothesis 1.149-(iv) applies to cases, such as reaction-diffusion equa-
tions (see e.g. [177], Chap. 11 or, in our Chap. 2, Sect. 2.6.1 and, in particular,
Eqs. (2.79) and (2.83), where the operator σ is a nonlinear Nemytskii type oper-
ator. Indeed, in such cases it is known that, when the underlying space is L2(O)

(O⊂R
n , open), the operator σ(t, ·) : H → L(H) is never Lipschitz continuous

while esAσ(t, ·) : H → L2(H) is so (see e.g. [177], proof of Theorem 11.2.4 and
Sect. 11.2.1, or [283], Remark 2.2). �

Remark 1.151 If in Hypothesis 1.125 we setWQ = Q1/2W̃ for a suitable cylindrical
Wiener process W̃ in �̃ = R(Q−1/2) and we substitute σ with σ̃ = σQ1/2, it is
easy to see that Hypothesis 1.149 is more general. However, we need to replace
� by �̃. A cylindrical Wiener process W in � may not be adapted to the original
filtration. Similarly, Hypothesis 1.149 is more general than Hypotheses 1.143 and
1.145, together with (1.65), if we take f bounded and a2(·) ≡ 0 there. �

The solution of Eq. (1.74) is defined in the mild sense of Definition 1.119, where
the convolution term∫ s

0
e(s−r)Aσ(r, X (r), a(r)) dW (r), s ∈ [0, T ],

makes sense thanks to (1.77) and Remark 1.123. Moreover, since s→esAb(t, x, a)

is continuous on (0, T ] for every t ∈ [0, T ], x ∈ H, a ∈ �, we have from Lemma
1.18 that e·Ab is B([0, T ]) ⊗ B([0, T ]) ⊗ B(H) ⊗ B(�)/B(H)-measurable.



1.5 Further Existence and Uniqueness Results in Special Cases 69

Theorem 1.152 Let Hypothesis 1.149 hold and let a(·) be a �-valued, progres-
sively measurable process. Let p ∈ [2,∞). Then, for every initial condition ξ ∈
L p(�,F0, P), the SDE (1.74) has a unique mild solution X (·) inHp(0, T ; H). The
solution satisfies

sup
s∈[0,T ]

E
[|X (s)|p] ≤ C0(1 + E[|ξ|p]) (1.79)

for some constant C0 > 0 independent of ξ and a(·). The mild solution X (·) has
continuous trajectories and, when ξ ≡ x ∈ H, we have

E

[
sup

s∈[0,T ]
|X (s)|p

]
≤ C(1 + |x |p), for all p > 0, (1.80)

for some constant C depending only on p, γ1, γ2, T, L and MT := sups∈[0,T ] |esA|.
Finally, when b and σ do not depend on a, mild solutions of (1.74) defined on

different generalized reference probability spaces have the same laws.

Proof Let p ≥ 2. The existence of a unique solution is proved using the Banach
contraction mapping theorem in Hp(0, T0) for some T0 ∈ (0, T ) small enough. We
define K : Hp(0, T ) → Hp(0, T ) by

K(Y )(s) := esAξ +
∫ s

0
e(s−r)Ab(r, Y (r), a(r))dr +

∫ s

0
e(s−r)Aσ(r, Y (r), a(r))dW (r).

(1.81)
We observe first that this expression belongs to Hp(0, T ). Thanks to (1.75), (1.77)
and Theorem 1.111, we have

E

∣∣∣∣
∫ s

0
e(s−r)Ab(r, Y (r), a(r))dr +

∫ s

0
e(s−r)Aσ(r, Y (r), a(r))dW (r)

∣∣∣∣
p

≤ Cp

(
E

∣∣∣∣
∫ s

0
[ f1(s − r)(1 + |Y (r)|)] dr

∣∣∣∣
p

+ E

∣∣∣∣
∫ s

0
e(s−r)Aσ(r, Y (r), a(r))dW (r)

∣∣∣∣
p )

≤ Cp

[∫ T

0
f1(r)dr

]p

sup
r∈[0,T ]

E(1 + |Y (r)|)p

+ Cp

[∫ T

0
f 22 (r)dr

] p
2

sup
r∈[0,T ]

E(1 + |Y (r)|)p,
(1.82)

where the constantCp depends only on p. Therefore, for any Y ∈ Hp(0, T ),K(Y ) ∈
Hp(0, T ). The estimates showing thatK is a contraction onHp(0, T0) for T0 ∈ (0, T ]
small enough are essentially the same. Using (1.76) and (1.78) instead of (1.75) and
(1.77) we obtain, for all Y1, Y2 ∈ Hp(0, T0),
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|K(Y1) − K(Y2)|pHp(0,T0)
≤ Cp

([∫ T0

0
f1(r)dr

]p

+
[∫ T0

0
f 22 (r)dr

] p
2
)

sup
r∈[0,T0]

E(|Y1(r) − Y2(r)|p),

and thusK is a contraction inHp(0, T0) if T0 ∈ (0, T ] is small enough. The existence
and uniqueness of solution inHp(0, T ) follows, as usual, by repeating the procedure
a finite number of times, since the estimate does not depend on the initial data, and
the number of steps does not blow up since f1 and f 22 are integrable. Estimate (1.79)
follows in a standard way by applying estimates like those in (1.82) to the fixed point
of the map K and using Gronwall’s lemma (see also the proof of Theorem 7.5 in
[180]).

The continuity of the trajectories and (1.80) are proved using the factorization
method similarly to the way it is done in the proof of Proposition 6.9 for p > 2. We
extend (1.80) to 0 < p ≤ 2 in the same way as in the proof of Proposition 1.147.
Uniqueness in law is proved similarly as in Proposition 1.137. �
Proposition 1.153 Assume that Hypothesis 1.149 holds. Let (t1, x1), (t2, x2) ∈
[0, T ] × H with t1 ≤ t2. Denote by X (·; t1, x1, a(·)), X (·; t2, x2, a(·)) the corre-
sponding mild solutions of (1.74) with the same progressively measurable process
a(·) and initial conditions X (ti ) = xi ∈ H, i = 1, 2. Then, for all s ∈ [t2, T ] we
have, setting γ3 := [2(1 − γ1)] ∧ [1 − 2γ2],

E[|X (s; t1, x1, a(·)) − X (s; t2, x2, a(·))|2] ≤

≤ C2
[|x1 − x2|2 + (1 + |x1|2)|t2 − t1|γ3 + |e(t2−t1)Ax1 − x1|2

] (1.83)

for some constant C2 depending only on γ1, γ2, T, L and M := sups∈[0,T ] |esA|.
Moreover, the term |e(t2−t1)Ax1 − x1|2 can be replaced by |e(t2−t1)Ax2 − x2|2.
Proof To simplify the notation we define Xi (s) := X (s; ti , xi , a(·)), b(r, Xi (r)) :=
b(r, Xi (r), a(r)),σ(r, Xi (r)) := σ(r, Xi (r), a(r)), i = 1, 2. By the definition of a
mild solution we have, for s ∈ [ti , T ],

Xi (s) = e(s−ti )Axi +
∫ s

ti

e(s−r)Ab(r, Xi (r))dr +
∫ s

ti

e(s−r)Aσ(r, Xi (r))dW (r),

hence
|X1(s) − X2(s)| ≤ |e(s−t1)Ax1 − e(s−t2)Ax2|

+
∣∣∣∣
∫ t2

t1

e(s−r)Ab(r, X1(r))dr

∣∣∣∣ +
∣∣∣∣
∫ s

t2

e(s−r)A (b(r, X1(r)) − b(r, X2(r))) dr

∣∣∣∣
+

∣∣∣∣
∫ t2

t1
e(s−r)Aσ(r, X1(r))dW (r)

∣∣∣∣ +
∣∣∣∣
∫ s

t2
e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))) dW (r)

∣∣∣∣ .
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Therefore

E|X1(s) − X2(s)|2 ≤ 5|e(s−t1)Ax1 − e(s−t2)Ax2|2

+ 5E

∣∣∣∣
∫ t2

t1
e(s−r)Ab(r, X1(r))dr

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ s

t2
e(s−r)A (b(r, X1(r)) − b(r, X2(r))) dr

∣∣∣∣2

+ 5E

∣∣∣∣
∫ t2

t1
e(s−r)Aσ(r, X1(r))dW (r)

∣∣∣∣
2

+ 5E

∣∣∣∣
∫ s

t2
e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))) dW (r)

∣∣∣∣2 . (1.84)

To estimate the second and the third terms we use Jensen’s inequality applied to the
inner integral. Using Hypothesis 1.149-(ii) and (1.80) we then obtain

E

∣∣∣∣
∫ t2

t1

e(s−r)Ab(r, X1(r))dr

∣∣∣∣
2

≤ L2
E

∣∣∣∣
∫ t2

t1

(s − r)−γ1(1 + |X1(r)|)dr
∣∣∣∣
2

≤ L2

(∫ t2

t1

(s − r)−γ1dr

)∫ t2

t1

(s − r)−γ1E(1 + |X1(r)|)2dr

≤ 2L2[1 + C(1 + |x1|2)]
(∫ t2

t1

(s − r)−γ1dr

)2

≤ 2L2[1 + C(1 + |x1|)2)] 1

1 − γ1
(t1 − t2)

2(1−γ1).

In the same way we estimate the third term obtaining, by Hypothesis 1.149-(ii),

E

∣∣∣∣
∫ s

t2

e(s−r)A (b(r, X1(r)) − b(r, X2(r))) dr

∣∣∣∣
2

≤ L2

(∫ s

t2

(s − r)−γ1dr

)∫ s

t2

(s − r)−γ1E|X1(r) − X2(r)|2dr

≤ L2(s − t2)1−γ1

1 − γ1

∫ s

t2

(s − r)−γ1E|X1(r) − X2(r)|2dr.

The fourth and the fifth term of (1.84) are estimated using the isometry formula. We
have

E

∣∣∣∣
∫ t2

t1

e(s−r)Aσ(r, X1(r))dW (r)

∣∣∣∣
2

=
∫ t2

t1

E|e(s−r)Aσ(r, X1(r))|2L2(�,H)dr

≤ L2
∫ t2

t1

(s − r)−2γ2E(1 + |X1(r)|)2dr ≤ 2L2[1 + C(1 + |x1|2)]
∫ t2

t1

(s − r)−2γ2dr
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≤ 2L2[1 + C(1 + |x1|2)] 1

1 − 2γ2
(t1 − t2)

1−2γ2

and

E

∣∣∣∣
∫ s

t2

e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))) dW (r)

∣∣∣∣
2

=
∫ s

t2

E|e(s−r)A (σ(r, X1(r)) − σ(r, X2(r))|2L2(�,H) dr

≤ L2
∫ s

t2

(s − r)−2γ2E|X1(r) − X2(r)|2dr.

Using all these estimates in (1.84) we obtain, for a suitable constant C1 > 0, for
γ3 := [2(1 − γ1)] ∧ [1 − 2γ2] and γ4 := γ1 ∨ [2γ2],

E|X1(s) − X2(s)|2 ≤ 5|e(s−t1)Ax1 − e(s−t2)Ax2|2 + C1(1 + |x1|2)|t2 − t1|γ3+

+C1

∫ s

t2

(s − r)−γ4E|X1(r) − X2(r)|2dr.

Observing that

|e(s−t1)Ax1 − e(s−t2)Ax2| ≤ M |x1 − x2| + |e(s−t2)A(e(t2−t1)Ax1 − x1)|,

we can thus apply Gronwall’s lemma in the form of Proposition D.30. It gives us

E|X1(s) − X2(s)|2 ≤ C2
[|x1 − x2|2 + (1 + |x1|2)|t2 − t1|γ3 + |e(t2−t1)Ax1 − x1|2

]
for some C2 > 0 with the required properties. �

Lemma 1.154 Assume that Hypothesis 1.149 holds. Fix a �-valued progressively
measurable process a(·). Let X be the unique mild solution of (1.74) described
in Theorem 1.152 with initial condition X (0) = x ∈ H. Define, for s ∈ [0, T ],
ψ(s) = b(s, X (s), a(s)),�(s) = σ(s, X (s), a(s)). Let {ei }i∈N be an orthonormal
basis of � and, for any k ∈ N, let Pk : � → � be the orthogonal projection onto
span{e1, ..., ek}. Let Xk be the unique mild solution of

{
dXk(s) = (AXk(s) + e

1
k Aψ(s))ds + e

1
k A�(s)PkdW (s),

Xk(0) = x .
(1.85)

Then, for any p > 0, there exists an Mp > 0 such that

sup
k∈N

E

[
sup

s∈[0,T ]
|Xk(s)|p

]
≤ Mp. (1.86)
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Moreover, for every s ∈ [0, T ],

lim
k→∞ E

[|Xk(s) − X (s)|2] = 0 (1.87)

and, for every ϕ ∈ Cm(H) (m ≥ 0),

lim
k→∞ E

[
ϕ(Xk(s))

] = E [ϕ(X (s))] , s ∈ [0, T ]. (1.88)

Proof It is easy to see, by using (1.80), that (1.86) is satisfied.
We now prove (1.87). We have, for s ∈ [0, T ],

E
∣∣X (s) − Xk(s)

∣∣2 ≤ 2E

∣∣∣∣
∫ s

0
e(s−r)A

(
ψ(r) − e

1
k Aψ(r)

)
dr

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
e(s−r)A�(r)(I − Pk)dW (r)

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
(I − e

1
k A)e(s−r)A�(r)PkdW (r)

∣∣∣∣
2

= I1 + I2 + I3.

We have for any k,

∣∣∣e(s−r)A
(
ψ(r) − e

1
k Aψ(r)

)∣∣∣ ≤ 2L(s − r)−γ1(1 + |X (r)|)

which is integrable on [0, s] for a.e. ω. Moreover,

∣∣∣e(s−r)A
(
ψ(r) − e

1
k Aψ(r)

)∣∣∣ → 0 as k → +∞

dr ⊗ P-a.s. Therefore it follows from the dominated convergence theorem that

∫ s

0
e(s−r)A

(
ψ(r) − e

1
k Aψ(r)

)
dr → 0 as k → +∞

P-a.s. Now by Hölder’s inequality

∣∣∣∣
∫ s

0
e(s−r)A

(
ψ(r) − e

1
k Aψ(r)

)
dr

∣∣∣∣
2

≤ 4L2

(∫ s

0
(s − r)−γ1dr

)(∫ s

0
(s − r)−γ1(1 + |X (r)|)2dr

)

which is integrable on �. Thus, using the dominated convergence theorem again we
conclude that limk→∞ I1 = 0.

Recall that �0 = �. To estimate I2, we set Qk := I − Pk . We have
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I2 = 4E

∣∣∣∣
∫ s

0
e(s−r)A�(r)(I − Pk)dW (r)

∣∣∣∣
2

= 4
∫ s

0
E

∥∥e(s−r)A�(r)Qk
∥∥2

L2(�,H)
dr

= 4
∫ s

0
E

∑
i∈N

〈
e(s−r)A�(r)Qkei , e

(s−r)A�(r)Qkei
〉
dr =: η(k).

Observe that∑
i∈N

〈
e(s−r)A�(r)Qkei , e

(s−r)A�(r)Qkei
〉

=
+∞∑

i=k+1

〈
e(s−r)A�(r)ei , e

(s−r)A�(r)ei
〉

≤
∑
i∈N

〈
e(s−r)A�(r)ei , e

(s−r)A�(r)ei
〉 = ∥∥e(s−r)A�(r)

∥∥2

L2(�,H)
.

Since the series above has nonnegative terms, we obtain

lim
k→∞

∥∥e(s−r)A�(r)Qk
∥∥2

L2(�,H)
= 0 dr ⊗ P-a.s.

Therefore, thanks to (1.80), Hypothesis 1.149 and the dominated convergence theo-
rem, we obtain

lim
k→∞ I2 ≤ lim

k→∞ η(k) = 0.

The term I3 is estimated similarly.
Thanks to (1.87), for any subsequence of Xk(s)we can extract a sub-subsequence

converging to X (s) almost everywhere and then, thanks to (1.86), (1.80) and the
dominated convergence theorem, we obtain (1.88) along the sub-subsequence. This
implies (1.88) for the whole sequence Xk(s). �
Remark 1.155 Observe that if b and σ satisfy Hypothesis 1.149, the functions
e

1
k Ab(s, x, a) and e

1
k Aσ(s, x, a)Pk satisfy Hypothesis 1.125. �

The last lemma concerns the additive noise case of Sect. 1.5.2, however we
included it here since its proof is similar to the proof of Lemma 1.154.

Let WQ be from Sect. 1.5.2. We know (see (1.12)) that WQ(s) = ∑+∞
n=1 gnβn(s),

s ≥ 0, where {gn} is an orthonormal basis of �0. Define en = Q−1/2gn, n ∈ N. Then
{en} is an orthonormal basis of �. Let P̃k be the orthogonal projection in �0 onto
span{g1, ..., gk} and Pk be the orthogonal projection in�onto span{e1, ..., ek}, k ∈ N.
It is easy to see that P̃k Q1/2 = Q1/2Pk as operators on �.

Lemma 1.156 Let Hypotheses 1.143 and 1.145 be satisfied and let q ≥ 2. Let X be
the unique mild solution of (1.67) described in Proposition 1.147 with initial condi-
tion X (0) = x ∈ H. Define for k,m ∈ N, Bk = {(s,ω) : |b0(s, X (s), a1(s))| ≤ k},
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Dm = {(s,ω) : |g(s,ω)| ≤ m}. There exists a sequence mk such that the sequence
Xk of the solutions of the SDE

{
dXk(s) = (

AXk(s) + ψk(s)
)
ds + σ P̃kdWQ(s), s > 0,

Xk(0) = x,
(1.89)

where ψk(s) = b0(s, X (s), a1(s))1Bk (s,ω) + e
1
k Aa2(s)1Dmk

(s,ω), satisfies the fol-
lowing.

(i) For any p ∈ [2, q] there exists an Mp > 0 such that

sup
k

sup
s∈[0,T ]

E
[|Xk(s)|p] , sup

s∈[0,T ]
E

[|X (s)|p] ≤ Mp. (1.90)

(ii) For every s ∈ [0, T ]
lim
k→∞ E

[|Xk(s) − X (s)|2] = 0.

Proof Part (i). The moment estimates are uniform in k (regardless of the choice
of mk) thanks to the following facts:

(a) Define W A,k(s) := ∫ s
0 e(s−r)Aσ P̃kdWQ(r), s ∈ [0, T ]. Given an orthonormal

basis {wn} of H , for any k ∈ N and s ∈ [0, T ], we have

0 ≤ Tr
((

esAσ P̃k Q1/2
) (

esAσ P̃k Q1/2
)∗)

= Tr
((
esAσQ1/2Pk

) (
esAσQ1/2Pk

)∗)
=

∑
n∈N

|PkQ1/2σ∗esA
∗
wn|2 ≤

∑
n∈N

|Q1/2σ∗esA
∗
wn|2 =

∑
n∈N

Tr
(
esAσQσ∗esA

∗)
.

(1.91)

Thus, by Theorem 1.111, it follows that for any k ∈ N and p ≥ 1,

sup
k

sup
s∈[0,T ]

E
[|W A,k(s)|p] < +∞.

Using (1.91) we also have, by the Lebesgue dominated convergence theorem,

∫ T

0
‖esAσ P̃k − esAσ‖2L2(�0,H)

ds =
∫ T

0

∑
n∈N

|(Pk − I )Q1/2σ∗esA∗
wn |2ds → 0.

(1.92)
(b) By the definition

|et Aψk(s)| ≤ f (s)(1 + |X (s)|) + t−βg(s,ω) for t, s ∈ [0, T ],ω ∈ �.
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Part (ii). The scheme of the proof is similar to that of (1.87). We choose mk such
that

E

∣∣∣∣
∫ T

0
kβg(r,ω)|1 − 1Dmk

(r,ω)|dr
∣∣∣∣
2

≤ 1

k
. (1.93)

We have for every s ∈ [0, T ],

E
∣∣X (s) − Xk(s)

∣∣2 ≤ 4E

∣∣∣∣
∫ s

0
e(s−r)Ab0(r, X (r), a1(r))(1 − 1Bk (r,ω))dr

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
e(s−r)A(a2(r) − e

1
k Aa2(r))dr

∣∣∣∣
2

+ 4E

∣∣∣∣
∫ s

0
e( 1

k +s−r)Aa2(r)(1 − 1Dmk
(r,ω))dr

∣∣∣∣
2

+ 4E
∣∣W A,k(s) − W A(s)

∣∣2 = J1 + J2 + J3 + J4.

The term J1 converges to 0 as k → +∞ by Hypothesis 1.145, Hölder’s inequality,
(1.69) for p = 2 and the dominated convergence theorem. The term J2 converges to
0 by the same arguments as for the term I1 in the proof of Lemma 1.154. The term
J3 converges to 0 by (1.93) and finally J4 → 0 by (1.92). �

1.6 Transition Semigroups

Let T ∈ (0,+∞] and recall that, as before, when T = +∞ the notation [0, T ] and
[t, T ]means [0,+∞) and [t,+∞). Let H, �, Q, and the generalized reference prob-
ability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) be the same as in Sect. 1.3. Consider
for t ∈ [0, T ] the following SDE with non-random coefficients

{
dX (s) = (AX (s) + b(s, X (s))) ds + σ(s, X (s))dWQ(s)

X (t) = x ∈ H,
(1.94)

where b : [0, T ] × H → H and σ : [0, T ] × H → L2(�0, H). If Hypothesis 1.125,
where we drop the dependence on a in all conditions, (respectively, Hypothe-
ses 1.143 and 1.145 with a2(·) ≡ 0 and with no dependence on a1, respectively,
Hypothesis 1.149 with no dependence on a) is satisfied, then Theorem 1.127 (respec-
tively, Proposition 1.147, respectively, Theorem 1.152) ensures that (1.94) has a
unique mild solution X (·; t, x). Moreover, we also have uniqueness in law of the
solutions.

We will be using the spaces Bb(H) of bounded Borel measurable functions on H
and Bm(H),m > 0, of Borel measurable functions on H with at most polynomial
growth of order m, defined in AppendixA.2.

For any φ ∈ Bb(H) and t ≥ 0, s ∈ [t, T ], we define
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{
Pt,s[φ] : H → R

Pt,s[φ] : x→E[φ(X (s; t, x))]. (1.95)

It is not obvious that Pt,s[φ] ∈ Bb(H) and it has to be checked in each case. The
general argument is the following and we illustrate it in the case when Hypothesis
1.149 is satisfied. First, using (1.83) it is easy to see that Pt,s[φ] ∈ Cb(H) if φ ∈
UCb(H). Then, using the functions constructed in the proof of Theorem 1.34 and
the dominated convergence theorem, we get that Pt,s[φ] ∈ Bb(H) for every φ =
1A, A = A ⊂ H . This, together with Corollary 1.3 and the dominated convergence
theorem, allows us to extend Pt,s[φ] ∈ Bb(H) to every φ = 1A, A ∈ B(H). We can
then use Lemma 1.15 to conclude that Pt,s [φ] ∈ Bb(H) for everyφ ∈ Bb(H). Similar
arguments can be applied in the cases when Hypotheses 1.143 and 1.145 hold or if
Hypothesis 1.125 is satisfied.Moreover, thanks to estimates (1.36), (1.69) and (1.80),
Pt,s[φ] is then also well defined for any φ ∈ Bm(H), m > 0.

Theorem 1.157 (Markov property) Let T ∈ (0,+∞]. Let Hypothesis 1.149 be
satisfied with b and σ independent of a. Then for every φ ∈ Bm(H) (m ≥ 0) and
0 ≤ t ≤ s ≤ r ≤ T (with the last inequality strict when T = +∞),

Eφ(X (r; t, x)|Fs) = Ps,r [φ](X (s; t, x)) P − almost surely,

and
Pt,r [φ](x) = Pt,s

[
Ps,r [φ]] (x) for all x ∈ H. (1.96)

The same result is true if Hypotheses 1.143 and 1.145 hold without dependence on
a1 and with a2(·) = 0 or if Hypothesis 1.125 holds without the dependence on a in
all conditions.

Proof See [180], Theorem 9.14, p. 248, and Corollary 9.15, p. 249. The hypothe-
ses are a little different from these in [180], however the same arguments can be
easily adapted using the proof of Proposition 1.153. The proof in [180] is given for
φ ∈ Bb(H) but the argument is exactly the same when φ ∈ Bm(H) (m > 0) simply
recalling that the operator Pt,s is well defined on such functions thanks to estimate
(1.80). �

It follows from the uniqueness in law of the solutions of (1.94) that the operators
Pt,s do not depend on the choice of a generalized reference probability space μ. As
a consequence of the uniqueness in law we also have the following corollary.

Corollary 1.158 Let Hypothesis 1.149 be satisfied with b and σ independent of a
and of the time variable s. Equation (1.94) then reduces to

{
dX (s) = (AX (s) + b(X (s))) ds + σ(X (s))dWQ(s),

X (t) = x ∈ H.
(1.97)

Denote by X (·; t, x) the unique mild solution of this equation (defined on [t,+∞)).
In this case, for any φ ∈ Bm(H) (m ≥ 0) and 0 ≤ t ≤ s, we have
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Pt,s[φ](x) = P0,s−t [φ]. (1.98)

Hence, defining Ps[φ] as follows,
{
Ps[φ] : H → R

Ps[φ] : x→Eφ(X (s; 0, x)), (1.99)

we have

Ps+r [φ](x) = Ps [Pr [φ]] (x) for all x ∈ H, s, r ≥ 0. (1.100)

The same result is true if Hypotheses 1.143 and 1.145 hold without dependence on
a1 and with a2(·) = 0 or if Hypothesis 1.125 holds without the dependence on a in
all conditions.

Proof We only need to prove (1.98), which is an immediate consequence of the
uniqueness in law of the mild solutions of (1.97). Indeed, by the uniqueness in law,
for all s ≥ t ≥ 0 and x ∈ H , the random variables X (s; t, x) and X (s − t; 0, x) have
the same distributions, hence

Pt,s[φ](x) = E[φ(X (s; t, x))] = E[φ(X (s − t; 0, x))] = P0,s−t [φ](x). �

Definition 1.159 (Transition semigroup, (strong) Feller property) If (1.96) (respec-
tively, (1.100)) is satisfied we call Pt,s (respectively, Pt ) the two-parameter tran-
sition semigroup (respectively, one-parameter transition semigroup) associated to
Eq. (1.94).

We say that Pt,s (respectively, Pt ) possesses the Feller property if

Pt,s(Cb(H))⊂Cb(H) (respectively, Pt (Cb(H))⊂Cb(H))

and that Pt,s (respectively, Pt ) possesses the strong Feller property if

Pt,s(Bb(H))⊂Cb(H) (respectively, Pt (Bb(H))⊂Cb(H))

for all 0 ≤ t < s ≤ T (respectively t ∈ (0, T ]).
Lemma 1.160 Assume that (1.94) has uniquemild solutions X (·; t, x)which satisfy,
for every m ≥ 0, the estimate

E[|X (s; t, x)|m] ≤ C(m)(1 + |x |m), t ≥ 0, s ∈ [t, T ], x ∈ H, (1.101)

for some constantC(m). If theFeller property holds for the associated two-parameter
transition semigroup Pt,s (t ≥ 0, s ∈ [t, T ]), then we also have
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Pt,s(Cm(H))⊂Cm(H) ∀m ≥ 0

while, if the strong Feller property holds, we also have

Pt,s(Bm(H))⊂Cm(H) ∀m ≥ 0.

Proof Let φ ∈ Bm(H) and define, for k ∈ N,

φk(x) = φ(x)1|x |≤k + φ

(
k
x

|x |
)
1|x |>k .

It is clear that φk ∈ Bb(H), it coincides with φ on {|x | ≤ k} and if φ is continuous
so is φk . Moreover, when k → +∞, φk converges to φ uniformly on bounded sets.
Assumenow that the strongFeller property holds (the argument for theFeller property
is exactly the same). In this case Pt,s[φk] is continuous, hence, to get the claim, it
is enough to show that Pt,s[φk] converges to Pt,s[φk] uniformly on bounded sets.
Indeed,

Pt,s[φk − φ](x) = E [(φk − φ)(X (s; t, x))]
= E

[(
φ

(
k
X (s; t, x)

|X (s; t, x)|
)

− φ(X (s; t, x))
)
1|X (s;t,x)|>k

]
≤ 2E

[‖φ‖Bm (1 + |X (s; t, x)|m)1|X (s;t,x)|≥k
]
.

Hence, for any p > 1 we have by (1.101)

Pt,s[φk − φ](x) ≤ 2‖φ‖Bm

[
E(1 + |X (s; t, x)|m)p

]1/p [
E1|X (s;t,x)|≥k

]1−1/p

≤ C(1 + |x |m)

[
E|X (s; t, x)|

k

]1−1/p

≤ C(1 + |x |m)

[
1 + |x |

k

]1−1/p

which converges to 0 uniformly on bounded sets. �

Remark 1.161 Estimate (1.101) is satisfied in two important cases:

• when Hypothesis 1.149 is satisfied with b and σ independent of a;
• when Hypotheses 1.143 and 1.145 hold without dependence on a1 and with
a2(·) = 0.

This follows from the growth estimates of Theorem 1.152 and Proposition 1.147.�

Theorem 1.162 Assume that Hypothesis 1.149 is satisfied. Then for every φ ∈
Cm(H) (m ≥ 0), the function Pt,s[φ] : H → R belongs to Cm(H). The same holds
if we assume that Hypotheses 1.143 and 1.145 hold without dependence on a1 and
with a2(·) = 0.

Proof The result is a consequence of the continuous dependence and growth esti-
mates of Theorem 1.152 and Propositions 1.153 and 1.147. �
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1.7 Itô’s and Dynkin’s Formulae

In this section we assume that T > 0, H, �, Q, and the generalized reference prob-
ability space μ = (�,F , {Fs}s∈[0,T ], P,WQ) are the same as in Sect. 1.3. The oper-
ator A is the generator of aC0-semigroup on H , and� is a Polish space. The various
Itô’s and Dynkin’s formulae presented in this section are used in proving existence
of viscosity solutions (Chap.3) and verification theorems (Chaps. 4 and 5).

Given a function F : [0, T ] × H → R, we denote by Ft the derivative of F(t, x)
with respect to t and by DF and D2F the first and second-order Fréchet derivatives
with respect to x .

Theorem 1.163 (Itô’s Formula) Assume that� is a process inN 2
Q(0, T ; H), f is an

H-valued progressively measurable (P-a.s.) Bochner integrable process on [0, T ],
and define, for s ∈ [0, T ],

X (s) := X (0) +
∫ s

0
f (r)dr +

∫ s

0
�(r)dWQ(r),

where X (0) is anF0-measurable H-valued random variable. Consider F : [0, T ] ×
H → R and assume that F and its derivatives Ft , DF, D2F are continuous and
bounded on bounded subsets of [0, T ] × H. Let τ be anFs -stopping time. Then, for
P-a.e. ω,

F(s ∧ τ , X (s ∧ τ )) = F(0, X (0)) +
∫ s∧τ

0
Ft (r, X (r))dr

+
∫ s∧τ

0
〈DF(r, X (r)), f (r)〉 dr +

∫ s∧τ

0

〈
DF(r, X (r)),�(r)dWQ(r)

〉
+ 1

2

∫ s∧τ

0
Tr

[(
�(r)Q1/2

) (
�(r)Q1/2

)∗
D2F(r, X (r))

]
dr on [0, T ].

(1.102)

Proof See [294], Theorems 2.9 and 2.10. See also, under the assumption of uniform
continuity on bounded sets of F and its derivatives, [180] Theorem 4.32, p. 106. �

Proposition 1.164 Let F : [0, T ] × H → R and x ∈ H. Assume that F and its
derivatives Ft , DF, D2F are continuous and bounded on bounded subsets of
[0, T ] × H. Suppose that DF : [0, T ] × H → D(A∗) and that A∗DF is con-
tinuous and bounded on bounded subsets of [0, T ] × H. Let f ∈ Mp

μ (0, T ; H),
� ∈ N p

Q(0, T ; H) for some p > 2. Let X (·) be the unique mild solution of (1.42)
such that X (0) = x and τ be an Fs -stopping time. Then, for P-a.e. ω,
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F(s ∧ τ , X (s ∧ τ )) = F(0, x) +
∫ s∧τ

0
Ft (r, X (r))dr

+
∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
dr +

∫ s∧τ

0
〈DF(r, X (r)), f (r)〉 dr

+ 1

2

∫ s∧τ

0
Tr

[(
�(r)Q1/2

) (
�(r)Q1/2

)∗
D2F(r, X (r))

]
dr

+
∫ s∧τ

0

〈
DF(r, X (r)),�(r)dWQ(r)

〉
on [0, T ].

(1.103)

Proof Since both sides of (1.103) are continuous processes, it is enough to prove the
formula for a single s. We approximate X (·) by the sequence Xn(·) introduced in
Proposition 1.132. By definition Xn(·) solves the integral equation

Xn(s) =
∫ s

0

(
AnX

n(r) + f (r)
)
dr +

∫ s

0
�(r)dWQ(r).

For any R > 0 such that |x | < R define the stopping times

τ̂ R := inf {s ∈ [0, T ] : |X (s)| > R} , τ̂ R
n := inf {s ∈ [0, T ] : |Xn(s)| > R + 1}

and denote by τ R and τ R
n , respectively,

τ R := min(τ , τ̂ R), τ R
n := min(τ , τ̂ R, τ̂ R

n ).

Observe that, thanks to (1.44), up to extracting a subsequence of Xn (still denoted
by Xn), sups∈[0,T ] |Xn(s) − X (s)|p converges to 0 on some set �̃ with P(�̃) = 1. It
is then easy to see that on �̃ we have

lim
n→∞ τ R

n = τ R .

We deduce that, for ω ∈ �̃,

lim
n→∞ 1[0,s∧τ R

n ] = 1[0,s∧τ R ], pointwise on [0, T ]. (1.104)

We can apply Itô’s formula (1.102) to the approximating problem (A∗
n is the adjoint

of An) obtaining, once we rewrite it using Lemma 1.110,

F(s ∧ τ R
n , Xn(s ∧ τ R

n )) = F(0, x) +
∫ s

0
1[0,s∧τ R

n ](r)Ft(r, Xn(r))dr

+
∫ s

0
1[0,s∧τ R

n ](r)
〈
A∗
nDF(r, Xn(r)), Xn(r)

〉
dr
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+
∫ s

0
1[0,s∧τ R

n ](r)
〈
DF(r, Xn(r)), f (r)

〉
dr

+ 1

2

∫ s

0
1[0,s∧τ R

n ](r)Tr
[(

�(r)Q1/2
) (

�(r)Q1/2
)∗

D2F(r, Xn(r))
]
dr

+
∫ s

0
1[0,s∧τ R

n ](r)
〈
DF(r, Xn(r)),�(r)dWQ(r)

〉
. (1.105)

By the local boundedness of F and its derivatives, it follows that for P-a.e. ω all the
integrands of the deterministic integrals in (1.105) are dominated for n ∈ N by inte-
grable functions. Regarding the term containing A∗

nDF(r, Xn(r)), recall from (B.11)
that An = Jn A are uniformly bounded as linear operators from D(A) (endowed with
the graph norm) to H . Moreover, thanks to (1.104), (1.44) and the continuity of F
and its derivatives, we know that these integrands converge to the corresponding ones
in (1.103) (with τR instead of τ ) on [0, s], P-a.s. We can thus conclude, by using the
Lebesgue dominated convergence theorem, that the deterministic integrals in (1.105)
converge to their counterparts in (1.103).

To justify the convergence of the stochastic integral we observe that, with

In :=
∫ s

0
1[0,s∧τ R

n ](r)
〈
DF(r, Xn(r)),�(r)dWQ(r)

〉
,

I :=
∫ s

0
1[0,s∧τ R ](r)

〈
DF(r, X (r)),�(r)dWQ(r)

〉
,

we have

E |In − I |2

≤
∫ s

0
E‖�(r)‖2L2(�0,H)

∣∣∣1[0,s∧τ R
n ](r)DF(r, Xn(r)) − 1[0,s∧τ R ](r)DF(r, X (r))

∣∣∣2 dr → 0

as n → +∞ by the dominated convergence theorem. Therefore, up to a subsequence,
we have limn→+∞ In = I , P-a.s.

It now remains to let R → +∞ to obtain the claim. �

Proposition 1.165 Let b and σ satisfy Hypothesis 1.125 and let a : [t, T ] → � be
a progressively measurable process. Let X (·) be the unique mild solution of (1.30)
such that X (0) = x ∈ H. Consider F : [0, T ] × H → R. Assume that F and its
derivatives Ft , DF, D2F are continuous on [0, T ] × H. Suppose that DF : [0, T ] ×
H → D(A∗) and that A∗DF is continuous on [0, T ] × H. Moreover, suppose that
there exist C ≥ 0, N ≥ 0 such that

|F(s, x)| + |DF(s, x)| + |Ft (s, x)| + ‖D2F(s, x)‖
+ |A∗DF(s, x)| ≤ C(1 + |x |)N (1.106)

for all x ∈ H, s ∈ [0, T ]. Let τ be an Fs -stopping time. Then:
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(i) For P-a.e. ω,

F(s ∧ τ , X (s ∧ τ )) = F(0, x) +
∫ s∧τ

0
Ft (r, X (r))dr

+
∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
dr +

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 dr

+ 1

2

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q1/2

) (
σ(r, X (r), a(r))Q1/2

)∗
D2F(r, X (r))

]
dr

+
∫ s∧τ

0

〈
DF(r, X (r)),σ(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.107)

(ii) Let η be a real process solving

{
dη(s) = b̃(s)ds
η(0) = η0 ∈ R,

where b̃ : [0, T ] → R is bounded and progressively measurable. Then, for
P-a.e. ω,

F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ ) = F(0, x)η0 +
∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+
∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
η(r)dr +

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr

+
∫ s∧τ

0

〈
DF(r, X (r))η(r),σ(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.108)

In particular, for s ∈ [0, T ],
E [F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ )] = F(0, x)η0 + E

∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+ E

∫ s∧τ

0

〈
A∗DF(r, X (r)), X (r)

〉
η(r)dr + E

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2
E

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

)(
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr.

(1.109)

Proof Part (i) follows directly from Proposition 1.164 applied with f (s) :=
b(s, a(s), X (s)) and �(s) := σ(s, a(s), X (s)), s ∈ [0, T ], by noticing that, thanks
to (1.33), (1.34) and (1.37), we have f ∈ Mp

μ (0, T ; H) and � ∈ N p
Q(0, T ; H) for

every p ≥ 1.
Part (i i) is a corollary of (i). We introduce the Hilbert space Ĥ := H × R (with

the usual inner product), and set

Â =
(
A
0

)
, b̂ =

(
b
b̃

)
, σ̂ =

(
σ 0
0 0

)
.

Then the process
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X̂(s) =
(
X (s)
η(s)

)

is the mild solution of the SDE⎧⎪⎪⎨
⎪⎪⎩
d X̂(s) =

(
Â X̂(s) + b̂(s, X̂(s), a(s))

)
ds + σ̂(s, X̂(s), a(s))dWQ(s)

X̂(0) =
(
x
η0

)
.

Therefore, (1.108) follows from (1.107) applied to the function F̂(s, x̂) = F(s, x)η0,
where x̂ = (x, η0). Taking expectation in (1.108) we obtain (1.109). �

Proposition 1.166 Let Hypothesis 1.125 be satisfied and A be maximal dissipative.
Let a : [t, T ] → � be a progressively measurable process. Let X (·) be the unique
mild solution of (1.30) such that X (0) = x ∈ H. Let F ∈ C1,2([0, T ] × H) be of the
form F(t, x) = ϕ(t, |x |) for some ϕ(t, r) ∈ C1,2([0, T ] × R), where ϕ(t, ·) is even
and non-decreasing on [0,+∞). Moreover, suppose that there exist C ≥ 0, N ≥ 0
such that

|F(s, x)| + |DF(s, x)| + |Ft (s, x)| + ‖D2F(s, x)‖ ≤ C(1 + |x |)N (1.110)

for all x ∈ H, s ∈ [0, T ]. Let τ be an Fs -stopping time. Then:

(i) For P-a.e. ω,

F(s ∧ τ , X (s ∧ τ )) ≤ F(0, x) +
∫ s∧τ

0

[
Ft (r, X (r)) + 〈b(r, X (r), a(r)), DF(r, X (r))〉

+ 1

2
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

] ]
dr

+
∫ s∧τ

0

〈
DF(r, X (r)), b(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.111)

(ii) If η is as in part (ii) of Proposition 1.165 and η is positive then, for P-a.e. ω,

F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ ) ≤ F(0, x)η0 +
∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+
∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr

+
∫ s∧τ

0

〈
DF(r, X (r))η(r), σ(r, X (r), a(r))dWQ(r)

〉
on [0, T ]. (1.112)

In particular, for s ∈ [0, T ],
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E [F(s ∧ τ , X (s ∧ τ ))η(s ∧ τ )] ≤ F(0, x)η0

+ E

∫ s∧τ

0
(Ft (r, X (r))η(r) + F(r, X (r))b̃(r))dr

+ E

∫ s∧τ

0
〈DF(r, X (r)), b(r, X (r), a(r))〉 η(r)dr

+ 1

2
E

∫ s∧τ

0
Tr

[(
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2F(r, X (r))

]
η(r)dr.

(1.113)

Proof (i) We set, for s ∈ [0, T ], f (s) := b(s, a(s), X (s)) and �(s) := σ(s, a(s),
X (s)) and consider the approximation Xn(·) of X (·) as in Proposition 1.132.
Observe that, thanks to (1.33), (1.34) and (1.37) we have f ∈ Mp

μ (0, T ; H) and
� ∈ N p

Q(0, T ; H) for every p ≥ 1 so the assumptions of Proposition 1.132 are sat-
isfied.

We observe that DF(s, x) = ∂ϕ
∂r (s, |x |) x

|x | and, since ϕ(s, ·) is non-decreasing on
[0,+∞), ∂ϕ

∂r (s, r) ≥ 0. Therefore, since A, and thus An , is dissipative,

〈
AnX

n(s), DF(r, Xn(s))
〉 = ∂ϕ

∂r
(s, |Xn(s)|) 1

|Xn(s)|
〈
AnX

n(s), Xn(s)
〉 ≤ 0

(1.114)
for every s ≥ 0.

Hence, defining for any R > |x | the stopping times τ R
n as in Proposition 1.164,

applying Itô’s formula for Xn(·) and using (1.114), we obtain

F(s ∧ τ R
n , Xn(s ∧ τ R

n )) = F(0, x) +
∫ s∧τ R

n

0

[
Ft (r, X

n(r)) + 〈
An X

n(r), DF(r, Xn(r))
〉

+ 〈
f (r), DF(r, Xn(r))

〉 + 1

2
Tr

[(
�(r)Q

1
2

) (
�(r)Q

1
2

)∗
D2F(r, Xn(r))

] ]
dr

+
∫ s∧τ R

n

0

〈
DF(r, Xn(r)), b(r, Xn(r), a(r))dWQ(r)

〉

≤ F(0, x) +
∫ s∧τ R

n

0

[
Ft (r, X

n(r)) + 〈
f (r), DF(r, Xn(r))

〉
+ 1

2
Tr

[(
�(r)Q

1
2

) (
�(r)Q

1
2

)∗
D2F(r, Xn(r))

] ]
dr

+
∫ s∧τ R

n

0

〈
DF(r, Xn(r)), b(r, Xn(r), a(r))dWQ(r)

〉
. (1.115)

It remains to pass to the limit as n → +∞ and R → +∞ in (1.115). This is done
following the same arguments as in the proof of Proposition 1.164.

(i i) The proof combines the proof of (i) with the arguments used in the proof of
Proposition 1.165-(i i). �
Remark 1.167 Propositions 1.165 and 1.166 are used toworkwith viscosity solution
test functions in Chap.3. In particular, parts (ii) of them are useful when discount
factors are present (see e.g. Lemma3.65). �
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The next two non-standard versions of Dynkin’s formula will be used to prove
verification theorems in Chaps. 4 and 5.

Proposition 1.168 Let Q = I . Assume that Hypothesis 1.149 is satisfied. Assume
that there exists λ ∈ R, λ ∈ �(A) such that (λI − A)−1b : [0, T ] × H × � → H is
measurable. Suppose moreover that there exists a C > 0 such that, for all (t, x, a) ∈
[0, T ] × H × �, { |(λI − A)−1b(t, x, a)| ≤ C(1 + |x |)

‖σ(t, x, a)‖L(�,H) ≤ C(1 + |x |). (1.116)

Fix a�-valued progressively measurable process a(·). Let X be the uniquemild solu-
tion of (1.74) described in Theorem 1.152 such that X (0) = x ∈ H. Let F : [0, T ] ×
H → R be such that F and its derivatives Ft , DF, D2F are continuous in [0, T ] ×
H. Suppose that DF : [0, T ] × H → D(A∗), that A∗DF is continuous in
[0, T ] × H, that D2F : [0, T ] × H → L1(H) is continuous, and that there exist
C > 0 and N ≥ 1 such that

|F(s, x)| + |DF(s, x)| + |Ft (s, x)| + ‖D2F(s, x)‖L1(H)

+ |A∗DF(s, x)| ≤ C(1 + |x |)N . (1.117)

Then, for any s ∈ [0, T ],

E [F(s, X (s))] = F(0, x) + E

∫ s

0
Ft (r, X (r))dr + E

∫ s

0

〈
A∗DF(r, X (r)), X (r)

〉
dr

+ E

∫ s

0

〈
(λI − A∗)DF(r, X (r)), (λI − A)−1b(r, X (r), a(r))

〉
dr

+ 1

2
E

∫ s

0
Tr

[
σ(r, X (r), a(r))σ(r, X (r), a(r))∗D2F(r, X (r))

]
dr. (1.118)

Proof We approximate the process X (·) by the processes Xk(·) from Lemma 1.154.
Observe that, thanks to Hypothesis 1.149 and to (1.80), the processes r→e

1
k Ab(r,

X (r), a(r)) and r→e
1
k Aσ(r, X (r), a(r)) belong respectively to Mp

μ (0, T ; H) and
N p

I (0, T ; H) for all p ≥ 1. Thus we can apply Proposition 1.164 obtaining, for
s ∈ [0, T ],

E
[
F(s, Xk(s))

] = F(0, x) +
∫ s

0
E Ft (r, X

k(r))dr

+
∫ s

0
E

〈
A∗DF(r, Xk(r)), Xk(r)

〉
dr +

∫ s

0
E

〈
DF(r, Xk(r)), e

1
k Ab(r)

〉
dr

+ 1

2

∫ s

0
ETr

[(
e

1
k Aσ(r)Pk

) (
e

1
k Aσ(r)Pk

)∗
D2F(r, Xk(r))

]
dr,

(1.119)
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where we use the notation b(r) := b(r, X (r), a(r)), σ(r) := σ(r, X (r), a(r)). The
claim will follow if we can pass to the limit as k → +∞ in each term of this expres-
sion. We will only show how to prove the convergence of the last two terms since
the arguments for the other terms are similar and simpler.

Using (1.80), (1.86), (1.87) and the dominated convergence theorem it is easy to
see that

lim
k→∞ |X (·) − Xk(·)|M2

μ(0,T ;H) = 0.

Therefore we can find a subsequence, still denoted by Xk(·), that converges to X (·)
dt ⊗ P-a.e.

Using the assumptions it is obvious that

〈
DF(r, Xk(r)), e

1
k Ab(r)

〉
=

〈
(λI − A∗)DF(r, Xk(r)), e

1
k A(λI − A)−1b(r)

〉
→ 〈

(λI − A∗)DF(r, X (r)), (λI − A)−1b(r)
〉

dt ⊗ P − a.e.

as k → +∞. Moreover, thanks to (1.80), (1.86), (1.116) and (1.117),

∫ s

0
E

∣∣∣〈(λI − A∗)DF(r, Xk(r)), e
1
k A(λI − A)−1b(r)

〉∣∣∣2 dr
≤ C1

∫ s

0
E

[(
1 + |Xk(r)|2N ) (

1 + |X (r)|2)] dr ≤ C2

for some C1 and C2 independent of k. Similarly we obtain

∫ s

0
E

∣∣〈(λI − A∗)DF(r, X (r)), (λI − A)−1b(r)
〉∣∣2 dr ≤ C3

for some C3. Therefore it follows from Lemma 1.51 that

lim
k→+∞

∫ s

0
E

〈
DF(r, Xk(r)), e

1
k Ab(r)

〉
dr

=
∫ s

0
E

〈
(λI − A∗)DF(r, X (r)), (λI − A)−1b(r)

〉
dr.

Regarding the last term in (1.119),

Tr
[
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗D2F(r, Xk(r))

]
− Tr

[
σ(r)σ(r)∗D2F(r, X (r))

]
= I1 + I2 := Tr

[
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗

(
D2F(r, Xk(r)) − D2F(r, X (r))

)]
+ Tr

[(
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗ − σ(r)σ(r)∗

)
D2F(r, X (r))

]
.
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By Proposition B.26, (1.116) and the assumptions for D2F we have

|I1| ≤ C4(1 + |X (r)|)2‖D2F(r, Xk(r)) − D2F(r, X (r))‖L1(H) → 0 as k → +∞

dt ⊗ P-a.e. Let {e1, e2, ...} be an orthonormal basis of eigenvectors of D2F(r, X (r))
and λ1,λ2, ... be the corresponding eigenvalues. Then

Tr
[
e

1
k Aσ(r)Pk(e

1
k Aσ(r)Pk)∗D2F(r, X (r))

]

=
∞∑
n=1

λn

∣∣∣Pkσ(r)∗e
1
k A

∗
en

∣∣∣2
�

→
∞∑
n=1

λn

∣∣σ(r)∗en
∣∣2
�

= Tr
[
σ(r)σ(r)∗D2F(r, X (r))

]
as k → +∞

dt ⊗ P-a.e. Therefore limk→+∞(I1 + I2) = 0 dt ⊗ P-a.e. Since, by (1.80), (1.86),
(1.116) and (1.117), we also have

∫ s

0
E |I1 + I2|2dr ≤ C5

for some constant C5 independent of k, the convergence of the last term in (1.119)
now follows from Lemma 1.51. �

Proposition 1.169 Let Hypotheses 1.143 and 1.145 be satisfied and let q ≥ 2.
Consider λ ∈ R such that (λI − A) is invertible and (λI − A)−1 ∈ L(H). Assume
that (λI − A)−1a2(·) ∈ M1

μ(0, T ; H). Let X be the unique mild solution of (1.67)
described in Proposition 1.147 such that X (0) = x ∈ H. Let F : [0, T ] × H → R

be such that F and its derivatives Ft , DF, D2F are continuous in [0, T ] × H.
Suppose that DF : [0, T ] × H → D(A∗), A∗DF is continuous in [0, T ] × H,
D2F : [0, T ] × H → L1(H) is continuous and there exists a C > 0 such that
(1.117) holds with N = 0. Then, for any s ∈ [0, T ],

E [F(s, X (s))] = F(0, x) + E

∫ s

0
Ft (r, X (r))dr

+ E

∫ s

0

〈
A∗DF(r, X (r)), X (r)

〉
dr + E

∫ s

0
〈DF(r, X (r)), b0(r, X (r), a1(r))〉 dr

+ E

∫ s

0

〈
(λI − A∗)DF(r, X (r)), (λI − A)−1a2(r)

〉
dr

+ 1

2
E

∫ s

0
Tr

[
σQσ∗D2F(r, X (r))

]
dr.

Proof We approximate X using the processes Xk defined in Lemma 1.156. It is
immediate to see that ψk ∈ Mp

μ (0, T ; H) and σ P̃k ∈ N p
Q(0, T ; H) for all p ≥ 1 so

we can apply Proposition 1.164 obtaining for every s ∈ [0, T ],
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E

[
F(s, Xk(s))

]
= F(0, x) + E

∫ s

0
Ft (r, X

k(r))dr + E

∫ s

0

〈
A∗DF(r, Xk(r)), Xk(r)

〉
dr

+ E

∫ s

0
1Bk (r,ω)

〈
DF(r, Xk(r)), b0(r, X (r), a1(r))

〉
dr

+ E

∫ s

0
1Dmk

(r,ω)
〈
(λI − A∗)DF(r, Xk(r)), e

1
k A(λI − A)−1a2(r)

〉
dr

+ 1

2
E

∫ s

0
Tr

[
(σQ1/2Pk)(σQ1/2Pk)∗D2F(r, Xk(r))

]
dr, (1.120)

where Bk , Dmk and Pk are introduced in Lemma 1.156 and in the paragraph before
it.

We need to check the convergence of each term of this expression. Using parts (i)
and (ii) of Lemma 1.156 we have

lim
k→∞ |X (·) − Xk(·)|M1

μ(0,T ;H) = 0.

Therefore we can find a subsequence of Xk , still denoted by Xk , that converges
dt ⊗ P-a.e. to X . The proof proceeds using the same arguments (and even simpler)
as those in the proof of Proposition 1.169. We only look at the two middle terms of
the right-hand side of (1.120) that are a little different. We observe that

∣∣∣∣E
∫ s

0

〈
(λI − A∗)DF(r, Xk(r)),

(
1 − 1Dmk

(r,ω)e
1
k A

)
(λI − A)−1a2(r)

〉
dr

∣∣∣∣
converges to zero thanks to the dominated convergence (recall that, by assumption,
(1.117) holds with N = 0). Regarding the fourth term observe that

1Bk (r,ω)
〈
DF(r, Xk(r)), b0(r, X (r), a1(r))

〉
converges to

〈DF(r, X (r)), b0(r, X (r), a1(r))〉

dt ⊗ P-a.e. as k → +∞. Moreover, since DF is bounded, Hypothesis 1.145-(i)
implies

∣∣1Bk (r,ω)
〈
DF(r, Xk(r)), b0(r, X (r), a1(r))

〉∣∣ ≤ C f (r)(1 + |X (r)|)

for all k ∈ N. Thus the result follows by the dominated convergence theorem. �
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The material of Sect. 1.3 is based on [177, 180, 294] (see also [124, 491]). These
books present the theory in Hilbert spaces while [447, 448] (see also [192]) present
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The presentation of Sect. 1.4 on solutions of stochastic differential equations in
Hilbert spaces is also based on [180, 294]. In particular, [180] is a standard reference
in the theory. Other references on strong andmild solutions are, for example, in [124,
177, 413] while a good introduction to variational solutions is in [124, 387, 413,
491, 519]. The reader is also referred to [180] for more on weak mild solutions.
Section1.4.4, containing some results about uniqueness in law, uses the approach
of [471]. For a different approach to weak uniqueness based on the theorem of
Yamada–Watanabe, we refer the reader to [491], Appendix E.

Section1.5 contains existence and uniqueness results for stochastic differential
equations with special unbounded terms and cylindrical additive noise. They are
more or less common knowledge, however we presented proofs since no complete
references seem to be available in the literature.

Classical results on transition semigroups (Sect. 1.6) can be found in [180]. The
statements here are a little modified and extended so that they may be used in our
applications to optimal control, mainly in Chap.4.

Section1.7 contains various versions of Itô’s andDynkin’s formulae (Propositions
1.164–1.166) in connection with mild solutions for functions that have properties of
test functions used in the definition of a viscosity solution (Definition3.32). Such
results have been known and used in the viscosity solution literature, however com-
plete proofs are available only in [374]. The statements here are slightlymore general
than those in [374] andwe presented proofs for the reader’s convenience. The last two
results of Sect. 1.7 (Propositions 1.168 and 1.169) are used to prove the verification
theorems of Sects. 4.8 and 5.5. They have been used in the literature (e.g. in [306])
but without complete proofs, hence we provide them for completeness. We finally
recall that Itô’s formula related to variational solutions of linear stochastic parabolic
equations is proved in [467].



Chapter 2
Optimal Control Problems and Examples

In this chapter we discuss the connection between the study of infinite-dimensional
stochastic optimal control problems and that of second-order Hamilton–Jacobi–
Bellman (HJB) equations in Hilbert spaces. This so-called “dynamic programming
approach” to optimal control problems is based on two main results:

• The dynamic programming principle (DPP), which is a functional equation for
the value function of the control problem, and whose differential form is the HJB
equation. This is the core result in the dynamic programming approach.

• The verification theorem, which gives a sufficient (and sometimes necessary) con-
dition for optimality. Verification theorems rely on the HJB equation and open the
way to the so-called optimal synthesis, i.e. the expression of the optimal control
strategy as a function of the current state trajectory (the feedback form).

To carry out this dynamic programming approach one needs suitable existence,
uniqueness, and regularity results for the solutions of the HJB equation. With this in
mind we organize the chapter as follows.

In Sect. 2.1 we describe a general stochastic infinite-dimensional optimal control
problem (in both strong and weak formulations).

Sections2.2 and 2.3 contain the dynamic programming principle (with a complete
proof) and the equivalence between weak and strong formulations when the underly-
ing “information structure” of the problem is given by a reference probability space,
see Definition2.7. These formulations are a little less general than the one of Sect. 2.1
which uses the notion of the so-called generalized reference probability space, see
Definition1.100.

The problem and the statement of the dynamic programming principle are formu-
lated in an abstract form so that they can be used in many cases when the solutions of
the state equation (which is an infinite-dimensional SDE) are interpreted in various
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ways (strong, mild, variational, etc.). Since this increases the level of technicality,
we recommend that the readers assume on first reading that the state equation in the
control problem is the one described in Sect. 2.2.3 with solutions defined in the mild
sense, as this is the most common case in this book and the theory then applies more
straightforwardly. Section2.4 is devoted to the infinite horizon problem.

In Sect. 2.5 we present classical verification theorems and the optimal synthesis
when the value function is regular, in both the finite and the infinite horizon cases.

Finally, in Sect. 2.6we discuss various examples of stochastic infinite-dimensional
optimal control problems, which arise in applications, and which can be studied in
the framework of the theory presented in this book.

The material on the dynamic programming principle and the examples are pre-
sented for optimal control problems defined on the whole space.We do not discuss in
this book problems in bounded domainswithmore general cost functionals, including
cost of exiting through the boundary, problemswith optimal stopping, state constraint
problems, singular control problems, risk sensitive control problems, ergodic con-
trol problems, and stochastic differential games. Some references to results for such
problems are scattered throughout other sections.

2.1 Stochastic Optimal Control Problems: General
Formulation

2.1.1 Strong Formulation

We start with a description of a general stochastic optimal control problem in an
infinite-dimensional Hilbert space.Wewill be using the convention of Notation1.68.

We make the following assumptions:

Hypothesis 2.1

(i) The state space H and the noise space � are real separable Hilbert spaces.
(ii) The control space � is a Polish space.
(iii) The horizon of the problem is T ∈ (0,+∞) ∪ {+∞}, and the initial time is

t ∈ [0, T ).

(iv) μ :=
(
�μ,F μ,

{
F t

μ,s

}
s∈[t,T ] ,P

μ,W μ
Q

)
is a generalized reference probability

space from Definition1.100 with WQ(t) = 0, P-a.s.

We introduce the set of admissible controls

Uμ
t := {

a(·) : [t, T ] × � → � : a(·) isF t
μ,s-progressively measurable

}
. (2.1)

The notationUμ
t emphasizes the dependence on the generalized reference probability

space. Sometimes additional conditions (e.g. state constraints) are imposed on the
admissible controls.
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In a general infinite-dimensional stochastic optimal control problem, we consider,
for every aμ(·) ∈ Uμ

t , a system driven by an abstract stochastic differential equation
in H

{
dX (s) = β(s, X (s), aμ(s))ds + σ(s, X (s), aμ(s))dW μ

Q(s), s ∈ [t, T ],
X (t) = x ∈ H,

(2.2)

where β,σ are appropriate functions for which the above equation is well posed (in
a sense to be made precise, see Remark2.2) for every admissible control. Such an
equation is called the state equation and we denote by X (·; t, x, aμ(·)) : [t, T ] →
H (or simply by X (·) when its meaning is clear) its unique solution. This is the
state trajectory of the system. The pair (aμ(·), X (·; t, x, aμ(·))) will be called an
admissible couple (or admissible pair).

The goal is to minimize, over all aμ(·) ∈ Uμ
t , the cost functional

Jμ(t, x; aμ(·)) = E
μ

[ ∫ T

t
e− ∫ s

t c(X (τ ;t,x,aμ(·)))dτ l(s, X (s; t, x, aμ(·)), aμ(s))ds

+ e− ∫ T
t c(X (τ ;t,x,aμ(·)))dτ g(X (T ; t, x, aμ(·)))

]
, (2.3)

where l : [t, T ] × H × � → R, c, g : H → R are Borel measurable functions, and c
is bounded from below. The function l is the so-called running cost, g is the terminal
cost, and c is a function responsible for discounting. When T = +∞ the standing
convention will be that g = 0, i.e. the cost functional only depends on the running
cost and discounting. When T is finite the problem is called a finite horizon problem,
and when T = +∞ it is called an infinite horizon problem. The expectation E

μ is
computedwith respect to the probabilitymeasurePμ, so it depends on the generalized
reference probability space.When the generalized reference probability space is clear
wewill often drop the superscriptμ in our notation.Wewill refer to the above problem
as the strong formulation of the stochastic optimal control problem (2.2) and (2.3) on
[t, T ]. Here ‘strong’ means that the generalized reference probability space is fixed.

The discounting function c may also depend on the control variable. The results
of this chapter can be easily extended to cover such a case. However, we chose not
to include this dependence in order not to overcomplicate the presentation, which is
already very technical.

Remark 2.2 In the infinite-dimensional case the state equation (2.2) can have differ-
ent forms, which may call for various definitions of solutions (strong solutions, mild
solutions, variational solutions, etc.) and various approaches to solve them. For this
reason, in our general formulation we do not specify the concept of solution of (2.2)
and we do not specify the required assumptions. Later, in Sect. 2.2, we will formulate
and prove the dynamic programming principle (DPP) in a general form so that it can
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be applied in these different situations. Thus we will make a series of rather abstract
assumptions (see Hypotheses2.11 and 2.12) about (2.2) that are satisfied in various
cases for different concepts of solutions and which are sufficient to prove the DPP.

However, the reader should keep in mind that our primary guiding examples are
the control problems of the type (2.2) and (2.3)where the state equation is a stochastic
evolution equation with solutions interpreted in themild sense. In such cases we have
β = A + b, where A is the generator of aC0-semigroup on H , and b,σ are functions
satisfying suitable Lipschitz conditions. This case requires a less general formulation
to prove the DPP and will be discussed separately in Sect. 2.2.3. The cases which do
not use mild solutions include optimal control problems for the Duncan–Mortensen–
Zakai, Burgers, Navier–Stokes, and reaction diffusion equations. �

The value function for problem (2.2) and (2.3) in the strong formulation with
initial time t is defined as

V μ
t (x) = inf

aμ(·)∈Uμ
t

Jμ(t, x; aμ(·)). (2.4)

Notice, however, that in this strong formulation the generalized reference probability
space changes when we change t and so does the control set Uμ

t .

Definition 2.3 (Optimal control/couple) If, for given initial data (t, x), a∗(·) ∈ Uμ
t

minimizes (2.3), i.e. if Jμ(t, x; a∗(·)) = V μ
t (x), we say that a∗(·) is a μ-optimal

control at (t, x). The associated state trajectory X∗(·) := X (·; t, x, a∗(·)) (i.e. the
solution of (2.2)with control a∗(·)) is an optimal state at (t, x). The pair (a∗(·), X∗(·))
is called a μ-optimal couple (or μ-optimal pair) at (t, x).

To perform the dynamic programming approach in the strong formulation we
need to consider a family of problems (2.2) and (2.3) parameterized by the initial
time t which are defined on a common generalized reference probability space, and
introduce a value function defined on [0, T ] × H . To do this we take a generalized

reference probability space μ =
(
�μ,F μ,

{
F 0

μ,s

}
s∈[0,T ] ,P

μ,W μ
Q

)
on [0, T ] with

WQ(0) = 0 (i.e. μ satisfies Hypothesis 2.1 with initial time t = 0). We then define
the value function

V μ(t, x) = inf
aμ(·)∈Uμ

0

Jμ(t, x; aμ(·)), (2.5)

where Jμ(t, x; aμ(·)) is defined by (2.3) with X (·; t, x, aμ(·))) solving (2.2). We
notice that for μ as above, the generalized reference probability spaces μt :=(
�μ,F μ,

{
F 0

μ,s

}
s∈[t,T ] ,P

μ,W μ
Q(·) − W μ

Q(t)
)

satisfy Hypothesis2.1 with initial

time t . Thus it is reasonable to expect that V μ(t, x) should be equal to V μt
t (x)

for (t, x) ∈ [0, T ] × H . This is indeed the case for control problems considered in
this book and it is a simple consequence of the properties of the stochastic integral
(see e.g. (2.14)). Thus the requirement that WQ(t) = 0 in Hypothesis2.1-(iv) can be
dropped for all practical purposes.
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2.1.2 Weak Formulation

In the strong formulation of the optimal control problem (2.2) and (2.3), the gener-
alized reference probability space μ := (

�,F ,F t
s ,P,WQ

)
is fixed. However, it is

often more convenient or necessary to include the generalized reference probability
space as part of the control. In particular this approach is used to prove the dynamic
programming principle and to construct optimal feedback controls (see Sects. 2.2
and 2.5). This leads us to the weak formulation of the stochastic optimal control
problem.

Tobe clear from the beginningwemust say that theweak formulationwe introduce
in this subsection is not the only possible one. Indeed, we will use two other types of
weak formulations, the weak formulation for the DPP (see Sect. 2.2) which will be
used to state and prove the dynamic programming principle, and the extended weak
formulation (see Remark2.6) which will be used in Sect. 6.5 to prove existence of
optimal feedback controls in some cases. Roughly speaking the difference between
the three is the following:

• the weak formulation for the DPP contains fewer controls than the one used in this
subsection as theymust be progressivelymeasurablewith respect to the augmented
filtration generated by the underlyingWiener processWQ and so they do not input
any additional uncertainty into the system.

• theweak formulation of this section allows controls to be progressivelymeasurable
with respect to a possibly wider filtration than the one generated by WQ so the
controls can introduce more uncertainty into the system.

• the extended weak formulation used in Sect. 6.5 is like the weak formulation
described, however we do not require that solutions of the state equation are
unique. This formulation is very useful in the construction of optimal feedback
controls, where solutions of the so-called closed loop equation are understood in
the weak probabilistic sense where the filtered probability space becomes part of
the solution.

We now introduce the details of the weak formulation of this section. The state
equation and the cost functionals are the same as in Sect. 2.1.1, however, for each
fixed t ∈ [0, T ], any generalized reference probability space μ is allowed and so the
class of admissible controls is enlarged. We define

U t :=
⋃
μ

Uμ
t , (2.6)

where the union is taken over all generalized reference probability spaces μ satisfy-
ing Hypothesis2.1-(iv). We say that a(·) is an admissible control if a(·) ∈ U t , i.e. if
there exists a generalized reference probability space μ = (

�μ,F μ,F μ,t
s ,Pμ,W μ

Q

)
satisfying Hypothesis2.1-(iv) such that a(·) : [t, T ] × �μ → � is F μ,t

s -
progressively measurable. We will often write aμ(·) to indicate the dependence of
a(·) on the generalized reference probability space. This way, choosing an admissible
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control also means choosing a generalized reference space μ so, with a slight abuse
of notation, we will often write a(·) = (

�,F ,F t
s ,P,WQ, a(·)).

Given a control aμ(·) ∈ U t and the related trajectory X (·; t, x, aμ(·)),1 we call the
couple (aμ(·), X (·; t, x, aμ(·))) an admissible couple (or admissible pair) in theweak
sense. If a∗(·) ∈ U t minimizes (2.7), we say that a∗(·) is an optimal control at (t, x)
for the weak formulation and the pair (a∗(·), X (·; t, x, a∗(·))) is called an optimal
couple (or optimal pair) at (t, x) for the weak formulation. We will sometimes just
say optimal control, optimal couple or optimal pair when the context is clear.

Remark 2.4 To avoid misunderstandings we clarify that the use of the term “weak”
in the “weak formulation” of our stochastic control problem refers only to the fact
that the generalized reference probability spaces vary with the controls and not to the
concept of solution of the state equation. Indeed, in our framework, once the control
aμ(·) is fixed (and with it also the generalized reference space), the solution is taken
in the same generalized reference space (i.e. in the so-called strong probabilistic
sense). Solutions of the state equation in the weak probabilistic sense will be used
only to treat the closed loop equations in some cases, see Remark2.6. �

In the weak formulation the goal is to minimize the same cost functional (2.3),
however now over all controls aμ(·) ∈ U t . Consequently, the value function for the
weak formulation is now defined by

V (t, x) = inf
aμ(·)∈U t

Jμ(t, x; aμ(·)), (t, x) ∈ [0, T ) × H, (2.7)

and we set V (T, x) := g(x) for x ∈ H if T < +∞. From the above definition we
clearly have

V (t, x) = inf
μ

inf
a(·)∈Uμ

t

Jμ(t, x; a(·)) = inf
μ

V μ
t (x).

Remark 2.5 For the optimal control problem we could also have required the con-
trols in Uμ

t to be measurable and adapted instead of progressively measurable, since,
by Lemma1.72, every adapted a(·) has a progressivelymeasurablemodification ã(·).
We chose to deal with progressively measurable controls to avoid unnecessary tech-
nical issues. In light of Lemma1.99, we could have chosen to work with predictable
controls as well.

Moreover, in the definition of Uμ
t we did not specify possible further restric-

tions on the control and on the state (state constraints, integrability conditions on
the controls, etc.), which commonly arise in examples, see Sect. 2.6. Such kinds of
restrictions usually lead to more complicated problems, however in principle they
can be treated in the same framework. �

1To be sure that such a trajectory exists and is unique we need to assume that the state equation (2.2)
is well posed for every admissible control aμ(·), so in particular for every generalized reference
space.
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Remark 2.6 To study problems where neither existence nor uniqueness of solutions
of the state equation is guaranteed for arbitrary control process a(·) (in particular to
study the existence of optimal feedback controls) it is useful to extend the formulation
of an optimal control problem. In such cases the extended formulation of the control
problem can be given as follows. Given a generalized reference probability space
μ, we call (a(·), X (·)) an admissible control pair if a(·) is an F t

s -progressively
measurable process with values in � and X (·) is a (not necessarily unique) solution
of (2.2) corresponding to a(·). To every admissible control pair we associate the
cost (2.3). The optimal control problem in the extended strong formulation consists
in minimizing the functional Jμ(t, x; a(·), X (·)) over all admissible control pairs
(a(·), X (·)), and in characterizing the value function (wherewe use the same notation
for simplicity)

V μ
t (x) = inf

(a(·),X (·))
Jμ(t, x; a(·), X (·)).

The optimal control problem in the extended weak formulation consists in further
minimizing with respect to all generalized reference probability spaces, i.e. in char-
acterizing the value function (where again we use the same notation for simplicity)

V (t, x) = inf
μ

V μ
t (x).

Such a formulation is often much more suitable for construction of optimal feedback
controls, see Corollary2.38. In this book it is employed in Chapter6, Sects. 6.5 and
6.10, but it may also be used to extend results of Chap.4 (in particular Proposi-
tions4.199 and 4.218) and of Chap.5 (in particular Corollary5.60) to more general
cases when the function R used there is not Lipschitz continuous. �

2.2 The Dynamic Programming Principle: Setup
and Assumptions

In this section we introduce the dynamic programming principle (DPP). This is
one of the fundamental results of stochastic optimal control, whose formulation and
proof are very technical, here even more so since we are dealing with the infinite-
dimensional case. We first present the stochastic setup and the main assumptions,
and then follow with the statement of the DPP and the proof.

2.2.1 The Setup

Definition 2.7 A reference probability space is a generalized reference probability
spaceν := (

�,F ,F t
s ,P,WQ

)
(seeDefinition1.100),whereWQ(t) = 0,P-a.s., and
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F t
s = σ(F t,0

s ,N ), where F t,0
s = σ(WQ(τ ) : t ≤ τ ≤ s) is the filtration generated

by WQ , and N is the collection of the P-null sets in F .

Definition 2.8 We will say that a reference probability space ν is standard if there
exists a σ-field F ′ such that F t,0

T ⊂ F ′ ⊂ F , F is the completion of F ′, and(
�,F ′) is a standard measurable space (see Sect. 1.1).

We will consider control problem (2.2) and (2.3) in the weak formulation in
which generalized reference probability spaces are replaced by reference probability
spaces. This means that we are restricting the set of admissible controls. The set of
all admissible controls is now defined by

Ut :=
⋃
ν

Uν
t , (2.8)

where the union is taken over all reference probability spaces ν. Obviously Ut⊂U t ,
where U t is defined by (2.6). Thus a(·) is an admissible control now if there exists
a reference probability space ν = (

�ν,F ν,F ν,t
s ,Pν,W ν

Q

)
such that a(·) : [t, T ] ×

�ν → � is F ν,t
s -progressively measurable. As before we will often write aν(·) to

indicate the dependence of a(·) on the reference probability space.
The reason why we choose this setup is twofold. On the one hand the dynamic

programming requires comparing problems with different initial times, which is
accomplishedwell by using regular conditional probabilities and changing the under-
lying probability space. On the other hand, the use of reference probability spaces
allows us to represent control processes as functions of the Wiener processes which
allows us to pass easily from one reference probability space to another, hence the
restrictions to reference probability spaces. Other approaches are possible, see the
bibliographical notes at the end of this chapter.

With this definition the value function is now defined by

V (t, x) = inf
aν (·)∈Ut

J ν(t, x; aν(·)) (2.9)

(with the same convention that V (T, x) := g(x) if T < +∞) and, clearly, if V is
the value function defined in (2.7),

V (t, x) ≤ V (t, x) ≤ V ν
t (x), for every reference probability space ν.

We will later see (Theorem2.22) that the last inequality is indeed an equality under
our assumptions. When solutions of the HJB equations are regular enough to allow
construction of optimal feedbacks we will also see in Chaps. 4, 5 and 6 that both
inequalities become equalities (see e.g. Theorems4.201, 4.204 and 4.220). We do
not study this issue here but the reader may check [467] for an argument that for
control problems considered in [467] the first inequality is an equality. It is possible
that the approach from [467] can be applied to the control problems in this book.
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2.2.2 The General Assumptions

We make the following general assumption.

Hypothesis 2.9

(i) The state space H and the noise space � are real separable Hilbert spaces.
(ii) The control space � is a Polish space.
(iii) The horizon of the problem is T ∈ (0,+∞) ∪ {+∞} and the initial time is

t ∈ [0, T ).
(iv) Q ∈ L+

1 (�).

Remark 2.10 We assume here that Q ∈ L+
1 (�) (i.e. Tr (Q) < +∞), which implies

that the processes WQ in the reference probability spaces are �-valued Q-Wiener
processes. We do this for technical reasons, because in our proof of the DPP it is
important that the Q-Wiener processes always have values in some (fixed) space
�. However, in many examples discussed in this chapter we will encounter Q-
Wiener processes for which Tr (Q) = +∞. Recalling the definition of a Q-Wiener
process (see Definition1.88), we then have to choose and fix a space �1 such that
WQ is a �1-valued Q1-Wiener process. (Since the space �1 is often not impor-
tant, abusing notation, we will still call such process a WQ-Wiener process, see
Remark1.89.) This puts us in the framework developed in this chapter and this is
how the reader should understand such control problems, as it will not be repeated
in the future when we discuss the examples in this chapter, unless it is essential.
However, as mentioned in Remark1.91, if WQ(s) = ∑∞

k=1 gkβk(s) for some ortho-
normal basis {gk}k∈N of �0 (see Definition1.88), then regardless of the choice of
�1,F t,0

s = σ (βk(r) : t ≤ r ≤ s, k ∈ N). Thus the filtration does not depend on the
choice of �1, and then also the class of integrable processes is independent of �1.
Therefore the control problems discussed in the examples are independent of the
choice of �1 and the theory can be applied to optimal control problems for which
Q ∈ L+(�). �

The following comment is important. The Q-Wiener processes in the reference
probability spaces in general have trajectories which are only P-a.e. continuous.
However, we can always modify them on a set of measure zero so that the trajectories
are continuous everywhere. Moreover, it is obvious that such a modified Q-Wiener
process generates the same filtrationF t

s as the original one, so the set of admissible
controls does not change. Furthermore, the solutions of the stochastic differential
equations for control problems considered in this book are indistinguishable after
this modification of the Q-Wiener processes, so the cost functional will be the same
(see assumption (A1) of Hypothesis2.12). Therefore, unless specified otherwise,
without loss of generality, we will always assume that the Q-Wiener processes in
the reference probability spaces have everywhere continuous paths, however we
will point it out explicitly if it is important to avoid any misunderstandings.

The assumptions about existence and uniqueness of solutions of the state equation
are the following.
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Hypothesis 2.11 Assume that, for every 0 ≤ t < T , reference probability space
ν := (

�,F ,F t
s ,P,WQ

)
, a(·) ∈ Uν

t , and an H -valuedF t
t -measurable randomvari-

able ζ (i.e., ζ = x , P-a.s. for some x ∈ H ), we have a unique, up to a modification,
solution (in a certain sense) X (·) = X (·; t, ζ, a(·)) on [t, T ] of the abstract stochastic
differential equation

{
dX (s) = β(s, X (s), a(s))ds + σ(s, X (s), a(s))dWQ(s),

X (t1) = ζ.
(2.10)

The solution X (·; t, ζ, a(·)) isF t
s -progressively measurable, has continuous trajec-

tories in H and X (t; t, ζ, a(·)) = ζ, P-a.s.

The above hypothesis particularly implies that any modification of a solution is
still a solution of the same equation as long as it has continuous trajectories. To
emphasize the dependence of the solution on the reference probability space we will
sometimes use the notation Xν(·; t, ζ, a(·)).

Hypothesis2.12 collects assumptions about the properties of the family of solu-
tions of the state equation. To simplify the notation we will write W instead of WQ

in Hypothesis2.12 and in other places when the notation becomes cumbersome and
when the meaning of it is clear.

Hypothesis 2.12 Assume thatHypothesis2.11 holds. For every 0 ≤ t ≤ η < T , x ∈
H , reference probability space ν = (

�,F ,F t
s ,P,W

)
, a(·) ∈ Uμ

t , and an H -valued
F t

t -measurable random variable ζ such that ζ = x , P-a.s., we have the following
properties:

(A0) X (·; t, ζ, a(·)) = X (·; t, x, a(·)) on [t, T ] , P-a.s.

(A1) If ν1 = (
�1,F1,F

t
1,s,P1,W1

)
, ν2 = (

�2,F2,F
t
2,s,P2,W2

)
are two refer-

ence probability spaces, a1 (·) ∈ Uν1
t , a2 (·) ∈ Uν2

t , and LP1(a1(·),W1(·)) =
LP2(a2(·),W2(·)) (see Definition1.133), then

LP1(X (·; t, x, a1(·)), a1(·)) = LP2(X (·; t, x, a2(·)), a2(·)).

(A2) If a1 (·) , a2 (·) ∈ Uν
t are such that a1(·) = a2(·), dt ⊗ P-a.e. on [t, η] × �,

then
X (·; t, x, a1(·)) = X (·; t, x, a2(·)) on [t, η] , P-a.s.

(A3) Let ν = (
�,F ,F t

s ,P,W
)

be a standard reference probability space
(Definition2.8) with W having everywhere continuous trajectories. Let
νω0 = (

�,Fω0 ,F
η
ω0,s,Pω0 ,Wη

)
, where Pω0 = P(·|F t,0

η )(ω0) is the regular
conditional probability, Fω0 is the augmentation of F ′ by the Pω0 null
sets, and F η

ω0,s is the augmented filtration generated by Wη.2 Let a (·) ∈ Uν
t

and a|[η,T ] (·) ∈ Uνω0
η for P-a.e. ω0. Then the process Xν (·; t, x, a(·)) has an

2We remark that νω0 in (A3) is a reference probability space for P-a.e. ω0 by Lemma 2.25.
Wη(s) := W (s) − W (η).
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indistinguishable version such that, for P-a.e. ω0, Xνω0 (·; η, Xν(η), a(·)) =
Xν (·; t, x, a(·)) on [η, T ], Pω0 -a.s.

Remark 2.13 It is possible to relax and slightly simplify Hypothesis2.12 by com-
bining conditions (A0)–(A1) into one condition

(A1’) If ν1 = (
�1,F1,F

t
1,s,P1,W1

)
, ν2 = (

�2,F2,F
t
2,s,P2,W2

)
are two ref-

erence probability spaces, x ∈ H , ζ is an H -valuedF t
1,t -measurable random

variable such that ζ = x , P1-a.s., a1 (·) ∈ Uν1
t , a2 (·) ∈ Uν2

t , and LP1(a1(·),
W1(·)) = LP2(a2(·),W2(·)), then

LP1(X (·; t, ζ, a1(·)), a1(·)) = LP2(X (·; t, x, a2(·)), a2(·)).

With this change the proof of the dynamic programming principle is virtually
unchanged. However, since condition (A0) is standard and is satisfied by con-
trol problems considered in this book, we opted to keep it in the formulation of
Hypothesis2.12 hoping that the proof of the dynamic programming principle will be
slightly easier to follow. �

Remark 2.14 We point out that since the trajectories of the solutions are continuous,
(A1) implies in particular that

LP1(X (·; t, x, a1(·))) = LP2(X (·; t, x, a2(·))) on [t, T ].

�

Let us briefly explain the nature of the abstract assumptions of Hypothesis 2.12.
Condition (A0) guarantees pathwise uniqueness for our solutions with almost deter-
ministic initial conditions, while condition (A1) is a statement about uniqueness in
law which guarantees that the joint law of (X (·; t, x, a(·)), a(·)) only depends on
the joint law of (a(·),W (·)). Condition (A2) is a requirement that if the controls are
“almost the same” then the solutions do not change. Finally, the most complicated
condition (A3) is a technical assumption which is needed since we do not define
precisely what we mean by a solution. It guarantees, roughly speaking, that if we
have a solution X in one reference probability space, then, for P-a.e. ω0, X is still a
solution in reference probability spaces equippedwithmeasuresPω0 provided certain
conditions are satisfied. We remark that for P-a.e. ω0, Xν(η) is Pω0 -a.e. constant and
is equal to Xν(η)(ω0). We remark that condition (A3) in particular implies that the
version of Xν (·; t, x, a(·)) isF η

ω0,s-progressivelymeasurable on [η, T ] forP-a.e.ω0,
and has continuous trajectories Pω0 -a.e. for P-a.e. ω0. These two properties can be
proved for every solution Xν satisfying our Hypothesis 2.11. We required that ν is a
standard reference probability space to guarantee the existence of the regular condi-
tional probability Pω0 . The requirement that a|[η,T ] (·) ∈ Uνω0

η can always be assumed
since we will see in Lemma2.26 that for every a (·) ∈ Uν

t there is an a1 (·) ∈ Uν
t such

that a (·) = a1 (·), P ⊗ dt-a.e. and a1|[η,T ] (·) ∈ Uνω0
η for P-a.e. ω0.
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Remark 2.15 This is a very important remark regarding optimal control problems
with additional conditions on the set of admissible controls. In the proof of the
dynamic programming principle we will use the following property of admissible
controls.

(A4) If ν is a standard reference probability space as in (A3) and a (·) ∈ Uν
t , then

there exists an a1 (·) ∈ Uν
t such that a(·) = a1(·) P ⊗ dt-a.e. and a|[η,T ] (·) ∈

Uνω0
η for P-a.e. ω0, where νω0 is as in (A3).

This property is always true for our abstract optimal control problem and it is shown
in Lemma2.26, whose proof is only based on considerations of measurability. How-
ever, if the set of admissible controls is characterized by additional conditions, for
instance some integrability conditions, property (A4) must be established in each
particular case, see for instance Remark2.27. Therefore the reader should be very
careful when adapting the abstract proof of the dynamic programming principle to
such cases. �

We close with some important remarks about standard reference probability
spaces and regular conditional probabilities. Let ν = (

�,F ,F t
s ,P,WQ

)
be a stan-

dard reference probability space. Regular conditional probabilities will be denoted
by Pω , and to indicate that Pω0 is the regular conditional probability given a sigma
field F t,0

s we will write Pω0 = P(·|F t,0
s )(ω0) even though this is a slight abuse of

notation. The expectation with respect to Pω0 will be denoted by Eω0 .
For every �1 ∈ F such that P(�1) = 1 there exists �2 ⊂ �1,�2 ∈ F ′ (from

Definition2.8) such that P(�2) = 1. Therefore

1 = P(�2) = E
[
E

[
1�2 |F t,0

s

]
(ω0)

] = E
[
Pω0(�2)

]
.

Thus we obtain that �1 ∈ Fω0 for P-a.e. ω0 and

1 = Pω0(�2) = Pω0(�1).

Now suppose that Y ∈ L1(�,F ,P). Let Y ′ ∈ L1(�,F ′,P) be such that Y = Y ′,P-
a.s. Hence also Y = Y ′

Pω0 -a.s. forP-a.s.ω0, which implies that Y isFω0 -measurable
for P-a.s. ω0. Thus for P-a.s. ω0

E
[
Y |F t

s
]
(ω0) = E

[
Y ′|F t,0

s

]
(ω0) =

∫
Y ′(ω)dPω0 (ω) =

∫
Y (ω)dPω0 (ω) = Eω0 [Y ].

Therefore Eω0 [Y ] (as a function of ω0) is in L1(�,F ,P) and

E[Y ] = E
[
E

[
Y |F t

s

]] = E
[
Eω0 [Y ]] .

This fact will be used frequently in the following chapters without repeating the
technical details.
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2.2.3 The Assumptions in the Case of Control Problems
for Mild Solutions

In this subsection we briefly illustrate the abstract setup for the case which is themost
frequent among the problems treated in the book, namely optimal control problems
driven by general stochastic evolution equations (with Lipschitz coefficients) with
solutions interpreted in the mild sense, and explain how Hypotheses2.11 and 2.12
are satisfied. In this case the state equation (2.10) is of type (1.30), i.e.

{
dX (s) = (AX (s) + b(s, X (s), a(s))) ds + σ(s, X (s), a(s))dWQ(s),

X (t) = ζ,
(2.11)

where A, b, and σ satisfy Hypothesis1.125 and its solution is understood in the mild
sense of Definition1.119, i.e. we have

X (s) = e(s−t)Aζ +
∫ s

t
e(s−r)Ab(r, X (r), a(r))dr +

∫ s

t
e(s−r)Aσ(r, X (r), a(r))dWQ(r)

(2.12)
on [t, T ], P-a.e.
Proposition 2.16 Consider Eq. (2.11) under Hypotheses1.125 and 2.9. Then
Hypotheses2.11 and 2.12 are satisfied for its mild solutions.

Proof Hypothesis2.11 follows from Theorem1.127. Regarding Hypothesis 2.12,
condition (A0) follows from the fact that esAζ = esAx P-a.e. for all s ∈ [t, T ] and
from (1.39). Condition (A1) follows from Proposition1.137 and (A2) follows from
Corollary1.128.

To show (A3), we will first show that X ν(·) := Xν(·; t, x, a(·)) has a modifica-
tion Xν

1 which is everywhere continuous and, for P-a.e. ω0, is F
η
ω0,s-progressively

measurable on [η, T ]. In general Xν is only F t
s -progressively measurable. Let �0

be such that P(�0) = 1, and for ω ∈ �0, Xν(·,ω) is continuous on [t, T ]. Let
{sk}, k ≥ 1, s1 = t , be a countable dense set in [t, T ], and let Ak ∈ F t,0

sk , k ≥ 1 be
sets such that P(Ak) = 1, and Xν(sk) = ξk on Ak for some F t,0

sk -measurable ran-
dom variable ξk . Set �1 = �0 ∩ ⋂∞

k+1 Ak . Then P(�1) = 1 and thus for P-a.e. ω0,
Pω0(�1) = 1, which implies that �1 ∈ F η

ω0,s for P-a.e. ω0. We now define Xν
1 (s) =

Xν(s) for s ∈ [t, T ],ω ∈ �1 and Xν
1 (s) = 0 for s ∈ [t, T ],ω ∈ � \ �1. The process

Xν has continuous trajectories. Since for ω ∈ �1, Xν
1 (s) = limsk→s,sk≤s ξk , Xν

1 is
σ(F t,0

s ,�1)-adapted. However, thanks to Lemma2.26, F t,0
s ⊂ F η

ω0,s for P-a.s. ω0,
and so it follows that Xν

1 isF
η
ω0,s-adapted, which, since it has continuous trajectories,

implies by Lemma1.72 that it isF η
ω0,s-progressively measurable for P-a.s. ω0. From

now on we will write Xν(·) for Xν
1 (·).



104 2 Optimal Control Problems and Examples

We observe that Xν(·) ∈ Mp
ν (t, T ; H), p > 2, so in particular

E

[
E

[∫ T

η

|Xν(s)|pds|F t,0
η

]]
= E

[∫ T

η

|Xν(s)|pds
]

< +∞, (2.13)

so for P-a.e. ω0, Xν(·) ∈ Mp
νω0

(η, T ; H). Thus by uniqueness of mild solutions given
by Theorem1.127 we will be done, provided we know that, for P-a.e. ω0, Xν(·) is a
mild solution in the interval [η, T ] in the reference probability space νω0 .

We have the flow property

Xν(s) = e(s−η)A

[
ζ +

∫ η

t
e(η−r)Ab(r, Xν(r), a(r))dr

+
∫ η

t
e(η−r)Aσ(r, Xν(r), a(r))dW (r)

]
+

∫ s

η

e(s−r)Ab(r, Xν(r), a(r))dr

+
∫ s

η

e(s−r)Aσ(r, Xν(r), a(r))dW (r) = e(s−η)AXν(η)

+
∫ s

η

e(s−r)Ab(r, Xν(r), a(r))dr +
∫ s

η

e(s−r)Aσ(r, Xν(r), a(r))dW (r)

= Xν(s; η, X (η; t, ζ, a(·)), a(·)), s ∈ [η, T ].

Since P-a.s.
∫ s

η

e(s−r)Aσ(r, Xν(r), a(r))dW (r) =
∫ s

η

e(s−r)Aσ(r, Xν(r), a(r))dWη(r)

(2.14)

on [η, T ], and since for every set �1 such that P(�1) = 1 we have Pω0(�1) = 1 for
P-a.e. ω0, the equality

Xν(s) = e(s−η)AXν(η) + ∫ s
η e(s−r)Ab(r, Xν(r), a(r))dr

+ ∫ s
η e(s−r)Aσ(r, Xν(r), a(r))dWη(r)

is satisfied Pω0 -a.s. for P-a.e. ω0. This equality is exactly the same for the mild
solution in the interval [η, T ] in the reference probability space νω0 except for the
fact that there the stochastic integral is taken in the reference probability space νω0

instead of ν. So, to conclude, it is enough to show that for P-a.e. ω0

Iν(s) :=
∫ s

η

e(s−r)Aσ(r, Xν(r), a(r))dWη(r)
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is Pω0 -a.e. equal on [η, T ] to the stochastic integral in the reference probability
space νω0 , which we denote by Iνω0

(s).3 By continuity of the paths of the sto-
chastic convolution (see Proposition1.112) it is enough to show it for a single s.
Define �(r) = e(s−r)Aσ(r, Xν(r), a(r)), r ∈ [η, s]. By Lemma1.98 and the proof
of Lemma1.99 there exist a sequence of elementary and F t,0

r -progressively mea-
surable processes �n with values in L(�, H), such that ‖� − �n‖N 2

Q,ν (η,s;H) → 0,
where we indicated the dependence on the reference probability space in the notation
for the norm. By Lemma2.26, the�n are alsoF

η
ω0,r -progressivelymeasurable. Since

E
ν | ∫ s

η [�n(r) − �(r)]dWη(r)|2 → 0, passing to a subsequence if necessary, we can
assume that

∫ s

η

�n(r)dWη(r) → Iν(s), P − a.e., (2.15)

say on a set�2, where P(�2) = 1 and we can assume that Pω0(�2) = 1 for P-a.e.ω0.
On the other hand, again by using conditional expectation as in (2.13), we know

that, up to a subsequence, for P-a.e. ω0 we have ‖� − �n‖N 2
Q,νω0

(η,s;H) → 0. So, for

P-a.e. ω0, we have that there exists a subsequence of �n such that

∫ s

η

�n(r)dWη(r) → Iνω0
(s), Pω0 -a.e. (2.16)

Since Pω0(�2) = 1 for P-a.e. ω0, (2.15) and (2.16) imply that, for P-a.e. ω0, Iν(s) =
Iνω0

(s), Pω0 -a.e.
A different approach to proving (A3) can be found in [545]. �

Remark 2.17 Two further examples of systems satisfying Hypotheses2.11 and 2.12
are given by the boundary control system described in Sect. 1.5.1 (Theorem1.141)
and by the semilinear system with non-nuclear covariance described in Sect. 1.5.2
(Proposition1.147). We briefly sketch how one can show that Hypotheses2.11 and
2.12 hold in these two cases. However, we point out that these cases do not fully
conform to our general abstract control problem as additional integrability conditions
on the controlsmust be assumed to guarantee the existence anduniqueness of a unique
mild solution. Thus the formulation of the control problem must be slightly adjusted
in an obvious way.

Concerning the case of Sect. 1.5.1, suppose that the assumptions of Theorem1.141
including (1.54) are satisfied. Then Hypothesis2.11 follows from Theorem1.141.
Regarding Hypothesis2.12, (A0) and (A2) follow from part (i) of Proposition1.142,
(A1) follows from part (ii) of Proposition1.142 while for (A3) one can argue as in
Proposition2.16, using (A4) which holds by Remark2.27.

3Observe that we can compute the integral Iνω0
(s) since the control and the trajectory Xν(·) are

F
η
ω0,s -progressively measurable on [η, T ] for P-a.e. ω0.
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As regards the case of Sect. 1.5.2, suppose that the assumptions of Proposi-
tions1.147 and 1.148 are satisfied and a2(·) is as in Remark1.146. Hypothesis 2.11
follows from Propositions1.147. For Hypothesis 2.12, (A0) and (A2) follow from
part (i) of Proposition1.148, (A1) follows from part (ii) of Proposition1.148, while
for (A3) one can again argue as in Proposition2.16 using (A4). �

2.3 The Dynamic Programming Principle: Statement
and Proof

This section is devoted to the formulation and the proof of the dynamic programming
principle. Throughout the whole section we always assume that Hypothesis2.9 is
satisfied. We begin with a technical subsection.

2.3.1 Pullback to the Canonical Reference Probability Space

Fix t ∈ [0, T ]. The canonical reference probability space is the 5-tuple νW :=
(W,F∗,P∗,Bt

s,W), where W := {ω ∈ C([t, T ], �) : ω(t) = 0} equipped with the
usual sup-norm, P∗ is the Wiener measure on (W,B(W)) (where B(W) is the Borel
σ-field), i.e. the unique probability measure onW that makes the mapping

{W : [t, T ] × W → �

W(s,ω) = ω(s)
(2.17)

a Q-Wiener process in � (see [391]), F∗ is the completion of B(W), and for s ∈
[t, T ], Bt,0

s = σ(W(τ ) : t ≤ τ ≤ s), Bt
s = σ

(Bt,0
s ,N ∗)

, where N ∗ are the P∗-null
sets.W is a Polish space.

It is easy to see that B(W) is generated by the one-dimensional cylinder sets
C = {ω : ω(s) ∈ A}, where s ∈ [t, T ], A is open in �, and that Bt,0

T = B(W)

(Lemma2.18). Theorem1.12 thus guarantees that νW is a standard reference proba-
bility space.

The canonical reference probability space on [t,+∞) is defined in the same way
except that nowW := {ω ∈ C([t,+∞),�) : ω(t) = 0} is equipped with the metric

ρ(w1, w2) =
∞∑
n=1

2−n(‖w1 − w2‖C([t,t+n],�) ∧ 1),

which makes it a Polish space.
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Lemma 2.18 Let for s ∈ [t, T ] the map ϕs : W → W be defined by ϕs(ω)(τ ) =
ω(τ ∧ s). Then

Bt,0
s = ϕ−1

s (B(W)).

In particular, Bt,0
T = B(W).

Proof Observe that for a one-dimensional cylinder C = {ω : ω(r) ∈ A}, where r ∈
[t, T ] and A is open in �, we have

ϕ−1
s (C) = {ω ∈ W : ϕs(ω)(r) ∈ C} = {ω ∈ W : ω(r ∧ s) ∈ C} ∈ Bt,0

s .

Since the cylinder sets C generate B(W), we thus obtain ϕ−1
s (B(W)) ⊂ Bt,0

s .
For the opposite inclusion, since Bt,0

s is generated by sets of the form B =
W−1(r, ·) (V ), where r ∈ [t, s] and V is open in �, we have

B = {ω ∈ W : ω(r) ∈ V } = {ω ∈ W : ω(r ∧ s) ∈ V } = ϕ−1
s ({ω ∈ W : ω(r) ∈ V }).

Thus Bt,0
s ⊂ ϕ−1

s (B(W)). �

Lemma 2.19 Let
(
�,F ,F t

s ,P,W
)
be a reference probability space (i.e. it satisfies

Definition2.7), and let the paths of the Q-Wiener process W (·,ω) be continuous for
every ω ∈ �. Then, for s ∈ [t, T ],

F t,0
s = W (· ∧ s)−1(B(W)).

Proof The proof is similar to that of Lemma2.18. �

We denote by PW
[t,T ] the sigma field of Bt,0

s -predictable sets, i.e. the sigma field
generated by the sets of the form (s, r ] × A, t ≤ s < r ≤ T, A ∈ Bt,0

s and {t} ×
A, A ∈ Bt,0

t . For a reference probability space
(
�,F ,F t

s ,P,WQ
)
we denote by

P�
[t,T ] the sigma field of F t,0

s -predictable sets.
We will use the following simple representation lemma from [545].

Lemma 2.20 Let a(·) = (
�,F ,F t

s ,P,W, a (·)) ∈ Ut (defined by (2.8)) be F t,0
s -

predictable, and let the paths of the Q-Wiener process W (·,ω) be continuous for
every ω ∈ �. Then there exists a PW

[t,T ]/B(�)-measurable function f : [t, T ] ×
W → � such that

a(s,ω) = f (s,W (·,ω)), for ω ∈ �, s ∈ [t, T ]. (2.18)

Proof Define the process

{
β : [t, T ] × � → [t, T ] × W

β(τ ,ω) = (τ ,W (·,ω)).
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The sets of the form A1 = (s, r ] × {ω ∈ � : W (η,ω) ∈ B}, t ≤ η ≤ s < r ≤ T,

B ∈ B(�), and A2 = {t} × {ω ∈ � : W (t,ω) ∈ B}, B ∈ B(�), generateP�
[t,T ]. But

(τ ,ω) ∈ A1 if and only if τ ∈ (s, r ] and W (·,ω) ∈ B̃1 = {ξ ∈ W : ξ(η) ∈ B} ∈
Bt,0
s , and (t,ω) ∈ A2 if and only if W (·,ω) ∈ B̃2 = {ξ ∈ W : ξ(t) ∈ B} ∈ Bt,0

t .
Therefore, A1 = β−1((s, r ] × B̃1), A2 = β−1({t} × B̃2). Since the sets of the form
(s, r ] × {ξ ∈ W : ξ(η) ∈ B}, t ≤ η ≤ s < r ≤ T, B∈B(�), and {t}×{ξ ∈ W : ξ(t)
∈ B}, B ∈ B(�), generate PW

[t,T ], we have P�
[t,T ] = β−1(PW

[t,T ]). Therefore, by The-
orem1.9, there exists a PW

[t,T ]/B(�)-measurable function f : [t, T ] × W → � such
that (2.18) is satisfied. �

Corollary 2.21 Let a(·) = (
�,F ,F t

s ,P,W, a (·)) ∈ Ut be F t,0
s -predictable. Let(

�1,F1,F
t
1,s,P1,W1

)
be another reference probability space. Suppose that W and

W1 have everywhere continuous trajectories. Let f : [t, T ] × W → � be the func-
tion from Lemma2.20 satisfying (2.18). Then the process

ã (s,ω1) = f (s,W1 (·,ω1)) , s ∈ [t, T ], (2.19)

isF t,0
1,s -predictable and hence F t,0

1,s -progressively measurable on [t, T ] × �1, and

LP(a(·),W (·)) = LP1(ã(·),W1(·)). (2.20)

2.3.2 Independence of Reference Probability Spaces

To prove the dynamic programmingprinciplewehave formulated our optimal control
problem in a special weak form in which we only use reference probability spaces.
Here we show that the control problem does not depend on the choice of the reference
probability space ν and thus the strong and weak formulations are equivalent.

We will formulate the result only for the case T < +∞, however the reader can
easily modify the assumptions so that the result also holds for T = +∞.

Theorem 2.22 (Independence of the reference probability space) Let T ∈ (0,+∞).
Let Hypotheses2.9, 2.11 and 2.12 be satisfied. Let the functions l : [0, T ] × H ×
� → R, g : H → R, c : H → R be Borel measurable, c be bounded from below,
and let, for every0 ≤ t < T, x ∈ H, every referenceprobability spaceν = (

�,F ,F t
s ,

P,W ) and a(·) ∈ Uν
t ,

l(·, X (·; t, x, a(·)), a(·)) ∈ M1
ν (t, T ;R), g(X (T ; t, x, a(·))) ∈ L1(�,F ,P).

Then, for every 0 ≤ t < T, x ∈ H, every two reference probability spaces ν1 =(
�1,F1,F

t
1,s,P1,W1

)
, ν2 = (

�2,F2,F
t
2,s,P2,W2

)
, and a(·) ∈ Uν1

t , there exists
an a2(·) ∈ Uν2

t such that

LP1(X
ν1(·; t, x, a(·)), a(·)) = LP2(X

ν2(·; t, x, a2(·)), a2(·)).
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In particular, for every reference probability space ν,

V ν
t (x) = V (t, x).

Proof Let a(·) ∈ Uν1
t . Let a1(·) be the F t,0

s -predictable process from Lemma1.99
such that a1(·) = a(·), P1 ⊗ dt-a.e. Let ã1(·) ∈ Uν2

t be the process from
Corollary2.21. (Without loss of generality we can assume that W1,W2 have every-
where continuous trajectories.) Since LP1(a1(·),W1(·)) = LP2(ã1(·),W2(·)), it fol-
lows from (A1), (A2) and Theorem1.134 that, with Xν1(·) = Xν1(·; t, x, a1(·)),
Xν2(·) = Xν2(·; t, x, ã1(·)),

f1(s) = e− ∫ s
t c(Xν1 (τ ))dτ , f2(s) = e− ∫ s

t c(Xν2 (τ ))dτ , s ∈ [t, T ],

we have

LP1( f1(·), Xν1(·), a(·)) = LP2( f2(·), Xν2(·), ã1(·)). (2.21)

This proves the first claim.
Using (2.21) we thus obtain

J ν1 (t, x; a(·)) = J ν1 (t, x; a1(·)) = J ν2 (t, x; ã1(·)) ,

which implies

inf
a(·)∈Uν1

t

J ν1 (t, x; a(·)) ≥ inf
a(·)∈Uν2

t

J ν2 (t, x; a(·)) .

The opposite inequality is obtained in the same way and thus it follows that

inf
a(·)∈Uν1

t

J ν1 (t, x; a(·)) = inf
a(·)∈Uν2

t

J ν2 (t, x; a(·)) . (2.22)

This completes the proof. �

2.3.3 The Proof of the Abstract Principle of Optimality

We now state and prove the dynamic programming principle (DPP) in an abstract
formulation. We will do this only for the finite horizon problem. However, the same
proof applies to the infinite horizon case if Hypothesis 2.23 is slightly changed. A
special infinite horizon case is discussed in more detail in Sect. 2.4.

Hypothesis 2.23 Let T ∈ (0,+∞). The functions l : [0, T ] × H × � → R, g :
H → R, c : H → R are Borel measurable, and c is bounded from below. For every
0 ≤ t ≤ η < T, x ∈ H , every reference probability space ν = (

�,F ,F t
s ,P,W

)
,
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and a(·) ∈ Uν
t

l(·, X (·; t, x, a(·)), a(·)) ∈ M1
ν (t, T ;R), g(X (T ; t, x, a(·))) ∈ L1(�,F ,P),

V (η, X (η; t, x, a(·))) ∈ L1(�,F ,P).

Moreover, the functional J (t, y; a(·)) is uniformly continuous in the variable y on
bounded sets of H , uniformly for a(·) ∈ Ut .

Hypothesis2.23 in particular ensures that the value function V is finite.

Theorem 2.24 (Dynamicprogrammingprinciple)Assume thatHypotheses2.9, 2.11,
2.12, and 2.23 are satisfied. Let 0 ≤ t < η < T, x ∈ H. Then

V (t, x) = inf
a(·)∈Ut

E

[∫ η

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , a (s)) ds + e− ∫ η
t c(X (τ ))dτV (η, X (η))

]
.

(2.23)

The proof is very technical so we will proceed slowly. We begin with two simple
lemmas.

Lemma 2.25 Let 0 ≤ t ≤ η < T . Let
(
�,F ,F t

s ,P,W
)
be a standard reference

probability space, and let W have everywhere continuous trajectories. Define, for
s ∈ [η, T ], Wη(s) := W (s) − W (η). Then for P-a.e. ω0 ∈ �, Wη is a Q-Wiener
process on

(
�,Fω0 ,F

η
ω0,s,Pω0

)
, where Pω0 = P(·|F t,0

η )(ω0) is the regular con-
ditional probability, Fω0 is the augmentation of F ′ (see Definition2.8) by the Pω0

null sets, and F η
ω0,s is the augmented filtration generated by Wη.

Proof We notice that for η ≤ s ≤ T

F η,0
ω0,s = σ

(
Wη(τ ) : η ≤ τ ≤ s

) ⊂ F t,0
s

(observe that F η,0
ω0,t1 is independent of ω0) and, by Lemma2.26-(i), for P-a.e. ω0,

F t,0
s ⊂ F η

ω0,s for every η ≤ s ≤ T . Thus for P-a.e. ω0,F
η
ω0,s is the augmentation of

F t,0
s by the Pω0 null sets for every η ≤ s ≤ T .
We fix η ≤ t1 < t2, y ∈ �. We want to apply Lemma1.93 (with �1 = � and

Q1 = Q) so we need to compute for P-a.e. ω0,

h := Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F η

ω0,t1

]
= Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F t,0

t1

]
Pω0 -a.s.

Thus we can assume that h isF t,0
t1 -measurable. We have

∫

A
h(ω)dPω0(ω) =

∫

A
ei〈y,Wη(t2)−Wη(t1)〉�(ω)dPω0(ω) ∀A ∈ F t,0

t1 ,
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which (by the definition of Pω0 ) means that for P-a.e. ω0

∫

A
h(ω)dPω0(ω) = E

[
ei〈y,Wη(t2)−Wη(t1)〉�1A|F t,0

η

]
(ω0)

= E
[
1AE

[
ei〈y,W (t2)−W (t1)〉� |F t

t1

] |F t,0
η

]
(ω0)

= E

[
e− 〈Qy,y〉�

2 (t2−t1)1A|F t,0
η

]
(ω0) = e− 〈Qy,y〉�

2 (t2−t1)Pω0(A).

Therefore, since F t,0
t1 is countably generated, it follows that h = e− 〈Qy,y〉�

2 (t2−t1) for

P-a.s. ω0. Thus by the separability of �, for P-a.s. ω0 we have h = e− 〈Qy,y〉�
2 (t2−t1) for

all y ∈ �. Consider now all pairs (t k1 , t
k
2 ), k = 1, 2, ..., where t k1 = η or t k1 is rational,

t k2 is rational and η ≤ t k1 < t k2 ≤ T . We can conclude from the above that there is a
set �0 such that P(�0) = 1 and such that for every ω0 ∈ �0, y ∈ � and k = 1, 2, ...

Eω0

[
ei〈y,Wη(t k2 )−Wη(t k1 )〉� |F t,0

t k1

]
= e− 〈Qy,y〉�

2 (t k2−t k1 ). (2.24)

It remains to prove that if ω0 ∈ �0, y ∈ � and η ≤ t1 < t2 ≤ T , then

Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F t,0

t1

]
= e− 〈Qy,y〉�

2 (t2−t1). (2.25)

So let ω0 ∈ �0, y ∈ � and η ≤ t1 < t2 ≤ T . We will assume that t1 �= η and t1, t2
are not rational since in such cases the argument is similar and easier. Then for some
subsequence of our sequence of pairs, which we will still denote by (t k1 , t

k
2 ), we have

t k1 → t1, t k2 → t2 and t k1 < t1, t k2 < t2. We claim that Pω0 -a.s.

lim
k→+∞Eω0

[
ei〈y,Wη(t k2 )−Wη(t k1 )〉� |F t,0

t k1

]
= Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F t,0

t1

]
(2.26)

which, together with (2.24), will establish (2.25). First we notice that, since the
filtration F t,0

s is left-continuous, by Proposition1.41-(viii)

lim
k→+∞Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F t,0

t k1

]
= Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F t,0

t1

]
Pω0 -a.s.

Then we observe that by Proposition1.41-(vi)

Eω0

∣∣∣Eω0

[
ei〈y,Wη(t k2 )−Wη(t k1 )〉� |F t,0

t k1

]
− Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F t,0

t k1

]∣∣∣
≤ √

2Eω0

∣∣∣ei〈y,Wη(t k2 )−Wη(t k1 )〉� − ei〈y,Wη(t2)−Wη(t1)〉�

∣∣∣ → 0 as k → +∞.

Thus for some subsequence, Pω0 -a.s.

lim
k→+∞

∣∣∣Eω0

[
ei〈y,Wη(t k2 )−Wη(t k1 )〉� |F t,0

t k1

]
− Eω0

[
ei〈y,Wη(t2)−Wη(t1)〉� |F t,0

t k1

]∣∣∣ = 0.
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These two convergences prove (2.26). �

The reader can consult [545] for a different argument to prove Lemma2.25.

Lemma 2.26 Let 0 ≤ t ≤ η < T . Let ν = (
�,F ,F t

s ,P,W
)
be a standard ref-

erence probability space and let W have everywhere continuous trajectories. Let
a(·) ∈ Uν

t , and let a1(·) be from Lemma1.99. Then we have the following.

(i) For P-a.e. ω0 ∈ �, F t,0
s ⊂ F η

ω0,s for every η ≤ s ≤ T .
(ii) For P-a.e. ω0 ∈ �, aω0(·) := (

�,Fω0 ,F
η
ω0,s,Pω0 ,Wη, a1|[η,T ](·)

) ∈ Uη.

Proof To prove Part (i), we take a countable generating family {Ak} of B(�)

and a countable dense subset {sm} in [t, T ]. We will show that for a.e. ω0 ∈ �,
W (sm)−1(Ak) ∈ F η

ω0,s for all k ≥ 1, sm ≤ s. If sm ≤ η, sinceF t,0
η is countably gen-

erated, we obtain by Theorem1.45 thatW (sm)(ω) = W (sm)(ω0), Pω0 -a.e., for P-a.e.
ω0 ∈ �. Thus, up to a set of Pω0 measure 0, W (sm)−1(Ak) is either empty or is
equal to � and so it is in F η

ω0,s . If sm > η then again up to a set of Pω0 mea-
sure 0, W (sm)−1(Ak) = Wη(sm)−1(Ak − Wη(ω0)) and so it is in F η

ω0,s for P-a.e.
ω0 ∈ �. This implies that σ (W (sm) : sm ≤ s) ⊂ F η

ω0,s for P-a.e. ω0 ∈ �. It remains
to observe that F t,0

s = σ (W (sm) : sm ≤ s).
Part (ii): In view of Lemma2.25 it is enough to show that for P-a.e. ω0 ∈ �, a1(·)

isF η
ω0,s-progressively measurable on [η, T ]. This fact follows from Part (i). �

Remark 2.27 Ifa(·) inLemma2.26 is such thata(·) ∈ Mp
ν (t, T ; E), p ≥ 1, for some

Banach space E , it is easy to see that we also have a1|[η,T ](·) ∈ Mp
νω0

(η, T ; E), for

P-a.e. ω0, where νω0 = (
�,Fω0 ,F

η
ω0,s,Pω0 ,Wη

)
is as in Lemma2.26. �

Proof of Theorem2.24 We first perform the following reduction. Define (similarly
to (2.8))

Ũt =
{⋃

ν

Uν
t : ν is a standard reference probability space

}
.

The set Ũt is non-empty since, for instance, the canonical reference probability space
νW is in it. It is clear fromTheorem2.22 (and the same argument used to justify (2.21)
there) that (2.23) will follow if we can prove it with Ut replaced by Ũt . Therefore it
remains to show that

V (t, x) = inf
a(·)∈Ũt

E

[ ∫ η

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , a (s)) ds

+ e− ∫ η
t c(X (τ ))dτV (η, X (η))

]
. (2.27)

(In fact, using Theorem2.22 it would be enough to replace Ut by UνW
t and do every-

thing on canonical reference probability spaces, however we will prove the theorem
in themore general setup since the arguments and technicalities are similar.)We recall
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that we assume that all Q-Wiener processes in the reference probability spaces have
everywhere continuous trajectories.

Part 1. (inequality ≥ in (2.27)): Let a(·) ∈ Ũt . Defining X (·) = X (·; t, x, a(·))
we have

J (t, x; a(·)) = E

[∫ η

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , a (s)) ds

]

+E

[∫ T

η

e− ∫ s
t c(X (τ ))dτ l (s, X (s) , a (s)) ds + e− ∫ T

t c(X (τ ))dτ g (X (T ))

]
. (2.28)

Let a1(·) be from Lemma1.99, and for P-a.e. ω0 ∈ �, aω0(·) be the control from
Lemma2.26. Let Pω0 = P

(·|F t,0
η

)
(ω0) and Eω0 be the expectation with respect

to Pω0 .
Let X1(s) = X (s; t, x, a1(·)), s ∈ [t, T ]. By (A2), X1 and X are indistinguish-

able. Thus we obtain by (A3) that (up to an indistinguishable modification), X1(s) =
X (s; η, X (η), aω0(·)) in (

�,Fω0 ,F
η
ω0,s,Pω0 ,Wη

)
for P-a.e. ω0.

Therefore, using this, (A0) and the fact that for P-a.e. ω0, Pω0({ω : X1(η,ω) =
X1(η,ω0)}) = 1, we have

E

[∫ T

η

e− ∫ s
t c(X (τ ))dτ l (s, X (s) , a (s)) ds + e− ∫ T

t c(X (τ ))dτ g (X (T ))

]

= E

[∫ T

η

e− ∫ s
t c(X1(τ ))dτ l (s, X1 (s) , a1 (s)) ds + e− ∫ T

t c(X1(τ ))dτ g (X1 (T ))

]

= E

[
e− ∫ η

t c(X (τ ))dτ
E

[ ∫ T

η

e− ∫ s
η c(X1(τ ))dτ l (s, X1 (s) , a1 (s)) ds

+ e− ∫ T
η c(X1(τ ))dτ g (X1 (T )) |F t

η

]]

= E

[
e− ∫ η

t c(X (τ ))dτ J (η, X1(η,ω0); aω0(·))
]

≥ E

[
e− ∫ η

t c(X (τ ))dτV (η, X1(η,ω0))
]

= E

[
e− ∫ η

t c(X (τ ))dτV (η, X (η))
]
, (2.29)

where we used the remarks at the end of Sect. 2.2.2. Thus, using (2.28), we obtain

J (t, x; a(·)) ≥ E

[∫ η

t
e−

∫ s
t c(X (τ ))dτ l (s, X (s) , a (s)) ds + e−

∫ η
t c(X (τ ))dτV (η, X (η))

]

and the claim follows by taking the infimum over all a(·) ∈ Ũt .
Part 2. (inequality ≤ in (2.27)): Let t ≤ η ≤ T . We fix a(·) = (

�,F ,F t
s ,P,

W, a (·)) ∈ Ũt .
We can choose δ1 > 0 so that, for |x − x̄ | < δ1 and |x |, |x̄ | ≤ 1, we have for each

ã(·) ∈ Uη
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|J (η, x; ã(·)) − J (η, x̄; ã(·))| + |V (η, x) − V (η, x̄)| < ε.

Since H is separable we can choose a partition
{
D1

j

}
j∈N

of BH (0, 1) into count-

able disjoint Borel subsets with diam(D1
j ) < δ1. Similarly we can choose a (pos-

sibly smaller) δ2 > 0 such that, for |x − x̄ | < δ2 and |x |, |x̄ | ≤ 2, we have for each
ã(·) ∈ Uη

|J (η, x; ã(·)) − J (η, x̄; ã(·))| + |V (η, x) − V (η, x̄)| < ε,

andwe can choose a partition
{
D2

j

}
j∈N

of BH (0, 2)\BH (0, 1) into countable disjoint

Borel subsets with diam(D2
j ) < δ2.

Iterating the argumentwe can find a partition
{
Dj

}
j∈N of H into countable disjoint

Borel subsets with the following property: for all Dj and all x, x̄ ∈ Dj we have, for
each ã(·) ∈ Uη,

|J (η, x; ã(·)) − J (η, x̄; ã(·))| + |V (η, x) − V (η, x̄)| < ε.

For each j ∈ Nwe choose x j ∈ Dj and a j (·) =
(
� j ,F j ,F

η
j,s,P j ,Wj , a j (·)

)
∈

Uν j
η such that

J
(
η, x j ; a j (·)

)
< V

(
η, x j

) + ε. (2.30)

We define a new control aη(·) ∈ Ũt on the probability space
(
�,F ,F t

s ,P,W
)

as follows. Let a j,1(·) be the F η,0
j,s -predictable processes from Lemma1.99 such

that a j,1(·) = a j (·), P j ⊗ dt-a.e. and let f j : [η, T ] × C ([η, T ] , �) → � be the
functions from Lemma2.20 such that

f j
(
s,Wj (·,ω)

) = a j,1 (s,ω) , for ω ∈ � j , s ∈ [η, T ].

We now set ã j (s,ω) = f j
(
s,Wη (·,ω)

)
. By Corollary2.21 and Lemma2.26

the process ã j (·) is F t,0
s -progressively measurable and, for P-a.e. ω0, is F η

ω0,s-
progressively measurable in the reference probability spaces νω0 := (

�,Fω0 ,F
η
ω0,s

Pω0 ,Wη

)
defined in Lemma2.25. Moreover, LPω0

(ã j (·),Wη(·)) = LP j (a j,1(·),
Wj (·)). We define

aη (s,ω) = a (s,ω) 1{t≤s<η} + 1{s≥η}
∑
j∈N

ã j (s,ω) 1{X (η;t,x,a(·))∈Dj }. (2.31)

Obviously
(
�,F ,F t

s ,P,W, aη(·)) ∈ Ũt .
Let X (s) = X (s; t, x, aη(·)). Notice that X (s; t, x, aη(·)) = X (s; t, x, a(·)) on

[t, η], P-a.e.
Define Oj := {ω : X (η; t, x, a(·)) ∈ Dj }. Since for P-a.e. ω0, Pω0({ω :

X (η,ω) = X (η,ω0)}) = 1, if ω0 ∈ Oj , then Pω0(� \ Oj ) = 0, which implies that
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in this case ã j (·) = aη(·) on [η, T ], Pω0 -a.s., and thus, for P-a.e. ω0, aη|[η,T ] ∈ Uνω0
η ,

and
LPω0

(aη(·),Wη(·)) = LP j (a j,1(·),Wj (·)), j ∈ N. (2.32)

Moreover,we can assume, by (A3), that forP-a.e.ω0, X (·) = Xνω0 (·; η, X (η), aη(·))
on [η, T ] Pω0 -a.s.

By the definition of V ,

V (t, x) ≤ E

[∫ T

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , aη (s)) ds + e− ∫ T
t c(X (τ ))dτ g (X (T ))

]

= E

[∫ η

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , a (s)) ds

]

+E

[∫ T

η

e− ∫ s
t c(X (τ ))dτ l (s, X (s) , aη (s)) ds + e− ∫ T

t c(X (τ ))dτ g (X (T ))

]
. (2.33)

We have

E

[∫ T

η

e− ∫ s
t c(X (τ ))dτ l (s, X (s) , aη (s)) ds + e− ∫ T

t c(X (τ ))dτ g (X (T ))

]

= E

[
e− ∫ η

t c(X (τ ))dτ
E

[ ∫ T

η

e− ∫ s
η c(X (τ ))dτ l (s, X (s) , aη (s)) ds

+e− ∫ T
η c(X (τ ))dτ g (X (T )) |F t

η

]]

=
∑
j∈N

∫

Oj

e− ∫ η
t c(X (τ ))dτ

Eω0

[ ∫ T

η

e− ∫ s
η c(X (τ ))dτ l (s, X (s) , aη (s)) ds

+e− ∫ T
η c(X (τ ))dτ g (X (T ))

]
dP(ω0).

By (2.32) and (A0)–(A1) we obtain

LPω0
(X (·), aη(·)) = LP j (X

ν j (·), a j,1(·)), j ∈ N,

where Xν j (s) = Xν j (s; η, X (η; t, x, a(·))(ω0), a j,1(·)). Thus, it follows from
Theorem1.134 that, with

f (s) = e− ∫ s
η c(X (τ ))dτ

, f j (s) = e− ∫ s
η c(Xν j (τ ))dτ

,

LPω0
( f (·), X (·), aη(·)) = LP j ( f j (·), Xν j (·), a j,1(·)), j ∈ N.
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Therefore,

E

[∫ T

η

e− ∫ s
t c(X (τ ))dτ l (s, X (s) , aη (s)) ds + e− ∫ T

t c(X (τ ))dτ g (X (T ))

]

=
∑
j∈N

∫

Oj

e− ∫ η
t c(X (τ ))dτ JPω0

(η, X (η; t, x, a(·))(ω0); aη(·)) dP(ω0)

=
∑
j∈N

∫

Oj

e− ∫ η
t c(X (τ ))dτ JP j

(
η, X (η; t, x, a(·))(ω0); a j,1(·)

)
dP(ω0).

Moreover, using (2.30), we get for a.e. ω0 ∈ Oj

JP j

(
η, X (η; t, x, a(·)) (ω0) ; a j (·)

) ≤ JP j (η, x j ; a j (·)) + ε

≤ V (η, x j ) + 2ε ≤ V (η, X (η; t, x, a(·)) (ω0)) + 3ε,

so we finally obtain

E

[∫ T

η

e− ∫ s
t c(X (τ ))dτ l (s, X (s) , aη (s)) ds + e− ∫ T

t c(X (τ ))dτ g (X (T ))

]

≤ E

[
e− ∫ η

t c(X (τ ))dτV (η, X (η; t, x, a(·)))
]

+ Cε.

Therefore, by (2.33) and the arbitrariness of a(·),

V (t, x) ≤ inf
a(·)∈Ũt

E

[∫ η

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , a (s)) ds

+e− ∫ η
t c(X (τ ))dτV (η, X (η))

]
+ Cε

and the claim follows by letting ε → 0. �
If we know more information about the value function and the control problem,

in particular that the value function is continuous in both variables, the dynamic
programming principle can be strengthened to include stopping times. We do not
do it here in the abstract case. We explain how to obtain such a formulation of the
dynamic programming principle for a control problem for mild solutions in Sect. 3.6,
Theorem3.70.

2.4 Infinite Horizon Problems

In this section we consider a special infinite horizon problem described by an evolu-
tion equation
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{
dX (s) = β(X (s), a(s))ds + σ(X (s), a(s))dWQ(s)

X (t) = x,
(2.34)

with a cost functional of the form

J (t, x; a(·)) = E

[∫ +∞

t
e− ∫ s

t c(X (τ ;t,x,a(·)))dτ l(X (s; t, x, a(·)) , a(s))ds

]
, (2.35)

where c ≥ λ > 0. We are really only interested in the case t = 0, but we will keep
the dependence on t for a while.

This is a very important class of problems which are semi-“autonomous” in the
sense that the coefficients β,σ and the cost l do not depend explicitly on time. In
this case the value function does not depend on time and the DPP takes on a simpler
form.

We define the value function for t ≥ 0 as

V (t, x) = inf
a(·)∈Ut

E

[∫ +∞

t
e− ∫ s

t c(X (τ ;t,x,a(·)))dτ l(X (s; t, x, a(·)) , a(s))ds

]
(2.36)

and set
J (x; a(·)) := J (0, x; a(·)) , V (x) := V (0, x). (2.37)

We assume now that Hypotheses2.9, 2.11 and 2.12 are satisfied with T = +∞
(i.e. reference probability spaces and solutions are defined on [t,+∞)). We also
replace Hypothesis2.23 by the following one.

Hypothesis 2.28 The functions l : H × � → R, c : H → R are Borel measurable
and there exists a λ > 0 such that c(x) ≥ λ for every x ∈ H . Moreover, for every
0 ≤ η < +∞, x ∈ H , reference probability space ν, a(·) ∈ Uν

0

e− ∫ ·
0 c(X (·;0,x,a(·)))dτ l(X (·; 0, x, a(·)), a(·)) ∈ M1

ν (0,+∞;R),

V (X (η; 0, x, a(·))) ∈ L1(�,F ,P).

Finally, J (·; a(·)) is uniformly continuous on bounded sets of H , uniformly for
a(·) ∈ U0.

Since we are dealing with an abstract state equation we have to add another
hypothesis which reflects the “autonomous” nature of the system. First we observe
that

(
�,F ,

{
F t

s

}
s≥t ,P,WQ(·), a (·)

)
∈ Ut

⇐⇒
(
�,F ,

{
F t

s+t

}
s≥0 ,P,WQ(t + ·), a (t + ·)

)
∈ U0.
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Hypothesis 2.29 Assume that the family of solutions X (·; t, x, a(·)) of (2.34) sat-
isfies the following property. For every

(
�,F ,F t

s ,P,WQ(·), a (·)) ∈ Ut

(A5) LP(X (t + ·; t, x, a(·)), a(t + ·)) = LP(X (·; 0, x, a(t + ·)), a(t + ·)) on
[0,+∞), where X (·; 0, x, a(t + ·)) is the solution of (2.34) with WQ(·)
replaced by WQ(t + ·).

Remark 2.30 An example of a state equation satisfying Hypothesis2.29 is given by
the mild solution of an SDE

{
dX (s) = AX (s)ds + b(X (s), a(s))ds + σ(X (s), a(s))dWQ(s)

X (t) = x,
(2.38)

where A, b and σ satisfy the assumptions described in Hypothesis1.125. �

Using Hypothesis 2.29, by a change of variable and (A5), we observe that

V (t, x) = inf
a(·)∈Ut

E

[∫ +∞

t
e− ∫ s

t c(X (τ ;t,x,a(·)))dτ l(X (s; t, x, a(·)) , a(s))ds

]

= inf
a(·)∈Ut

E

[∫ +∞

0
e− ∫ s

0 c(X (t+τ ;t,x,a(·)))dτ l(X (t + s; t, x, a(·)) , a(t + s))ds

]

= inf
a(·)∈Ut

E

[∫ +∞

0
e− ∫ s

0 c(X (τ ;0,x,a(t+·)))dτ l(X (s; 0, x, a(t + ·)) , a(t + s))ds

]

= inf
a(·)∈U0

E

[∫ +∞

0
e− ∫ s

0 c(X (τ ;0,x,a(·)))dτ l(X (s; 0, x, a(·)) a(s))ds

]
= V (x).

We thus have the following theorem, whose proof is obtained by a simple modi-
fication of the proofs of Theorems2.22 and 2.24.

Theorem 2.31 (DPP, infinite horizon case) Assume that Hypotheses2.9, 2.11 and
2.12 for T = +∞ hold, and that Hypotheses2.28 and 2.29 are satisfied. Then the
value function V satisfies the dynamic programming principle: For every η > 0,
x ∈ H,

V (x) = inf
a(·)∈U0

E

[∫ η

0
e− ∫ s

0 c(X (τ ))dτ l (X (s) , a (s)) ds + e− ∫ η
0 c(X (τ ))dτV (X (η))

]
.

(2.39)

Moreover,

V (x) = V ν(x) := inf
a(·)∈Uν

0

E

[∫ +∞

0
e− ∫ s

0 c(X (τ ))dτ l (X (s) , a (s)) ds

]

for every reference probability space ν.
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2.5 The HJB Equation and Optimal Synthesis
in the Smooth Case

Once we know that the dynamic programming principle (DPP) holds, we want to
use it to solve the control problem, i.e. to find optimal pairs and, possibly, to study
their properties. In the dynamic programming approach the path to do this consists
of:

• formulating a differential form of the DPP (the HJB equation);
• finding a solution v of the HJB equation (which we do not know ex ante to be the
value function);

• using such a solution v to prove a verification theorem, i.e. sufficient, and possibly
necessary, conditions for optimality, which expresses optimal controls as functions
of the current state (feedback controls);

• performing the optimal synthesis, i.e. using the optimality conditions of the pre-
vious step to find optimal feedback controls: this will also imply that v is indeed
the value function.

Such a program can be performed if we know in advance that the HJB equation
has a smooth solution or if we know that the value function is sufficiently regular,
both of which may not be true even in finite dimension. However, it is still useful
to present how the program works in the smooth case to understand the machinery
of the dynamic programming approach. We do it for our model problem, when the
state equation admits a solution in the mild sense, assuming that the value function
is smooth. We prove the following three results (in both finite and infinite horizon
cases):

• The value function solves the HJB equation.
• The verification theorem (necessary and sufficient conditions for optimality).
• The existence of optimal pairs in feedback form.

One of the main goals of the theory presented in this book is to obtain some of these
results under more realistic assumptions.

It is important to note that, if one finds a sufficiently smooth solution of the HJB
equation, then the verification theorem and the existence of optimal feedbacks can
be done without using the DPP, and this is done in Chaps. 4–6.

We will present everything for a control problem in the weak formulation of
Sect. 2.1.2, i.e. when the set of admissible controls is equal to U t , as this setup is
more convenient when discussing optimal feedback controls. However, the same
results are also true for control problems in the weak formulation of Sect. 2.2 used
to prove the DPP, with U t replaced by Ut , or in the strong formulation of Sect. 2.1.1.
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2.5.1 The Finite Horizon Problem: Parabolic HJB Equation

Let Hypothesis 2.1 hold. Consider an optimal control problem of minimizing the
cost functional (2.3) for the system governed by (2.11), where for simplicity we do
not have discounting in (2.3), i.e. we set c = 0. We rewrite it here for the reader’s
convenience. The state equation is

{
dX (s) = (AX (s) + b(s, X (s), aμ(s))) ds + σ(s, X (s), aμ(s))dWQ(s)

X (t) = x,
(2.40)

where aμ(·) ∈ Uμ
t for some generalized reference probability space μ satisfying

Hypothesis2.1, and the cost functional

J (t, x; aμ(·)) = E
μ

[ ∫ T

t
l(s, X (s; t, x; aμ(·)), aμ(s))ds + g(X (T ; t, x, aμ(·)))

]
.

(2.41)

We consider the control problem in the weak formulation of Sect. 2.1.2, and assume
that Hypothesis 1.125 is satisfied. The HJB equation associated with this problem is

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt + 〈Dv, Ax〉 + infa∈�

{
1
2Tr

[(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
D2v

]

+〈Dv, b(t, x, a)〉 + l(t, x, a)
}

= 0,

v(T, x) = g(x).

(2.42)

In the above equation Dv, D2v are the Fréchet derivatives of v with respect to x ,
which are identified respectively with elements of H and S(H), the set of bounded,
self-adjoint operators in the Hilbert space H . For (t, x, p, S, a) ∈ [0, T ] × H ×
H × S(H) × �, the term

FCV (t, x, p, S, a) := 1

2
Tr

[(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
S

]
+ 〈p, b(t, x, a)〉 + l(t, x, a)

(2.43)

will be called the current value Hamiltonian of the system and its infimum over
a ∈ �

F(t, x, p, S) := inf
a∈�

{
1

2
Tr

[(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
S

]

+ 〈p, b(t, x, a)〉 + l(t, x, a)

}

(2.44)
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will be called the Hamiltonian.4 Using this notation, the HJB equation (2.42) can be
rewritten as

{
vt + 〈Dv, Ax〉 + F(t, x, Dv, D2v) = 0,

v(T, x) = g(x).
(2.45)

The HJB equation (2.42) can be viewed as a differential form of the DPP.

Definition 2.32 (Classical solution, parabolic case) A function v : (0, T ] × H →
R is a classical solution of (2.42) if v ∈ C1,2((0, T ) × H) ∩ C((0, T ] × H),
Dv : (0, T ) × H → D(A∗), A∗Dv ∈ C((0, T ) × H, H) and v satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt + 〈A∗Dv, x〉 + infa∈�

{
1
2Tr

[(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
D2v

]

+〈Dv, b(t, x, a)〉 + l(t, x, a)
}

= 0, (t, x) ∈ (0, T ) × H,

v(T, x) = g(x), x ∈ H,

pointwise.

We will use the following assumption.

Hypothesis 2.33

(i) The functions σ(t, x, a), b(t, x, a) and l(t, x, a) are continuous and uniformly
continuous in (t, x) on [0, T ] × B(0, R), uniformly for a ∈ � for every R > 0.

(ii) There exist C, N > 0 such that

|l(t, x, a)| ≤ C(1 + |x |)N (2.46)

for all (t, x, a) ∈ [0, T ] × H × �.
(iii) The function v : [0, T ] × H → R is uniformly continuous on bounded sub-

sets of [0, T ] × H , and its derivatives Dv, D2v, vt are uniformly continuous
on bounded subsets of (0, T ) × H . Moreover, Dv : (0, T ) × H → D(A∗) and
A∗Dv is uniformly continuous on bounded subsets of (0, T ) × H . Finally,
there exist C, N > 0 such that

|v(t, x)| + |Dv(t, x)| + |vt (t, x)| + ‖D2v(t, x)‖ + |A∗Dv(t, x)| ≤ C(1 + |x |)N
(2.47)

for all (t, x) ∈ (0, T ) × H .

Theorem 2.34 Let Hypotheses1.125, 2.1 and 2.33 be satisfied, v(T, x) = g(x) for
every x ∈ H, and let the function v satisfy the DPP, i.e. for every 0 < t < η <

T, x ∈ H,

4Sometimes it is called the minimum value Hamiltonian.
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v(t, x) = inf
a(·)∈U t

E

[∫ η

t
l(s, X (s), a(s))ds + v(η, X (η))

]
. (2.48)

Then v is a classical solution of (2.42).

Proof To prove that Eq. (2.42) is satisfied we show separately the two inequalities.
We will not present all the details here as the proof follows the lines of the proof of
Theorem3.66, where it is shown that the value function is a viscosity solution by
applying Dynkin’s formula to a suitable family of test functions.

Part 1. (Supersolution inequality). We fix (t, x) ∈ (0, T ) × H . By (2.48), for
every ε ∈ (0, T − t) we can choose a control aμε(·) ∈ Uμε

t such that

v(t, x) + ε2 ≥ E
με

[∫ t+ε

t
l(s, Xμε(s), aμε(s))ds + v(t + ε, Xμε(t + ε))

]
,

where Xμε(·) is the trajectory starting at (t, x) driven by aμε(·). Dividing the above
by ε we have

ε ≥ E
με

v(t + ε, Xμε(t + ε)) − vμε(t, x)

ε
+ 1

ε
E

με

∫ t+ε

t
l(s, Xμε(s), aμε(s))ds

and, using Dynkin’s formula from Proposition1.165,

ε ≥ 1

ε
E

με

[ ∫ t+ε

t

[
vt (s, X

με(s)) + 〈
A∗Dv(s, Xμε(s)), Xμε(s)

〉

+ 〈Dv(s, Xμε(s)), b(s, Xμε(s), aμε(s))〉
+ 1

2
Tr

[(
σ(s, Xμε(s), aμε(s))Q1/2) (

σ(s, Xμε(s), aμε(s))Q1/2)∗
D2v(s, Xμε(s))

]

+ l (s, Xμε (s) , aμε(s))

]
ds

]
= 1

ε
E

με

∫ t+ε

t
�(s, Xμε(s), aμε(s))ds,

(2.49)

where

�(s, y, a) := vt (s, y) + 〈
A∗Dv(s, y), y

〉 + 〈Dv(s, y), b(s, y, a)〉
+ 1

2
Tr

[(
σ(s, y, a)Q1/2

) (
σ(s, y, a)Q1/2

)∗
D2v(s, y)

]
+ l (s, y, a) .

By our assumptions we have, for some h > 0 and modulus ρ, depending on t, x ,

|�(s, y, a) − �(t, x, a)| ≤ ρ(|s − t | + |y − x |) for all (s, y) ∈ [t, t + h] × B1(x), a ∈ �,

(2.50)



2.5 The HJB Equation and Optimal Synthesis in the Smooth Case 123

and, for some C and M ≥ 0,

|�(s, Xμε (s) , aμε(s))| ≤ C(1 + |Xμε(s)|M). (2.51)

Moreover, it follows from (1.38) that there is an rε > 0, independent of aμε , such
that rε → 0 as ε → 0, and with

�ε
1 = {ω ∈ �με : sup

s∈[t,t+ε]
|Xμε(s) − x | ≤ rε},

we have
P

με(�ε
1) ≥ γ(ε) → 1 as ε → 0. (2.52)

Thus, using (1.37), (2.49)–(2.52) we obtain (see the proof of Theorem3.66 for more
details) that there exists a modulus ρ1(ε), depending on t and x , such that

ρ1(ε) ≥ 1

ε
E

με

∫ t+ε

t
�(t, x, aμε(s))ds

≥ vt (t, x) + 〈
A∗Dv(t, x), x

〉 + 1

ε
E

με

[ ∫ t+ε

t
inf
a∈�

{
1

2
Tr

[ (
σ(t, x, a)Q1/2

)

×
(
σ(t, x, a)Q1/2

)∗
D2v(t, x)

]
+ 〈Dv(t, x), b(t, x, a)〉 + l (t, x, a)

}
ds

]

= vt (t, x) + 〈
A∗Dv(t, x), x

〉 + inf
a∈�

{
1

2
Tr

[ (
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
D2v(t, x)

]

+ 〈Dv(t, x), b(t, x, a)〉 + l (t, x, a)

}
.

The inequality follows letting ε → 0.
Part 2. (Subsolution inequality). Choose a ∈ � and consider the constant control

ā(·) ≡ a ∈ � for some generalized reference probability space μ. Denote by X (s)
the trajectory starting from (t, x) driven by the control ā(·). From (2.48) we have for
ε ∈ (0, T − t)

v(t, x) ≤ E
μ

[∫ t+ε

t
l (s, X (s) , a) ds + v (t + ε, X (t + ε))

]
.

Again using Dynkin’s formula from Proposition1.165, we thus obtain

0 ≤ E
μ[v(t + ε, X (t + ε)) − v(t, x)]

ε
+ 1

ε
E

μ

∫ t+ε

t
l (s, X (s) , a) ds

= 1

ε
E

μ

[ ∫ t+h

t

[
vt (s, X (s)) + 〈

A∗Dv(s, X (s)), X (s)
〉

+〈Dv(s, X (s)), b(s, X (s), a)〉



124 2 Optimal Control Problems and Examples

+ 1

2
Tr

[(
σ(s, X (s), a)Q1/2

) (
σ(s, X (s), a)Q1/2

)∗
D2v(s, X (s))

]

+ l (s, X (s) , a)

]
ds

]
.

(2.53)

We can now pass to the limit as ε → 0 above, as in Part 1, to obtain that for every
a ∈ �

0 ≤ vt (t, x) + 〈
A∗Dv(t, x), x

〉 + 1

2
Tr

[(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
D2v(t, x)

]

+ 〈Dv(t, x), b(t, x, a)〉 + l(t, x, a), t ∈ (0, T ), x ∈ H.

The inequality follows by taking the infimum over a ∈ � above. �
Remark 2.35 It is clear from the proof that Theorem2.34 still holds if U t in (2.48)
is replaced by Ut or if (2.48) is stated in the strong formulation, i.e. if U t in
(2.48) is replaced by Uμ

0 for some fixed generalized reference probability space μ
on [0, T ]. �

We now show how to use the HJB equation to characterize optimal controls. First
we prove the so-called verification theorem. It could also be stated in the strong
formulation.

Theorem 2.36 (SmoothVerificationTheorem,SufficientCondition)Letv : [0, T ] ×
H → R be a classical solution of (2.42) as defined in Definition2.32. Let
Hypotheses1.125, 2.1 and 2.33 be satisfied. Then:

(i) We have
v(t, x) ≤ V (t, x) for all (t, x) ∈ [0, T ] × H. (2.54)

(ii) Let (a∗(·), X∗(·)) be an admissible pair at (t, x) such that

a∗(s) ∈ argmin
a∈�

FCV (s, X∗(s), Dv(s, X∗(s)), D2v(s, X∗(s)), a),

(2.55)
for almost every s ∈ [t, T ] and P-almost surely. Then the pair (a∗(·), X∗(·)) is
optimal at (t, x), and v(t, x) = V (t, x).

Proof We first prove the following identity.5 For every a(·) ∈ U t :

v(t, x) = J (t, x; a(·))

− E

∫ T

t

[
FCV

(
r, X (r), Dv(r, X (r)), D2v(r, X (r)), a(r)

)

− F
(
r, X (r), Dv(r, X (r)), D2v(r, X (r))

) ]
dr.

(2.56)

5This is often called the fundamental identity for the optimal control problem.
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Indeed, consider a(·) ∈ U t and the corresponding trajectory X (·) starting at x at time
t . We apply Proposition1.165, to the process v(s, X (s)), s ∈ [t, T ], obtaining

Ev(T, X (T )) = v(t, x) + E

∫ T

t
vt (r, X (r))dr

+ E

∫ T

t

〈
A∗Dv(r, X (r)), X (r)

〉
dr + E

∫ T

t
〈Dv(r, X (r)), b(r, X (r), a(r))〉 dr

+ 1

2
E

∫ T

t
Tr

[(
σ(r, X (r), a(r))Q1/2

) (
σ(r, X (r), a(r))Q1/2

)∗
D2v(r, X (r))

]
dr.

(2.57)

We now use that v(T, ·) = g, rearrange the terms, and we add and subtract E
∫ T
t

l(r, X (r), a(r))dr obtaining, by the definition of the current value Hamiltonian FCV

in (2.43),

v(t, x) = Eg(X(T )) + E

∫ T

t
l(r, X (r), a(r))dr

− E

∫ T

t

[
vt (r, X (r)) + 〈

A∗Dv(r, X (r)), X (r)
〉]
dr

− E

∫ T

t
FCV (r, X (r), Dv(r, X (r)), Dv(r, X (r)), a(r))dr.

(2.58)

Equality (2.56) is now a consequence of the definition of the functional J and the
fact that v is a classical solution of the HJB equation (2.42).

Therefore (i) follows by observing that, by definition, FCV − F ≥ 0 everywhere,
and by taking the infimum over a(·) ∈ U t in the right-hand side of (2.56).

Regarding (ii), let (a∗(·), X∗(·)) be an admissible pair at (t, x) satisfying (2.55)
for almost every s ∈ [t, T ] and P-almost surely. We then have

E

∫ T

t

[
FCV (r, X∗(r), Dv(r, X∗(r)), D2v(r, X∗(r)), a∗(r))

− F
(
r, X∗(r), Dv(r, X∗(r)), D2v(r, X∗(r))

) ]
dr = 0.

Thus, by (2.56), we get
v(t, x) = J (t, x; a∗(·)), (2.59)

which, together with (i), implies that (a∗(·), X∗(·)) is optimal at (t, x) and v(t, x) =
V (t, x). �
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Note that part (i) of the above theorem remains true if v is any classical subsolution
of the HJB equation (2.42)6 with the required regularity.

If we know from the beginning that the solution v in Theorem2.36 is the value
function V then (2.55) also becomes a necessary condition for optimality.

Corollary 2.37 (Smooth Verification Theorem, Necessary Condition) Let the
assumptions of Theorem2.36 hold for v = V . Let (a∗(·), X∗(·)) be an optimal pair
at (t, x). Then we must have

a∗(s) ∈ argmin
a∈�

FCV (s, X∗(s), DV (s, X∗(s)), D2V (s, X∗(s)), a), (2.60)

for almost every s ∈ [t, T ] and P-almost surely.

Proof Now the function v = V satisfies (2.56). Since (a∗(·), X∗(·)) is an optimal
pair at (t, x), we have V (t, x) = J (t, x; a∗(·)). Therefore, (2.56) for V implies
that the integrand of the last term of (2.56) is zero dt ⊗ P-a.e. and the claim
follows. �

Assume now that we have a classical solution v of the HJB equation (2.42). Define
the multivalued function

{
� : (0, T ) × H → P(�),

� : (t, x)→ argmina∈� FCV (t, x, Dv(t, x), D2v(t, x), a).
(2.61)

TheClosed Loop Equation (CLE) associated with our problem and v is then formally
defined as

{
dX (s) ∈ AX (s)dt + b(s, X (s),�(s, X (s)))ds + σ(s, X (s),�(s, X (s)))dWQ(s)

X (t) = x .
(2.62)

If we can find a solution (in a suitable sense) X�(·) of such a stochastic differential
inclusion, we expect that, if a�(·) is a suitable measurable selection of �(·, X (·)),
then the pair (a�(·), X�(·)) is optimal at (t, x). This is indeed the statement of the
next corollary.

Corollary 2.38 (Optimal Feedback Controls) Let the assumptions of Theorem2.36
hold and let t ∈ [0, T ]. Assume, moreover, that the feedback map � defined in (2.61)
admits a measurable selection φt : (t, T ) × H → � such that the Closed Loop
Equation

{
dX (s) = AX (s)ds + b(s, X (s),φt (s, X (s)))ds + σ(s, X (s),φt (s, X (s)))dWQ(s)

X (t) = x
(2.63)

6This is in the sense that v(T, x) ≤ g(x) and it satisfies (2.42) with the inequality ≥.
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has a weak mild solution (see Definition1.121) Xφt (·) in some generalized reference
probability space μ satisfying Hypothesis2.1-(iv). Then the pair (aφt (·), Xφt (·)),
where the control aφt (·) is defined, for s ∈ [t, T ], by the feedback law aφt (s) =
φ(s, Xφt (s)), is admissible and it is optimal at (t, x).

Proof By construction the pair (aφt (·), Xφt (·)) satisfies (2.55). Then, by
Theorem2.36-(ii) we obtain that such pair is optimal. Observe that since the assump-
tions of Theorem2.36 are satisfied, Xφt (·) is the unique mild solution (in the strong
probabilistic sense) of the state equation associated to the control aφt (·) in the gen-
eralized reference probability space μ. �

In the above corollary we assumed that the closed loop equation has a weak mild
solution to obtain the existence of an optimal feedback control for the weak formu-
lation. If we consider the control problem (2.40) and (2.41) in the strong formulation
with the value function defined by (2.5), all the results above remain true except for
Corollary2.38. Indeed, the weak mild solution Xφt (·), and hence the control aφt (·),
may be defined in a different reference probability space than the starting one. To get
existence of an optimal feedback control in the strong formulation one needs to have
existence of solutions of the closed loop equation (2.63) in the strong probabilistic
sense (i.e. in the mild or strong sense of Definitions1.118 and 1.119).

To conclude let us reiterate the three step process to carry out the so-called syn-
thesis of optimal control for the problem (2.40) and (2.41) once we have a classical
solution v of our HJB equation.

1. Introduce the feedback function �, depending on v, as in (2.61). It provides a
candidate-optimal control in terms of the state.

2. Look for a solution X∗(·) of the closed loop equation (2.63) for some measurable
selection φt of the map �.

3. Define, for s ∈ [t, T ], a∗(s) := φt (s, X∗(s)). Then the pair (a∗(·), X∗(·)) is opti-
mal at (t, x) thanks to Theorem2.36.

Of course, given an optimal control problem like (2.40) and (2.41), it may not be
possible to perform the above steps as they are. However, even if the HJB equation
does not have a classical solution, wemay still be able to synthesize optimal controls.
This will be explained in later chapters for some special cases. The general synthesis
of optimal controls is still a largely open problem.

As was explained in Remark2.6, the extended weak formulation may be more
suitable for Corollary2.38 (and also Corollary2.44 in the infinite horizon case). This
is done inChap.6, Sects. 6.5 and 6.10 (see alsoChap.4, Propositions4.199 and 4.218,
and Chap.5, Sect. 5.5.5).

2.5.2 The Infinite Horizon Problem: Elliptic HJB Equation

Consider the optimal control problem of minimizing the infinite horizon functional
(2.35) for the system governed by the state equation (2.38) with t = 0 and the set of
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admissible controls equal to U0. For simplicity we will assume that c(·) ≡ λ > 0.
This is a typical infinite horizon problem with constant discounting.

The current value Hamiltonian is now defined by

FCV (x, p, S, a) := 1

2
Tr

[(
σ(x, a)Q

1
2

) (
σ(x, a)Q

1
2

)∗
S

]
+ 〈p, b(x, a)〉 + l(x, a),

(2.64)
the Hamiltonian is given by

F(x, p, S) := inf
a∈�

{
1

2
Tr

[(
σ(x, a)Q

1
2

) (
σ(x, a)Q

1
2

)∗
S

]
+ 〈p, b(x, a)〉 + l(x, a)

}
,

(2.65)

and the HJB equation associated to our infinite horizon optimal control problem is

λv − 〈Dv, Ax〉 − F(x, Dv, D2v) = 0 (2.66)

for the unknown function v : H → R.
We present below the infinite horizon versions of the results of the previous

subsection.

Definition 2.39 (Classical solution, elliptic case) A function v : H → R is a clas-
sical solution of (2.66) if v ∈ C2(H), A∗Dv ∈ C(H, H) and v satisfies

λv − 〈
A∗Dv, x

〉 − F(x, Dv, D2v) = 0

pointwise.

Similarly to the previous section we will need the following assumption.

Hypothesis 2.40

(i) The functions b,σ and l are continuous, l(x, a) is uniformly continuous in x on
B(0, R), uniformly for a ∈ � for every R > 0. Moreover, there exist C, N > 0
such that

|l(x, a)| ≤ C(1 + |x |)N (2.67)

for all (x, a) ∈ H × �.
(ii) The function v : H → R and its derivatives Dv, D2v, vt are uniformly con-

tinuous on bounded subsets of H . Moreover, Dv : H → D(A∗) and A∗Dv is
uniformly continuous on bounded subsets of H , and

|v(x)| + |Dv(x)| + ‖D2v(x)‖ + |A∗Dv(x)| ≤ C(1 + |x |)N
(2.68)

for all x ∈ H .
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Theorem 2.41 Let Hypotheses1.125, 2.1 for T = +∞, and Hypothesis2.40 be sat-
isfied. Assume that the function v satisfies the DPP, i.e. for every 0 < η < +∞,
x ∈ H,

v(x) = inf
a(·)∈U0

E

[∫ η

0
l(X (s), a(s))ds + v(X (η))

]
. (2.69)

Then, the function v is a classical solution of (2.66).

Proof The proof follows the lines of the proof of Theorem2.34. �

We now pass to the verification theorem, the necessary conditions and the closed
loop equation. In these results we may encounter integrability problems. To avoid
technical complications, here we consider the case where the discount factor λ is
sufficiently big.

Theorem 2.42 (Smooth Verification, Sufficient Condition, Infinite Horizon) Let
v : H → R be a classical solution of (2.66) as defined in Definition2.39. Let
Hypotheses1.125, 2.1 for T = +∞, and Hypothesis2.40 be satisfied, and let λ >

λ = (N + 2)(C + 1
2 (N + 1)C2), where C is the constant from (1.33) and (1.34) (see

Proposition3.24 for m = N + 2). Then:

(i) For all x ∈ H
v(x) ≤ V (x). (2.70)

(ii) Let (a∗(·), X∗(·)) be an admissible pair at x such that

a∗(s) ∈ argmin
a∈�

FCV (X∗(s), Dv(s, X∗(s)), D2v(s, X∗(s)), a)

(2.71)
for almost every s ∈ [0,+∞) and P-almost surely. Then the pair (a∗(·), X∗(·))
is optimal at x, and v(x) = V (x).

Proof The proof is similar to that of Theorem2.36 except for the fact that we now
have to take the limit as T → +∞, in (2.56). Indeed, arguing as in the proof of
Theorem2.36, we obtain that for every a(·) ∈ U0, and every T > 0,

v(x) = e−λT
Ev(X (T )) +

∫ T

0
e−λr l(X (r), a(r))dr

−E

∫ T

0
e−λr

[
FCV

(
X (r), Dv(r, X (r)), D2v(r, X (r)), a(r)

)

− F
(
X (r), Dv(r, X (r)), D2v(r, X (r))

) ]
dr.

(2.72)

The condition λ > λ guarantees, due to estimate (3.32), that we can pass to the limit
as T → +∞ above, obtaining the fundamental identity:



130 2 Optimal Control Problems and Examples

v(x) =
∫ +∞

0
e−λr l(X (r), a(r))dr

−E

∫ +∞

0
e−λr

[
FCV

(
X (r), Dv(r, X (r)), D2v(r, X (r)), a(r)

)

− F
(
X (r), Dv(r, X (r)), D2v(r, X (r))

) ]
dr.

(2.73)

The claims now follow as in the proof of Theorem2.36. �

Corollary 2.43 (Smooth Verification, Necessary Cond., Infinite Horizon) Let the
assumptions of Theorem2.42 hold for v = V and let (a∗(·), X∗(·)) be an optimal
pair at x. Then we must have

a∗(s) ∈ argmin
a∈�

FCV (X∗(s), DV (s, X∗(s)), D2V (s, X∗(s)), a) (2.74)

for almost every s ∈ [0,+∞) and P-almost surely.

Proof The same as Corollary2.37 using (2.73). �

As in the finite horizon case we assume that we have a classical solution v of the
HJB equation (2.66). We define the multivalued function

{
� : H → P(�)

� : x→ argmina∈� FCV (x, Dv(t, x), D2v(t, x), a).
(2.75)

TheClosed Loop Equation (CLE) associated with our problem and v is then formally
defined as

{
dX (s) ∈ AX (s)dt + b(X (s),�(X (s)))ds + σ(X (s),�(X (s)))dWQ(s),

X (0) = x .

(2.76)

Again, if a solution X�(·) of this stochastic differential inclusion can be found, and
we can find a�(·), a suitable measurable selection of �(·, X (·)), we would expect
the pair (a�(·), X�(·)) to be optimal at x .

Corollary 2.44 (Optimal Feedback Controls, Infinite Horizon) Let the assumptions
of Theorem2.42 hold. Assume, moreover, that the feedback map � defined in (2.75)
admits a measurable selection φ : H → � such that the Closed Loop Equation

{
dX (s) = AX (s)dt + b(X (s),φ(X (s)))ds + σ(X (s),φ(X (s)))dW (s)
X (0) = x

(2.77)
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has a weak mild solution (see Definition1.121) Xφ(·) in some generalized reference
probability space satisfying Hypothesis2.1-(iv). Then the pair (aφ(·), Xφ(·)), where
the control aφ(·) is defined by the feedback law aφ(s) = φ(s, Xφ(s)), is admissible
and it is optimal at (t, x).

Proof The proof is the same as that of Corollary2.38. �

The optimal synthesis is performed in the same way as in the finite horizon case.

Remark 2.45 In Sect. 2.4 and in this subsection we have considered infinite horizon
problems satisfying Hypothesis 2.29, which substantially means that the data b, σ,
l and c must be time-independent. We made this restriction partly for simplicity of
exposition and partly because such cases are very common in applied models. How-
ever, with little effort, it is possible to apply the dynamic programming approach to
infinite horizon problemswith “non-autonomous” data (sowithout Hypothesis2.29).
In such cases the value functionwould be a function of (t, x), the DPPwould have the
form (2.23), and the HJB equation would be a parabolic equation on (0,+∞) × H
like (2.45) but with a zeroth order term coming from the discount factor, and without
a terminal condition:

vt − λv + 〈Dv, Ax〉 + F(t, x, Dv, D2v) = 0. (2.78)

Such problems are more difficult but are still interesting, for example, in some finan-
cial applications (see [145, 237, 290]). �

2.6 Some Motivating Examples

In this section we describe several examples that motivate the study of stochastic
optimal control problems in infinite dimension. Our goal here is to show how various
applied problems, arising in different areas of science and engineering, are naturally
modeled within the framework of infinite-dimensional stochastic analysis. The first
five examples are concerned with the control of various kinds of stochastic PDEs,
while the last dealswith the control of stochastic delay equations.Despite similarities,
these examples are very different from each other and it is difficult to find a general
theory that includes all of them. This is an unpleasant feature of infinite-dimensional
optimal control which will force us to apply different approaches and adaptations of
the main general theory.

We have chosen our examples, among many others, since they are representative
of interesting applied models and since they motivate the four different approaches
described in this book (viscosity solutions, strong solutions, L2

m solutions, solutions
via BSDE). In all examples the criteria to maximize/minimize are given as the expec-
tation of a Bolza-type functional (in finite or infinite horizon cases). We leave aside
other types of criteria (mean-variance, risk sensitive, ergodic, etc.) for which we
will refer the reader to the existing literature. For each example we provide a short
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motivation, the main mathematical framework (state equation, objective functional
and constraints), and show how to translate the problem into the abstract framework
of infinite-dimensional stochastic optimal control introduced before. Finally, we dis-
cuss the issue of the dynamic programming principle, and we present the associated
HJB equations with references to further material in the book and in the literature.
For purposes of the DPP we always take the optimal control problems in the weak
formulation of Sect. 2.2, however the control problems can be studied with other
formulations.

We remark that the existing theory is far from providing a satisfactory treatment of
all problems: many challenging questions remain open and call for further research.
An important issue in this respect is that of constraints: to obtain more realistic
control problems it is often necessary to impose suitable constraints on the state and
on the control variables. Such constraints strongly depend on the particular problems.
Since the addition of state constraints makes the dynamic programming approach
much harder and not much is known at the present stage, we will mention how state
constraints arise in specific problems, however we will not deal with state constraint
problems.

Finally, we mention a few things about the notation.

• To be consistent with the general setting introduced before, the initial time is
always t ≥ 0.

• In all examples we start first with the finite-dimensional notation. Thus the state
equation is first written as a PDE (or a functional equation) in finite dimension
with solutions defined informally, then in a subsequent section the state equation is
rewritten as an evolution equation in an infinite-dimensional space. To distinguish
the two cases we write y(·) to denote the finite-dimensional state and α(·) for the
finite-dimensional control, while the infinite-dimensional state and control will be
denoted, as before, by X (·) and a(·), respectively.

• Following the usual convention, even if all variables depend on the “scenario” ω,
we will always drop such dependence unless needed in the context.

WARNING: The HJB equations that appear in the examples in this section are
formal and are all written using the convention adapted from the natural way the
equation was written in (2.42)–(2.44) in Sect. 2.5.1. This form is preferable from the
PDE point of view as all the terms (when they are defined) use only the reference
Hilbert space H of the independent variable x . Wewant to focus on the examples and
leave the details of how the equations are interpreted and solved to later chapters.
In some cases the Hamiltonians appearing here are always well defined and will
not need any interpretation. In some cases some terms may not make sense the way
they are written here and they will need special interpretation which would take too
long to explain here. This is especially true of equations discussed in Sects. 2.6.2 and
2.6.3. The formal versions are enough to point out the main difficulties posed by the
equations, however the reader should be careful as the equations may not be what
they appear.
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2.6.1 Stochastic Controlled Heat Equation: Distributed
Control

Our first example concerns the problem of controlling a nonlinear stochastic heat
equation in a given space region O ⊂ R

N . This is a very popular example and here,
under “reasonable” assumptions, the theory applies quite well giving rise to results
concerning the HJB equation and the synthesis of optimal controls.

Optimal control problems of this type arise in various applied contexts. We recall
some of them.

• Optimal control of the heat distribution of a given body (the regionO). The deter-
ministic case is described, for instance, in the monograph [403] (pp. 3–5). The
presence of the stochastic additive term in the equation can be justified by the
presence of (small) random perturbations in the system. (It may be of interest to
see what happens when such term goes to zero, see e.g. [89].)

• Optimal control of stochastic reaction diffusion equations, where the white noise
term describes the internal fluctuation of the system due to its many-particle nature
(see e.g. p. 8 of [180], and [16] for the model without control and [105, 107] for
the model with control).

• Optimal control of the motion of an elastic string in a random viscous environment
(see e.g. p. 4 of [180] and [287] for the model without control).

• Optimal control of the stochastic cable equation (arising also in neurosciences,
see p. 9 of [180] and [568] for the stochastic model, and e.g. [74] for the optimal
control problem in the deterministic case).

• Optimal advertising problems (see [429]) or spatial growth problems (see [68,
223]) arising in economics.

2.6.1.1 Setting of the Problem

We are given an open, connected and bounded setO ⊂ R
N with C1 boundary ∂O ⊂

R
N and a reference probability space (�,F , (Fs)s∈[t,T ],P,WQ). We consider a

controlled dynamical system driven by the following stochastic PDE in the time
interval [t, T ], for 0 ≤ t ≤ T < +∞

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy(s, ξ) = (
�ξ y(s, ξ) + f (y(s, ξ)) + α(s, ξ)

)
ds + dWQ(s)(ξ), s ∈ (t, T ], ξ ∈ O

y(s, ξ) = 0 (s, ξ) ∈ (t, T ] × ∂O

y(t, ξ) = x(ξ) ∈ L2(O), ξ ∈ O,

(2.79)
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where:

• the function y : [t, T ] × O × � → R, (s, ξ,ω)→y(s, ξ,ω) is a stochastic process
that describes, for example, the evolution of the temperature distribution and is the
state trajectory of the system;

• the functionα : [t, T ] × O × � → R, (s, ξ,ω)→α(s, ξ,ω) is a stochastic process
giving, for example, the dynamics of the external source of heat acting at every
interior point of O and is the control strategy of the system.

We will omit the variable ω writing simply y(s, ξ) and α(s, ξ). Moreover:

• �ξ is the Laplace operator. We consider the Dirichlet boundary condition, how-
ever the problem can be studied similarly with the Neumann boundary condition.
Conditions of mixed type are also possible, see on this, for example, Chaps. 3 and
5 of [416];

• f ∈ C(R) is a nonlinear function of the state (which may represent a “reaction”
term);

• WQ is a Q-Wiener process with Q ∈ L+(L2(O)) and (Fs)s∈[t,T ] is the augmented
filtration generated by WQ

7 (see Remark2.10 if Tr(Q) = +∞);
• x(·) ∈ L2(O) is the initial state (e.g. temperature distribution) in the region O.

The solution8 of (2.79) will be denoted by yα(·),t,x (·) to underline the dependence
of the state y(·) on the control α(·) and on the initial data t, x . Having in mind the
control of the temperature distribution, a reasonable objective of the controller here
is that of getting such distribution yα(·),t,x (·) to be close to a required distribution ȳ
(for each time s ∈ [t, T ] or only at the final time T ) while spending the least amount
of energy doing this. In such case a reasonable cost functional may be of the form
(for suitable constants c0, c1, c2 ∈ R)

I1(t, x;α(·)) = E

{∫ T

t

∫

O

[
c0|yα(·),t,x (s, ξ) − ȳ(s, ξ)|2 + c1|α(s, ξ)|2] dξds

+
∫

O
c2|yα(·),t,x (T, ξ) − ȳ(T, ξ)|2dξ

}
, (2.80)

and the objective would be to minimize the functional I1 above over all control
strategies α(·), progressively measurable with respect to the filtration generated by
WQ , and satisfying suitable constraints and integrability conditions (e.g. such that the
state equation and above integrals make sense). More generally, one could consider
a cost functional

7Indeed, stochastic PDEs with more general types of noise can also be treated, see e.g. [487], but
this is beyond the scope of this book.
8For the concept of solution and the assumptions on the data f, Q and on the control strategy α(·)
that guarantee the existence and uniqueness of it, see the next section.
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I2(t, x; α(·)) = E

{∫ T

t

∫

O
β(yα(·),t,x (s, ξ),α(s, ξ))dξds +

∫

O
γ(yα(·),t,x (T, ξ))dξ

}

(2.81)

where β ∈ C(R2) and γ ∈ C(R) are given functions depending on the objective of
the controller.

Finally, the constraints: If the state is the absolute temperature, it is natural to
require the positivity of yα(·),t,x (·); moreover, it is reasonable to assume bounds on the
control strategies depending on the physical device used to control the system (e.g.,
for any s ∈ [t, T ] and ξ ∈ O, α(s, ξ) ∈ [m, M] for given m < M). The constraints
depend on a particular problem.

2.6.1.2 The Infinite-Dimensional Setting and the HJB Equation

Take H = � = L2(O) and let � be a closed, bounded subset of L2(O). For
instance, if α(s, ξ) ∈ [m, M] for every (s, ξ) ∈ [t, T ] × O then we would take
� = {

f ∈ L2(O) : f (ξ) ∈ [m, M], ∀ξ ∈ O}
. Consider the Laplace operator with

Dirichlet boundary condition defined as (see e.g. [548], Sect. 5.2 p. 180):

{
D(A) = H 2(O) ∩ H 1

0 (O),

Ax = �x, for x ∈ D(A)
(2.82)

that generates an analytic semigroup of compact operators et A, t ≥ 0. Moreover,
define the Nemytskii operator b : H → H as

b(x)(ξ) = f (x(ξ)). (2.83)

Defining, for any s ∈ [t, T ], X (s) := y(s, ·) ∈ L2(O) and a(s) := α(s, ·) ∈ �, the
state equation (2.79) can be rewritten as an SDE in H as follows

{
dX (s) = (AX (s) + b(X (s)) + a(s)) ds + dWQ(s)

X (t) = x ∈ H.
(2.84)

We know from Proposition1.147 that, when f is Lipschitz9 (and so is b) and Qr :=∫ r
0 eτ AQeτ A∗

dτ is trace class for all r > 0, the above equation admits a unique mild
solution denoted by X (·; t, x, a(·)) (or simply X (·) when no confusion is possible).
If (1.65) also holds, then such solution has continuous trajectories.10 If Tr(Q) < +∞
then, thanks to Proposition2.16, Hypotheses2.11 and 2.12 are satisfied. If Tr(Q) =
+∞ the claim is still true as outlined in Remark2.17.

9In the case studied in [105, 107], b is not Lipschitz, see Sect. 4.9.2 for more details.
10Such assumptions are true, for example, when N = 1 and Q is the identity, or when N = 2 and
Q = (−A)−δ for some δ > 0.
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Defining l : H × � → R

l(x, a) =
∫

O
β(x(ξ), a(ξ))dξ,

and g : H → R as

g(x) =
∫

O
γ(x(ξ))dξ,

the functional I2 of (2.81) can be rewritten in the Hilbert space setting as

J2(t, x; a(·)) = E

{∫ T

t
l(X (s), a(s))ds + g(X (T ))

}
. (2.85)

Suppose that β and γ satisfy the right conditions so that Hypothesis 2.23 holds.
This is the case, for instance, in Sect. 3.6, Propositions3.61 and 3.62. Then, all the
assumptions of Theorem2.24 are satisfied and hence the dynamic programming
principle holds.

The Hamilton–Jacobi–Bellman equation associated with problem (2.84) and
(2.85) is the following:

{
vt + 1

2
Tr [QD2v] + 〈Ax + b(x), Dv〉 + inf

a∈�
{〈a, Dv〉 + l(x, a)} = 0,

v(T, x) = g(x).
(2.86)

This problem falls into the classes studied for instance in [374, 537, 538]11 by the
viscosity solution approach, in [29, 89, 90, 105, 189, 306, 307, 432, 434, 438]12

by the mild/strong solutions approach, in [125, 298] by the L2 approach, and in
[284, 436]13 by the BSDE approach. The theory of such HJB equations is described
in Chaps. 3–6. The theory of viscosity solutions presented in Chap.3 applies when
Tr(Q) < +∞ and we refer in particular to Sect. 3.6. Concerning Chap.4 we refer to
Sects. 4.8.3.1 (Examples4.222 and 4.227), 4.8.3.2, and 4.9.2 for specific examples
and to Sect. 4.10.1 for a casewhere an explicit Feynman–Kac formula for the solution
of theHJB equation (2.86) is found in the case of a quadraticHamiltonian. The setting
of Chap.5 can be applied to the present example, in particular in Sect. 5.6.3 a control
problem with a state equation like (2.79) for O = R

N is discussed.

11These papers treat the fully nonlinear case.
12Reference [105] deals with non-Lipschitz continuous b, [432, 434, 438] also treat the case of
multiplicative noise, and [434] treats a Banach space case.
13These papers also treat the case of multiplicative noise and [436] considers it in a Banach space.
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2.6.1.3 The Infinite Horizon Case

For the infinite horizon case we again rewrite the state equation (2.79) as (2.84),
starting at time 0 at the point x ∈ H . The cost functional

I3(x; a(·)) = E

{∫ +∞

0
e−ρs

∫

O
β(yα(·),0,x (s, ξ),α(s, ξ))dξds

}
(2.87)

is then expressed as

J3(x; a(·)) = E

{∫ +∞

0
e−ρsl(X (s; 0, x, a(·)), a(s))ds

}
. (2.88)

Hypotheses2.11 and 2.12 are satisfied as in the finite horizon part. Hypothesis 2.29
holds thanks to Remark2.30. Hypothesis2.28 holds if β satisfies proper conditions.
This is discussed in Sect. 3.6, Propositions3.73 and 3.74. The Hamilton–Jacobi–
Bellman equation associated with the problem is now

ρv − 1

2
Tr [QD2v] − 〈Ax + b(x), Dv〉 − inf

a∈�
{〈a, Dv〉 + l(x, a)} = 0. (2.89)

As regards the literature, we refer to [374, 537, 538] for the viscosity solution
approach in the fully nonlinear case and with multiplicative noise which is discussed
in Chap.3, to [107, 241, 317, 433]14 for the mild/strong solution approach which
is presented in Chap.4 (see, in particular, Sects. 4.8.3.1, 4.8.3.2 and 4.9.2.2), and to
[285] for the BSDE approach in the case of multiplicative noise, which is presented
in Chap.6, see Sect. 6.10. In [301], an ergodic control problem is studied, using the
results for the infinite horizon problem.

2.6.2 Stochastic Controlled Heat Equation: Boundary
Control

The second example is also concerned with the control of a nonlinear stochastic heat
equation in a given space region O but perhaps in a more realistic case, when the
control can be exercised only at the boundary of O or in a subset of O. We present
only the case of the control at the boundary, remarking that the case of the control
on a subdomain of O (that may even reduce to a point) gives rise to very similar
mathematical difficulties that are treated, for example, in [277, 435]. We consider
two cases that are the most standard and commonly used: the first when the control at
the boundary enters through the Dirichlet boundary condition, and the second when
one controls the flow, i.e. the Neumann boundary condition.

14The paper [433] also treats the case of a multiplicative noise.
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2.6.2.1 Setting of the Problem: Dirichlet Case

As in the previous example, assume O to be an open, connected, bounded subset of
R

N with smooth boundary ∂O. We consider the controlled dynamical system driven
by the following stochastic PDE on the time interval [t, T ], for 0 ≤ t ≤ T < +∞,

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dy(s, ξ) = (
�ξ y(s, ξ) + f (y(s, ξ))

)
ds + dWQ(s)(ξ) in (t, T ] × O

y(t, ξ) = x(ξ) on O

y(s, ξ) = α(s, ξ) on (t, T ] × ∂O,

(2.90)

where�ξ , f ,WQ , x , y(·) are as in Eq. (2.79). The differencewith respect to Eq. (2.79)
is that here the control is no longer in the drift term of the state equation but it
influences the system through its values at the boundary (the so-called Dirichlet
boundary condition). So here the control strategy of the system is the function α :
[t, T ] × ∂O × � → R, which may be interpreted as the dynamics of an external
source of heat acting at every boundary point of O.

Following the notation of Sect. 2.6.1.1, we denote the unique solution (whenever
it exists, see the next subsection for a more precise setting) of (2.90) by yα(·),t,x (·) to
underline the dependence of the state y, on the controlα(·) and on the initial data t, x .

Similarly to the distributed control case, a reasonable objective of the controller
is that of minimizing a functional

I (t, x;α(·)) = E

{ ∫ T

t

( ∫

O
β1(y

α(·),t,x (s, ξ))dξ +
∫

∂O
β2(α(s, ξ))dξ

)
ds +

∫

O
γ(yα(·),t,x (T, ξ))dξ

}

(2.91)

where β1,β2, γ ∈ C(R) are given functions depending on the objective of the con-
troller. Observe that the difference with respect to the cost functional I2 in (2.81) is
that here we take the integral on ∂Owhen the controlα(·) is involved. The goal of the
controller here would be to minimize the functional I above, over all control strate-
giesα(·)which are progressively measurable with respect to the augmented filtration
generated by WQ , and such that the above integrals make sense. The constraints can
be the same as in the distributed control case in Sect. 2.6.1.1.

2.6.2.2 Setting of the Problem: Neumann Case

In this case the boundary condition in (2.90) is replaced by

∂y(s, ξ)

∂n
= α(s, ξ) on (t, T ] × ∂O, (2.92)
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where n is the outward unit normal vector to ∂O. This means that one controls the
heat flow across the boundary. The goal again is to minimize a cost functional of
type (2.91) over all admissible controls α(·).

2.6.2.3 The Infinite-Dimensional Setting and the HJB Equation

To rewrite the state equation (2.90) (with either Dirichlet or Neumann boundary
condition) in an infinite-dimensional setting we take H = L2(O) and � to be a
closed subset of L2(∂O) depending on the control constraints.

We first consider the Dirichlet case. Let A be the operator defined in (2.82) and b :
H → H be the Nemytskii operator defined in (2.83). Let D be the Dirichlet operator
defined in (C.2). We define, as before, for s ∈ [t, T ], X (s) := y(s, ·) ∈ L2(O), and
a(s) := α(s, ·) ∈ �. We assume in addition that � is bounded in L2(∂O). Then, as
explained in Appendix C, Sect. 1.2 (NotationC.15), the state equation (2.90) can be
formally rewritten as

⎧⎨
⎩
dX (s) = (AX (s) + b(X (s)) − ADa(s)) ds + dWQ(s), t < s ≤ T

X (t) = x, x ∈ H.

(2.93)

Now, thanks to (C.2), if we write the term −AD as (−A)βB for β ∈ (3/4, 1), where
B := (−A)1−βD, the operator B is bounded from L2(∂O) to H . Thus, passing to
the integral form (see again NotationC.15), we can write (2.93) as follows

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r))dr +

∫ s

t
(−A)βe(s−r)ABa(r)dr

+
∫ s

t
e(s−r)AdWQ(s).

(2.94)

The Neumann boundary control case is handled similarly. Here we take � =
L2(∂O) and Uν

t = M2
ν (t, T ; L2(∂O)). Let A be the Laplace operator with Neumann

boundary condition (see e.g. [548], Sect. 5.2, p. 180):

{
D(A) = {

x ∈ H 2(O) : ∂x
∂n = 0 on ∂O}

,

Ax = �x, for x ∈ D(A).
(2.95)

It generates an analytic semigroupof compact operators et A, t ≥ 0, inH .Weconsider,
for fixed λ > 0, the Neumann operator Nλ defined in (C.7). Similarly to the Dirichlet
boundary control case, as explained in Appendix C, Sect. 1.3 (NotationC.18), the
state equation can be formally expressed as an evolution equation as follows:
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⎧
⎪⎨
⎪⎩
dX (s) =

(
AX (s) + b(X (s)) + (λI − A)Nλa(s)

)
ds + dWQ(s), t < s ≤ T

X (t) = x, x ∈ H.

(2.96)
Now, thanks to (C.10), if we write the term (λI − A)Nλ as (λI − A)βBλ, for β ∈
(1/4, 1/2) and Bλ := (λI − A)1−βNλ, the operator Bλ is bounded from L2(∂O)

to H . Then, passing to the integral form (see again NotationC.18), we can rewrite
(2.96) as

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r))dr

+
∫ s

t
(λI − A)βe(s−r)ABλa(r)dr +

∫ s

t
e(s−r)AdWQ(s). (2.97)

If f (and thus b) is Lipschitz15 and (1.65) holds (if Tr(Q) = +∞) both integral equa-
tions (2.94) and (2.97) have unique mild solutions (see Theorem1.141 and Propo-
sition1.147) with continuous trajectories, which we denote by X (·, ; t, x, a(·)) (or
simply X (·) if its meaning is clear).

Thus it follows from the discussion in Remark2.17 that Hypotheses2.11 and 2.12,
and condition (A4) in the Neumann case, needed for the dynamic programming
principle, hold for both problems.

We now define l1 : H → R by

l1(x) =
∫

O
β1(x(ξ))dξ,

l2 : � → R by

l2(a) =
∫

∂O
β2(a(ξ))dξ,

and g : H → R by

g(x) =
∫

O
γ(x(ξ))dξ.

The functional I in (2.91) can be rewritten in the Hilbert space setting as

J (t, x; a(·)) = E

{∫ T

t
[l1(X (s)) + l2(a(s))] ds + g(X (T ))

}
. (2.98)

Thus, if β1,β2, γ satisfy proper continuity and growth conditions that guarantee
Hypothesis2.23, then the hypotheses of Theorem2.24 are satisfied, and thus the
dynamic programming principle stated there holds.

15More general assumptions on f could be used, as in [105, 107] in the distributed control case,
for example.
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The associated HJB equation in both cases can be written as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vt + 1

2
Tr [QD2v] + 〈Ax + b(x), Dv〉
+ inf

a∈�

{〈
(λI − A)βBλa, Dv

〉 + l2(a)
} + l1(x) = 0,

v(T, x) = g(x),

(2.99)

where in the Dirichlet case we take λ = 0 and β ∈ (3/4, 1), while in the Neumann
case we take λ > 0 and β ∈ (1/4, 1/2).

Observe that the term
〈
(λI − A)βBλa, Dv

〉
causedby the presenceof the boundary

control term in the state equation does not make sense in general. However, if this
term is interpreted as

〈
Bλa, (λI − A)βDv

〉
then (writing l(x, a) = l1(x) + l2(a)) the

Hamiltonian F defined by

F(x, p) = inf
a∈�

{〈
Bλa, (λI − A)β p

〉 + l(x, a)
}

(2.100)

is well defined on H × D
(
(λI − A)β

)
. Such unboundedness of F is difficult to treat

and typically requires better regularity properties of the solution, e.g. that the Dv(t, x)
belongs to the narrower space D

(
(λI − A)β

)
. Since D

(
(λI − A)β

)
is larger in the

Neumann case, the regularity needed for the value function to solve the HJB equation
in the Neumann case is weaker than in the Dirichlet case. Thus the Neumann case can
be studied under weaker assumptions and/or with better results. In the framework of
viscosity solutions, the unboundedness of F may require additional conditions on
test functions. Overall this problem is much more difficult to study than that of the
previous section.

The theory of viscosity solutions has been developed for such equations in [318].16

It is presented in Sect. 3.12, where existence and uniqueness of viscosity solutions for
stationary HJB equations is proved in great generality, covering Dirichlet boundary
conditions and very general drift and diffusion coefficients allowing for possibly fully
nonlinear Hamiltonians. However no results about feedback controls exist with this
approach. A Cauchy problemwas also studied in [560] using the techniques of [318].
A related finite horizon problem has been studied partly with a viscosity solution
approach in [577] in a case with boundary control and boundary noise: uniqueness
of solutions is not proved.

Regarding the mild/strong solution approach, only the Neumann case has been
investigated in [189, 241, 310] when the term b is zero or regular (see also Chap.4
and, in particular, Example 4.222). The existence and uniqueness of a regular solution
of the HJB equation, and the existence of feedback controls were obtained there.17

The L2 approach presented in Chap.5 and the BSDE approach of Chap.6 have not

16See also, for the deterministic case, the papers [93, 96, 97, 221, 222].
17See also, for the deterministic case, [229, 230, 234].
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yet been applied to such equations, however there are results when the boundary
control comes together with the boundary noise, see Sect. 2.6.3.

Remark 2.46 A problem related to the one presented in this subsection is where the
state equation is the same as (2.79) (possibly substituting the Dirichlet boundary
condition by the Neumann boundary condition) but where the boundary condition
depends on the state. For example, we can have18

y(s, ξ) = b1(y(s, ·))(ξ) on (t, T ] × ∂O, (2.101)

whereb1 : L2(O) → L2(∂O) is a givenLipschitz continuous function taking account
of the influence of the internal state on its boundary values, a term which may arise
in many applications (see e.g. [13, 353] in population dynamics problems). With
this modification, the state equation (2.79) can still be solved using Theorem1.152.
Indeed, its infinite-dimensional rewriting is exactly as in (4.339) with the additional
term −ADb1(X (s)) (or (λI − A)Nb1(X (s)) in the case of the Neumann boundary
condition) in the drift. This term satisfies the requirements of Hypothesis 4.149-(iii).

Similar considerations apply if in the problems presented in this subsection
((2.90) or (2.92)) one substitutes the boundary condition there with the following
one:

y(s, ξ) or
∂y(s, ξ)

∂n
= b1(y(s, ·))(ξ) + α(s, ξ) on (t, T ] × ∂O,

where b1 is as above. See also Remark4.226. �

2.6.3 Stochastic Controlled Heat Equation: Boundary
Control and Boundary Noise

The third example still concerns the control of the stochastic heat equation in a given
space regionO. In this case we assume that both the noise and the control act only at
the boundary of that region. The problem is very hard since the presence of the noise
at the boundary introduces a strong unboundedness in the model. For this reason,
up to now, only one-dimensional cases have been studied, and so we present here
a one-dimensional example with a Neumann boundary condition taken from [181].
We will also mention what happens in a more difficult Dirichlet boundary condition
case (see [225, 437]).

18In the Neumann boundary condition case we simply replace the left-hand side of (2.101) by
∂y(s,ξ)

∂n .
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2.6.3.1 Setting of the Problem

We consider an optimal control problem for a state equation of parabolic type on
a bounded interval, which, for convenience, we take to be [0,π]. We consider a
Neumann boundary condition in which the derivative of the unknown function is
equal to the sum of the control and of a white noise in time, namely:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂s
(s, ξ) = �ξ y(s, ξ) + f (y(s, ξ)) in (t, T ] × (0,π),

y(t, ξ) = x(ξ) on (0,π),

∂y(s, 0)

∂n
= a1(s) + Ẇ1(s),

∂y(s,π)

∂n
= a2(s) + Ẇ2(s) on (t, T ].

(2.102)

In the above equation, {Wi (t)}t≥0, i = 1, 2, are independent standard real Wiener
processes; the unknown (s, ξ,ω)→y(s, ξ,ω), representing the state of the sys-
tem, is a real-valued process; the control is modeled by the real-valued processes
(s, ξ)→ai (s,ω), i = 1, 2 acting, respectively, at ξ = 0 and ξ = π which are pro-
gressively measurable with respect to the augmented filtration generated by W =
(W1,W2); and x is in L2(0,π). The function f belongs toCb(R) and is globally Lip-
schitz continuous. As in the previous subsection, the solution of (2.102) is denoted by
ya(·),t,x (·) to underline the dependence of the state on the control a(·) = (a1(·), a2(·))
and on the initial data t, x .

The functional to minimize is

I (t, x; a1(·), a2(·)) =E

[ ∫ T

t

( ∫ π

0
β1(ξ, y

a(·),t,x (s, ξ))dξ

+ β2(a1(s), a2(s))

)
ds +

∫ π

0
γ(ξ, ya(·),t,x (T, ξ))dξ

]
.

(2.103)

2.6.3.2 The Infinite-Dimensional Setting

To rewrite the problem in an infinite-dimensional setting we take H = L2(0,π),
� = � = R

2, Q is the identity operator on �, WQ = W , and a(·) = (a1(·), a2(·)).
As in the previous example, using the results of Sect. 1.4 and Appendix C, Sect. 1.3,
we get, formally, the following infinite-dimensional state equation for the variable
X (s) = y(s, ·), s ∈ [t, T ]:

⎧⎨
⎩
dX (s) = (AX (s) + b(X (s)) + (λI − A)Nλa(s)) ds + (λI − A)NλdWQ(s), s ∈ (t, T ]

X (t) = x, x ∈ H,

(2.104)
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where b and Nλ are as in Sect. 2.6.2.3. This equation is interpreted in themild form as

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)A[b(X (s)) + (λI − A)Nλa(s)]dr

+
∫ s

t
(λI − A)βe(s−r)ABλdWQ(r), (2.105)

where β ∈ (1/4, 1/2) and Bλ := (λI − A)1−βNλ is a bounded operator. We take
Ut to be the set of processes a(·) belonging to M2

ν (t, T ;R2) for a given reference
probability space.

Theorem1.141 guarantees the existence and uniqueness of amild solution X (·) :=
X (·; t, x, a(·)) of (2.105) with continuous trajectories. The validity of Hypothe-
ses2.11, 2.12 and (A4) needed for the dynamic programming principle is discussed
in Remark2.17.

We now define l : H → R by

l1(x) =
∫ π

0
β1(ξ, x(ξ))dξ,

l2 : � → R by
l2(a) = β2(a1, a2),

and g : H → R by

g(x) =
∫ π

0
γ(ξ, x(ξ))dξ.

The functional I in (2.91) can thus be rewritten as

J (t, x; a(·)) = E

{∫ T

t
[l1(X (s)) + l2(a(s))] ds + g(X (T ))

}
. (2.106)

Again, β1,β2, γ must satisfy the right continuity and growth assumptions to guar-
antee Hypothesis 2.23, so that we can claim that the dynamic programming principle
is satisfied.

2.6.3.3 The HJB Equation

The HJB equation associated with problem (2.105) and (2.106) is

⎧⎪⎨
⎪⎩

vt + 1

2
Tr [(λI − A)Nλ

[
(λI − A)Nλ

]∗ D2v] + 〈Ax, Dv〉 + F(Dv) + l2(x) = 0,

v(T, x) = g(x), x ∈ H,

where the Hamiltonian F is given by
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F(p) = inf
a∈R2

{〈(λI − A)Nλa, p〉 + l2(a)} .

Similarly to the boundary control case, here the Hamiltonian makes sense when
one rewrites the term 〈(λI − A)Nλa, p〉 as 〈Bλa, (λI − A)β p〉, and then F is
unbounded with respect to the variable p as it is only defined if p ∈ D((λI −
A)β). However, an extra difficulty arises due to the second-order term Tr[(λI −
A)Nλ [(λI − A)Nλ]

∗ D2v], which is written here in a formal way and needs to be
given special interpretation. We notice that the same “operator” (λI − A)Nλ acts on
the control and on the Wiener process in (2.104), and thus the control acts on the
solution in the same way as the noise. This allows us to use the BSDE approach to
mild solutions (see [181] and, later, [574, 591, 592]). The L2 approach is in principle
applicable to this problem but, up to now, it has not been developed. Concerning the
viscosity solution approach, we mention the paper [577], where the authors show
that the value function is a viscosity solution of the HJB equation but without prov-
ing uniqueness. At the present stage, the mild/strong solution approach presented in
Chap.4 does not seem to be applicable here.

Remark 2.47 A one-dimensional control problem in the half-line [0,+∞) with
boundary control and noise in the Dirichlet case (i.e. with the boundary condition of
the type y(s, 0) = a(s) + Ẇ (s) for s ∈ (t, T ]) has been studied in [225, 437].

However, the choice of the infinite-dimensional setting in this case presents a
problem, since, choosing as the state space H = L2(0,+∞), the continuity of the
trajectories in L2(0,+∞) is not ensured (see for example [175] Proposition3.1, p.
176). We can have the continuity only in some spaces of distributions extending
L2(0,+∞), or in L2 with a suitable weight (see [225] Proposition2.2, Lemma2.2
and Theorem2.7).

In [225] the linear quadratic case is studied while in [437] a more general case is
studied by the BSDE approach. The problem has not yet been studied using other
methods.

We remark that, similarly to the case of boundary control, theHJB equation for the
Dirichlet boundary noise case is more difficult than that for the Neumann boundary
noise (as the unbounded operators arising in the first and second-order terms contain
“higher powers of A”). �

2.6.4 Optimal Control of the Stochastic Burgers Equation

Our fourth example concerns optimal control of the stochastic Burgers equation.
The deterministic Burgers equation was introduced by J.M. Burgers (see e.g. [87,
88]) as a model in fluid mechanics and has subsequently been used in various areas
of applied mathematics such as acoustics, dispersive water waves, gas dynamics,
traffic flow, heat conduction, etc. As explained in [176] (p. 255) the deterministic
Burgers equation is not a good model for turbulence since it does not display any
chaotic phenomena; even when a force is added to the right hand side, all solutions
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converge to a unique stationary solution as time goes to infinity. The situation is
different when the force is random. Indeed, several authors have suggested using the
stochastic Burgers equation as a simple model for turbulence, as [111, 117, 368]. In
[373] it is used to model the growth of a one-dimensional interface. Among other
papers on the subject we mention [162, 163, 570].

Here we present a simple optimal control problem for the one-dimensional sto-
chastic Burgers equation motivated by a model of the control of turbulence formu-
lated in [117] and studied in [155, 156].

2.6.4.1 Setting of the Problem

The state equation is the following stochastic controlled viscous Burgers equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(s, ξ) =
[
∂2y(s, ξ)

∂ξ2
+ 1

2

∂

∂ξ
y2(s, ξ) + √

Qα(s, ·)(ξ)
]
ds + dWQ(s)(ξ),

s ∈ (t, T ], ξ ∈ (0, 1),

y(t, ξ) = x(ξ), ξ ∈ [0, 1],

y(s, 0) = y(s, 1) = 0, s ∈ [t, T ].
(2.107)

Here:

• the function y : [t, T ] × [0, 1] × � → R, (s, ξ,ω)→y(s, ξ,ω) describes the evo-
lution of the velocity field of the fluid;

• the controlα : [t, T ] × (0, 1) × � → R, (s, ξ)→α(s, ξ,ω) gives the dynamics of
the external force acting at every point of (0, 1);

• WQ is a Q-Wiener process with Q ∈ L+
1 (L2(0, 1)) and (F t

s )s∈[t,T ] is the aug-
mented filtration generated by WQ ;

• x ∈ L2(0, 1) gives the distribution of the initial velocity field.

As before, the solution of (2.107) is denoted by yα(·),t,x (·). A possible objective of
the controller (used in [117, 155, 156]) is to minimize a functional

I (t, x;α(·)) = E

{∫ T

t

∫ 1

0

[∣∣∣∣
∂yα(·),t,x (s, ξ)

∂ξ

∣∣∣∣
2

+ 1

2
|α(s, ξ)|2

]
dξds

+
∫ 1

0

1

2
|yα(·),t,x (T, ξ) − ȳ(ξ)|2dξ

}
, (2.108)

where ȳ is a given “desired” velocity profile. The main idea behind this form of the
cost functional is that we are trying to get the final velocity field to be close to ȳ
while minimizing the “vorticity” of the flow (measured here by the integral of the
space derivative) and the energy spent controlling the system.
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We then minimize the functional I over all control strategies α(·) which are
progressivelymeasurablewith respect toF t

s , and such thatE
∫ T
t

∫ 1
0 |α(s, ξ)|2dξds <

+∞. Sometimes we may require some additional bounds on the control strategies
(e.g. α(s, ξ) ∈ [m, M] for any s ∈ [t, T ] and ξ ∈ (0, 1) for some m < M).

Note that the operator
√
Q acting on the control is the square root of the covariance

operator of the Wiener process. This can be interpreted as “the noise acting on the
control”.

2.6.4.2 The Infinite-Dimensional Setting and the HJB Equation

We take H = � = L2(0, 1). The state equation (2.107) and the functional (2.108)
can be rewritten as an abstract evolution equation in H using the operator

{
D(A) = H 2(0, 1) ∩ H 1

0 (0, 1),

Ax = ∂2

∂ξ2
x, for x ∈ D(A),

(2.109)

and the nonlinear operator

{
D(B) = H 1(0, 1)

B(x)(ξ) = x(ξ) ∂
∂ξ
x(ξ), for x ∈ D(B).

(2.110)

Indeed, once we set, for any s ∈ [t, T ], X (s) = y(s, ·) ∈ L2(0, 1), a(s) = α(s, ·) ∈
L2(0, 1), the state equation (2.107) becomes

{
dX (s) = (

AX (s) + B (X (s)) + √
Qa(s)

)
ds + dWQ(s)

X (t) = x,
(2.111)

and (2.108) is equivalent to

J (t, x; a(·)) = E

{∫ T

t

[∣∣(−A)1/2X (s)
∣∣2
H

+ 1

2
|a(s)|2H

]
ds + 1

2
|X (T ) − ȳ|2H

}
.

(2.112)

In contrast to the previous examples, the standard mild solution approach does not
work for Eq. (2.111). Therefore, the existence and uniqueness results require a dif-
ferent framework, see [163, 177] Chap.14 (the result is also stated in Sect. 4.9). An
unpleasant consequence of this is the fact that it is not obvious that Hypotheses2.11
and 2.12 needed for the dynamic programming principle are satisfied. We will not
deal explicitly with this problem in this book, but we will see in Chap.3 how to show
the DPP for a much more difficult problem, namely the optimal control of the 2-D
stochastic Navier–Stokes equations (see the next section).
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The HJB equation related to our control problem is (see [156] Eq. (2.4))

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vt (t, x) + 1

2
Tr

[
QD2v(t, x)

] + 〈Dv(t, x), Ax + B(x)〉
−1

2

∣∣∣
√
QDv(t, x)

∣∣∣
2 + ∣∣(−A)1/2x

∣∣2 = 0,

v(T, x) = 1

2
|x − ȳ|2.

(2.113)

This equation is difficult to investigate due to the presence of the nonlinear unbounded
term 〈Dv(t, x), B(x)〉, coming from the state equation, and the term

∣∣(−A)−1/2x
∣∣2,

coming from the objective functional. It was studied in [156] by a Hopf-type change
of variable and in [155, 157] using a variant of the mild/strong solution approach. In
these papers the authors use finite-dimensional approximations of the state equation
and are able to obtain existence and uniqueness of regular solutions to the HJB
equation and to find optimal control in feedback form (see Sect. 4.9.1.1).

It is interesting to note that this technique has been extended to the case of control
of stochastic Navier–Stokes equations in dimensions 2 and 3 (see next section).
Equation (2.113) can also be investigated using the viscosity solution approach even
though there are no explicit results. However, we refer the readers to Chap. 3 and
[322].

2.6.5 Optimal Control of the Stochastic Navier–Stokes
Equations

The stochastic Navier–Stokes equations are used to model turbulent flows. We refer
the reader to the books [390, 567], the survey article [254], Chap. 15 of [176], and
the paper [52] for more on this.

The optimal control of the Navier–Stokes equations, in the deterministic and sto-
chastic cases, is a very challenging problem, both from the theoretical and applied
points of view. For a survey on this subject we refer to the book [288] for the deter-
ministic case and the paper [534] for the stochastic case. The dynamic programming
approach to the optimal control of stochastic Navier–Stokes equations has been
investigated in the papers [158, 322, 424].

We consider a model problem for a control of turbulent flow governed by the
stochastic two-dimensional Navier–Stokes equations for incompressible fluids. We
mainly follow the paper [158] with some changes borrowed, for example, from [534]
and [322]. It has been partly generalized to the three-dimensional case in [424].
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2.6.5.1 Setting of the Problem

We are given an open domain O ⊂ R
2 with locally Lipschitz boundary: it includes,

for example, the case whereO is a rectangle (which is quite common in the literature,
see e.g. [160, 322, 555]). Given ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ R

n we use the
notation ξ · η := ∑n

i=1 ξiηi .
We take any reference probability space (�,F ,F t

s ,P,WQ) satisfying the usual
conditions, where WQ is an L2(O;R2))-valued Q-Wiener process with Q ∈ L+

1
(L2(O;R2)).

The control variable is an external force α(s, ξ) acting at every point ξ of O
and at every time s ∈ [t, T ]; for models with control on subdomains see e.g. [347]
and [534] (p. 3). The controls are stochastic processes progressively measurable
with respect to the filtration F t

s for a given reference probability space, and such
that |α(s, ·)|L2(O;R2)) ≤ R for some fixed R > 0, for all (s,ω) ∈ [t, T ] × �. The
unknowns are the velocity vector field (s, ξ)→y(s, ξ) = (y1(s, ξ), y2(s, ξ)) and the
pressure (s, ξ)→p(s, ξ) (we omit the dependence on ω ∈ � in the notation). They
satisfy the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(s) + [(y(s, ξ) · ∇)y(s, ξ) + ∇ p(s, ξ)] ds

= [ν�y(s, ξ) + α(s, ξ)] ds + dWQ(s)(ξ) in (t, T ] × O

div (y(s, ξ)) = 0 in [t, T ] × O

y(s, ξ) = 0 on [t, T ] × ∂O

y(0, ξ) = x(ξ) on O.

(2.114)
Here ∇ denotes (∂ξ1 , ∂ξ2) and y · ∇ denotes y1∂ξ1 + y2∂ξ2 . The positive constant ν
represents the kinematic viscosity. We remark that distributed control can be approx-
imately realized for electrically conducting fluids (like salt water, liquid metals, etc.)
by a suitable Lorentz force distribution. The boundary control, which is not present
in this example, is typically implemented by blowing and suction at the boundary.

Suppose, as in the previous section, that we want to achieve the desired profile ȳ
of the flow while minimizing the turbulence of the flow and the amount of energy
used to control it. This is common in engineering applications. We recall that we can
measure how turbulent a flow is by evaluating the time averaged enstrophy, which is
defined by

∫

O
|curl y(s, ξ)|2 dξ, s ∈ [t, T ],

where the rotational operator curl in dimension 2 is defined as

curl (y1, y2) = ∂y1
∂ξ2

− ∂y2
∂ξ1

. (2.115)
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As in previous subsections, the solution of (2.114) is denoted by yα(·),t,x (·) to
underline the dependence of the state on the control α(·) and on the initial data t, x .

Thus we consider the problem of minimizing the following functional over all
control strategies α(·):

I (t, x;α(·)) = E

[ ∫ T

t

∫

O

[∣∣curl yα(·),t,x (s, ξ)
∣∣2 + 1

2
|α(s, ξ)|2

]
dξds

+
∫

O

∣∣yα(·),t,x (T, ξ) − ȳ(ξ)
∣∣2 dξ

]
. (2.116)

In areas like combustion the goal may be to maximize mixing (and hence turbulence)
of the flow. As remarked in [534] (p. 3) in some flow control problems and in data
assimilation problems in meteorology one may also minimize the functional

I1(t, x;α(·)) = E

[ ∫ T

t

∫

O

[ ∣∣curl (yα(·),t,x (s, ξ) − ȳd(s, ξ))
∣∣2

+ 1

2
|α(s, ξ)|2

]
dξds

]

(2.117)

for a given velocity field ȳd(s, ξ). (See also [288], p. 167, formula (1.15), for a similar
type of functional, in the deterministic case.)

2.6.5.2 The Infinite-Dimensional Setting and the HJB Equation

Define
V := {

f ∈ C∞
0 (O,R2) : div( f ) = 0

}
, (2.118)

H := the closure of V in L2(O;R2), (2.119)

and

V := the closure of V in H 1(O;R2). (2.120)

Recall that we have an orthogonal decomposition

L2(O;R2) = H × H⊥,

where H⊥ = { f = ∇ p : for some p ∈ H 1(O)}.
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We define the unbounded operator in H

{
D(A) := (

H 2(O)
)2 ∩ V ⊂ H

A := P�,

where P is the orthogonal projection in L2(O;R2) onto H . The operator A is self-
adjoint and strictly negative (see [556]), generates a C0-semigroup on H , and more-
over, V = D((−A)1/2). We also define the bilinear operator

{
B : V × V → H

B(x, y) = P(x · ∇)y

and set B(x) := B(x, x).
Applying the projection P to Eq. (2.114) and setting, for s ∈ [t, T ], X (s) =

y(s, ·) ∈ H , a(s) = Pα(s, ·) ∈ H , we obtain

{
dX (s) = (νAX (s) − B (X (s)) + a(s)) ds + PdWQ(s)

X (t) = x .
(2.121)

Since, for s ∈ [t, T ], |a(s)|H = |a(s)|L2(O;R2) ≤ |α(s, ·)|L2(O;R2), we can obvi-
ously restrict the set of controls to those with values in H . Moreover, for x ∈ V ,
|curl x |L2(O) = |∇x |L2(O;R4) = |(−A)1/2x |H . Thus the minimization of the func-
tional I in (2.116) is equivalent to the minimization of

J (t, x; a(·)) = E

[∫ T

t

[∣∣(−A)1/2X (s)
∣∣2
H

+ 1

2
|a(s)|2H

]
ds + |X (T ) − ȳ|2H

]

(2.122)

over all a(·) ∈ Ut , which is defined as in Sect. 2.2.1 with � := BH (0, R).
There are variousways to define solutions of (2.121) and for existence and unique-

ness results we refer, for instance, to [124, 177, 444, 567] and to Chap. 3 and Sect. 4.9
here. Unfortunately, we cannot apply the definition of amild solution, and thus show-
ing that Hypotheses2.11 and 2.12 are satisfied requires a different argument. We
explain it in Chap. 3.

The Hamiltonian for the control problem is

F(p) :=
{ − 1

2 |p|2 if |p| ≤ R

−|p|R + 1
2 R

2 if |p| > R,
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and the Hamilton–Jacobi–Bellman equation for the system becomes

⎧
⎪⎪⎨
⎪⎪⎩

vt + 1

2
Tr

[
PQP∗D2v

] + 〈Dv, νAx − B(x)〉
+F(Dv) + ∣∣(−A)1/2x

∣∣2 = 0
v(T, x) = |x − ȳ|2.

(2.123)

We note that one can also associate a different control problem with (2.123) by
considering PWQ to be a Q̃-Wiener process in H with Q̃ = PQP∗ and taking
controls to be the progressively measurable processes with respect to the augmented
filtration generated by PWQ .

Similarly to the case of the control of the stochastic Burgers equation discussed
in the previous section, the difficulty of the HJB equation (2.123) comes from the
presence of the unbounded terms 〈Dv, B(x)〉 and

∣∣(−A)1/2x
∣∣2. The unbounded-

ness caused by the operator B is much worse now. However, the approach used for
the Burgers case by Da Prato and Debussche still allows us to obtain satisfactory
results on existence and uniqueness of regular (mild) solutions [158] under some
conditions on Q̃. These results are described in Sect. 4.9.1.2. Such results have been
partly extended in [424] to the case of three-dimensional stochastic Navier–Stokes
equations.

The viscosity solution approach can be applied to the two-dimensional case with
more general cost functionals and noise and it yields existence and uniqueness of
viscosity solutions (see [322] and Chap.3). The viscosity solution approach for the
three-dimensional case is still open. Some results in the deterministic case are in
[526].

2.6.6 Optimal Control of the Duncan–Mortensen–Zakai
Equation

This example concerns a class of finite-dimensional stochastic optimal control prob-
lems with partial observation and correlated noises. We present the problem and we
briefly show its connection with the so-called “separated” problem (see e.g. [46,
213, 214, 261, 473]) which is a fully observable infinite-dimensional stochastic
optimal control problem. The setting of the partially observed control system we
describe here is the same as in [323] and is borrowed from [473, 597, 598] (see also
[342–344, 411]). The Duncan–Mortensen–Zakai (DMZ) equation, separated prob-
lem and optimal control of the DMZ equation are also discussed in detail in [467].
The presentation in [467] relies on [519] which also discusses filtering problems.
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2.6.6.1 An Optimal Control Problem with Partial Observation

Consider, in the interval [t, T ], a random state process y(·) in R
d and a random

observation process y1(·) in Rm . The state-observation equation is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dy(s) = b1(y(s), a(s))ds + σ1(y(s), a(s))dW 1(s) + σ2(y(s), a(s))dW 2(s),

y(t) = η,

dy1(s) = h(y(s))ds + dW 2(s),

y1(t) = 0,
(2.124)

where W 1 and W 2 are two independent Brownian motions in R
d and R

m respec-
tively on some stochastic basis

(
�,F , {Fs}s∈[t,T ],P

)
which is a complete probabil-

ity space with the filtration satisfying the usual conditions. The initial condition η is
assumed to be Ft -measurable and square-integrable. The control set � ⊂ R

n , and
admissible controls are the processes a(·) : [t, T ] × � → � that are progressively
measurable with respect to the filtration

{
F y1

s
}
s∈[t,T ], which is the augmented filtra-

tion of the filtration
{
F y1,0

s

}
s∈[t,T ]

generated by the observation process y1(·). We

assume the following.

Hypothesis 2.48 The set � is a closed subset of Rn . The functions

b1 : Rd × � → R
d , h : Rd → R

m

are uniformly continuous and the C2(Rd) norms of b1(·, a) and h are bounded,
uniformly for a ∈ �. Moreover, the functions

σ1 : Rd × � → L (
R

d ,Rd
)
, σ2 : Rd × � → L (

R
m,Rd

)

are uniformly continuous and theC3(Rd) norms of σ1(·, a) and σ2(·, a) are bounded,
uniformly for a ∈ �, and

σ1(ξ, a)
[
σ1(ξ, a)

]T ≥ λI

for some λ > 0 and all ξ ∈ R
d , a ∈ �.

This assumption in particular guarantees the existence of a unique strong solution
of the state equation (2.124), see e.g. Theorem1.127. We denote its solution at time
s by (y(s; t, η, a(·)), y1(s; t, a(·))) or simply by (y(s), y1(s)).
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We now consider the problem of minimizing the cost functional

I (t, η; a(·)) = E

{∫ T

t
l1(y(s), a(s))ds + g1(y(T ))

}
(2.125)

over all admissible controls, where the cost functions

l1 : Rd × � → R; g1 : Rd → R

are suitable continuous functions, say with at most polynomial growth at infinity
in the variable y, uniformly with respect to the variable a. A control strategy a∗(·)
minimizing the cost I in (2.125) is called an optimal control in the strict sense.

2.6.6.2 The Separated Problem

The optimal control of partially observed diffusions is a very difficult problem with
many open questions (e.g. the existence of optimal controls in the strict sense, see
e.g. [261], p. 261). One way of dealing with it is through the so-called “separated”
problem where one looks at the associated problem of controlling the unnormal-
ized conditional probability density Y (·) : [t, T ] → L1

(
R

d
)
of the state process

y(·) given the observation y1(·). This idea, that arises from well known results in
nonlinear filtering (see e.g. [200, 453, 585]), was first introduced in [261] to prove
existence of optimal controls in a suitable weak sense. Here, following mainly [473],
we briefly and informally explain the separated problem and how it arises.

To introduce the new state Y and to compute the equation for it we consider for
each s ∈ [t, T ] the conditional law �s of the random variable y(s) given the path of
y1 up to time s, i.e., in our setting, given the σ-fieldF y1

s , and look at its density with
respect to the Lebesgue measure in Rd . This density, up to a normalizing factor, will
be the new state Y (s) at time s. The conditional law �s is a measure-valued process
such that for every f ∈ Cb(R

d), the conditional expectation

E
[
f (y(s))|F y1

s

] =
∫

Rd

f (y)d�s(y) P-a.s.

Using the notation of [473], the above expression will be denoted by �s( f ). The
process �s exists if there exists a regular conditional probability given F y1,0

s . To
compute it, it is more convenient (as explained, for example, in [473] at the end of
Sect. 1.5) to change the probability measure. We define the new probability measure
P by

dP = κ−1(T )dP,
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where

κ(s) = exp

[∫ s

t
〈h(y(r)), dy1(r)〉Rm − 1

2

∫ s

t
|h(y(r))|2

Rmdr

]
.

Since κ(s) is a martingale we have

dP = κ−1(s)dP, on Fs . (2.126)

It follows from the Girsanov Theorem (see e.g. [372], Sect. 3.5) that the processes
W 1 and y1 become two independent Brownian motions, respectively in Rd and Rm ,

in the new probability space
(
�,F , (Fs)s∈[t,T ],P

)
. In this space the equation for

the process y(·) becomes

⎧
⎪⎨
⎪⎩

dy(s) = [
b1(y(s), a(s)) − σ2(y(s), a(s))h(y(s))

]
ds

+σ1(y(s), a(s))dW 1(s) + σ2(y(s), a(s))dy1(s),

y(t) = η.

(2.127)

It follows from Bayes’ formula (see [519], p. 225 or [467], Proposition1.3, p. 18),
see Lemma3.1 in [473], that for s ∈ [t, T ] and f ∈ Cb(R

d),

�s( f ) = E
[
f (y(s))|F y1

s

] = E
[
f (y(s))κ(s)|F y1

s
]

E
[
κ(s)|F y1

s
] .

So, if we are able to compute, for every s ∈ [t, T ] and for every f ∈ Cb(R
d), the

quantity E
[
f (y(s))κ(s)|F y1

s
]
, then we can also find �s( f ) for every such f .

By Itô’s formula we have, for f ∈ C2
b (R

d), s ∈ [t, T ],

f (y(s))κ(s) = f (η) +
∫ s

t
κ(r)La(r) f (y(r))dr

+
∫ s

t
κ(r)〈∇ f (y(r)),σ1(y(r), a(r))dW 1(r)〉

Rd

+
∫ s

t
κ(r)〈∇ f (y(r)),σ2(y(r), a(r))dy1(r)〉Rd +

∫ s

t
κ(r) f (y(r))〈h(y(r)), dy1(r)〉Rm ,

where for every a ∈ �, La : C2
b (R

d) → Cb(R
d) is given by

(La f )(ξ) = 〈b1(ξ, a),∇ f (ξ)〉Rd

+ 1
2Tr

[(
σ1(ξ, a)[σ1(ξ, a)]T + σ2(ξ, a)[σ2(ξ, a)]T )

D2 f (ξ)
]
.

Now, computing the conditional expectation (see [473], Sect. 1.4) we have, for
s ∈ [t, T ],
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E

[
f (y(s))κ(s)|F y1

s

]
= E[ f (η)] +

∫ s

t
E

[
κ(r)La(r) f (y(r))|F y1

r

]
dr

+
∫ s

t
〈E

[
κ(r)[σ2(y(r), a(r))]T∇ f (y(r)) + κ(r) f (y(r))h(y(r))|F y1

r

]
, dy1(r)〉Rm .

If �s is a measure-valued process such that, for every f ∈ Cb(R
d), �s( f ) =

E
[
κ(s) f (y(s))|F y1

s
]
(which exists if �s exists), then the equation above implies

that �s must satisfy the equation

�s( f ) = �t ( f ) +
∫ s

t
�r (La(r) f )dr +

∫ s

t
〈�r (Ba(r) f ), dy1(r)〉Rm , s ∈ [t, T ],

where for every a ∈ �, Ba : C1
b(R

d) → Cb(R
d ,Rm) is given by

(Ba f )(ξ) = [σ2(ξ, a)]T∇ f (ξ) + f (ξ)h(ξ).

(To justify that E
[
κ(r)F(y(r), a(r))|F y1

r
] = �t (F(·, a(r)), P-a.s. for a bounded

and continuous function F(ξ, a), one can use approximation by step functions,
Proposition1.41-(vii) and the Lebesgue dominated convergence theorem, since the
equality is true for functions F(ξ, a) = 1A(a)1B(ξ), where A, B are Borel subsets
of �,Rd respectively, as a(r) isF y1

r -measurable.)
If �s has a density Y (s) ∈ L1(Rd) with respect to the Lebesgue measure, then

the process Y (·) should satisfy, at least in a weak sense, the so-called Duncan–
Mortensen–Zakai (DMZ) equation (introduced in [200, 453, 585])

dY (s) = L∗
a(s)Y (s)ds + 〈B∗

a(s)Y (s), dy1(s)〉, Y (t) = x, (2.128)

where x is the density of the law of the initial datum η of Eq. (2.124). The process
Y (·) is called the unnormalized conditional density of the state with respect of the
observation process. If one can prove that Eq. (2.128) has a solution, it is the density
with respect to the Lebesgue measure of �s , see [473], Sect. 1.4 for more on this.

Now it is possible to rewrite the functional I in (2.125) in terms of the new prob-
ability space and infinite-dimensional state Y (·). Indeed, assuming that the process
Y (·) takes values in L2(Rd), using (2.126) we have

I (t, η; a(·)) =
∫ T

t
E [κ(s)l1(y(s), a(s))] ds + E [κ((T )g1(y(T ))]

= E

[∫ T

t
E

[
κ(s)l1(y(s), a(s))|F y1

s

]
ds

]
+ E

[
E

[
κ(T )g1(y(T ))|F y1

s

]]

= E

{∫ T

t
〈l1(·, a(s)), Y (s)〉L2 ds + 〈g1(·), Y (T )〉L2

}
=: J (t, x; a(·)).

(2.129)
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Computing the adjoint operators, L∗
a, B

∗
a , we can rewrite (2.128) in an explicit and

more familiar form

dY (s) = Aa(s)Y (s)ds +
m∑

k=1

Ska(s)Y (s)dy1,k(s), Y (t) = x, (2.130)

where for every a ∈ �, Aa and Ska (k = 1, . . . ,m) are the following differential
operators

(Aax) (ξ) =
d∑

i, j=1

∂i
[
ai, j (ξ, a)∂ j x(ξ)

] +
d∑

i=1

∂i [bi (ξ, a)x(ξ)] , (2.131)

and

(
Ska x

)
(ξ) =

d∑
i=1

dik(ξ, a)∂i x(ξ) + ek(ξ, a)x(ξ); k = 1, ...,m, (2.132)

where
a(ξ, a) = σ1(ξ, a)

[
σ1(ξ, a)

]T + σ2(ξ, a)
[
σ2(ξ, a)

]T
,

bi (ξ, a) = −b1i (ξ, a) + ∂ j ai, j (ξ, a); i = 1, ..., d,

d(ξ, a) = −σ2(ξ, a),

ek(ξ, a) = hk(ξ) − ∂iσ
2
ik(ξ, a); k = 1, ...,m.

The separated problem is thus the problem of minimizing the functional J over
all admissible controls a(·), with state equation (2.130). It is an infinite-dimensional
optimal control problem which can be studied within the framework of this book
in the state space H = L2(Rd) or other spaces. In Sect. 3.11 we will investigate it
in suitable weighted spaces. It is worth noting that even though the original control
problem was nonlinear, the DMZ equation (2.130) is linear and the cost functional
J is also linear in the state variable x .

The mild solution approach cannot be applied to (2.130). Existence and unique-
ness of solutions in a variational sense was proved in [387] (see also [472]). We dis-
cuss variational solutions inSect. 3.11wherewe show that under suitable assumptions
Eq. (2.130) is well posed in L2(Rd) and in weighted versions of it. We also explain
how to show that Hypotheses2.11 and 2.12 hold.

The HJB equation for the infinite-dimensional problem has the form

{
vt + infa∈�

{
1
2

∑m
k=1

〈
D2vSka x, S

k
a x

〉 + 〈Aax, Dv〉 + f (x, a)
} = 0,

v(T, x) = g(x).
(2.133)
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This is a fully nonlinear equation with unbounded first- and second-order terms, and
up to now only a viscosity solution approach has given some results on existence and
uniqueness of solutions [22, 323, 344, 411]. In [411] the equation was studied in
a standard L2 space when the operators Ska were bounded multiplication operators.
In [344] it was shown that the value function is a viscosity solution in a very weak
sense when the HJB equation was considered in the space of measures (see also [258,
346]). The results of [323] are presented in Sect. 3.11, where (2.133) will be studied
in a weighted L2 space. The optimal control problem for the DMZ equation and the
HJB equation (2.133) are also discussed in [467].

2.6.7 Super-Hedging of Forward Rates

We now present a stochastic optimal control problem arising in finance, in pricing
derivatives.When themarket is incomplete there is no uniqueway to price a derivative
product. It is then useful, in some cases, to find the range of all possible prices, i.e.
the maximum and the minimum of possible prices, called the super-hedging and the
sub-hedging price. Such prices are defined as value functions of suitable optimal
control problems and the finite-dimensional theory of this problem has been widely
studied: see e.g. [21, 208] for the one-dimensional case, [326, 327, 418, 514], and
[115, 529–532] in the multidimensional case; see also [564] for a first idea of the
method in the infinite-dimensional case.

When the underlying asset is a forward rate the natural model for it is the so-called
Musiela model introduced in [455] that describes the dynamics of forward rates in
terms of the evolution of an infinite-dimensional diffusion process. Consequently, the
super-hedging problem in such case is naturally formulated as a stochastic optimal
control problem in infinite dimension. We present now such a problem, taken from
the paper [375].

The Musiela model of interest rates [455] is a reparametrization of the Heath–
Jarrow–Morton (HJM) model. In this model the forward rate process {r(t,σ)}σ,t≥0

evolves according to a stochastic differential equation

dr(t,σ) =
(

∂

∂σ
r(t,σ) +

d∑
i=1

τi (t,σ)

∫ σ

0
τi (t,μ)dμ

)
dt +

d∑
i=1

τi (t,σ)dw(t)i ,

where W = (w1, ..., wd) is a standard d-dimensional Brownian motion, and τi
are certain functions. Using the notation A = d

dσ
and, for t,σ ≥ 0, τ (t)(σ) =

(τ1(t,σ), ..., τd(t,σ)),

b(τ (t))(σ) =
d∑

i=1

τi (t,σ)

∫ σ

0
τi (t,μ)dμ,
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the above equation can be written as an abstract infinite-dimensional stochastic dif-
ferential equation

dr(t) = (Ar(t) + b(τ (t)))dt + τ (t) · dW (t), r(0) ∈ H, (2.134)

where H is some separable Hilbert space of functions on R
+ (for instance H =

L2(R+), H = H 1(R+) or their weighted versions), and · is the inner product in Rd

(see [303, 455, 564, 565]). We call Eq. (2.134) the Heath–Jarrow–Morton–Musiela
(HJMM) equation. Given the right choice of the space H and proper assumptions on
τ , the equation has a unique mild solution, see Sect. 3.10. Using the process r , the
price at time t of a zero-coupon bond (see [456]) with maturity T is

BT (t) = e− ∫ T−t
0 r(t,σ)dσ, 0 ≤ t ≤ T .

This model can be used to price swaptions, caps, and other interest rates and currency
derivatives.

Consider first a case of European options. Given a contingent claim with the
payoff function g : H → R and an initial curve at time t , x(σ), σ > 0, the rational
price of the option maturing at time T is

V (t, x) = E

(
e− ∫ T

t r(s,0)dsg(r(T )) : r(t)(σ) = x(σ)
)

. (2.135)

For instance for a European swaption on a swap with cash-flows Ci , i = 1, ..., n, at
times T < T1 < ... < Tn ,

g(z) =
(
K −

n∑
i=1

Cie
∫ Ti−T
0 z(σ)dσ

)+
(2.136)

for some K > 0. The function V given by the (Feynman–Kac) formula (2.135)
should satisfy the partial differential equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
+ 1

2

d∑
i=1

〈
D2u τi (t), τi (t)

〉 + 〈b(τ (t)) + Ax, Du〉 − x(0)u = 0

u(T, x) = g(x),

(2.137)

where 〈·, ·〉 is the inner product in H . The above equation is called an infinite-
dimensional Black–Scholes equation. It was analyzed in [302] in the space H =
L2((0,+∞)) where the existence of smooth solutions was proved for smooth g and
τ independent of time but possibly depending on the state variable. The existence
of solutions was also shown for some non-smooth g when τ was a constant by an
argument that allowed a parallel between (2.137) and a finite-dimensional Black–
Scholes equation (see also [295, 564]).
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The problem of pricing of American options in the framework of the Musiela
model can be rephrased as an optimal stopping problem for the above infinite-
dimensional diffusion process and is connected to an obstacle problem

max

{
∂u

∂t
+ 1

2

d∑
i=1

〈
D2u τi (t), τi (t)

〉 + 〈b(τ (t)) + Ax, Du〉 − x(0)u, u − ϕ

}
= 0

(2.138)

for some function ϕ. This equation was studied in [583] from the point of view
of Bellman’s inclusions. Similar obstacle problems in infinite dimension were also
investigated in [38, 116, 293].

One of the drawbacks of the Musiela model is that it does not guarantee the
positivity of rates and in some cases it is almost certain that they are not positive (see
[564]). To avoid such possibilities the term x(0) was replaced by x+(0) in [583]. We
do the same here and throughout the section we always take the positive part of the
rates.

Let us explain now the super-hedging problem. Suppose that the dynamics of
the forward rates are given by Eq. (2.134), however we are not able to determine
precisely the process τ (·) that describes the volatility of the market. We only know
that it takes values in some set � ⊂ Hd . We consider an agent who wants to price
and hedge a European contingent claim with payoff g(r(T )) that depends on the
value of the forward rate curve at the maturity time T (note that in cases of interest
in finance the payoff function g is not even C1).

To find the super-hedging price, given an initial condition r(t) ∈ H , we try to
maximize the payoff

E

(
e− ∫ T

t r+(s,0)dsg(r(T ))
)

(2.139)

with respect to all progressively measurable stochastic processes τ (·) taking values
in �. The processes τ (·) become controls and the maximization of (2.139) gives the
value function V which should provide the super-hedging price at time t as C(t) =
V (t, r(t)). Following the standard finite-dimensional theory for such problems (see
e.g. [208, 418, 514]), a super-hedging strategy in such context (i.e. an investment
strategy that replicates the super-hedging price) “should” then be given by the process
π(·) := DV (·, r(·)), so in terms of the space-like derivative (i.e. with respect to
r ) of the value function V . In the infinite-dimensional case similar results have
not been proved yet as the method of proof requires strong regularity properties
of the value function V which are not known. However, the problem provides a
strong motivation for studying the following optimal control problem: maximize
(2.139) over all processes τ (·) ∈ Ut , where the state equation is given by (2.134).
For this optimal control problem Hypotheses2.11 and 2.12 are satisfied thanks to
Proposition2.16. Moreover, if g is locally uniformly continuous and has at most
polynomial growth, it can be proved that Hypothesis 2.23 also holds and so the
dynamic programming principle holds. This is explained in Sect. 3.10. The associated
HJB equation is
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⎧⎪⎨
⎪⎩

∂u

∂t
+ 〈Ax, Du〉 + F(x, u, Du, D2u) = 0 in (0, T ) × H

u(T, x) = g(x) in H,

(2.140)

where for x ∈ H, s ∈ R, p ∈ H and X ∈ S(H),

F(x, s, p, X) = sup
τ∈�

{
1

2

d∑
i=1

〈X τi , τi 〉 + 〈b(τ ), p〉 − x+(0)s

}
.

Equation (2.140) is called an infinite-dimensional Black–Scholes–Barenblatt (BSB)
equation associated to the contingent claim g. In cases of interest in finance the pay-
off function g is not even C1 and a notion of a generalized solution is needed. It
was studied in [375] using viscosity solutions. In this context (2.140) has a unique
viscosity solution that coincides with the value function provided by the maximiza-
tion of (2.139). This is discussed in Sect. 3.10. The results are shown in the space
H = H 1(R+) which makes the term x+(0) continuous. One can also investigate the
problem in weighted versions of H 1(R+).

The problem of pricing derivatives in the HJMMmodel when the Gaussian noise
is replace by a Lévy noise, and the analysis of the associated non-local BSB equation
is studied in [545]. Also a Kolmogorov equation related to the problem of hedging
of a derivative of a risky asset is investigated [517].

2.6.8 Optimal Control of Stochastic Delay Equations

In this last example we consider finite-dimensional stochastic controlled systems
with delay in the state and/or in the control variables. Such control systems arise in
many applications (for example in optimal advertising theory, see [313, 314, 428],
optimal portfoliomanagement of pension funds, see e.g. [235]) and can be rephrased,
using a well known procedure (see e.g. [46] for the deterministic case and [118, 313]
for the stochastic case), as infinite-dimensional controlled systems without delay.We
present two cases: the first is a system with pointwise delay only in the state variable
(taken from [235, 298], see also a special case in [313, 314]), while the second one
displays delays (pointwise or distributed) both in the state and in the control variable
(taken from [313, 314]). We separate the two cases, since they give rise to different
settings with different mathematical difficulties.

2.6.8.1 Delay in the State Variable Only

Let us consider a simple controlled one-dimensional linear stochastic differential
equation with a delay r > 0 in the state variable:
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⎧⎪⎨
⎪⎩

dy(s) = (β0y(s) + β1y(s − r) + α(s)) ds + σdW0(s),

y(t) = x0,

y(t + θ) = x1(θ), θ ∈ [−r, 0),

(2.141)

where σ > 0, β0,β1 ∈ R are given constants, W0 is a one-dimensional standard
Brownian motion defined on a complete probability space (�,F ,P), and F t

s is
the augmented filtration generated by W0. The control α(·) is an F t

s -progressively
measurable process with values in an interval [0, R] for some R > 0. We assume
that x1 ∈ L2(−r, 0). This type of equation is used, for example, in optimal portfolio
management of pension funds (see e.g. [235], where the state variable is the wealth of
the fund and the control variable is the investment strategy), and in optimal advertising
(see e.g. [313, 314, 428], where the state variable is the “goodwill” of a given
product and the control is the investment in advertising). Such equations also seem
to be relevant for some models arising in studying economic growth in a stochastic
environment (see [24, 25, 69, 226] in the deterministic case).

Given three real functions ϕ0, h0, g0 : R → R, we consider the problem of min-
imizing a functional

I (t, y0, y1;α(·)) = E

{∫ T

t
[ϕ0 (y (s)) + h0 (α (s))] ds + g0(y(T ))

}
(2.142)

over all control strategiesα(·) ∈ Ut . For example, in the optimal advertising problem
the function h0 represents the cost of advertising while −ϕ0 and −g0 represent the
profit coming from the so-called “goodwill” associated to a given product. In such
an applied problem it is reasonable to assume the positivity of the state variable (the
“goodwill” y(·) ≥ 0) and of the control variable (the investment α(·) ≥ 0), and a
constraint on the control space (for example, sups∈[t,T ] α(s) ≤ R for some R > 0 as
we have done for other examples).

Existence, uniqueness and properties of solutions of delay equations like (2.141)
can be studied either directly (see e.g. [363] Sect. 5, [524], or the survey [364]) or by
introducing an equivalent infinite-dimensional formulation. If we follow the former
direction, the dynamic programming approach can be used only for special problems
where the HJB equation reduces to a finite-dimensional differential equation (see
[398], one can find similar ideas in [215, 245]), while rephrasing the state equation
and therefore the whole optimization problem in infinite dimension allows us to
study a larger class of problems. There are different ways to rewrite stochastic delay
differential equations in the form (2.141) as evolution equations in Hilbert or Banach
spaces. Here we present the approach of [118] which allows us to rewrite equation
(2.141) in the Hilbert space R × L2 (−r, 0). Regarding other choices of state spaces
we refer, for example, to [450, 451], where the state space is C([−r, 0]), or to the
recent paper [257] (see, in particular, Theorem2.2), where more general spaces are
used.
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The setting of [118] is the following. Denote by H the space R × L2 (−r, 0) and
consider the linear operator A1 on H defined by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D (A1) =
{(

x0

x1(·)

)
∈ R × W 1,2(−r, 0;R), x0 = x1(0)

}

A1

(
x0

x1(·)

)
=

(
β0x0 + β1x1(−r)

x ′
1(·)

)
.

The operator A1 generates a strongly continuous semigroup S1 (t) on H and, for
z = (z0, z1(·)) ∈ H , S1 (t) z can be written in terms of the solution of the linear
deterministic delay equation

{
ẏ(t) = β0y(t) + β1y(t − r),

y(0) = z0, y(θ) = z1(θ), θ ∈ [−r, 0),
(2.143)

as follows:

S1 (t) z =
(

y(t)

y(t + ·)

)
∈ H, t ≥ 0

(see [118, 177] and also [42]). Set now� = R,� = [0, R] for a suitable R > 0, and
define Q : �→� and B : � → H , G : � → H by

Qw0 = w0, B1w0 =
(

w0

0

)
, Gw0 =

(
σw0

0

)
.

Then, setting, for s ∈ [t, T ], X (s) = (y(s), y(s + ·)), a(s) = α(s), and WQ = W0,
the controlled stochastic delay Eq. (2.141) can be rewritten (see again [118, 177]) as
the following linear evolution equation in H :

⎧⎪⎨
⎪⎩

dX (s) = [A1X (s) + B1a(s)] dt + GdWQ(s),

X (t) =
(
x0

x1

)
:=

(
y0

y1

)
∈ H.

(2.144)

Thanks to Theorem1.127 the state equation (2.144) admits a unique mild solution
(denoted by X (·; t, x, a(·)) or simply by X (·)), and thus, thanks to Proposition2.16,
Hypotheses2.11 and 2.12 are satisfied.

Moreover, the functional (2.142) can be rewritten as follows. Set

{
ϕ (x0, x1) := ϕ0 (x0)

g (x0, x1) := g0 (x0)
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so that, for a given initial datum x ∈ H , the functional I becomes

J (t, x; a(·)) := E

{∫ T

t
[ϕ (X (s)) + h0 (a (s))] ds + g(X (T ))

}
. (2.145)

If ϕ0, h0 and g0 satisfy proper continuity and growth conditions that ensure
Hypothesis2.23, then the dynamic programming principle holds (see Sect. 3.6 on
this).

The associated Hamilton–Jacobi–Bellman equation is

⎧⎪⎨
⎪⎩

vt + 1

2
Tr(GG∗D2v) + 〈Dv, A1x〉 + F(Dv) + ϕ(x) = 0,

v(T, x) = g(x),

(2.146)

where

F(p) := inf
0≤a≤R

{h0(a) + 〈p, B1a〉} = inf
0≤a≤R

{h0(a) + p0a} . (2.147)

Since the second component of B1 is always zero, the Hamiltonian F only depends
on the one-dimensional component p0 (i.e. on the first derivative D0v of v with
respect to the “present” component). Similarly, in the second-order term, the fact
that the second component of G is zero implies that this term only depends on the
second derivative D2

00v of v with respect to the “present” component. Thus we can
just write 1

2Tr(GG∗D2v) = 1
2σ

2D2
00v.

This kind of equation was studied in [298] by the L2 approach, where the exis-
tence of weakly differentiable solutions in Sobolev spaces with respect to a suitable
invariant measure μ was proved (see Chap.5 and, in particular, Sect. 5.6). Also the
BSDE approach, which produces Gâteaux differentiable solutions, can be applied
here, since the so-called structure condition R(B1) ⊂ R(G) holds. It was developed,
also for more general equations, first in [281, 436], then in [595, 596], and finally in
[591, 592], including boundary control/noise. For more on this, see Sect. 6.5. Some
results for the viscosity solution approach have been obtained in [235, 236, 517],
see also the bibliographical notes in Sect. 3.14.

We alsomention that, in the deterministic case, using the fact that the Hamiltonian
F only depends on the derivative with respect to the “present”, in [238] a regularity
result was proved for the viscosity solution of a first-order HJB equation of type
(2.146) for a case with nonlinear state equation and with state constraints.

2.6.8.2 Delay in the State and Control

Wenow consider a stochastic optimal control problemwhose state equation has delay
in both the state and the control. Such equations are used, for example, to model the
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evolution of the goodwill stock in advertising models (see e.g. [313, 314]). Suppose
we have a controlled stochastic delay differential equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(s) =
[
β0y(s) +

∫ 0

−r
β1(θ)y(s + θ) dθ + γ0α(s) +

∫ 0

−r
γ1(θ)α(s + θ) dθ

]
ds

+σ dW0(s), t ≤ s ≤ T,

y(t) = y0,

y(t + θ) = y1(θ), α(t + θ) = δ(θ), θ ∈ [−r, 0),

(2.148)

where σ > 0, β0, γ0 ∈ R are given real numbers, β1, γ1 ∈ L2(−r, 0), and W0,α(·)
are as in the previous subsection. Since β1, γ1 are functions, we rule out the case of
pointwise delay. In fact, the pointwise delay case can also be studied, however it gives
rise to an unbounded control operator B2 in the state equation (2.149) below. For the
moment we do not consider this case. We will say more about it in the comments
after the HJB equation.

The initial data (y0, y1, δ) are taken in R × L2(−r, 0) × L2(−r, 0). We again try
to minimize the functional I defined by (2.142), over all controls α(·) ∈ Ut .

The problem can be rewritten in an infinite-dimensional setting using a technique
which is slightly different from that of the previous subsection; the results we use
are proved in [313] and they generalize those proved in the deterministic setting in
[566].

We take, as before, H := R × L2(−r, 0), � = R,WQ = W0 and � = [0, R] for
a suitable R > 0. We define the operator A2 : D(A2) ⊂ H → H as follows:

⎧⎪⎨
⎪⎩

D(A2) := {
x ∈ H : x1 ∈ W 1,2(−r, 0), x1(−r) = 0

}

A2 : (x0, x1)→
(
β0x0 + x1(0),β1x0 − dx1

dθ

)
.

Moreover, we define the bounded linear control operator B2 by

{
B2 : R → H

B2 : a→a
(
γ0, γ1

)
,

and the operatorG : R → H byG : w0→(σw0, 0), as in the case of delay only in the
state. The control variable will remain the same in the new system, so a(s) := α(s),
s ∈ [t, T ]. The state variable is called the structural state and is defined using the
following proposition, proved in [313].

Proposition 2.49 Let X (·) be the mild solution of the abstract evolution equation
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{
dX (s) = (AX (s) + B2a(s)) dt + G dWQ(s)
X (t) = x ∈ H,

(2.149)

with arbitrary initial datum x ∈ H and control a(·) ∈ M2
μ(t, T ;R). Then, for s ≥ t ,

one has, P-a.s.,
X (s) = M(X0(s), X0(s + ·), a(s + ·)),

where {
M : H × L2(−r, 0) → H
M : (x0, x1(·), v(·))→(x0,m(·)),

(X0(s) is the first component of X (s)) and

m(θ) :=
∫ θ

−r
β1(ζ)x1(ζ − θ) dζ +

∫ θ

−r
γ1(ζ)v(ζ − θ) dζ, θ ∈ [−r, 0).

Moreover, let {y(s)}s≥t be a continuous solution of the stochastic delay differential
equation (2.148), and X (·) be the mild solution of the abstract evolution equation
(2.149) with initial condition

x = M(y0, y1, δ(·)).

Then, for s ≥ t , one has, P-a.s.,

X (s) = M(y(s), y(s + ·), a(s + ·)),

hence y(s) = X0(s), P-a.s., for all s ≥ 0.

Using this equivalence result, we can now give a reformulation of our problem
in the Hilbert space H . The state equation is (2.149) with initial condition x :=
M(y0, y1, δ(·)) and we denote its mild solution (which exists and is unique thanks to
Theorem1.127) by X (s) := X (s; t, x, a(·)). The objective functional to minimize is
the same J given by (2.145), where g and ϕ have the same meaning. Therefore, in
this setup, Hypotheses2.11 and 2.12 are satisfied thanks to Proposition2.16. Thus,
again, ifϕ0, h0 and g0 satisfy proper continuity and growth conditions, we can ensure
that the dynamic programming principle holds.

The Hamilton–Jacobi–Bellman equation in the infinite-dimensional setting is

{
vt + 1

2Tr(GG∗D2v) + 〈Dv, A2x〉 + inf0≤a≤R {h0(a) + 〈Dv, B2a〉} = 0,

v(T, x) = g(x).

(2.150)

This kind of HJB equation is more difficult than (2.146) since the so-called structure
condition (R(B2) ⊂ R(G)) is no longer true, and thus it is impossible to use the
BSDE approach of [281, 436], and the approach of strong solutions in Sobolev
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spaces is used in [298]. However, in a special case with no delay in the state, a clever
variant of the mild/strong solution approach can be applied, see [316].

Concerning a viscosity solution approach we are not aware of any results in the
stochastic case. For the deterministic case, please see [244] where regularity results
for viscosity solutions are also proved (see also [238] for such results).

Finally, we remark that (as can be seen, for example, in [313]) in the case of
pointwise delay (i.e. when β1 is the Dirac delta at −r ), the operator B2 above is
unbounded. This unboundedness is similar to the one arising in boundary control
problems, and up to now HJB equations of this kind have been investigated only in
a special case in [316].

2.7 Bibliographical Notes

The stochastic optimal control problem introduced in Sect. 2.1 is an abstract infinite-
dimensional version of problems studied in the literature. We refer to [51, 66, 206,
262, 263, 384, 408, 409, 452, 460, 467, 489, 575] for the finite-dimensional theory.

For deterministic optimal control problems and their connection with HJB equa-
tions the reader may consult [40, 53, 54, 95, 127, 128, 407, 584] and the books
[29, 403] for the infinite-dimensional case. Some aspects of the theory of stochastic
optimal control in infinite dimension and second-order HJB equations can be found
in the books [179, 467].

We present the optimal control problem in its weak (Sect. 2.1.2) and strong
(Sect. 2.1.1) formulations. The two distinct forms had already appeared in the six-
ties, in the early days of the studies of finite-dimensional stochastic optimal control
problems (see e.g. [259, 394]); we follow the terminology of [575].We recall that for
us the “weak” in “the weak formulation” refers only to the fact that the generalized
reference probability spaces vary with the controls and not to the concept of solution
that in this context is always strong in the probabilistic sense (see Remark2.4). In
Sect. 2.1.2 we also mention the “extended weak” formulation which is only used in
Sect. 6.5 and which, in contrast to the weak formulation we use, does not require
uniqueness of solutions of the state equation. The weak formulation is also different
from that used in [265] where the word “weak” is meant in the sense of the convex
duality.

In Sect. 2.2 and, more precisely, in Sect. 2.2.1 we introduce a third formulation
that we use to prove the DPP. We can call this third setup the weak DPP formulation.
In this framework, as in the weak formulation, we allow the probability spaces and
Q-Wiener processes WQ to vary but we only consider the (augmented) filtration
generated by the Q-Wiener processes. Thus the difference is that we pass from
generalized reference probability spaces (Definition1.100) to reference probability
spaces (Definition2.7). Other formulations of stochastic optimal control problems
have beenproposed in the literaturewith various notions of control processes.Markov
(feedback) controls, i.e. controls of the form a(t, X (t)), where X (t) is the state of
the system at time t , have been considered, for example, in [66, 262, 263, 384,
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395]. So-called natural strategies, i.e. controls that can be expressed at time t as
functions of the state trajectory up to time t , are considered in [384] where it is
also shown that, under suitable hypotheses, the value function of the problem for
natural strategies equals the value function of the problem in the strong formulation
(Theorem7, p. 132 of [384]). Relaxed controls have been considered (see e.g. [66,
210, 339, 392]) mostly to prove the existence of optimal controls. Our formulations
of control problems follow most closely those of [575]. In Theorem2.22 we show
that the weak DPP formulation and the strong formulation, if a reference probability
space is used, are equivalent in the sense that the problems in the two forms have
the same value function. For similar results in the finite-dimensional case, see [212,
263, 384]. Nisio in [467] proves that the weak formulations using the reference and
the generalized reference probability spaces give the same value functions assuming
that the control set is a convex subset of Rq .

The DPP proved in Sect. 2.3 (Theorem2.24) is very abstract and general. We
follow to a large extent the strategy from [575]. The proof uses the continuity of the
value function in the spatial variable, however this assumption can be relaxed with
very little change in the proof (see e.g. [291]). Theorem3.70, Sect. 3.6 (next chapter)
contains a version of the DPP for mild solutions in the formulation with stopping
times when the value function is continuous. The DPP is often considered a standard
result, however we have included complete proofs since even in finite dimension it is
very technical and many of the proofs available in the literature miss a lot of details.

Several other approaches to the proof of the DPP are available in the literature.
Krylov [384] uses approximation of controls by step controls. A PDE-based proof is
provided in Fleming and Soner [263], where the DPP is first proved for a uniformly
parabolic case where the HJB equation has a smooth solution, and then the value
function is approximated by smooth value functions solving uniformly parabolic
HJB equations. The proof in [66] uses Markov controls. Nisio [460] uses approx-
imations with switching controls at binary times and a reduction to the canonical
reference probability space, while the proof in [459] uses so-called non-anticipative
controls and approximations by controls with continuous trajectories. A proof based
on discrete time dynamic programming principle and approximation by switching
controls is presented in [467]. In [467] the DPP is proved for the weak formulation
of control problem from Sect. 2.1.2. The proof in [452] is based on a reduction to
the canonical reference probability space. In [489] a sketch of the proof is given
for a measurable value function, which however omits delicate measurability issues.
Soner and Touzi [530] use deep measurable selection theorems to show the DPP for
stochastic target problems without continuity assumptions on the value function. We
also mention recent papers [212, 601] which prove the DPP under general assump-
tions, and [126] which proves, in finite dimension and in a canonical sample space
setting, a pseudo-Markov property which is a basic tool to prove the DPP. Other
proofs (see e.g. [210, 339, 392]) use relaxed controls and compactness of the set of
admissible controls. In [322] the authors adapt to the infinite-dimensional case the
arguments used in [264], where the DPP was shown for a two player, zero sum sto-
chastic differential game in finite dimension, to prove the DPP for a control problem
for stochastic Navier–Stokes equations in the canonical reference probability space.
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A different approach to the DPP has been introduced, for the finite-dimensional
case, in [72]. In that paper, the authors introduce the notion ofweak dynamic program-
ming: roughly speaking, instead of proving a result similar to (2.23) they prove the
following, weaker, fact: for any pair of continuous test functions φ and ψ (satisfying
some growth conditions to guarantee integrability) such that φ ≤ V ≤ ψ,

inf
a(·)∈Ut

E

[∫ η

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , a (s)) ds + e− ∫ η
t c(X (τ ))dτφ (η, X (η))

]

≤ V (t, x)

≤ inf
a(·)∈Ut

E

[∫ η

t
e− ∫ s

t c(X (τ ))dτ l (s, X (s) , a (s)) ds + e− ∫ η
t c(X (τ ))dτψ (η, X (η))

]
,

see [72] or [71] for the precise statements. In this way the difficulties due to the
possible lack of continuity of the value function V are avoided because the condition
deals with test functions that are continuous. This formulation is of course tailored to
the study of viscosity solutions ofHJB equationswhich are defined in terms of regular
test functions (seeChap.3).Weakdynamic programming approach introduced in [72]
has been generalized to the case of expectation constraints and state constraints in
[71], where an abstract dynamic programming result was stated. The weak dynamic
programming was also used for a class of finite-dimensional impulsive problems in
[70].

The verification theorem and construction of optimal feedback controls for a
smooth value function presented in Sect. 2.5 follow similar standard results for the
finite-dimensional case, which can be found, for instance, in Chap.4 of [262], Chap.3
of [263] or in Chap. 5 of [575]. In infinite-dimensional Hilbert spaces, for the case of
a quadratic Hamiltonian, the reader is referred to Chap.13 of [179]. When the value
function does not satisfy the strong regularity conditions of Sect. 2.5 (C1,2 regularity
and the derivative in the domain of A∗), only a few specific results are available:

• There are no results in infinite dimension for viscosity solutions that are only
continuous. A finite-dimensional verification theorem can be found in [324, 325,
575]. In the deterministic case, some verification results for a Hilbert space case
can be found in [92, 227, 403].

• Formild solutions in spaces of continuous functions there are several contributions
[105, 107, 155, 156, 158, 306, 307, 310, 313, 314, 317, 432, 433], some of which
will be discussed in Chap.4.

• For mild solutions in the space of L2 functions we refer to [3, 4, 298, 301], see
also Chap.5.

• For optimal synthesis obtained via backward stochastic differential equations the
reader is referred to [276, 281, 283–285] and to Chap. 6.

A different approach to optimal control problems that is not developed in this
book is the use of a maximum principle; it is closely related to the study of backward
stochastic differential equations (BSDEs). A general result for the finite-dimensional
case is given in [480], see also [575]. A generalization to problems with noises with
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jumps is addressed in [550, 551], where the authors first characterize the adjoint
process of the second variation as the solution of a BSDE in the Hilbert space of
Hilbert–Schmidt operators.

In infinite dimension the problem was initially studied in [45, 349] for the case
of diffusion independent of the controls, and in [598] for a problem with linear
state equation and cost functional. Recently, thanks to developments in the study
of backward stochastic differential equations in infinite dimension, new results on
the maximum principle for stochastic infinite-dimensional problems appeared. In
[196, 279] the second variation is characterized as a certain stochastic bilinear form
defined on L4(�; H), while in [414] a general case when the coefficients are Fréchet-
differentiable (twice for non-convex control domain) is treated and the second vari-
ation is characterized as a solution of a BSDE “in the sense of transposition”. The
approach of [196, 279] is used in [280] where regularity conditions on the coeffi-
cients are weakened to study a large class of optimal control problems driven by
stochastic PDEs of parabolic type on a bounded open set of Rn . Other results for
specific classes of equations include [331], for a one-dimensional heat equation with
noise and control on the boundary, and [470], for a class of problems with delay
state equation (both with distributed and discrete delay). The papers [196, 470] also
include, respectively, an unbounded diffusion term and Lévy noise. In general, the
maximumprinciple approachonlygives necessary conditions for optimality, however
under suitable convexity assumptions sufficiency can also be proved. Such results for
finite-dimensional systems can be found in [23, 575, 599]. A sufficiency result for a
class of infinite-dimensional systems is proved in [445], while a sufficient condition
for certain delay systems with diffusion independent of the controls is characterized
in [352].



Chapter 3
Viscosity Solutions

This chapter is devoted to the theory of viscosity solutions of Hamilton–Jacobi–
Bellman equations in Hilbert spaces. At its core is the notion of the so-called
B-continuous viscosity solution which was introduced for first-order equations by
M.G. Crandall and P.L. Lions in [141, 142] and later extended to second-order equa-
tions in [538]. The theory applies to fully nonlinear equationswith various unbounded
terms. This is its main advantage over the notions of mild and strong solutions dis-
cussed in Chap.4, mild solutions in L2 spaces discussed in Chap.5 and the BSDE
techniques of Chap.6. After the introduction of the core theory we discuss several
special caseswhich require various adjustments in the definition of viscosity solution.
The material of the chapter is arranged in the following way:

• In Sect. 3.1 we introduce the notion of B-continuity, the spaces H−α defined by a
strictly positive self-adjoint operator B, andwe present several estimates involving
| · |−1 norms for solutions of deterministic and stochastic evolution equations. We
also discuss a smooth perturbed optimization principle in Hilbert spaces.

• In Sect. 3.2wepresent amaximumprinciple for B-upper semicontinuous functions
in Hilbert spaces. This is a key technical result needed in the proofs of uniqueness
of viscosity solutions.

• In Sect. 3.3 we introduce the definition of a viscosity solution and in Sect. 3.4 we
discuss basic convergence properties of viscosity solutions.

• Section3.5 is devoted to uniqueness of viscosity solutions. We prove several com-
parison theorems for degenerate parabolic and elliptic equations.

• In Sects. 3.6 and 3.7 we present results on existence of viscosity solutions. In
Sect. 3.6 we study properties of value functions of stochastic optimal control prob-
lems and prove that they are viscosity solutions of the associated HJB equations.
In Sect. 3.7 we discuss how to obtain existence of viscosity solutions for more
general equations, for instance of Isaacs type, by the method of finite-dimensional
approximations.

© Springer International Publishing AG 2017
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• In Sect. 3.9 another method to prove existence of viscosity solutions, Perron’s
method, is presented. In this section we also explain how, in certain cases, the
method of half-relaxed limits of Barles–Perthame can be adapted to viscosity
solutions in Hilbert spaces. A classical limiting problem of singular perturbations
is discussed in Sect. 3.8.

• In Sect. 3.10 we explain how the theory of viscosity solutions is applied to the
infinite-dimensional Black–Scholes–Barenblatt equation originating in the theory
of bond markets.

• Sections3.11–3.13 discuss three special cases, the HJB equation related to the
optimal control of the Duncan–Mortensen–Zakai equation, the HJB equation for
a boundary optimal control problem and the HJB equation for optimal control
of stochastic Navier–Stokes equations. These cases require modifications of the
definition of a viscosity solution. We explain how the basic theory of Sects. 3.5
and 3.6 can be extended and adapted to equations containing special unbounded
terms.

Throughout this chapter H is a real, separable Hilbert space with inner product 〈·, ·〉
and norm | · |. We recall that we identify H with its dual. We denote by S(H) the set
of bounded, self-adjoint operators on H .

3.1 Preliminary Results

3.1.1 B-Continuity and Weak and Strong B-Conditions

Definition 3.1 Given a strictly positive B ∈ S(H) and α > 0, we define the space
H−α as the completion of H with respect to the norm

|x |2−α := 〈Bαx, x〉 .

The strict positivity of B ensures that the operator Bα/2 extends to an isometry of
H−α onto H that we denote again by Bα/2. H−α is a Hilbert space when endowed
with the inner product induced by Bα/2:

〈x, y〉−α :=
〈
Bα/2x, Bα/2y

〉
.

Definition 3.2 If B,α are as in Definition3.1, we denote by Hα the space Hα :=
Bα/2(H) endowed with the Hilbert space structure characterized by the following
inner product:

〈x, y〉α :=
〈
B−α/2x, B−α/2y

〉
.

Thanks to the strict positivity of B, B−α/2 : Hα → H is an isometry onto H ; Hα can
be identified with the dual of H−α.



3.1 Preliminary Results 173

Of course, even if not explicitly emphasized by the notation, the spaces Hα depend
on the choice of B.

We will often use a notion of continuity, called B-continuity, which is stronger
than the usual continuity and weaker than weak sequential continuity.

Definition 3.3 (B-upper/lower semicontinuity) Let B ∈ S(H) be a strictly positive
operator on H . Given I⊂R and U⊂H , we say that a function u : I × U → R ∪
{±∞} is B-upper semicontinuous (respectively, B-lower semicontinuous) if, for any
sequences (tn)n∈N in I and (xn)n∈N in U such that tn → t ∈ I , xn ⇀ x ∈ U and
Bxn → Bx as n →∞, we have

lim sup
n→∞

u(tn, xn) ≤ u(t, x) ( respectively, lim inf
n→∞ u(tn, xn) ≥ u(t, x) ).

Definition 3.4 (B-continuity) Given B, I and U as in Definition3.3, we say that a
function u : I × U → R is B-continuous if it is both B-upper semicontinuous and
B-lower semicontinuous.

Remark 3.5 It is easy to see that one gets the same definition of B-upper/lower-
semicontinuity if the condition xn ⇀ x ∈ U in Definition3.3 is replaced by the
requirement that (xn)n∈N is bounded and x ∈ U . �

Lemma 3.6 Let B be as in Definition3.3. Then:

(i) If B is compact then u is B-upper semicontinuous (respectively, B-lower semi-
continuous, B-continuous) if and only if u is weakly sequentially upper semi-
continuous (respectively, weakly sequentially lower semicontinuous, weakly
sequentially continuous).

(ii) Let α > 0. Then u is B-upper semicontinuous (respectively, B-lower semicon-
tinuous, B-continuous) if and only if u is Bα-upper semicontinuous (respec-
tively, Bα-lower semicontinuous, Bα-continuous).

(iii) Let U be weakly sequentially closed, and α > 0. Then u is B-continuous on
I ×U if and only if u is continuous in the | · |× | · |−α norm on bounded subsets
of I×U. If B is compact and I = [a, b], then u is B-continuous on [a, b]×U if
and only if u is uniformly continuous in the |·|×|·|−α norm on [a, b]×(U∩BR)

for every R > 0. Finally, if u is weakly sequentially continuous on [a, b] ×U
then u is uniformly continuous in the | · | × | · |−α norm on [a, b] × (U ∩ BR)

for every R > 0.
(iv) Let B1, B2 ∈ S(H) be two strictly positive operators on H such that B1(H) =

B2(H) and let (xn)n∈N be a sequence in H. Then B1xn → B1x if and only if
B2xn → B2x. In particular, the notions of B1-continuity and B2-continuity are
equivalent.

Proof Part (i) is obvious.
(i i) We show that, for any α ≥ β > 0, u is Bα-continuous (resp. Bα-lower

semicontinuous, Bα-upper semicontinuous) if and only if it is Bβ-continuous (resp.
Bβ-lower semicontinuous, Bβ-upper semicontinuous). To show this fact it is enough



174 3 Viscosity Solutions

to prove that for a given weakly convergent sequence xn ⇀ x ∈ H we have that
|Bα(xn − x)| → 0 if and only if |Bβ(xn − x)| → 0. Since α ≥ β the “if” part is
obvious. For the “only if” part, assume that |Bα(xn − x)| → 0 and observe that,
since xn is weakly convergent and hence bounded,

|Bα/2(xn − x)|2 = 〈xn, Bα(xn − x)〉 − 〈x, Bα(xn − x)〉 → 0.

So, if α/2 ≤ β, this fact and the “if” part allow to conclude the proof, otherwise one
can conclude iterating the argument.

(i i i) The first statement follows from (i i). The only nontrivial statement of the
second claim is the “only if” part of it. So let B be compact. From (i i)we can assume
α = 2. Assume by contradiction that, for some ε > 0, there exist two sequences
(tn, xn) and (sn, yn) in [a, b] × (U ∩ BR) s.t.

|tn − sn| + |xn − yn|−2 → 0 and |u(tn, xn)− u(sn, yn)| > ε. (3.1)

Since [a, b]× (U ∩ BR) is weakly sequentially compact we can assume that xn ⇀ x
and yn ⇀ y for some x, y ∈ U ∩ BR and that tn, sn → s for some s ∈ [a, b]. So
we have B(xn − yn) → 0 and (xn − yn) ⇀ (x − y) and thus (since the graph of
a continuous operator is weakly closed), B(x − y) = 0 which implies that x = y.
Since B is compact we also have Bxn → Bx and Byn → By = Bx . So, since u
is B-continuous, u(tn, xn) → u(s, x) and u(sn, yn) → u(s, x) and this contradicts
(3.1). If the third claim is not true then again there must exist sequences (tn, xn) and
(sn, yn) s.t. (3.1) holds. But then again, up to a subsequence, tn, sn → s for some
s ∈ [a, b] and xn, yn ⇀ x for some x ∈ U ∩ BR and this, together with the weak
sequential continuity of u, contradicts (3.1).

(iv) Let B1xn → B1x as n → ∞. It follows easily from the closed graph
theorem that B−11 B2 is bounded. Thus B2B

−1
1 = (B−11 B2)

∗ on B1(H) and (B−11 B2)
∗

is a bounded operator. Therefore

B2xn = B2B
−1
1 B1xn = (B−11 B2)

∗B1xn → (B−11 B2)
∗B1x = B2B

−1
1 B1x = B2x .

The other implication is proved similarly. �
Definition 3.7 (B-closed set) We will say that a setU ⊂ H is B-closed if whenever
xn ∈ U, xn ⇀ x, Bxn → Bx then x ∈ U .

Remark 3.8 Every weakly sequentially closed subset of H is B-closed, in particular
every convex closed subset of H is B-closed. �

The following weak and strong B-conditions were introduced in [141, 142].

Definition 3.9 (Weak B-condition) Let A be a linear, densely defined, closed oper-
ator in H . We say that an operator B ∈ L(H) satisfies the weak B-condition for A
if B is strictly positive, self-adjoint, A∗B ∈ L(H), and

− A∗B + c0B ≥ 0 for some c0 ≥ 0. (3.2)
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Definition 3.10 (Strong B-condition) Let A be a linear, densely defined, closed
operator in H . We say that an operator B ∈ L(H) satisfies the strong B-condition
for A if B is strictly positive, self-adjoint, A∗B ∈ L(H), and

− A∗B + c0B ≥ I for some c0 ≥ 0. (3.3)

It iswell known that if A is a densely defined closed operator in H then the operator
B = (I + AA∗)−1/2 is bounded, strictly positive, self-adjoint and A∗B ∈ L(H). The
strong and weak B-conditions require a little more. We will apply them when the
operator A is maximal dissipative. The following result has been shown in [506].

Theorem 3.11 If A is a linear, densely defined maximal dissipative operator in H
then the weak B condition is satisfied with B = ((μI − A)(μI − A)∗)−1/2 and
c0 = μ, where μ ≥ 0 is any constant such that μI − A∗ ≥ δ I for some δ > 0.

Proof Let C = (μI − A)(μI − A)∗. By our assumptions, C−1 exists and C−1 ∈
L(H). It is also easy to see thatC = C∗ > 0. We set B = C−1/2. Then B = B∗ > 0,
and we have, for x ∈ H ,

|Bx |2 = 〈((μI − A)−1
)∗

(μI − A)−1x, x〉 = ∣∣(μI − A)−1x
∣∣2 .

Therefore, by Proposition B.2-(i) (see also [180], Proposition B.1, p. 429 or
[584], Theorem 2.2, p. 208), it follows that R(B) = R

((
(μI − A)−1

)∗) =
R
(
(μI − A∗)−1

) = D(A∗).
Let S = (μI − A)∗B. Then S ∈ L(H) and it is unitary. In fact SB−1 is the polar

decomposition of μI − A∗. It remains to show that S ≥ 0.
To this end we complexify the space and the operators. Let Hc = {x̃ = x + iy :

x, y ∈ H} with standard operations (x + iy)+ (z+ iw) = (x + z)+ i(y+w), (a+
ib)(x+ iy) = (ax−by)+ i(bx +ay) and the inner product 〈(x+ iy), (z+ iw)〉c =
〈x, z〉 + 〈y, w〉 + i〈y, z〉 − i〈x, w〉. An operator T in H is complexified by setting
Tc(x + iy) = T x + iT y and then (Tc)∗ = (T ∗)c. It is easy to see that we still have
μIc − A∗c ≥ 0 in the sense that Re〈(μIc − A∗c)x̃, x̃〉c ≥ 0, Bc = B∗c > 0 and Sc is
unitary (and thus normal). It is enough to show that Sc ≥ 0.

Suppose that Sc is not nonnegative. Since Sc is normal it then follows from the
spectral representation theorem that there is a nontrivial closed subspace K of Hc

which is invariant for Sc and Sc is strongly dissipative on K , i.e. Re〈Scx̃, x̃〉c ≤
−ν|x̃ |2c for some ν > 0. Let PK be the orthogonal projection onto K . Then the
operator PK Bc : K → K is self-adjoint and strictly positive. We choose λ > 0 in
the spectrum of PK Bc. Then there exists a ỹ = 0 in K such that

|PK Bc ỹ − λỹ|c ≤ λν

2‖Sc‖ |ỹ|c.
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We set x̃ = Bc ỹ. Then

〈μIc − A∗c x̃, x̃〉c = 〈Sc ỹ, x̃〉c = 〈Sc ỹ, PK x̃〉c = 〈Sc ỹ, PK Bc ỹ〉c
= λ〈Sc ỹ, ỹ〉c + 〈Sc ỹ, PK Bc ỹ − λỹ〉c.

Taking the real part of the above relation and using that Re〈(μIc − A∗c)x̃, x̃〉c ≥ 0
we obtain

0 ≤ −λν|ỹ|2c + ‖Sc‖|ỹ|c
λν

2‖Sc‖ |ỹ|c = −λν

2
|ỹ|2c,

which is a contradiction. Therefore Sc ≥ 0 and thus S ≥ 0. In fact, one can show
(see [506]) that S > 0. �

The following are two concrete examples of operators satisfying the weak
B-condition:

Example 3.12 If the operator A is maximal dissipative and skew-adjoint, i.e.
A∗ = −A, the above implies that we can take B = (μI − A2)−1/2 for every μ > 0.
However, in such case a compact B cannot satisfy the strong B-condition, since
if it did, then for every eigenvalue λ of B with an eigenvector e we would have
|e|2 ≤ 〈(−A∗B + c0B)e, e〉 = λ〈(A + c0 I )e, e〉 ≤ λc0|e|2, which is impossible
since the eigenvalues accumulate at zero. �

Example 3.13 (Operators coming from hyperbolic equations) Let A be a maximal
dissipative, self-adjoint operator in a Hilbert space H with a bounded inverse. It is
then well known (see e.g. A.5.4 in [180]) that the operator

D(A) =
⎛

⎝
D(A)

×
D((−A)1/2)

⎞

⎠ , A =
(
0 I
A 0

)
,

is maximal dissipative in the Hilbert space H =
⎛

⎝
D((−A)1/2)

×
H

⎞

⎠, equipped with

the following “energy” type inner product

〈(
u
v

)
,

(
ū
v̄

)〉

H
= 〈(−A)1/2u, (−A)1/2ū〉H + 〈v, v̄〉H ,

(
u
v

)
,

(
ū
v̄

)
∈ H.

Moreover, A∗ = −A.
It is easy to check that the operator

B =
(

(−A)−1/2 0
0 (−A)−1/2

)
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is bounded, positive, self-adjoint onH, and such thatA∗B is bounded and the weak
B-condition holds with constant c0 = 0. In fact

〈
−A∗B

(
u
v

)
,

(
u
v

)〉

H
= 0.

Moreover, we have

∣∣∣∣

(
u
v

)∣∣∣∣−1
= (|(−A)1/4u|2 + |(−A)−1/4v|2)1/2 . �

Let us now examine the strong B-condition in some examples.

Example 3.14 If A is maximal dissipative and self-adjoint in H , it satisfies the strong
B-condition with B = (I − A)−1 and c0 = 1. �

Example 3.15 Suppose now that A0 is a densely defined, closed operator in H which
satisfies the strong B-condition for some operator B0 and constant c0. Let A1 be
another densely defined, closed operator in H such that A∗1B0 is bounded and

− A∗1B0 + c1B0 ≥ −ν I (3.4)

for some ν ∈ (0, 1) and some constant c1. It is then clear that A = A0 + A1

satisfies the strong B-condition with B = (1/(1 − ν))B0 and the new constant
c := c0 + c1. Obviously (3.4) holds if ‖A∗1B0‖ < 1. Also rather standard arguments
show that (3.4) is satisfied for every ν ∈ (0, 1) and some constant c1 if A∗1B0 is
compact. To see this, let {e1, e2, ...} be an orthonormal basis of H . For N ≥ 1 we let
HN = span{e1, ..., eN }, PN be theorthogonal projectionontoHN , andQN := I−PN .
For x ∈ H we will write xN := PN x , x⊥N := QN x . Since A∗1B0 is compact, there
is an N1 ≥ 1 such that ‖A∗1B0 − PN1 A

∗
1B0PN1‖ ≤ ν/2. Therefore it is enough

to prove that there is a c1 such that −PN1 A
∗
1B0PN1 + c1B ≥ −ν/2I which, since

〈PN1 A
∗
1B0PN1x, x〉 ≤ C |xN1 |2, will be true if

C |xN1 |2 ≤ c1〈B0x, x〉 + ν|x |2/2,

i.e. if
C ≤ c1〈B0x, x〉 + ν|x |2/2 for any x such that |xN1 | = 1.

The above is certainly satisfied if |x⊥N1
| ≥ (2C/ν)1/2. Moreover, it is easy to see that

inf
{x :|xN1 |=1,|x⊥N1 |≤(2C/ν)1/2}

〈B0x, x〉 = δN1 > 0.

Thus it is enough to take c1 = C/δN1 . �
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Example 3.16 (Operators coming from elliptic equations) Let O be a bounded
(regular enough) domain in R

n . Let

{
A :=∑n

i, j ∂i (ai j∂ j )+∑n
i bi∂i + c

D(A) := H 1
0 (O) ∩ H 2(O),

where ai j = a ji , bi , c ∈ L∞(O) for i, j ∈ {1, .., n}, and there exists a θ > 0 such
that

n∑

i, j

ai jξiξ j ≥ θ|ξ|2 ∀ξ ∈ R
n

a.e. inO. We observe that if A0 is the operator A with c = bi = 0, i = 1, ..., n, then
A0 is maximal dissipative and self-adjoint in H = L2(O) and the strong B-condition
holds for A0 with B0 = (I − A0)

−1 and c0 = 1. Moreover, B0 is compact as an
operator from L2(O) to H 1

0 (O) and thus, if A1 = A − A0, it follows that A∗1B0 is
compact. Thus the strong B-condition is satisfied for A with B = λB0 for some
constant λ.

If, in addition, ai j ∈ W 1,∞(O), bi = 0, i, j = 1, ..., n one can also take B0 =
λ( Â)−1 above, where {

Â f := −� f
D( Â) := H 1

0 (O) ∩ H 2(O)

for λ big enough. This follows from an application of the Sobolevskii inequality (see,
for instance, Theorem 1.1 in [406], see also [396, 528]). �

Lemma 3.17 Let B ∈ S(H) be a strictly positive operator on H and A be a linear,
densely defined, maximal dissipative operator. Then:

(i) If D(A∗) = D(B−1), then the operator S = −A∗B + c0B is invertible for any
c0 > 0, and S−1 ∈ L(H).

(ii) If B satisfies the strong B-condition for A, then D(A∗) = D(B−1).

Proof (i) The statement is obvious since B−1(−A∗ + c0 I )−1 is bounded and it is
the inverse of S.

(i i) Let S be defined as in part (i) but with c0 being the constant from the strong
B-condition for A. Since S is bounded and S ≥ I , S−1 exists and it is bounded.
Moreover, we have B = (−A∗ + c0 I )−1S which, by the invertibility of S, implies
that D(B−1) = R(B) = R(−A∗ + c0 I )−1 = D(A∗). �

We refer the reader to [506] for an abstract condition involving interpolation
spaces which ensures that the strong B-condition is satisfied and to [141, 142] for
other comments about B-continuity and strong and weak B-conditions.
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3.1.2 Estimates for Solutions of Stochastic Differential
Equations

Let T > 0. Let A be a linear, densely defined, maximal dissipative operator in
H , and Q ∈ L+(�). Let (�,F , {Fs}s∈[0,T ], P,WQ) be a generalized reference
probability space. Let � be a Polish space. Let b : [0, T ] × H × � → H be
B([0, T ])⊗B(H)⊗B(�)/B(H)-measurable, and σ : [0, T ]×H×� → L2(�0, H)

beB([0, T ])⊗B(H)⊗B(�)/B(L2(�0, H))-measurable.Let a (·) : [0, T ]×� → �

beFs-progressively measurable. For x ∈ H we consider the following SDE

{
dX (s) = (AX (s)+ b(s, X (s), a(s))) dt + σ(s, X (s), a(s))dWQ(s)
X (0) = x

(3.5)

and its approximation

{
dXn(s) = (AnXn(s)+ b(s, Xn(s), a(s))) dt + σ(s, Xn(s), a(s))dWQ(s)
Xn(0) = x,

(3.6)
where An is the Yosida approximation of A defined in (B.10). The approximating
Eq. (3.6) was already introduced in Chap.1. Here we discuss some more specific
results that will be needed in later chapters.

Let C ≥ 0 and γ ∈ [0, 1]. We will make use of the following assumptions.

|b(s, x, a)− b(s, y, a)| ≤ C |x − y| ∀x, y ∈ H, s ∈ [0, T ], a ∈ �,

(3.7)

‖σ(s, x, a)− σ(s, y, a)‖L2(�0,H) ≤ C |x − y| ∀x, y ∈ H, s ∈ [0, T ], a ∈ �,

(3.8)

|b(s, x, a)| ≤ C(1+ |x |) ∀x ∈ H, s ∈ [0, T ], a ∈ �,

(3.9)

‖σ(s, x, a)‖L2(�0,H) ≤ C(1+ |x |γ) ∀x ∈ H, s ∈ [0, T ], a ∈ �.

(3.10)

Recall that, thanks to Theorem1.127, assumptions (3.7)–(3.10) ensure the exis-
tence of unique mild solutions X (·) and Xn(·) of (3.5) and (3.6).

Proposition 3.18 Let T > 0 and γ ∈ [0, 1]. Assume that (3.7)–(3.10) hold. Let X (·)
be the mild solution of (3.5). Then there exist constants c1 > 0, c2 > 0 (depending
only on T,C, γ) such that

E

(
sup

0≤s≤T
ec1(1+|X (s)|2)(1−γ)

)
≤ c2e

(1+|x |2)(1−γ)

if γ ∈ [0, 1) (3.11)
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and

E

(
sup

0≤s≤T
ec1(log(2+|X (s)|2))2

)
≤ c2e

(log(2+|x |2))2 if γ = 1. (3.12)

Proof We first consider the case 0 ≤ γ < 1. Let Xn be the mild solution of the
approximating Eq. (3.6) and τk be the minimum of T and the first exit time of Xn

from the set {|z| ≤ k}. Let β > 0 and α > 0 be numbers to be specified later. Since
An is bounded, Xn solves the integral equation

Xn(s) = x +
∫ s

0
AnX

n(r)+ b(r, Xn(r), a(r))dr

+
∫ s

0
σ(r, Xn(r), a(r))dWQ(r), s ∈ [0, T ].

(3.13)

Thus we can apply Itô’s formula (see Theorem1.163) to the function

{
� : [0, T ] × H → R

�(s, x) = eβe−αs (1+|x |2)1−γ

and obtain, for s ∈ [0, T ],

eβe
−α(s∧τk )(1+|Xn(s∧τk )|2)1−γ

= eβ(1+|x |2)1−γ −
∫ s∧τk

0
αβe−αr (1+ |Xn(r)|2)1−γeβe

−αr (1+|Xn(r)|2)1−γ
dr

+
∫ s∧τk

0
2(1− γ)βe−αr eβe

−αr (1+|Xn(r)|2)1−γ
(1+ |Xn(r)|2)−γ

× 〈An Xn(r)+ b(r, Xn(r), a(r)), Xn(r)〉dr
+
∫ s∧τk

0
2(1− γ)βe−αr eβe

−αr (1+|Xn(r)|2)1−γ
(1+ |Xn(r)|2)−γ

× 〈Xn(r),σ(r, Xn(r), a(r))dWQ(r)〉
+ 1

2

∫ s∧τk

0
eβe

−αr (1+|Xn(r)|2)1−γ
Tr

((
σ(r, Xn(r), a(r))Q

1
2

) (
σ(r, Xn(r), a(r))Q

1
2

)∗

× 2
[
2β2e−2αr (1+ |Xn(r)|2)−2γ(1− γ)2Xn(r)⊗ Xn(r)

− 2βγe−αr (1+ |Xn(r)|2)−γ−1(1− γ)Xn(r)⊗ Xn(r)

+ βe−αr (1+ |Xn(r)|2)−γ(1− γ)I
])

dr
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≤ eβ(1+|x |2)1−γ +
∫ s∧τk

0
(1+ |Xn(r)|2)1−γeβe−αr (1+|Xn(r)|2)1−γ

× (−α+ C(β))βe−αr dr

+ 2
∫ s

0
1[0,τk ](1− γ)βe−αr eβe−αr (1+|Xn(r)|2)1−γ

(1+ |Xn(r)|2)−γ

× 〈Xn(r),σ(r, Xn(r), a(r))dWQ(r)〉

(3.14)

for some absolute constant C(β), nondecreasing in β and also depending on C, γ,
where we used Lemma1.110 in the last line of (3.14).

Therefore, choosing α = C(β) + 1 in (3.14), we obtain

eβe−α(s∧τk )(1+|Xn(s∧τk )|2)1−γ +
∫ s∧τk

0
βe−αr (1+ |Xn(r)|2)1−γeβe−αr (1+|Xn(r)|2)1−γ

dr

≤ eβ(1+|x |2)1−γ + 2
∫ s

0
1[0,τk ](1− γ)βe−αr eβe−αr (1+|Xn(r)|2)1−γ

(1+ |Xn(r)|2)−γ

× 〈Xn(r),σ(r, Xn(r), a(r))dWQ(r)〉, s ∈ [0, T ].
(3.15)

Therefore, taking expectation in (3.15) yields

Eeβe−α(s∧τk )(1+|Xn(s∧τk )|2)1−γ

+ E

∫ s∧τk

0
βe−αr (1+ |Xn(r)|2)1−γeβe−αr (1+|Xn(r)|2)1−γ

dr

≤ eβ(1+|x |2)1−γ

, s ∈ [0, T ]. (3.16)

Now we choose α = C(2)+ 1 in (3.14) so that (3.15) and (3.16) are satisfied for
β = 2. Moreover, we can observe that, since C(β) is an increasing function of β and
since the term βe−αr eβe−αr (1+|Xn(r)|2)1−γ

(1 + |Xn(r)|2)1−γ is always positive, (3.15)
and (3.16) are also satisfied when we choose β = 1 and α = C(2)+ 1. Using (3.15)
with this last choice of α and β and observing that the integral in the left-hand side
of (3.15) is positive, we get, for s ∈ [0, T ],

sup
0≤u≤s

ee
−α(u∧τk )(1+|Xn(u∧τk )|2)1−γ ≤ e(1+|x |2)1−γ

+ sup
0≤u≤s

∣∣∣∣

∫ u

0
2e−αr ee

−αr (1+|Xn(r)|2)1−γ

1[0,τk ]

× (1− γ)(1+ |Xn(r)|2)−γ〈Xn(r),σ(r, Xn(r), a(r))dWQ(r)〉
∣∣∣∣,

and therefore, using the Burkholder–Davis–Gundy inequality (see Theorem1.111),
we have
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E sup
0≤u≤s

ee
−α(u∧τk )(1+|Xn(u∧τk )|2)1−γ ≤ e(1+|x |2)1−γ

+
(

E sup
0≤u≤s

∣∣∣∣

∫ u

0
2e−αr ee

−αr (1+|Xn(r)|2)1−γ

1[0,τk ]

× (1− γ)(1+ |Xn(r)|2)−γ〈Xn(r),σ(r, Xn(r), a(r))dWQ(r)〉
∣∣∣∣

)

≤ e(1+|x |2)1−γ

+
(

E

∫ s

0
C1e

−2αr e2e
−αr (1+|Xn(r)|2)1−γ

(1+ |Xn(r)|2)1−γ1[0,τk ]dr
) 1

2

, s ∈ [0, T ].
(3.17)

Using (3.16) with β = 2 we see that the last two lines of (3.17) are less than or
equal to

C2e
(1+|x |2)1−γ

.

Above, the constants Ci , i = 1, 2, only depend on C, γ, T . Thus we have obtained

E sup
0≤s≤T

ee
−αT (1+|Xn(s∧τk )|2)1−γ ≤ C2e

(1+|x |2)1−γ

. (3.18)

Since limk→+∞ τk = T a.s., letting k → +∞ in (3.18) and using Fatou’s lemma,
we obtain

E sup
0≤s≤T

ee
−αT (1+|Xn(s)|2)1−γ ≤ C2e

(1+|x |2)1−γ

.

It now remains to use (see Theorem1.131) that

lim
n→∞E

(
sup

0≤s≤T
|Xn(s)− X (s)|2) = 0.

This implies the existence of a subsequence Xnk satisfying limn→∞ sup0≤s≤T
|Xnk (s)− X (s)|2 = 0 almost surely and then it ensures that, a.s.,

lim
nk→∞ sup

0≤s≤T
ee

−αT (1+|Xnk (s)|2)1−γ = sup
0≤s≤T

ee
−αT (1+|X (s)|2)1−γ

.

We can then apply Fatou’s lemma again to obtain the claim.
For γ = 1 we can repeat the same arguments applied to the function

eβe−αs (log(2+|x |2))2 . �
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Lemma 3.19 Let A be a linear, densely defined maximal dissipative operator in H
and B an operator satisfying the weak B-condition for A for some constant c0 > 0.
Then:

(i) For any R > 0 there exists a constant C(R) such that, for x ∈ H, |x | ≤ R and
t ≥ 0,

|et Ax − x |−1 ≤ C(R)
√
t . (3.19)

(ii) If B satisfies the strong B-condition for A with constant c0 then, for x ∈ H and
t ≥ 0,

|et Ax |2−1 + 2t |et Ax |2 ≤ e2c0t |x |2−1. (3.20)

Proof (i) Let Z(t) = et Ax . If x ∈ D(A), using that A is maximal dissipative,
Theorem B.45, and (3.2) we have

|Z(t)− x |2−1 =
∫ t

0
〈2B(Z(s)− x), AZ(s)〉ds

≤ 2
∫ t

0
〈A∗BZ(s), Z(s)〉ds + 2‖A∗B‖|x |2t

≤ 2c0

∫ t

0
|Z(s)|2−1ds + 2‖A∗B‖|x |2t ≤ (2c0‖B‖|x |2 + 2‖A∗B‖|x |2)t.

The estimate now follows by density of D(A).
(i i) Again it is enough to show the estimate for x ∈ D(A). We then have by (3.3)

d

ds
|Z(s)|2−1 = 2〈A∗BZ(s), Z(s)〉 ≤ 2c0|Z(s)|2−1 − 2|Z(s)|2,

and thus

d

ds

(
e−2c0s |Z(s)|2−1

) =− 2c0e
−2c0s |Z(s)|2−1

+ e−2c0s
d

ds
|Z(s)|2−1 ≤ −2e−2c0s |Z(s)|2.

Integrating we obtain

e−2c0t |Z(t)|2−1 + 2
∫ t

0
e−2c0s |Z(s)|2ds ≤ |x |2−1.

The inequality now follows upon noticing that e−2c0t |Z(t)|2 ≤ e−2c0s |Z(s)|2 for
0 ≤ s ≤ t , since esA is a semigroup of contractions. �
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Lemma 3.20 Let A be a linear, densely defined maximal dissipative operator in H
and B an operator satisfying the weak B-condition for A for some c0 ≥ 0. Let (3.7),
(3.9) and (3.10) with γ = 1 hold, and let

〈b(s, x, a)− b(s, y, a), B(x − y)〉 ≤ C |x − y|2−1 (3.21)

‖σ(s, x, a)− σ(s, y, a)‖L2(�0,H) ≤ C |x − y|−1, (3.22)

for all x, y ∈ H, s ∈ [0, T ] and a ∈ �. If X (·) and Y (·) are the mild solutions
of (3.5) with initial conditions X (0) = x and Y (0) = y respectively, driven by the
same progressively measurable process a(·) : [0, T ] ×� → �, then

sup
s∈[0,T ]

E
[|X (s)− Y (s)|2−1

] ≤ C(T )|x − y|2−1, (3.23)

where C(T ) is a constant depending only on T,C, c0, ‖B‖.
Proof We define the function

{
F : H → R

F(z) = |z|2−1 = 〈Bz, z〉 .

We notice that DF(z) = 2Bz and D2F(z) = 2B. We will apply Itô’s formula to F
along the trajectories of the process Z(·) := X (·)−Y (·), which is a mild solution of

{
dZ(s) = (AZ(s)+ f (s)) ds +�(s)dWQ(s),
Z(0) = x − y,

where, for any s ∈ [0, T ], f (s) := b(s, X (s), a(s)) − b(s, Y (s), a(s)) and
�(s) := σ(s, X (s), a(s))−σ(s, Y (s), a(s)). Thanks to (3.7), (3.9), (3.10) and (3.22),
the assumptions of Theorem1.130 are satisfied and thus we have (1.37) and the
hypotheses of Proposition1.164 are satisfied. Therefore we have, for all s ∈ [0, T ],

E
[|Z(s)|2−1

] = |x − y|2−1 +
∫ s

0
E
[〈
2A∗BZ(r), Z(r)

〉+ 〈2BZ(r), f (r)〉] ds

+
∫ s

0
E

[
Tr

((
�(r)Q

1
2

) (
�(r)Q

1
2

)∗
B

)]
dr,

(3.24)

and using (3.2), (3.21) and (3.22), we find

E
[|Z(s)|2−1

] ≤ |x − y|2−1+
∫ s

0
E
[
2c0|Z(r)|2−1 + 2C |Z(r)|2−1

]
dr

+
∫ s

0
E
[‖B‖C2|Z(r)|2−1

]
dr.
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Applying Gronwall’s lemma we obtain (3.23). �

Remark 3.21 Condition (3.21) is obviously satisfied if

|b(s, x, a)− b(s, y, a)|−1 ≤ C |x − y|−1
for all x, y ∈ H , s ∈ [0, T ] and a ∈ �.

Condition (3.22) is satisfied if σ(s, x, a) = σ0(s, Kx, a) for some σ0 : [0, T ] ×
H ×� → L2(�0, H) which satisfies (3.8) and K ∈ L(H) such that |Kx | ≤ L|x |−1
for some L ≥ 0 and all x ∈ H . This requirement is also necessary since it is easy to see
that the functionσ0(t, x, a) := σ(t, B−1/2x, a) satisfies (3.8) on [0, T ]×R(B1/2)×�

and thus it can be uniquely extended to a functionσ0 on [0, T ]×H×�which satisfies
(3.8). Thenσ(s, x, a) = σ0(s, B1/2x, a).We also remark that, by PropositionB.2-(i),
|Kx | ≤ L|x |−1 for all x ∈ H is equivalent to R(K ∗) ⊂ R(B1/2). �

Lemma 3.22 Let A be a linear, densely defined maximal dissipative operator in
H. Let B be a bounded, strictly positive, self-adjoint operator on H such that A∗B
is bounded. Let (3.7)–(3.10) with γ = 1 hold. If X (·) is the mild solution of (3.5)
with initial condition X (0) = x driven by a progressively measurable process a(·) :
[0, T ] ×� → �, then

E
[|X (s)− x |2−1

] ≤ C(|x |, T )s, for all s ∈ [0, T ], (3.25)

where C(|x |, T ) is a constant depending only on T, |x |,C, ‖B‖, ‖A∗B‖.
Proof We define the function

{
F : H → R

F(z) = |z − x |−1 = 〈B(z − x), z − x〉 .

We have DF(z) = 2B(z − x) and D2F(z) = 2B, and applying Proposition1.165
yields

E

[
|X (s)− x |2−1

]

= 2
∫ s

0
E
[〈
X (r), A∗B(X (r)− x)

〉+ 〈b(r, X (r), a(r)), B(X (r)− x)〉] dr

+
∫ s

0
E

[
Tr
( (

σ(r, X (r), a(r))Q
1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
B
)]

dr, s ∈ [0, T ].
(3.26)

Using (3.9), (3.10), the boundedness of A∗B and (1.37), we easily deduce using the
Cauchy–Schwarz inequality, that the absolute values of the integrands in the right-
hand side of (3.26) remain bounded by some constant C(T, |x |) depending only on
T, |x |,C, ‖B‖, ‖A∗B‖. This concludes the proof of (3.25). �



186 3 Viscosity Solutions

Lemma 3.23 Let A be a linear, densely defined maximal dissipative operator in H
and B an operator satisfying the strong B-condition for A for some c0 ≥ 0. Let
(3.7), (3.9), (3.10) and (3.22) hold. If X (·) and Y (·) are the mild solutions of (3.5)
with initial conditions X (0) = x and Y (0) = y respectively, driven by the same
progressively measurable process a(·) : [0, T ] ×� → �, then

sup
s∈[0,T ]

(
E
[|X (s)− Y (s)|2−1

]+ E

∫ s

0
|X (r)− Y (r)|2dr

)
≤ C(T )|x − y|2−1

(3.27)

and, for any s ∈ (0, T ),

E
[|X (s)− Y (s)|2] ≤ C(T )

s
|x − y|2−1, (3.28)

where C(T ) is a constant depending only on T,C, c0, ‖B‖.
Proof Following the proof of Lemma 3.20 if we define, for any s ∈ [0, T ],
Z(s) = X (s) − Y (s), f (s) = b(s, X (s), a(s)) − b(s, Y (s), a(s)) and �(s) =
σ(s, X (s), a(s))− σ(s, Y (s), a(s)), we have (as in (3.24)):

E
[|Z(s)|2−1

] = |x − y|2−1 +
∫ s

0
E
[〈
2A∗BZ(r), Z(r)

〉+ 〈2BZ(r), f (r)〉] ds

+
∫ s

0
E

[
Tr

((
�(r)Q

1
2

) (
�(r)Q

1
2

)∗
B

)]
dr, s ∈ [0, T ].

(3.29)

We observe that (3.3) implies

〈
2A∗BZ(r), Z(r)

〉+ 〈2Z(r), Z(r)〉 ≤ 〈2c0BZ(r), Z(r)〉 ,

which, together with (3.7), gives

〈
2A∗BZ(r), Z(r)

〉+ 〈2BZ(r), f (r)〉
≤ 2c0|Z(r)|2−1 − 2|Z(r)|2 + 2C‖B‖1/2|Z(r)|−1|Z(r)| ≤ c1|Z(r)|2−1 − |Z(r)|2,

(3.30)

where c1 depends on c0, ‖B‖ and C . Using (3.22) we have

Tr

((
�(r)Q

1
2

) (
�(r)Q

1
2

)∗
B

)
≤ ‖B‖C2|Z(r)|2−1 = c2|Z(r)|2−1. (3.31)

It thus follows from (3.29)–(3.31) that, for s ∈ [0, T ],

E
[|Z(s)|2−1

]+
∫ s

0
E
[|Z(r)|2] dr ≤ |x − y|2−1 + (c1 + c2)

∫ s

0
E
[|Z(r)|2−1

]
dr.
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Such an inequality holds, of course, also dropping the positive term
∫ s
0 E
[|Z(r)|2] dr

and then (3.27) follows easily from Gronwall’s lemma. Regarding (3.28), using the
definition of mild solution, (3.20), (3.27), and elementary computations, we have,
for s ∈ [0, T ],

E
[|X (s)− Y (s)|2] ≤ C1(|esA(x − y)|2 + |x − y|2−1) ≤

C2

s
|x − y|2−1,

where C1 and C2 only depend on T,C, c0, ‖B‖. �

Proposition 3.24 Let m > 0. Let (3.7) and (3.8), (3.9) and (3.10) with γ = 1 hold
for all s ∈ [0,+∞). Let X (·) be the mild solution of (3.5), driven by a progressively
measurable process a(·) : [0,+∞)×� → � and let C be the constant appearing
in (3.9) and (3.10). Let

λ̄ = Cm + 1

2
C2m(m − 1) if m ≥ 2

and

λ̄ = Cm + 1

2
C2m if 0 < m < 2.

Then for every λ > λ̄ there exists a constant Cλ such that

E

[(
Cλ + |X (s)|2) m

2

]
≤ (Cλ + |x |2) m

2 eλs for all s ≥ 0. (3.32)

Proof Let λ > λ̄ and let ε = ε(λ) > 0 be such that λ̄(1 + ε) = λ. We set Cλ > 1
to be a number such that 2r ≤ Cλ − 1+ εr2 for all r ≥ 0. It is then easy to see that

Cmr(1+ r)+ 1

2
C2m(m − 1)(1+ r)2 ≤ λ(Cλ + r2) for all r ≥ 0.

Define F(z) = (Cλ + |z|2) m
2 . Then DF(z) = m(Cλ + |z|2) m−2

2 z and D2F(z) =
m(m − 2)(Cλ + |z|2) m−4

2 z ⊗ z + m(Cλ + |z|2) m−2
2 I .

Assume first that m ≥ 2. Using Proposition1.166 and (3.9), (3.10) we then have

E

[(
Cλ + |X (s)|2) m

2

]
≤ (Cλ + |x |2) m

2

+
∫ s

0
E

[
m(Cλ + |X (r)|2) m−2

2 〈X (r), b(r, X (r), a(r))〉

+ 1

2
Tr

((
σ(r, X (r), a(r))Q

1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗

×
(
m(m − 2)(Cλ + |X (r)|2) m−4

2 X (r)⊗ X (r)+ m(Cλ + |X (r)|2) m−2
2 I
))]

dr



188 3 Viscosity Solutions

≤ (Cλ + |x |2) m
2 + λ

∫ s

0
E

[(
Cλ + |X (r)|2) m

2

]
dr (3.33)

and we conclude applying Gronwall’s lemma.
For 0 < m < 2 the first term in the fourth line of (3.33) can be dropped and we

argue as before since

Cmr(1+ r)+ 1

2
C2m(1+ r)2 ≤ λ(Cλ + r2) for all r ≥ 0. �

3.1.3 Perturbed Optimization

The following is a classical result of Ekeland and Lebourg [204], see also [535] and
[403], Lemma 4.2, p. 245, for a more general formulation.

Theorem 3.25 (Ekeland–Lebourg Theorem) Let D be a bounded closed subset of
a real Hilbert space K and f : D → R∪ {−∞} be upper semicontinuous and such
that dom ( f ) := {x ∈ D : f (x) ∈ R} = ∅. Suppose that f is bounded from above.
Then, for any δ > 0, there exist y ∈ K , x̂ ∈ D such that |y|K < δ and the function

x→ f (x)+ 〈y, x〉K
has a strict maximum over D at x̂ .

Corollary 3.26 Let H be a real, separable Hilbert space with inner product 〈·, ·〉, let
B be a strictly positive operator in S(H) and D⊂H be a bounded, B-closed subset
of H. Let f : D → R∪{−∞} be a B-upper semicontinuous function, bounded from
above. Then, for any δ > 0, there exist p ∈ H, x̂ ∈ D such that |p| < δ, and the
function

x → f (x)+ 〈Bp, x〉

attains a maximum over D at x̂ , which is strict in the topology of H−2.

Proof We want to apply Theorem3.25 to D endowed with the topology induced by
H−2.

D is obviously bounded in H−2 and it is easy to see that D is closed in H−2. To
prove this, let (xn)n∈N be a sequence in D such that xn

n→∞−−−→
H−2

x ∈ H−2, i.e. Bxn → z

for some z ∈ H . Since D is bounded in H , there is a subsequence, still denoted by

xn , such that xn
H
⇀ x̃ ∈ H for some x̃ ∈ D. But the graph of B is weakly sequentially

closed, so we obtain Bx̃ = z, which implies that |xn − x̃ |−2 → 0, and thus x = x̃ .
Since D is B-closed, we thus have x ∈ D.

In particular, we showed that if (xn) is a sequence in D such that xn
n→∞−−−→
H−2

x , then

x ∈ D and xn ⇀ x . Since f is B-upper semicontinuous, this shows that f is upper
semicontinuous on D considered as a subset of H−2.
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We can now apply Theorem3.25 to obtain that for all δ > 0 there exists a y ∈ H−2
with |y|H−2 < δ such that x→ f (x) + 〈y, x〉H−2 attains a strict maximum (in the
topology of H−2) on D at some point x̂ . Define p := By ∈ H . Since B : H−2 → H
is an isometry, we have that |p| = |y|−2 < δ. Therefore for x ∈ H , 〈y, x〉H−2 =〈
B2y, x

〉
H
= 〈Bp, x〉H , which completes the proof. �

3.2 A Maximum Principle

From now on, throughout the rest of this chapter, unless stated otherwise, A is a
linear, densely defined, maximal dissipative operator in H .

In this section B is any strictly positive operator in S(H). Let {e1, e2, ...} be an
orthonormal basis in H−1 (see Definition3.1) made of elements of H . For N > 2 we
let HN = span{e1, ..., eN }. Let PN : H−1 → H−1 be the orthogonal projection onto
HN . It is clear that PN is also a bounded operator on H and therefore so is QN := I−
PN , i.e. PN , QN ∈ L(H). It is also easy to see that BPN = P∗N BPN = P∗N B, BQN

= Q∗
N BQN = Q∗

N B, where P∗N , Q∗
N are adjoints of PN , QN as operators in L(H).

For x ∈ H we will write xN := PN x , x⊥N := QN x .
We remark that if B is compact then ‖BγQN‖ → 0 as N →+∞ for every γ > 0.

Also in this case a natural choice for the basis {e1, e2, ...} is to take ei = B− 1
2 fi ,

where { f1, f2, ...} is an orthonormal basis of H composed of eigenvectors of B. This
choice of basis has the property that it is orthogonal in H−1 and H .

For a function w ∈ C2(H−1) we will write DH−1w, D2
H−1w to denote the Fréchet

derivatives of w when w is considered as a function in C2(H−1) whereas Dw, D2w

mean the Fréchet derivatives of w when w is considered as a function in C2(H).
We remark that the spaces H1, H2 in Theorem3.27 are the spaces introduced in
Sect. 3.1.1, not one of the spaces HN defined above. This is whywe put the restriction
N > 2.

Theorem 3.27 (Maximum Principle) Let B ∈ S(H) be strictly positive and let
N > 2, κ > 0. Let u, v : H → R ∪ {−∞} be B-upper semicontinuous functions
bounded from above and such that

lim sup
|x |→+∞

u(x)

|x | < 0 and lim sup
|x |→+∞

v(x)

|x | < 0. (3.34)

Let � ∈ C2(HN × HN ) be such that

u(xN + x⊥N )+ v(yN + y⊥N )−�(xN , yN )

has a strict global maximum over H×H at a point (x̄, ȳ). Then there exist functions
ϕk,ψk ∈ C2(H) for k = 1, 2, ... such that ϕk, B−1Dϕk, D2ϕk,ψk, B−1Dψk, D2ψk

are bounded and uniformly continuous, and such that
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u(x)− ϕk(x)

has a global maximum at some point xk ,

v(y)− ψk(y)

has a global maximum at some point yk, and

(
xk, u(xk), Dϕk(xk), D

2ϕk(xk)
) k→+∞−−−−→(x̄, u(x̄), Dx�(x̄N , ȳN ), XN

)

in H × R× H2 × L(H−1, H1), (3.35)

(
yk, v(yk), Dψk(yk), D

2ψk(yk)
) k→+∞−−−−→(ȳ, v(ȳ), Dy�(x̄N , ȳN ), YN

)

in H × R× H2 × L(H−1, H1), (3.36)

where XN , YN ∈ S(H), XN = P∗N XN PN , YN = P∗NYN PN ,

−
(
1

κ
+ ‖C‖L(H−1×H−1)

)(
BPN 0
0 BPN

)

≤
(
XN 0
0 YN

)
≤
(
B 0
0 B

) (
C + κC2

)
(3.37)

and C = D2
H−1×H−1�(x̄N , ȳN ).

We remark that in fact ϕk,ψk ∈ C2(H−1).
Proof Define

ũ(xN ) := sup
x⊥N∈QN H

u(xN + x⊥N ),

ṽ(yN ) := sup
y⊥N∈QN H

v(yN + y⊥N ),

the partial sup-convolutions of u and v respectively, and let ũ∗ and ṽ∗ be their upper
semicontinuous envelopes (see Definition D.10). We remark that ũ, ṽ do not need to
be upper semicontinuous (see [140]). Since u + v −� has a strict global maximum
at (x̄, ȳ) it easily follows that

ũ∗(xN )+ ṽ∗(yN )−�(xN , yN ) (3.38)

has a strict globalmaximumover HN×HN at (x̄N , ȳN ).Moreover,we have ũ∗(x̄N ) =
u(x̄), ṽ∗(ȳN ) = v(ȳ).

We can now apply the finite-dimensional maximum principle (see Theorem E.10,
which is a particular case of Theorem 3.2 in [139]) when we consider HN as a
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subspace of H−1. (We recall that in HN the topology of H−1 is equivalent to the
topology of H .) Denote HN with this topology by H̃N . We also note that � ∈
C2(H̃N × H̃N ) and thus we can consider it as a function in C2(H−1 × H−1) by
setting �(x, y) := �(PN x, PN y).

Therefore there exist bounded functions ϕk,ψk ∈ C2(H̃N ) with bounded and
uniformly continuous derivatives (which we can consider as functions in C2(H−1)
by setting ϕk(x) := ϕk(PN x) and ψk(y) := ψk(PN y)) such that ũ∗(xN ) − ϕk(xN )

has a strict global maximum at some point xkN , ṽ
∗(yN )− ψk(yN ) has a strict global

minimum at some point ykN , and such that

(
xkN , ũ∗(xkN ), DH−1ϕk(x

k
N ),D2

H−1ϕk(x
k
N )
)

k→∞−−−→ (
x̄N , u(x̄), DH−1,x�(x̄N , ȳN ), X̃ N

)
, (3.39)

(
ykN , ṽ∗(ykN ), DH−1ψk(y

k
N ),D2

H−1ψk(y
k
N )
)

k→∞−−−→ (
ȳN , v(ȳ), DH−1,y�(x̄N , ȳN ), ỸN

)
, (3.40)

and

−
(
1

κ
+ ‖C‖L(H−1×H−1)

)(
PN 0
0 PN

)

≤
(
X̃ N 0
0 ỸN

)
≤ C + κC2 in H−1 × H−1 (3.41)

for some X̃ N , ỸN ∈ S(H−1) that satisfy X̃ N = PN X̃N PN , ỸN = PN ỸN PN as
operators in L(H−1) and, since

DH−1ϕk(x
k
N ) = PN DH−1ϕk(x

k
N ), D2

H−1ϕk(x
k
N ) = PN D

2
H−1ϕk(x

k
N )PN ,

DH−1ψk(x
k
N ) = PN DH−1ψk(y

k
N ), D2

H−1ψk(y
k
N ) = PN D

2
H−1ψk(y

k
N )PN ,

and in HN the topology of H−1 is equivalent to the topology of H , the convergences
(3.39), (3.40) hold in H × R× H × L(H−1).

It is easy to see that

Dϕk(x) = BDH−1ϕk(x), D2ϕk(x) = BD2
H−1ϕk(x),

Dψk(y) = BDH−1ψk(y), D2ψk(y) = BD2
H−1ψk(y).

(Note that if X ∈ S(H−1) then BX ∈ S(H) since for x, y ∈ H we have 〈BXx, y〉 =
〈Xx, y〉−1 = 〈x, Xy〉−1 = 〈x, BXy〉.) Therefore, setting XN = B X̃N , YN = BỸN ,
we obtain from (3.39) and (3.40) that
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(
xkN , ũ∗(xkN ), Dϕk(x

k
N ), D2ϕk(x

k
N )
) k→∞−−−→ (

x̄N , u(x̄), Dx�(x̄N , ȳN ), XN
)

in H × R× H2 × L(H−1, H1), (3.42)

(
ykN , ṽ∗(ykN ), Dψk(y

k
N ), D2ψk(y

k
N )
) k→∞−−−→ (

ȳN , v(ȳ), Dy�(x̄N , ȳN ), YN
)

in H × R× H2 × L(H−1, H1), (3.43)

XN = P∗N XN PN , YN = P∗NYN PN , and (3.37) is satisfied.
Now, using Corollary3.26 and (3.34), for every k and j big enough we can find

pkj , q
k
j ∈ H such that |pkj | + |qk

j | ≤ 1/j , and

u(x)− ϕk(x)− 〈Bpkj , x〉 has a global maximum at some point xkj , (3.44)

and

v(y)− ψk(y)− 〈Bqk
j , y〉 has a global maximum at some point ykj , (3.45)

where, because of (3.34), |xkj | + |ykj | ≤ Rk for some Rk > 0. Then if |x |, |y| ≤ R
for R ≥ Rk

ũ∗((xkj )N )+ ṽ∗((ykj )N )− ϕk(x
k
j )− ψk(y

k
j )

≥ u(xkj )+ v(ykj )− ϕk(x
k
j )− ψk(y

k
j )

≥ u(x)+ v(y)− ϕk(x)− ψk(y)− 〈Bpkj , x − xkj 〉 − 〈Bqk
j , y − ykj 〉

≥ u(x)+ v(y)− ϕk(x)− ψk(y)− 4R‖B‖
j

.

(3.46)

Since by (3.34) if j is big enough, u(x) − ϕk(x) − 〈Bpkj , x − xkj 〉 → −∞ as
|x | → +∞, and v(y)−ψk(y)− 〈Bqk

j , y − ykj 〉 → −∞ as |y| → +∞, choosing R
big enough and taking suprema over x⊥N , y⊥N in (3.46) and then envelopes at xkN , ykN
we obtain for sufficiently big j that

ũ∗((xkj )N )+ ṽ∗((ykj )N )− ϕk(x
k
j )− ψk(y

k
j )

≥ u(xkj )+ v(ykj )− ϕk(x
k
j )− ψk(y

k
j )

≥ ũ∗(xkN )+ ṽ∗(ykN )− ϕk(x
k)− ψk(y

k)− 4R‖B‖
j

.

(3.47)

Since ũ∗(xN ) + ṽ∗(yN ) − ϕk(xN ) − ψk(yN ) has a strict global maximum at
(xkN , ykN ), we deduce from (3.47) that
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(xkj )N → xkN , (ykj )N → ykN , ũ∗((xkj )N ) → ũ∗(xkN ), ṽ∗((ykj )N ) → ṽ∗(ykN )

(3.48)

as j →+∞ and then also

u(xkj ) → ũ∗(xkN ), v(ykj ) → ṽ∗(ykN ) as j →+∞. (3.49)

Using these and (3.42) and (3.43) we can therefore select a subsequence jk such
that

(
(xkjk )N , u(xkjk ), Dϕk(x

k
jk ), D

2ϕk(x
k
jk )
) k→∞−−−→(x̄N , u(x̄), Dx�(x̄N , ȳN ), XN

)

in H × R× H2 × L(H−1, H1),

(
(ykjk )N , v(ykjk ), Dψk(y

k
jk ), D

2ψk(y
k
jk )
) k→∞−−−→(ȳN , v(ȳ), Dy�(x̄N , ȳN ), YN

)

in H × R× H2 × L(H−1, H1).

It remains to show that xkjk → x̄ and ykjk → ȳ. However, this is now obvious since

u(xkjk )+ v(xkjk )−�((xkjk )N , (ykjk )N ) → u(x̄)+ v(ȳ)−�(x̄N , ȳN )

and by assumption this function has a strict global maximum at (x̄, ȳ). Therefore
the lemma holds with ϕk(x) := ϕk(x)+ 〈Bpkjk , x〉, ψk(y) := ψk(y)+ 〈Bqk

jk
, y〉 and

xk := xkjk , yk := ykjk . �

Theorem3.27 applied to �(xN , yN ) = 1
2ε |xN − yN |2−1 for ε > 0 yields the

following result which will be used in the proofs of comparison theorems.

Corollary 3.28 Let B ∈ S(H) be strictly positive and let N ≥ 2, ε > 0. Let
u,−v : H → R∪{−∞} be B-upper semicontinuous functions bounded from above
and satisfying (3.34). Let

u(xN + x⊥N )− v(yN + y⊥N )− |xN − yN |2−1
2ε

have a strict global maximum over H×H at a point (x̄, ȳ). Then there exist functions
ϕk,ψk ∈ C2(H) for k = 1, 2, ... such that ϕk, B−1Dϕk, D2ϕk,ψk, B−1Dψk, D2ψk

are bounded and uniformly continuous, and such that

u(x)− ϕk(x)

has a global maximum at some point xk ,

v(y)− ψk(y)
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has a global minimum at some point yk, and

(
xk, u(xk), Dϕk(xk), D

2ϕk(xk)
) k→∞−−−→

(
x̄, u(x̄),

B(x̄N − ȳN )

ε
, XN

)

in H × R× H2 × L(H−1, H1), (3.50)

(
yk, v(yk), Dψk(yk), D

2ψk(yk)
) k→∞−−−→

(
ȳ, v(ȳ),

B(x̄N − ȳN )

ε
, YN

)

in H × R× H2 × L(H−1, H1), (3.51)

where XN = P∗N XN PN , YN = P∗NYN PN ,

− 3

ε

(
BPN 0
0 BPN

)
≤
(
XN 0
0 −YN

)
≤ 3

ε

(
BPN −BPN

−BPN BPN

)
. (3.52)

Proof Observe that if �(xN , yN ) = 1
2ε |xN − yN |2−1 then

C = D2
H−1×H−1�(xN , yN ) = 1

ε

(
PN −PN

−PN PN

)

and thus κC2 = 2κ
ε
C and ‖C‖L(H−1×H−1) = 2

ε
. Then (3.52) follows from (3.37)

choosing κ = ε. �

We remark that the convergence in L(H−1, H1) in particular implies convergence
in L(H).

The time-dependent analogue of Corollary3.28 is the following.

Corollary 3.29 Let B ∈ S(H) be strictly positive and let N ≥ 2, ε,β > 0. Let
u,−v : (0, T ) × H → R ∪ {−∞} be B-upper semicontinuous functions bounded
from above and satisfying

lim sup
|x |→+∞

sup
t∈(0,T )

u(t, x)

|x | < 0 and lim sup
|x |→+∞

sup
t∈(0,T )

−v(t, x)

|x | < 0. (3.53)

Let

u(t, xN + x⊥N )− v(s, yN + y⊥N )− |xN − yN |2−1
2ε

− (t − s)2

2β

have a strict global maximum over (0, T )× H × (0, T )× H at a point (t̄, x̄, s̄, ȳ).
Then there exist functions ϕk,ψk ∈ C2((0, T ) × H) for k = 1, 2, ... such that
ϕk, (ϕk)t , B−1Dϕk, D2ϕk,ψk, (ψk)t , B−1Dψk, D2ψk are bounded and uniformly
continuous, and such that

u(t, x)− ϕk(t, x)
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has a global maximum at some point (tk, xk),

v(s, y)− ψk(s, y)

has a global minimum at some point (sk, yk), and

(
tk, xk, u(tk, xk), (ϕk)t (tk, xk), Dϕk(tk, xk), D

2ϕk(tk, xk)
)

k→∞−−−−−−−−−−−−−−−−→
R×H×R×R×H2×L(H−1,H1)

(
t̄, x̄, u(t̄, x̄),

t̄ − s̄

β
,
B(x̄N − ȳN )

ε
, XN

)
(3.54)

(
sk, yk, v(sk, yk), (ψk)t (sk, yk), Dψk(sk, yk), D

2ψk(sk, yk)
)

k→∞−−−−−−−−−−−−−−−−→
R×H×R×R×H2×L(H−1,H1)

(
s̄, ȳ, v(s̄, ȳ),

t̄ − s̄

β
,
B(x̄N − ȳN )

ε
, YN

)
(3.55)

where XN = P∗N XN PN , YN = P∗NYN PN and they satisfy (3.52).

Proof We can obviously extend u, v to R × H preserving all the properties of the
functions and the strict global maximum at (t̄, x̄, s̄, ȳ). We consider the space H̃ =
R× H and the operator B̃ := IR × B. Writing (t, x) for elements of this extended
space we now consider the function �(t, xN , s, yN ) = 1

2ε |xN − yN |2−1+ 1
2β (t − s)2.

We now rescale time by setting

ũ(t, x) = u

((
β

ε

) 1
2

t, x

)

, ṽ(s, y) = u

((
β

ε

) 1
2

s, y

)

,

�̃(t, xN , s, yN ) = �

((
β

ε

) 1
2

t, xN ,

(
β

ε

) 1
2

s, yN

)

= |xN − yN |2−1
2ε

+ (t − s)2

2ε
.

Then
ũ(t, x)− ṽ(s, y)− �̃(t, xN , s, yN )

has a strict global maximum over H̃ × H̃ at the point (( ε
β
)
1
2 t̄, x̄, ( ε

β
)
1
2 s̄, ȳ). We can

now apply Corollary3.28 to produce the required functions ϕk,ψk . We now have
operators X̃ N , ỸN satisfying a version of (3.52) on H̃ × H̃ . However, it is easy to see
that its restriction to {0}×H×{0}×H gives (3.52). The claim follows after rescaling
time back to the original variables which will only change the time derivatives of
ϕk,ψk . �

Remark 3.30 Adifferent typeof time-dependentmaximumprinciple canbeobtained
which relies on the finite-dimensional parabolic maximum principle presented in
Theorem E.11. Such a result can be found in [140], Theorem 3.2, however it is stated
there in a version which uses second-order parabolic jets and is applicable to equa-
tions with bounded terms (see Sect. 3.3.1). Theorem 3.2 in [140] also imposes an
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additional condition on the functions, which is satisfied when they are viscosity sub-
and supersolutions of bounded time-dependent second-order equations in a Hilbert
space. The maximum principle stated in Corollary3.29 does not impose extra con-
ditions and thus it is more universal and can be applied more easily, which is why
we prefer it here. However, the other maximum principle has certain advantages. For
instance, one can use it to prove comparison principles for bounded time-dependent
second-order equations in a Hilbert space without the assumption that the viscosity
subsolutions and supersolutions attain the initial/terminal values locally uniformly.
Such results can be found in [378]. This type of maximum principle was also implic-
itly used in [537, 538]. �

3.3 Viscosity Solutions

Throughout this section U is an open subset of H and the operator B satisfies the
following assumption (see Sect. 3.1.1).

Hypothesis 3.31 B ∈ S(H) is a strictly positive operator such that A∗B is bounded.

Contrary to the finite-dimensional case, in infinite dimension there is no one
universal definition of viscosity solution. The basic idea of using a pointwise max-
imum principle and replacing nonexistent derivatives of a solution by derivatives
of test functions is still the same. However, because of the presence of unbounded
terms and operators, the choice of test functions and the interpretation of unbounded
terms often must be adjusted for different types of equations. In this section we
present a generic definition of viscosity solution for a general class of stationary equa-
tions and time-dependent Cauchy problems. The solutions defined below are called
B-continuous viscosity solutions.

We consider the following boundary and terminal boundary value problems:

{−〈Ax, Du〉 + F(x, u, Du, D2u) = 0 in U
u(x) = f (x) on ∂U

(3.56)

and
⎧
⎨

⎩

ut − 〈Ax, Du〉 + F(t, x, u, Du, D2u) = 0 in (0, T )×U
u(0, x) = g(x) for x ∈ U,

u(t, x) = f1(t, x) for (t, x) ∈ (0, T )× ∂U,

(3.57)

where F : (0, T ) × U × R × H × S(H) → R, g : U → R, f : ∂U → R, and
f1 : (0, T )× ∂U → R are continuous.
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Definition 3.32 A function ψ is a test function if ψ = ϕ+ h(t, |x |), where:
(i) ϕ ∈ C1,2 ((0, T )×U ) is locally bounded, and is such that ϕ is B-lower semi-

continuous, andϕt , A∗Dϕ, Dϕ, D2ϕ are uniformly continuous on (0, T )×U .
(ii) h ∈ C1,2((0, T ) × R) and is such that for every t ∈ (0, T ), h(t, ·) is even and

h(t, ·) is non-decreasing on [0,+∞).

For stationary equations ϕ and h are independent of t .

We remark that even though |x | is not differentiable at 0, the function h(t, |x |) ∈
C1,2((0, T ) × H). The requirement that ϕt , A∗Dϕ, Dϕ, D2ϕ are uniformly con-
tinuous (and hence grow at most linearly at infinity) is a little arbitrary. It can be
replaced by a requirement that they are locally uniformly continuous and have some
prescribed growth at infinity, for instance at most polynomial. The growth restriction
can also be removed, however it is useful in applications to stochastic optimal control
since it is not clear if one can modify a test function ϕ outside a fixed set so that
the modification has a required growth at infinity, while preserving the property that
A∗Dϕ is continuous. Thus the radial part h of test functions, which can be modified
at will, plays the role of a cut-off function which takes care of the growth at infin-
ity. We can thus require ϕ to be as nice as we want as long as our choice gives us
enough test functions which are needed to build a good theory. The requirement that
A∗Dϕ is uniformly continuous can also be replaced by a requirement that B−1Dϕ is
continuous. This, however, would make the definition more dependent on the choice
of B. The reader can experiment with various modifications of the above definition
and we will later see how the choice of test functions must be adjusted to particular
cases.

Definition 3.33 A locally bounded B-upper semicontinuous (see Definition3.3)
function u on U is a viscosity subsolution of (3.56) if u ≤ f on ∂U and when-
ever u − ψ has a local maximum at a point x for a test function ψ = ϕ + h(|x |)
then

− 〈x, A∗Dϕ(x)〉 + F(x, u(x), Dψ(x), D2ψ(x)) ≤ 0. (3.58)

A locally bounded B-lower semicontinuous function u on U is a viscosity superso-
lution of (3.56) if u ≥ f on ∂U and whenever u+ψ has a local minimum at a point
x for a test function ψ = ϕ+ h(|x |) then

〈x, A∗Dϕ(x)〉 + F(x, u(x),−Dψ(x),−D2ψ(x)) ≥ 0. (3.59)

A viscosity solution of (3.56) is a function which is both a viscosity subsolution and
a viscosity supersolution of (3.56).

Definition 3.34 A locally bounded B-upper semicontinuous function u on [0, T )×
U is a viscosity subsolution of (3.57) if u(0, y) ≤ g(y) for y ∈ U , u ≤ f1 on
(0, T )×∂U and whenever u−ψ has a local maximum at a point (t, x) ∈ (0, T )×U
for a test function ψ(s, y) = ϕ(s, y)+ h(s, |y|) then
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ψt (t, x)− 〈x, A∗Dϕ(t, x)〉 + F(t, x, u(t, x), Dψ(t, x), D2ψ(t, x)) ≤ 0. (3.60)

A locally bounded B-lower semicontinuous function u on [0, T )×U is a viscosity
supersolution of (3.57) if u(0, y) ≥ g(y) for y ∈ U , u ≥ f1 on (0, T ) × ∂U and
whenever u+ψ has a local minimum at a point (t, x) ∈ (0, T )×U for a test function
ψ(s, y) = ϕ(s, y)+ h(s, |y|) then

− ψt (t, x)+ 〈x, A∗Dϕ(t, x)〉 + F(t, x, u(t, x),−Dψ(t, x),−D2ψ(t, x)) ≥ 0.
(3.61)

A viscosity solution of (3.57) is a function which is both a viscosity subsolution and
a viscosity supersolution of (3.57).

The main idea behind this definition of solution is the following. Test functions
are split into two categories. Good test functionsϕ provide enough functions to apply
the doubling argument in the proof of comparison and produce maxima and minima
using perturbed optimization by functions in this class. Radial functions h are needed
as cut-off functions to be able to produce local/global maxima and minima and to
confine the region of their possible locations. As always in the theory of viscosity
solutions, non-existing derivatives of u are replaced by existing derivatives of test
functions. The term 〈Ax, Dϕ(t, x)〉 is interpreted as 〈x, A∗Dϕ(t, x)〉. We cannot do
the same with the term 〈Ax, Dh(t, |x |)〉 since Dh(t, |x |) = hr (t, |x |) x

|x | (where hr
is the partial derivative of h with respect to the second variable) and we cannot hope
in general that x ∈ D(A∗) (nor that x ∈ D(A)). Therefore this term is dropped. This
can be done effectively since the term hr (t,|x |)

|x | 〈Ax, x〉 (or hr (t,|x |)
|x | 〈A∗x, x〉) would be

non-positive if it were well defined. Thus the definition is consistent with what the
definition of viscosity solution should be under ideal conditions.

In applications to control problems it is more natural to work with terminal value
problems insteadof initial value problems.A terminal value problemcanbe converted
into an initial value problem by a change of variable t̃ := T − t . Thus a terminal
boundary value problem corresponding to (3.57) is

⎧
⎨

⎩

ut + 〈Ax, Du〉 − F(t, x, u, Du, D2u) = 0 in (0, T )×U
u(T, x) = g(x) for x ∈ U,

u(t, x) = f (t, x) for (t, x) ∈ (0, T )× ∂U,

(3.62)

where f (t, x) = f1(T−t, x). Sincewewill beworkingwith terminal value problems
we state below the definition of a viscosity solution adapted to this case, which is a
consequence of Definition3.34. (We keep the minus sign in front of the Hamiltonian
F since we will formulate the conditions for F that will apply to both stationary and
time-dependent terminal value problems.)

Definition 3.35 A locally bounded B-upper semicontinuous function u on (0, T ]×
U is a viscosity subsolution of (3.62) if u(T, y) ≤ g(y) for y ∈ U , u ≤ f on
(0, T )×∂U and whenever u−ψ has a local maximum at a point (t, x) ∈ (0, T )×U
for a test function ψ(s, y) = ϕ(s, y)+ h(s, |y|) then
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ψt (t, x)+ 〈x, A∗Dϕ(t, x)〉 − F(t, x, u(t, x), Dψ(t, x), D2ψ(t, x)) ≥ 0. (3.63)

A locally bounded B-lower semicontinuous function u on (0, T ] ×U is a viscosity
supersolution of (3.62) if u(T, y) ≥ g(y) for y ∈ U , u ≥ f on (0, T ) × ∂U and
whenever u+ψ has a local minimum at a point (t, x) ∈ (0, T )×U for a test function
ψ(s, y) = ϕ(s, y)+ h(s, |y|) then

− ψt (t, x)− 〈x, A∗Dϕ(t, x)〉 − F(t, x, u(t, x),−Dψ(t, x),−D2ψ(t, x)) ≤ 0.
(3.64)

A viscosity solution of (3.62) is a function which is both a viscosity subsolution and
a viscosity supersolution of (3.62).

Remark 3.36 It is easy to see that if u is a viscosity subsolution (respectively, super-
solution) of (3.62) on (0, T ] × U then it is a viscosity subsolution (respectively,
supersolution) of (3.62) on (T1, T ] ×U for every 0 < T1 < T . �

Lemma 3.37 Without loss of generality themaxima andminima inDefinitions3.33–
3.35 can be assumed to be global and strict.

Proof We will only show this in the case of a subsolution in Definition3.33 as the
other cases are similar. Let

u(x)− ϕ(x)− h(|x |) ≥ u(y)− ϕ(y)− h(|y|) for y ∈ BR(x) ⊂ U

for some R > 0.
Wewill show that there exist test functions ϕ̃ and h̃(|·|) such that Dϕ̃(x) = Dϕ(x),

D2ϕ̃(x) = D2ϕ(x), Dh̃(|x |) = Dh(|x |), D2h̃(|x |) = D2h(|x |), and u− ϕ̃− h̃(| · |)
has a strict global maximum at x . Let η ∈ C2([0,∞)) be an increasing function such
that

r + sup
|y|≤r, y∈U

{|u(y)| + |ϕ(y)|} ≤ η(r).

Let g1 ∈ C2((0,∞)) be a function such that

g1(r) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if r ≤ |x |
(r − |x |)4 if |x | < r < |x | + 1
increasing if |x | + 1 ≤ r ≤ |x | + 2
η(r) if r > |x | + 2.

Let ϕ1 ∈ C2([0,∞)) be defined by

ϕ1(r) =
⎧
⎨

⎩

r4 r ≤ 1,
increasing 1 < r < 2,
2 r ≥ 2.
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Now for n ≥ 1 consider the function

�n(y) = u(y)− ϕ(y)− nϕ1(|x − y|−1)− h(|y|)− g1(|y|).

Obviously we have
�n(x) = u(x)− ϕ(x)− h(|x |).

Suppose there is a subsequence nk → +∞ and ynk ∈ U , ynk = x such that
�nk (ynk ) ≥ �nk (x). Then we must have |x − ynk |−1 → 0 as k →∞ and |ynk | ≤ C1

for some C1 > 0, i.e. ynk ⇀ x and Bynk → Bx . Since u,−ϕ are B-upper semi-
continuous, and h + g1 is increasing on [|x |,+∞), this implies that |yn| → |x |, and
therefore ynk → x in H . But then ynk ∈ BR(x) for big k and so we get

�nk (ynk ) < u(ynk )− ϕ(ynk )− h(|ynk |) ≤ u(x)− ϕ(x)− h(|x |),

which is a contradiction. Therefore there must exist n̄ such that �n̄(y) < �n̄(x) for
all y ∈ U, y = x . It then easily follows that �n̄+1 has a strict global maximum at
x . Therefore the conclusion follows with ϕ̃(y) = ϕ(y)+ (n̄ + 1)ϕ1(|x − y|−1) and
h̃(|y|) = h(|y|)+ g1(|y|). �

It follows from the proof of Lemma3.37 that if we know a priori that u has certain
growth at∞ (at least quadratic) and U = H , we can then obtain the same growth
for h̃. (We notice that ifU = H then ϕ has at most quadratic growth at infinity.) For
instance, if u has a polynomial growth at∞ we can have h̃ which is a polynomial
of some special form for big |x |. This can be important in applications to stochastic
optimal control where wemaywant to impose additional conditions on test functions
to be able to apply stochastic calculus. In these applications it may also be useful
to assume that h′(r)/r is globally positive for the radial test functions h. To avoid
technical difficulties it may then be more convenient to choose h belonging to one
particular class of functions, say certain polynomials with growth depending on the
growth of sub- and supersolutions we are dealing with. However, when using such
narrow classes of radial test functions one may be forced to require that the maxima
and minima in the definition of viscosity solution be global as the definitions using
global and local maxima and minima may no longer be equivalent.

Remark 3.38 We assumed in Definitions3.33–3.35 that A was a linear, densely
defined, maximal dissipative operator in H , i.e. that it generated a C0-semigroup
of contractions et A. The definitions can be used to cover the case when A − ω I is
maximal dissipative for some ω > 0, i.e. if

‖et A‖ ≤ eωt for all t ≥ 0. (3.65)

One way to do this is to replace A by Ã = A − ω I and F by F̃(t, x, r, p, X) =
F(t, x, r, p, X)−ω〈x, p〉. Another way is bymaking a change of variables ũ(t, x) =
u(t, eωt x) in the equation which reduces Eq. (3.62) to an equation with A replaced
by A − ω I and F replaced by F̃(t, x, r, p, X) = F(t, eωt x, r, e−ωt p, e−2ωt X). �
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Lemma 3.39 Let F : [0, T ) × U × R × H × S(H) → R be continuous. Defini-
tion3.35 is equivalent to the definition in which we only require that the maxima and
minima be one-sided (i.e. that u∓ψ has a local maximum/minimum at a point (t, x)
restricted to [t, T )×U), if we also require that the subsolutions and supersolutions
are continuous. In particular, the equation is also satisfied at t = 0 if we in addition
require in the case when a one-sided maximum/minimum is attained at (0, x) that
the test functions ϕ ∈ C1,2([0, T )×U ) and h ∈ C1,2([0, T )× R).

Proof Suppose that u is a viscosity subsolution of (3.62) in the sense of Defini-
tion3.35 and let u(s, y)− ϕ(s, y)− h(s, |y|) = u(s, y)− ψ(s, y) have a one-sided
localmaximumat (t, x)over [t, t+ε)×Bε(x).Arguing as in the proof ofLemma3.37,
we can assume that the one-sided local maximum is strict. Then for big n there exist,
by Corollary3.26 (which we can apply because any closed convex subset of H is
B-closed, see Remark3.8), an ∈ R, pn ∈ H , |an|+|pn| ≤ 1/n such that the function

u(s, y)− ψ(s, y)− 1

n(s − t)
− ans − 〈Bpn, y〉

has a local (two-sided) maximum at (sn, yn) ∈ (t, t + ε) × Bε(x). Since the initial
local maximum was strict we have that (sn, yn) → (t, x). Without loss of generality
we can assume that 1

n(s−t) is a test function by modifying it around s = t and then
extending it to (0, T ). Therefore we obtain, using Definition3.35, that

ψt (sn, yn)+ an − 1

n(sn − t)2
+ 〈yn, A∗(Dϕ(sn, yn)+ Bpn)〉

− F(sn, yn, u(sn, yn), Dψ(sn, yn)+ Bpn, D
2ψ(sn, yn)) ≥ 0,

which gives us

ψt (t, x)+ 〈x, A∗Dϕ(t, x)〉 − F(t, x, u(t, x), Dψ(t, x), D2ψ(t, x)) ≥ 0

after letting n →+∞. �

3.3.1 Bounded Equations

If A = 0 there is no need to use the notion of B-continuity. Viscosity solutions can
then be defined in the same way as for finite-dimensional problems. We present the
definition for the time-independent problem

{
F(x, u, Du, D2u) = 0 in U
u(x) = f (x) on ∂U.

(3.66)
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The definition for time-dependent problems is similar. We call such equations
“bounded” since they do not contain any unbounded terms.

Definition 3.40 A locally bounded upper semicontinuous function u on U is a vis-
cosity subsolution of (3.66) if u ≤ f on ∂U andwhenever u−ϕ has a localmaximum
at a point x for a test function ϕ ∈ C2(U ) then

F(x, u(x), Dϕ(x), D2ϕ(x)) ≤ 0.

A locally bounded lower semicontinuous function u onU is a viscosity supersolution
of (3.66) if u ≥ f on ∂U and whenever u − ϕ has a local minimum at a point x for
a test function ϕ ∈ C2(U ) then

F(x, u(x), Dϕ(x), D2ϕ(x)) ≥ 0.

A viscosity solution of (3.66) is a function which is both a viscosity subsolution and
a viscosity supersolution of (3.66).

Equation (3.66) and its parabolic versionwere studied, togetherwith the associated
control problems, in [410, 412]. In [410] a stronger definition of viscosity solution
was introduced, allowing for more general test functions which are not necessarily
twice Fréchet differentiable. One can also replace Definition3.40 with a definition
using second-order jets (see [139, 412]). Regularity results for bounded equations and
their obstacle problems have been obtained in [410, 542]. Existence and uniqueness
results for such equations can also be found in [378].

3.4 Consistency of Viscosity Solutions

The consistency property of viscosity solutions, i.e. the ability to pass to limits in
the equations under minimal assumptions on the solutions, is one of the greatest
strengths of the notion of viscosity solution.

Let B be an operator satisfying Hypothesis3.31. Let An, n = 1, 2, ..., be linear,
densely defined, maximal dissipative operators in H such that D(A∗) ⊂ D(A∗n). We
consider equations

ut + 〈Anx, Du〉 − Fn(t, x, u, Du, D2u) = 0 in (0, T )×U, (3.67)

where U is an open subset of H . We assume that viscosity sub- and supersolutions
of (3.67) are B-upper (respectively, lower) semicontinuous with the same fixed B.
We note that if ϕ is a test function in Definition3.32-(i), then

A∗nDϕ = A∗n(I − A∗)−1(I − A∗)Dϕ,

and thus, since A∗n(I − A∗)−1 ∈ L(H), ϕ is a test function of type (i) for Eq. (3.67).
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We have the following result.

Theorem 3.41 (Consistency of viscosity solutions) Let the above assumptions
about An, n = 1, 2, ..., be satisfied. Let un, n = 1, 2, ..., be viscosity subsolutions
(respectively, supersolutions) of (3.67) (with some terminal and boundary conditions
which are not essential here). Suppose that Fn : (0, T ) × U × R × H × S(H) →
R, n = 1, 2, ... are continuous, and

if x, xn ∈ D(A∗), xn → x, and A∗xn → A∗x, then A∗nxn → A∗x . (3.68)

Let un converge locally uniformly to a function u on (0, T )×U. Then u is a viscosity
subsolution of

ut + 〈Ax, Du〉 − F−(t, x, u, Du, D2u) = 0 in (0, T )×U

(respectively, supersolution of

ut + 〈Ax, Du〉 − F+(t, x, u, Du, D2u) = 0 in (0, T )×U ),

where

F−(t, x, r, p, X) = lim
i→+∞ inf

{
Fn(τ , y, s, q, Y ) : n ≥ i,

|t − τ | + |x − y| + |r − s| + |p − q| + ‖X − Y‖ ≤ 1

i

}
,

(3.69)

F+(t, x, r, p, X) = lim
i→+∞ sup

{
Fn(τ , y, s, q, Y ) : n ≥ i,

|t − τ | + |x − y| + |r − s| + |p − q| + ‖X − Y‖ ≤ 1

i

}
.

(3.70)

Notation 3.42 We denote the right-hand side of (3.69) and (3.70) respectively by

lim inf
n→+∞∗Fn(t, x, r, p, X),

and
lim sup
n→+∞

∗Fn(t, x, r, p, X).

Obviously

lim sup
n→+∞

∗(−Fn(t, x, r, p, X)) = −lim inf
n→+∞∗Fn(t, x, r, p, X). �
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Proof We will only prove the theorem for the subsolution case. The function u is
obviously locally bounded and B-upper semicontinuous. Suppose that u(s, y) −
ψ(s, y) = u(s, y) − ϕ(s, y) − h(s, |y|) has a local maximum at a point (t, x). By
Lemma3.37 the maximum can be assumed to be strict. Let D = {(s, y) : |t − s| ≤
δ, |x − y| ≤ δ} for some δ > 0. Applying Corollary3.26 on D we obtain, for every
n, an ∈ R, pn ∈ H such that |an| + |pn| ≤ 1

n and such that

un(s, y)− (ψ(s, y)+ ans + 〈Bpn, y〉)

has maximum over D at some point (tn, xn). Since the original maximum at (t, x)
was strict and the un converge uniformly on D to u, it is easy to see that we must
have (tn, xn) → (t, x) as n →+∞. Since we have

ψt (tn, xn)+ an + 〈xn, A∗n(Dϕ(tn, xn)+ Bpn)〉
−Fn(tn, xn, un(tn, xn), Dψ(tn, xn)+ Bpn, D

2ψ(tn, xn)) ≥ 0,

the claim follows passing to the lim sup
n→+∞

∗ in the above inequality. �

The result for time-independent equations is similar. In finite-dimensional spaces
one can pass to weaker limits with viscosity solutions. In particular, the method of
half-relaxed limits of Barles–Perthame (see [40, 139, 263]) allows us to conclude
that for a family of subsolutions (respectively, supersolutions) un , the function u+ =
lim sup
n→+∞

∗un is a subsolution and u− = lim inf
n→+∞ ∗un is a supersolution. Unfortunately

this is no longer true in infinite dimension due to the lack of local compactness.
The following simple example from [540] illustrates this phenomenon. Half-relaxed
limits in a special case are discussed in Sect. 3.9.

Example 3.43 Let H be the real l2 space. Let F(p) = 1 − |p|, and un(x) = xn ,
where x = (x1, ..., xn, ...). Then the functions un are classical (and thus viscosity)
solutions of

F(Dun) = 0.

However u+ ≡ 0 and therefore F(Du+) = 1, i.e. u+ is not a subsolution of
F(Du+) = 0. To see that u+ ≡ 0 we observe that if n ≥ i and |x − y| ≤ 1/ i
then

|un(y)| = |yn| ≤ |xn| + 1

i
→ 0 as n, i →∞. �
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3.5 Comparison Theorems

In this section we present comparison results for viscosity solutions. They are
proved under either the weak or the strong B-condition for A (see Definitions3.9
and 3.10).

We use the notation from Sect. 3.2. In particular, we recall that {e1, e2, ...} is
an orthonormal basis in H−1 made of elements of H , and for N > 2, HN =
span{e1, ..., eN }, PN is the orthogonal projection in H−1 onto HN , and QN := I−PN .

We will make the following assumptions about the function F : (0, T ) × U ×
R× H × S(H) → R.

Hypothesis 3.44 F is uniformly continuous on bounded subsets of (0, T ) × U ×
R× H × S(H).

Hypothesis 3.45 There exists a ν ≥ 0 such that for every (t, x, p, X) ∈ (0, T ) ×
U × H × S(H)

F(t, x, r, p, X)− F(t, x, s, p, X) ≥ ν(r − s) when r ≥ s.

Hypothesis 3.46 For every (t, x, r, p) ∈ (0, T )×U × R× H

F(t, x, r, p, X) ≥ F(t, x, r, p, Y ) when X ≤ Y.

Hypothesis 3.47 For all t ∈ (0, T ), r ∈ R, x ∈ U , p ∈ H , R > 0,

sup

{
|F(t, x, p, X + λBQN )−F(t, x, p, X)| :

‖X‖, |λ| ≤ R, X = P∗N X PN

}
N→+∞−−−−→ 0.

Hypothesis 3.48 For every R > 0 there exists a modulus ωR such that, for all
(t, x, y, r) ∈ (0, T ) × U × U × R such that |r |, |x |, |y| ≤ R, for any ε > 0, for
all X, Y ∈ S(H) such that X = P∗N X PN , Y = P∗NY PN for some N and satisfying
(3.52), we have

F

(
t, x, r,

B(x − y)

ε
, X

)
− F

(
t, y, r,

B(x − y)

ε
, Y

)

≥ −ωR

(
|x − y|−1

(
1+ |x − y|−1

ε

))
.

Hypothesis 3.49 There exist γ ∈ [0, 1] and a constant MF ≥ 0 such that

|F (t, x, r, p + q, X + Y )− F (t, x, r, p, X) |
≤ MF

(
(1+ |x |)|q| + (1+ |x |γ)2‖Y‖)
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for all (t, x, r) ∈ (0, T )×U × R, p, q ∈ H , X, Y ∈ S(H).

Hypothesis3.45 guarantees that F is nondecreasing in the zeroth order variable.
If ν > 0 we say that F is proper. Hypothesis3.46 ensures that F is monotone in the
second-order variable. When it is satisfied we say that F (and therefore the equation)
is degenerate elliptic/parabolic.

3.5.1 Degenerate Parabolic Equations

In Theorem3.50, the boundary and terminal value functions f and g are not explicitly
mentioned since they are not relevant. However, the subsolution function u and the
supersolution function v are defined on (0, T ] ×U and conditions (3.71) and (3.72)
describe their joint behavior along the boundary ∂U and the terminal value T .

Theorem 3.50 (Comparison under weak B-condition) Let U ⊂ H be open and U
be B-closed (see Definition3.7). Let (3.2) hold and let F satisfy Hypotheses3.44,
3.46–3.49 and 3.45 with ν = 0. Let u be a viscosity subsolution of (3.62), and v

be a viscosity supersolution of (3.62). Suppose that for every R > 0 there exists a
modulus ω̃R such that

(u(t, x)− v(s, y))+ + (u(t, y)− v(s, x))+ ≤ ω̃R(|t − s| + |x − y|−1) (3.71)

for t, s ∈ (0, T ), x ∈ ∂U, y ∈ U , |x |, |y| ≤ R, and that

lim
R→+∞ lim

r→0
lim
η→0

sup
{
u(t, x)− v(s, y) : |x − y|−1 < r

x, y ∈ U ∩ BR, T − η ≤ t, s ≤ T
}
≤ 0.

(3.72)

Moreover, suppose that there exist constants C, a > 0 such that

u,−v ≤ Cea|x |
2−2γ

(t, x) ∈ (0, T )× H, if γ ∈ [0, 1), (3.73)

and
u,−v ≤ Cea(log(1+|x |))2 (t, x) ∈ (0, T )× H, if γ = 1. (3.74)

Then for every κ > 0

lim
R→+∞ lim

r→0
lim
η→0

sup
{
u(t, x)− v(s, y) : |x − y|−1 < r, |t − s| < η

x, y ∈ U ∩ BR,κ < t, s ≤ T
}
≤ 0.

(3.75)
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In particular, u ≤ v.

Remark 3.51 It is easy to see that (3.75) implies that for every κ > 0 and R > 0
there exists a modulus ω̃κ,R such that

u(t, x)− v(s, y) ≤ ω̃κ,R(|x − y|−1 + |t − s|) for x, y ∈ U ∩ BR,κ < t, s ≤ T .

(3.76)
�

Proof of Theorem3.50. We will prove the theorem for the case γ = 1.
Let 0 < τ < 1 be such that a < 1/

√
τ . Additional conditions on τ will be given

later. Set T1 = T − τ . The proof will be done in several steps. We will first show
(3.75) on [T1, T ], i.e. when we have T1 + κ ≤ t, s ≤ T in (3.75), and then reapply
the procedure to intervals [T − 3τ/2, T − τ/2], [T − 4τ/2, T − 2τ/2],....

We argue by contradiction and assume that (3.75) is not true. Then there is a κ > 0
such that

m = lim
R→+∞ lim

r→0
lim
η→0

sup
{
u(t, x)− v(s, y) : |x − y|−1 < r, |t − s| < η

x, y ∈ U ∩ BR, T1 + κ ≤ t, s ≤ T
}

> 0.

We note that m can be +∞. Define

mδ := lim
r→0

lim
η→0

sup

{
u(t, x)− v(s, y)− δe

(log(2+|x |2))2√
t−T1 − δe

(log(2+|y|2))2√
s−T1 :

|x − y|−1 < r, |t − s| < η, x, y ∈ U , T1 < t, s ≤ T

}
,

mδ,ε := lim
η→0

sup

{
u(t, x)− v(s, y)− δe

(log(2+|x |2))2√
t−T1 − δe

(log(2+|y|2))2√
s−T1

− |x − y|2−1
2ε

: |t − s| < η, x, y ∈ U , T1 < t, s ≤ T

}
,

mδ,ε,β := sup

{
u(t, x)− v(s, y)− δe

(log(2+|x |2))2√
t−T1 − δe

(log(2+|y|2))2√
s−T1

− |x − y|2−1
2ε

− (t − s)2

2β
: x, y ∈ U , T1 < t, s ≤ T

}
.

It is very easy to see that
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m ≤ lim
δ→0

mδ, (3.77)

mδ = lim
ε→0

mδ,ε, (3.78)

mδ,ε = lim
β→0

mδ,ε,β . (3.79)

Setting u(t, x) = −∞ if x /∈ U and v(t, x) = +∞ if x /∈ U we can consider u and
v to be defined on (T1, T ] × H . Since U is B-closed such extended u is B-upper
semicontinuous on (T1, T ] × H and v is B-lower semicontinuous on (T1, T ] × H .

Define

�(t, s, x, y) = u(t, x)−v(s, y)−δe
(log(2+|x |2))2√

t−T1 −δe
(log(2+|y|2))2√

s−T1 − |x − y|2−1
2ε

− (t − s)2

2β
.

We notice that by (3.74) we obtain, for instance,

�(t, s, x, y) ≤ −(|x |2 + |y|2) if |x | + |y| ≥ Kδ (3.80)

for some Kδ > 0. Therefore, using Corollary3.26, for every n ≥ 1 we can find
an, bn ∈ R, and pn, qn ∈ H such that |an| + |bn| + |pn| + |qn| ≤ 1

n and such that

�(t, s, x, y)+ ant + bns + 〈Bpn, x〉 + 〈Bqn, y〉

achieves a strict global maximum at some point (t̄, s̄, x̄, ȳ) ∈ [T1, T ]×[T1, T ]×H×
H . (The maximum is initially strict in the | · |−2 norm but since the radial functions
are strictly increasing the maximum is in fact strict in the | · | norm.) Moreover, for
a fixed δ

|x̄ |, |ȳ|, |u(t̄, x̄)|, |v(s̄, ȳ)| ≤ Rδ (3.81)

for some Rδ independently of ε,β, n. Obviously (t̄, s̄, x̄, ȳ) ∈ (T1, T ] × (T1, T ] ×
U ×U . It follows from (3.80) that

mδ,ε,β ≤ �(t̄, s̄, x̄, ȳ)+ Cδ

n
(3.82)

for some constant Cδ > 0. Therefore, it follows that

mδ,ε,β + |t̄ − s̄|2
4β

≤ �(t̄, s̄, x̄, ȳ)+ |t̄ − s̄|2
4β

+ Cδ

n
≤ mδ,ε,2β + Cδ

n
(3.83)

and

mδ,ε,β + |x̄ − ȳ|2−1
4ε

+ |t̄ − s̄|2
4β

≤ mδ,2ε,2β + Cδ

n
. (3.84)

Inequalities (3.83) and (3.79) imply
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lim
β→0

lim sup
n→∞

|t̄ − s̄|2
β

= 0 for every δ, ε > 0, (3.85)

and then (3.85), (3.84) and (3.78) imply

lim
ε→0

lim sup
β→0

lim sup
n→∞

|x̄ − ȳ|2−1
ε

= 0 for every δ > 0. (3.86)

In particular, it follows from (3.77)–(3.79), (3.82), (3.85) and (3.86) that there exists
a δ0 > 0 such that for all δ < δ0

lim inf
ε→0

lim inf
β→0

lim inf
n→∞ (u(t̄, x̄)− v(s̄, ȳ)) ≥ m̄ = min

(m
2

, 1
)

. (3.87)

Conditions (3.71), (3.72), together with (3.85) and (3.86), imply that if δ, ε,β are
small enough and n is sufficiently big wemust have (t̄, s̄, x̄, ȳ) ∈ (T1, T )×(T1, T )×
U ×U .

We now have for N > 2

|x − y|2−1 = |PN (x − y)|2−1 + |QN (x − y)|2−1
and

|QN (x − y)|2−1 ≤ 2〈BQN (x̄ − ȳ), x − y〉 + 2|QN (x − x̄)|2−1
+ 2|QN (y − ȳ)|2−1 − |QN (x̄ − ȳ)|2−1

with equality at x̄, ȳ. Therefore, defining

u1(t, x) = u(t, x)− δe
(log(2+|x |2))2√

t−T1 −〈BQN (x̄ − ȳ), x〉
ε

− |QN (x − x̄)|2−1
ε

+ |QN (x̄ − ȳ)|2−1
2ε

+ ant + 〈Bpn, x〉

and

v1(s, y) = v(s, y)+ δe
(log(2+|y|2))2√

s−T1 − 〈BQN (x̄ − ȳ), y〉
ε

+ |QN (y − ȳ)|2−1
ε

− bns − 〈Bqn, y〉,

we see that

u1(t, x)− v1(s, y)− 1

2ε
|PN (x − y)|2−1 −

1

2β
|t − s|2

has a strict global maximum at (t̄, s̄, x̄, ȳ) over [T1, T ] × [T1, T ] × H × H .
We can therefore apply Corollary3.29 to obtain test functions ϕk,ψk and points
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(tk, xk), (sk, yk) such that u1(t, x)− ϕk(t, x) has a maximum at (tk, xk), v1(s, y)−
ψk(s, y) has aminimumat (sk, yk), and such that (3.54), (3.55) are satisfied for u1, v1,
respectively. In particular, (tk, xk), (sk, yk) ∈ (T1, T )×U for big k.

Define

ϕ(t, x) = ϕk(t, x)+ 〈BQN (x̄ − ȳ), x〉
ε

+|QN (x − x̄)|2−1
ε

− |QN (x̄ − ȳ)|2−1
2ε

− ant − 〈Bpn, x〉,

and

h(t, |x |) = δe
(log(2+|x |2))2√

t−T1 .

Since u is a viscosity subsolution of (3.62) on (T1, T ] ×U , using the definition of a
viscosity subsolution we have

ϕt (tk, xk)+ ht (tk, |xk |)+ 〈xk, A∗Dϕ(tk, xk)〉
− F(tk, xk, u(tk, xk), Dϕ(tk, xk)+ Dh(tk, |xk |), D2ϕ(tk, xk)+ D2h(tk, |xk |)) ≥ 0.

(3.88)

Letting k →+∞ in (3.88) and using (3.54) yields

t̄ − s̄

β
− an + ht (t̄, |x̄ |)+

〈
x̄, A∗

(
B(x̄ − ȳ)

ε
− Bpn

)〉

− F

(
t̄, x̄, u(t̄, x̄),

B(x̄ − ȳ)

ε
− Bpn + Dh(t̄, |x̄ |), XN + 2BQN

ε
+ D2h(t̄, |x̄ |)

)
≥ 0.

(3.89)

We now compute

ht (t, |x |) = −δ(log(2+ |x |2))2
2(t − T1)

3
2

e
(log(2+|x |2))2√

t−T1 ,

Dh(t, |x |) = e
(log(2+|x |2))2√

t−T1
4δ log(2+ |x |2)√

t − T1

x

2+ |x |2 ,

and

D2h(t, |x |) = 4δ√
t − T1

e
(log(2+|x |2))2√

t−T1

[(
4(log(2+ |x |2))2√
t − T1(2+ |x |2)2

+ 2

(2+ |x |2)2 −
2 log(2+ |x |2)

(2+ |x |2)2
)
x ⊗ x + log(2+ |x |2)

2+ |x |2 I

]
.
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We have

|Dh(t, |x |)|
1+ |x | + ‖D2h(t, |x |)‖ ≤ C1δ(log(2+ |x |2))2

(t − T1)(1+ |x |)2 e
(log(2+|x |2))2√

t−T1

for some absolute constant C1. Therefore we obtain from Hypothesis3.49

∣∣∣∣F
(
t̄, x̄, u(t̄, x̄),

B(x̄ − ȳ)

ε
− Bpn + Dh(t̄, |x̄ |), XN + 2BQN

ε
+ D2h(t̄, |x̄ |)

)

− F

(
t̄, x̄, u(t̄, x̄),

B(x̄ − ȳ)

ε
− Bpn, XN + 2BQN

ε

) ∣∣∣∣

≤ MF ((1+ |x̄ |)|Dh(t̄, |x̄ |)| + (1+ |x̄ |)2‖D2h(t̄, |x̄ |)‖)

≤ MFC1δ(log(2+ |x̄ |2))2
t̄ − T1

e
(log(2+|x̄ |2))2√

t̄−T1 ≤ −1

2
ht (t̄, |x̄ |)

if

τ ≤ 1

(4MFC1)2
. (3.90)

Hence if (3.90) is satisfied, using that 1
2ht (t̄, |x̄ |) ≤ −Cτ δ for some Cτ > 0, it

follows from (3.89) that

−Cτ δ + t̄ − s̄

β
− an +

〈
x̄, A∗

(
B(x̄ − ȳ)

ε
− Bpn

)〉

− F

(
t̄, x̄, u(t̄, x̄),

B(x̄ − ȳ)

ε
− Bpn, XN + 2BQN

ε

)
≥ 0.

(3.91)

Arguing similarly we obtain from the fact that v1(s, y)−ψk(s, y) has a minimum at
(sk, yk) that

t̄ − s̄

β
+ bn+

〈
ȳ, A∗

(
B(x̄ − ȳ)

ε
+ Bqn

)〉

− F

(
s̄, ȳ, v(s̄, ȳ),

B(x̄ − ȳ)

ε
+ Bqn, YN − 2BQN

ε

)
≤ 0.

(3.92)

Therefore subtracting (3.91) from (3.92) and using (3.81), Hypothesis3.47 yields
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Cτ δ −
〈
x̄ − ȳ,

A∗B(x̄ − ȳ)

ε

〉

+ F

(
t̄, x̄, u(t̄, x̄),

B(x̄ − ȳ)

ε
, XN

)
− F

(
s̄, ȳ, v(s̄, ȳ),

B(x̄ − ȳ)

ε
, YN

)

≤ ω1(δ, ε,β; n, N ),

(3.93)

where limn→+∞ limN→+∞ ω1(δ, ε,β; n, N ) = 0 for fixed δ, ε,β. Now Hypothe-
sis 3.45, (3.85), (3.87) and (3.93) imply

Cτ δ −
〈
x̄ − ȳ,

A∗B(x̄ − ȳ)

ε

〉

+ F

(
t̄, x̄, u(t̄, x̄),

B(x̄ − ȳ)

ε
, XN

)
− F

(
t̄, ȳ, u(t̄, x̄),

B(x̄ − ȳ)

ε
, YN

)

≤ ω2(δ; ε,β, n, N ),

(3.94)

where lim supε→0 lim supβ→0 lim supn→+∞ lim supN→+∞ ω2(δ; ε,β, n, N ) = 0 for
sufficiently small δ. We recall that XN , YN satisfy (3.52). We can now use (3.2),
Hypothesis3.48, (3.81) and then invoke (3.86) to get

Cτ δ ≤ c0
|x̄ − ȳ|2−1

ε
+ ωRδ

(
|x̄ − ȳ|−1

(
1+ |x̄ − ȳ|−1

ε

))

+ ω2(δ; ε,β, n, N ) ≤ ω3(δ; ε,β, n, N ),

where lim supε→0 lim supβ→0 lim supn→+∞ lim supN→+∞ ω3(δ; ε,β, n, N ) = 0 for
sufficiently small δ. This yields a contradiction for small δ.

Thus we obtain thatm ≤ 0 and this allows us to reapply the procedure to intervals
[T − 3τ/2, T − τ/2], [T − 4τ/2, T − 2τ/2], ..., [0, T − kτ/2], where k is such that
T − kτ/2 > 0 ≥ T − (k + 2)τ/2.

For γ ∈ [0, 1) the proof is the same but we have to replace the functions

δe
(log(2+|x |2))2√

t−T1 and δe
(log(2+|y|2))2√

s−T1

by

δe
(1+|x |2)1−γ√

t−T1 and δe
(1+|y|2)1−γ√

s−T1 ,

respectively. �
The assumptions of the comparison theorems can be weakened if we replace the

weak B-condition by the strong B-condition, i.e. if we replace (3.2) by (3.3). In this
case we will use the following assumption instead of Hypothesis3.48.
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Hypothesis 3.52 For every R > 0 there exists a modulus ωR such that, for all
(t, x, y, r) ∈ (0, T ) × U × U × R such that |r |, |x |, |y| ≤ R, for any ε > 0, for
all X, Y ∈ S(H) such that X = P∗N X PN , Y = P∗NY PN for some N and satisfying
(3.52), we have

F

(
t, x, r,

B(x − y)

ε
, X

)
− F

(
t, y, r,

B(x − y)

ε
, Y

)

≥ −ωR

(
|x − y|

(
1+ |x − y|−1

ε

))
.

Hypothesis 3.53 For every R > 0 there exists a modulus ωR such that

|g(x)− g(y)| ≤ ωR(|x − y|) if x, y ∈ H, |x |, |y| ≤ R.

Theorem 3.54 (Comparison under strong B-condition) Let U = H. Let (3.3) hold
and let F satisfy Hypotheses3.44, 3.46, 3.47, 3.52, 3.49 and 3.45 with ν = 0. Let g
satisfy Hypothesis3.53. Let u be a viscosity subsolution of (3.62) in (0, T ]× H, and
v be a viscosity supersolution of (3.62) in (0, T ] × H. Suppose that

lim
t→T

[
(u(t, x)− g(e(T−t)Ax))+ + (v(t, x)− g(e(T−t)Ax))−

] = 0 (3.95)

uniformly on bounded subsets of H and that either of (3.73) or (3.74) is satisfied.
Then for every 0 < μ < T

mμ = lim
R→+∞ lim

r→0
lim
η→0

sup
{
u(t, x)− v(s, y) : |x − y|−1 < r, |t − s| < η

x, y ∈ BR, μ < t, s ≤ T − μ
}
≤ 0.

(3.96)

In particular, u ≤ v.

Proof Let us again assume that γ = 1 and that (3.73) is satisfied. As in the proof
of Theorem3.50 we take 0 < τ ≤ min(1, 1/

√
a, 1/(4MFC1)

2, where C1 is the
constant appearing in that proof, and we set T1 = T − τ . Define for 0 < μ < τ

mμ = lim
R→+∞ lim

r→0
lim
η→0

sup
{
u(t, x)− v(s, y) : |x − y|−1 < r, |t − s| < η

x, y ∈ BR, T1 + μ ≤ t, s ≤ T − μ
}
.

If there is a μ0 such that mμ0 > m̃ > 0 then mμ > m̃ > 0 for all 0 < μ < μ0.
Defining
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�(t, s, x, y) = u(t, x)−v(s, y)−δe
(log(2+|x |2))2√

t−T1 −δe
(log(2+|y|2))2√

s−T1 − |x − y|2−1
2ε

− (t − s)2

2β

we again have that for every n ≥ 1 there exist an, bn ∈ R, pn, qn ∈ H such that
|an| + |bn| + |pn| + |qn| ≤ 1

n and that

�(t, s, x, y)+ ant + bns + 〈Bpn, x〉 + 〈Bqn, y〉

achieves a strict global maximum over [T1, T − μ] × [T1, T − μ] × H × H at some
point (t̄μ, s̄μ, x̄μ, ȳμ) ∈ (T1, T − μ] × (T1, T − μ] × H × H , and that (3.81), (3.85),
(3.86) hold (note that the constant Rδ in (3.81) is independent of μ). Moreover,
since for μ < μ0, �(t̄μ, s̄μ, x̄μ, ȳμ) ≥ �(t̄μ0 , s̄μ0 , x̄μ0 , ȳμ0) − Cδ

n for some Cδ > 0
independent of μ, it is easy to see that for every 0 < μ < μ0

lim inf
ε→0

lim inf
β→0

lim inf
n→+∞ (u(t̄μ, x̄μ)− v(s̄μ, ȳμ))

≥ lim inf
ε→0

lim inf
β→0

lim inf
n→+∞ �(t̄μ, s̄μ, x̄μ, ȳμ)

≥ lim inf
ε→0

lim inf
β→0

lim inf
n→+∞ �(t̄μ0 , s̄μ0 , x̄μ0 , ȳμ0)

= lim inf
ε→0

lim inf
β→0

lim inf
n→+∞

(
u(t̄μ0 , x̄μ0)− v(s̄μ0 , ȳμ0)

− δe
(log(2+|x̄μ0 |2))2√

t̄μ0−T1 − δe
(log(2+|ȳμ0 |2))2√

s̄μ0−T1

)
≥ m̃ (3.97)

if δ < δ0 for some δ0 > 0 (depending only on μ0).
If for all δ, ε,β, n we have (t̄μ, s̄μ, x̄μ, ȳμ) ∈ (T1, T −μ)× (T1, T −μ)× H × H

then as in the proof of Theorem3.50 and using the notation there we arrive at (3.94),
i.e. that

Cτ δ −
〈
x̄μ − ȳμ,

A∗B(x̄μ − ȳμ)

ε

〉

+ F

(
t̄μ, x̄μ, u(t̄μ, x̄μ),

B(x̄μ − ȳμ)

ε
, XN

)
− F

(
t̄μ, ȳμ, u(t̄μ, x̄μ),

B(x̄μ − ȳμ)

ε
, YN

)

≤ ω2(δ; ε,β, n, N ),

where lim supε→0 lim supβ→0 lim supn→+∞ lim supN→+∞ ω2(δ; ε,β, n, N ) = 0 for
sufficiently small δ. We then use (3.2), Hypothesis3.52 and (3.81) to get

Cτ δ ≤ c0
|x̄μ − ȳμ|2−1

ε
− |x̄μ − ȳμ|2

ε
+ ωRδ

(
|x̄μ − ȳμ|

(
1+ |x̄μ − ȳμ|−1

ε

))

+ ω2(δ; ε,β, n, N ).

Let Kδ be a constant such that ωRδ
(r) ≤ Cτ δ/4+ Kδr . Then



3.5 Comparison Theorems 215

ωRδ

(
|x̄μ − ȳμ|

(
1+ |x̄μ − ȳμ|−1

ε

))
≤ Cτ δ/4+ Kδ|x̄μ − ȳμ|

(
1+ |x̄μ − ȳμ|−1

ε

)

≤ Cτ δ/2+ |x̄μ − ȳμ|2
ε

+ K̃δ

|x̄μ − ȳμ|2−1
ε

for some K̃δ > 0 and small enough ε. Therefore we obtain that

Cτ δ

2
≤ (c0 + K̃δ)

|x̄μ − ȳμ|2−1
ε

+ ω2(δ; ε,β, n, N )

and this yields a contradiction in light of (3.86).
Therefore for small δ, ε,β and large n we must have t̄μ = T − μ or s̄μ = T − μ.

Without loss of generality suppose that s̄μ = T − μ. Recalling that |x̄μ|, |ȳμ| ≤ Rδ

for some Rδ > 0 and using (3.95) we have

u(t̄μ, x̄μ)− v(s̄μ, ȳμ) = (u(t̄μ, x̄μ)− g(e(T−t̄μ)Ax̄μ))+
+ (g(e(T−t̄μ)Ax̄μ)− g(e(T−s̄μ)A ȳμ))+ (g(e(T−s̄μ)A ȳμ)− v(s̄μ, ȳμ))+
≤ ω̃Rδ

(μ+ |t̄μ − s̄μ|)+ |g(e(T−t̄μ)Ax̄μ)− g(e(T−s̄μ)A ȳμ)|,

where ω̃Rδ
is a modulus for every δ, depending on (3.95). Then by (3.19), (3.20) and

Hypothesis3.53

u(t̄μ, x̄μ)− v(s̄μ, ȳμ) ≤ ω̃Rδ
(μ+ |t̄μ − s̄μ|)+ ωRδ

(|e(T−t̄μ)Ax̄μ − e(T−s̄μ)A ȳμ|)

≤ ω̃Rδ
(μ+ |t̄μ − s̄μ|)+ ωRδ

(
ec0μ

(2μ)
1
2

|e(s̄μ−t̄μ)Ax̄μ − ȳμ|−1
)

≤ ω̃Rδ
(μ+ |t̄μ − s̄μ|)+ ωRδ

(
ec0μ

(2μ)
1
2

(C(Rδ)|s̄μ − t̄μ| 12 + |x̄μ − ȳμ|−1)
)

.

Therefore it follows from this, (3.85) and (3.86) that for δ < δ0, and μ < μ0 such
that ω̃Rδ

(μ) ≤ m̃/2

lim sup
ε→0

lim sup
β→0

lim sup
n→+∞

(u(t̄μ, x̄μ)− v(s̄μ, ȳμ)) ≤ m̃

2
.

This is impossible in light of (3.97).
Thus we obtain that mμ ≤ 0 for all μ < τ and this allows us to reapply the

procedure to intervals [T − 3τ/2, T − τ/2], [T − 4τ/2, T − 2τ/2],... directly as in
the proof of Theorem3.50 since we now have
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lim
R→+∞ lim

r→0
lim
η→0

sup
{
u(t, x)− v(s, y) : |x − y|−1 < r

x, y ∈ BR, T − τ/2− η ≤ t, s ≤ T − τ/2
}
≤ 0. (3.98)

For γ ∈ [0, 1) the proof again uses the same modifications as indicated in the
proof of Theorem3.50. �

3.5.2 Degenerate Elliptic Equations

In this subsectionweconsider the degenerate elliptic case.Wefirst introduce a slightly
different version of Hypothesis3.49.

Hypothesis 3.55 For γ ∈ [0, 1] there exist MF , NF ≥ 0 such that

|F (x, r, p + q, X + Y )− F (x, r, p, X) |
≤ MF (1+ |x |γ)|q| + NF (1+ |x |γ)2‖Y‖

for all (x, r) ∈ U × R, p, q ∈ H , X, Y ∈ S(H).

Theorem 3.56 (Comparison under weak B-condition) Let U ⊂ H be open and U
be B-closed. Let (3.2) hold and let F satisfy Hypotheses3.44, 3.46–3.48, 3.55 and
3.45 with ν > 0. Let u and v be, respectively, a viscosity subsolution and a viscosity
supersolution of (3.56). Suppose that for every R > 0 there exists a modulus ω̃R such
that

(u(x)− v(y))+ + (u(y)− v(x))+ ≤ ω̃R(|x − y|−1) (3.99)

for x ∈ ∂U, y ∈ U, |x |, |y| ≤ R. Moreover, suppose that there exist constants
C, a > 0 such that one of the following conditions is satisfied

1. γ ∈ (0, 1), ∃k̄ ≥ 0 s.t. u,−v ≤ C(1+ |x |k̄) ∀x ∈ H, (3.100)

2. γ = 0, 2MFa + 4NF (a + a2) < ν, and u,−v ≤ Cea|x | ∀x ∈ H, (3.101)

3. γ = 1, ∃k̄ ≥ 0 s.t. MF k̄ + NFk̄(k̄ − 1) < ν if k̄ ≥ 2,

k̄(MF + NF ) < ν if k̄ < 2, and u,−v ≤ C(1+ |x |k̄)∀x ∈ H. (3.102)

Then

m = lim
R→+∞ lim

r→0
sup
{
u(x)−v(y) : |x− y|−1 < r, x, y ∈ U ∩ BR

}
≤ 0. (3.103)

In particular, u ≤ v.

Proof We will first prove the theorem in the case γ ∈ (0, 1). We argue by contradic-
tion and assume that m > 0. Let k > k̄, k ≥ 2. Denote
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mδ := lim
r→0

sup
{
u(x)− v(y)− δ|x |k − δ|y|k : |x − y|−1 < r, x, y ∈ U

}
,

mδ,ε := sup

{
u(x)− v(y)− δ|x |k − δ|y|k − |x − y|2−1

2ε
: x, y ∈ U

}
.

As in the proof of Theorem3.50, it is easy to see that

m = lim
δ→0

mδ, (3.104)

mδ = lim
ε→0

mδ,ε. (3.105)

Again, setting u(x) = −∞ if x /∈ U and v(x) = +∞ if x /∈ U we can consider u and
v to be defined on H . SinceU is B-closed such extended u is B-upper semicontinuous
on H and v is B-lower semicontinuous on H .

Define

�(x, y) = u(x)− v(y)− δ|x |k − δ|y|k − |x − y|2−1
2ε

.

By (3.100) we can apply Corollary3.26 to produce for every n ≥ 1 elements pn, qn ∈
H such that |pn| + |qn| ≤ 1

n and such that

�(x, y)+ 〈Bpn, x〉 + 〈Bqn, y〉

achieves a strict global maximum over H × H at some point (x̄, ȳ) ∈ U × U .
Moreover, we have

mδ,ε ≤ �(x̄, ȳ)+ Cδ

n

for some constant Cδ > 0. Therefore it follows that

mδ,ε + |x̄ − ȳ|2−1
4ε

≤ mδ,2ε + Cδ

n
. (3.106)

Inequalities (3.106) and (3.105) imply

lim
ε→0

lim sup
n→∞

|x̄ − ȳ|2−1
ε

= 0 for every δ > 0. (3.107)

Condition (3.99), together with (3.107), now imply that if δ, ε are small enough and
n is sufficiently big we must have (x̄, ȳ) ∈ U ×U .

Similarly to the proof of Theorem3.56 we now have for N > 2 that if we define
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u1(x) = u(x)− δ|x |k − 〈BQN (x̄ − ȳ), x〉
ε

−|QN (x − x̄)|2−1
ε

+ |QN (x̄ − ȳ)|2−1
2ε

+ 〈Bpn, x〉

and

v1(y) = v(y)+ δ|y|k − 〈BQN (x̄ − ȳ), y〉
ε

+ |QN (y − ȳ)|2−1
ε

− 〈Bqn, y〉,

then

u1(x)− v1(y)− 1

2ε
|PN (x − y)|2−1

has a strict global maximum at (x̄, ȳ) over H × H . We can therefore apply Corol-
lary3.28 to obtain test functions ϕk,ψk and points xk, yk such that u1(x)−ϕk(x) has
a maximum at xk , v1(y)− ψk(y) has a minimum at yk , and such that (3.50), (3.51)
are satisfied for u1, v1, respectively. In particular, xk, yk ∈ U for big k.

Therefore, since u is a viscosity subsolution of (3.56) in U , using the definition
of a viscosity subsolution, letting k →+∞ and using (3.50) we obtain

−
〈
x̄, A∗

(
B(x̄ − ȳ)

ε
− Bpn

)〉
+ F(x̄, u(x̄), pn,δ,ε, Xn,δ,ε) ≤ 0, (3.108)

where

pn,δ,ε = B(x̄ − ȳ)

ε
− Bpn + δk|x̄ |k−2 x̄,

and

Xn,δ,ε = XN + 2BQN

ε
+ δk|x̄ |k−2((k − 2)

x̄ ⊗ x̄

|x̄ |2 + I )).

Hence we obtain from Hypothesis 3.55 that

−
〈
x̄, A∗

(
B(x̄ − ȳ)

ε
− Bpn

)〉
+ F

(
x̄, u(x̄),

B(x̄ − ȳ)

ε
− Bpn, XN + 2BQN

ε

)

− δMF

(
(1+ |x̄ |γ)k|x̄ |k−1 + (1+ |x̄ |γ)2k(k − 1)|x̄ |k−2

)
≤ 0. (3.109)

Arguing similarly we obtain that

−
〈
ȳ, A∗

(
B(x̄ − ȳ)

ε
+ Bqn

)〉
+ F

(
ȳ, v(ȳ),

B(x̄ − ȳ)

ε
+ Bqn, XN − 2BQN

ε

)

+ δMF ((1+ |ȳ|γ)k|ȳ|k−1 + (1+ |ȳ|γ)2k(k − 1)|ȳ|k−2) ≥ 0. (3.110)
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Therefore subtracting (3.110) from (3.109) and using Hypothesis 3.47 yields

−
〈
x̄ − ȳ,

A∗B(x̄ − ȳ)

ε

〉

+ F

(
x̄, u(x̄),

B(x̄ − ȳ)

ε
, XN

)
− F

(
ȳ, v(ȳ),

B(x̄ − ȳ)

ε
, YN

)

− Cδ
(
1+ |x̄ |k−1+γ + |ȳ|k−1+γ

) ≤ ω1(δ, ε; n, N ), (3.111)

for some C = C(MF , k, γ), where limn→+∞ limN→+∞ ω1(δ, ε; n, N ) = 0 for fixed
δ, ε.

It now follows from (3.104)–(3.106) that

lim inf
δ→0

lim inf
ε→0

lim inf
n→+∞ (u(x̄)− v(ȳ)− δ|x̄ |k − δ|ȳ|k) > m̄ = min

(m
2

, 1
)

> 0.

(3.112)

Thus, Hypothesis3.45 and (3.111) imply

−
〈
x̄ − ȳ,

A∗B(x̄ − ȳ)

ε

〉
+ ν(u(x̄)− v(ȳ))

+ F

(
x̄, v(ȳ),

B(x̄ − ȳ)

ε
, XN

)
− F

(
ȳ, v(ȳ),

B(x̄ − ȳ)

ε
, YN

)

− Cδ
(
1+ |x̄ |k−1+γ + |ȳ|k−1+γ

) ≤ ω1(δ, ε; n, N ). (3.113)

We recall that XN , YN satisfy (3.52). We can now use (3.2), Hypothesis 3.48, and
the fact that |x̄ |, |ȳ|, |u(x̄)|, |v(ȳ)| ≤ Rδ for some Rδ independent of ε, n to get

ν(u(x̄)− v(ȳ))− Cδ(1+ |x̄ |k−1+γ + |ȳ|k−1+γ)

≤ c0
|x̄ − ȳ|2−1

ε
+ ωRδ

(
|x̄ − ȳ|−1

(
1+ |x̄ − ȳ|−1

ε

))
+ ω1(δ, ε; n, N )

≤ ω2(δ; ε, n, N ),

(3.114)

where lim supε→0 lim supn→+∞ lim supN→+∞ ω2(δ; ε, n, N ) = 0 for sufficiently
small δ. Therefore we have from (3.112) and (3.114) that

νm̄ ≤ −νδ(|x̄ |k + |ȳ|k)+Cδ(1+ |x̄ |k−1+γ + |ȳ|k−1+γ)+ ω3(δ, ε, n, N ), (3.115)

where lim supδ→0 lim supε→0 lim supn→+∞ lim supN→+∞ ω3(δ, ε, n, N ) = 0. Since

max
r≥0

(−νδrk + Cδrk−1+γ
) ≤ C1δ,

taking lim supδ→0 lim supε→0 lim supn→+∞ lim supN→+∞ in (3.115), we conclude
that
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νm̄ ≤ 0,

which is a contradiction unless m ≤ 0.
For γ = 0 the proof is almost the same. We replace the functions

δ|x |k and δ|x |k

by

δeb
√

1+|x |2 and δeb
√

1+|y|2 ,

respectively, where b > a is such that ν > 2MFb + 4NF (b + b2). We then obtain,
in place of (3.114),

ν(u(x̄)− v(ȳ))− δ(2MFb + 4NF (b + b2))

(
eb
√

1+|x̄ |2 + eb
√

1+|ȳ|2
)
≤ ω2(δ; ε, n, N )

which, using ν > 2MFb + 4NF (b + b2) and the fact that now

lim inf
δ→0

lim inf
ε→0

lim inf
n→+∞

(
u(x̄)− v(ȳ)− δeb

√
1+|x̄ |2 − δeb

√
1+|ȳ|2

)
> m̄ > 0,

produces again

νm̄ ≤ ω4(δ, ε, n, N ), (3.116)

where lim supδ→0 lim supε→0 lim supn→+∞ lim supN→+∞ ω4(δ, ε, n, N ) = 0.
For γ = 1 the proof is also very similar. Let k̄ ≥ 2. We take k1 > k > k̄ such that

ν > MFk1+NFk1(k1−1) and replace the functions δ|x |k and δ|x |k in the definition
of mδ respectively by h(x) = δ(1 + |x |2) k

2 and h(y) = δ(1 + |y|2) k
2 . It is easy to

check that

|Dh(x)| ≤ δk(1+ |x |2) k
2−1|x |, |D2h(x)| ≤ δk(k − 1)(1+ |x |2) k

2−1

and so there exists an r > 0 such that

(1+ |x |)|Dh(x)| ≤ δk1(1+ |x |2) k
2 if |x | ≥ r,

(1+ |x |)2‖D2h(x)‖ ≤ δk1(k1 − 1)(1+ |x |2) k
2 if |x | ≥ r.

If we now repeat the arguments of the proof and use the above estimates we obtain,
in place of (3.114),

ν(u(x̄)− v(ȳ))− δ(MFk1 + NFk1(k1 − 1))
(
(1+ |x̄ |2) k

2 + (1+ |ȳ|2) k
2

)

≤ ω2(δ; ε, n, N )+ ω3(δ)
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for some modulus ω3 which depends on r. The result now follows upon noticing that

lim inf
δ→0

lim inf
ε→0

lim inf
n→+∞ (u(x̄)− v(ȳ)− δ(1+ |x̄ |2) k

2 + δ(1+ |ȳ|2) k
2 ) > m̄ > 0

and using ν > MFk1 + NFk1(k1 − 1).
If k̄ < 2 we proceed in the same way as for k̄ ≥ 2. We take k1 > k > k̄ such that

ν > MFk1+ NFk1 and as before take h(x) = δ(1+|x |2) k
2 and h(y) = δ(1+|y|2) k

2 .
However now

D2h(x) = δk(k − 2)(1+ |x |2) k
2−2x ⊗ x + δk(1+ |x |2) k

2−1 I ≤ δk(1+ |x |2) k
2−1 I.

Thus when we plug the derivatives of h into the equation in the proof of comparison,
using Hypothesis 3.46 we can replace D2h(x̄) by δk(1 + |x̄ |2) k

2−1 I and also do
similarly for D2h(ȳ). The rest of the arguments are the same. �

Remark 3.57 The conditions in (3.100)–(3.102) may not be optimal for some equa-
tions due to the rather general assumption Hypothesis 3.55 and the way it is written.
However they are optimal in some cases. Consider a simple first-order equation
u − xu′ = 0 in R which has two obvious classical solutions u1 ≡ 0 and u2(x) = x ,
and the second-order equation 2u − x2u′′ = 0 which has solutions u1 ≡ 0 and
u2(x) = x2. For u − xu′ = 0, (3.102) produces k̄ < 1, and for 2u − x2u′′ = 0 we
obtain k̄ < 2. Equation u − μu′ = 0,μ > 0, has two classical solutions u1 ≡ 0 and
u2(x) = ex/μ. Notice that here MF = μ/2 and (3.101) gives a < 1/μ. �

Theorem 3.58 (Comparison under strong B-condition) The conclusions of
Theorem3.56 hold if (3.2) is replaced by (3.3) and Hypothesis3.48 is replaced by
Hypothesis3.52.

Proof The proof is exactly the same as the proof of Theorem3.56 with one modifi-
cation. Using the notation of this proof, instead of (3.114) (for γ ∈ (0, 1)), by (3.3)
and Hypothesis 3.52 we now have

ν(u(x̄)−v(ȳ))− Cδ(1+ |x̄ |k−1+γ + |ȳ|k−1+γ) ≤ c0
|x̄ − ȳ|2−1

ε

− |x̄ − ȳ|2
ε

+ ωRδ

(
|x̄ − ȳ|

(
1+ |x̄ − ȳ|−1

ε

))
+ ω1(δ, ε; n, N ).

(3.117)

If ωRδ
(r) ≤ νm̄/4+ Kδr for some Kδ > 0 we obtain

ωRδ

(
|x̄ − ȳ|

(
1+ |x̄ − ȳ|−1

ε

))
≤ νm̄

4
+Kδ|x̄ − ȳ|

(
1+ |x̄ − ȳ|−1

ε

)

≤ νm̄

2
+ |x̄ − ȳ|2

ε
+ K̃δ

|x̄ − ȳ|2−1
ε
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for some K̃δ > 0 and small enough ε. Therefore putting this in (3.117) and applying
(3.107) yields

ν(u(x̄)− v(ȳ))− Cδ(1+ |x̄ |k−1+γ + |ȳ|k−1+γ) ≤ νm̄

2
+ ω2(δ; ε, n, N ),

(3.118)

where lim supε→0 lim supn→+∞ lim supN→+∞ ω2(δ; ε, n, N ) = 0 for sufficiently
small δ. This allows us to continue and conclude the proof using the same argu-
ments as those used in the proof of Theorem3.56. The other cases are similar. �

Remark 3.59 We remark that all results of this section extend to equations of the
form

ut + inf
α∈A

sup
β∈B

{〈Aα,βx, Du〉 − Fα,β(t, x, u, Du, D2u)
} = 0

and
inf
α∈A

sup
β∈B

{−〈Aα,βx, Du〉 + Fα,β(t, x, u, Du, D2u)
} = 0,

whereA,B are arbitrary sets, provided that all assumptions are satisfiedby Aα,β, Fα,β ,
uniformly in α and β. Since the definition of a viscosity solution depended on the
operators A and B, we have to assume that there exist a linear, densely defined,
maximal dissipative operator A in H such that D(A∗) ⊂ D(A∗α,β) for all α,β, and a
bounded, strictly positive, self-adjoint operator B on H such that A∗B is bounded.
To ensure the uniformity of test functions, they are now defined by Definition3.32
for A, and the notion of B-continuity is defined using our fixed B which works for
all Aα,β . All operators Aα,β must then satisfy either the weak or strong B-condition
with this B and a constant c0 independent of α and β. �

3.6 Existence of Solutions: Value Function

In this section we investigate the existence of viscosity solutions for Hamilton–
Jacobi–Bellman equations associated with stochastic optimal control problems. In
such cases the Hamiltonians F in Eqs. (3.56) and (3.62) are convex/concave in
u, Du, D2u. We show that, under suitable hypotheses, the unique viscosity solu-
tion of (3.62) (respectively, (3.56)) is the value function of the associated finite
horizon (respectively, infinite horizon) optimal control problem. A key ingredient in
the proof will be the use of the dynamic programming principle (Theorem2.24). We
recall briefly the weak formulation of a stochastic optimal control problem that has
been introduced in Chap.2.

We fix a final time 0 < T ≤ +∞, a Polish space � (the control space), a real,
separable Hilbert space � (the space of the noise) and Q ∈ L+1 (�).

Following Definition2.7, for t ∈ [0, T ), we say that the 5-tuple ν := (�ν,F ν,

F ν,t
s , P

ν,W ν
Q

)
is a reference probability space if:
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(i) (�ν,F ν, P
ν) is a complete probability space.

(ii) W ν
Q = {W ν

Q(s)}s∈[t,T ] is a �-valued Q-Wiener process on (�ν,F ν, P
ν) (with

W ν
Q(t) = 0, P

ν-a.s.).
(iii) The filtration F ν,t

s = σ
(
F ν,t,0

s ,N ), where F ν,t,0
s = σ

(
W ν

Q(τ ) : t ≤ τ ≤ s
)

and N are the P
ν-null sets in F ν .

We say that a process a(·) is an admissible control on [t, T ] (respectively on
[t,+∞) ifT = +∞) if there exists a referenceprobability spaceν = (�ν,F ν,F ν,t

s ,

P
ν,W ν

Q

)
such that a(·) : [t, T ] ×�ν → � (respectively a(·) : [t,+∞)×�ν → �)

is F ν,t
s -progressively measurable. To indicate the dependence of a(·) on the refer-

ence probability space we will write aν(·) and, with a slight abuse of notation, we
will often write aν(·) to denote the whole 6-tuple

(
�ν,F ν,F ν,t

s , P
ν,W ν

Q, aν(·)).
We denote the set of all admissible controls aν(·) by Ut .

The finite horizon problem: Let T < +∞. For any aν(·) ∈ Ut we consider the
system evolving according to the following state equation

{
dX (s) = (AX (s)+ b(s, X (s), aν(s))) ds + σ(s, X (s), aν(s))dW ν

Q(s)
X (t) = x,

(3.119)

where A is a linear, densely defined, maximal dissipative operator in H generating
a C0-semigroup of contractions et A. The functions b and σ satisfy conditions that
will be specified below. Our hypotheses will guarantee that (3.119) admits, for any
aν(·) ∈ Ut , a uniquemild solution (see Definition1.119) denoted by X (·; t, x, aν(·)).
We consider the problem of minimizing a cost functional

J (t, x; aν(·)) =E
ν

[ ∫ T

t
e−

∫ s
t c(X (τ ;t,x,aν (·)))dτ l(s, X (s; t, x, aν(·)), aν(s))ds

+ e−
∫ T
t c(X (τ ;t,x,aν (·)))dτ g(X (T ; t, x, aν(·)))

]

(3.120)

over all aν(·) ∈ Ut . The value function of this minimization problem is defined as
follows:

V (t, x) := inf
aν (·)∈Ut

J (t, x; aν(·)), (3.121)

while the associated Hamilton–Jacobi–Bellman equation is given by

{
vt + 〈Ax, Dv〉 − F(t, x, v, Dv, D2v) = 0
v(T, x) = g(x),

(3.122)

where
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F(t, x, r, p, X) := sup
a∈�

{
− 1

2
Tr
((

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
X
)

− 〈p, b(t, x, a)〉 + c(x)r − l(t, x, a)

}
.

(3.123)

Remark 3.60 We point out that if σ(t, x, a) ∈ L(�, H), then the term

(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗

can be written in a more common and convenient form

σ(t, x, a)Qσ(t, x, a)∗. �

The infinite horizon problem: We only study the case of constant discounting, i.e.
we assume that c = λ > 0. However, under suitable assumptions, the results we
prove could be adapted to a more general case of non-constant c. For any aν(·) ∈ U0

we consider a system described by a stochastic differential equation

{
dX (s) = (AX (s)+ b(X (s), aν(s))) ds + σ(X (s), aν(s))dW ν

Q(s)
X (0) = x .

(3.124)

The mild solution of (3.124) will be denoted by X (·; 0, x, aν(·)). The infinite
horizon problem consists in minimizing a cost functional

J (x; aν(·)) = E
ν

[∫ +∞

0
e−λt l(X (s; 0, x, aν(·)), aν(s))ds

]
(3.125)

over all controls aν(·) ∈ U0. The value function is given by

V (x) := inf
aν (·)∈U0

J (x; aν(·)), (3.126)

and the corresponding Hamilton–Jacobi–Bellman equation is

λv(x)− 〈Ax, Dv〉 + F(x, v, Dv, D2v) = 0, (3.127)

where

F(x, r, p, X) := sup
a∈�

{
−1

2
Tr
((

σ(x, a)Q
1
2

) (
σ(x, a)Q

1
2

)∗
X
)
− 〈p, b(x, a)〉 − l(x, a)

}
.

(3.128)
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3.6.1 Finite Horizon Problem

In this subsectionwe prove that, under suitable hypotheses, the value function (3.121)
of the finite horizon problem is the unique viscosity solution of (3.122). We obtain
the results under two sets of hypotheses: in the first the generator A satisfies the weak
B-condition for some operator B (see Definition3.9) and in the second it satisfies the
strong B-condition (Definition3.10) which allows us to put milder assumptions on
the coefficients of the state equation and of the cost functional. Note that the words
strong andweak used to describe the B-conditions have nothing to do with the strong
and weak formulation of the optimal control problem (see Sects. 2.1.1 and 2.1.2).

To avoid cumbersome notation we will drop the index “ν” whenever it does not
cause any confusion.

Proposition 3.61 (Regularity of V under weak B-condition) Let B satisfy the weak
B-condition for A (Definition3.9) andb : [0, T ]×H×� → H,σ : [0, T ]×H×� →
L2(�0, H), l : [0, T ] × H × � → R be continuous. Assume that b and σ satisfy
(3.7), (3.9), (3.10) with γ = 1, (3.21) and (3.22), and let c be bounded from below.
Suppose that there exist local moduli ωl(·, ·) and ω(·, ·) such that

|l(t, x, a)− l(s, y, a)| ≤ωl(|x − y|−1 + |s − t |, R)

for all x, y ∈ B(0, R), a ∈ �, s, t ∈ [0, T ]
(3.129)

and

|g(x)− g(y)|, |c(x)− c(y)| ≤ ω(|x − y|−1, R) for all x, y ∈ B(0, R). (3.130)

Moreover, assume that there exist two nonnegative constants C,m such that

|c(x)|, |g(x)|, |l(t, x, a)| ≤ C(1+ |x |m) (3.131)

for all x ∈ H, a ∈ � and t ∈ [0, T ]. Then:
(i) There exists a local modulus σ1(·, ·) such that

|J (t, x; a(·))− J (t, y; a(·))| ≤ σ1(|x − y|−1, R) (3.132)

for all x, y ∈ B(0, R), t ∈ [0, T ] and a(·) ∈ Ut .
(ii) There exists a nonnegative constant C̃ and a local modulus σ2(·, ·) such that

|J (t, x; a(·))|, |V (t, x)| ≤ C̃(1+ |x |m), (3.133)

for all (t, x) ∈ [0, T ] × H and a(·) ∈ Ut , and

|V (t, x)− V (s, y)| ≤ σ2(|t − s| + |x − y|−1, R) (3.134)
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for all x, y ∈ B(0, R), t, s ∈ [0, T ].
Proof Part (i): Let L be a constant such that c(x) ≥ L for all x ∈ H . We will
assume that L < 0. Choose x, y ∈ B(0, R), a(·) ∈ Ut and denote X (·; t, x, a(·))
and X (·; t, y, a(·)) respectively by X (·) and Y (·). We have

|J (t, y; a(·))− J (t, x; a(·))| ≤ I1 + I2

:=
(∫ T

t
E

∣∣∣∣e
− ∫ rt c(X (τ ))dτ l(r, X (r), a(r))− e−

∫ r
t c(Y (τ ))dτ l(r, Y (r), a(r))

∣∣∣∣dr
)

+
(
E|e−

∫ T
t c(X (τ ))dτ g(X (T ))− e−

∫ T
t c(Y (τ ))dτ g(Y (T ))|

)
. (3.135)

We first consider I1.

I1 ≤ I11 + I12

:=
∫ T

t
E

[
e−

∫ r
t c(X (τ ))dτ |l(r, X (r), a(r))− l(r, Y (r), a(r))|

]
dr

+
∫ T

t
E

[
|l(r, Y (r), a(r))|

∣∣∣e−
∫ r
t c(X (τ ))dτ − e−

∫ r
t c(Y (τ ))dτ

∣∣∣
]
dr.

In the following we will denote by M any absolute constant independent of R and
of the control. Given ε > 0 we can find, thanks to (D.1), a positive constant Kε

(non-increasing in ε) such that, for any s > 0, ωl(s,
1
ε
) ≤ ε + Kεs. Using (3.129)

and (3.131), we obtain

I11 ≤ e−T L
∫ T

t
E|l(r, X (r), a(r))− l(r, Y (r), a(r))|dr

≤ e−T L
∫ T

t

∫

{|X (r)|< 1
ε and |Y (r)|< 1

ε }
ωl

(
|X (r)− Y (r)|−1, 1

ε

)
dPdr

+ e−T L
∫ T

t

∫

{|X (r)|≥ 1
ε or |Y (r)|≥ 1

ε }
M(2+ |X (r)|m + |Y (r)|m)dPdr.

≤ M
∫ T

t
(ε+ KεE|X (r)− Y (r)|−1)dr

+ M
∫ T

t

(
E(1+ |X (r)|2m + |Y (r)|2m)

) 1
2
(

P

(
|X (r)| ≥ 1

ε

)
+ P

(
|Y (r)| ≥ 1

ε

)) 1
2
dr.

It follows from (1.37) that we have

E( sup
t≤r≤T

|X (r)|2m + sup
t≤r≤T

|Y (r)|2m) ≤ CR, (3.136)

where CR is a constant independent of the control but depending on R. In particular,
this implies by Chebychev’s inequality that
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(
P

(
sup

t≤r≤T
|X (r)| ≥ 1

ε

)
+ P

(
sup

t≤r≤T
|Y (r)| ≥ 1

ε

)) 1
2

≤ γ(ε, R), (3.137)

for some local modulus γ. Thus, using (3.136), (3.137) and (3.23), we obtain

I11 ≤ M(ε+ Kε|x − y|−1)+ γ1(ε, R) (3.138)

for some local modulus γ1. Taking the infimum of the right-hand side of (3.138) over
ε > 0 produces a local modulus �(·, R) such that

I11 ≤ �(|x − y|−1, R). (3.139)

To estimate I12 observe that

∫ T

t
E

[
|l(r, Y (r), a(r))|

∣∣∣e−
∫ s
t c(X (τ ))dτ − e−

∫ s
t c(Y (τ ))dτ

∣∣∣
]
dr

≤
(∫ T

t
E
[|l(r, Y (r), a(r))|2] dr

) 1
2

×
(∫ T

t
E

[∣∣∣e−
∫ s
t c(X (τ ))dτ − e−

∫ s
t c(Y (τ ))dτ

∣∣∣
2
]
dr

) 1
2

.

We observe that for a, b ∈ R, a, b ≥ TL one has
∣∣e−a − e−b

∣∣ ≤ e−TL |a− b|. There-
fore, using (3.136), it follows similarly as before that, for some CR > 0 depending
on R but independent of the choice of the control,

I12 ≤ CR

[
E

(∫ T

t
ω

(
|X (r)− Y (r)|−1, 1

ε

)
dr

)2

+ P

(
sup

t≤r≤T
|X (r)| ≥ 1

ε

)
+ P

(
sup

t≤r≤T
|Y (r)| ≥ 1

ε

)] 1
2

.

We now use again (3.137), (3.23), and argue as for I11 to find that there exists a local
modulus �(·, R) such that

I12 ≤ �(|x − y|−1, R). (3.140)

The term I2 in (3.135) can be estimated similarly. Thus we obtain claim (i).

Part (ii): Estimate (3.133) follows directly from (3.131) and (1.37). Moreover, by
(3.132), we have

|V (t, x)− V (t, y)| ≤ σ1(|x − y|−1, R) ∀x, y ∈ B(0, R), t ∈ [0, T ]. (3.141)

It remains to prove that
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|V (t, x)− V (s, x)| ≤ σ̃(|t − s|, R) ∀x ∈ B(0, R), t, s ∈ [0, T ] (3.142)

for some local modulus σ̃.
We notice that it follows from our assumptions, (3.132), (3.133), and Proposi-

tion2.16, that the assumptions of Theorem2.24 are satisfied and thus the dynamic
programming principle (2.23) holds. Let now (3.142), let 0 ≤ t < s ≤ T and
x ∈ B(0, R). Let X (·) be the solution of (3.119).

Using (2.23) we have, for some constant CR depending on R,

|V (s, x)− V (t, x)| ≤ sup
a(·)∈Ut

e−LT
E

∫ s

t
|l(r, X (r), a(r))|dr

+ sup
a(·)∈Ut

E

∣∣∣V (s, x)− V (s, X (s))e−
∫ s
t c(X (r))dr

∣∣∣

≤ CR|t − s| + e−LT sup
a(·)∈Ut

E |V (s, x)− V (s, X (s))|

+ sup
a(·)∈Ut

E

∣∣∣V (s, x)
(
e−

∫ s
t c(X (r))dr − 1

)∣∣∣ =: CR|t − s| + D1 + D2,

(3.143)

where we have used (1.37), (3.131).
Since V satisfies (3.133) and (3.141), arguing as in the estimates for I11 and using

(3.25) and (3.137), we obtain for every ε > 0, a(·) ∈ Ut

E |V (s, x)− V (s, X (s))| ≤Eσ1(|x − X (s)|−1, 1
ε
)+ CR

(
P( sup

t≤r≤T
|X (r)| ≥ 1

ε
)

) 1
2

≤ ε+ CR,ε|t − s| 12 + γ(ε, R),

(3.144)

thus the same estimate holds for D1.
To estimate D2, let Cε ≥ 0 be a constant such that c(y) ≤ Cε when |y| ≤ 1

ε
.

Then, for every ε > 0, a(·) ∈ Ut ,

E

(
|V (s, x)|

∣∣∣e−
∫ s
t c(X (r))dr − 1

∣∣∣
)

≤ CR max

(
e−|t−s|L − 1,

(
1− e−Cε|t−s|)+ P( sup

t≤r≤T
|X (r)| ≥ 1

ε
)

)

≤ CR max
(
e−|t−s|L − 1,

(
1− e−Cε|t−s|)+ γ(ε, R)

)
, (3.145)

and D2 satisfies the same estimate. Plugging (3.144) and (3.145) into (3.143) and
taking the infimum over ε > 0 provides (3.142). �
Proposition 3.62 (Regularity of V under strong B-condition) Let B satisfy the
strong B-condition for A (Definition3.10). Let b : [0, T ]×H×� → H, σ : [0, T ]×
H ×� → L2(�0, H), l : [0, T ] × H ×� → R be continuous, let b and σ satisfy
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(3.7), (3.9), (3.10) with γ = 1 and (3.22), and let c be bounded from below. Suppose
that there exist local moduli ωl(·, ·) and ω(·, ·) such that

|l(t, x, a)− l(s, y, a)| ≤ ωl(|x − y| + |s − t |, R), (3.146)

for all x, y ∈ B(0, R), a ∈ �, s, t ∈ [0, T ] and

|g(x)− g(y)|, |c(x)− c(y)| ≤ ω(|x − y|, R), (3.147)

for all x, y ∈ B(0, R), and that (3.131) holds.
Then:

(i) The functions J and V satisfy (3.133) and there exists a local modulus σ(·, ·)
such that

|J (t, x; a(·))− J (t, y; a(·))| ≤ σ(|x − y|, R) (3.148)

for all x, y ∈ B(0, R), t ∈ [0, T ], a(·) ∈ Ut .
(ii) For any τ ∈ (0, T ), there exists a local modulus στ (·, ·) such that

|V (t, x)− V (t, y)| ≤ στ (|x − y|−1, R) (3.149)

for all x, y ∈ B(0, R), t ∈ [0, τ ].
(iii) There exists a local modulus ρ(·, ·) such that

|V (t, x)− V (s, e(s−t)Ax)| ≤ ρ(s − t, R) (3.150)

for all x ∈ B(0, R), 0 ≤ t ≤ s ≤ T .

Proof Obviously J and V satisfy (3.133) as in Proposition3.61. Also (3.148) is
proved exactly as (3.132) in Proposition3.61. The only difference is that, since l, g, c
are now continuous in the usual norm of H instead of the | · |−1 norm, we have to
replace (3.23) by (1.39).

To show (3.149) we begin as in (3.135). The term I1 is estimated in exactly the
same way as in the proof of Proposition3.61 using (3.27) instead of (3.23). For the
term I2 we have

I2 ≤ I21 + I22 :=E

[
e−

∫ T
t c(X (r))dr |g(X (T ))− g(Y (T ))|

]

+ E

[
|g(Y (T ))|

∣∣∣e−
∫ T
t c(X (r))dr − e−

∫ T
t c(Y (r))dr

∣∣∣
]
.

The term I22 is again standard if we use (3.27). If g satisfied (3.130) we could also
proceed as before with the term I21 to obtain (3.152) (see Remark3.63). Since g
only satisfies (3.147) we have to proceed slightly differently. We have, by (3.131),
(3.147), (3.136), (3.137), (3.28)
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I21 ≤ e−T L
E |g(X (T ))− g(Y (T ))| ≤ e−T L

E ω

(
|X (T )− Y (T )|, 1

ε

)

+ e−T L
∫

{|X (T )|≥ 1
ε or |Y (T )|≥ 1

ε }
C(2+ |X (T )|m + |Y (T )|m)dP.

≤ e−T L(ε+ KεE|X (T )− Y (T )|)+ γ(ε, R)

≤ e−T Lε+ e−T L

(
C(T )

T − τ

) 1
2

|x − y|−1 + γ(ε, R),

where C(T ) is the constant from (3.28) and γ is a local modulus. It remains to take
the infimum over all ε > 0.

The proof of (3.150) is also very similar to the proof of (3.142). We can now
claim that the dynamic programming principle is satisfied and thus, as in (3.151), if
x ∈ B(0, R) and 0 ≤ t ≤ s ≤ T , we have

|V (t, x)−V (s, e(s−t)Ax)| ≤ sup
a(·)∈Ut

e−LT
E

∫ s

t
|l(r, X (r), a(r))|dr

+ e−LT sup
a(·)∈Ut

E
∣∣V (s, e(s−t)Ax)− V (s, X (s))

∣∣

+ sup
a(·)∈Ut

E

∣∣∣V (s, e(s−t)Ax)
(
e−

∫ s
t c(X (r))dr − 1

)∣∣∣ , (3.151)

where X (r) is the solution of (3.119). The first and the third term above are estimated
as in (3.143) and (3.145). For the middle term we first notice that there exists some
constant CR depending on R but independent of the control such that

E|X (s)− e(s−t)Ax |2 ≤ CR(s − t).

Therefore, using (3.148),

E
∣∣V (s, e(s−t)Ax)− V (s, X (s))

∣∣ ≤ E σ

(
|X (s)− e(s−t)Ax |, 1

ε

)

+ CR

(
P( sup

t≤r≤T
|X (r)| ≥ 1

ε
)

) 1
2

≤ ε+ CR,ε|t − s| 12 + γ(ε, R),

which implies the claim as all the constants and the local modulus γ are independent
of t and the controls. �
Remark 3.63 It follows easily from the above proof that if g satisfies (3.130) instead
of (3.147), then

|V (t, x)− V (s, y)| ≤ ω(|t − s| + |x − y|−1, R) ∀x, y ∈ B(0, R), t, s ∈ [0, T ]
(3.152)

for some local modulus ω(·, ·). �



3.6 Existence of Solutions: Value Function 231

Remark 3.64 It is clear from the proof that (3.148), and the same estimate for V ,
still holds if (3.22) is replaced by (3.8) and the strong B-condition for A is replaced
by a standard requirement that A generates a C0-semigroup. �

In the next lemma we provide Itô’s-like formulae for test functions ψ = ϕ +
h(t, |x |) introduced in Definition3.32. As we remarked after this definition, even
though |x | is not differentiable at 0, the function h0(t, x) := h(t, |x |) ∈ C1,2((0, T )×
H), so with a slight abuse of notation, in the following we will write h(t, x) instead
of h(t, |x |), Dh(t, x) instead of Dh0(t, x) = x

|x |
d
dr h(t, r)|r=|x | (which is 0 when

x = 0), and D2h(t, x) instead of D2h0(t, x).

Lemma 3.65 Let b and σ be continuous, satisfy (3.7)–(3.10), and let c : H → R be
continuous, bounded from below and satisfy (3.131). Consider a test function (in the
sense of Definition3.32) ψ = ϕ + h. Suppose that h satisfies (1.110) and consider
the solution X (·) of (3.119) for a given control a(·) ∈ Ut . Then, for any s ∈ [t, T ],

E

[
e−

∫ s
t c(X (τ ))dτϕ(s, X (s))

]
= ϕ(t, x)

E

[∫ s

t
e−

∫ r
t c(X (τ ))dτ

(
ϕt (r, X (r))+ 〈X (r), A∗Dϕ(r, X (r))

〉

+ 〈b(r, X (r), a(r)), Dϕ(r, X (r))〉 − c(X (r))ϕ(r, X (r))

+1

2
Tr
[(

σ(r, X (r), a(r))Q
1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2ϕ(r, X (r))

])
dr

]

(3.153)

and

E

[
e−

∫ s
t c(X (τ ))dτh(s, X (s))

]
≤ h(t, x)+ E

[∫ s

t
e−

∫ r
t c(X (τ ))dτ

(
ht (r, X (r))

+ 〈b(r, X (r), a(r)), Dh(r, X (r))〉 − c(X (r))h(r, X (r))

+1

2
Tr
[(

σ(r, X (r), a(r))Q
1
2

) (
σ(r, X (r), a(r))Q

1
2

)∗
D2h(r, X (r))

])
dr

]
.

(3.154)

Proof We define cn(y) := min(c(y), n) and observe that ηn(r) := e−
∫ r
t cn(X (τ ))dτ

is the unique solution of dηn(r) = bn(r)dr (and ηn(t) = 1), where bn(r) =
−ηn(r)cn(X (τ )) is bounded. We can thus use Propositions1.165 and 1.166 and
send n →+∞ to obtain the claim. �

Theorem 3.66 (Existence under weak B-condition) Let the assumptions of Propo-
sition3.61 be satisfied, and let in addition b(·, x, a) and σ(·, x, a) be uniformly
continuous on [0, T ], uniformly in (x, a) ∈ B(0, R)×� for every R > 0. Suppose
also that, for every (t, x),
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lim
N→+∞ sup

a∈�

Tr
[(

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
BQN

]
= 0. (3.155)

Then the value function V (t, x), defined in (3.121), is the unique viscosity solution
of (3.122) among functions in the set

S := {u : [0, T ] × H → R : |u(t, x)| ≤ C(1+ |x |k) for some k ≥ 0,

lim
t→T

|u(t, x)− g(x)| = 0 uniformly on bounded subsets of H

}
.

Proof Without loss of generality we can assume that c is positive since if c ≥ L for
L < 0 then V is a viscosity solution of (3.122) if and only if Ṽ = eL(T−t)V is a
viscosity solution of (3.122) with c replaced by c̃ = c− L and l replaced by eL(T−t)l.

Existence: Proposition3.61 ensures that V is B-continuous and that it belongs
to S. We first prove that V is a viscosity supersolution of (3.122). Let V + ψ have
a local minimum at (t, x) ∈ (0, T ) × H for a test function ψ = ϕ + h (in the
sense of Definition3.32). We can assume that h and its derivatives Dh, D2h, ht
have polynomial growth (see on this the discussion following Lemma3.37), that the
minimum is global (see Lemma3.37), and that V (t, x)+ψ(t, x) = 0, so for all (s, y)
we have V (s, y) ≥ −ψ(s, y).

By Proposition2.16, Theorem2.24, and Proposition3.61, the dynamic program-
ming principle (2.23) is satisfied. Thus for ε > 0 there exists a control aνε(·) ∈ Ut

such that, with Xνε(·) := X (·; t, x, aνε(·)),

V (t, x)+ ε2 ≥ E
νε

[ ∫ t+ε

t
e−

∫ r
t c(Xνε (τ ))dτ l(r, Xνε(r), aνε(r))dr

+ e−
∫ t+ε
t c(Xνε (τ ))dτV (t + ε, Xνε(t + ε))

]
.

This implies that

ε2 − ϕ(t, x)− h(t, x) ≥ E
νε

[ ∫ t+ε

t
e−

∫ r
t c(Xνε (τ ))dτ l(r, Xνε(r), aνε(r))dr

− e−
∫ t+ε
t c(Xνε (τ ))dτϕ(t + ε, Xνε(t + ε))− e−

∫ t+ε
t c(Xνε (τ ))dτh(t + ε, Xνε(t + ε))

]
.

(3.156)

Using (3.153), (3.154) and (3.156) we find

0 ≤ ε+ 1

ε
E

νε

[ ∫ t+ε

t
e−

∫ r
t c(Xνε (τ ))dτ

(
− l(r, Xνε(r), aνε(r))

+ ψt (r, X
νε(r))+ 〈b(r, Xνε(r), aνε(r)), Dψ(r, Xνε(r))〉
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+ 1

2
Tr
[(

σ(r, Xνε(r), aνε(r))Q
1
2

) (
σ(r, Xνε(r), aνε(r))Q

1
2

)∗
D2ψ(r, Xνε(r))

]

− c(Xνε(r))ψ(r, Xνε(r))+ 〈Xνε(r), A∗Dϕ(r, Xνε(r))
〉 )

dr

]
.

(3.157)

Now we observe that, thanks to (1.38), we can find a constant rε > 0, depending on

ε > 0 but independent of the control aνε(·), such that rε
ε→0+−−−→ 0, and the set

�ε
1 =

{
ω ∈ �νε : sup

r∈[t,t+ε]
|Xνε(r)− x | ≤ rε

}
,

satisfies
P

νε(�ε
1) → 1 as ε → 0. (3.158)

We set�ε
2 = �νε\�ε

1. Ifwe denote by�ε(r) the integrand in (3.157), the assumptions
and properties of test functions imply

|�ε(r)| ≤ C(1+ |Xνε(r)|N ) (3.159)

for some N ≥ 0 and C independent of ε. Thus, by (1.37), (3.158), (3.159), and the
continuity of the functions in the integrand, we obtain

0 ≤ ε+ 1

ε
E

νε

[ ∫ t+ε

t

(
− l(t, x, aνε(r))+ ψt (t, x)+ 〈b(t, x, aνε(r)), Dψ(t, x)〉

+ 1

2
Tr
[(

σ(t, x, aνε(r))Q
1
2

) (
σ(t, x, aνε(r))Q

1
2

)∗
D2ψ(t, x)

]

− c(x)ψ(t, x)+ 〈x, A∗Dϕ(t, x)
〉 )

1�ε
1
dr

]

+ C
1

ε

∫ t+ε

t
(P(�ε

2)
1
2 (E[1+ |Xνε(r)|N ]2) 1

2 dr + γ1(ε)

≤ 1

ε
E

νε

[ ∫ t+ε

t

(
− l(t, x, aνε(r))+ ψt (t, x)+

〈
b(t, x, aνε(r)), Dψ(t, x)

〉

+ 1

2
Tr

[(
σ(t, x, aνε(r))Q

1
2

) (
σ(t, x, aνε(r))Q

1
2

)∗
D2ψ(t, x)

]

+ c(x)V (t, x)+ 〈x, A∗Dϕ(t, x)
〉 )

dr

]
+ γ2(ε)

≤ 1

ε

∫ t+ε

t
E

νε
[
ψt (t, x)+

〈
x, A∗Dϕ(t, x)

〉

+ F(t, x, V (t, x),−Dψ(t, x),−D2ψ(t, x))
]
dr + γ2(ε)

= ψt (t, x)+
〈
x, A∗Dϕ(t, x)

〉+ F(t, x, V (t, x),−Dψ(t, x),−D2ψ(t, x))+ γ2(ε),
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where γ1, γ2 above are such that limε→0 γi (ε) = 0, i = 1, 2, and are independent of
the control aνε(r) and of the reference probability space νε. The claim follows after
we let ε → 0.

To show the subsolutionproperty, letV−ψ have aglobalmaximumat (t, x),where
h and its derivatives Dh, D2h, ht have polynomial growth, and V (t, x) = ψ(t, x).
We choose a ∈ � and take a constant control a(·) ≡ a defined on some refer-
ence probability space, and we define X (·) := X (·; t, x, a(·)). Using the dynamic
programming principle (2.23) we have

ψ(t, x) = V (t, x)

≤ E

[∫ t+ε

t
e−

∫ r
t c(X (τ ))dτ l(r, X (r), a)dr + e−

∫ t+ε
t c(X (τ ))dτV (t + ε, X (t + ε))

]

≤ E

[∫ t+ε

t
e−

∫ r
t c(X (τ ))dτ l(r, X (r), a)dr + e−

∫ t+ε
t c(X (τ ))dτψ(t + ε, X (t + ε))

]

and then as before we get

1

ε
E

[ ∫ t+ε

t
e−

∫ r
t c(X (τ ))dτ

(
l(r, X (r), a)+ ψt (r, X (r))+ 〈X (r), A∗Dϕ(r, X (r))

〉

− c(X (r))ψ(r, X (r))+ 〈b(r, X (r), a), Dϕ(r, X (r))〉
+ 1

2
Tr
[(

σ(r, X (r), a)Q
1
2

) (
σ(r, X (r), a)Q

1
2

)∗
D2ψ(r, X (r))

])
dr

]
≥ 0.

The same argument as in the proof of the supersolution part now yields

l(t, x, a)+ ψt (t, x)+
〈
x, A∗Dϕ(t, x)

〉− c(x)V (t, x)

+ 〈b(t, x, a), Dϕ(t, x)〉 + 1

2
Tr

[(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
D2ψ(t, x)

]
≥ 0

(3.160)

and the claim follows after we take the infa∈� in (3.160).

Uniqueness: To prove the uniqueness of the solution we need to show that the
hypotheses of Theorem3.50 are satisfied with the set U = H .

Hypothesis3.44 follows from the local uniform continuity of b(·, ·, a),σ(·, ·, a),

l(·, ·, a), c(·), uniform in a ∈ �, (3.9), (3.10), and (3.131). Hypothesis3.45 fol-
lows from the positivity of c. For Hypothesis 3.46 we can argue as follows: since(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
is a positive, self-adjoint, trace class operator, it is

obvious that, for X, Y ∈ S(H) with X ≤ Y ,

−Tr
((

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
X
)
≥ −Tr

((
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
Y
)

,
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and then taking the supremum over a ∈ � we see that Hypothesis 3.46 is satisfied.
Hypothesis3.47 follows from (3.155) (see the further comments about it after the
end of the proof).

To show thatHypothesis3.48 holds observe that, using (3.21), (3.130) and (3.129),
we have, for |r |, |x |, |y| ≤ R,

F

(
t, x, r,

B(x − y)

ε
, X

)
− F

(
t, y, r,

B(x − y)

ε
, Y

)

≥ − sup
a∈�

(
l(t, x, a)− l(t, y, a)+

〈
B(x − y)

ε
, b(t, x, a)

〉
−
〈
B(x − y)

ε
, b(t, y, a)

〉

− r(c(x)− c(y))+ 1

2
Tr
((

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
X
)

− 1

2
Tr
((

σ(t, y, a)Q
1
2

) (
σ(t, y, a)Q

1
2

)∗
Y
))

≥ − sup
a∈�

|l(t, x, a)− l(t, y, a)| − R sup
a∈�

|c(x)− c(y)|

− sup
a∈�

〈
B(x − y)

ε
, b(t, x, a)− b(t, y, a)

〉

− sup
a∈�

(
1

2
Tr
((

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
X
)

− 1

2
Tr
((

σ(t, y, a)Q
1
2

) (
σ(t, y, a)Q

1
2

)∗
Y
))

≥ −ωl(|x − y|−1, R)− C
|x − y|2−1

ε
− Rωc(|x − y|−1, R)

− sup
a∈�

(
1

2
Tr
((

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
X
)

−1

2
Tr
((

σ(t, y, a)Q
1
2

) (
σ(t, y, a)Q

1
2

)∗
Y
))

.

To estimate the last term we use that X and Y satisfy (3.52). In particular we have

(
X 0
0 −Y

)
≤ 3

ε

(
B −B
−B B

)
.

Multiplying both sides of this inequality by the operator

Z =
⎛

⎝

(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗ (
σ(t, x, a)Q

1
2

) (
σ(t, y, a)Q

1
2

)∗

(
σ(t, y, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗ (
σ(t, y, a)Q

1
2

) (
σ(t, y, a)Q

1
2

)∗

⎞

⎠
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and taking the trace preserves the inequality. This can be seen by evaluating the trace
on the basis of eigenvectors of Z as it is a compact, self-adjoint, and positive operator.
Therefore, thanks to (3.22),

Tr
((

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
X
)
− Tr

((
σ(t, y, a)Q

1
2

) (
σ(t, y, a)Q

1
2

)∗
Y
)

≤ 3

ε
Tr
[ (

(σ(t, x, a)− σ(t, y, a)) Q
1
2

) (
(σ(t, x, a)− σ(t, y, a)) Q

1
2

)∗
B
]

≤ C
|x − y|2−1

ε
,

for all a ∈ � for some C . We thus conclude that

F

(
t, x, r,

B(x − y)

ε
, X

)
− F

(
t, y, r,

B(x − y)

ε
, Y

)

≥ −ωl(|x − y|−1, R)− Rωc(|x − y|−1, R)− C
|x − y|2−1

ε

for some constantC , and so Hypothesis3.48 is satisfied. Hypothesis3.49 with γ = 2
follows from (3.9) and (3.10). This concludes the proof of the uniqueness. �

Let us analyze condition (3.155). Let {u1, u2, ...} be any orthonormal basis of �.
Let {e1, e2, ...} be an orthonormal basis in H−1 made of elements of H as in Sect. 3.2.
Then { f1, f2, ...}, where fi = B

1
2 ei is an orthonormal basis of H .

We have

Tr
[(

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
BQN

]

= Tr
[
(σ(t, x, a)Q

1
2 )∗BQN (σ(t, x, a)Q

1
2 )
]

= Tr
[
(σ(t, x, a)Q

1
2 )∗Q∗

N BQN (σ(t, x, a)Q
1
2 )
]

=
∞∑

i=1

〈
BQNσ(t, x, a)Q

1
2 ui , QNσ(t, x, a)Q

1
2 ui
〉
=

∞∑

i=1
|QNσ(t, x, a)Q

1
2 ui |2−1

=
∞∑

i=1
|B 1

2 QNσ(t, x, a)Q
1
2 ui |2 =

∞∑

i=1
|(σ(t, x, a)Q

1
2 )∗Q∗

N B
1
2 fi |2�

=
∞∑

i=1
|(σ(t, x, a)Q

1
2 )∗Q∗

N Bei |2� =
∞∑

i=N+1
|(σ(t, x, a)Q

1
2 )∗Bei |2�

=
∞∑

i=N+1
|(σ(t, x, a)Q

1
2 )∗B

1
2 fi |2� =

∞∑

i=N+1
|(B 1

2 σ(t, x, a)Q
1
2 )∗ fi |2�
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(see also [374], p. 33). Therefore, we have

fN (a) := Tr
[(

σ(t, x, a)Q
1
2

) (
σ(t, x, a)Q

1
2

)∗
BQN

]
=

∞∑

i=1
|QNσ(t, x, a)Q

1
2 ui |2−1

=
∑∞

i=N+1|(B
1
2 σ(t, x, a)Q

1
2 )∗ fi |2�. (3.161)

The functions fN : � → R, N ≥ 1, are continuous, nonnegative, and since by
(3.10),

∞∑

i=1
|(B 1

2 σ(t, x, a)Q
1
2 )∗ fi |2� = Tr

[(
σ(t, x, a)Q

1
2

) (
σ(t, x, a)Q

1
2

)∗
B
]
≤ C1,

it follows from (3.161) that for every a ∈ �, fN (a) ↓ 0 as N → +∞. Thus, if �

is compact, we must have fN (a) → 0 uniformly on � as N → +∞, which means
that (3.155) is satisfied.

Another case when (3.155) is satisfied is when B is compact. This is an obvious
consequence of the fact that in this case ‖BQN‖ → 0 as N →+∞.

One can use (3.161) to obtain other criteria for (3.155) to hold. For instance, it
will be satisfied if ∞∑

i=1
ai < +∞,

where
ai := sup

a∈�

|σ(t, x, a)Q
1
2 ui |2−1,

and if for every i
lim

N→+∞ sup
a∈�

|QNσ(t, x, a)Q
1
2 ui |−1 = 0.

Theorem 3.67 (Existence under strong B-condition) Let the assumptions of Propo-
sition3.62 and (3.155) be satisfied, and let in addition b(·, x, a), σ(·, x, a) be uni-
formly continuous on [0, T ], uniformly for (x, a) ∈ B(0, R) × � for every R > 0.
Then the value function V (t, x), defined in (3.121), is the unique viscosity solution
of (3.122) among functions in the set

S := {u : [0, T ] × H → R : |u(t, x)| ≤ C(1+ |x |k) for some k ≥ 0,

lim
t→T

|u(t, x)− g(e(T−t)Ax)| = 0 uniformly on bounded subsets of H

}
.

Proof The proof follows the lines of the proof for the weak case. To prove unique-
ness we now use Theorem3.54 instead of Theorem3.50 so we need to verify
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Hypothesis3.52 instead of Hypothesis3.48. This can be done arguing as before using
(3.7) instead of (3.21). �

Remark 3.68 B-continuity is built into the definition of a viscosity solution, however
it is clear from the proof of existence that B-continuity of the value function is not
needed to show that it satisfies the sub- and supersolution conditions required by
the definition. Thus, if we disregard the requirement of B-continuity, we can still
prove that the value function is a “viscosity solution” under much weaker sets of
assumptions than those of Theorems3.66 and 3.67. �

Example 3.69 (Controlled stochastic wave equation) Consider a control problem for
the stochastic wave equation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂2 y
∂s2 (s, ξ) = �y(s, ξ)+ f (ξ, y(s, ξ), a(s))

+h(ξ, y(s, ξ), a(s)) ∂
∂s W̃Q̃(s, ξ), s > t, ξ ∈ O,

y(s, ξ) = 0, s > t, ξ ∈ ∂O,

y(t, ξ) = y0(ξ), ξ ∈ O,
∂y
∂t (t, ξ) = z0(ξ), ξ ∈ O,

(3.162)

where O is a bounded regular domain in R
d , y0 ∈ H 1

0 (O), z0 ∈ L2(O), Q̃ is an
operator in L+1 (L2(O)) and W̃Q̃ is a Q̃-Wiener process, � is a Polish space and
a(·) ∈ Ut . In addition, f, h : O × R × � → R. Suppose we want to minimize the
cost functional

I (t, y0, z0; a(·)) = E

[ ∫ T

t

∫

O
β(s, y(s, ξ), a(s))dξds +

∫

O
γ(y(T, ξ))dξ

]

over all a(·) ∈ Ut , where β : [0, T ] × R×� → R, γ : R → R.
Let�ξ be the Laplace operator with the domain D(�ξ) = H 2(O)∩H 1

0 (O). Then
(see Sect.C.1 and in particular (C.11)) D((−�ξ)

1
2 ) = H 1

0 (O). We set1

H =
⎛

⎝
H 1

0 (O)

×
L2(O)

⎞

⎠

equipped with the inner product

〈(
y
z

)
,

(
ȳ
z̄

)〉

H
= 〈(−�ξ)

1/2y, (−�ξ)
1/2 ȳ〉L2(O) + 〈z, z̄〉L2(O),

(
y
z

)
,

(
ȳ
z̄

)
∈ H.

1We remark that if Tr(Q̃) = +∞ then the right choice of the state space for the stochastic wave

equation is L2(O)× D((−�ξ)
− 1

2 ), at least for additive noise, see [180] Example 5.8, p. 127.
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The operator

D(A) =
⎛

⎝
H 2(O) ∩ H 1

0 (O)

×
H 1

0 (O)

⎞

⎠ , A =
(

0 I
�ξ 0

)
,

is maximal dissipative in H and A∗ = −A. Equation (3.162) can then be rewritten
as the following evolution equation

dX (s) = (AX (s)+ b(X (s), a(s))) dt + σ(X (s), a(s))dWQ(s), X (t) = x :=
(
y0
z0

)
,

(3.163)
in H , where

b

((
y
z

)
, a

)
=
(

0
f (·, y(·), a)

)
, σ

((
y
z

)
, a

)(
ȳ
z̄

)
=
(

0
h(·, y(·), a)z̄

)
,

(3.164)

WQ =
(

0
W̃Q̃

)
, Q

(
y
z

)
=
(

0
Q̃z

)
.

We consider the operator

B =
(

(−�ξ)
−1/2 0

0 (−�ξ)
−1/2

)
.

It is bounded, positive, self-adjoint on H , A∗B is bounded and

〈
A∗B

(
y
z

)
,

(
y
z

)〉

H

= 0.

Moreover, we have

∣∣∣∣

(
y
z

)∣∣∣∣−1
= (|(−�ξ)

1/4y|2 + |(−�ξ)
−1/4z|2)1/2 .

Assume that f, h are continuous in all variables, f (ξ, ·, a), h(ξ, ·, a) are Lipschitz
continuous with Lipschitz constant L independent of ξ, a, and f (·, 0, ·), h(·, 0, ·) are
bounded. Then

∣∣∣∣b
((

y
z

)
, a

)
− b

((
ỹ
z̃

)
, a

)∣∣∣∣
H

= | f (·, y(·), a)− f (·, ỹ(·), a)|L2(O)

≤ L

(∫

O
|y(ξ)− ỹ(ξ)|2dξ

) 1
2

= L|y − ỹ|L2(O)

≤ C |(−�ξ)
1/4(y − ỹ)|L2(O) ≤ C

∣∣∣∣

(
y
z

)
−
(
ỹ
z̃

)∣∣∣∣−1
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for some constantC which follows from embeddings D((−�ξ)
1/4) ↪→ H 1/2(O) ↪→

L2(O) (see Sect.C.1). Thus the function b satisfies (3.9) and (3.21). Unfortunately
we needmore in order for σ to satisfy (3.22) (or even (3.8)).We present one sufficient
condition. Obviously other conditions are possible. Let �0 = Q1/2H . Suppose that
d > 1 and (−�ξ)

(d−1)/4 Q̃1/2 ∈ L2(L2(O)). Then we have by Proposition B.26

∥∥∥∥σ
((

y
z

)
, a

)
− σ

((
ỹ
z̃

)
, a

)∥∥∥∥L2(�0,H)

=
∥∥∥(h(·, y(·), a)− h(·, ỹ(·), a))Q̃1/2

∥∥∥L2(L2(O))

≤
∥∥∥(h(·, y(·), a)− h(·, ỹ(·), a))(−�ξ)

(1−d)/4
∥∥∥L(L2(O))

∥∥∥(−�ξ)
(d−1)/4 Q̃1/2

∥∥∥L2(L2(O))

≤ L sup
|z|L2(O)

≤1

(∫

O
|y(ξ)− ỹ(ξ)|2|(−�ξ)

(1−d)/4z(ξ)|2dξ

)1
2 ∥∥∥(−�ξ)

(d−1)/4 Q̃1/2
∥∥∥L2(L2(O))

≤ L|y − ỹ|L2d/(d−1)(O) sup
|z|L2(O)

≤1
|(−�ξ)

(1−d)/4z|L2d (O)

∥∥∥(−�ξ)
(d−1)/4 Q̃1/2

∥∥∥L2(L2(O))

≤ C |(−�ξ)
1/4(y − ỹ)|L2(O)

∥∥∥(−�ξ)
(d−1)/4 Q̃1/2

∥∥∥L2(L2(O))

≤ C

∣∣∣∣

(
y
z

)
−
(
ỹ
z̃

)∣∣∣∣−1

∥∥∥(−�ξ)
(d−1)/4 Q̃1/2

∥∥∥L2(L2(O))
,

where we have used Sobolev embeddings H 1/2(O) ↪→ L2d/(d−1)(O) and
|(−�ξ)

(1−d)/4z|L2d (O) ≤ C1|z|L2(O) if d > 1 (see Sect.C.1). Thus σ satisfies
(3.22). The same calculation shows that for d = 1 it is enough that (−�ξ)

α Q̃1/2 ∈
L2(L2(O)) for some α > 0. It is now easy to check that (3.10) is true with γ = 1.

We now define

l

(
s,

(
y
z

)
, a

)
=
∫

O
β(s, y(ξ), a)dξ, g

((
y
z

))
=
∫

O
γ(y(ξ))dξ,

and rewrite the cost functional I as

J (t, x; a(·)) = E

[ ∫ T

t
l(s, X (s), a(s))ds + g(X (T ))

]
.

It is easy to see by calculations similar to these for b that if β is continuous and
β(·, ·, a), γ are uniformly continuous with a modulus of continuity independent of
a then

|l(s, x1, a)− l(t, x2, a)| + |g(x1)− g(x2)| ≤ ω(|x1 − x2|−1 + |s − t |),
s, t ∈ [0, T ], x1, x2 ∈ H, a ∈ �

for some modulus ω. If β(0, 0, ·) is bounded then l satisfies (3.131) with m = 1. �
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3.6.2 Improved Version of the Dynamic Programming
Principle

Once we know that the value function is continuous in both variables, a stronger ver-
sion of the dynamic programming principle involving stopping times can be proved.
We will only do this for the finite horizon problem discussed in the previous section,
however the same result would be true for other optimal control problems, including
those with infinite horizon.

We define the set Vt in the following way. For every a(·) ∈ Uν
t for some reference

probability space ν = (
�,F ,F t

s , P,WQ
)
, we choose an F t

s -stopping time t ≤
τa(·) ≤ T . The set Vt is the set of all such pairs

(
a(·), τa(·)

)
. We also define Ṽt to be

the set of those pairs in Vt for which the underlying reference probability space is
standard, i.e. Ṽt =

(
a(·), τa(·)

)
, where a(·) ∈ Ũν

t . To simplify the notation we will
just write (a(·), τ ) instead of

(
a(·), τa(·)

)
.

Theorem 3.70 (Dynamic programming principle) Let b : [0, T ] × H × � → H,
σ : [0, T ] × H × � → L2(�0, H), l : [0, T ] × H × � → R be continuous, let b
and σ satisfy (3.7)–(3.10) with γ = 1. Let c be bounded from below, and let l, g, c
satisfy (3.131), (3.146), (3.147). Then, for all (t, x) ∈ [0, T ] × H,

V (t, x) = inf
(a(·),τ )∈Vt

E

[∫ τ

t
e−
∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds + e−

∫ τ
t c(X (r))dr V (τ , X (τ ))

]
.

(3.165)

Proof Without loss of generality we always assume that the Q-Wiener processes in
the reference probability spaces have everywhere continuous paths. We recall that,
by Proposition3.62 and Remark3.64, J satisfies (3.148) and V satisfies

|V (t, x)− V (t, y)| ≤ ω(|x − y|, R) ∀ x, y ∈ B(0, R), t ∈ [0, T ]

for some local modulus ω. Moreover, using (1.38) and arguing as in the proof of
Proposition3.61 it is easy to see that V (·, x) is continuous for every x ∈ H and
consequently V is continuous on [0, T ] × H .

Let a(·) ∈ Ũν
t for some standard reference probability space ν = (

�,F ,F t
s ,

P,WQ
)
and let τn be an F t

s -stopping time which has a finite number of values, i.e.

τn =
k∑

i=1
1Ai ti

for some pairwise disjoint sets A1, ..., Ak such that
n⋃

i=1
Ai = � and Ai ∈ F t

ti , i =
1, ..., k. It then follows from the proof of the first part of Theorem2.24 (see (2.29))
that,
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J (t, x; a (·)) =
k∑

i=1
E

[
1Ai

∫ ti

t
e−
∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds

+1Ai E

[∫ T

ti
e−
∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds + e−

∫ T
t c(X (r))drg (X (T )) |F t

ti

]]

≥ E

⎡

⎣
k∑

i=1
1Ai

[∫ ti

t
e−
∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds + e−

∫ ti
t c(X (r))dr V (ti , X (ti ))

]⎤

⎦

= E

[∫ τn

t
e−
∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds + e−

∫ τn
t c(X (r))dr V (τn, X (τn))

]
.

(3.166)

By Proposition1.82, every stopping time can be approximated by stopping times τn
with a finite number of values. Therefore, thanks to (1.37), (3.131), (3.133), (3.146)
and (3.147) we can apply the dominated convergence theorem to obtain in the limit
that (3.166) is satisfied for every (a(·), τ ) ∈ Ṽt . Since Ṽt ⊂ Vt , it thus follows that

V (t, x) = inf
a(·)∈Ut

J (t, x; a (·)) = inf
a(·)∈Ũt

J (t, x; a (·))

≥ inf
(a(·),τ )∈Vt

E

[∫ τ

t
e−

∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds + e−

∫ τ
t c(X (r))dr V (τ , X (τ ))

]
,

where we used Theorem2.22 to obtain the second equality.
To show the reverse inequality, let t ≤ η ≤ T , a(·) ∈ Ũν

t for some standard ref-
erence probability space ν = (�,F ,F t

s , P,WQ
)
, and let X (s) = X (s; t, x, a(·)),

s ∈ [t, T ]. Let, for ω0 ∈ �, νω0 =
(
�,Fω0 ,F

η
ω0,s, Pω0 ,WQ,η

)
, where WQ,η(s) =

WQ(s)−WQ(η), and aω0(·) = a1(·) (on [η, T ]) be from Lemma2.26-(ii).2 We have
X (·) = X (·; η, X (η), a1(·)), on [η, T ], P-a.e., and (see the argument in the proof of
(A3) in Proposition2.16) that it is indistinguishable from a process, still denoted by
X (·), such that, for P-a.e. ω0,

X (·) = Xνω0 (·; η, X (η)(ω0), a
ω0(·)), on [η, T ], Pω0 − a.e.

Therefore, as a consequence of Theorem2.24, applied to the reference probability
space νω0 , we have that, for P-a.e. ω0,

V (η, X (η)(ω0)) ≤ Eω0

[ ∫ s

η

e−
∫ r
η c(X (θ))dθl (r, X (r) , aω0(·) (r)) dr

+ e−
∫ s
η c(X (θ))dθV (s, X (s))

]
. (3.167)

2In Lemma2.26-(ii) aω0 (·) denotes the 6-tuple (�,Fω0 ,F
η
ω0,s ,Pω0 ,Wη, a1|[η,T ](·)

)
while here we

use aω0 (·) only to indicate the process.
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Set, for s ∈ [t, T ],

M(s) =
∫ s

t
e−

∫ r
t c(X (θ))dθl (r, X (r) , a (r)) dr + e−

∫ s
t c(X (θ))dθV (s, X (s)) .

Then, by (3.167) and the definition of M(s) (see also the remarks at the end of
Sect. 2.2.2), for P-a.e. ω0

M(η)(ω0) ≤
(∫ η

t
e−

∫ r
t c(X (θ))dθl (r, X (r) , a (r)) dr

)
(ω0)

+
(
e−

∫ η
t c(X (θ))dθ

)
(ω0) Eω0

[ ∫ s

η

e−
∫ r
η c(X (θ))dθl (r, X (r) , aω0 (r)) dr

+ e−
∫ s
η c(X (θ))dθV (s, X (s))

]

=
(∫ η

t
e−

∫ r
t c(X (θ))dθl (r, X (r) , a (r)) dr

)
(ω0)

+
(
e−

∫ η
t c(X (θ))dθ

)
(ω0) E

[ ∫ s

η

e−
∫ r
η c(X (θ))dθl (r, X (r) , a (r)) dr

+ e−
∫ s
η c(X (θ))dθV (s, X (s))

∣∣∣∣F
t
η

]
(ω0) = E

[
M(s)|F t

η

]
(ω0) (3.168)

for every s ∈ [η, T ]. Therefore, M is a submartingale, and thus, by the Optional
Sampling Theorem (Theorem1.84), if τ is an F t

s -stopping time,

V (t, x) = M(t) ≤ E
[
M(τ )|F t

t

]

= E

[∫ τ

t
e−

∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds + e−

∫ τ
t c(X (r))dr V (τ , X (τ ))

∣∣∣∣F
t
t

]
.

Taking the expectation above (or noticing that F t
t is trivial), we thus obtain

V (t, x) ≤ E

[∫ τ

t
e−

∫ s
t c(X (r))dr l (s, X (s) , a (s)) ds + e−

∫ τ
t c(X (r))dr V (τ , X (τ ))

]

(3.169)
for every a(·) ∈ Ũν

t for any standard reference probability space ν = (�,F ,F t
s ,

P,WQ
)
, and every F t

s -stopping time τ .
It remains to justify that (3.169) is true for every (a(·), τ ) ∈ Vt . We sketch

the argument. Let a(·) ∈ Uν1
t , where ν1 = (

�1,F1,F
t
1,s, P1,W 1

Q

)
, and let

τn be F t
1,s-stopping times with a finite number of values approximating τ . Let

ν2 =
(
�2,F2,F

t
2,s, P2,W 2

Q

)
be a standard reference probability space. We proceed

as in the proof ofTheorem2.22. Leta1(·), ã1(·)be as in the proof ofTheorem2.22.We
define Xν1(·) = Xν1(·; t, x, a(·)) = Xν1(·; t, x, a1(·)), Xν2(·) = Xν2(·; t, x, ã1(·)).
Since τn has a finite number of values, we can assume that
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τn =
k∑

i=1
1Ai ti

for some pairwise disjoint sets A1, ..., Ak such that
n⋃

i=1
Ai = � and Ai ∈ F t,0

1,ti , i =
1, ..., k. Let B1, ..., Bk ∈ B(W) be such that W 1

Q(· ∧ ti )−1(Bi ) = Ai , i = 1, ..., k
(see Lemma2.19). We set

τ̃n =
k∑

i=1
1W 2

Q(·∧ti )−1(Bi )
ti .

Then τ̃n is anF t
2,s-stopping time with a finite number of values, and it follows that

LP1(τn ∧ ·, Xν1(·), a(·)) = LP2(τ̃n ∧ ·, Xν2(·), ã1(·)).

One can then conclude that

E
ν1

[∫ τn

t
e−
∫ s
t c(Xν1 (r))dr l

(
s, Xν1 (s) , a (s)

)
ds + e−

∫ τn
t c(Xν1 (r))dr V

(
τn, X

ν1 (τn)
)]

= E
ν2

[∫ τ̃n

t
e−
∫ s
t c(Xν2 (r))dr l

(
s, Xν2 (s) , ã1 (s)

)
ds + e−

∫ τ̃n
t c(Xν2 (r))dr V

(
τ̃n, X

ν2 (τ̃n)
)
]

.

(3.170)

Combining (3.169) with (3.170), we thus obtain that

V (t, x) ≤ E
ν1

[∫ τn

t
e−
∫ s
t c(Xν1 (r))dr l

(
s, Xν1 (s) , a (s)

)
ds + e−

∫ τn
t c(Xν1 (r))dr V

(
τn, X

ν1 (τn)
)]

.

It remains to let n → +∞ above to conclude that (3.169) holds for every pair
(a(·), τ ) ∈ Vt . �

Remark 3.71 The proof of existence in Theorem3.66 works in almost exactly the
same way (and is in fact easier) if we use Theorem3.70 and replace t+ ε by min(t+
ε, τ ), where τ is the exit time of X (·) from some ball Br0(x) for some r0 > 0 (or
from Brε(x) for some rε > 0). In this way one can always work with local maxima
and minima in the definition of viscosity solution and avoid the requirements about
global uniform continuity (and hence growth at infinity) of test functions and their
derivatives. We do not pursue this here and leave the details of such a version of
viscosity solution to the interested readers. �
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3.6.3 The Infinite Horizon Problem

In this subsection we characterize the value function of the infinite horizon opti-
mal control problem (3.126) as the unique solution of the associated HJB equation
(3.127). We consider the following set of assumptions for b : H × � → H,σ :
H ×� → L2(�0, H), l : H ×� → R.

There exist constants C,m ≥ 0, and a local modulus ωl such that:

|b(x, a)− b(y, a)| ≤ C |x − y| ∀x, y ∈ H, a ∈ �, (3.171)

‖σ(x, a)− σ(y, a)‖L2(�0,H) ≤ C |x − y| ∀x, y ∈ H, a ∈ �, (3.172)

|b(x, a)| ≤ C(1+ |x |) ∀x, y ∈ H, a ∈ �, (3.173)

‖σ(x, a)‖L2(�0,H) ≤ C(1+ |x |) ∀x, y ∈ H, a ∈ �, (3.174)

〈b(x, a)− b(y, a), B(x − y)〉 ≤ C |x − y|2−1 ∀x, y ∈ H, a ∈ �, (3.175)

‖σ(x, a)− σ(y, a)‖L2(�0,H) ≤ C |x − y|−1 ∀x, y ∈ H, a ∈ �, (3.176)

|l(x, a)− l(y, a)| ≤ ωl(|x − y|, R) ∀x, y ∈ B(0, R), a ∈ �, (3.177)

|l(x, a)− l(y, a)| ≤ ωl(|x − y|−1, R) ∀x, y ∈ B(0, R), a ∈ �, (3.178)

|l(x, a)| ≤ C(1+ |x |m) ∀x ∈ H, a ∈ �. (3.179)

Proposition3.24 suggests that in order for the value function to be well defined
we need λ to be sufficiently big. We thus impose the following hypothesis.

Hypothesis 3.72 Ifm > 0, the discount constant λ in the functional (3.125) satisfies
λ > λ̄, where λ̄ is the constant from Proposition3.24, where C is the constant from
(3.173) and (3.174) and m is the constant appearing in (3.179). If m = 0, we have
λ > 0.

Proposition 3.73 (Regularity of V under weak B-condition) Suppose that (3.2)
holds, that b and σ are continuous, and that b,σ and l satisfy (3.171), (3.173)–
(3.176), (3.178) and (3.179). Assume that Hypotheses2.28 and 3.72 hold. Then there
exists a local modulus ω such that:

(i) The cost functional (3.125) satisfies

|J (x, a(·))− J (y, a(·))| ≤ ω(|x − y|−1, R), (3.180)

for all x, y ∈ B(0, R), a(·) ∈ U0.
(ii) There exists a constant C̃ such that

|J (x; a(·))|, |V (x)| ≤ C̃(1+ |x |m) (3.181)

for all x ∈ H, a(·) ∈ U0.
(iii) The value function V defined in (3.126) satisfies

|V (x)− V (y)| ≤ ω(|x − y|−1, R) ∀ x, y ∈ B(0, R). (3.182)
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Proof Part (i): Let R > 0, x, y ∈ B(0, R), and a(·) ∈ U0. Set X (·) :=
X (·; 0, x, a(·)),Y (·) := X (·; 0, y, a(·)).

Choose ε > 0. Thanks to (3.32) and Hypothesis 3.72, there exists Tε, also depend-
ing on C,m,λ, R but independent of a(·), such that

E

∫ ∞

Tε

e−λr |l(X (r), a(r))− l(Y (r), a(r))|dr ≤ ε. (3.183)

We now proceed as in the proof of Proposition3.61.

∫ Tε

0
e−λr

∫

{|X (r)|< 1
ε and |Y (r)|< 1

ε }
|l(X (r), a(r))− l(Y (r), a(r))|dPdr

+
∫ Tε

0
e−λr

∫

{|X (r)|≥ 1
ε or |Y (r)|≥ 1

ε }
|l(X (r), a(r))− l(Y (r), a(r))|dPdr

≤
∫ Tε

0
e−λr

∫

{|X (r)|< 1
ε and |Y (r)|< 1

ε }
ωl(|X (r)− Y (r)|−1, 1

ε
)dPdr

+
∫ Tε

0
e−λr

∫

{|X (r)|≥ 1
ε or |Y (r)|≥ 1

ε }
C(2+ |X (r)|m + |Y (r)|m)dPdr

= J1 + J2. (3.184)

Thanks to (1.37), arguing as in the proof of Proposition3.61, we have

J2 ≤ γ1(ε, R) (3.185)

for some local modulus γ1, independent of a(·).
Let Kε be such ωl(s,

1
ε
) ≤ ε+ Kεs. Using (3.23) we obtain

J1 ≤ ε

λ
+ Kε

∫ Tε

0
e−λr

E|X (r)− Y (r)|−1dr ≤ ε

λ
+ Cε|x − y|−1 (3.186)

for some Cε independent of a(·).
Therefore, (3.183)–(3.186) yield

|J (x, a(·))− J (y, a(·))| ≤ ε+ ε

λ
+ Cε|x − y|−1 + γ1(ε, R), (3.187)

and (3.180) follows by taking the infimum above over ε > 0.
Estimate (3.181) follows from (3.32) and Hypothesis 3.72 and (3.182) is an obvi-

ous consequence of (3.180). �

Proposition 3.74 (Regularity of V under strong B-condition) Let (3.3) hold, let b
and σ be continuous, satisfy (3.171), (3.173), (3.174) and (3.176), and let l be contin-
uous and satisfy (3.177), (3.179). Assume that Hypotheses2.28 and 3.72 hold. Then
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there exist a local modulus ω and a constant C̃ such that (i)–(iii) of Proposition3.73
are satisfied.

Proof The proof is exactly the same as the proof of Proposition3.73. We just have
to replace the term |X (r) − Y (r)|−1 by |X (r) − Y (r)| in (3.184) and (3.186), and
then use (3.27) instead of (3.23). �

Theorem 3.75 (Existence under weak B-condition) Let the assumptions of Propo-
sition3.73 be satisfied, and let, for every x,

lim
N→+∞ sup

a∈�

Tr
[(

σ(x, a)Q
1
2

) (
σ(x, a)Q

1
2

)∗
BQN

]
= 0. (3.188)

Then the value function V defined in (3.126) is the unique viscosity solution of (3.127)
among functions in the set

S := {u : H → R : |u(x)| ≤ C1(1+ |x |k)
for some C1 ≥ 0 and k ≥ 0 satisfying (3.190)}.

(3.189)

⎧
⎪⎨

⎪⎩

k < λ
C+ 1

2C
2 if λ

C+ 1
2C

2 ≤ 2,

Ck + 1
2C

2k(k − 1) < λ if λ
C+ 1

2C
2 > 2,

k can be any positive number if C = 0.

(3.190)

(C is the constant from (3.173)–(3.174).)

Proof The proof follows the lines of the proof of Theorem3.66. Proposition3.73 and
Hypothesis3.72 guarantee that V is B-continuous and that it belongs to S. By Propo-
sition2.16, Theorem2.31, and Proposition3.73 (which ensures that Hypothesis 2.28
holds), the dynamic programming principle (2.39) is satisfied.

To show that V is a viscosity supersolution of (3.127), suppose that there exist a
test functionψ = ϕ+h and a point x ∈ H such that V +ψ has a local minimum at x .
Without loss of generality we can assume that h, Dh, D2h have at most polynomial
growth at infinity, and that the minimum is global. We can also require that V (x)+
ψ(x) = 0, so for all y we have V (y) ≥ −ψ(y).

For ε > 0, by the dynamic programming principle, we can find aνε(·) ∈ U0 such
that, defining X (·) := X (·; 0, x, aνε(·)),

V (x)+ ε2 ≥ E
νε

[∫ ε

0
e−λsl(X (s), aνε(s))ds + e−λεV (X (ε))

]
.

Therefore we have

ε2−ϕ(x)−h(x) ≥ E
νε

[∫ ε

0
e−λr l(X (r), aνε(r))dr − e−λε(ϕ(X (ε))+ h(X (ε)))

]
,
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which, upon using (3.153), (3.154), yields

ε+ 1

ε
E

νε

[ ∫ ε

0
e−λr

(
− l(X (r), aνε(r))+ 〈b(X (r), aνε(r)), Dψ(X (r))〉

+ 1

2
Tr
[(

σ(X (r), aνε(r))Q
1
2

) (
σ(X (r), aνε(r))Q

1
2

)∗
D2ψ(X (r))

]

− λψ(X (r))+ 〈X (r), A∗Dϕ(X (r))
〉 )

dr

]
≥ 0.

Using exactly the same arguments as in the proof of Theorem3.66, it follows that
there exists a modulus ρ̃, independent of the control aν(·), such that:

1

ε
E

νε

[ ∫ ε

0
λV (x)− l(x, aνε(r))+ 〈b(x, aνε(r)), Dψ(x)

〉

+ 1

2
Tr

[(
σ(x, aνε(r))Q

1
2

) (
σ(x, aνε(r))Q

1
2

)∗
D2ψ(x)

]
+ 〈x, A∗Dϕ(x)

〉
dr

]
≥ −ρ̃(ε).

Therefore, taking the supremum over a ∈ � inside the integral and then letting
ε → 0 we obtain

λV (x)+ 〈x, A∗Dϕ(x)
〉+ sup

a∈�

{
− l(x, a)+ 〈b(x, a), Dψ(x)〉

+ 1

2
Tr
[(

σ(x, a)Q
1
2

) (
σ(x, a)Q

1
2

)∗
D2ψ(x)

] }
≥ 0.

This shows that V is a viscosity supersolution of (3.127).
To show that V is a viscosity subsolution we take a constant control, apply the

DPP, and again argue as in the proof of Theorem3.66. We leave this to the reader.
To prove that V is the unique viscosity solution among functions in S we need

to show that the hypotheses of Theorem3.56 are satisfied. This has already been
done in the proof of Theorem3.66, apart from Hypotheses3.45 and 3.55 for γ = 1,
and condition (3.102). Hypothesis 3.45 is obviously true with ν = λ. As regards
Hypothesis3.55 for γ = 1, by (3.173) and (3.174), we obtain for all (x, r) ∈ H ×
R, p, q ∈ H, X, Y ∈ S(H),

|F (x, r, p + q, X + Y )− F (x, r, p, X) |
≤ C(1+ |x |)|q| + 1

2
C2(1+ |x |)2‖Y‖,

i.e. Hypothesis 3.55 holds withMF = C, NF = 1
2C

2. Condition (3.102) thus follows
from the definition of the set S. �

Theorem 3.76 (Existence under strong B-condition) Let the assumptions of Propo-
sition3.74 and (3.188) be satisfied. Then the value function V defined in (3.126) is the
unique viscosity solution of (3.127) among functions in S defined in Theorem3.75.
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Proof The only difference with respect to the proof for the weak case is that to
show uniqueness we now use Theorem3.58 instead of Theorem3.56. The fact that
Hypothesis3.52 is satisfied was observed in the proof of Theorem3.67. �

When conditions (3.173) and (3.174) are replaced by ‖σ(x, a)‖L2(�0,H) ≤ C(1+
|x |γ) and |b(x, a)| ≤ C(1 + |x |γ) for some γ ∈ [0, 1), conditions which must be
imposed on a set of functions to guarantee that the value function is the unique
viscosity solution among them can be easily deduced from (3.100) and (3.101).

3.7 Existence of Solutions: Finite-Dimensional
Approximations

We have shown in Sect. 3.6 that value functions of stochastic optimal control prob-
lems are viscosity solutions of their associated HJB equations. This gives a direct
method of establishing existence of viscosity solutions for a large class of equations
where we have an explicit representation formula for a solution. However, many
interesting equations cannot be linked to a stochastic optimal control problem. The
best examples are Isaacs equations which are associated to zero-sum, two-player,
stochastic differential games. For Isaacs equations, one way of showing existence of
viscosity solutions is by proving directly that the associated (upper or lower) value of
the game is the solution. Such results can be found in [260, 464, 466]. This method,
however, runs into technical difficulties as the proof of the dynamic programming
principle is very complicated. In this section we will present a more general method
of showing existence of viscosity solutions based on finite-dimensional approxima-
tions. This method can be thought of as a Galerkin type approximation for PDEs
in infinitely many variables. It was first introduced in [141] for first-order equations
and later generalized to second-order equations in [537, 538]. We will present the
proofs for the initial value problems.

Let A be a linear, densely defined, maximal dissipative operator in H . Let B
be a bounded, strictly positive, self-adjoint, compact operator on H such that A∗B
is bounded. For N > 1 let HN be the finite-dimensional space spanned by the
eigenvectors of B corresponding to the eigenvalues which are greater than or equal
to 1/N . Let PN , QN be defined as in Sect. 3.2. We see that B commutes with PN and
QN , and PN , QN are now also orthogonal projections in H .

We need to change slightly the structure conditions on the Hamiltonian F .

Hypothesis 3.77 There exists a modulus ω such that

F

(
t, x,

B(x − y)

ε
, X

)
− F

(
t, y,

B(x − y)

ε
, Y

)

≥ −ω

(
|x − y|

(
1+ |x − y|−1

ε

))
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for all (t, x, y) ∈ (0, T ) × H × H, ε > 0, and X, Y ∈ S(H), X = PN X PN , Y =
PNY PN for some N and such that (3.52) holds.

For a bounded, strictly positive, self-adjoint, operator C on H we will use the
notation

|x |C := |C1/2x |.

Hypothesis 3.78 Let C be a bounded, strictly positive, self-adjoint operator on H .
We say that Hypothesis 3.78-C is satisfied if there exists a modulus ω1 such that

F (t, x, c1C(x − y), X)− F (t, y, c1C(x − y), Y )

≥ −ω1 (|x − y|C (1+ (c1 + c2 + c3)|x − y|C))

for all (t, x, y) ∈ (0, T )× H × H , and X, Y ∈ S(H), X = PN X PN , Y = PNY PN

for some N and such that

− c2

(
I 0
0 I

)
≤
(
X 0
0 −Y

)
≤ c3

(
C −C
−C C

)
, (3.191)

for some c1, c2, c3 ≥ 0.

Hypothesis 3.79 There exists an h ∈ C2(H), radial, nondecreasing, nonnegative,
h(x) →∞ as |x | → ∞, Dh, D2h are bounded, and

F(t, x, p+αDh(x), X +αD2h(x)) ≥ F(t, x, p, X)−σ(α, ‖p‖+‖X‖) (3.192)

∀x, p, X, ∀α ≥ 0, where σ is a local modulus.

Hypotheses3.77–3.79 will sometimes be applied to Hamiltonians F defined on
finite-dimensional spaces, i.e. when F : (0, T ) × HN0 × HN0 × S(HN0) → R for
some N0. In such cases it will be understood that N in Hypotheses3.77, 3.78 will
always be equal to N0 and that every X ∈ S(HN0) is naturally extended to an operator
in S(H) by taking PN0X PN0 .

We first show continuity estimates for viscosity solutions of finite-dimensional
problems.

Lemma 3.80 Let δ > 0, l > 0, and let ω be a modulus. Then there exist a nonde-
creasing, concave, C2 function ϕδ on [0,+∞) such that ϕδ(0) < δ and

ω(|ϕ′′δ (r)|r2 + ϕ′δ(r)r + r) ≤ ϕδ(r) for 0 ≤ r ≤ l. (3.193)

Proof For ε ∈ (0, l], 0 ≤ r ≤ l + 1, 0 < γ ≤ 1, thanks to the subadditivity of ω, we
have

ω(r) ≤ ω(ε)+ ω(ε)

ε
r ≤ ω(ε)+ ω(ε)

ε
(1+ l)1−γrγ . (3.194)
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Let ε be such that ω(ε) < δ/4. Define

gγ(r) = 2ω(ε)+ 2
ω(ε)

ε
(1+ l)1−γrγ .

An elementary calculation and (3.194) give

gγ(r)− ω(|g′′γ(r)|r2 + g′γ(r)r + r) ≥ ω(ε)

ε
(1+ l)1−γrγ

(
1− 2γ(2− γ)

ω(ε)

ε
(1+ l)

)
≥ 0

if γ is small enough. We choose such γ0 and set

ϕδ(r) = gγ0(r + r0),

where 0 < r0 < 1 is such that gγ0(r0) < δ. The function ϕδ has the required
properties. �

Proposition 3.81 Let C be a bounded, strictly positive, self-adjoint, operator on
R

k . Let u ∈ USC([0, T )× R
k), v ∈ LSC([0, T )× R

k) be respectively a viscosity
subsolution and a viscosity supersolution of

{
ut + F(t, x, Du, D2u) = 0 for t ∈ (0, T ), x ∈ R

k,

u(0, x) = ψ(x) for x ∈ R
k,

(3.195)

where F : (0, T ) × R
k × R

k × S(Rk) → R is continuous, degenerate elliptic
(Hypothesis3.46) and satisfies Hypotheses3.78 (with H = HN = R

k) and 3.79, and
ψ ∈ UCb(R

k).
(i) If u ,−v ≤ M, then there is a modulus of continuity m, depending only on

M, T,ω1, and a modulus of continuity of ψ in the | · |C norm, such that

u(t, x)− v(t, y) ≤ m(|x − y|C) (3.196)

for all t ∈ [0, T ) and x, y ∈ R
k .

(i i) If
sup

x∈Rk ,t∈(0,T )

|F(t, x, 0, 0)| = K < +∞, (3.197)

then there exists a unique bounded viscosity solution u of (3.195). The norm ‖u‖0
only depends on ‖ψ‖0 and K .

Proof (i) Letm1 be a modulus of continuity of ψ in the | · |C norm. Given μ > 0, set

u1(t, x) = u(t, x)− μ

T − t
(3.198)

v1(t, x) = v(t, x)+ μ

T − t
. (3.199)
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Let κ = 3(T + 1)(1 + 2‖C‖). Lemma3.80 applied with the modulus m2(r) =
m1(r) + κω1(r) + (2M + 1)r and l = 2 gives us for every δ > 0 a function
ϕδ ∈ C2([0,∞)), nondecreasing, concave, such that

ϕδ(0) < δ, ϕδ(1) ≥ 2M + 1 (3.200)

and
ϕδ(r)− m2(|ϕ′′δ (r)|r2 + ϕ′δ(r)r + r) ≥ 0 (3.201)

for 0 ≤ r ≤ 2.
We are going to show that for every δ > 0

u1(t, x)− v1(t, y) ≤ ϕδ(|x − y|C)(1+ t)

for t ∈ [0, T ] and {|x − y|C < 1} = �. Let for γ > 0

ϕ(t, x, y) = ϕδ((|x − y|2C + γ)
1
2 )(1+ t).

Suppose that

sup
(x,y)∈� , t ∈[0,T ]

(u1(t, x)− v1(t, y)− ϕ(t, x, y)) > 0

(if not we are done). Then, for small α > 0, using h from Hypothesis 3.79,

sup
(x,y)∈�,t∈[0,T ]

(u1(t, x)− v1(t, y)− ϕ(t, x, y)− αh(x)− αh(y)) > 0

and is attained at a point (t̄, x̄, ȳ). Moreover, (3.200) and (3.201) imply that (x̄, ȳ) ∈
� and 0 < t̄ < T .

We compute

Dxϕ(t̄, x̄, ȳ) = ϕδ
′
(
(|x̄ − ȳ|2C + γ)

1
2

) C(x̄ − ȳ)

(|x̄ − ȳ|2C + γ)
1
2

(t̄ + 1), (3.202)

D2
xxϕ(t̄, x̄, ȳ) = ϕδ

′′((|x̄ − ȳ|2C + γ)
1
2 )
C(x̄ − ȳ)⊗ C(x̄ − ȳ)

|x̄ − ȳ|2C + γ
(t̄ + 1)

+ ϕδ
′((|x̄ − ȳ|2C + γ)

1
2 )

C

(|x̄ − ȳ|2C + γ)
1
2

(t̄ + 1) (3.203)

− ϕδ
′((|x̄ − ȳ|2C + γ)

1
2 )
C(x̄ − ȳ)⊗ C(x̄ − ȳ)

(|x̄ − ȳ|2C + γ)
3
2

(t̄ + 1).
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We may rewrite (3.203) as D2
xxϕ(x̄, ȳ) = B1 + B2 + B3, where B1, B2, B3 are the

three terms appearing in (3.203). Since ϕδ is nondecreasing and concave, B2 ≥ 0
and B1, B3 ≤ 0. Using this notation we have

D2ϕ(t̄, x̄, ȳ) =
(

B2 −B2

−B2 B2

)
+
(

B1 + B3 −B1 − B3

−B1 − B3 B1 + B3

)
. (3.204)

If we denote the two matrices in (3.204) by D1 and −D2 respectively, we obtain
D2ϕ(t̄, x̄, ȳ) = D = D1 − D2, where D1, D2 ≥ 0.

Applying Theorem E.11 with ε = 1/(‖D1‖ + ‖D2‖), there exist b1, b2 ∈ R and
matrices X, Y ∈ S(Rk) such that

(
b1, ϕδ

′ ((|x̄ − ȳ|2C + γ)
1
2

) C(x̄ − ȳ)

(|x̄ − ȳ|2C + γ)
1
2

(1+ t̄), X

)
∈ P̄2,+(u1 − αh)(t̄, x̄),

(
b2, ϕδ

′ ((|x̄ − ȳ|2C + γ)
1
2

) C(x̄ − ȳ)

(|x̄ − ȳ|2C + γ)
1
2

(1+ t̄), Y

)

∈ P̄2,−(v1 + αh)(t̄, ȳ), (3.205)

b1 − b2 = ϕδ

(
(|x̄ − ȳ|2C + γ)

1
2

)
, (3.206)

and

−2(‖D1‖ + ‖D2‖)
(
I 0
0 I

)
≤
(
X 0
0 −Y

)

≤ D + 1

‖D1‖ + ‖D2‖D
2 ≤ 2D1,

where in the last line we used D2 ≤ (‖D1‖ + ‖D2‖)(D1 + D2). Computing the
norms, we thus have obtained

−2‖C‖(1+ T )

[
2
∣∣ϕδ

′′
(
(|x̄ − ȳ|2C + γ)

1
2

) ∣∣+
3ϕδ

′
(
(|x̄ − ȳ|2C + γ)

1
2

)

(|x̄ − ȳ|2C + γ)
1
2

](
I 0
0 I

)

≤
(
X 0
0 −Y

)
≤

2ϕδ
′
(
(|x̄ − ȳ|2C + γ)

1
2

)

(|x̄ − ȳ|2C + γ)
1
2

(1+ T )

(
C −C
−C C

)
. (3.207)

We set r̄ = (|x̂ − ŷ|2C + γ)
1
2 and

d = sup
{|ϕ′′δ (r)| + ϕ′δ(r) : 0 ≤ r ≤ 2

}
.
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Using the Eqs. (3.205)–(3.207), and Hypothesis 3.79 we now have for γ < 1 and
small α

ϕδ(r̄)+ 2μ

T 2 ≤ F

(
t̄, ȳ,

(1+ t̄)ϕδ
′(r̄)

r̄
C(x̄ − ȳ), Y

)

−F

(
t̄, x̄,

(1+ t̄)ϕδ
′(r̄)

r̄
C(x̄ − ȳ), X

)
+ 2σ

(

α,
6d(T + 1)‖C‖

γ
1
2

+ d‖C‖ 1
2 (T + 1)+ 1

)

.

It thus follows from Hypothesis3.78 that

ϕδ(r̄)+ 2μ

T 2

≤ ω1

(

|x̂ − ŷ|C
(

1+ 3(T + 1)(1+ 2‖C‖)ϕ′δ(r̄)
r̄

+ 4(T + 1)‖C‖|ϕδ
′′(r̄)|

)

|x̂ − ŷ|C
)

+2σ
(

α,
6d(T + 1)‖C‖

γ
1
2

+ d‖C‖ 1
2 (T + 1)+ 1

)

for some local modulus σ1. Thus, since ω1 is concave, we get

ϕδ(r̄)+ 2μ

T 2
≤ 3(T + 1)(1+ 2‖C‖)ω1

(|ϕδ
′′(r̄)|r̄2 + ϕδ

′(r̄)r̄ + r̄
)

+2σ
(

α,
6d(T + 1)‖C‖

γ
1
2

+ d‖C‖ 1
2 (T + 1)+ 1

)

.

Therefore we obtain a contradiction if we let α → 0. This implies

u1(t, x)− v1(t, y) ≤ ϕδ(|x − y|C)(1+ T )+ 2M |x − y|C
for all x, y ∈ R

k and t ∈ [0, T ). The claim now follows by letting μ → 0.

(i i)We remark that part (i) in particular guarantees that the comparison principle
holds for Eq. (3.195). It is standard to notice that under our assumptions one can
construct a bounded viscosity subsolution u and a bounded viscosity supersolution
u such that u(0, x) = ψ(x) = u(0, x) and u ≤ u (see Proposition3.94 for a similar
construction). We can thus use Perron’s method (see Theorem E.12) to obtain a
bounded viscosity solution which is unique by (i). �

The above existence and uniqueness result for finite-dimensional HJB equations
will be an important tool in constructing viscosity solutions of HJB equations in
Hilbert spaces by finite-dimensional approximations. We begin with the case when
the strong B-condition for A is satisfied.
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Proposition 3.82 Let B be compact and satisfy the strong B-condition for A as
in Definition3.10. Let u, v be respectively a viscosity subsolution and a viscosity
supersolution of

{
ut − 〈Ax, Du〉 + F(t, x, Du, D2u) = 0 for t ∈ (0, T ), x ∈ H,

u(0, x) = ψ(x) for x ∈ H,
(3.208)

where F : (0, T ) × H × H × S(H) → R satisfies (for U = H) Hypotheses 3.44,
3.46, 3.47, 3.77, and 3.79. Let ψ ∈ UCb(H). Let u ,−v ≤ M and be such that

|u(t, x)− u(t, y)| + |v(t, x)− v(t, y)| ≤ m(|x − y|) (3.209)

for all t ∈ [0, T ) and x, y ∈ H, for some modulus m. Assume, moreover, that

lim
t→0

ρ̃(t) = 0, (3.210)

where
ρ̃(t) = sup

x∈H

[
(u(t, x)− ψ(et Ax))+ + (v(t, x)− ψ(et Ax))−

]
.

Then for every 0 < τ < T there exists a modulus mτ , depending only on
τ ,m,ω, ρ̃, T, M, the constant c0 in Definition3.10 and the modulus of continuity
of ψ, such that

u(t, x)− v(t, y) ≤ mτ (|x − y|) for all x, y ∈ H, t ∈ [τ , T ). (3.211)

Proof We will first show that there exists constants Cε > 0, depending only on
ε,m, c0,ω, such that

lim
ε→0

Cε = 0, (3.212)

and for every 0 < τ < T ,

sup
t∈[τ ,T )

aε,Cε
(t) = aε,Cε

(τ ), (3.213)

where

aε,C (t) = sup
x,y∈H

{
u(t, x)− v(t, y)− |x − y|2−1

2ε
− Ct

}
.

For μ > 0,α > 0,β > 0 we consider the function

�(t, s, x, y) = u(t, x)− μ

T − t
− v(s, y)− μ

T − s
− |x − y|2−1

2ε

− αh(x)− αh(y)− (t − s)2

2β
− Ct,
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where h is the function from Hypothesis 3.79. Since B is compact, B-upper semi
continuity is equivalent to weak sequential upper semicontinuity, so � attains a
maximum at some point (t̄, s̄, x̄, ȳ). Moreover, as always we have

lim
β→0

(t̄ − s̄)2

2β
= 0 for fixed ε,α. (3.214)

Therefore, using the weak sequential upper semicontinuity of the above function, it
is easy to see that if supt∈[τ ,T ) aε,C(t) > aε,C (τ ), then for small μ > 0,α > 0,β > 0,
we must have τ < t̄, s̄ < T .

We can now argue as in the proof of Theorem3.50 (from (3.87) to (3.89)) to obtain
that for N > 2 there exist XN , YN ∈ S(H) satisfying (3.52) and such that

t̄ − s̄

β
+ μ

(T − t̄)2
+ C −

〈
x̄, A∗

(
B(x̄ − ȳ)

ε

)〉

+ F

(
t̄, x̄,

B(x̄ − ȳ)

ε
+ αDh(x̄), XN + 2BQN

ε
+ αD2h(x̄)

)
≤ 0

(3.215)

and

t̄ − s̄

β
− μ

(T − s̄)2
+
〈
ȳ, A∗

(
B(x̄ − ȳ)

ε

)〉

+ F

(
s̄, ȳ,

B(x̄ − ȳ)

ε
− αDh(x̄), YN − 2BQN

ε
− αD2h(x̄)

)
≥ 0.

(3.216)

Since u,−v are bounded from below it is obvious that

|B(x̄ − ȳ)|
ε

≤ Rε (3.217)

for some Rε, possibly depending3 onu,−v.Also, since�(t̄, s̄, x̄, x̄)+�(t̄, s̄, ȳ, ȳ) ≤
2�(t̄, s̄, x̄, ȳ), we get

|x̄ − ȳ|2−1
2ε

≤ m(|x̄ − ȳ|). (3.218)

3In fact, using uniform continuity of u, since for everyw ∈ H, |w| = 1 we have�(t̄, s̄, x̄+w, ȳ) ≤
�(t̄, s̄, x̄, ȳ), we can obtain for α < 1

|B(x̄ − ȳ)|
ε

= sup
|w|=1

〈B(x̄ − ȳ), w〉
ε

≤ 〈Bw,w〉
2ε

+ u(t̄, x̄)− u(t̄, x̄ − w)

+ α(h(x̄ − w)− h(x̄)) ≤ ‖B‖
2ε

+ m(1)+ L ,

where L is the Lipschitz constant of h.
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Thus, subtracting (3.216) from (3.215), and using Hypotheses 3.44, 3.47, 3.77, 3.79,
and (3.3), (3.214), (3.217), yields

C + 2μ

T 2 ≤ c0
|x̄ − ȳ|2−1

ε
− |x̄ − ȳ|2

ε
+ ω

(
|x̄ − ȳ|

(
1+ |x̄ − ȳ|−1

ε

))
+ σ1(ε;α, β, N ),

(3.219)

where limα→0 lim supβ→0 lim supN→+∞ σ1(ε;α,β, N ) = 0. Let

γ(ε) = sup
x,y∈H

{
c0
|x̄ − ȳ|2−1

ε
− |x̄ − ȳ|2

ε
+ ω

(
|x̄ − ȳ|

(
1+ |x̄ − ȳ|−1

ε

))}
.

Using (3.218) we have

γ(ε) ≤ sup
r≥0

{

2c0m(r)− r2

ε
+ ω

(

r

(

1+ (2m(r))
1
2

ε
1
2

))}

. (3.220)

This expression can be estimated from above by

C1

(

1+ r + r

ε
1
2

+ r
3
2

ε
1
2

)

− r2

ε
, (3.221)

where C1 only depends on ω,m and c0. It is easily seen that (3.221) is positive only
if r ≤ C2ε

1
2 for ε ≤ 1, where C2 only depends on C1. But then it easily follows from

(3.220) that limε→0 γ(ε) = 0. Thus, if C = Cε := 2γ(ε), we obtain a contradiction
after we take lim supα→0 lim supβ→0 lim supN→+∞ in (3.219). Hence (3.213) must
be true with this choice of Cε.

A consequence of (3.213) is that for all t ∈ [τ , T ), x, y ∈ H

u(t, x)− v(t, y)− |x − y|2−1
2ε

− Cεt ≤ sup
x,y∈H

{
u(τ , x)− v(τ , y)− |x − y|2−1

2ε

}
.

(3.222)
Let mψ be the modulus of continuity of ψ. Then, by (3.20), (3.212) and (3.210), we
obtain from (3.222)

u(t, x)− v(t, y) ≤ |x − y|2−1
2ε

+ Cεt + sup
x,y∈H

{
u(τ , x)− v(τ , y)− |x − y|2−1

2ε

}

≤ |x − y|2−1
2ε

+ CεT + 2ρ̃(τ )+ sup
x,y∈H

{
|ψ(eτ Ax)− ψ(eτ Ay)| − |x − y|2−1

2ε

}
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≤ |x − y|2−1
2ε

+ CεT + 2ρ̃(τ )+ sup
x,y∈H

{
mψ

(
ec0T |x − y|−1

2τ
1
2

)
− |x − y|2−1

2ε

}

≤ |x − y|2−1
2ε

+ ρτ (ε), (3.223)

where ρτ depends only on Cε, T, τ ,mψ, ρ̃, and limε→0 ρτ (ε) = 0. Thus for every
ε > 0

u(t, x)− v(t, y) ≤ min

{
2M |x − y|−1, |x − y|2−1

2ε
+ ρτ (ε)

}
,

which implies (3.211). �

Proposition3.82 in particular implies the comparison principle for bounded and
uniformly continuous viscosity sub- and supersolutions of (3.208). However wewant
to mention that comparison also holds without the requirement of uniform continuity
of u and v, with almost the same proof.

We will be using the following operators to approximate the operator A. For
N ≥ 1 we define

AN = (PN A
∗PN )∗.

The AN are bounded, dissipative, operators in H and it is easy to see that

AN PN = AN = PN AN , (3.224)

and thus it follows that
et AN PN = PNe

t AN . (3.225)

Moreover, we have
− A∗N B + c0B ≥ PN . (3.226)

We alert the readers that in the lemma below we will use xN to denote a sequence
in H , not PN x as we have done in previous sections.

Lemma 3.83 Let B be a positive, self-adjoint, compact operator satisfying the
strong B-condition as in Definition3.10. Then:

(i) Let x, xN ∈ D(A∗), xN → x, and A∗xN → A∗x. Then A∗N xN → A∗x.
(ii) For every x ∈ H, T > 0

et AN x → et Ax (3.227)

uniformly on [0, T ].
Proof (i) We know from Lemma 3.17(i i) that the operator S = −A∗B + c0B is
invertible, S−1 ∈ L(H), and D(A∗) = D(B−1). We have

A∗ = −SB−1 + c0 I, A∗N = −PN SB
−1PN + c0PN .
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Since B−1 = S−1(−A∗ + c0 I ) we thus obtain

B−1xN → B−1x .

Therefore

A∗xN − A∗N xN = −QN SB
−1xN − PN SQN B

−1xN + c0QN xN → 0

since PN converges strongly to I and QN converges strongly to 0. This proves the
claim.

(i i) We see that et A
∗
N and et AN are semigroups of contractions. Using (3.3) we

have

|et Ax |2−1 + 2
∫ t

0
〈esAx, SesAx〉ds − 2c0

∫ t

0
|esAx |2−1ds = |x |2−1,

|et AN x |2−1 + 2
∫ t

0
〈esAN x, SNe

sAN x〉ds − 2c0

∫ t

0
|esAN x |2−1ds = |x |2−1,

(3.228)

where

SN = −A∗N B + c0B = −PN A
∗PN B + c0B = PN (−A∗B + c0B)PN + c0QN B.

By the Trotter–Kato theorem (see TheoremB.46), for every x ∈ H , et A
∗
N x → et A

∗
x

uniformly on [0, T ]. Thus, taking adjoints, it follows that

et AN x ⇀ et Ax for every x ∈ H, t ≥ 0. (3.229)

Since B is compact, this implies

et AN x → et Ax in H−1. (3.230)

Thus, passing to the limit as N →+∞ in (3.228) and using (3.230), we obtain

∫ t

0
〈esAN x, SNe

sAN x〉ds →
∫ t

0
〈esAx, SesAx〉ds,

which, upon observing that ‖QN B‖ → 0 and PN x → x , yields

∫ t

0
〈esAN x, SesAN x〉ds →

∫ t

0
〈esAx, SesAx〉ds. (3.231)

Let y = esAx, yN = esAN x . Then
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0 ≤ |y− yN |2 ≤ 〈y− yN , S(y− yN )〉 = 〈y, Sy〉−〈yN , Sy〉−〈y, SyN 〉+〈yN , SyN 〉.
(3.232)

Using (3.229) it thus follows that

0 ≤ lim inf
N→+∞〈yN , SyN 〉 − 〈y, Sy〉.

This, together with Fatou’s lemma and (3.231), implies that

lim
N→+∞〈e

sAN x, SesAN x〉 = 〈esAx, SesAx〉

for a.e. s. We then get from (3.232) that

lim
N→+∞ |e

sAx − esAN x |2 = 0 for a.e. s. (3.233)

The uniform convergence on [0, T ] follows from standard arguments using the
integral representation of the resolvent (see e.g. (3.2) of [479]) and Theorem 4.2.
of [479]. �

Theorem 3.84 Let B be compact and satisfy the strong B-condition for A as in
Definition 3.10. Let F : (0, T ) × H × H × S(H) → R satisfy (for U = H)
Hypotheses 3.44, 3.46, Hypothesis 3.47 with B = I , and Hypotheses 3.77, 3.78-I ,
and 3.79. Let ψ ∈ UCb(H) and let for every R > 0

FR := sup{|F(t, x, p, X)| : t ∈ (0, T ), x ∈ H, |p| + ‖X‖ ≤ R} < +∞. (3.234)

Then there exists a unique bounded viscosity solution u ∈ UCx
b ([0, T ) × H) ∩

UCx
b ([τ , T )× H−1) for 0 < τ < T , of

{
ut − 〈Ax, Du〉 + F(t, x, Du, D2u) = 0 for t ∈ (0, T ), x ∈ H,

u(0, x) = ψ(x) for x ∈ H,
(3.235)

satisfying
lim
t→0

sup
x∈H

|u(t, x)− ψ(et Ax)| = 0. (3.236)

Moreover, there is a modulus ρ such that

|u(t, x)− u(s, e(t−s)Ax)| ≤ ρ(t − s) for all 0 ≤ s ≤ t < T, x ∈ H. (3.237)

Proof We consider two approximating equations.

{
(uN )t − 〈AN x, DuN 〉 + F(t, PN x, PN DuN , PN D2uN PN ) = 0 in (0, T )× H
uN (0, x) = ψ(PN x) in H,

(3.238)
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and
{

(vN )t − 〈AN x, DvN 〉 + F(t, x, DvN , PN D2vN PN ) = 0 in (0, T )× HN

vN (0, x) = ψ(x) in HN .

(3.239)

We notice that, since AN is dissipative, the Hamiltonian F̃N : (0, T )× HN × HN ×
S(HN ) → R defined by

F̃N (t, x, p, X) = 〈AN x, p〉 + F(t, x, p, PN X PN )

satisfies all the assumptions of Proposition3.81 with C = I , uniformly in N . There-
fore, by Proposition3.81, there is a unique bounded viscosity solution vN of (3.239),
M ≥ 0, and a modulus m such that for all N

{ ‖vN‖0 ≤ M
|vN (t, x)− vN (t, y)| ≤ m(|x − y|) for all t ∈ [0, T ), x, y ∈ HN

(3.240)

and so (3.240) is also satisfied by uN on H .
We remark that the monotonicity of AN guarantees that vN is also a viscosity

solution in the sense of Definition3.34 on the finite-dimensional Hilbert space HN .
We now extend vN to H by setting uN (x) = vN (PN x). We claim that uN is

a viscosity solution of (3.238). Again, since all the terms are bounded and AN is
monotone it is enough to show it in the classical sense of (the parabolic counterpart of)
Definition3.40. To prove that uN is a viscosity subsolution, suppose that uN (t, x)−
ϕ(t, x) has amaximum at (t̂, x̂) for a smooth test functionϕ. Then vN (t, z)−ϕ(t, z+
QN x̂) has a maximum at (t̂, PN x̂) in (0, T )× HN . Therefore, using the fact that vN

is a subsolution of (3.239), we get

ϕt (t̂, x̂)−〈AN PN x̂, PN Dϕ(t̂, x̂)〉+ F(t̂, PN x̂, PN Dϕ(t̂, x̂), PN D
2ϕ(t̂, x̂)PN ) ≤ 0

and the claim follows by (3.224). The supersolution case is similar.
We now show that there is a modulus ρ, depending only on m and the function

FR , such that
|vN (t, x)− vN (s, e−(t−s)AN x)| ≤ ρ(t − s) (3.241)

for x ∈ HN , 0 ≤ s ≤ t < T . Because of (3.240) it is enough to show (3.241) for
s = 0 since the estimate can be reapplied at any later time. To do this we begin with
ψ ∈ C1,1

b (H). We denote the Lipschitz constant of Dψ by LDψ. We use the fact that
w(t, x) = ψ(et AN x) is a classical (and viscosity) solution of

wt − 〈AN x, Dw〉 = 0 in (0, T )× HN , u(0, x) = ψ(x) in HN ,

which implies that
w + t FLDψ+‖Dψ‖0 , w − t FLDψ+‖Dψ‖0
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are respectively a viscosity supersolution and a subsolution of (3.239). Comparison
then gives

|vN (t, x)− ψ(et AN x)| ≤ t FLDψ+‖Dψ‖0 . (3.242)

For ψ ∈ UCb(H) we can approximate it by its inf-sup convolutions ψε ∈ C1,1
b (H)

(see Proposition D.26). This approximation is such that cε = ‖ψ − ψε‖0 and Kε =
LDψε

+ ‖Dψε‖0 only depend on the modulus of continuity of ψ, and moreover

limε→0 cε = 0. Let vε
N be the viscosity solution of (3.239) with initial condition ψε.

It follows from comparison guaranteed by Proposition3.81 that

‖vN − vε
N‖0 ≤ ‖ψ − ψε‖0 = cε.

Using this and (3.242) we thus have

|vN (t, x)− ψ(et AN x)| ≤ |vN (t, x)− vε
N (t, x)| + |vε

N (t, x)− ψε(e
t AN x)|

+ |ψε(e
t AN x)− ψ(et AN x)| ≤ 2‖ψ − ψε‖0 + t FLDψε

+‖Dψε‖0 = 2cε + t Kε.

Therefore
|vN (t, x)− ψ(et AN x)| ≤ ρ(t) = inf

ε>0
{2cε + t Kε},

which completes the proof of (3.241). We also conclude, by (3.225), that for 0 ≤
s ≤ t < T, x ∈ H ,

|uN (t, x)− uN (s, e(t−s)AN x)| = |vN (t, PN x)− vN (s, PNe
(t−s)AN x)|

= |vN (t, PN x)− vN (s, e(t−s)AN PN x)| ≤ ρ(t). (3.243)

We will now show that for every 0 < τ < T there exists a modulus mτ such that

|uN (t, x)− uN (t, y)| ≤ mτ (|x − y|−1) for all x, y ∈ H, t ∈ [τ , T ). (3.244)

We notice that (3.226) implies that B restricted to HN (i.e. BN = BPN ) satisfies
the strong condition for AN on HN with the same constant c0. Therefore (3.244)
follows from (3.240), (3.241) and Proposition3.82 applied on spaces H = HN ,
since all assumptions are independent of N . (In fact, we do not need the full force of
Proposition3.82 since we are dealing with bounded equations on finite-dimensional
spaces.)

Since B also satisfies the weak B-condition for AN with constant c0, we notice
that, by (3.19), for every N , |et AN x − x |−1 ≤ C(R)

√
t for |x | ≤ R, where C(R) is

independent of N . Thus for 0 < τ ≤ s < t < T, R > 0, using (3.243), (3.244), we
obtain for |x | < R



3.7 Existence of Solutions: Finite-Dimensional Approximations 263

|uN (t, x)− uN (s, x)| ≤ |uN (t, x)− uN (s, e(t−s)AN x)| + |uN (s, e(t−s)AN x)− uN (s, x)|
≤ ρ(|t − s|)+ mτ (|e(t−s)AN x − x |) ≤ ρ(|t − s|)+ mτ (C(R)

√|t − s|) =: ρτ ,R(|t − s|).

Combining this with (3.244) we have

|uN (t, x)−uN (s, x)| ≤ mτ (|x− y|−1)+ρτ ,R(|t−s|), N ≥ 1, τ ≤ t, s < T, |x |, |y| ≤ R.

(3.245)

Therefore (extending uN to t = T ), the family {uN } is equicontinuous in the topology
of R × H−1 on sets [τ , T ] × {|x | ≤ R} for τ > 0. But since B is compact such
sets are compact in R × H−1. Therefore, by the Arzela–Ascoli theorem there is
a subsequence of uN , still denoted by uN , and a function u, such that uN → u
uniformly on bounded subsets of [τ , T ] × H for τ > 0. Obviously u satisfies
(3.237), (3.240), (3.244) and (3.245). The conclusion that u is a viscosity solution of
(3.235) will follow from Theorem3.41 (reformulated for the initial value problem),
Lemmas3.83(i) and 3.85 below applied with F̃(X) := F(t, x, p, X) for some fixed
(t, x, p) ∈ (0, T )× H × H . Uniqueness is a consequence of Proposition3.82. �

Lemma 3.85 If F̃ : S(H) → R is locally uniformly continuous and satisfies
Hypotheses 3.46 and 3.47 with B = I , then for every X ∈ S(H)

F̃(PN X PN ) → F̃(X) as N →∞.

Proof For every ε > 0 we have

PN (X − εX2)PN −
(
‖X‖ + 1

ε

)
QN ≤ X ≤ PN (X + εX2)PN +

(
‖X‖ + 1

ε

)
QN .

Therefore, Hypotheses 3.46 and 3.47 imply

F̃(PN (X + εX2)PN )− σ1(N , ε) ≤ F̃(X) ≤ F̃(PN (X − εX2)PN )+ σ1(N , ε),

where σ1 is a local modulus. Using uniform continuity of F̃ we thus obtain

F̃(PN X PN )− σ1(N , ε)− σ2(ε) ≤ F̃(X) ≤ F̃(PN X PN )+ σ1(N , ε)+ σ2(ε),

for some modulus σ2. Thus

|F̃(X)− F̃(PN X PN )| ≤ {σ1(N , ε)+ σ2(ε)} → σ2(ε) as N →+∞

and the claim follows thanks to the arbitrariness of ε. �

We now study the case when B satisfies the weak B-condition for A, i.e. when
−A∗B + c0B ≥ 0. In this case we do not have an analogue of Lemma3.83 so
we will have to add another layer of approximations of A. We will first replace A
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by its Yosida approximation Aλ and then approximate Aλ by Aλ,N = PN AλPN .
The operators Aλ and Aλ,N are bounded and dissipative. We first notice that B also
satisfies a weak B-condition for Aλ and Aλ,N with a different constant. Indeed, since
for every y ∈ D(A),

(1− λc0)〈By, y〉 ≤ 〈B(I − λA)y, y〉,

taking y = (I − λA)−1x , we get

(1− λc0)|B 1
2 (I − λA)−1x |2 ≤ |B 1

2 x ||B 1
2 (I − λA)−1x |,

which yields

|B 1
2 (I − λA)−1x | ≤ |B 1

2 x |
1− λc0

.

It thus follows that for every x ∈ H ,

〈B(I − λA)−1x, x〉 ≤ 1

1− λc0
〈Bx, x〉.

Therefore,

−BAλ + c0
1− λc0

B = 1

λ

(
1

1− λc0
B − B(I − λA)−1

)
≥ 0

and we conclude that
− A∗λB +

c0
1− λc0

B ≥ 0. (3.246)

Thus B satisfies the weak B-condition for Aλ with constant 2c0 for λ < 1/(2c0).
Obviously (3.246) is also satisfied if Aλ is replaced by Aλ,N .

Theorem 3.86 Let B be compact and satisfy the weak B-condition for A as in
Definition 3.9. Let F : (0, T )× H × H × S(H) → R satisfy (for U = H) Hypothe-
ses 3.44, 3.46, Hypothesis 3.47 with B = I , and Hypotheses 3.78-B, and 3.79. Let
ψ ∈ UCb(H−1) and let

sup{|F(t, x, 0, 0)| : t ∈ (0, T ), x ∈ H} = K < +∞. (3.247)

Then there exists a unique bounded viscosity solution u ∈ UCx
b ([0, T ) × H−1) of

(3.235). Moreover, for every R > 0, there is a modulus ρR such that

|u(t, x)− u(s, x)| ≤ ρR(|t − s|) for all 0 ≤ s, t < T, |x | ≤ R. (3.248)
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Proof We first solve, for N > 2, 0 < λ < 1/(2c0), the equations

{
(vλ,N )t + 〈Aλ,N x, Dvλ,N 〉 + F(t, x, Dvλ,N , PN D2vλ,N PN ) = 0 in (0, T )× HN
vλ,N (0, x) = ψ(x) in HN .

(3.249)
To do this we notice that, since Aλ,N is dissipative and the weak B condition holds
with constant 1/(2c0), the Hamiltonian F̃λ,N : (0, T ) × HN × HN × S(HN ) → R

defined by
F̃λ,N (t, x, p, X) = 〈Aλ,N x, p〉 + F(t, x, p, PN X PN )

satisfies all the assumptions of Proposition3.81 withC = B, uniformly in N . (Again
we identify X ∈ S(HN ) with PN X PN ∈ S(H).) In fact, we have

F̃λ,N (t, x, c1B(x − y), X)− F̃λ,N (t, y, c1B(x − y), Y )

≥ −ω1 (|x − y|−1 (1+ (c1 + c2 + c3)|x − y|−1))− c1
2c0

|x − y|2−1

in Hypothesis3.78-B now. Therefore, there exists a unique viscosity solution of vλ,N

of (3.249), M ≥ 0, and a modulus m such that for all λ, N

{ ‖vλ,N‖0 ≤ M
|vλ,N (t, x)− vλ,N (t, y)| ≤ m(|x − y|−1) for all t ∈ [0, T ), x, y ∈ HN .

(3.250)

As in the proof of Theorem3.84, the functions uλ,N (t, x) = vλ,N (t, PN x) are vis-
cosity solutions of

{
(uλ,N )t − 〈Aλ,N x, Duλ,N 〉 + F(t, PN x, PN Duλ,N , PN D2uλ,N PN ) = 0
uλ,N (0, x) = ψ(PN x) in H,

(3.251)
and they also satisfy (3.250).

We will now show that for every R > 0 there exists a modulus ρR such that for
all N > 2, 0 < λ < 1/(2c0),

|vλ,N (t, x)− vλ,N (s, x)| ≤ ρR(|t − s|) for 0 ≤ t, s < T, |x | ≤ R. (3.252)

It is obvious that the function

w(t, x) = Kt + M

is a classical and viscosity supersolution of (3.249) for every λ, N . For every ε >

0, x ∈ H there exists a Cε, depending only on m, such that

ψ(y) ≤ ψ(x)+ ε+ Cε|x − y|2−1.
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Set

Rε =
(
KT + 2M

ε

) 1
2

.

We notice that

ψx,ε(y) = ψ(x)+ ε+ Cε|x − y|2−1 + ε|y|2 > KT + M for |y| ≥ Rε.

Now let |x | ≤ R. Since ‖A∗λ,N B‖ ≤ ‖A∗B‖, we have

|〈Aλ,N y, 2CεB(y − x)〉| ≤ 2Cε‖A∗B‖Rε(Rε + R) for |y| ≤ Rε.

Thus if we set

FR,ε = sup{|F(t, y, p, X)| : t ∈ (0, T ), |y| ≤ Rε,

|p| + ‖X‖ ≤ 2[ε(Rε + 1)+ Cε‖B‖(R + Rε + 1)]} + 2Cε‖A∗B‖Rε(Rε + R),

it is easy to see that for every ε, N the function

ηx,ε(t, y) = FR,εt + ψx,ε(y)

is a viscosity supersolution of (3.249) in [0, T ) × {|y| < Rε}. Therefore, for every
ε,λ, N , the function

wx,ε = min{w, ηx,ε}

is a bounded viscosity supersolution of (3.249) in [0, T )× HN . By comparison we
have vλ,N ≤ wx,ε. In particular,

vλ,N (t, x)− ψ(x) ≤ wx,ε(t, x)− ψ(x) ≤ ε+ εR2 + FR,εt.

Taking the infimum over ε > 0 we obtain a modulus ρR such that

vλ,N (t, x)− ψ(x) ≤ ρR(t) for t ≥ 0, |x | ≤ R.

A similar construction for subsolutions provides the same bound from below. Since
the construction only depended on M and m in (3.250) it can be applied for any
starting point 0 ≤ s < T , which yields (3.252), which is obviously also true for
uλ,N .

We can finish as in the proof of Theorem3.84. By (3.250) and (3.252), the family
uλ,N is equibounded and equicontinuous in the topology of R × H−1 on bounded
sets of [0, T ] × H and thus, by the Arzela–Ascoli theorem, for every λ there is a
subsequence of uλ,N , still denoted by uλ,N , and a function uλ, such that uλ,N → uλ

uniformly on bounded subsets of [0, T ] × H . Obviously uλ satisfies (3.250) and
(3.252). The fact that uλ is a viscosity solution of (3.235) with A replaced by Aλ
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is standard and follows from Theorem3.41 and Lemma3.85 since all the terms are
bounded. We then again use the Arzela–Ascoli theorem to obtain that, up to a sub-
sequence, uλ converges uniformly on bounded subsets of [0, T ] × H to a function u
which satisfies (3.250) and (3.252). Using again Theorem3.41, Lemma3.85, and a
well-known analogue of Lemma3.83(i) for Yosida approximations we finally con-
clude that u is a viscosity solution of (3.235).

The proof of uniqueness is similar to the proof of Proposition3.82 and it will be
omitted. Alternatively it can be deduced from the proof of Theorem3.50 where we
now have to first let δ → 0 and then ε → 0 there. �

3.8 Singular Perturbations

Passing to limits with viscosity solutions for equations in infinite-dimensional spaces
was discussed in Sect. 3.4. Despite its ease, some finite-dimensional techniques can-
not be applied due to the lack of local compactness, and we need to know a priori
that solutions converge locally uniformly. When A is more coercive a version of the
method of half-relaxed limits will be discussed in Sect. 3.9. In this section we look
at a classical “vanishing viscosity” limit in which one tries to establish convergence
of viscosity solutions of singularly perturbed equations. Such problems arise, for
instance, in large deviation considerations and we will focus on equations having
such origins.

Suppose we have a sequence of SDEs

⎧
⎨

⎩

dXn(s) = (AXn(s)+ b(s, Xn(s)))ds + 1√
n
σ(s, Xn(s))dWQ(s) for s > t,

X (t) = x ∈ H
(3.253)

in a real, separable Hilbert space H , where A is a linear, densely defined, maximal
dissipative operator in H , Q ∈ L+(H) and WQ is a Q-Wiener process defined on
some reference probability space.Wewant to investigate the large deviation principle
for the processes Xn . One of the key components in the study of large deviations is
establishing the existence of the so-called Laplace limit, i.e.

lim
n→+∞

1

n
logE

[
e−ng(Xn(T )) : Xn(t) = x

]

for a given continuous and bounded function g, where T > t . Defining

vn(t, x) := −1

n
logE

[
e−ng(Xn(T ))

]
,

by formally applying Itô’s formula, the function vn should be a viscosity solution of
the second-order equation
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(vn)t + 1
2nTr

(
(σ(t, x)Q1/2)(σ(t, x)Q1/2)∗D2vn

)− 1
2 |(σ(t, x)Q

1
2 )∗Dvn|2

+〈Ax + b(t, x), Dvn〉 = 0,

vn(T, x) = g(x) in (0, T )× H.

(3.254)
Sending n →+∞ in (3.254) we obtain the limiting first-order PDE

⎧
⎨

⎩

vt + 〈Ax + b(t, x), Dv〉 − 1
2 |(σ(t, x)Q

1
2 )∗Dv|2 = 0,

v(T, x) = g(x) in (0, T )× H.

(3.255)

This is the HJB equation associated to the deterministic optimal control problem
characterized by the state equation

⎧
⎨

⎩

d
ds X (s) = AX (s)+ b(s, X (s))+ σ(s, X (s))Q

1
2 z(s) s > t,

X (t) = x,
(3.256)

where we minimize the cost functional

J (t, x; z(·)) =
∫ T

t

1

2
|z(s)|2ds + g(X (T )) (3.257)

over all controls z(·) ∈ L2(t, T ; H). The value function of the problem should be
the unique viscosity solution of (3.255). Thus we can show the existence of the
Laplace limit and identify it if we can prove that solutions vn of the PDE (3.254)
converge to the viscosity solution v of the limiting PDE (3.255). This is a classical
singular perturbation limit problemwhich can be solved using the theory of viscosity
solutions presented in this book. The details of the above program (which is based on
a general PDE approach to large deviations developed in [250], see also [246–248])
and a further study of this large deviation problem are in [541]. Here we will only
show how the convergence of the vn can be established using the techniques from the
proof of the comparison principle. We also point out that Eqs. (3.254) and (3.255)
have a quadratic gradient term which makes them more difficult. In particular, they
do not satisfy the assumptions of Sect. 3.5.

Let T > 0. Let B be an operator satisfying the weak B-condition (3.2) for A. We
make the following assumptions.

Hypothesis 3.87 The functions b : [0, T ]×H → H , σ : [0, T ]×H → L2(�0, H)

are uniformly continuous on bounded sets and there exist constants L , M such that

|b(t, x)− b(t, y)| ≤ L|x − y|, t ∈ [0, T ], x, y ∈ H, (3.258)

〈b(t, x)− b(t, y), B(x − y)〉 ≤ L|x − y|2−1, t ∈ [0, T ], x, y ∈ H, (3.259)
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‖σ(t, x)− σ(t, y)‖L2(�0,H) ≤ L|x − y|−1, t ∈ [0, T ], x, y ∈ H, (3.260)

‖σ(t, x)‖L2(�0,H) ≤ M, t ∈ [0, T ], x ∈ H. (3.261)

The function g : H → R is bounded and

|g(x)− g(y)| ≤ L|x − y|−1, x, y ∈ H. (3.262)

It was shown in [541] that the functions vn are unique viscosity solutions of
(3.254). The assumptions in [541] were slightly different from Hypothesis 3.87 and
some additional restrictions were placed on test functions to deal with exponential
moments, however the proof of existence follows the standard arguments and the test
function restrictions can be circumvented by localization using Itô’s formulas with
stopping times and (for instance) Theorem3.70. The uniqueness part ismore difficult.
Moreover, it was shown in [541] that the value function v of the deterministic control
problem satisfies

|v(t, x)− v(s, y)| ≤ C1|x − y|−1 + C2(R)|t − s| 12

for all x, y ∈ H, |x |, |y| ≤ R, R > 0 and t, s ∈ [0, T ].
The following theorem addresses the convergence problem. It is a general state-

ment about a singular perturbation problem. The theorem could be stated for more
general HJB equations, however the main difficulty here is the quadratic gradient
term.

Theorem 3.88 Let Hypothesis3.87 hold. Let vn be a bounded viscosity solution of
(3.254), and v be a bounded viscosity solution of (3.255) such that

lim
t→T

{|vn(t, x)−g(x)|+ |v(t, x)−g(x)|} = 0, uniformly on bounded sets (3.263)

and
|v(t, x)− v(t, y)| ≤ L|x − y|−1, 0 ≤ t ≤ T, x, y ∈ H. (3.264)

Then there exists a constant C independent of n such that

‖vn − v‖0 ≤ C√
n
. (3.265)

Proof Set

un := v + C√
n
(T − t + 1).
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Then un is a viscosity solution of

(un)t + 〈Ax + b(t, x), Dun〉 − 1

2
|(σ(t, x)Q

1
2 )∗Dun|2 = − C√

n
. (3.266)

We will show that there exists a C independent of n such that vn ≤ un . If vn �

un , then for μ, δ,β > 0,m ∈ N, there exist pm, qm ∈ H, am, bm ∈ R such that
|pm |, |qm |, |am |, |bm | ≤ 1/m, and

�(t, s, x, y) := vn(t, x)− un(s, y)− μ

t
− μ

s
−
√
n

2
|x − y|2−1 − δ(|x |2 + |y|2)

− (t − s)2

2β
+ 〈Bpm, x〉 + 〈Bqm, y〉 + amt + bms (3.267)

has a global maximum over (0, T ] × H × (0, T ] × H at some points t̄, s̄, x̄, ȳ,
where �(t̄, s̄, x̄, ȳ) ≥ ηn > 0 for small μ, δ and large m. Similarly to the proof of
Theorem3.50 we have

lim sup
β→0

lim sup
m→∞

(t̄ − s̄)2

2β
= 0 for fixed μ, ε, δ, (3.268)

lim sup
δ→0

lim sup
β→0

lim sup
m→∞

δ(|x̄ |2 + |ȳ|2) = 0 for fixed μ. (3.269)

Since �(t̄, s̄, x̄, x̄) ≤ �(t̄, s̄, x̄, ȳ), it follows from (3.264) that

√
n

2
|x̄ − ȳ|2−1 ≤ un(s̄, x̄)− un(s̄, ȳ)+ δ|x |2 + 〈Bqm, ȳ − x̄〉

≤
(
L + ‖B1/2‖

m

)
|x̄ − ȳ|−1 + δ|x |2.

Therefore

lim sup
δ→0

lim sup
β→0

lim sup
m→∞

|x̄ − ȳ|−1 ≤ 2L√
n
. (3.270)

If either s̄ or t̄ is equal to T , we thus obtain from (3.263), (3.264), (3.268), (3.269)
and (3.270) that

ηn ≤ lim sup
δ→0

lim sup
β→0

lim sup
m→∞

�(t̄, s̄, x̄, ȳ)

≤ lim sup
δ→0

lim sup
β→0

lim sup
m→∞

(
L|x̄ − ȳ|−1 − C√

n

)
≤ 2L2 − C√

n
.

Thus if C ≥ 2L2 we must have 0 < t̄, s̄ < T .
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We now use that vn is a viscosity subsolution of (3.254) to obtain

− μ

t̄2
− am + t̄ − s̄

β
+ 1

2n
Tr
(
(σ(t̄, x̄)Q1/2)(σ(t̄, x̄)Q1/2)∗(

√
nB + 2δ I )

)

− 1

2
|(σ(t̄, x̄)Q

1
2 )∗(

√
nB(x̄ − ȳ)+ 2δx̄ − Bpm)|2

+ 〈x̄, A∗[√nB(x̄ − ȳ)− Bpm]〉 + 〈b(t̄, x̄),√nB(x̄ − ȳ)+ 2δx̄ − Bpm〉 ≥ 0.
(3.271)

Moreover, since un is a viscosity supersolution of (3.266), we get

μ

s̄2
+ bm + t̄ − s̄

β
− 1

2
|(σ(s̄, ȳ)Q

1
2 )∗(

√
nB(x̄ − ȳ)− 2δ ȳ + Bqm)|2

+ 〈ȳ, A∗[√nB(x̄ − ȳ)+ Bqm]〉 + 〈b(s̄, ȳ),√nB(x̄ − ȳ)− 2δ ȳ + Bqm〉
≤ − C√

n
.

(3.272)

Subtracting (3.272) from (3.271) and using (3.2), (3.258), (3.259), (3.260), (3.261),
(3.268), (3.269) and (3.270) give us

2
μ

T 2
≤ n

2
|(σ(t̄, ȳ)Q

1
2 )∗B(x̄ − ȳ)|2 − n

2
|(σ(t̄, x̄)Q

1
2 )∗B(x̄ − ȳ)|2

+ 1

2
√
n
M2‖B‖ + c1

√
n|x̄ − ȳ|2−1 −

C√
n
+ γ(δ,β,m), (3.273)

where c1 is some constant depending only on L and c0 in (3.2), and γ is a function
such that lim supδ→0 lim supβ→0 lim supm→∞ γ(δ,β,m) = 0. Now

|(σ(t̄, ȳ)Q
1
2 )∗B(x̄ − ȳ)|2 − |(σ(t̄, x̄)Q

1
2 )∗B(x̄ − ȳ)|2

= Tr
(
(σ(t̄, ȳ)Q1/2)(σ(t̄, ȳ)Q1/2)∗B(x̄ − ȳ)⊗ B(x̄ − ȳ)

)

− Tr
(
(σ(t̄, x̄)Q1/2)(σ(t̄, x̄)Q1/2)∗B(x̄ − ȳ)⊗ B(x̄ − ȳ)

)

≤ c2|x̄ − ȳ|3−1,

where c2 is some constant depending only on L , M, ‖B1/2‖. Plugging this inequality
into (3.273) and invoking (3.270) we thus obtain

2
μ

T 2 ≤ lim sup
δ→0

lim sup
β→0

lim sup
m→∞

(
c1
√
n|x̄ − ȳ|2−1 + c2n|x̄ − ȳ|3−1

)
+ 1

2
√
n
M2‖B‖ − C√

n

≤ 1√
n

(
4L2c1 + 8L3c2 + 1

2
M2‖B‖

)
− C√

n
.
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This yields a contradiction if C ≥ 4L2c1 + 8L3c2 + 1
2M

2‖B‖. Thus we must have

vn ≤ v + C√
n
(T − t + 1) ≤ v + C(T + 1)√

n
.

Similar arguments give us

v − C√
n
(T − t + 1) ≤ vn

and thus the result follows. �

The rate of convergence provided by Theorem3.88 is the same as the rate for
finite-dimensional problems.

Remark 3.89 It is obvious from the proof that Theorem3.88 remains the same if
the term 〈b(t, x), Du〉 in (3.254) and (3.255) is replaced by a general Hamiltonian
F(t, x, Du), where F : [0, T ] × H × H → R is uniformly continuous on bounded
sets and, for instance, satisfies

|F(t, x, p)− F(t, x, q)| ≤ C |p − q|(1+ |x |),

F

(
t, x,

B(x − y)

ε

)
− F

(
t, y,

B(x − y)

ε

)
≤ C |x − y|2−1,

for all t ∈ [0, T ], x, y, p, q ∈ H . Such equations arise in risk sensitive optimal
control problems. We refer to [112, 113, 365, 462, 463, 465, 466, 540] for such
problems in infinite-dimensional spaces and to [203, 263] for more on risk sensi-
tive control problems. A result similar to Theorem3.88 has been proved in [466]
for a risk sensitive control problem using representation formulas and probabilistic
methods. �

3.9 Perron’s Method and Half-Relaxed Limits

Perron’s method is one of the main techniques for producing viscosity solutions of
PDEs in finite-dimensional spaces (see [139, 358] and Appendix E.4). It is based
on the principle that the supremum of the family of all viscosity subsolutions which
are less than or equal to a viscosity supersolution of an equation is a (possibly
discontinuous) viscosity solution. Thus to construct a viscosity solution, all we need
is to produce one subsolution u0 and one supersolution v0 that both satisfy the
boundary and initial conditions and such that u0 ≤ v0. If we have a comparison
theorem, the viscosity solution produced by Perron’s method can then be proved to
be continuous. Perron’s method has a rather trivial extension to infinite-dimensional
bounded equations (3.66), see [412]. Perron’s method was also used to prove the
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existence of viscosity solutions using Ishii’s definitions of viscosity solutions [360,
361]. However, it is not known if a version of Perron’s method can be implemented
for B-continuous viscosity solutions of (3.56) and (3.62), even if the equations are of
first order. The reason for this is that B-continuous viscosity sub-/supersolutions are
semicontinuous in a weaker topology and this makes the problem difficult. However,
it was shown in [376] how to adapt Perron’s method to B-continuous viscosity
solutions of (3.56) and (3.62) when the operator A is more coercive. We only discuss
the initial value problems

{
ut − 〈Ax, Du〉 + F(t, x, u, Du, D2u) = 0 (t, x) ∈ (0, T )× H

u(0, x) = g(x),
(3.274)

where H is a real, separable Hilbert space and A is a linear, densely defined, maximal
dissipative operator in H . The presentation here is based on [376] and we refer to
this paper for further results and more details.

In order to develop Perron’s method we need to introduce a notion of a discon-
tinuous viscosity solution. Let B be an operator satisfying (3.2). For a function u we
will write u∗,−1 and u∗,−1 to denote the upper- and lower-semicontinuous envelopes
of u in the | · | × | · |−1 norm, i.e.

u∗,−1(t, x) = lim sup{u(s, y) : s → t, |y − x |−1 → 0},

u∗,−1(t, x) = lim inf{u(s, y) : s → t, |y − x |−1 → 0}.

Observe that u∗,−1 is upper semicontinuous in the | · | × | · |−1 norm and thus, thanks
to Lemma3.6(ii), it is B-upper semicontinuous.

We assume that F : (0, T )×H×R×H×S(H) → R satisfies Hypotheses3.44–
3.46. We also impose the following coercivity condition on A.

− 〈A∗x, x〉 ≥ λ|x |21, for x ∈ D(A∗) (3.275)

for some λ > 0.
The above implies, in particular, that D(A∗) ⊂ H1. Assumption (3.275) is satis-

fied, for instance, for self-adjoint invertible operators A if B = (−A)−1.

Definition 3.90 A locally bounded function u is a discontinuous viscosity subso-
lution of (3.274) if u(0, y) ≤ g(y) on H , and whenever (u − h)∗,−1 − ϕ has a
local maximum in the topology of | · | × | · |−1 at a point (t, x) for a test function
ψ(s, y) = ϕ(s, y) + h(s, |y|) from Definition3.32 such that ϕ is B-continuous,
hr (t, r) > 0, r ∈ (0,+∞), t ∈ (0, T ) and

u(s, y)− h(s, |y|) →−∞ as |y| → ∞ locally uniformly in s (3.276)

then
x ∈ H1
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and

ψt (t, x)+λ|x |21
hr (t, |x |)
|x | − 〈x, A∗Dϕ(t, x)〉

+ F(t, x, (u − h)∗,−1(t, x)+ h(t, |x |), Dψ(t, x), D2ψ(t, x)) ≤ 0,

where hr is the partial derivative of h with respect to the second variable.
A locally bounded function u is a discontinuous viscosity supersolution of (3.274)

if u(0, y) ≥ g(y) on H , and whenever (u + h)∗,−1 + ϕ has a local minimum in the
topology of |·|×|·|−1 at a point (t, x) for a test functionψ(s, y) = ϕ(s, y)+h(s, |y|)
from Definition3.32 such that ϕ is B-continuous, hr (t, r) > 0, r ∈ (0,+∞), t ∈
(0, T ) and

u(s, y)+ h(s, |y|) →+∞ as |y| → ∞ locally uniformly in s (3.277)

then
x ∈ H1

and

−ψt (t, x)−λ|x |21
hr (|x |)
|x | + 〈x, A∗Dϕ(t, x)〉

+ F(t, x, (u + h)∗,−1(t, x)− h(t, |x |),−Dψ(t, x),−D2ψ(t, x)) ≥ 0.

A discontinuous viscosity solution of (3.274) is a function which is both a discon-
tinuous viscosity subsolution and a discontinuous viscosity supersolution.

The maxima and minima in Definition3.90 can be assumed to be global and strict
in the | · | × | · |−1 norm. Compared to Definition3.34, apart from discontinuity
of sub/supersolutions, the main difference here is that we require that x ∈ H1 and
the term 〈x, A∗Dh(t, x)〉 is not dropped entirely. We notice that if x ∈ A∗ then
−〈x, A∗Dh(t, x)〉 = − hr (t,|x |)

|x | 〈x, A∗x〉 ≥ λ|x |21 hr (t,|x |)
|x | and this term is well defined

and is left in the definition. If x = 0 the term |x |21 hr (t,|x |)
|x | by definition is equal to 0.

We also remark that if u is B-upper semicontinuous then (u− h)∗,−1 = u− h and if
u is B-lower semicontinuous then (u+h)∗,−1 = u+h. Definitions of discontinuous
viscosity solutions were first used in [360, 361]. Definitions requiring that points
where maxima/minima occur belong to better spaces appeared in [97, 144] and have
been successfully employed for some second-order equations which are discussed
in this book in Sects. 3.11–3.13 (see also [318, 322, 323]).

For simplicity we restrict ourselves to F not depending on u. We will often say
that u is a viscosity sub-/supersolution in an open set V . This will mean that we
disregard the initial condition and the conditions of Definition3.90 must be satisfied
only if (t, x) ∈ V . However, all functions involved must be defined on (0, T ) × H
and the maxima/minima in Definition3.90 are local in the topology of | · | × | · |−1
in the whole (0, T )× H .
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Lemma 3.91 Let Hypotheses3.44, 3.46 and condition (3.275) hold and let V be an
open subset of (0, T ) × H. Let ψ = ϕ + h be a test function from Definition 3.32
such that w = −ψ (respectively, w = ψ) satisfies

wt (t, x)−〈x, A∗Dw(t, x)〉+F(t, x, Dw(t, x), D2w(t, x)) ≤ 0 x ∈ D(A∗)∩V, t ∈ (0, T )

(respectively,

wt (t, x)− 〈x, A∗Dw(t, x)〉 + F(t, x, Dw(t, x), D2w(t, x)) ≥ 0 x ∈ D(A∗)∩ V, t ∈ (0, T ).)

Then the function w is a viscosity subsolution (respectively, supersolution)
of (3.274).

Proof We will only prove the lemma in the subsolution case. We see that w = −ψ
is B-upper semicontinuous. Suppose that w(s, y) − ϕ̃(s, y) − h̃(s, |y|) has a local
maximum at (t, x) for a test function ψ̃ = ϕ̃+ h̃. Then

wt (t, x) = ψ̃t (t, x), −Dϕ(t, x)− hr (t, |x |)
|x | x − Dϕ̃(t, x)− h̃r (t, |x |)

|x | x = 0

and
D2w(t, x) ≤ D2(ϕ̃+ h̃)(t, x).

Therefore, either x = 0 or

(
hr (t, |x |)
|x | + h̃r (t, |x |)

|x |

)

x = −Dϕ(t, x)− Dϕ̃(t, x) ∈ D(A∗),

i.e. x ∈ D(A∗). Thus, using (3.275) and Hypothesis3.46, we obtain

ψ̃t (t, x)+ λ|x |21 h̃r (t,|x |)
|x | − 〈x, A∗Dϕ̃(t, x)〉 + F(t, x, Dψ(t, x), D2ψ(t, x))

≤ wt (t, x)− h̃r (t,|x |)
|x | 〈x, A∗x〉 − 〈x, A∗Dϕ̃(t, x)〉 + F(t, x, Dw(t, x), D2w(t, x))

= wt (t, x)− 〈x, A∗Dw(t, x)〉 + F(t, x, Dw(t, x), D2w(t, x)) ≤ 0

and the claim is proved. �

Proposition 3.92 Let Hypotheses3.44, 3.46 and condition (3.275) be satisfied. Let
A be a family of viscosity subsolutions of (3.274) in the sense of Definition3.90.
Suppose that the function

u(x) = sup {w(x) : w ∈ A} (3.278)

is locally bounded. Then u is a viscosity subsolution of (3.274) in the sense of Defi-
nition3.90.
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Proof Suppose that (u−h)∗,−1−ϕ has a strict in | ·|×|·|−1 norm global maximum
at a point (t, x) for a test functionψ = ϕ+h. (We can assume that (u−h)∗,−1(s, y)−
ϕ(s, y) ≤ −|y| as |y| → ∞.) Perturbed optimization (see Corollary3.26) and
Definition3.90 yield that there exist wn ∈ A, xn ∈ H1, tn , and an ∈ R, pn ∈ H ,
|an| + |pn| ≤ 1/n such that

tn → t, B
1
2 xn → B

1
2 x, xn ⇀ x in H as n →∞, (3.279)

(wn − h)∗,−1(s, y)− ϕ(s, y)+ 〈Bpn, y〉 + ans

has a strict in | · | × | · |−1 norm global maximum at (tn, xn), and

(wn − h)∗,−1(tn, xn) → (u − h)∗,−1(t, x) as n →∞. (3.280)

Therefore,

ψt (tn, xn)− an+λ|xn|21
hr (tn, |xn|)

|xn| − 〈xn, A∗(Dϕ(xn)− Bpn)〉
+ F(tn, xn, Dψ(tn, xn)− Bpn, D

2ψ(tn, xn)) ≤ 0. (3.281)

Since the xn are bounded, using the local boundedness of F we thus obtain that either
xn → 0 = x or, up to a subsequence, |xn| > c > 0 which leads to

|xn|21 ≤ C

for some constantC which, togetherwith (3.279), implies that x ∈ H1, and B−
1
2 xn ⇀

B− 1
2 x as n →∞. Therefore, by (3.279),

|xn − x |2 = 〈B− 1
2 (xn − x), B

1
2 (xn − x)〉 → 0 as n →∞,

i.e. xn → x in H . Using this, the continuity of F , and the lower semicontinuity of
| · |1 in H , we can now pass to the lim inf as n →∞ in (3.281) to obtain

ψt (t, x)+ λ|x |21
hr (t, |x |)
|x | − 〈x, A∗Dϕ(t, x)〉 + F(t, x, Dψ(t, x), D2ψ(t, x)) ≤ 0,

which completes the proof. �

Theorem 3.93 Let Hypotheses3.44, 3.46 and condition (3.275) be satisfied. Let
u0, v0 be respectively a viscosity subsolution and a viscosity supersolution of (3.274)
in the sense of Definition3.90 such that u0 ≤ v0 and u0(0, x) = v0(0, x) = g(x),
x ∈ H. Then the function
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u(t, x) = sup{v(t, x) : u0 ≤ v ≤ v0, v is a viscosity subsolution

of (3.274) in the sense of Definition 3.90} (3.282)

is a viscosity solution of (3.274) in the sense of Definition3.90.

Proof It follows from Proposition3.92 that u is a viscosity subsolution. Suppose
now that (u+ h)∗,−1+ϕ has a strict in | · | × | · |−1 norm global minimum at a point
(t, x) for a test function ψ = ϕ+ h satisfying (3.277). First we observe that if

(u + h)∗,−1(t, x) = (v0 + h)∗,−1(t, x)

then (v0 + h)∗,−1 +ϕ has a global minimum at (t, x) and so we are done since v0 is
a viscosity supersolution. Therefore we only need to consider the case

(u + h)∗,−1(t, x) < (v0 + h)∗,−1(t, x).

It then follows from the above inequality, the B-continuity of ϕ and the weak
sequential lower semi-continuity of | · | that there is an ε0 > 0 such that for every
R > 0 there exists an η0 > 0 such that

ε+ (u + h)∗,−1(t, x)+ ϕ(t, x)− ϕ(s, y)− h(s, |y|)
< (v0 + h)∗,−1(s, y)− h(s, |y|) ≤ v0(s, y)

(3.283)

for (s, y) ∈ (t − η0, t + η0)× (BH−1(x, η0) ∩ B(x, R)), 0 < ε < ε0. Let

w(y) = ε+ (u + h)∗,−1(t, x)+ ϕ(t, x)− ϕ(s, y)− h(s, |y|). (3.284)

By further modifying h for large values of |y| and s /∈ (t − η0, t + η0) if necessary,
we can also assume that there is an R0 > 0 such that

w(s, y) ≤ u(s, y)− 1 y /∈ B(x, R0), s ∈ (0, T ). (3.285)

Moreover, if R0 is big enough, there exist sn → t, yn ∈ B(x, R0), yn → x in H−1
such that

u(sn, yn)+ h(sn, |yn|)+ ϕ(sn, yn) → (u + h)∗,−1(t, x)+ ϕ(t, x),

which means that for every η > 0 there exist points (s, y) ∈ (t − η, t + η) ×
(BH−1(x, η) ∩ B(x, R0)) for which

u(s, y) < w(s, y). (3.286)

If the condition for u being a viscosity supersolution of (3.274) is violated at (t, x)
for the test function ψ then one of the following must hold:
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(i) x /∈ H1.
(ii) x ∈ H1 but

−ψt (t, x)− λ|x |21
hr (t, |x |)
|x | + 〈x, A∗Dϕ(t, x)〉

+ F(t, x,−Dψ(t, x),−D2ψ(t, x)) < −ν < 0
(3.287)

for some ν > 0.

If (i) is satisfied then we must have

lim inf
y→x in H−1

y∈H1

|y|1 = +∞. (3.288)

Otherwise we would have a sequence yn such that B
1
2 yn → B

1
2 x and |B− 1

2 yn| ≤ C .
Then for some subsequence (still denoted by yn) B−

1
2 yn ⇀ z for some z ∈ H , which

would imply x ∈ H1 and z = B− 1
2 x . Using the local boundedness of F , condition

(3.288) now implies that for every R > 0

wt (s, y)−λ|y|21
hr (s, |y|)
|y| +〈y, A∗Dϕ(s, y)〉+ F(s, y, Dw(s, y), D2w(s, y)) < −ν

2
,

(3.289)

for (s, y) ∈ (t − η1, t + η1)× (BH−1(x, η1) ∩ B(x, R) ∩ H1), for some η1 > 0.

Suppose that (i i) is true. We will show that for every R > 0 (3.289) holds for
(s, y) ∈ (t − η1, t + η1) × (BH−1(x, η1) ∩ B(x, R) ∩ H1) for some η1 > 0. If not
there exist sequences tn → t, xn → x in H−1, |xn| ≤ R such that

wt (tn, xn)− λ|xn|21
hr (tn, |xn|)

|xn| + 〈xn, A∗Dϕ(tn, xn)〉

+ F(tn, xn, Dw(tn, xn), D
2w(tn, xn)) ≥ −ν

2
. (3.290)

If xn → 0 = x then letting n →+∞ in (3.290) would contradict (3.287). If xn → 0
then for some subsequence (still denoted by xn) we would have hr (tn, |xn|)/|xn| ≥
γ > 0 for some γ and this would imply |xn|1 ≤ C for some constant C , as otherwise
(3.290) would be violated. But then we must have B− 1

2 xn ⇀ B− 1
2 x in H and thus

we obtain xn → x . However then (3.287), (3.290) and the lower semi-continuity of
‖ · ‖1 again imply
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− ν

2
≤ lim sup

n→∞

(
wt (tn, xn)− λ|xn|21

hr (tn, |xn|)
|xn| + 〈xn, A∗Dϕ(tn, xn)〉

+ F(tn, xn, Dw(tn, xn), D
2w(tn, xn))

)
< −ν,

which gives a contradiction.
Thus we have proved that in both cases (i) and (ii), for every R > 0 (3.289) holds

for (s, y) ∈ (t − η1, t + η1)× (BH−1(x, η1) ∩ B(x, R) ∩ H1) for some η1 > 0.

Recall now the definition of w given in (3.284). Since (u + h)∗,−1 + ϕ has a
global minimum at (t, x), strict in | · |× | · |−1 norm, given η > 0 and ε small enough
(depending on η) there exists a constant μη > 0 such that

w(s, y) < (u + h)∗,−1(s, y)− h(s, |y|)− μη ≤ u(s, y)− μη (3.291)

for y /∈ BH−1(x, η), s ∈ (t − η, t + η).
Using (3.283), (3.285), (3.291), and (3.289) we can therefore conclude that there

exist numbers R, η, ε,μ > 0 such that

w ≤ v0 in [0, T )× H, (3.292)

w(s, y) < u(s, y)−μ for (s, y) /∈ (t−η, t+η)×(BH−1(x, η)∩B(x, R)), (3.293)

and such that (3.289) is satisfied for (s, y) ∈ (t − 2η, t + 2η) × (BH−1(x, 2η) ∩
B(x, 2R) ∩ H1).

We now claim that the function w is a viscosity subsolution of (3.274) in the
interior of (t−2η, t+2η)×(B−1(x, 2η)∩B(x, 2R)). This follows fromLemma3.91
upon noticing that by (3.289) and (3.275) we have

wt (s, y)− 〈y, A∗Dw(s, y)〉 + F(s, y, Dw(s, y), D2w(s, y))

≤ wt (s, y)− λ|y|21 hr (s,|y|)|y| + 〈y, A∗Dϕ(s, y)〉 + F(s, y, Dw(s, y), D2w(s, y)) < 0

for (s, y) ∈ (t − 2η, t + 2η)× (BH−1(x, 2η) ∩ B(x, 2R) ∩ D(A∗)).
It remains to show that the function

u1 = max(w, u) (3.294)

is a viscosity subsolution in the sense of Definition3.90. It follows from the definition
that u1 is a viscosity subsolution in the interior of (t − 2η, t + 2η)× (B−1(x, 2η) ∩
B(x, 2R)). If (s, y) /∈ (t − 3/2η, t + 3/2η) × (B−1(x, 3/2η) ∩ B(x, 3/2R)) and
(u1 − h̃)∗,−1 − ϕ̃ has a maximum at (s, y), and

(u1 − h̃)∗,−1(s, y) = lim
n→+∞(u1(sn, yn)− h̃(sn, yn)),
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where |sn − s| + |yn − y|−1 → 0 and yn ⇀ y, then since |y| ≤ lim infn→+∞ |yn|,
we obtain (sn, yn) /∈ (t − η, t + η) × (B−1(x, η) ∩ B(x, R)) for large n. Thus by
(3.293) u1(sn, yn) = u(sn, yn), which implies (u1− h̃)∗,−1(s, y) = (u− h̃)∗,−1(s, y).
Therefore the subsolution condition is satisfied for u1 at (s, y) for the test function
ψ̃ = h̃ + ϕ̃, and hence u1 is a discontinuous viscosity subsolution of (3.274).

By the definition of u1 and (3.292) we know that u0 ≤ u1 ≤ v0. Thus, by (3.282),
we should have u1 ≤ u, but this contradicts (3.286). �

The comparison theorem in thewhole space can be proved under the same assump-
tions as those of Theorem3.50. The proof is almost exactly the same. The reader can
also check the proof of Theorem4.1 in [376] for a proof in a simpler time-independent
case. The comparison theorem in particular implies that a discontinuous viscosity
solution (if it exists) is in fact B-continuous. Thus, in particular, if the comparison
theorem holds, a viscosity solution in the sense of Definition3.90 is the usual vis-
cosity solution in the sense of Definition3.34 (with the additional requirements that
test functions ϕ are B-continuous and hr (t, r) > 0, r > 0). However, we now have
a very convenient way to prove the existence of a solution by Perron’s method. The
remaining question is how to construct a sub- and a supersolution u0 and v0 as in
Theorem3.93 that in addition attain the initial condition locally uniformly so that we
can later use the comparison theorem.

Proposition 3.94 Let Hypotheses3.44, 3.46 and condition (3.275) hold and let g be
locally uniformly B-continuous and such that |g(x)| ≤ μ(1+|x |) for x ∈ H for some
constant μ. Then there are a viscosity subsolution u0 and viscosity supersolution v0
of Eq. (3.274) in the sense of Definition3.90 such that

lim
t↓0 (|u0(t, x)− g(x)| + |v0(t, x)− g(x)|) = 0

uniformly on bounded sets of H.

Proof We will only show how to construct v0.
Define

C(r) = sup{|F(t, x, p, X)| : x ∈ H, t ∈ [0, T ], |p| ≤ r, ‖X‖ ≤ r}.

Let v(t, x) = αt + 2μ
√
1+ |x |2. Notice that v(0, x) ≥ g(x), x ∈ H . By Lemma

3.91, v is a viscosity supersolution of (3.274) if

α+ F
(
t, x, Dv(t, x), D2v(t, x)

) ≥ 0

for all (t, x) ∈ (0, T ) × H . Since Dv(t, x) and D2v(t, x) are bounded we can
therefore select α, depending only on μ, such that the above condition is satisfied.

Let z ∈ H, ε > 0. We first choose a constant R = R(|z|) ≥ |z| such that
((|x |− |z|)+)4 ≥ 2v(t, x) for |x | ≥ R, t ∈ (0, T ). We then find M = M(|z|, ε) such
that
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w̄z,ε(x) := g(z)+ ε+ M |x − z|2−1 + ((|x | − |z|)+)4 ≥ g(x)

for |x | ≤ R. Let now γ = sup{|Dw̄z,ε(x)| + ‖D2w̄z,ε(x)‖ : |x | ≤ R}. Using again
Lemma3.91, in order for wz,ε(t, x) := βt + w̄z,ε(x) to be a viscosity supersolution
of (3.274) in the interior of (0, T )× B(0, R) we need

β + 2M〈x, A∗B(x − z)〉 + F(t, x, Dwz,ε(t, x), D
2wz,ε(t, x)) ≥ 0

in this set. This can be achieved by taking β = 2RM(R + |z|)‖A∗B‖ + C(γ).
Since wz,ε(t, x) > v(t, x) if t ∈ (0, T ), |x | ≥ R, it thus follows that

ω̂z,ε(t, x) := min{wz,ε(t, x), v(t, x)}

is a B-lower semicontinuous viscosity supersolution of (3.274) in [0, T )× H . It is
now clear from the construction of the ω̂z,ε and Proposition3.92 for supersolutions
that the function v0(t, x) := inf z,ε ω̂z,ε(t, x) is a viscosity supersolution of (3.274)
in the sense of Definition3.90 such that limt↓0 |v0(t, x) − g(x)| = 0 uniformly on
bounded sets of H . �

In the last part of this section we show how the method of half-relaxed limits of
Barles–Perthame (see [139]) can be generalized to infinite-dimensional spaces. This
method improves the general consistency result of Sect. 3.4. Suppose that we have
equations

ut − 〈Anx, Du〉 + Fn(t, x, u, Du, D2u) = 0 (t, x) ∈ (0, T )× H, (3.295)

where Fn : [0, T ] × H × R × H × S(H) → R, and An, n = 1, 2, ..., are linear,
densely defined maximal dissipative operators in H such that D(A∗) ⊂ D(A∗n). Let
F+, F− be defined as in Theorem3.41. We define

u+(x) = lim
i→∞ sup

{
un(y) : n ≥ i, |x − y| ≤ 1

i

}
,

u−(x) = lim
i→∞ inf

{
un(y) : n ≥ i, |x − y| ≤ 1

i

}
.

Theorem 3.95 Let the operator B satisfying (3.2) be compact. Let An be as above,
let A, An, n = 1, 2, ..., satisfy (3.275), let (3.68) hold, and let for every test function
ϕ, the family A∗nDϕ, n = 1, 2, ..., be locally uniformly bounded. Suppose that Fn,
n = 1, 2, ..., are continuous, locally bounded uniformly in n, and satisfy Hypothe-
ses3.45 and 3.46. Let un be locally bounded, uniformly in n, B-upper semicontinuous
(respectively, B-lower semicontinuous) viscosity subsolutions, (respectively, super-
solutions) of

(un)t − 〈Anx, Dun〉 + Fn(t, x, un, Dun, D
2un) = 0 in (0, T )× H (3.296)
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in the sense of Definition3.90. Then the function u+ (respectively, u−) is a viscosity
subsolution (respectively, supersolution) of

(u+)t − 〈Ax, Du+〉 + F−(t, x, u+, Du+, D2u+) = 0 in (0, T )× H

(respectively,

(u−)t − 〈Ax, Du−〉 + F+(t, x, u−, Du−, D2u−) = 0 in (0, T )× H)

in the sense of Definition3.90.

Proof Let (u+ − h)∗,−1 − ϕ have a local maximum (equal to 0) at (t, x) for some
test function ψ = ϕ + h. In light of local uniform boundedness of the un we can
assume that the maximum is global, strict in the | · | × | · |−1 norm, and such that

u+(y)− h(s, |y|) →−∞, (u+ − h)∗,−1(y)− ϕ(s, y) →−∞,

and
un(s, y)− h(s, |y|)− ϕ(s, y) →−∞

as |y| → +∞, uniformly in n and s ∈ (0, T ), and as s → 0 and s → T , uniformly
in n and y in bounded sets. Then there must exist sequences tn, xn such that |tn −
t | + |xn − x |−1 → 0, |xn| ≤ C , and

u+(tn, xn)− h(tn, |xn|)− ϕ(tn, xn) ≥ −1

n
.

Therefore there exist τn, yn and in such that

uin (τn, yn)− h(τn, |yn|)− ϕ(τn, yn) ≥ −2

n
. (3.297)

Let (sn, zn) be a global maximum of

uin (s, y)− h(s, |y|)− ϕ(s, y).

It exists because of the decay of this function at infinity and around 0, T , and the fact
that, because B is compact, B-upper semicontinuity is equivalent to weak sequential
upper semicontinuity. Obviously |zn| ≤ C1 and we also have

ψt (sn, zn)+ λ|zn|21
hr (sn, |zn|)

|zn| − 〈zn, A∗in Dϕ(sn, zn)〉
+ Fin (sn, zn, uin (sn, zn), Dψ(sn, zn), D

2ψ(sn, zn)) ≤ 0.
(3.298)

We can assume that sn → s. Now either zn → 0 or for a subsequence (still denoted
by zn) |zn| ≥ c1 > 0, n = 1, 2, ..., which implies hr (sn, |zn|)/|zn| > c2 > 0,



3.9 Perron’s Method and Half-Relaxed Limits 283

n = 1, 2, .... It then follows from the local uniform boundedness of the Fn and
A∗in Dϕ, that |zn|1 ≤ C2, which implies zn ⇀ z in H1 for some z ∈ H1 and thus,
since B is compact, zn → z in H .

Therefore u+(s, z) ≥ lim supn→∞ uin (sn, zn) which, together with (3.297), gives

0 ≥ (u+ − h)∗,−1(s, z)− ϕ(s, z) ≥ u+(s, z)− h(s, z)− ϕ(s, z)

≥ lim sup
n→∞

(uin (sn, zn)− h(sn, |zn|)− ϕ(sn, zn)) ≥ 0.

Thus (s, z) = (t, x) and moreover

(u+ − h)∗,−1(t, x)+ h(t, x) = lim sup
n→∞

uin (sn, zn).

It now remains to pass to lim infn→+∞ in (3.298) and use (3.68) to conclude the
proof. �

If F+ = F− and comparison holds for the limiting equation one can obtain
the convergence of the un to the unique viscosity solution of the limiting equation.
Moreover, the limiting Hamiltonians F+ and F− may be of first order so the above
theorem can be applied to singular perturbation problems discussed in Sect. 3.8.
Other applications related to the convergence of finite-dimensional approximations
(like those in Sect. 3.7) when condition (3.275) is satisfied by the operators An only
on a family of finite-dimensional spaces can be found in [376].

3.10 The Infinite-Dimensional Black–Scholes–Barenblatt
Equation

In this section we show how the theory of viscosity solutions and the results of
previous sections can be used to deal with the infinite-dimensional Black–Scholes–
Barenblatt equation (2.140) introduced inSect. 2.6.7.We refer the reader toSect. 2.6.7
for details about the financial meaning of the equation and the associated optimal
control problem.

Let H be the Sobolev space H 1([0,+∞)) and let A be the maximal dissipative
operator {

D(A) := H 2([0,+∞))

A(x)(σ) := dx

dσ
(σ).

The operator A generates, by TheoremB.45, a C0-semigroup of contractions et A in
H . Let B be a bounded, self-adjoint, strictly positive operator satisfying (3.2). We
introduce the space
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V =
{
x ∈ H : σ→√

σx(σ), σ→√
σ
dx

dσ
(σ) ∈ L2(0,∞)

}
,

equipped with the norm

|x |2V =
∫ ∞

0
(1+ σ)

(

x2(σ)+
(
dx

dσ
(σ)

)2
)

dσ,

and we denote by � a fixed bounded and closed subset of Vd . The space H will be
the state space and � will be the control space.

The set of admissible controls Ut is defined as in Sect. 2.1.2, where the W in the
reference probability spaces ν there are d-dimensional standard Brownian motions.

Lemma 3.96 The function b : Vd → H defined by

b(x)(σ) =
d∑

k=1
xk(σ)

∫ σ

0
xk(μ)dμ

is locally Lipschitz. Here x = (x1, ..., xk).

Proof Let R > 0 and x, y ∈ Vd be such that |xk |V, |yk |V ≤ R, for k = 1, ..., d.

Then

|b(x)(σ)− b(y)(σ)|2 ≤
d∑

k=1
2d

(
σ|xk(σ)− yk(σ)|2

∫ σ

0
x2k (μ)dμ

+ σy2k (σ)

∫ σ

0
|xk(μ)− yk(μ)|2dμ

)
.

Integrating we have

∫ +∞

0
|b(x)(σ)− b(y)(σ)|2dσ ≤

d∑

k=1
2dR2

∫ +∞

0
(1+ σ)|(xk − yk)(σ)|2dσ.

Similarly, we obtain

|(b(x))′(σ)− (b(y))′(σ)|2 ≤ 3d
d∑

k=1

(
4R2|xk(σ)− yk(σ)|2

+ σ
(
(yk)

′)2 (σ)

∫ σ

0
|xk(μ)− yk(μ)|2dμ

+ σ
∣∣((xk)

′) (σ)− ((yk)′
)
(σ)
∣∣2
∫ σ

0
x2k (μ)dμ

)
,
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which after integration yields

∫ +∞

0
|(b(x))′(σ)− (b(y))′(σ)|2dσ ≤3d(4R2 + 1)

d∑

k=1

(∫ +∞

0
|(xk − yk)(σ)|2dσ

+
∫ +∞

0
σ
∣∣((xk)′

)
(σ)− ((yk)′

)
(σ)
∣∣2 dσ

)
.

The claim now follows easily. �

The previous lemma implies, in particular, that for τ ∈ Ut , the process b(τ (s)) is
progressively measurable and bounded. Therefore the state equation for the problem

{
dr(s) = (Ar(s)+ b(τ (s)))ds + τ (s) · dW (s), s ∈ (t, T ]
r(t) = x

(3.299)

is well posed in H for any reference probability space ν = (�,F ,F t
s , P,W

)
and

any τ (·) ∈ Ut (see Theorem1.127). We denote its unique mild solution by r(·).
Our control problem consists in maximizing the cost functional

E

(
e−

∫ T
t r+(s,0)dsg(r(T ))

)
(3.300)

over all controls τ (·) ∈ Ut . (We used r+(s, 0) to denote r+(s)(0).) This defines the
value function

V (t, x) := sup
τ (·)∈Ut

E

(
e−

∫ T
t r+(s,0)dsg(rT )

)
.

We assume the function g satisfies the following hypothesis.

Hypothesis 3.97 The function g is locally uniformly B-continuous and

|g(x)| ≤ C(1+ |x |m) for all x ∈ H,

for some C,m ≥ 0.

We can now apply the results of the previous sections to the HJB of the problem
(2.140). Observe first that, if we define

c(x) = x+(0),

for x in H , then c is weakly sequentially continuous on H and so it is uniformly
continuous in the | · |−1 norm on bounded sets of H . Moreover, it is easy to see that
c has at most linear growth at infinity and for instance

x+(0) ≤ 2|x |, (3.301)
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so the hypotheses needed to prove the “existence” part of Theorem3.66 are satisfied.
It guarantees the existence of a local modulus ω such that

|V (t, x)− V (s, y)| ≤ ω
(|t − s| + |x − y|−1; R

)
(3.302)

for all 0 ≤ t, s ≤ T , x, y ∈ B(0, R). It also ensures that V is a viscosity solution of
the Hamilton–Jacobi–Bellman equation (the BSB equation) (2.140).

As regards the uniqueness of viscosity solutions of the BSB equation (2.140) we
observe that Hypotheses3.44–3.46, 3.48, 3.49 with γ = 0 are satisfied. To guarantee
Hypothesis3.47 we need an additional assumption.

We suppose that � is a compact subset of Hd
−1. It is then obvious that

sup
τ∈�

d∑

i=1
|QNτi |2−1 → 0 as N →∞,

where QN is defined as in Sect. 3.5. This implies that Hypothesis 3.47 holds. There-
fore, by Theorem3.50, comparison holds for (2.140) and thus we have the following
result.

Theorem 3.98 LetHypothesis3.97 hold and let� be a bounded and closed subset of
Vd which is also a compact subset of Hd

−1. Then the value function V satisfies (3.302)
and is the unique viscosity solution of the BSB equation (2.140) among functions
satisfying (3.73) with γ = 0 and

lim
t→T

|u(t, x)− g(x))| = 0 (3.303)

uniformly on bounded sets.

If g is bounded and weakly sequentially continuous, it can be shown that the value
function can be approximated by viscosity solutions of finite-dimensional approx-
imations of the BSB equation (2.140). This assumption holds in many interesting
cases, for example if g is given by (2.136). We refer to [375] for further details.

A non-local BSB equation related to the HJMM model with Lévy noise was
studied in [545]. The BSB equation in [545] was considered in the space H =
H 1,γ(R+) which is a weighted H 1(R+) space with the weight eγσ for some γ > 0.
The results of this section could also be obtained in such a space.

3.11 The HJB Equation for Control
of the Duncan–Mortensen–Zakai Equation

This section is a continuation of Sect. 2.6.6, which the reader should be familiar
with. We have seen in Sect. 2.6.6 how the Duncan–Mortensen–Zakai (DMZ) equa-
tion arises in control problems with partial observation. In the so-called “separated”
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problem the DMZ equation is the state equation for the unnormalized conditional
probability density of the state process with respect to the observation process. This
gives rise to an optimal control problem for the DMZ equation which is fully observ-
able. In this sectionwediscuss how theHJB techniques canbe applied to this problem.
We first present basic results about variational solutions of SPDEs.

3.11.1 Variational Solutions

In this section we make the following assumptions. Let V , H be real separable
Hilbert spaces. We identify H with its dual. Suppose that V is continuously and
densely embedded in H . We then have the continuous and dense embeddings

V ⊂ H ⊂ V ∗

and V ∗ is also separable, where V ∗ is the dual of V . We denote the norms in V , H ,
V ∗ by | · |V , | · |, | · |V ∗ , respectively. The inner product in H is denoted by 〈·, ·〉. The
duality pairing between V ∗ and V is denoted by 〈·, ·〉〈V ∗,V 〉. The duality pairing agrees
with the inner product on H , i.e. for every x ∈ H, v ∈ V, 〈x, v〉 = 〈x, v〉〈V ∗,V 〉. The
triple (V, H, V ∗) with the above properties is called a Gelfand triple.

Let � be a real separable Hilbert space, � be a Polish space, Q ∈ L+1 (�) and
T ∈ (0,+∞). Letμ = (�,F , {Fs}s∈[0,T ] , P,WQ

)
be a generalized reference prob-

ability space. Let a(·) ∈ Uμ := Uμ
0 (see (2.1)). We assume the following hypothesis.

Hypothesis 3.99 The following conditions are satisfied:

(i) The linear operators A(t, a) : V → V ′ are closedwith a common domain D(A)

for (t, a) ∈ [0, T ]×�, and for every t ∈ [0, T ], the map Ã : [0, T ]×�×V →
V ∗, Ã(s, a, v) = A(s, a)v, restricted to [0, t] ×�× V , is B([0, t])⊗B(�)⊗
B(V )/B(V ∗)-measurable. Moreover, there exist C, γ, and β > 0 such that for
all u, v ∈ V ,

|〈A(s, a)u, v〉〈V ∗,V 〉| ≤ C |u|V |v|V , (s, a) ∈ [0, T ] ×�, (3.304)

〈A(s, a)v, v〉〈V ∗,V 〉 ≤ −β|v|2V + γ|v|2, (s, a) ∈ [0, T ] ×�. (3.305)

(ii) The functionsb : [0, T ]×V×� → H andσ : [0, T ]×V×� → L2(�0, H) are
such that for every t ∈ [0, T ] their restrictions to [0, T ]×V×� are respectively
B([0, t])⊗B(V )⊗B(�)/B(H)- andB([0, t])⊗B(V )⊗B(�)/B(L2(�0, H))-
measurable.

(iii) There exists a C such that for all u, v ∈ V

|b(s, v, a)| + ‖σ(s, v, a)‖L2(�0,H) ≤ C(1+ |v|V ), (3.306)
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|b(s, u, a)− b(s, v, a)| + ‖σ(s, u, a)− σ(s, v, a)‖L2(�0,H) ≤ C |u − v|V ,

(3.307)
for all (s, a) ∈ [0, T ] ×�.

(iv) There exist C, γ1, and β1 > 0 such that for all v ∈ V ,

〈A(s, a)v, v〉〈V ∗,V 〉 + ‖σ(s, v, a)‖2L2(�0,H) ≤ −β1|v|2V + γ1|v|2 + C, (3.308)

for all (s, a) ∈ [0, T ] ×�.
(v) There exists a δ such that for all u, v ∈ V ,

2〈A(s, a)(u − v), u − v〉〈V ∗,V 〉 + 2〈b(s, u, a)− b(s, v, a), u − v〉
+ ‖σ(s, u, a)− σ(s, v, a)‖2L2(�0,H) ≤ δ|u − v|2, (3.309)

for all (s, a) ∈ [0, T ] ×�.

It is now easy to see that the maps A(s, a(s))v, b(s, v, a(s)), σ(s, v, a(s)) defined
on [0, T ]×�×V are such that for every t ∈ [0, T ] their restrictions to [0, t]×�×V
are respectively B([0, t])⊗Ft ⊗ B(V )/B(V ∗), B([0, t])⊗Ft ⊗ B(V )/B(H) and
B([0, t])⊗Ft⊗B(V )/B(L2(�0, H))-measurable, and they satisfy (3.304)–(3.309)
(with a replaced by a(s)) for a.e. (s,ω) ∈ [0, T ] ×�.

We consider the following stochastic PDE

{
dX (s) = (A(s, a(s))X (s)+ b(s, X (s), a(s)))ds + σ(s, X (s), a(s))dWQ(s)

X (0) = ξ.
(3.310)

Definition 3.100 (Variational solution of (3.310)) A process X (·) ∈ M2
μ(0, T ; H)

is called a variational solution of (3.310) if

E

[∫ T

0
|X (r)|2V dr

]
< +∞

and for every φ ∈ V we have

〈X (s),φ〉 = 〈ξ,φ〉 +
∫ s

0
〈A(r, a(r))X (r),φ〉〈V ∗,V 〉dr +

∫ s

0
〈b(r, X (r), a(r)),φ〉dr

+
∫ s

0
〈σ(r, X (r), a(r))dWQ(r),φ〉 for each s ∈ [0, T ] , P− a.e.

(3.311)

We remark that the integrand A(r, a(r))X (r) above is evaluated at a V -valued
progressively measurable equivalent version of X (·), and the process 1X (s)∈V X (s)
is equivalent to the process X (s) and, by Lemma1.17-(iii), belongs to M2

μ(0, T ; V ).
Moreover, (3.311) is equivalent to the equality
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X (s) = ξ+
∫ s

0
(A(r, a(r))X (r)+b(r, X (r), a(r)))dr+

∫ s

0
σ(r, X (r), a(r))dWQ(r)

as elements of V ∗.
The following result is taken from [386], Theorem I.3.1, in the version from [294],

Theorem 4.3, p. 165 (see also [491], Theorem 4.2.5, and [519]).

Theorem 3.101 Let μ be a generalized reference probability space, ξ be an F0-
measurable H-valued random variable such that E

μ[|ξ|2] < +∞, and let Y (·) ∈
M2

μ(0, T ; V ∗), Z(·) ∈ N 2
Q(0, T ; H). We define the continuous V ∗-valued process

X (s) = ξ +
∫ s

0
Y (r)dr +

∫ s

0
Z(r)dWQ(r), s ∈ [0, T ].

If X (·) has an equivalent version X̃(·) ∈ M2
μ(0, T ; V ), then X (·) ∈ M2

μ(0, T ; H) ∩
L2(�;C([0, T ], H)),

E

[
sup

0≤s≤T
|X (s)|2

]
≤ +∞,

and the following Itô’s formula holds P-a.e.

|X (s)|2 = |ξ|2 +
∫ s

0

(
2〈Y (r), X̃(r)〉〈V ∗,V 〉 + ‖Z(r)‖2L2(U0,H)

)
dr

+2
∫ s

0
〈Z(r)dWQ(r), X (r)〉 s ∈ [0, T ].

(3.312)

Theorem 3.102 Let μ be a generalized reference probability space, ξ be F0-
measurable H-valued random variable such that E

μ[|ξ|2] < +∞, and a(·) ∈ Uμ.
Then:

(i) There exists a unique variational solution of (3.310) X (·) ∈ L2(�;C([0, T ],
H)), and the energy equality holds P-a.e.

|X (s)|2 = |ξ|2 + 2
∫ s

0
〈A(r, a(r))X (r), X (r)〉〈V ∗,V 〉dr + 2

∫ s

0
〈b(r, X (r), a(r)), X (r)〉dr

+2
∫ s

0
〈σ(r, X (r), a(r))dWQ(r), X (r)〉 +

∫ s

0
‖σ(r, X (r), a(r))‖2L2(�0,H)dr s ∈ [0, T ].

(3.313)
(ii) Ifμ1 is another generalized reference probability space, ξ1 is anF

μ1
0 -measurable

H-valued random variable such that E
μ1[|ξ1|2] < +∞, a1(·) ∈ Uμ, and

LP1(ξ1, a1(·),WQ,1(·)) = LP(ξ, a(·),WQ(·)),

then
LP1(a1(·), X1(·)) = LP(a(·), X (·)), (3.314)
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where X1(·) is the variational solution of (3.310) in μ1 with control a1(·) and
initial condition ξ1.

Proof We sketch the proof. The complete proof of the first part of the theorem can
be found in [124], pp. 168–183 or [294, 386, 388, 491, 519]. Let {v1, v2, ...} be an
orthonormal basis of H composed of elements of V . We set Hn := span{v1, ..., vn},
and define

Pnw :=
n∑

k=1
〈w, vk〉〈V ∗,V 〉vk, w ∈ V ∗.

If w ∈ H we have

Pnw =
n∑

k=1
〈w, vk〉vk

so Pn is an extension to V ∗ of the orthogonal projection in H onto Hn . We set

{
An(s,α)v := Pn A(s,α)v, bn(s, v,α) := Pnb(s, v, α), σn(s, v, α) := Pnσ(s, v, α)

ξn := Pnξ.

(One can also project the Wiener process on a finite-dimensional subspace but it
is not necessary.) Since the above functions are Lipschitz continuous in v on Hn ,
standard theory guarantees that there exists a unique strong solution (in the sense of
Definition1.118) Xn(·) of
{
dXn(s) = (An(s, a(s))Xn(s)+ bn(s, Xn(s), a(s)))ds + σn(s, Xn(s), a(s)))dWQ(s)

Xn(0) = ξn

(3.315)
which satisfies Xn(·) ∈ L2(�;C([0, T ], H)) ∩ M2

μ(0, T ; V ). Moreover, Itô’s for-
mula gives P-a.e.

|Xn(s)|2 = |ξn|2 + 2
∫ s

0
〈An(r, a(r))Xn(r), Xn(r)〉dr

+ 2
∫ s

0
〈bn(r, Xn(r), a(r)), Xn(r)〉dr + 2

∫ s

0
〈σn(r, Xn(r), a(r))dWQ(r), Xn(r)〉

+
∫ s

0
‖σn(r, Xn(r), a(r))‖2L2(�0,H)dr, s ∈ [0, T ],

(3.316)
and using (3.316) and the assumptions one shows that

E

[
sup

0≤s≤T
|Xn(s)|2 +

∫ T

0
|Xn(s)|2V ds

]
≤ M for all n.
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Therefore, up to subsequences still denoted by Xn , bn , σn , we obtain that there
exist X (·), b̃(·) ∈ M2

μ(0, T ; H), X̃(·) ∈ M2
μ(0, T ; V ), σ̃(·) ∈ N 2

Q(0, T ; H), and a
FT -measurable random variable η ∈ L2(�; H) such that

Xn(·) ⇀ X̃(·) in M2
μ(0, T ; V ), Xn(T ) ⇀ η in L2(�; H),

Xn(·) ⇀ X (·), bn(·, Xn(·), a(·)) ⇀ b̃(·) in M2
μ(0, T ; H),

σn(·, Xn(·), a(·)) ⇀ σ̃(·) in N 2
Q(0, T ; H).

Obviously X̃(·) is an equivalent version of X (·). Passing to the limit as n → +∞
one obtains that X (·) is a variational solution of the linear equation

{
dX (s) = (A(s, a(s))X̃(s)+ b̃(s)ds + σ̃(s)dWQ(s)

X (0) = ξ,

X (T ) = η, and, by Theorem3.101, X (·) ∈ L2(�;C([0, T ], H)) and it satisfies
P-a.e.

|X (s)|2 = |ξ|2 + 2
∫ s

0
〈A(r, a(r))X (r), X (r)〉〈V ∗,V 〉dr + 2

∫ s

0
〈b̃(r), X (r)〉dr

+2
∫ s

0
〈σ̃(r)dWQ(r), X (r)〉 +

∫ s

0
‖σ̃(r)‖2L2(U0,H)dr, s ∈ [0, T ].

One then uses monotonicity arguments to prove that

b̃(r) = b(r, X (r), a(r)), σ̃(r) = σ(r, X (r), a(r)) dt ⊗ P-a.e.

and hence X (·) is a variational solution of (3.310) and (3.313) holds. Moreover,
it also follows from these arguments (see, for instance, [386] for details) that
E[|Xn(T )|2] → E[|X (T )|2] and so Xn(T ) → X (T ) in L2(�; H). Replacing
interval [0, T ] by another interval [0, t], 0 < t < T , the same arguments give
Xn(t) → X (t) in L2(�; H) for all 0 ≤ t ≤ T .

The uniqueness of variational solution in the generalized reference probability
space μ follows from Theorem3.101, elementary estimates using the assumptions
on the coefficients, and Gronwall’s lemma.

Finally, if X1(·) is the variational solution in the generalized reference probability
space μ1 and Xn

1 (·) are the solutions of the approximating problems (3.315) in this
space then we have

LP1(a1(·), Xn
1 (·)) = LP(a(·), Xn(·)),
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and thus (3.314) follows since Xn
1 (t) → X1(t) in L2(�1; H) and Xn(t) → X (t) in

L2(�; H) for every t ∈ [0, T ]. �

3.11.2 Weighted Sobolev Spaces

We denote the norm and the inner product in R
d by |·|Rd and 〈·, ·〉Rd , respectively.

Given k ∈ N we denote by Hk := Hk
(
R

d
)
the standard Sobolev space on R

d . We
recall that H 0 = L2

(
R

d
)
, and the inner product in H 0 will be denoted by 〈·, ·〉0. Let

B := (−�+ I )−1, where D(�) = H 2. We equip Hk with the inner product

〈x, y〉k := 〈B−k/2x, B−k/2y〉0.

This inner product gives the norm |x |k = |B−k/2x |, which is equivalent to the standard
norm in Hk given by

⎛

⎝
∑

|α|≤k

∫

Rd

|∂αx(ξ)|2dξ

⎞

⎠

1
2

.

The topological dual space of Hk is denoted by H−k . Except when explicitly stated
we always identify H 0 with its dual. The space H−k can be identified with the
completion of H 0 under the norm

|x |−k := |Bk/2x | = 〈Bkx, x〉1/20

and then B1/2 (after a natural extension) is an isometry between Hk and Hk+1, k ∈ Z.
The space H−k , k ∈ N, is a Hilbert space equipped with the inner product

〈x, y〉−k := 〈Bk/2x, Bk/2y〉0.

The duality pairing between H−k and Hk, k ∈ N, is denoted by 〈·, ·〉〈H−k ,Hk〉. We

have 〈a, b〉〈H−k ,Hk〉 =
〈
Bk/2a, B−k/2b

〉
0. Observe also that, for k ∈ Z, the adjoint of

the operator B1/2 : Hk → Hk+1 is B1/2 : H−k−1 → H−k .
Let k = 0, 1, 2. Given a strictly positive real-valued function ρ ∈ C2(Rd), we

define the weighted Sobolev space Hk
ρ (Rd) (or simply Hk

ρ ) to be the completion of
C∞
c (Rd) with respect to the weighted norm

|x |k,ρ := |ρx |k .

The space Hk
ρ can also bedefined as the spaceof allmeasurable functions x : R

d → R

such that ρ(·)x(·) ∈ Hk . We recall that the norm |x |k,ρ is equivalent to the norm given
by
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⎛

⎝
∑

|α|≤k

∫

Rd

|∂α [ρ(ξ)x(ξ)]|2 dξ

⎞

⎠

1/2

.

Wedenote byCρ the isometryCρ : Hk
ρ → Hk defined as

(
Cρx

)
(ξ) = ρ (ξ) x (ξ) ,

and by C1/ρ = C−1
ρ : Hk → Hk

ρ its inverse:
(
C1/ρx

)
(ξ) = (ρ (ξ))−1x (ξ). We

observe that Hk
ρ is a Hilbert space with the inner product 〈x, y〉k,ρ = 〈Cρx,Cρy〉k .

We denote the topological dual space of Hk
ρ by H−k

ρ and, identifying H 0
ρ with its

dual, we have
Hk

ρ ⊂ H 0
ρ = [H 0

ρ ]′ ⊂
[
Hk

ρ

]′ = H−k
ρ , k ≥ 0. (3.317)

We always use this identification, except when explicitly stated.
The adjoint C∗

ρ of Cρ is an isometry C∗
ρ : H−k �−→ H−k

ρ . Observe that C∗
ρ can be

identified with C1/ρ.
To simplify the notation we write Xk := Hk

ρ .
Let Bρ := C1/ρ

[
(−�+ I )−1

]
Cρ = C1/ρBCρ. Similarly to the case of non-

weighted spaces, X−k can be identified with the completion of X0 under the norm
|x |2−k,ρ := 〈Bk

ρ x, x〉0,ρ = 〈BkCρx,Cρx〉0 and then B1/2
ρ is an isometry between

X−2, X−1, X0, X1 and X−1, X0, X1, X2, respectively. We remark that B−1ρ =
C1/ρB−1Cρ, B1/2

ρ = C1/ρB1/2Cρ, B−1/2ρ = C1/ρB−1/2Cρ. Thus |x |−k,ρ = |Bk/2
ρ x |0,ρ

and |x |k,ρ = |B−k/2ρ x |0,ρ. The duality pairing between X−k and Xk is denoted by
〈·, ·〉〈X−k ,Xk 〉. We have

〈a, b〉〈X−k ,Xk 〉 = 〈Bk/2
ρ a, B−k/2ρ b〉0,ρ = 〈Cρa,Cρb〉〈H−k ,Hk 〉.

In what follows we consider weight functions ρ of the form

ρβ (ξ) = 1+ |ξ|β
Rd , β > 2. (3.318)

With such a choice of ρ it can be shown that Xk ⊂ Hk , and if β > d/2 then
X0 ⊂ L1

(
R

d
)
and Xk ⊂ Wk,1

(
R

d
)
.

3.11.3 Optimal Control of the Duncan–Mortensen–Zakai
Equation

We now study the optimal control problem for the DMZ equation derived in
Sect. 2.6.6. We study it in the weighted space X0 using the formalism of abstract
control problems. Let T > 0. The control set � was originally a subset of R

n but we
will consider� to be amore general Polish space. For every 0 ≤ t ≤ T , the reference
and generalized reference probability spaces are defined by Definitions2.7 and 1.100
whereWQ is now just a standard Wiener process in R

m (i.e. � = R
m, Q = I ) which
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is denoted byW . The classes of admissible controls with respect to all reference and
generalized reference probability spaces are defined, as always, by Ut and U t . We

remark that for a reference probability space μ =
(
�,F ,

{
F t

s

}
s∈[t,T ] , P,W

)
, P

now corresponds to P̄ in Sect. 2.6.6,F t
s toF

y1,t
s , andW to y1. Without loss of gener-

ality we will always assume that the Q-Wiener processes in the reference probability
spaces have everywhere continuous paths.

Recall from Sect. 2.6.6 that for every a ∈ � we have the differential operators Aa

and Ska (k = 1, . . . ,m)

(Aax) (ξ) =
d∑

i, j=1
∂i
[
ai, j (ξ, a)∂ j x(ξ)

]+
d∑

i=1
∂i [bi (ξ, a)x(ξ)] , (3.319)

(
Ska x
)
(ξ) =

d∑

i=1
dik(ξ, a)∂i x(ξ)+ ek(ξ, a)x(ξ); k = 1, ...,m. (3.320)

Typically we set D(Aa) = X2, D(Ska ) = X1, k = 1, ...,m, however the operators
will be considered with different domains in different Gelfand triples. Having in
mind the original Hypothesis2.48, we assume the following hypothesis.

Hypothesis 3.103

(i) � is a compact metric space.
(ii) The coefficients

(
ai j
)
i, j=1,...,d , (bi )i=1,...,d , c, (dik)i=1,...,d; k=1,...,m , (ek)k=1,...,m : R

d ×� → R

are continuous in (ξ, a) and, as functions of ξ, are in C2
b

(
R

d
)
for every a, with

their norms in C2
b

(
R

d
)
bounded uniformly in a ∈ �. Moreover, there exists a

constant λ > 0 such that

d∑

i, j=1

(

ai, j (ξ, a)− 1

2

m∑

k=1
dik(ξ, a)d jk(ξ, a)

)

zi z j ≥ λ|z|2 (3.321)

for every a ∈ � and ξ, z ∈ R
d .

(iii) The weight ρ is of the form (3.318).

For every a(·) ∈ Ut the DMZ equation is considered in X0:

{
dY (s) = Aa(s)Y (s)ds +∑m

k=1 S
k
a(s)Y (s)dWk(s), s > t

Y (t) = x ∈ X0.
(3.322)



3.11 The HJB Equation for Control of the Duncan–Mortensen–Zakai Equation 295

We consider the cost functional

J (t, x; a(·)) = E

{∫ T

t
l(Y (s), a(s))ds + g(Y (T ))

}

and we make the following assumptions about the cost functions l and g.

Hypothesis 3.104

(i) l : X0 × � → R and g : X0 → R are continuous and there exist C > 0 and
γ < 2 such that

|l (x, a)| , |g (x)| ≤ C
(
1+ |x |γ0,ρ

)

for every (x, a) ∈ X0 ×�;
(ii) for every R > 0 there exists a modulus ωR such that

|l (x, a)− l (y, a)| ≤ ωR
(|x − y|0,ρ

)
, |g(x)− g(y)| ≤ ωR

(|x − y|−1,ρ
)

(3.323)

for every x, y ∈ BX0 (0, R), a ∈ �.

The optimal control problem in the weak formulation we study consists in mini-
mizing the cost J (t, x; a(·)) over all admissible controls a(·) ∈ Ut .

The associated HJB equation in X0 has the form

⎧
⎪⎪⎨

⎪⎪⎩

vt + infa∈�

{
1
2

∑m
k=1
〈
D2vSka x, S

k
a x
〉
ρ,0 + 〈Aax, Dv〉ρ,0 + l(x, a)

}
= 0,

in (0, T )× X0,

v(T, x) = g(x),
(3.324)

and the value function is

V (t, x) = inf
a(·)∈Ut

J (t, x; a(·)). (3.325)

Let us now describe which restrictions may be placed on the original separated
problem of Sect. 2.6.6 so that the current assumptions are satisfied.

First the law of the initial datum η of Eq. (2.124) must have density x in L2
ρ(R

d).
To guarantee that the density is also in L1(Rd) we should assume β > d/2. The
density x is polynomially decreasing when |ξ|Rd →+∞. This is of course a further
restriction with respect to assuming only x ∈ L1

(
R

d
)
but it is satisfied in many

practical cases, for instance when the starting distribution is normal. One can consult
e.g. [46], pp. 36, 204, for the use of x being Gaussian or [46], pp. 82, 167, for other
integrability assumptions on x (see also [597], [472] on this). Regarding the cost
functional (2.129) we have (recall that we now use E in place of Ē)

J (t, x; a(·)) = E

{∫ T

t
〈l1(·, a(s)), Y (s)〉0 ds + 〈g1(·), Y (T )〉0

}
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= E

{∫ T

t

〈
(1/ρ2)l1(·, a(s)), Y (s)

〉
0,ρ ds +

〈
(1/ρ2)g1(·), Y (T )

〉
0,ρ

}

= E

{∫ T

t
l(Y (s), a(s))ds + g(Y (T ))

}
,

where we set

l (x, a) = 〈l1 (·, a) , x〉0 =
〈
1

ρ2
l1 (·, a) , x

〉

0,ρ

,

g (x) = 〈g1 (·) , x〉0 =
〈
1

ρ2
g1 (·) , x

〉

0,ρ

. (3.326)

It is easy to see that Hypothesis3.104 is satisfied if the functions l1 : R
d ×R

n → R

and g1 : R
d → R are continuous and supa∈� | 1ρ l1 (·, a) |0 + | 1ρg1 (·) |0 < +∞, since

in this case the function g is weakly sequentially continuous in X0. For instance, if

l1(ξ,α) = 〈Mξ, ξ〉Rd + 〈Nα,α〉Rn , g1(ξ) = 〈Gξ, ξ〉Rd ,

where M , N and G are suitable non-negative definite matrices, � = BRn (0, R),
Hypothesis3.104 is satisfied if β > 2 + d/2. This is the main advantage of using
weighted spaces.When the initial density is, say, polynomially decreasing at infinity,
we can deal with polynomially growing cost functions. This would not be possible
if we took ρ = 1. Finally, we mention that in the absence of density the separated
problem has to be studied in the space of measures.

3.11.4 Estimates for the DMZ Equation

Lemma 3.105 Let Hypothesis3.103 hold. Then:

(i) The DMZ equation satisfies the assumptions of Hypothesis3.99 for the Gelfand
triple (X1, X0, X−1) and also for (X2, X1, X0).

(ii) There exist constants λ̄ > 0, K ≥ 0 such that for all a ∈ �

〈Aax, x〉〈X−1,X1〉 +
1

2

m∑

k=1

〈
Ska x, S

k
a x
〉
0,ρ

≤ −λ̄ |x |21,ρ + K |x |20,ρ , x ∈ X1,

(3.327)
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〈
Aax, B

−1
ρ x
〉
0,ρ
+ 1

2

m∑

k=1

〈
B−1ρ Ska x, S

k
a x
〉
〈X−1,X1〉

≤ −λ̄ |x |22,ρ + K |x |21,ρ , x ∈ X2,

(3.328)

〈
Aax, Bρx

〉
〈X−2,X2〉 +

1

2

m∑

k=1

〈
BρS

k
a x, S

k
a x
〉
〈X1,X−1〉

≤ −λ̄ |x |20,ρ + K |x |2−1,ρ , x ∈ X0.

(3.329)

Proof Part (i) follows from direct computations and estimates in (ii). Part (ii) is
proved in [323], Lemma 3.3. �

We also record for future use that

sup
a∈�,k=1,...,m

(‖BρAa‖L(X0) + ‖B1/2
ρ Ska‖L(X0)

) ≤ C. (3.330)

Proposition 3.106 Assume that Hypothesis3.103 holds. Let 0 ≤ t ≤ T , let μ be a
generalized reference probability space, a(·) ∈ Uμ

t and x ∈ L2 (�; X0) be an Ft -
measurable random variable. Then there exists a unique variational solution Y (s) :=
Y (·; t, x, a(·)) ∈ L2(�;C([t, T ], H)) of the state equation (3.322). Moreover, we
have:

• P-a.s.

|Y (s)|20,ρ = |x |20,ρ + 2
∫ s

t

〈
Aa(r)Y (r), Y (r)

〉
〈X−1,X1〉 dr

+
m∑

k=1

∫ s

t

〈
Ska(r)Y (r), Y (r)

〉
0,ρ

dWk(r) (3.331)

+
m∑

k=1

∫ s

t

〈
Ska(r)Y (r), Ska(r)Y (r)

〉
0,ρ

dr, s ∈ [t, T ].

In particular,

E |Y (s)|20,ρ = E |x |20,ρ + 2E

∫ s

t

〈
Aa(r)Y (r), Y (r)

〉
〈X−1,X1〉 dr

+
m∑

k=1
E

∫ s

t

〈
Ska(r)Y (r), Ska(r)Y (r)

〉
0,ρ

dr, s ∈ [t, T ]. (3.332)
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• There exists a constant C > 0 independent of μ, a(·) ∈ Uμ
t and x such that

E |Y (s)|20,ρ ≤ E |x |20,ρ (1+ C(s − t)), s ∈ [t, T ], (3.333)

E

∫ T

t
|Y (s)|21,ρ ds ≤ CE |x |20,ρ , s ∈ [t, T ]. (3.334)

• The conclusion of Theorem3.102-(ii) (with 0 replaced by t) is satisfied.

Proof The results follow from Theorem3.102. �

The following proposition collects various estimates for solutions of (3.322).

Proposition 3.107 Assume that Hypothesis3.103 holds and let 0 ≤ t ≤ T . Let
a(·) ∈ Ut and x ∈ X0. Then:

(i) There exists a constant C > 0 independent of a(·) ∈ Ut and x such that, for all
s ∈ [t, T ],

E |Y (s)|2−1,ρ ≤ |x |2−1,ρ (1+ C(s − t)), (3.335)

E

∫ T

t
|Y (s)|20,ρ ds ≤ C |x |2−1,ρ . (3.336)

E |Y (s)− x |2−1,ρ ≤ C (s − t) |x |20,ρ , (3.337)

E

∫ s

t
|Y (r)− x |20,ρ dr ≤ C (s − t) |x |20,ρ . (3.338)

There is a modulus σx , independent of a(·) ∈ Ut , such that

E |Y (s)− x |20,ρ ≤ σx (s − t), s ∈ [t, T ]. (3.339)

(ii) If in addition x ∈ X1, then Y (·) is a strong solution and there exists a constant
C > 0 independent of a(·) ∈ Ut and x such that, for all s ∈ [t, T ],

E |Y (s)|21,ρ ≤ |x |21,ρ (1+ C(s − t)), (3.340)

E

∫ T

t
|Y (s)|22,ρ ds ≤ C |x |21,ρ , (3.341)

E |Y (s)− x |20,ρ ≤ C |x |21,ρ (s − t), (3.342)

E

∫ s

t
|Y (r)− x |21,ρ dr ≤ C(s − t) |x |21,ρ . (3.343)
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There is a modulus σx , independent of a(·) ∈ Ut , such that

E |Y (s)− x |21,ρ ≤ σx (s − t), s ∈ [t, T ]. (3.344)

Proof (i). By Itô’s formula we have

E |Y (s)|2−1,ρ = E
∣∣B1/2

ρ Y (s)
∣∣2
0,ρ

= E
∣∣B1/2

ρ x
∣∣2
0,ρ
+ 2E

∫ s

t

〈
B1/2

ρ Aa(r)Y (r), B1/2
ρ Y (r)

〉
0,ρ

dr

+
m∑

k=1
E

∫ s

t

〈
B1/2

ρ Ska(r)Y (r), B1/2
ρ Ska(r)Y (r)

〉
0,ρ

dr. (3.345)

Since 〈
B1/2

ρ Aa(r)Y (r), B1/2
ρ Y (r)

〉
0,ρ
= 〈Aa(r)Y (r), BρY (r)

〉
〈X−2,X2〉

and 〈
B1/2

ρ Ska(r)Y (r), B1/2
ρ Ska(r)Y (r)

〉
0,ρ
= 〈BρS

k
a(r)Y (r), Ska(r)Y (r)

〉
〈X1,X−1〉

we have, thanks to (3.329),

E |Y (s)|2−1,ρ + 2λ̄
∫ s

t
E |Y (r)|20,ρ dr ≤ |x |2−1,ρ + 2K

∫ s

t
E |Y (r)|2−1,ρ dr.

Estimates (3.335)–(3.336) follow by applying Gronwall’s inequality.
To show (3.337), we have

E |Y (s)− x |2−1,ρ = E |Y (s)|2−1,ρ + |x |2−1,ρ − 2E
〈
Y (s), Bρx

〉
0,ρ ,

which gives, by (3.345) and by the definition of variational solution,

E |Y (s)− x |2−1,ρ
= 2E

∫ s

t

[
〈
Aa(r)Y (r), BρY (r)

〉
〈X−1,X1〉 +

1

2

m∑

k=1

〈
BρS

k
a(r)Y (r), Ska(r)Y (r)

〉
0,ρ

]

dr

−2E

∫ s

t

〈
BρAa(r)Y (r), x

〉
0,ρ .

Therefore, by (3.329),

E |Y (s)− x |2−1,ρ + 2λ̄E

∫ s

t
|Y (r)|20,ρ dr

≤ 2KE

∫ s

t
|Y (r)|2−1,ρ dr + 2E

∫ s

t
|x |0,ρ

∣∣BρAa(r)Y (r)
∣∣
0,ρ dr,



300 3 Viscosity Solutions

which, upon using (3.330), (3.333) and straightforward calculations, yields

E |Y (s)− x |2−1,ρ + λ̄E

∫ s

t
|Y (r)|20,ρ dr ≤ C (s − t)

[|x |2−1,ρ + |x |20,ρ
]

for some constantC > 0. This proves (3.337). Estimate (3.338) follows upon observ-
ing that

E

∫ s

t
|Y (r)− x |20,ρ dr ≤ 2E

∫ s

t

(|Y (r)|20,ρ + |x |20,ρ
)
dr ≤ C (s − t) |x |20,ρ .

To prove (3.339), we assume by contradiction that it is not satisfied. In this case there
are an(·) ∈ Ut (which we can assume to be F t,0

s -predictable) and tn → t such that
E|Yn(tn)− x |20,ρ → 0 as n →+∞. Because of Corollary2.21 and Proposition3.106
we can assume that all an(·) are defined on the same reference probability space.
Since E |Y (tn)|20,ρ is bounded, there exists a subsequence, still denoted by tn, tn → 0
as n →+∞, and an element Ȳ of L2(�; X0) such that, as n →+∞

Y (tn) ⇀ Ȳ , weakly in L2(�; X0)

and hence also weakly in L2(�; X−1). Since by (3.337)

Y (tn) → x, strongly in L2(�; X−1)

as n → +∞, we obtain Ȳ = x . This, plus the fact that E |Y (tn)|20,ρ → |x |20,ρ as
n → +∞ provided by (3.333), implies that Y (tn) → x strongly in L2(�; X0),
which gives a contradiction.

(ii). The existence of the strong solution is known (see [385, 386, 388]) and
can be obtained similarly to Proposition3.106 by applying it to the Gelfand triple
(X2, X1, X0). One now obtains

E |Y (s)|21,ρ = E |x |21,ρ + 2E

∫ s

t

〈
Aa(r)Y (r), Y (r)

〉
〈X0,X2〉 dr

+
m∑

k=1
E

∫ s

t

〈
Ska(r)Y (r), Ska(r)Y (r)

〉
1,ρ

dr,

which, upon using (3.328) and applying the same arguments as those in the proof of
(i), yields (3.340) and (3.341). The proof of the final three estimates is analogous to
the similar ones proved in (i). �
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3.11.5 Viscosity Solutions

The definition of viscosity solution for (3.324) is similar to the general definition
given in Sect. 3.3. However, here we have unbounded first- and second-order terms
so the equation is different. We also make use of the coercivity of the operators Aa .

Definition 3.108 A function ψ is a test function if ψ = ϕ+ δ(t)|x |20,ρ, where:
(i) ϕ ∈ C1,2 ((0, T )× X0) is Bρ-lower semicontinuous, and ϕt ∈ UC ((0, T )×

X0) , Dϕ ∈ UC ((0, T )× X0, X2) , D2ϕ ∈ UCb ((0, T )× X0,L(X−1, X1)).
(ii) δ ∈ C([0, T ]) ∩ C1 ((0, T )) is such that δ > 0.

Definition 3.109 A locally bounded Bρ-upper (respectively, lower) semicontinuous
function u : (0, T ]×X0 → R is a viscosity subsolution (respectively, supersolution)
of (3.324) if u(T, x) ≤ g(x) (respectively, u(T, x) ≥ g(x)) on X0 and for every test
function ψ, if u − ψ (respectively, u + ψ) has a global maximum (respectively,
minimum) at (t, x) ∈ (0, T )× X0, then x ∈ X1,ρ and

ψt (t, x)+ inf
a∈�

⎧
⎨

⎩
1

2

m∑

k=1

〈
D2ψ(t, x)Ska x, S

k
a x
〉

0,ρ
+ 〈Aax, Dψ(t, x)〉〈X−1,X1〉+ f (x, a)

⎫
⎬

⎭
≥0,

(respectively,

−ψt (t, x)+ inf
a∈�

{
1

2

m∑

k=1

〈−D2ψ(t, x)Ska x, S
k
a x
〉
0,ρ

+ 〈Aax,−Dψ(t, x)〉〈X−1,X1〉 + f (x, a)

}
≤ 0).

A function is a viscosity solution if it is both a viscosity subsolution and a viscosity
supersolution.

The main difference between this and the definition in Sect. 3.3 is that we require
that the point x where the maximum/minimum occurs belongs to a smaller subspace
X1 (of more regular functions). This is possible because of the coercivity of the
operators Aa . In this way all terms appearing in the equation are well defined and
there is no need to discard any of them. Such definitions originated for first-order
equations in [97, 144]. Compared to Definition3.32 we have put more conditions
on ϕ and restricted the class of radial functions. The role of A∗ in Definition3.32 is
now played by B−1ρ . The radial test functions are quadratic since we only consider
solutions with smaller growth rate at infinity, which is a reasonable assumption for
value functions coming from separated problems (see (3.326)). We remark that the
definition of viscosity solution here is different from the definition given in [323])
where it was required that ϕ ∈ UC1,2 ((0, T )× X−1). Both allow us to prove the
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same results. We decided to change the definition to make it more in line with the
presentation of the material in this book.

If u has less than quadratic growth in x as |x |0,ρ → +∞ then the maxima and
minima in the definition of solution can be assumed to be strict: if u−(ϕ+δ(t) |x |20,ρ)
has a global maximum at (t̂, x̂) and λ ∈ C2([0,+∞)) is such that λ > 0, λ(r) = r4

if r ≤ 1 and λ(r) = 1 if r ≥ 2, then it is easy to see that u − (ϕ + δ(t) |x |20,ρ) −
λ(|x − x̂ |−1,ρ)− (t − t̂)2 has a strict global maximum at (t̂, x̂).

It is easy to see that 〈Aax, Dϕ(t, x)〉〈X−1,X1〉 =
〈
BρAax, B−1ρ Dϕ(t, x)

〉
−,ρ

and
〈
D2ϕ(t, x)Ska x, S

k
a x
〉
0,ρ=

〈
B−1/2ρ D2ϕ(t, x)B−1/2ρ B1/2

ρ Ska x, B
1/2
ρ Ska x

〉
0,ρ
, k= 1, ...,m.

Moreover,

B−1ρ Dϕ ∈ UC ((0, T )× X0, X0) , B−1/2ρ D2ϕB−1/2ρ ∈ UCb ((0, T )× X0,L(X0)) .

(3.346)

We also remark that Itô’s formula holds for the test functions. For the radial part
of a test function this follows from (3.331) and Itô’s formula. As regards ϕ, the
easiest way to see it is to use the fact that if Y (s) := Y (·; t, x, a(·)) is the solution
of Eq. (3.322) on [t, T ], x ∈ X0, then Y (·) is in fact a strong solution on any interval
[s, T ], s > t . Thus if ϕ is a test function as above and a(·) ∈ Ut , then by the usual
Itô’s formula we have for t < s < η

Eϕ(η, Y (η)) = Eϕ(s, Y (s))+ E

∫ η

s

[
ϕt (r, Y (r))+ 〈Aa(r)Y (r) , Dϕ (r, Y (r))

〉
0,ρ

+1

2

m∑

k=1

〈
D2ϕ (r, Y (r)) Ska(r)Y (r) , Ska(s)Y (r)

〉
0,ρ

]
dr

→ ϕ(t, x)+ E

∫ η

t

[
ϕt (r, Y (r))+ 〈Aa(r)Y (r) , Dϕ (r, Y (r))

〉
〈X−1,X1〉

+1

2

m∑

k=1

〈
D2ϕ (r, Y (r)) Ska(r)Y (r) , Ska(r)Y (r)

〉
0,ρ

]
dr

as s → t using, for instance, (3.333) and (3.339), since by (3.330)

|ϕt (r, Y (r))| +
∣∣∣
〈
Aa(r)Y (r) , Dϕ (r, Y (r))

〉
〈X−1,X1〉

∣∣∣ ≤ C
(
1+ |Y (r)|20,ρ

)
,

∣∣∣
〈
D2ϕ (r, Y (r)) Ska(r)Y (r) , Ska(r)Y (r)

〉
0,ρ

∣∣∣ ≤ C |Y (r)|20,ρ, k = 1, ...,m.

Itô’s formulas for test functions from [323] are proved in [467].
We prove the comparison principle.We use the notation of Sect. 3.2: {en}∞n=1 ⊂ X0

is now an orthonormal basis in X−1, XN = span{e1, ..., eN }, PN is the orthogonal
projection from X−1 onto XN , QN = I − PN , and Y N = QN X−1. We have an
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orthogonal decomposition X−1 = XN × Y N , and for x ∈ X−1 we write x =
(PN x, QN x).

Theorem 3.110 LetHypotheses3.103 and 3.104 hold. Let u, v : X0 → R be respec-
tively a viscosity subsolution, and a viscosity supersolution of (3.324) (as defined in
Definition3.109). Let

lim sup
|x |0,ρ→∞

u(t, x)

|x |20,ρ
= 0, lim sup

|x |0,ρ→∞
−v(t, x)

|x |20,ρ
= 0, (3.347)

uniformly for t ∈ [0, T ], and
{

(i) limt↑T (u(t, x)− g(x))+ = 0

(i i) limt↑T (v(t, x)− g(x))− = 0
(3.348)

uniformly on bounded subsets of X0. Then u ≤ v.

Proof Without loss of generality we can assume that u and −v are bounded from
above and such that

lim|x |0,ρ→∞ u(t, x) = −∞, lim|x |0,ρ→∞ v(t, x) = +∞. (3.349)

To see this we observe that if K is the constant from (3.327) then for every η > 0

uη(t, x) = u(t, x)− ηe2K (T−t)|x |20,ρ, vη(t, x) = v(t, x)+ ηe2K (T−t)|x |20,ρ
are respectively viscosity sub- and supersolutions of (3.324) and satisfy (3.348). This
follows from (3.327) since, with h(t, x) = ηe2K (T−t)|x |20,ρ, we have

ht+sup
a∈�

{
1

2

m∑

k=1

〈
D2hSka x, S

k
a x
〉
0,ρ + 〈Aax, Dh〉〈X−1,X1〉

}

≤ −ηKe2K (T−t)|x |20,ρ ≤ 0

on (0, T ) × X0. The functions uη,−vη satisfy (3.349). Therefore, if we can prove
that uη ≤ vη for every η > 0, we recover u ≤ v by letting η → 0.

The proof basically follows the lines of the proof of Theorem3.50. Suppose that
u � v. Let for μ, ε, δ,β > 0,

�(t, s, x, y) := u(t, x)−v(s, y)−μ

t
−μ

s
−|x − y|2−1,ρ

2ε
−δ(|x |20,ρ+|y|20,ρ)−

(t − s)2

2β
.

For every n ∈ N there exist pn , qn ∈ X0, an, bn ∈ R such that |pn|0,ρ, |qn|0,ρ, |an|,
|bn| ≤ 1/n, and

�(t, s, x, y)+ 〈Bρ pn, x
〉
0,ρ +

〈
Bρqn, y

〉
0,ρ + ant + bns
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has a strict global maximum at (t̄, s̄, x̄, ȳ) over (0, T ] × (0, T ] × X0 × X0. Arguing
as in the proof of Theorem3.50 we obtain

lim sup
β→0

lim sup
n→∞

(t̄ − s̄)2

2β
= 0 for fixed μ, ε, δ, (3.350)

|x̄ |0,ρ + |ȳ|0,ρ ≤ R for some R, independently of μ, ε, δ,β, n, (3.351)

and

lim sup
ε→0

lim sup
δ→0

lim sup
β→0

lim sup
n→∞

|x̄ − ȳ|2−1,ρ
2ε

= 0 for fixed μ. (3.352)

Therefore, it follows from (3.348)–(3.350) that 0 < t̄ , and s̄ < T .We nowfix N ∈ N.
Defining

u1(t, x) = u(t, x)− μ

t
−〈BρQN (x̄ − ȳ), x〉0,ρ

ε
− |QN (x − x̄)|2−1,ρ

ε

+ |QN (x̄ − ȳ)|2−1,ρ
2ε

− δ|x |20,ρ + ant + 〈Bpn, x〉0,ρ

and

v1(s, y) = v(s, y)+ μ

s
− 〈BρQN (x̄ − ȳ), y〉0,ρ

ε
+|QN (y − ȳ)|2−1,ρ

ε

+ δ|y|20,ρ − bns − 〈Bqn, y〉0,ρ,

we see that

u1(t, x)− v1(s, y)− 1

2ε
|PN (x − y)|2−1,ρ −

1

2β
|t − s|2

has a strict global maximum at (t̄, s̄, x̄, ȳ). It now follows from Corollary3.29 and
the proof of Theorem3.27 that for every ν > 1 there exist test functions ϕi , and ψi ,
i = 1, 2, ..., such that

u1(t, x)− ϕi (t, x)

has a global maximum at some point (ti , xi ),

v1(s, y)− ψi (s, y)

has a global minimum at some point (si , yi ), and
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(
ti , xi , u1(ti , xi ), (ϕi )t (ti , xi ), Dϕi (ti , xi ), D

2ϕi (ti , xi )
)

k→∞−−−→
(
t̄, x̄, u1(t̄, x̄),

t̄ − s̄

β
,
Bρ(x̄N − ȳN )

ε
, LN

)

in R× X0 × R× R× X2 × L(X−1, X1),

(3.353)

(
si , yi , v1(si , yi ), (ψi )t (si , yi ), Dψi (si , yi ), D

2ψi (si , yi )
)

k→∞−−−→
(
s̄, ȳ, v1(s̄, ȳ),

t̄ − s̄

β
,
Bρ(x̄N − ȳN )

ε
, MN

)

in R× X0 × R× R× X2 × L(X−1, X1),

(3.354)

where LN = P∗N LN PN , MN = P∗N MN PN and

(
LN 0
0 −MN

)
≤ ν

ε

(
BρPN −BρPN

−BρPN BρPN

)
. (3.355)

Using the definition of a viscosity subsolution we thus obtain

inf
a∈�

{
1

2

m∑

k=1
〈(D2ϕi (ti , xi )+ 2

ε
BρQN + 2δ I )Ska xi , S

k
a xi 〉0,ρ

+〈Aaxi , Dϕi (ti , xi )+ BρQN (x̄ − ȳ)

ε
+ 2BρQN (xi − x̄)

ε
+ 2δxi − Bρ pn〉〈X−1,X1〉

+ f (xi , a)

}
− an + (ϕi )t (ti , xi ) ≥

μ

T 2
. (3.356)

(We remark that the function μ
t can be modified around 0 so that it is part of a test

function.)
We now pass to the limit in (3.356) as i →∞. We see that by (3.327), for every

a ∈ �

m∑

k=1
〈Ska xi , Ska xi 〉0 + 2〈Aaxi , xi 〉〈X−1,X1〉 ≤ 2δK |xi |20,ρ → 2δK |x̄ |20,ρ

as i → ∞. (In fact one can prove xi ⇀ x̄ in X1.) Moreover we observe that by
(3.346), B−1/2ρ D2ϕi (ti , xi )B−1/2ρ → B−1/2ρ LN B−1/2ρ in L(X0). Using these, (3.353),

and (3.330), i.e. that ‖BρAa‖L(X0), ‖B
1
2
ρ Ska‖L(X0) ≤ C independently of a ∈ �, 1 ≤

k ≤ m, we obtain upon passing to lim supi→∞ in (3.356) that
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− an + t̄ − s̄

β
+ inf

a∈�

{
1

2

m∑

k=1
〈LN + 2

ε
BρQN )Ska x̄, S

k
a x̄〉0,ρ

+ 〈Aa x̄,
Bρ(x̄ − ȳ)

ε
− Bρ pn〉〈X−1,X1〉 + f (x̄, a)

}
+ 2δK |x̄ |20,ρ ≥

μ

T 2
.

(3.357)

We obtain similarly for the supersolution v

bn + t̄ − s̄

β
+ inf

a∈�

{
1

2

m∑

k=1
〈MN − 2

ε
BρQN )Ska ȳ, S

k
a ȳ〉0,ρ

+ 〈Aa ȳ,
Bρ(x̄ − ȳ)

ε
+ Bρqn〉〈X−1,X1〉 + f (ȳ, a)

}
− 2δK |ȳ|20,ρ ≤ −

μ

T 2
.

(3.358)

By Hypothesis 3.103 the closures of the sets {Ska x̄ : a ∈ �, 1 ≤ k ≤ m} and
{Ska ȳ : a ∈ �, 1 ≤ k ≤ m} are compact in X0, and hence in X−1. This yields

sup{|B1/2
ρ QN S

k
a x̄ |0,ρ + |B1/2

ρ QN S
k
a ȳ|0,ρ : a ∈ �, 1 ≤ k ≤ m} → 0 (3.359)

as N →∞. Moreover, (3.355) implies that

〈LN S
k
a x̄, S

k
a x̄〉0,ρ−〈MN S

k
a ȳ, S

k
a ȳ〉0,ρ ≤

ν

2ε
〈BρS

k
a (x̄− ȳ), Ska (x̄− ȳ)〉0,ρ. (3.360)

Therefore, subtracting (3.357) from (3.358) and using (3.323), (3.359), and (3.360),
we have

inf
a∈�

{
− ν

2ε

m∑

k=1
〈BρS

k
a (x̄ − ȳ), Ska (x̄ − ȳ)〉0,ρ − 1

ε
〈Aa(x̄ − ȳ), Bρ(x̄ − ȳ)〉〈X−1,X1〉

}

+an + bn − ωR(|x̄ − ȳ|0)− 2δK (|x̄ |20,ρ + |ȳ|20,ρ)− σ(1/N , n) ≤ − 2μ

T 2

for some local modulus σ. Now, if ν is close to 1, it follows from (3.329) that

an + bn + λ̄

2ε
|x̄ − ȳ|20,ρ −

K

ε
|x̄ − ȳ|2−1,ρ

−ωR(|x̄ − ȳ|0,ρ)− 2δK (|x̄ |20,ρ + |ȳ|20,ρ)− σ(1/N , n) ≤ −2μ

T 2
. (3.361)

Since ωR is a modulus we have

lim
ε→0

inf
r≥0

(
λ̄

2ε
r2 − ωR(r)

)

= 0. (3.362)
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Therefore we obtain a contradiction in (3.361) after sending N → ∞, n → ∞,
β → 0, δ → 0, ε → 0 in the above order, and using (3.351), (3.352), and
(3.362). �

3.11.6 The Value Function and Existence of Solutions

In this subsection we show that the value function V defined by (3.325) is the unique
viscosity solution of (3.324).

Proposition 3.111 Assume that Hypotheses3.103 and 3.104 are satisfied. Then for
every R > 0 there exists a modulus σR such that

|V (t, x)− V (s, y)| ≤ σR(|t − s| + |x − y|−1,ρ), t, s ∈ [0, T ], |x |0,ρ, |y|0,ρ ≤ R,

(3.363)
and there is C > 0 such that

|V (t, x)| ≤ C
(
1+ |x |γ0,ρ

)
, t ∈ [0, T ], x ∈ X0. (3.364)

Moreover, the dynamic programming principle (2.23) is satisfied.

Proof Weonly sketch the proof since it is very similar to the proof ofProposition3.61.
Using similar arguments it follows from (3.333), (3.335), (3.336), linearity of the
DMZ equation (3.322), and Hypothesis3.104 that (3.364) holds and there are moduli
σ1
R such that

|J (t, x; a(·))− J (t, y; a(·))| ≤ σ1
R(|x − y|−1,ρ), t ∈ [0, T ], |x |0,ρ, |y|0,ρ ≤ R, a(·) ∈ Ut ,

(3.365)
and thus the same inequality is satisfied by V . We now claim that the dynamic
programming principle holds. To do this we need to check that the assumptions of
Hypothesis2.12 are satisfied. Parts (A0) and (A2) follow from the definition of a
variational solution, properties of stochastic integrals and standard manipulations.
Part (A1)was proved in Proposition3.106 (i.e. Theorem3.102-(ii)). Part (A3) can be
proved similarly to the proof of Proposition2.16. It thus follows from Theorem2.24
that for every x ∈ X0, 0 ≤ t ≤ η ≤ T ,

V (t, x) = inf
a(·)∈Ut

E

[∫ η

t
l(Y (s), a(s))ds + V (η, Y (η))

]
. (3.366)

Using (3.366) we again argue as in the proof of Proposition3.61 using (3.333),
(3.337), (3.364), and (3.365) to obtain that there exist moduli σ2

R such that

|V (t, x)− V (s, x)| ≤ σ2
R(|t − s|), t, s ∈ [0, T ], |x |0,ρ ≤ R. (3.367)

Obviously (3.365) and (3.367) produce (3.363). �
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Theorem 3.112 Assume that Hypotheses3.103 and 3.104 are true. Then the value
function V is the unique viscosity solution of the HJB equation (3.324) among func-
tions satisfying

lim sup
|x |0,ρ→∞

|u(t, x)|
|x |20,ρ

= 0 uniformly for t ∈ [0, T ],

and
lim
t↑T |u(t, x)− g(x)| = 0 uniformly on bounded subsets of X0.

Proof The uniqueness is a consequence of Theorem3.110 and Proposition3.111.
Therefore it remains to show that V is a viscosity solution of (3.324).

We only consider the supersolution property as the subsolution part is easier.
Suppose that V + (ϕ+ δ(t) |x |20,ρ) has a global minimum at (t0, x0) ∈ (0, T )× X0.

We need to prove that x0 ∈ X1. For every (t, x) ∈ (0, T )× X0

V (t, x)−V (t0, x0) ≥ −(ϕ(t, x)−ϕ(t0, x0))−
(
δ(t) |x |20,ρ − δ(t0) |x0|20,ρ

)
. (3.368)

By the dynamic programming principle, for every ε > 0 there exists an aε(·) ∈ Ut0
such that, writing Yε (s) for Y (s; t0, x0, aε(·)), s ∈ [t0, t0 + ε], we have

V (t0, x0)+ ε2 > E

[∫ t0+ε

t0

l (Yε (s) , aε(s)) ds + V (t0 + ε, Yε (t0 + ε))

]
.

In light of Corollary2.21 and Proposition3.106, without loss of generality we can
assume that all aε(·) are defined on the same reference probability space. We have,
by (3.368),

ε2 − E

∫ t0+ε

t0

l (Yε (s) , aε(s)) ds ≥ E [V (t0 + ε, Yε (t0 + ε))− V (t0, x0)]

≥ −E [ϕ (t0 + ε, Yε (t0 + ε))− ϕ (t0, x0)]− E

[
δ(t0 + ε) |Yε (t0 + ε)|20,ρ − δ(t0) |x0|20,ρ

]

and, by Itô’s formula

ε− E
1

ε

∫ t0+ε

t0

l (Yε (s) ,αε(s)) ds

≥ −E
1

ε

∫ t0+ε

t0

[
ϕt (s, Yε (s))+ 〈Aaε(s)Yε (s) , Dϕ (s, Yε (s))

〉
〈X−1,X1〉

+1

2

m∑

k=1

〈
D2ϕ (s, Yε (s)) Skaε(s)Y (s) , Skaε(s)Yε (s)

〉
0,ρ

]
ds (3.369)
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−E
1

ε

∫ t0+ε

t0

[
δ′ (s) |Yε (s)|20,ρ + 2δ(s)

[〈
Aaε(s)Yε (s) , Yε (s)

〉
〈X−1,X1〉

+1

2

m∑

k=1

〈
Skaε(s)Yε (s) , Skaε(s)Yε (s)

〉
0,ρ

]]
ds.

By (3.327) we have

−2δ(s)
[
〈
Aaε(s)Yε (s) , Yε (s)

〉
〈X−1,X1〉 +

1

2

m∑

k=1

〈
Skaε(s)Yε (s) , Skaε(s)Yε (s)

〉
0,ρ

]

≥ 2δ(s)
[
λ̄ |Yε (s)|21,ρ − K |Yε (s)|20,ρ

]
.

Moreover,

|ϕt (s, Yε (s))| +
∣∣∣
〈
Aaε(s)Yε (s) , Dϕ (s, Yε (s))

〉
〈X−1,X1〉

∣∣∣ ≤ C1(1+ |Yε (s)|20,ρ ,

∣∣∣∣∣

m∑

k=1

〈
D2ϕ (s, Yε (s)) Skaε(s)Yε (s) , Skaε(s)Yε (s)

〉
0,ρ

∣∣∣∣∣
≤ C2 |Yε (s)|20 .

Therefore, using Hypothesis3.104, (3.333), and δ(s) ≥ γ > 0 for s close to t0 for
some γ > 0, we obtain

2λ̄γE
1

ε

∫ t0+ε

t0

|Yε (s)|21,ρ ds ≤ C3

[
1+ E

1

ε

∫ t0+ε

t0

|Yε (s)|20,ρ ds
]
≤ C4.

Take now ε = 1/n and set Yn (s) := Y
(
s; t0, x0, a1/n(·)

)
. The above inequality

yields

n
∫ t0+1/n

t0

E |Yn (s)|21 ds ≤ C5

so that, along a sequence tn ∈ (t0, t0 + 1/n),

E |Yn (tn)|21,ρ ≤ C5

and thus, along a subsequence, still denoted by tn , we have

Yn (tn) ⇀ Ȳ

weakly in L2 (�; X1) for some Ȳ ∈ L2 (�; X1). This also clearly implies weak
convergence in L2 (�; X0). However, by (3.339),Yn (tn) → x0 strongly (andweakly)
in L2 (�; X0). Thus Ȳ = x0 ∈ X1.

Having established that x0 ∈ X1, we now go back to (3.369), use the properties
of test functions and estimates of Proposition3.107 to obtain
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ε ≥ −E
1

ε

∫ t0+ε

t0

[
ϕt (t0, x0)+

〈
Aaε(s)x0, Dϕ (t0, x0)

〉
〈X−1,X1〉

+1

2

m∑

k=1

〈
D2ϕ (t0, x0) S

k
aε(s)x0, S

k
aε(s)x0

〉
0,ρ

]
ds

−E
1

ε

∫ t0+ε

t0

[
δ′ (t0) |x0|20,ρ + 2δ(t0)

[〈
Aaε(s)x0, x0

〉
〈X−1,X1〉

+1

2

m∑

k=1

〈
Skaε(s)x0, S

k
aε(s)x0

〉
0,ρ

]
− l (x0,αε(s))

]
ds − γ(ε),

≥ E
1

ε

∫ t0+ε

t0

[
− ψt (t, x)+ inf

a∈�

{
1

2

m∑

k=1

〈−D2ψ(t, x)Ska x, S
k
a x
〉
0,ρ

+〈Aax,−Dψ(t, x)〉〈X−1,X1〉 + f (x, a)

}]
ds − γ(ε),

where limε→0 γ(ε) = 0. It remains to let ε → 0. We refer the reader to the proof of
Theorem 5.4 in [323] for more details. �

3.12 HJB Equations for Boundary Control Problems

In this sectionwe discuss how the theory of viscosity solutions can be applied to solve
HJB equations coming from the stochastic boundary control problems discussed in
Sect. 2.6.2. We will only consider time-independent problems. Suppose that H is
a real, separable Hilbert space and A is an operator in H satisfying the following
hypothesis.

Hypothesis 3.113 A : D(A) ⊂ H → H is a (densely defined) self-adjoint operator,
there exists a > 0 such that 〈Ax, x〉 ≤ −a|x |2 for all x ∈ D(A) and A−1 is compact.

Hypothesis3.113 implies in particular that A is the infinitesimal generator of an
analytic semigroup with compact resolvent satisfying ‖et A‖ ≤ e−at for all t ≥ 0
and that there is an orthonormal basis of H composed of eigenvectors of A such that
the corresponding sequence of (negative) eigenvalues diverges to −∞ as n → ∞.
Moreover, the fractional powers (−A)γ, γ > 0, are well defined, and if γ ∈ (0, 1]
and α ∈ (0, γ), a well-known interpolation inequality (see e.g. [479], pp. 73–74)
gives us that for every σ > 0 there exists a Cσ > 0 such that

|(−A)αx | ≤ σ|(−A)γx | + Cσ|x |, for every x ∈ D((−A)γ). (3.370)

The HJB equations introduced in Sect. 2.6.2 (see (2.99)) have the form

λv − 〈Ax, Dv〉 + F(x, Dv, D2v) = 0, x ∈ H, (3.371)
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where F : Z ⊂ H × H × S(H) → R, λ > 0. In particular, F(x, p, X) may only
be defined if p ∈ D((−A)β) for some β > 0 and may be undefined if X is not of
trace class. The unboundedness in the first-order terms comes from the boundary
control term rewritten as a distributed control term, and the unboundedness in the
second derivative terms comes from noise with non-nuclear covariance in the control
problem. Such second-order unboundedness has not been discussed so far in this book
and indeed it is not easy to handle by the viscosity solutionmethods. Here we suggest
one way to do it. The idea is the following. To deal with the unboundedness in the
first and second derivatives we introduce a change of variables x = (−A)

β
2 y,β > 0.

Then the function u(y) := v((−A)
β
2 y) should formally solve

λu − 〈Ay, Dv〉 + F((−A)
β
2 y, (−A)−

β
2 Dv, (−A)−

β
2 D2v(−A)−

β
2 ) = 0. (3.372)

This equation contains fewer unbounded terms and is easier to handle in spite of the
additional difficulty created by the presence of the new unbounded term (−A)

β
2 y.

We will define a viscosity solution of (3.371) to be a function v such that u(·) de f=
v((−A)

β
2 ·) is a viscosity solution of (3.372). We will make this idea rigorous in

the next section. The definition is meaningful, indeed, when (3.371) comes from a
stochastic boundary control problem, v and u can be respectively characterized as
the value functions of their control problems.

3.12.1 Definition of a Viscosity Solution

We first consider the following HJB equation

λu − 〈Ay, Du〉 + G(y, Du, D2u) = 0, y ∈ H, (3.373)

where G : D((−A)
β
2 )× D((−A)

β
2 )× S(H) → R.

Definition 3.114 We say that a function ψ is a test function if ψ(x) = ϕ(x)+ δ|x |2,
where δ > 0 and

(i) ϕ ∈ C2(H) and is weakly sequentially lower semicontinuous on H .

(ii) Dϕ ∈ UC(H, H) ∩UC
(
D((−A)

1
2−ε), D((−A)

1
2 )
)
for some ε = ε(ϕ) > 0.

(iii) D2ϕ ∈ UCb(H, S(H)).

Definition 3.115 We say that a function w : H → R is a viscosity subsolution of
(3.373) ifw is weakly sequentially upper semicontinuous on H , and wheneverw−ψ
has a local maximum at x for a test function ψ, then

x ∈ D((−A)
1
2 )
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and

λw(x)+ 〈(−A)
1
2 x, (−A)

1
2 Dϕ(x)〉 + 2δ|(−A)

1
2 x |2 + G

(
x, Dψ(x), D2ψ(x)

) ≤ 0.

We say that w is a viscosity supersolution of (3.373) if w is weakly sequentially
lower semicontinuous on H , and whenever w + ψ has a local minimum at x for a
test function ψ, then

x ∈ D((−A)
1
2 )

and

λw(x)− 〈(−A)
1
2 y, (−A)

1
2 Dϕ(x)〉 − 2δ|(−A)

1
2 x |2 + G

(
x,−Dψ(x),−D2ψ(x)

)
≥ 0.

We say that w is a viscosity solution of (3.373) if it is both a viscosity subsolution
and a supersolution.

Suppose now that F from (3.371) is such that F : H×D((−A)β)×(−A)−
β
2 S(H)

(−A)−
β
2 → R. We define

GF (z, p, S)
de f= F

(
(−A)

β
2 z, (−A)−

β
2 p, (−A)−

β
2 S(−A)−

β
2

)
. (3.374)

Definition 3.116 Abounded continuous functionv : H → R is said to be a viscosity
solution of Eq. (3.371) if the function

u(y)
de f= v((−A)

β
2 y)

is a viscosity solution of the equation

λu − 〈Ay, Du〉 + GF (y, Du, D2u) = 0, y ∈ H. (3.375)

Similarly we define a viscosity subsolution and a supersolution of (3.371).

We remark that the function v is uniquely determined once u has been characterized
on D((−A)

β
2 ).

3.12.2 Comparison and Existence Theorem

For γ > 0 we denote by H−γ the completion of H in the norm |x |−γ = |(−A)−
γ
2 x |,

and D((−A)
γ
2 ) is equipped with the norm |x |γ = |(−A)

γ
2 x |. For N > 2 let HN

be finite-dimensional subspaces of H generated by eigenvectors of (−A)−1 corre-
sponding to the eigenvalues which are greater than or equal to 1/N . Denote by PN

the orthogonal projection in H−1 onto HN , QN = I − PN , and H⊥
N = QN H . PN and



3.12 HJB Equations for Boundary Control Problems 313

QN are also orthogonal projections in H . We then have an orthogonal decomposition
H = HN × H⊥

N and we will write x = (xN , x⊥N ) = (PN x, QN x).
We assume:

Hypothesis 3.117

(i) There exists a β ∈ (0, 1) such that the function G : D((−A)
β
2 )× D((−A)

β
2 )×

S(H) → R is uniformly continuous (in the topologyofD((−A)
β
2 )×D((−A)

β
2 )

× S(H)) on bounded sets of D((−A)
β
2 )× D((−A)

β
2 )× S(H).

(ii) G(y, p, S1) ≤ G(y, p, S2) if S1 ≥ S2, for all y, p ∈ D((−A)
β
2 ).

(iii) There exists a modulus ρ such that

|G(y, p, S1)− G(y, q, S2)|
≤ ρ

(
(1+ |(−A)

β
2 y|)|(−A)

β
2 (p − q)| + (1+ |(−A)

β
2 y|2)‖S1 − S2‖

)

for all y, p, q ∈ D((−A)
β
2 ) and S1, S2 ∈ S(H).

(iv) There exist 0 < η < 1− β and a modulus ω such that, for all N > 2, ε > 0,

G

(
x,

(−A)−η(x − y)

ε
, Z

)
− G

(
y,

(−A)−η(x − y)

ε
, Y

)

≥ −ω

(
|(−A)

β
2 (x − y)|

(
1+ |(−A)

β
2 (x − y)|
ε

))

for all x, y ∈ D((−A)
β
2 ) and Z , Y ∈ S(H), Z = PN Z PN , Y = PNY PN such

that (
Z 0
0 −Y

)
≤ 3

ε

(
(−A)−ηPN −(−A)−ηPN

−(−A)−ηPN (−A)−ηPN

)
. (3.376)

(v) For every R < +∞, |λ| ≤ R, p, x ∈ D((−A)
β
2 )

sup

{
|G(x, p, S + λQN )− G(x, p, S)| : ‖S‖ ≤ R, S = PN SPN

}
→ 0.

(3.377)
as N →∞.

Some of the conditions of Hypothesis 3.117 can be weakened. By the properties of
moduli, Hypothesis3.117-(i i i) guarantees that there exists a constant C such that,
for every y, p, S,

|G(y, p, S)| ≤ C
(
1+ (1+ |(−A)

β
2 y|)|(−A)

β
2 p| + (1+ |(−A)

β
2 y|2)‖S‖

)
+ |G(y, 0, 0)|,

(3.378)
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and conditions (i), (iv) of Hypothesis3.117 imply that there is C1 such that

|G(y, 0, 0)| ≤ C1

(
1+

∣∣∣(−A)
β
2 y
∣∣∣
)

. (3.379)

Theorem 3.118 Let Hypotheses3.113 and 3.117 be satisfied. Then:
Comparison: Let u,−v ≤ M for some constant M. If u is a viscosity subsolution of
(3.373) and v is a viscosity supersolution of (3.373) then u ≤ v on H. Moreover, if
u is a viscosity solution then

|u(x)− u(y)| ≤ m(|(−A)−
η
2 (x − y)|) (3.380)

for all x, y ∈ H and some modulus m, where η is the constant in (iv).
Existence: If

sup
x∈D(A

β
2 )

|G(x, 0, 0)| = K < ∞, (3.381)

then there exists a unique viscosity solution u ∈ UCb(H−η) of (3.373).

Proof Comparison. Let ε, δ > 0. We set

�(x, y) = u(x)− v(y)− |(−A)−
η
2 (x − y)|2
2ε

− δ

2
|x |2 − δ

2
|y|2.

Since u−v is bounded from above and weakly sequentially upper-semicontinuous in
H × H , � must attain its maximum at some point (x̄, ȳ) ∈ D((−A)

1
2 )× D((−A)

1
2 )

(which can be assumed to be strict by subtracting, for instance,μ(|(−A)−1(x− x̄)|2+
|(−A)−1(y − ȳ)|2) and then letting μ → 0). Moreover, arguing similarly as in the
proof of Theorem3.56, we have

lim
δ→0

(
δ|x̄ |2 + δ|ȳ|2) = 0 for every fixed ε > 0, (3.382)

lim
ε→0

lim sup
δ→0

(
|(−A)−

η
2 (x̄ − ȳ)|2
ε

)

= 0. (3.383)

Then (see the proof of Theorem3.50), defining

u1(x) = u(x)− 〈x, QN (−A)−ηQN (x̄ − ȳ)〉
ε

+ 〈QN (−A)−ηQN (x̄ − ȳ), x̄ − ȳ〉
2ε

−|(−A)−
η
2 QN (x − x̄)|2

ε
− δ

2
|x |2,

v1(y) = v(y)− 〈y, QN (−A)−ηQN (x̄ − ȳ)〉
ε

+ |(−A)−
η
2 QN (y − ȳ)|2

ε
+ δ

2
|y|2,
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it follows that the function

�̃(x, y)
de f= u1(x)− v1(y)− |(−A)−

η
2 PN (x − y)|2
2ε

always satisfies �̃ ≤ � and �̃ attains a strict global maximum at (x̄, ȳ), where
�̃(x̄, ȳ) = �(x̄, ȳ). Using Corollary3.28 (with B = (−A)−η) we thus obtain func-
tions ϕn,−ψn satisfying conditions (i)–(i i i) of Definition3.114 such that

u1(x)− ϕn(x)

has a global maximum at some point xn ,

v1(y)+ ψn(y)

has a global minimum at some point yn, and

(
xn, u1(x

n), Dϕn(x
n), D2ϕn(x

n)
) n→∞−−−→

(
x̄, u1(x̄),

(−A)−ηPN (x̄ − ȳ)

ε
, ZN

)

in H × R× D(−A)× L(H, H), (3.384)

(
yn, v1(y

n),−Dψn(y
n),−D2ψn(y

n)
) n→∞−−−→

(
ȳ, v(ȳ),

(−A)−ηPN (x̄ − ȳ)

ε
, YN

)

in H × R× D(−A)× L(H, H),

(3.385)

for some ZN , YN ∈ S(H) such that ZN = PN ZN PN , YN = PNYN PN , they satisfy
(3.376) and ‖ZN‖ + ‖YN‖ ≤ Cε for some constant Cε.

Therefore, by the definition of viscosity subsolution, xn ∈ D((−A)
1
2 ) and

λu(xn)+
〈

(−A)
1
2 xn, (−A)

1
2 Dϕn(x

n)+ (−A)
1
2−ηQN (x̄ − ȳ)

ε

+2(−A)
1
2−ηQN (xn − x̄)

ε

〉

+ δ|(−A)
1
2 xn|2

+G
(
xn, Dϕn(x

n)+ (−A)−ηQN (x̄ − ȳ)

ε
+ 2(−A)−ηQN (xn − x̄)

ε
+ δxn,

D2ϕn(x
n)+ 2‖(−A)−η‖QN

ε
+ δ I

)
≤ 0. (3.386)

Thus, using (3.384), (3.378), (3.379), and (3.370), it follows from (3.386) that
|(−A)

1
2 xn| are bounded independently of n which implies, thanks to (3.384), that
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(−A)
1
2 xn ⇀ (−A)

1
2 x̄ as n →+∞. (3.387)

Since (−A)
β−1
2 and (−A)−

η
2 are compact we conclude that, as n →+∞,

(−A)
β
2 xn = (−A)

β−1
2 ((−A)

1
2 xn) → (−A)

β
2 x and (−A)

1−η
2 xn → (−A)

1−η
2 x̄ .
(3.388)

Using (3.384), (3.387), (3.388), and the weak sequential lower semicontinuity of the
norm we thus obtain

〈

(−A)
1−η
2 x̄,

(−A)
1−η
2 (x̄ − ȳ)

ε

〉

+ δ|(−A)
1
2 x̄ |2

≤ lim inf
n→∞

[〈

(−A)
1
2 xn, (−A)

1
2 Dϕn(x

n)+ (−A)
1
2−ηQN (x̄ − ȳ)

ε

+2(−A)
1
2−ηQN (xn − x̄)

ε

〉

+ δ|(−A)
1
2 xn|2

]

and then letting n →∞ in (3.386) yields

λu(x̄)+
〈

(−A)
1−η
2 x̄,

(−A)
1−η
2 (x̄ − ȳ)

ε

〉

+ δ|(−A)
1
2 x̄ |2

+G
(
x̄,

(−A)−η(x̄ − ȳ)

ε
+ δx̄, ZN + 2‖(−A)−η‖QN

ε
+ δ I

)
≤ 0.

(3.389)
Using Hypothesis 3.117-(iii) we have

G

(
x̄,

(−A)−η(x̄ − ȳ)

ε
, ZN + 2‖(−A)−η‖QN

ε

)
− ρ

(
cδ(1+ |(−A)

β
2 x̄ |2)

)

≤ G

(
x̄,

(−A)−η(x̄ − ȳ)

ε
+ δx̄, ZN + 2‖(−A)−η‖QN

ε
+ δ I

)

(3.390)
for some constant c > 0. Now, given τ > 0, let Kτ be such that ρ(s) ≤ τ + Kτ s.
Applying (3.370) with α = β/2 and γ = 1/2 we obtain

ρ
(
cδ(1+ |(−A)

β
2 x̄ |2)

)
≤ δ|(−A)

1
2 x̄ |2 + δCτ |x̄ |2 + τ + Kτcδ

for some constant Cτ > 0 independent of δ and ε. It then follows from (3.382) that

lim sup
δ→0

(
ρ
(
cδ(1+ |(−A)

β
2 x̄ |2)

)
− δ|(−A)

1
2 x̄ |2

)
≤ 0. (3.391)
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Using (3.390), (3.391) and (3.377) in (3.389) we thus obtain

λu(x̄)+
〈

(−A)
1−η
2 x̄,

(−A)
1−η
2 (x̄ − ȳ)

ε

〉

+ G

(
x̄,

(−A)−η(x̄ − ȳ)

ε
, ZN

)

≤ ω1(ε, δ; N )+ ω2(ε; δ),
(3.392)

where limN→∞ ω1(ε, δ; N ) = 0, limδ→0 ω2(ε; δ) = 0 . Similarly we obtain

λv(ȳ)+
〈

(−A)
1−η
2 ȳ,

(−A)
1−η
2 (x̄ − ȳ)

ε

〉

+ G

(
ȳ,

(−A)−η(x̄ − ȳ)

ε
, YN

)

≥ −ω1(ε, δ; N )− ω2(ε; δ).
(3.393)

We subtract (3.393) from (3.392), use Hypothesis 3.117-(iv), and let N → +∞ to
conclude that

λ(u(x̄)− v(ȳ)) ≤ ω

(

|(−A)
β
2 (x̄ − ȳ)|

(

1+ |(−A)
β
2 (x̄ − ȳ)|
ε

))

− |(−A)
1−η
2 (x̄ − ȳ)|2
ε

+ 2ω2(ε; δ).

By (3.370), for every σ > 0

|(−A)
β
2 (x̄ − ȳ)| ≤ σ|(−A)

1−η
2 (x̄ − ȳ)| + Cσ|(−A)−

η
2 (x̄ − ȳ)|. (3.394)

Since for every α > 0, ω(s) ≤ α/2+ Kαs, if σ is sufficiently small, we obtain after
elementary calculations

λ(u(x̄)− v(ȳ)) ≤ α+ K̃α
|(−A)−

η
2 (x̄ − ȳ)|2
ε

+ 2ω2(ε; δ). (3.395)

By (3.383) this implies

lim sup
ε→0

lim sup
δ→0

(u(x̄)− v(ȳ)) ≤ α

λ

for all α > 0, which gives u ≤ v in H , since for all x ∈ H we have

�(x, x) ≤ �(x̄, ȳ) ≤ u(x̄)− v(ȳ).
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If u is a solution, we can set u = v in the proof to obtain that for all x, y ∈ H

u(x)− u(y)− |(−A)−
η
2 (x − y)|2
2ε

= lim
δ→0

�(x, y) ≤ lim sup
δ→0

(u(x̄)− u(ȳ)) ≤ ρ1(ε)

for some modulus ρ1 in light of (3.395). This proves (3.380).
Existence. The existence of a viscosity solution will be proved by the method of

finite-dimensional approximations similar to that of Sect. 3.7.We consider for N > 2
the approximating equations

λuN − 〈Ax, DuN 〉 + G(x, DuN , D2uN ) = 0 in HN . (3.396)

We see that for every γ > 0, (−A)γx = PN (−A)γx, (−A)−γx = PN (−A)−γx
for x ∈ HN , and thus (3.396) satisfies Hypotheses3.113 and 3.117 with constants
and moduli independent of N . Since u(x) = −K/λ is a viscosity subsolution and
u(x) = K/λ is a viscosity supersolution of (3.396), it follows from the finite-
dimensional Perron’s method that (3.396) has a (unique) bounded viscosity solution
uN such that ‖uN‖0 ≤ K/λ.

We will prove that there exists a modulus σ̃η independent of N such that

|uN (x)− uN (y)| ≤ σ̃η(|x − y|−η)

for all x, y ∈ HN . To do this we adapt the technique of Sect. 3.7.
For every ε > 0 let Kε be such that ω(r) ≤ λε/2 + Kεr . For L > K/λ + 1 we

set
ψL(r) = 2Lr

1
2L .

The function ψL ∈ C2(0,∞) is increasing, concave, ψ′L(r) ≥ 1 for 0 < r ≤ 1,
ψL(0) = 0, ψL(1) > 2(K/λ+ 1), and

ψL(r) > L
(
ψ′L(r)r + r

)
for 0 ≤ r ≤ 1. (3.397)

We will show that for every ε > 0 there exists an L = Lε such that

uN (x)− uN (y) ≤ ψL(|(−A)−
η
2 (x − y)|)+ ε for every x, y ∈ HN . (3.398)

Set � = {(x, y) ∈ H × H : |(−A)−
η
2 (x − y)| < 1

}
. It is clear from the properties

of ψL that, for (x, y) /∈ �, (3.398) is always satisfied independently of L . Assume
now by contradiction that (3.398) is false. Then, for any L > K

λ
+ 1 we have, for

small δ > 0,

sup
(x,y)∈HN×HN

(
uN (x)− uN (y)− ψL(|(−A)−

η
2 (x − y)|)− ε− δ

2
|x |2 − δ

2
|y|2
)

> 0

(3.399)
and is attained at (x̄, ȳ) ∈ � such that x̄ = ȳ. Denote s = |(−A)−

η
2 (x̄ − ȳ)|.
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Repeating the arguments from the proof of Proposition3.81 that led to (3.207)
and then the arguments from the just finished proof of comparison we obtain that
there exist Z , Y ∈ S(HN ) such that

(
Z 0
0 −Y

)
≤ 2ψ′L(s)

s

(
(−A)−ηPN −(−A)−ηPN

−(−A)−ηPN (−A)−ηPN

)

and

λ(uN (x̄)− uN (ȳ)) ≤ −ψ′L (s)

s
|(−A)

1−η
2 (x̄ − ȳ)|2 + G(ȳ,

ψ′L (s)

s
(−A)−η(x̄ − ȳ),Y )

−G(x̄,
ψ′L (s)

s
(−A)−η(x̄ − ȳ), Z)+ ρ(L; δ)

≤ −ψ′L (s)

s
|(−A)

1−η
2 (x̄ − ȳ)|2 + λε

4

+Kε

(

|(−A)
β
2 (x̄ − ȳ)|

(

1+ ψ′L (s)

s
|(−A)

β
2 (x̄ − ȳ)|

))

+ ρ(L; δ),

where limδ→0 ρ(L; δ) = 0. Therefore using (3.394) with sufficiently small σ it
follows that

λ(uN (x̄)− uN (ȳ)) ≤ λε

2
+ Cε(ψ

′
L(s)s + s)+ ρ(L; δ),

where Cε only depends on Kε and the interpolation constant but not on L . Choosing
L = Cε/λ, using (3.397), and letting δ → 0 we arrive at

uN (x̄)− uN (ȳ) ≤ ε

2
+ ψL(s).

This is a contradiction since we obviously have by (3.399)

ψL(s)+ ε ≤ uN (x̄)− uN (ȳ).

Hence we obtain the existence of the required modulus of continuity σ̃η.
Now set vN (x) = uN (PN x). Since (−A)−

η
2 is compact we are in a position

to apply the Arzela–Ascoli theorem to find a subsequence (still denoted by vN )
converging uniformly on bounded sets of H to a function u that obviously satisfies
the same estimates as the uN ’s. It remains to show that u solves the limiting equation
(3.373). To this end let u − ψ have a maximum at x̂ (which we may assume to be
strict) for some test function ψ(x) = ϕ(x)+ δ|x |2. It follows from the local uniform
convergence of the vN and the strictness of the maximum at x̂ that there exists a
sequence x̂N = PN x̂N → x̂ as N →∞ such that, for every x ∈ HN ,

vN (x)− ϕ(x)− δ|x |2 ≤ vN (x̂N )− ϕ(x̂N )− δ|x̂N |2.
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Therefore, since APN = PN A,

λuN (x̂N )+ 〈(−A)
1
2 x̂N , (−A)

1
2 Dϕ(x̂N )〉 + 2δ|(−A)

1
2 x̂N |2

+G (x̂N , PN Dϕ(x̂N )+ 2δx̂N , PN (D2ϕ(x̂N )+ 2δ I )PN
) ≤ 0.

(3.400)

Since ϕ is a test function we have

|(−A)
1
2 Dϕ(x̂N )| ≤ C1 + C2|(−A)

1
2−ε x̂N | (3.401)

for some independent constants C1,C2. Also, by (3.370), (3.378), (3.381) and
(3.401),

|G (x̂N , PN Dϕ(x̂N )+ 2δx̂N , PN (D2ϕ(x̂N )+ 2δ I )PN
) |

≤ C3

(
1+ |(−A)

β
2 x̂N |2 + |(−A)

1
2−ε x̂N |2

)
≤ C4 + δ

2
|(−A)

1
2 x̂N |2.

Using this, (3.401) and (3.370), we therefore obtain from (3.400) that

|(−A)
1
2 x̂N | ≤ C5

for some constant C5 independent of N . Thus (−A)
1
2 x̂N ⇀ (−A)

1
2 x̂ (so x̂ ∈

D((−A)
1
2 )) and hence

(−A)
β
2 x̂N → (−A)

β
2 x̂, and (−A)

1
2 Dϕ(x̂N ) → (−A)

1
2 Dϕ(x̂).

These convergences and Lemma3.85 allow us to pass to the limit in (3.400) as
N →∞ to conclude that

λu(x̂)+ 〈(−A)
1
2 x̂, (−A)

1
2 Dϕ(x̂)〉 + 2δ|(−A)

1
2 x̂ |2 + G

(
x̂, Dϕ(x̂)+ δx̂, D2ϕ(x̂)+ δ I

) ≤ 0.

The proof of the supersolution property is analogous. �

3.12.3 A Stochastic Control Problem

We present an application of the results of the previous section to an abstract infinite
horizon stochastic optimal control problem which includes the class of problems
discussed in Sect. 2.6.2 and may come from a boundary control problem of Dirichlet
type with distributed controls. We take the usual setup. Let H, � be real separable
Hilbert spaces, and Q ∈ L+(�). Let� = �1× �̃2, where �1,�2 are real separable
Hilbert spaces, and �̃2 is a closed bounded subset of�2.We set R := supa2∈�̃2

|a2|�2 .
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Given a reference probability space ν = (�,F , {Fs}s≥0, P,WQ) we have the set
of admissible controls

Uν := {a(·) = (a1(·), a2(·)) : [0,+∞)×� → � :
a1(·), a2(·) are Fs − progressively measurable

}
, (3.402)

and we define U :=⋃ν Uν to be the set of all admissible controls.
We control the state given by the SDE

⎧
⎪⎨

⎪⎩

dX (t) = [AX (t)+ b(X (t), a1(t))+ (−A)βCa2(t)
]
dt

+σ(X (t), a1(t))dWQ(t), t > 0

X (0) = x0 ∈ H,

(3.403)
i.e.

X (t) = et Ax0 +
∫ t

0
e(t−s)Ab(X (s), a1(s))ds + (−A)β

∫ t

0
e(t−s)ACa2(s)ds

+
∫ t

0
(−A)

β
2 e(t−s)A(−A)−

β
2 σ(X (s), a1(s))dWQ(s),

(3.404)
and try to minimize the cost functional

J (x0; a(·)) = E

∫ +∞

0
e−λt l (X (t; x0, a(·)), a(t)) dt, (3.405)

over all admissible controls a(·) ∈ U . We denote by v the value function for this
problem. We assume that A satisfies Hypothesis3.113 and λ > 0. We also make the
following assumptions.

Hypothesis 3.119

(i) The function b is continuous from H × �1 to H and there exists a constant
c0 > 0 such that

|b(x, a1)| ≤ c0(1+ |x |) for all x ∈ H, a1 ∈ �1,

|b(x1, a1)− b(x2, a1)| ≤ c0|x1 − x2| for all x1, x2 ∈ H, a1 ∈ �1.

(ii) C ∈ L(�2, H) and β ∈ ( 34 , 1
)
.

(iii) σ : H × �1 → L(�0, H), the map (−A)−
β
2 σ : H × �1 → L2(�0, H) is

continuous and moreover there exists a constant K1 > 0 such that

‖(−A)−
β
2 σ(x, a1)‖L2(�0,H) ≤ K1(1+ |x |)
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for all x ∈ H , a1 ∈ �1, and

‖(−A)−
β
2 [σ(x1, a1)− σ(x2, a1)]‖L2(�0,H) ≤ K1|x1 − x2|

for all x1, x2 ∈ H , a1 ∈ �1.
(iv) For all x ∈ H

lim
N→+∞ sup

a1∈�1

‖QN (−A)−
β
2 σ(x, a1)‖L2(�0,H) = 0.

(v) l ∈ C(H ×�) and

|l(x, a)| ≤ Cl , for all (x, a) ∈ H ×�,

|l(x1, a)− l(x2, a)| ≤ ωl(|x1 − x2|), for all a ∈ �, x1, x2 ∈ H,

for some positive constant Cl and modulus ωl .

Remark 3.120

(1) Hypotheses3.119-(iii),(iv) are satisfied if we assume, for example, that there
exists a constant K2 > 0 such that

‖σ(x, a1)‖L(�0,H) ≤ K2(1+ |x |)

for all x ∈ H , a1 ∈ �1

‖σ(x1, a1)− σ(x2, a1)‖L(�0,H) ≤ K2|x1 − x2|

for all x1, x2 ∈ H , a1 ∈ �1, and if the operator (−A)−β is trace class.
(2) Hypothesis3.119-(iv) is satisfied if, for instance, for every x ∈ H there exists an

η ∈ (0,β/2) such that (−A)−ησ(x, a1) is bounded in L2(�0, H) independently
of a1 ∈ �1. �

It is a consequence of Theorem1.141 that for every generalized reference
probability space μ = (�,F , {Fs}s≥0, P,WQ), T > 0, a(·) ∈ Uμ, and ξ ∈
L2(�,F0, P), Eq. (3.403) with X (0) = ξ has a uniquemild solution inHμ

2 (0, T ; H)

with continuous trajectories. Following the strategy described in Remark2.17 and
using Proposition1.142 one can then argue that all the assumptions needed to prove
the DPP for the problem are satisfied. However, we will not look directly into this,
since we need to study the transformed HJB equation (3.375) and the optimal control
problem associated with it.

Let us first see how the state equation is transformed by the change of variables. If
X (·; x0, a(·)) satisfies (3.403) then Y (·) = Y (·; y0, a(·)) := (−A)−

β
2 X (·; x0, a(·))

satisfies the equation
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dY (t) =
[
AY (t)+ (−A)−

β
2 b((−A)

β
2 Y (t), a1(t))+ (−A)

β
2 Ca2(t)

]
dt

+(−A)−
β
2 σ((−A)

β
2 Y (t), a1(t))dWQ(t)

Y (0) = y0 = (−A)−
β
2 x0 ∈ H ,

(3.406)
which is understood in its mild form

Y (t) =et A y0 +
∫ t

0
e(t−s)A(−A)−

β
2 b((−A)

β
2 Y (s), a1(s))ds

+ (−A)
β
2

∫ t

0
e(t−s)ACa2(s)ds

+
∫ t

0
e(t−s)A(−A)−

β
2 σ((−A)

β
2 Y (s), a1(s))dWQ(s), t ≥ 0. (3.407)

We are now minimizing the cost functional

J̃ (y0; a(·)) = E

∫ +∞

0
e−λt l

(
(−A)

β
2 Y (t; y0, a(·)), a(t)

)
dt, (3.408)

over all admissible controls and we denote by u the value function for this problem.
The HJB equation associated with this new control problem is of the form (3.375)
with G : D((−A)

β
2 )× D((−A)

β
2 )× S(H) → R given by

G(y, q, S)

= sup
a∈�

{
−1

2
Tr
[
((−A)−

β
2 σ((−A)

β
2 y, a1)Q

1
2 )((−A)−

β
2 σ((−A)

β
2 y, a1)Q

1
2 )∗S

]

−
〈
b((−A)

β
2 y, a1), (−A)−

β
2 q
〉
−
〈
Ca2, (−A)

β
2 p
〉
− l((−A)

β
2 y, a)

}
.

(3.409)
We will see that the value functions v and u are linked by the relation v(x) =

u((−A)−
β
2 x) for x ∈ H . Thus u should correspond to anHJB equation (3.371) with a

Hamiltonian F : H ×D((−A)β)× (−A)−
β
2 S(H)(−A)−

β
2 → R such that G = GF ,

where GF is given by (3.374). An easy calculation shows that this is true if

F(x, p, S) = sup
a∈�

{
−1

2
Tr
[
(σ(x, a1)Q

1
2 )∗S(σ(x, a1)Q

1
2 )
]

− 〈b(x, a1), q〉 −
〈
Ca2, (−A)β p

〉− l(x, a)

}
.

(3.410)

This is just the formal Hamiltonian corresponding to the original control problem,
however notice that the second-order terms in F are written in a slightly different
form since we do not know that σ(x, a1)Q

1
2 ∈ L2(U, H). We remark that if either
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(σ(x, a1)Q
1
2 )∗S or S(σ(x, a1)Q

1
2 ) is trace class then (see Appendix B.3)

Tr
[
(σ(x, a1)Q

1
2 )∗S(σ(x, a1)Q

1
2 )
]
= Tr

[
(σ(x, a1)Q

1
2 )(σ(x, a1)Q

1
2 )∗S

]
.

Proposition 3.121 Assume that Hypotheses3.113 and 3.119 hold. Let μ =
(�,F , {Fs}s≥0, P,WQ) be a generalized reference probability space, T > 0,
a(·) ∈ Uμ, and ξ ∈ L2(�,F0, P). Then Eq. (3.406) with Y (0) = ξ has a unique mild
solution Y (·) = Y (· ; ξ, a(·)) among all processes which have dt ⊗ P equivalent
versions in M2

μ(0, T ; D((−A)
β
2 )). The solution has continuous trajectories in H.

Proof The proof of existence and uniqueness will follow from the contraction
mapping principle. Assume first that ξ ∈ L p(�,F0, P), 2 ≤ p < 2/β. For
Z ∈ Mp

μ (0, T ; D((−A)
β
2 )) we define a map K on Mp

μ (0, T ; D((−A)
β
2 ) by

K(Z)(t) = et Aξ +
∫ t

0
e(t−s)A(−A)−

β
2 b((−A)

β
2 Z(s), a1(s))ds

+ (−A)
β
2

∫ t

0
e(t−s)ACa2(s)ds

+
∫ t

0
e(t−s)A(−A)−

β
2 σ((−A)

β
2 Z(s), a1(s))dWQ(s), t ∈ [0, T ]. (3.411)

We see that K(Z)(·) is progressively measurable as a process with values in H
by arguments similar to those in Remark1.123. Moreover, thanks to Hypothesis
3.119-(i) and (B.18), for suitable constants C1,C2 > 0,

|(−A)
β
2 K(Z)(t)| ≤ |(−A)

β
2 et Aξ| + C1

∫ t

0
e−a(t−s)[1+ |(−A)

β
2 Z(s)|]ds

+C2R
∫ t

0

e−a(t−s)

(t − s)β
ds +

∣∣∣∣

∫ t

0
(−A)

β
2 e(t−s)A(−A)−

β
2 σ((−A)

β
2 Z(s), a1(s))dWQ(s)

∣∣∣∣ .

Then, taking the expectation of the p-th power of the terms of this last inequality
and using (1.111) and Hypothesis3.119-(iii) we get

E

∣∣∣(−A)
β
2 K(Z)(t)

∣∣∣
p ≤ C3

[
1

t
pβ
2

E|ξ|p + 1

+
∫ t

0
E|(−A)

β
2 Z(s)|pds +

∫ t

0

1

(t − s)
pβ
2

[1+ E|(−A)
β
2 Z(s)|p]ds

]
.

(3.412)
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Therefore

|K(Z)|p
M p

μ (0,T ;D((−A)
β
2 ))
=
∫ T

0
E

∣∣∣(−A)
β
2 K(Z)(t)

∣∣∣
p
dt

≤ C4(T )

[

E|ξ|p + 1+
∫ T

0

∫ t

0

[

1+ 1

(t − s)
pβ
2

]

E|(−A)
β
2 Z(s)|pdsdt

]

≤ C4(T )

[

E|ξ|p + 1+
∫ T

0
E|(−A)

β
2 Z(s)|p

∫ T

s

[

1+ 1

(t − s)
pβ
2

]

dtds

]

≤ C5(T )

[
E|ξ|p + 1+ |Z |p

M p
μ (0,T ;D((−A)

β
2 ))

]
.

Thus K(Z)(·) ∈ Mp
μ (0, T ; D((−A)

β
2 )). We now prove that K is a contraction

on Mp
μ (0, T ; D((−A)

β
2 )) if T is sufficiently small. Let Z1(·), Z2(·) ∈ Mp

μ (0, T ;
D((−A)

β
2 )). Then, arguing as above, we have

E

∣∣∣(−A)
β
2 (K(Z1)(t)−K(Z2)(t))

∣∣∣
p

≤ C6

∫ t

0

(

1+ 1

(t − s)
pβ
2

)

E

∣∣∣(−A)
β
2 (Z1(s)− Z2(s))

∣∣∣
p
ds

for some constant C6 > 0, which implies

|K(Z1)−K(Z2)|
Mp

μ (0,T ;D((−A)
β
2 ))
≤ C7

(
T + T 1− pβ

2

) 1
2 |Z1 − Z2|

Mp
μ (0,T ;D((−A)

β
2 ))

.

ThusK is a contraction on Mp
μ (0, T ; D((−A)

β
2 )) for small T > 0 and hence it has a

fixed point Y (·; ξ, a(·)). The second and third terms of the right-hand side of (3.411)
have continuous trajectories in H by Lemma1.115 whereas the stochastic integral
there has continuous trajectories if p > 2 by Proposition1.112. Thus Y (·; ξ, a(·))
has a dt ⊗P-equivalent version which has continuous trajectories in H if p > 2. To
prove that Y (·; ξ, a(·)) has continuous trajectories if ξ ∈ L2(�,F0, P) we argue as
in the proof of Theorem1.141. We approximate ξ by random variables

ξn =
{

ξ if |ξ| ≤ n
0 if |ξ| > n.

The solutions Y (·; ξn, a(·)) have continuous trajectories in H , P-a.s., and since the
solutions are obtained by fixed point, one can show that Y (·; ξ, a(·)) = Y (·; ξn, a(·)),
P-a.s. on {ω : |ξ(ω)| ≤ n}.

The existence of a unique solution inMp
μ (0, T ; D((−A)

β
2 )) for any T > 0 follows

by repeating the argument a finite number of times. �
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Proposition 3.122 Assume that Hypotheses3.113 and 3.119 hold. Let T > 0,
y0 ∈ H. Then there exists a constant C(T, |y0|) ≥ 0 such that, for all t ∈ (0, T ]
and a(·) ∈ U ,

E|(−A)
β
2 Y (t; y0, a(·))|2 ≤ C(T, |y0|) 1

tβ
. (3.413)

Moreover, for every γ ∈ (0, 1 − β), there exists a constant Cγ(T, |y0|) ≥ 0 such
that, for all t ∈ (0, T ] and a(·) ∈ U ,

∫ t

0

1

(t − s)β+γ
E|(−A)

β
2 Y (s; y0, a(·))|2ds ≤ Cγ(T, |y0|) 1

tβ
. (3.414)

Proof Estimate (3.412) for p = 2 applied to the solution Y (·) = Y (·; y0, a(·))
implies

E

∣∣∣(−A)
β
2 Y (t)

∣∣∣
2 ≤ C(T )

[
1

tβ
(|y0|2 + 1)+

∫ t

0

1

(t − s)β
E|(−A)

β
2 Y (s)|2ds

]
.

Estimate (3.413) thus follows from Proposition D.30. Now

∫ t

0

1

(t − s)β+γ
E|(−A)

β
2 Y (s)|2ds ≤ C(T, |y0|)

∫ t

0

1

(t − s)β+γ

1

sβ
ds ≤ Cγ(T, |y0|) 1

tβ

since ∫ t

0

1

(t − s)β+γ

1

sβ
ds = t1−(2β+γ)

∫ 1

0

1

(1− s)β+γ

1

sβ
ds

and this last integral is bounded and 1− (2β + γ) > −β. �

Theorem 3.123 Assume that Hypotheses3.113, 3.119 hold. Then the value function
v is the unique UCb(H−η) viscosity solution (for every η ∈ (0, 1)) of the HJB
equation (3.371) with the Hamiltonian F given by (3.410). Moreover, the dynamic
programming principle holds for u and v, i.e. for x ∈ H and all T > 0,

v(x) = inf
a(·)∈U

E

{∫ T

0
e−λt l(X (t; x, a(·)), a(t))dt + e−λT v(X (T ; x, a(·)))

}

and

u(y) = inf
a(·)∈U

E

{∫ T

0
e−λt l((−A)

β
2 Y (t; y, a(·)), a(t))dt + e−λT u(Y (T ; y, a(·)))

}
.

We will prove this theorem by the approximation argument used in the proof of
existence of Theorem3.118. We consider for N ≥ 1 the following SDE approximat-
ing the state Eq. (3.406).
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⎧
⎪⎪⎨

⎪⎪⎩

dYN (t) =
[
PN AYN (t)+ (−A)−

β
2 PNb((−A)

β
2 Y (t), a1(t))+ (−A)

β
2 PNCa2(t)

]
dt

+(−A)−
β
2 PNσ((−A)

β
2 Y (t), a1(t))dWQ(t)

YN (0) = PN y0 ∈ HN .

(3.415)

These are finite-dimensional SDEs (even though the noise is infinite-dimensional) in
the spaces HN which have unique strong solutions YN (·) = YN (·; y0, a(·)) and good
continuous dependence estimates like those in Sects. 1.4.3 and 3.1.2 with respect to
the norm in HN . The solutions YN (·) can be also written in the mild form

YN (t) = et A PN y0 +
∫ t

0
e(t−s)A(−A)−

β
2 PNb((−A)

β
2 YN (s), a1(s))ds

+ (−A)
β
2

∫ t

0
e(t−s)APNCa2(s)ds

+
∫ t

0
e(t−s)A(−A)−

β
2 PNσ((−A)

β
2 YN (s), a1(s))dWQ(s), t ≥ 0.

Lemma 3.124 Let Hypotheses3.113, 3.119 hold, y0 ∈ H, and T > 0. Then

lim
N→+∞ sup

a(·)∈U
|YN (·; y0, a(·))− Y (·; y0, a(·))|

M2(0,T ;D((−A)
β
2 ))
= 0.

Proof We define Y (·) = Y (·; y0, a(·)),YN (·) = YN (·; y0, a(·)) and fix γ ∈
(0, 1 − β). Recall that PN , QN commute with −A, its fractional powers and et A.
We have

(−A)
β
2 (YN (t)− Y (t)) = −(−A)

β
2 et AQN y0

− QN (−A)−
γ
2

∫ t

0
(−A)

γ
2 e(t−s)Ab((−A)

β
2 Y (s), a1(s))ds

− QN (−A)−
γ
2

∫ t

0
(−A)β+

γ
2 e(t−s)ACa2(s)ds

− QN (−A)−
γ
2

∫ t

0
(−A)

β+γ
2 e(t−s)A(−A)

β
2 σ((−A)

β
2 Y (s), a1(s))dW (s)

+
∫ t

0
e(t−s)A PN [b((−A)

β
2 YN (s), a1(s))− b((−A)

β
2 Y (s), a1(s))]ds

+
∫ t

0
(−A)

β
2 e(t−s)A(−A)

β
2 PN [σ((−A)

β
2 YN (s), a1(s))− σ((−A)

β
2 Y (s),α1(s))]dWQ(s),

which yields, for a suitable Cγ(T ) > 0,

E|(−A)
β
2 (YN (t)− Y (t))|2
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≤ Cγ(T )

[
1

tβ
|QN y0|2 + ‖QN A−

γ
2 ‖2

(
1+

∫ t

0

(
1+ 1

(t − s)β+γ

)
E|(−A)

β
2 Y (s)|2ds

)

+
∫ t

0

(
1+ 1

(t − s)β

)
E|(−A)

β
2 (YN (s)− Y (s))|2ds

]
.

Since A−γ/2 is compact, ‖QN A−γ/2‖ → 0 as N → +∞, and by using (3.414) we
thus deduce that

E|(−A)
β
2 (YN (t)− Y (t))|2 ≤Cγ,T,y0(N )

(
1+ 1

tβ

)

+ C̃γ,T

∫ t

0

1

(t − s)β
E|(−A)

β
2 (YN (s)− Y (s))|2ds,

where Cγ,T,y0(N ) → 0 as N →+∞. Using Proposition D.30 we thus obtain

E|(−A)
β
2 (YN (t)− Y (t))|2 ≤ Cγ,T,y0(N )M

1

tβ
(3.416)

for some constant M independent of N . This implies the claim. �

Proof of Theorem3.123 We notice that under our assumptions Eq. (3.375) with G
givenby (3.409) has a unique viscosity solution inUCb(H−η) for everyη ∈ (0, 1−β).
To verify that the value function u is the solution we consider the approximating
problems

λuN − 〈Ax, DuN 〉 + G(x, DuN , D2uN ) = 0 in HN . (3.417)

Equation (3.417) is the one used in the proof of Theorem3.118 and it is easy to see
that it is the equation in HN corresponding to the control problem with evolution
given by (3.415). Therefore, by the results of Sect. 3.6.3, the function

uN (y0) = inf
a(·)∈U

E

∫ +∞

0
e−λt l((−A)

β
2 YN (t; y0, a(·)), a(t))dt (3.418)

belongs to UCb(HN ), it satisfies the dynamic programming principle, i.e. for every
y0 ∈ HN , T ≥ 0

uN (y0) = inf
a(·)∈U

E

{∫ T

0
e−λt l((−A)

β
2 YN (t; y0, a(·)), a(t))dt

+ e−λT uN (YN (T ; y0, a(·)))
}
,

(3.419)

and uN is the unique viscosity solution of (3.417) in UCb(HN ).
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Since for every y0 ∈ H , YN (t; y0, a(·)) = YN (t; PN y0, a(·)), extending uN to
H by putting uN (y) = uN (PN y) we obtain (3.418) and (3.417) for every y0 ∈ H .
Moreover, from the proof of existence of Theorem3.118, we know that for every
η ∈ (0, 1− β) and N ≥ 1

‖uN‖0 ≤ Cl

λ
, |uN (x)− uN (y)| ≤ σ̃η(|x − y|−η) (3.420)

for some modulus σ̃η and uN → u uniformly on bounded sets, where u is the unique
viscosity solution of (3.375) in UCb(H−η), η ∈ (0, 1− β).

We need to show that u = u. We will prove that uN converges pointwise to u as
N →∞. Let y0 ∈ H . For every T > 0,

|uN (y0)− u(y0)|

≤ sup
a(·)∈U

∫ T

0
e−λt

Eωl(|(−A)
β
2 (YN (t; y0, a(·))− Y (t; y0, a(·)))|)dt + 2Cl

e−λT

λ
.

Let ε > 0 and Tε > 0 be such that such that 2Cle−λTε/λ ≤ ε. If ωl(s) ≤ ε +
Kεs, s ≥ 0, we obtain by the Cauchy–Schwarz inequality

∫ Tε

0
e−λt

Eωl(|(−A)
β
2 (YN (t; y0, a(·))− Y (t; y0, a(·)))|)dt

≤ ε

λ
+ Kε

λ
|YN (·; y0, a(·))− Y (·; y0, a(·))|

M2(0,Tε;D((−A)
β
2 ))

for all N ≥ 1 and all a(·) ∈ U . The conclusion thus follows by letting N → +∞
and using Lemma3.124, since ε is arbitrary.

It remains to show the dynamic programming principle for u. By (3.419), we have

∣∣∣∣uN (y0)− inf
a(·)∈UE

{∫ T

0
e−λt l((−A)

β
2 Y (t; y0, a(·)), a(t))dt + e−λT u(Y (T ; y0, a(·)))

}∣∣∣∣

≤ sup
a(·)∈U

E

∫ T

0
e−λtωl(|(−A)

β
2 (YN (t; y0, a(·))− Y (t; y0, a(·)))|)dt

+e−λT sup
a(·)∈U

E|uN (YN (T ; y0, a(·)))− u(y(T ; y0, a(·)))|.

The first term of the right-hand side converges to 0 when N goes to infinity by the
same argument as in the previous paragraph. For the second term, we proceed as
follows:
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E|uN (YN (T ; y0, a(·)))− u(Y (T ; y0, a(·)))|
≤ E|uN (YN (T ; y0, a(·)))− uN (Y (T ; y0, a(·)))|

+ E|uN (Y (T ; y0, a(·)))− u(Y (T ; y0, a(·)))|.

The first term of the right-hand side converges to 0 uniformly in a(·) ∈ U when N
goes to infinity by (3.416) and (3.420). It remains to prove that

sup
a(·)∈U

E|uN (Y (T ; y0, a(·)))− u(Y (T ; y0, a(·)))|

goes to 0when N goes to infinity. By Proposition3.122, estimate (3.413),E|Y (T ; y0,
a(·))|2 is bounded by a constant C̃(T, |y0|) > 0 which does not depend on a(·) ∈ U .
Hence, for all R > 0,

P {|Y (T ; y0, a(·))| > R} ≤ C̃(T, |y0|)
R2

.

Let ε > 0 and choose Rε > 0 sufficiently large so that this probability is smaller
than ε. Then

sup
a(·)∈U

E|uN (Y (T ; y0, a(·)))− u(Y (T ; y0, a(·)))| ≤ 2Cl

λ
ε+ sup

|y|≤Rε

|uN (y)− u(y)|.

We conclude by letting N →+∞ since ε was arbitrary.
Finally, we observe that for x0 ∈ H and y0 = (−A)−

β
2 x0, the mild solutions X (·)

of (3.404) and Y (·) of (3.407) are related by Y (·) = (−A)−
β
2 X (·). Therefore we

have v(x0) = u((−A)−
β
2 x0). Thus the dynamic programming principle also holds

for v, and by definition v is the unique viscosity solution in UCb(H−η), η ∈ (0, 1),
of the HJB equation (3.371) with F given by (3.410). �

Remark 3.125 Wewould obtain the same results if instead of the change of variables
y = (−A)−

β
2 x we applied the change of variables y = (−A)−

γ
2 x for β ≤ γ < 1.

This may be beneficial for a boundary control problem with the Neumann boundary
condition,wherewehaveβ < 1/2, as itmayhelpmake the second-order terms satisfy
Hypothesis3.119-(iii), (iv), which would then have (−A)−

β
2 replaced by (−A)−

γ
2

there (see also the example below). �

We now discuss a specific example of a stochastic boundary control problem with
Dirichlet boundary conditions. It is more general than the one from Sect. 2.6.2 since
it also contains distributed controls and allows multiplicative noise. Good examples
of deterministic boundary control problems can be found in [400]. The results of
this section would apply to suitable stochastic perturbations of examples belonging
to the “first abstract class” in [400].

Let O ⊂ R
N be an open, connected and bounded set with smooth boundary.

Consider, as in Sect. 2.6.2, the following stochastic controlled PDE



3.12 HJB Equations for Boundary Control Problems 331

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂x

∂t
(t, ξ) = �ξx(t, ξ)+ f1 (x(t, ξ),α1(t, ξ))

+ f2 (x(t, ξ),α1(t, ξ)) ẆQ(t, ξ) in (0,∞)×O

x(0, ξ) = x0(ξ) on O

x(t, ξ) = α2(t, ξ) on (0,∞)× ∂O,

(3.421)

where WQ is a Q-Wiener process, Q ∈ L+(L2(O)), x0 ∈ L2(O), and f1, f2 :
R

2 → R. We take H = L2(O), �1 = L2(O) and �2 to be the closed ball centered
at 0 with radius R in L2(∂O), and assume that the control a(t) = (a1(t), a2(t)) :=
(α1(t, ·),α2(t, ·)) belongs toU as defined in (3.402). As was discussed in Sect. 2.6.2,
(3.421) can be rewritten as an abstract stochastic evolution equation (3.403) and
(3.404), where A is the Laplace operator with zero Dirichlet boundary conditions, C
is the Dirichlet operator, and

b(x, a1)(ξ) = f1(x(ξ), a1(ξ)), [σ(x, a1)y](ξ) = f2(x(ξ), a1(ξ))y(ξ).

Suppose that f1, f2 satisfy for i = 1, 2

| fi (r, s)| ≤ c1(1+ |r |) for all r, s ∈ R,

| fi (r1, s)− fi (r2, s)| ≤ c1|r1 − r2| for all r1, r2, s ∈ R.

It is then easy to see that b satisfies Hypothesis 3.119-(i). As regards σ, suppose
that Q = I and N = 1. Let {ek} be the orthonormal basis of eigenvectors of A. In
this case −Aek = ck2ek , where c > 0. Moreover, the ek are bounded in L∞(O),
uniformly in k. Therefore we obtain

‖(−A)−
β
2 σ(x, a1)‖2L2(H) =

+∞∑

k=1
|(−A)−

β
2 σ(x, a1)ek |2

= c−β
+∞∑

k=1

+∞∑

h=1
h−2β〈σ(x, a1)ek, eh〉2 = c−β

+∞∑

h=1
h−2β |σ(x, a1)eh |2

= c−β
+∞∑

h=1
h−2β

∫

O
| f2(x(ξ), a1(ξ))eh(ξ)|2dξ ≤ C1(1+ |x |2),

where we used that 〈σ(x, a1)ek, eh〉 = 〈ek,σ(x, a1)eh〉 to justify the third equality
above, and the fact that β > 1/2. However, the above computation does not work
for N ≥ 2, where stronger assumptions either on f2 or Q need to be imposed.
In addition the basis {ek} may not be bounded in L∞(O) if N ≥ 2, however it is
bounded when O is a rectangular parallelepiped. The above computation also does
not work in the Neumann case when β < 1/2, even if f2 ≡ 1, and this is why it
may be beneficial to use the change of variables y = (−A)−

γ
2 x for β ≤ γ < 1,

as discussed in Remark3.125. The other conditions of Hypothesis 3.119-(iii), (iv)
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are checked similarly. If f2 is constant (and thus so is σ), Hypothesis3.119-(iii) (iv)
holds if we assume that there is an orthonormal basis {ek} of H such that

Aek = −λkek, Qek = βkek, k ∈ N,

where (λk) is a sequence of positive numbers increasing to +∞ while (βk) is a
bounded sequence of nonnegative real numbers and

∞∑

k=1

βk

λ
β
k

< +∞.

Since for the Laplace operator A we have λk ≈ k
2
N as k → +∞, this condition is

fulfilled if for some ε > 0, βk ≤ Ck
2β
N −1−ε. When Q is invertible this is possible

only for N = 1. However Q can have finite rank.
If the original cost functional was given by

E

∫ +∞

0
e−λt

∫

O
f3(x(t, ξ),α1(t, ξ))dξdt,

where λ > 0 and f3 : R
2 → R, then the cost functional for the abstract evolution

system (3.403) and (3.404) is given by (3.405), where

l(x, a1) :=
∫

O
f3(x(ξ), a1(ξ))dξ.

If f3 ∈ UCb(R
2) then l satisfies Hypothesis 3.119-(v). The original cost functional

can be more general and depend explicitly on the boundary control α2.

3.13 HJB Equations for Control of Stochastic
Navier–Stokes Equations

In this section we present another special class of equations which can be studied
by viscosity solution methods, which however require modifications of the general
definition of viscosity solution fromSect. 3.3 and the techniques of Sects. 3.5 and 3.6.
Wewill study second-orderHJBequations that arise in problems of optimal control of
stochastic Navier–Stokes equations. Not much is known about equations of this type.
Kolmogorov equations for stochastic Navier–Stokes equations have been studied by
Komech and Vishik (see [567] and the references therein) and more recently in [33,
34, 255, 512] for two-dimensional stochastic Navier–Stokes equations and by Da
Prato and Debussche [161] for the three-dimensional case. Only existence of strict
and mild solutions has been proved in [161]. A semilinear equation associated to a
special optimal control problem has been investigated by Da Prato and Debussche
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in [158] from the point of view of mild solutions. Some of these results have been
generalized to the three-dimensional case in [424]. The mild solution approach of
[158] is discussed in Sect. 4.9. The viscosity solution approach is more general in the
sense that it can handle more complicated cost functionals and applies to stochastic
optimal control problems with the associated HJB equations that are fully nonlinear
in the gradient variable. On the other hand the covariance operator of the Wiener
process here must be of trace class and thus the viscosity solution approach cannot
cover non-degenerate cases studied in [158], where regular solutions were obtained
and a formula for optimal feedback was derived.

We will consider an optimal control problem for the two-dimensional stochas-
tic Navier–Stokes equations with periodic boundary conditions in the setting of
an abstract stochastic evolution equation for the velocity vector field discussed in
Sect. 2.6.5. Let O = [0, L] × [0, L], and let ν > 0. We define the spaces

V =
{
x ∈ H 1

p

(O;R2
)
, div x = 0,

∫

O
x = 0

}
,

H = the closure of V in L2 (O;R2) ,

where for an integer k ≥ 1, Hk
p

(O;R2
)
is the space of R

2-valued functions x that
are in Hk

loc

(
R

2;R2
)
and such that x(y+ Lei ) = x(y) for every y ∈ R

2 and i = 1, 2.
We will denote by 〈·, ·〉 and | · |, respectively, the inner product and the norm in
L2
(O;R2

)
. The space H inherits the same inner product and norm, and V has the

norm inherited from H 1
p

(O;R2
)
. Let PH be the orthogonal projection in L2

(O;R2
)

onto H . Define Ax = PH�x with the domain D (A) = H 2
p

(O;R2
) ∩ V , and

B(x, y) = PH [(x · ∇)y] for x, y ∈ V . The operator A is maximal dissipative, self-
adjoint, and (−A)−1 is compact. For γ = 1, 2 we define Vγ := D((−A)

γ
2 ), equipped

with the norm
|x |γ := |(−A)

γ
2 x |. (3.422)

The space V1 coincides with V . Recall that

∫

O
|curl x(ξ)|2dξ =

∫

O
|∇x(ξ)|2dξ, for x ∈ V .

Hence the |x |1-norm is equivalent to

(∫

O
|curl x(ξ)|2dξ

)1/2

.

The dual space V ∗ of V can be identified with the space V−1, which is the completion
of H with respect to the norm

|x |−1 := |(−A)−
1
2 x |.
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The duality is then given by

〈x, y〉〈V ∗,V 〉 = 〈(−A)−
1
2 x, (−A)

1
2 y〉.

Let T > 0 and � be a complete separable metric space. For every 0 ≤ t < T ,
reference probability space ν = (�,F ,F t

s , P,WQ), where WQ is an H -valued Q-
Wiener process with Q ∈ L+1 (H), and a(·) ∈ Uμ

t , the abstract controlled stochastic
Navier–Stokes (SNS) equations describe the evolution of the velocity vector field
X : [t, T ]×O ×� → R

2 that satisfies the stochastic evolution equation

⎧
⎨

⎩

dX (s) = (AX (s)− B (X (s), X (s))+ f (s, a(s))) ds + dWQ(s) in (t, T ] × H,

X (t) = x ∈ H,

(3.423)

where f : [0, T ] × � → V . (We remark that without loss of generality we set the
viscosity coefficient in front of A to be 1.) The optimal control problem consists in
the minimization, over all controls a(·) ∈ Ut , of a cost functional

J (t, x; a(·)) = E

{∫ T

t
l(s, X (s), a(s))ds + g(X (T ))

}
.

The value function
v(t, x) = inf

a(·)∈Ut

J (t, x; a(·)), (3.424)

and the associated Hamilton–Jacobi–Bellman equation is

⎧
⎪⎨

⎪⎩

ut + 1

2
Tr
(
QD2u

)+ 〈Ax − B(x, x), Du〉 + F(t, x, Du) = 0,

u(T, x) = g(x) for (t, x) ∈ (0, T )× H,

(3.425)

where the Hamiltonian function F is defined by

F(t, x, p) := inf
a∈�

{〈 f (t, a), p〉 + l(t, x, a)} . (3.426)

It is convenient to introduce the trilinear form b(·, ·, ·) : V ×V ×V → R, defined as

b (x, y, z) =
∫

O
z(ξ) · (x(ξ) · ∇ξ)y(ξ) dξ = 〈B(x, y), z〉.

It is a continuous operator on V ×V ×V but it can also be extended to a continuous
map in different topologies, for instance it is also continuous on V×V2×H (see [555]
and (3.431) below.) The incompressibility condition gives the standard orthogonality
relations
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b (x, y, z) = −b (x, z, y) , b (x, y, y) = 0. (3.427)

Also, because of the periodic boundary conditions (see for instance [555]),

b (x, x, Ax) = 0 for x ∈ V2. (3.428)

We will be using the following inequalities. If x, y, z ∈ V then

|b (x, y, z)| ≤ C |x |1/2 |x |1/21 |y|1 |z|1/2 |z|1/21 , (3.429)

which gives when z = x

|b (x, y, x)| ≤ C |x | |x |1 |y|1 . (3.430)

Also, if x ∈ V , y ∈ V2, z ∈ H , then

|b (x, y, z)| ≤ C |x |1 |y|2 |z| . (3.431)

We will assume the following hypothesis throughout the rest of this section

Hypothesis 3.126

(i) (−A)
1
2 Q

1
2 ∈ L2(H).

(ii) The function f : [0, T ]×� → V is continuous and there is R ≥ 0 such that

| f (t, a)|1 ≤ R for all t ∈ [0, T ], a ∈ �. (3.432)

We remark that Hypothesis3.126-(i) is equivalent to the requirement that
Tr(Q1) < +∞,whereQ1 := (−A)

1
2 Q(−A)

1
2 . By thiswemean that (−A)

1
2 Q(−A)

1
2

is densely defined and it extends to a bounded operator, still denoted by Q1, belonging
to L+1 (H).

3.13.1 Estimates for Controlled SNS Equations

We will be using the notions of variational and strong solutions of the SNS equa-
tions (3.423). The definition of a variational solution is the same as that in Sect. 3.11.1,
however since the generic equation (3.310) there is slightly different from (3.423),
we repeat the definition below.

Definition 3.127 Let 0 ≤ t < T . Let μ =
(
�,F ,

{
F t

s

}
s∈[t,T ] , P,WQ

)
be a

generalized reference probability space, let Hypothesis 3.126 be satisfied. Let ξ be
an F t

t -measurable H -valued random variable such that E
μ[|ξ|2] < +∞, and let

a(·) ∈ Uμ
t .
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• A process X (·) ∈ M2
μ(t, T ; H) is called a variational solution of (3.423) with

initial condition X (t) = ξ if

E

[∫ T

t
|X (r)|2V dr

]
< +∞

and for every φ ∈ V we have

〈X (s),φ〉 = 〈ξ, φ〉 +
∫ s

t
〈AX (r)− B(X (r), X (r))+ f (r, a(r)),φ〉〈V ∗,V 〉dr

+
∫ s

t
〈dWQ(r),φ〉 for each s ∈ [t, T ] , P− a.e.

• A process X (·) ∈ M2
μ(t, T ; H) is called a strong solution of (3.423) with initial

condition X (t) = ξ if

E

[∫ T

t
|X (r)|2V2

dr

]
< +∞

and we have

X (s) = ξ +
∫ s

t
(AX (r)− B(X (r), X (r))+ f (r, a(r)))dr +

∫ s

t
dWQ(r)

for each s ∈ [t, T ], P-a.e.

Proposition 3.128 Let 0 ≤ t < T and p ≥ 2. Let μ =
(
�,F ,

{
F t

s

}
s∈[t,T ] ,

P,WQ
)
be a generalized reference probability space, and let Hypothesis3.126 be

satisfied. Let ξ beanF t
t -measurable H-valued randomvariable such thatEμ[|ξ|p] <

+∞, and let a(·) ∈ Uμ
t . Then:

(i) There exists a unique variational solution X (·) = X (·; t, ξ, a(·)) of (3.423)
with initial condition X (t) = ξ. The solution has continuous trajectories and
satisfies, for t ≤ s ≤ T ,

E|X (s)|p+E

∫ s

t
|X (τ )|21|X (τ )|p−2dτ ≤ E|ξ|p+C(p, R, Q)(s−t) (3.433)

and

E

[
sup

t≤s≤T
|X (s)|p

]
≤ C(p, T, R, Q)

(
1+ E|ξ|p) . (3.434)

(ii) If E|ξ|p1 < +∞, then the variational solution X (·) = X (·; t, ξ, a(·)) is a strong
solution with trajectories continuous in V . Moreover, we have for t ≤ s ≤ T
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E|X (s)|p1 + E

∫ s

t
|X (τ )|22|X (τ )|p−21 dτ ≤ E|ξ|p1 + C(p, R, Q1)(s − t)

(3.435)
and

E

[
sup

t≤s≤T
|X (s)|p1

]
≤ C(p, T, R, Q1)

(
1+ E|ξ|p1

)
. (3.436)

(iii) If μ1 is another generalized reference probability space, ξ1 is an
F t,μ1

t -measurable H-valued random variable such that E
μ1[|ξ1|p] < +∞,

a1(·) ∈ Uμ1
t , and

LP1(ξ1, a1(·),WQ,1(·)) = LP(ξ, a(·),WQ(·)),

then
LP1(a1(·), X1(·)) = LP(a(·), X (·)), (3.437)

where X1(·) = X1(·; t, ξ1, a1(·)) is the variational solution of (3.423) in μ1

with control a1(·) and initial condition ξ1.

Proof (i) The general strategy of the proof of part (i) is similar to the proof of
Theorem3.102. More precisely, part (i) is proved in [444], Proposition 3.3 (see also
[124] for a similar proof and [177, 567] for related results and estimates). We sketch
the main points of the proof since we will need them to explain parts (ii) and (iii).

Let {e1, e2, ...} be the orthonormal basis of H composed of eigenvectors of A,
Hn := span{e1, ..., en}, and Pn be the orthogonal projection in H onto Hn . In this case
Pn extends to the orthogonal projection in V ∗ onto Hn . Also we have Pn A = APn .
Let Xn(·) be the unique strong solution of
{
dXn(s) = (Pn AXn(s)− PnB(Xn(s), Xn(s))+ Pn f (s, a(s)))ds + PndWQ(s)

Xn(t) = Pnξ.
(3.438)

We first assume that p ≥ 8. It follows, using Itô’s formula (see also [444]), that
we have

E

[
sup

t≤s≤T
|Xn(s)|p +

∫ T

t
|Xn(s)|2V (1+ |Xn(s)|p−2)ds

]
≤ M for all n.

It can also be deduced from the estimates for Xn(·) obtained from Itô’s formula, and
It ô’s isometry, that the norms of Xn(·) in L8(�; L4((t, T )×O)) are bounded uni-
formly inn. Therefore, there exists a process X (·) ∈ M2

μ(t, T ; V )∩L p(�; L∞(t, T ; H)),
and aFT -measurable random variable η ∈ L2(�; H) such that (up to a subsequence
and identifying X (·) with its versions)

Xn(·) ⇀ X (·) in M2
μ(t, T ; V ), Xn(T ) ⇀ η in L2(�; H),
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Xn(·) → X (·) weak star in L p(�; L∞(t, T ; H)).

We can also assume that X (·) ∈ L8(�; L4((t, T ) × O)). Passing to the limit as
n → +∞ we obtain that there is a process F0(·) ∈ M2

μ(t, T ; V ∗) such that, up to a
subsequence,

Pn AX
n(·)− PnB(Xn(·), Xn(·)) ⇀ F0(·) in M2

μ(t, T ; V ∗),

X (·) is a variational solution of

{
dX (s) = (F0(s)+ f (s, a(s)))ds + dWQ(s)

X (t) = ξ,

X (T ) = η, and, by Theorem3.101, X (·) ∈ L p(�;C([t, T ], H)) and P-a.e.

|X (s)|2 = |ξ|2 + 2
∫ s

t
〈F0(r)+ f (r, a(r)), X (r)〉〈V ∗,V 〉dr

+2
∫ s

t
〈dWQ(r), X (r)〉 + Tr(Q)(s − t).

One then uses an argument based on themonotonicity of the operator−Ax+B(x, x)
on balls in L4(O) (see [444]) to show that F0(·) = AX (·)− B(X (·), X (·)), i.e. X (·)
is a variational solution of (3.423), and thus using (3.427), we have

|X (s)|2 = |ξ|2 − 2
∫ s

t
|X (r)|21dr + 2

∫ s

t
〈 f (r, a(r)), X (r)〉dr

+2
∫ s

t
〈dWQ(r), X (r)〉 + Tr(Q)(s − t).

(3.439)

(The monotonicity argument uses the fact that X (·) ∈ L8(�; L4((t, T )×O)).) We
also have a similar identity as (3.439) for |Xn(s)|2. Taking expectation in both of them
for s = T , passing to the limit as n →+∞, and recalling that Xn(T ) ⇀ X (T ), we
deduceE|Xn(T )|2 → E|X (T )|2, which givesE|Xn(T )−X (T )|2 → 0 as n →+∞.
Replacing T by s ∈ (t, T ), the same arguments give E|Xn(s)− X (s)|2 → 0.

Estimates (3.433) and (3.434) can now be proved by applying Itô’s formula to the
function ϕ(r) = r p/2 and using identity (3.439).

Uniqueness of variational solutions for any p ≥ 2 follows from Proposition
3.129-(i).

Let now 2 ≤ p < 8. For n ≥ 1 we define �n := {ω ∈ � : |ξ(ω)| ≤ n} and
ξn := ξ1�n . Then X (·; t, ξn, a(·)) = X (·; t, ξm, a(·)) on �n if n ≤ m, and estimates
(3.433) and (3.434) are true for the processes X (·; t, ξn, a(·)), n ≥ 1. Therefore,
the process X (s) := limn→+∞ X (·; t, ξn, a(·)) is well defined, (3.433) and (3.434)
for X (·; t, ξn, a(·)) follow from Fatou’s lemma, and it is easy to see that X (·) is a
variational solution of (3.423).
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(ii) Let p ≥ 8 and Xn(·) be the processes from part (i). It follows from Itô’s
formula, Hypothesis3.126 and (3.428), that there is anM ≥ 0 such that the processes
Xn(·) satisfy in this case

E

[
sup

t≤s≤T
|Xn(s)|p1 +

∫ T

t
|Xn(s)|22(1+ |Xn(s)|p−21 )ds

]
≤ M for all n.

Therefore by passing to a weak limit we obtain that the variational solution from part
(i) satisfies X (·) ∈ L p(�; L∞(t, T ; V ))∩M2

μ(t, T ; V2), and thus it is a strong solu-

tion. Moreover, (−A)
1
2 (AX (r)− B(X (r), X (r))+ f (r, a(r))) ∈ M2

μ(t, T ; V−1),
the process

(−A)
1
2 X (s) = (−A)

1
2 ξ

+
∫ s

t
(−A)

1
2 (AX (r)− B(X (r), X (r))+ f (r, a(r))) dr +

∫ s

t
(−A)

1
2 dWQ(r)

is a continuous process with values in V−1, and (−A)
1
2 X (·) ∈ M2

μ(t, T ; V ). Thus,
by Theorem3.101, X (·) ∈ L p(�;C([t, T ], V )) and P-a.e.

|X (s)|21 = |ξ|21 − 2
∫ s

t

(|AX (r)|2 + 〈 f (r, a(r)), AX (r)〉) dr

−2
∫ s

t
〈dWQ(r), AX (r)〉 + Tr(Q1)(s − t).

(3.440)

Estimates (3.435) and (3.436) now follow by standard arguments applying Itô’s
formula to the function ϕ(r) = r p/2 and using identity (3.440). For 2 ≤ p < 8 we
proceed as in the proof of part (i).

(iii) Similarly to the proof of part (ii) of Theorem3.102, if p ≥ 8 and X1(·) is the
variational solution in the generalized reference probability space μ1 and Xn

1 (·) are
the solutions of the approximating problems (3.438) in this space, then

LP1(a1(·), Xn
1 (·)) = LP(a(·), Xn(·)),

and thus (3.437) follows since Xn
1 (s) → X1(s) in L2(�1; H) and Xn(s) → X (s) in

L2(�; H) for every s ∈ [t, T ]. For 2 ≤ p < 8 we have

LP1(a1(·), X1(·; t, ξn1 , a1(·))) = LP(a(·), X (·; t, ξn, a(·))),

which gives the claim in the limit as n →+∞. �

Without loss of generality we will always assume from now on that the Q-Wiener
processes in the reference probability spaces have everywhere continuous paths.
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Proposition 3.129 Let0 ≤ t < T and p ≥ 2. Letν =
(
�,F ,

{
F t

s

}
s∈[t,T ] , P,WQ

)

be a reference probability space, and let Hypothesis3.126 be satisfied. Let ξ, η be
F t

t -measurable H-valued random variables such that E
ν[|ξ|p + |η|p] < +∞, and

let a(·) ∈ Uν
t . Then:

(i) There exists a constant C independent of t, ξ, η, a(·) and μ, such that a.s. on �

|X (s)− Y (s)|2 +
∫ s

t
|X (τ )− Y (τ )|21dτ ≤ |ξ − η|2exp

{∫ s

t
C |X (τ )|21dτ

}

(3.441)

for all s ∈ [t, T ], where X (·) = X (·; t, ξ, a(·)),Y (·) = Y (·; t, η, a(·)) are
solutions of (3.423) with initial conditions X (t) = ξ and Y (t) = η.

(ii) If |x |1 ≤ R1 then there exists a constant C = C(p, T, R, R1, Q) such that

E|X (s)− x |p ≤ C(p, T, R, R1, Q)(s − t), for all s ∈ [t, T ], (3.442)

where X (·) = X (·; t, x, a(·)).
(iii) For every initial condition x ∈ V there exists a modulus ω, independent of the

reference probability spaces ν and controls a(·) ∈ Uν
t , such that

E|X (s)− x |21 ≤ ωx (s − t), for all s ∈ [t, T ], (3.443)

where X (·) = X (·; t, x, a(·)).
Proof (i) Let Z(·) = X (·)− Y (·). Then Z(·) satisfies, for s ∈ [t, T ],

Z(s) = ξ − η +
∫ s

t
AZ(τ )dτ +

∫ s

t
[B(Y (τ ), Y (τ ))− B(X (τ ), X (τ ))]dτ .

Hence, using (3.427) and (3.430), we obtain

|Z(s)|2 = |ξ − η|2 − 2
∫ s

t
|Z(τ )|21dτ −

∫ s

t
b(Z(τ ), X (τ ), Z(τ ))dτ

≤ |ξ − η|2 − 2ν
∫ s

t
|Z(τ )|21dτ +

∫ s

t
C |Z(τ )|1|X (τ )|1|Z(τ )|dτ

≤ |ξ − η|2 − ν

∫ s

t
|Z(τ )|21dτ + C

∫ s

t
|X (τ )|21|Z(τ )|2dτ . (3.444)

Here we have used Young’s inequality. Then it follows from Gronwall’s lemma that

|Z(s)|2 ≤ |ξ − η|2exp{
∫ s

t
C |X (τ )|21dτ } P-a.s.

Plugging this back into (3.444) yields (3.441) with another constant C .
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(ii) Let Y (·) = X (·)− x . Then, for s ∈ [t, T ],

Y (s) =
∫ s

t
(AX (τ )− B (X (τ ), X (τ ))+ f (τ , a(τ ))) dτ +

∫ s

t
dW (τ ).

Therefore, applying Itô’s formula, taking expectation, and using (3.427) and the
Cauchy–Schwarz inequality, we obtain

E|Y (s)|p ≤ E

∫ s

t
p〈AX (τ )− B (X (τ ), X (τ ))+ f (τ , a(τ ))), Y (τ )〉|Y (τ )|p−2dτ

+ E

∫ s

t

p(p − 1)

2
tr(Q)|Y (τ )|p−2dτ

≤ − p

2
E

∫ s

t
|X (τ )|21|Y (τ )|p−2dτ + CpE

∫ s

t
|x |21|Y (τ )|p−2dτ

+ C(p, R, R1, Q)E

∫ s

t
(|Y (τ )|p−1 + |Y (τ )|p−2)dτ

+ pE

∫ s

t
|b(X (τ ), X (τ ), x)||Y (τ )|p−2dτ .

Since

|b(X (τ ), X (τ ), x)| ≤ C |X (τ )|1|X (τ )||x |1 ≤ 1

2
|X (τ )|21 +

C2

2
|X (τ )|2|x |21,

plugging this into the previous inequality and using (3.434) finally yields

E|Y (s)|p ≤ C(p, R, R1, Q)E

∫ s

t
(|Y (τ )|p−1 + |Y (τ )|p−2 + |X (τ )|2|Y (τ )|p−2)dτ

≤ C(p, T, R, R1, Q)(s − t).

(iii) If (3.443) is not satisfied then there are ε > 0, an(·) ∈ Ut (which we can
assume to be F t,0

s -predictable) and sn → t such that E|Xn(sn) − x |21 ≥ ε for all
n ≥ 1, where Xn(·) = X (·; t, x, an(·). By Corollary2.21 and Proposition3.128-(iii),
we can assume that all an(·) are defined on the same reference probability space.

However, it follows from (3.442) and (3.435) that, up to a subsequence, we have

Xn(sn) → x strongly in L2(�; H) and weakly in L2(�; V ).

Since the weak sequential convergence in L2(�; V ) implies

|x |21 ≤ lim inf
n→∞ E|X (sn)|21,

this, together with (3.435), implies |x |21 = limn→∞ E|X (sn)|21. Therefore X (sn) → x
strongly in L2(�; V ), contrary to our assumption. �
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3.13.2 The Value Function

In this section we show continuity properties of the value function of the stochastic
optimal control problem and the dynamic programming principle.

To minimize non-essential technical difficulties we will assume that the running
cost function l is independent of t . The case of l depending on t is a straightforward
extension of the methods presented here. The continuity of the value function is not
entirely trivial since continuous dependence estimates in the mean for solutions of
the stochastic Navier–Stokes equations depend on exponential moments of solutions
(3.441) and these seem to be bounded only for a short time (see Corollary XI.3.1
in [567], also [541]). We make the following assumptions about the cost functions l
and g.

Hypothesis 3.130 The functions l : V ×� → R, and g : H → R are continuous
and there exist k ≥ 0 and for every r > 0 a modulus σr such that

|l(x, a)|, |g(x)| ≤ C(1+ |x |k1) for all x ∈ V, a ∈ �, (3.445)

|l(x, a)− l(y, a)| ≤ σr (|x − y|1) if |x |1, |y|1 ≤ r, a ∈ � (3.446)

|g(x)− g(y)| ≤ σr (|x − y|) if |x |1, |y|1 ≤ r. (3.447)

Proposition 3.131 Let Hypotheses3.126 and 3.130 be satisfied. Then:

(i) For every r > 0 there exists a modulus ωr such that for every t ∈ [0, T ],
a (·) ∈ Ut

|J (t, x; a(·))− J (t, y; a(·))| ≤ ωr (|x − y|) if |x |1, |y|1 ≤ r. (3.448)

(ii) The value function v satisfies the dynamic programming principle, i.e. for every
0 ≤ t ≤ η ≤ T and x ∈ V ,

v(t, x) = inf
a(·)∈Ut

E

{∫ η

t
l(X (s; t, x, a(·)), a(s))ds + v(η, X (η; t, x, a(·)))

}
.

(3.449)
(iii) For every r > 0 there exists a modulus ωr such that

|v(t1, x)− v(t2, y)| ≤ ωr (|t1 − t2| + |x − y|) (3.450)

for all t1, t2 ∈ [0, T ] and |x |1, |y|1 ≤ r , and there exists a C ≥ 0 such that

|v(t, x)| ≤ C(1+ |x |k1) (3.451)

for all t ∈ [0, T ] and x ∈ V .
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Proof (i) Let x, y ∈ V, t ∈ [0, T ] and a (·) ∈ Ut . For every m > 0 let Dm

be a constant such that σm(s) ≤ 1
m + Dms. Define, for s ∈ [t, T ], X (s) =

X (s; t, x, a(·)),Y (s) = Y (s; t, y, a(·)), and Am = {ω ∈ � : maxt≤s≤T |X (s)|1 ≤
m}, Bm = {ω ∈ � : maxt≤s≤T |Y (s)|1 ≤ m}. Then, using (3.436), (3.441), (3.445)
and (3.446), we obtain

E

∫ T

t
|l(X (s), a(s))− l(Y (s), a(s))|ds ≤ T

m
+ E

∫ T

t
Dm |X (s)− Y (s)|1 1Am∩Bm ds

+E

∫ T

t
C(2+ |X (s)|k1 + |Y (s)|k1) 1�\(Am∩Bm )ds

≤ T

m
+ Dm |x − y|E

∫ T

t
exp

{
C
∫ s

t
|X (τ )|21dτ

}
1Am ds

+
∫ T

t
C
(
2+ (E|X (s)|2k1 )

1
2 + (E|Y (s)|2k1 )

1
2

) (
(P(� \ Am))

1
2 + (P(� \ Bm))

1
2

)
ds

≤ T

m
+ DmT |x − y|eCTm2 + C1(p, T, R, Q1)(1+ |x |k1 + |y|k1)

1+ |x |1 + |y|1
m

.

Applying the same process to estimate |g(X (T )) − g(Y (T ))| we therefore obtain
that for every r,m > 0 there exist constants cm, dr such that, for every t ∈ [0, T ]
and a (·) ∈ Ut ,

|J (t, x; a(·))− J (t, y; a(·))| ≤ dr
m
+ cm |x − y| if |x |1, |y|1 ≤ r.

Estimate (3.448) now follows by taking the infimum over all m > 0.
(ii) We need to show that the problem satisfies the assumptions of Hypothe-

sis 2.12. However, here the statement of the DPP is restricted to points in V but
the filtrations are still generated by Q-Wiener processes with values in H . Thus to
proceed with the proof of the DPP described in Sect. 2.3 it is enough to assume in
Hypothesis2.12 that the random variable ξ there satisfies E

μ|ξ|21 < +∞. We recall
that in this case we have strong solutions, so conditions (A0) and (A2) follow from
the definition of solution and standard arguments. In particular, (A0) follows from
(3.441) and (A2) from an obvious generalization of (3.441). Condition (A1) follows
from Proposition3.128-(iii). We point out that if LP1(X1(·; t1, x, a1(·)), a1(·)) =
LP2(X2(·; t1, x, a2(·)), a2(·)) as processes with values in H × � then, by Lemma
1.17-(i), they have the same laws as processes with values in V × �. The proof of
condition (A3) starts in the same way as in its proof in Proposition2.16, however the
arguments are now obvious since here the stochastic integral is just Wt1(s).

(iii) We notice that (3.448) implies

|v(t, x)− v(t, y)| ≤ ωr (|x − y|) (3.452)

for all t ∈ [0, T ] and |x |1, |y|1 ≤ r . Moreover, (3.451) is a direct consequence of
(3.436) and (3.445).
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Let now 0 ≤ t1 < t2 ≤ T, x ∈ V, |x |1 ≤ r . We will define, for s ∈ [t, T ],
X (s) = X (s; t1, x, a(·)). Using (3.436), (3.442), (3.449), (3.451), (3.452), we obtain
for m > r ,

|v(t1, x)− v(t2, x)| ≤ sup
a(·)∈Ut1

E

∫ t2

t1

(1+ |X (s)|k1)ds

+ sup
a(·)∈Ut1

E|v(t2, X (t2))− v(t2, x)|

≤ C(R, T, Q1, r)(t2 − t1)+ sup
a(·)∈Ut1

{
E
(
C(1+ |X (t2)|k1 + |x |k1)1{|X (t2)|1>m}

)}

+ sup
a(·)∈Ut1

Eσm (|X (t2)− x |)

≤ C(R, T, Q1, r)(t2 − t1)+ C(R, T, Q1)(1+ |x |k1)
1+ |x |1

m

+σm

(
C(R, Q, r)(t2 − t1)

1
2

)
.

(We also used that σm above can be assumed to be concave.) The result now follows
by taking the infimum over m > r . �

3.13.3 Viscosity Solutions and the Comparison Theorem

Since we only have continuity of the value function on [0, T ] × V , the definition
of a viscosity solution has to be restricted to this space. From the point of view of
the HJB equation it might be better to set it up in this space, however because of the
associated control problem, we want to keep H as our reference space. We achieve it
by a proper choice of test functions. By using a special radial function of | · |1 as test
functionwe first restrict the points wheremaxima orminima occur in the definition of
viscosity sub/solution to be in (0, T )× V . Then we require that the points where the
maxima/minima occur belong to (0, T )× V2. Having this property we can interpret
all terms appearing in the HJB equation. In this way we gain some coercive terms
which had to be discarded in the generic definition given in Sect. 3.3, which are
very useful in the proof of the comparison principle. The definition is meaningful
as we are able to show, using properties of the Navier–Stokes equations and the
coercivity of the operator −A, that the value function is a viscosity solution. The
definition of viscosity solution here is thus similar to the one used in Sects. 3.11 and
3.12, however we use a radial test function of a different type. If different continuity
requirements were imposed in Hypothesis3.130, we would have different continuity
properties of the value function, and thenwe could workwith a definition of viscosity
solution which more closely resembles the definition from Sect. 3.11, as was done
for first-order equations in [321].
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Definition 3.132 A function ψ is a test function for Eq. (3.425) if ψ = ϕ + δ(t)
(1+ |x |21)m , where
(i) ϕ ∈ C1,2 ((0, T )× H), and is such that ϕt , Dϕ, D2ϕ are uniformly continuous

on [ε, T − ε] × H for every ε > 0.
(ii) δ ∈ C1 ((0, T )) is such that δ > 0 on (0, T ), and m ≥ 1.

The function h(t, x) = δ(t)(1+ |x |21)m is not Fréchet differentiable in H . There-
fore the terms involving Dh and D2h, in particular 〈Ax − B(x, x), Dh(t, x)〉 and
Tr(QD2h(t, x)) have to be understood properly. We define

Dh(t, x) := −δ(t)
(
2m(1+ |x |21)m−1Ax

)
,

and we will write
Dψ := Dϕ+ Dh

even though this is a slight abuse of notation. Then, if (t, x) ∈ (0, T )×V2, Dψ(t, x)
makes sense, and so does the term 〈Ax − B(x, x), Dψ(t, x)〉. As regards the term
Tr(QD2ψ(t, x)), without defining D2h(t, x), we interpret it by defining

Tr(QD2ψ(t, x)) := Tr(QD2ϕ(t, x))+ δ(t)
(
2m(1+ |x |21)m−1Tr(Q1)

+4m(m − 1)(1+ |x |21)m−2|Q
1
2 Ax |2).

It will be seen in the next section that the above interpretations appear as direct
consequences of Itô’s formula applied to h.

We give a definition of viscosity solution for a general Eq. (3.425) where the
Hamiltonian function F is not necessarily given by (3.426). Thus we assume in this
section that F : [0, T ] × V × H → R is any function.

Definition 3.133 Aweakly sequentially upper-semicontinuous (respectively, lower-
semicontinuous) function u : (0, T ] × V → R is called a viscosity subsolution
(respectively, supersolution) of (3.425) if u(T, y) ≤ h(y) (respectively, u(T, y) ≥
h(y)) for all y ∈ V and if, for every test function ψ, whenever u − ψ has a global
maximum (respectively u+ψ has a global minimum) over (0, T )×V at (t, x), then
x ∈ V2 and

ψt (t, x)+ 1

2
Tr(QD2ψ(t, x))+ 〈Ax − B(x, x), Dψ(t, x)〉 + F(t, x, Dψ(t, x)) ≥ 0

(respectively,

−ψt (t, x)− 1

2
Tr(QD2ψ(t, x))− 〈Ax − B(x, x), Dψ(t, x)〉 + F(t, x,−Dψ(t, x)) ≤ 0.)

A function u is a viscosity solution of (3.425) if it is both a viscosity subsolution
and a viscosity supersolution of (3.425).
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Hypothesis 3.134 F : [0, T ]×V ×H → R and there exist a modulus of continuity
ω, and moduli ωr such that for every r > 0 we have

|F(t, x, p)− F(t, y, p)| ≤ ωr (|x − y|1)+ ω (|x − y|1|p|) , if |x |1, |y|1 ≤ r,
(3.453)

|F(t, x, p)− F(t, x, q)| ≤ ω ((1+ |x |1)|p − q|) , (3.454)

|F(t, x, p)− F(s, x, p)| ≤ ωr (|t − s|), if |x |1, |p|1 ≤ r, (3.455)

|g(x)− g(y)| ≤ ωr (|x − y|), if |x |1, |y|1 ≤ r. (3.456)

Theorem 3.135 Let Hypothesis3.134 hold. Let u, v : (0, T ] × V → R be, respec-
tively, a viscosity subsolution, and a viscosity supersolution of (3.425). Let

u(t, x), −v(t, x), |g(x)| ≤ C(1+ |x |k1) (3.457)

for some k ≥ 0. Then u ≤ v on (0, T ] × V .

Proof We observe that weak sequential upper-semicontinuity of u and weak sequen-
tial lower-semicontinuity of v imply that

{
limt↑T (u(t, x)− g(x))+ = 0
limt↑T (v(t, x)− g(x))− = 0

(3.458)

uniformly on bounded subsets of V . We define for μ > 0,

uμ(t, x) = u(t, x)− μ

t
, vμ(t, x) = v(t, x)+ μ

t
.

Then uμ and vμ are, respectively, a viscosity subsolution, and a viscosity supersolu-
tion of

(uμ)t + 1

2
Tr(QD2uμ)+ 〈Ax − B(x, x), Duμ〉 + F(t, x, Duμ) = μ

T 2

and

(vμ)t + 1

2
Tr(QD2uμ)+ 〈Ax − B(x, x), Dvμ〉 + F(t, x, Dvμ) = − μ

T 2
.

Let m be a number such that m ≥ 1 and 2m ≥ k + 1. For 0 < ε, δ,β ≤ 1, we
consider the function

�(t, s, x, y) = uμ(t, x)− vμ(s, y)− |x − y|2
2ε

−δeKμ(T−t)(1+ |x |21)m − δeKμ(T−s)(1+ |y|21)m −
(t − s)2

2β
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and set
�(t, s, x, y) = −∞ if x, y /∈ V .

The constant Kμ will be chosen later. Obviously � → −∞ as max(|x |1, |y|1) →
+∞. We claim that � is weakly sequentially upper-semicontinuous on (0, T ] ×
(0, T ] × H × H .

It is well known that functions x → (1+ |x |21)m, y → (1+ |y|21)m and |x − y|2
are weakly sequentially lower-semicontinuous, respectively, in H and H × H . To
show that, say,

uμ(t, x)− δeKμ(T−t)(1+ |x |21)m

is weakly sequentially upper-semicontinuous on (0, T ] × H , we suppose that this is
not the case, i.e. there exist sequences tn → t ∈ (0, T ], xn ⇀ x ∈ H such that

lim sup
n→∞

(
uμ(tn, xn)− δeKμ(T−tn)(1+ |xn|21)m

)
> uμ(t, x)− δeKμ(T−t)(1+ |x |21)m .

If lim infn→∞ |xn|1 = +∞, this is impossible by (3.457). So there must exist a
subsequence (still denoted by (tn, xn)) such that lim supn→∞ |xn|1 < +∞. But then
we have xn ⇀ x in V , which contradicts the weak sequential upper-semicontinuity
of uμ.

Therefore � has a global maximum over (0, T ] × (0, T ] × H × H at some point
(t̄, s̄, x̄, ȳ) ∈ (0, T ] × (0, T ] × V × V , where |x̄ |1, |ȳ|1 are bounded independently
of ε,β for a fixed δ. We can assume that the maximum is strict. By the definition of
viscosity solution, x̄, ȳ ∈ V2. Moreover, it is standard to observe that

lim
β→0

(t̄ − s̄)2

2β
= 0 for fixed δ, ε, (3.459)

and

lim
ε→0

lim sup
β→0

|x̄ − ȳ|2
2ε

= 0 for fixed δ. (3.460)

If u � v it then follows from (3.460), (3.459), (3.456) and (3.458) that for small μ
and δ, we have t̄, s̄ < T if β and ε are sufficiently small.

We use the projections from the proof of Proposition3.128. Let {e1, e2, ...} be the
orthonormal basis of H composed of eigenvectors of A, HN := span{e1, ..., eN },
PN be the orthogonal projection in H onto HN , and QN = I − PN for N ≥ 2. We
define

û(t, x) = uμ(t, x)− 〈x, QN (x̄ − ȳ)〉
ε

+ |QN (x̄ − ȳ)|2
2ε

−|QN (x − x̄)|2
ε

− δeKμ(T−t)(1+ |x |21)m,
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v̂(s, y) = vμ(s, y)− 〈y, QN (x̄ − ȳ)〉
ε

+ |QN (y − ȳ)|2
ε

+ δeKμ(T−s)(1+ |y|21)m,

and we set û(t, x) = −∞, v̂(s, y) = +∞ if x, y /∈ V . Then û, v̂ are respectively
weakly sequentially upper- and lower-semicontinuous on (0, T ] × H and it is easy
to see (as in the proof of Theorem3.50) that

û(t, x)− v̂(s, y)− |PN (x − y)|2
2ε

− (t − s)2

2β

attains a strict globalmaximumover (0, T ]×(0, T ]×H×H at (t̄, s̄, x̄, ȳ).Moreover,
the functions û,−v̂ satisfy (3.53). Therefore the assumptions of Corollary3.29 are
satisfied for B = I there. Therefore there exist functions ϕk,ψk ∈ C2((0, T )× H)

for k = 1, 2, ... such that ϕk, (ϕk)t , Dϕk, D2ϕk,ψk, (ψk)t , Dψk, D2ψk are bounded
and uniformly continuous, and such that

û(t, x)− ϕk(t, x)

has a global maximum at some point (tk, xk) ∈ (0, T )× V ,

v̂(s, y)− ψk(s, y)

has a global minimum at some point (sk, yk) ∈ (0, T )× V , and

(
tk, xk, û(tk, xk), (ϕk)t (tk, xk), Dϕk(tk, xk), D

2ϕk(tk, xk)
)

k→∞−−−−−−−−−−−−→
R×H×R×R×H×L(H)

(
t̄, x̄, û(t̄, x̄),

t̄ − s̄

β
,
PN (x̄ − ȳ)

ε
, XN

)

(3.461)

(
sk, yk, v̂(sk, yk), (ψk)t (sk, yk), Dψk(sk, yk), D

2ψk(sk, yk)
)

k→∞−−−−−−−−−−−−→
R×H×R×R×H×L(H)

(
s̄, ȳ, v̂(s̄, ȳ),

t̄ − s̄

β
,
PN (x̄ − ȳ)

ε
, YN

)
,

(3.462)

where XN = PN XN PN , YN = PNYN PN and XN ≤ YN . Moreover, since the
functions û,−v̂ are weakly sequentially upper-semicontinuous, it follows from the
proof of Corollary3.29 (see the proof of Theorem3.27) that ϕk(t, x) = ϕk(t, PN x),
ψk(s, y) = ψk(s, PN y), and thus in particular we have

Dϕk(tk, xk) → PN (x̄ − ȳ)

ε
, Dψk(sk, yk) → PN (x̄ − ȳ)

ε
in H1. (3.463)
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In addition, it is easy to see that we must have |xk |1, |yk |1 ≤ C for some C . There-
fore xk ⇀ x̄, yk ⇀ ȳ in V . This, together with (3.461), (3.462), and the fact that
(t̄, s̄, x̄, ȳ) is the maximum point of �, implies

|xk |1 → |x̄ |1, |yk |1 → |ȳ|1,

which in turns gives
xk → x̄, yk → ȳ in V . (3.464)

By the definition of viscosity solution, we have xk, yk ∈ V2, and

− δKμe
Kμ(T−tk )(1+ |xk |21)m + (ϕk)t (tk, xk)

+ δ

2
eKμ(T−tk )

(
2mTr(Q1)(1+ |xk |21)m−1 + 4m(m − 1)|Q 1

2 Axk |2(1+ |xk |21)m−2
)

+ 1

2
Tr
(
QD2ϕk(tk, xk)+ 2QQN

)

+
〈
Axk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

−2mδeKμ(T−tk )(1+ |xk |21)m−1Axk
〉

− b

(
xk, xk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

)

+ F

(
tk, xk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

−2mδeKμ(T−tk )(1+ |xk |21)m−1Axk
)
≥ μ

T 2
. (3.465)

Above we have used (3.428) to get b (xk, xk, Axk) = 0. We now want to pass to the
limit as k →∞. Let Cμ be a constant such that

ω(s) ≤ μ

2T 2
+ Cμs.

It then follows from (3.454) that

∣∣∣∣F
(
tk, xk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

−2mδeKμ(T−tk )(1+ |xk |21)m−1Axk
)

−F

(
tk, xk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

)∣∣∣∣

≤ μ

2T 2
+ Cμ(1+ |xk |1)2mδeKμ(T−tk )(1+ |xk |21)m−1|Axk |.
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Moreover,

Cμ(1+ |xk |1)2mδeKμ(T−tk )(1+ |xk |21)m−1|Axk |
+ δ

2
eKμ(T−tk )

(
2mTr(Q1)(1+ |xk |21)m−1 + 4m(m − 1)|Q 1

2 Axk |2(1+ |xk |21)m−2
)

≤ 2mδC2
μe

Kμ(T−tk )(1+ |xk |21)m + mδeKμ(T−tk )|Axk |2(1+ |xk |21)m−1
+ δeKμ(T−tk )m(2m − 1)Tr(Q1)(1+ |xk |21)m
≤ mδeKμ(T−tk )|Axk |2(1+ |xk |21)m−1
+ δeKμ(T−tk ) (2mC2

μ + m(2m − 1)Tr(Q1)
)
(1+ |xk |21)m . (3.466)

Therefore, choosing Kμ = 1 + 2(2mC2
μ + m(2m − 1)Tr(Q1)) we obtain from

(3.465) and (3.466) that

− δ

2
Kμe

Kμ(T−tk )(1+ |xk |21)m + (ϕk)t (tk, xk)

+ 1

2
Tr
(
QD2ϕk(tk, xk)+ 2QQN

)

+
〈
Axk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

−mδeKμ(T−tk )Axk(1+ |xk |21)m−1
〉

− b

(
xk, xk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

)

+ F

(
tk, xk, Dϕk(tk, xk)+ QN (x̄ − ȳ)

ε
+ 2QN (xk − x̄)

ε

)
≥ μ

2T 2
. (3.467)

Using (3.461), (3.463), (3.464), (3.453)–(3.455), and the continuity of b on V ×
V × V , we obtain from (3.467) that the norms |Axk | are bounded and therefore
xk ⇀ x̄ in V2. Therefore, using the above again, we can pass to the lim sup as
n →∞ in (3.467) to get

− δ

2
Kμe

Kμ(T−t̄)(1+ |x̄ |21)m +
t̄ − s̄

β
+ 1

2
Tr (QXN + 2QQN )

+ 〈Ax̄, x̄ − ȳ

ε
〉 − b

(
x̄, x̄,

x̄ − ȳ

ε

)
+ F

(
t̄, x̄,

x̄ − ȳ

ε

)
≥ μ

2T 2
. (3.468)

Similarly, we obtain

δ

2
Kμe

Kμ(T−s̄)(1+ |ȳ|21)m +
t̄ − s̄

β
+ 1

2
Tr (QYN − 2QQN )

+〈Aȳ, x̄ − ȳ

ε
〉 − b

(
ȳ, ȳ,

x̄ − ȳ

ε

)
+ F

(
s̄, ȳ,

x̄ − ȳ

ε

)
≤ − μ

2T 2
. (3.469)
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Combining (3.468) and (3.469), using XN ≤ YN , and then sending N →∞ yields

δ

2

(
(1+ |x̄ |21)m + (1+ |ȳ|21)m

)+ |x̄ − ȳ|21
ε

+b
(
x̄, x̄,

x̄ − ȳ

ε

)
− b

(
ȳ, ȳ,

x̄ − ȳ

ε

)

+F

(
t̄, x̄,

x̄ − ȳ

ε

)
− F

(
s̄, ȳ,

x̄ − ȳ

ε

)
≤ − μ

T 2
. (3.470)

To estimate the trilinear form terms we use (3.427), (3.430), and then (3.460) to
produce

∣∣∣∣b
(
x̄, x̄,

x̄ − ȳ

ε

)
− b

(
ȳ, ȳ,

x̄ − ȳ

ε

)∣∣∣∣

= 1

ε
|b (x̄ − ȳ, x̄, x̄ − ȳ)| ≤ C

ε
|x̄ |1|x̄ − ȳ||x̄ − ȳ|1 (3.471)

≤ δ

2
|x̄ |21 + Cδ

|x̄ − ȳ|2
ε

|x̄ − ȳ|21
ε

≤ δ

2
(1+ |x̄ |21)m + σ2(β, ε; δ,μ)

|x̄ − ȳ|21
ε

,

where, for fixed μ, δ, limε→0 lim supβ→0 σ2(β, ε; δ,μ) = 0.
Finally, we need to estimate the terms containing F . We know that for μ and δ

fixed, |x̄ |1, |ȳ|1 ≤ Rδ for some Rδ > 0. Let Dμ,δ be a constant such that

ωRδ
(s) ≤ μ

4T 2
+ Dμ,δs,

and define Rδ,ε := 2Rδ/ε. Then (3.453), (3.455), (3.459) and (3.460) imply

∣∣∣∣F
(
t̄, x̄,

x̄ − ȳ

ε

)
− F

(
s̄, ȳ,

x̄ − ȳ

ε

)∣∣∣∣

≤ ωRδ,ε
(|t̄ − s̄|)+ ωRδ

(|x̄ − ȳ|1)+ ω

(
|x̄ − ȳ|1 |x̄ − ȳ|

ε

)

≤ ωRδ,ε
(|t̄ − s̄|)+ 3μ

4T 2
+ Dμ,δ|x̄ − ȳ|1 + Cμ|x̄ − ȳ|1 |x̄ − ȳ|

ε

≤ ωRδ,ε
(|t̄ − s̄|)+ 3μ

4T 2
+ Dμ,δ|x̄ − ȳ|1 + |x̄ − ȳ|21

2ε
+ 2C2

μ

|x̄ − ȳ|2
ε

≤ 3μ

4T 2
+ σ3(β, ε; δ,μ)+ Dμ,δ|x̄ − ȳ|1 + |x̄ − ȳ|21

2ε
, (3.472)

where, for fixed μ, δ, limε→0 lim supβ→0 σ3(β, ε; δ,μ) = 0.
Therefore, using (3.471) and (3.472) in (3.470), we obtain

(
1

2
− σ2(β, ε; δ,μ)

) |x̄ − ȳ|21
ε

−Dμ,δ|x̄− ȳ|1 ≤ − μ

4T 2
+σ3(β, ε, δ;μ). (3.473)
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We now see that if ε and β are small, then 1
2 − σ2(β, ε; δ,μ) > 1

4 and that

lim
ε→0

inf
r>0

(
r2

4ε
− Dμ,δr

)
= 0.

Therefore, it remains to take lim infε→0 lim infβ→0 in (3.473) to obtain a contradic-
tion, which proves that we must have u ≤ v. �

3.13.4 Existence of Viscosity Solutions

We go back to the HJB equation (3.425) with the Hamiltonian function F defined by
(3.426) and show that the value function of the associated stochastic optimal control
problem is its viscosity solution.

Theorem 3.136 Let Hypotheses3.126 and 3.130 be satisfied, and let in addition
f : [0, T ] × � → V be such that f (·, a) is uniformly continuous, uniformly for
a ∈ �. Then the value function v defined by (3.424) is the unique viscosity solution of
the HJB equations (3.425)–(3.426) within the class of viscosity solutions u satisfying

|u(t, x)| ≤ C(1+ |x |k1), (t, x) ∈ (0, T ] × V,

for some k ≥ 0.

Proof First of all we see that under our assumptions, the Hamiltonian F in (3.426)
satisfies Hypothesis 3.134. Moreover, by Proposition3.131, the value function v sat-
isfies (3.450), (3.451), and the dynamic programming principle (3.449). In partic-
ular, v is weakly sequentially continuous on (0, T ] × V . Therefore, if v is a vis-
cosity solution of (3.425)–(3.426), the uniqueness part is a direct consequence of
Theorem3.135. We will only show that the value function is a viscosity supersolu-
tion. The proof that v is a viscosity subsolution is easier and uses the same techniques.
To this end, let ψ (t, x) = ϕ (t, x)+ δ(t)(1+ |x |21)m be a test function and let v+ψ
have a global minimum at (t0, x0) ∈ (0, T )× V .

Step 1. We need to show that x0 ∈ V . By (3.449), for every ε > 0 there exists an
aε (·) ∈ Ut0 such that, writing Xε (·) for X (·; t0, x0, aε(·)), we have

v (t0, x0)+ ε2 > E

{∫ t0+ε

t0

l (Xε (s) , aε(s)) ds + v (t0 + ε, Xε (t0 + ε))

}
.

We can assume that aε is F t0,0
s -predictable and thus, by Corollary2.21 and

Proposition3.128-(iii), we can assume that all aε(·) are defined on the same ref-
erence probability space ν, i.e. aε (·) ∈ Uν

t0 . Since for every (t, x) ∈ (0, T )× V

v (t, x)− v (t0, x0) ≥ −ϕ (t, x)+ ϕ (t0, x0)− δ(t)(1+ |x |21)m + δ(t0)(1+ |x0|21)m,
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we have

ε2 − E

∫ t0+ε

t0

l (Xε (s) , aε(s)) ds ≥ E [v (t0 + ε, Xε (t0 + ε))− v (t0, x0)]

≥ E
[− ϕ (t0 + ε, Xε (t0 + ε))+ ϕ (t0, x0)

−δ(t0 + ε)
(
1+ |Xε (t0 + ε) |21

)m + δ(t0)
(
1+ |x0|21

)m ]
.

Set λ = inf t∈[t0,t0+ε0] δ (t) for some fixed ε0 > 0, and take ε < ε0. Applying Itô’s
formula to ϕ (s, Xε(s)) and δ(s)

(
1+ |Xε(s)|21

)m
, together with identity (3.440), in

the inequality above, and then dividing both sides by ε, we obtain

ε− 1

ε
E

∫ t0+ε

t0

l (Xε (s) , aε (s)) ds

≥ −1

ε
E

[ ∫ t0+ε

t0

(
ϕt (s, Xε (s))+ 〈AXε (s)− B (Xε (s) , Xε (s)) , Dϕ (s, Xε (s))〉

+ 〈 f (s, aε (s)) , Dϕ (s, Xε (s))〉 + 1

2
Tr
(
QD2ϕ (s, Xε (s))

) )
ds

]

−1

ε
E

[ ∫ t0+ε

t0

(
δ′ (s)

(
1+ |Xε (s) |21

)m + mTr(Q1)
(
1+ |Xε (s) |21

)m−1

−2mδ(s)
(|AXε (s) |2 + 〈 f (s, aε (s)) , AXε (s)〉) (1+ |Xε (s) |21

)m−1

+2m(m − 1)|Q 1
2 AXε (s) |2 (1+ |Xε (s) |21

)m−2
)
ds

]
. (3.474)

By the definition of λ it then follows that

2mλ

ε
E

∫ t0+ε

t0

|Xε (s) |22
(
1+ |Xε (s) |21

)m−1
ds

≤ ε+ 1

ε
E

[ ∫ t0+ε

t0

(
− l (Xε (s) , aε (s))+ ϕt (s, Xε (s))

+〈AXε (s)− B (Xε (s) , Xε (s)) , Dϕ (s, Xε (s))〉
+ 〈 f (s, aε (s)) , Dϕ (s, Xε (s))〉 + 1

2
Tr
(
QD2ϕ (s, Xε (s))

) )
ds

]

+1

ε
E

[ ∫ t0+ε

t0

(
δ′ (s)

(
1+ |Xε (s) |21

)m + mTr(Q1)
(
1+ |Xε (s) |21

)m−1

−2mδ(s) 〈 f (s, aε (s)) , AXε (s)〉 (1+ |Xε (s) |21
)m−1

+2m(m − 1)|Q 1
2 AXε (s) |2 (1+ |Xε (s) |21

)m−2
)
ds

]
. (3.475)
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We now have
|l (Xε (s) , aε (s))| ≤ C

(
1+ |Xε (s) |k1

)
,

|ϕt (s, Xε (s))| ≤ C(1+ |Xε (s) |),

|〈AXε (s) , Dϕ (s, Xε (s))〉| ≤ λ

2
|Xε (s) |22 + C

(
1+ |Xε (s) |2) ,

|〈B (Xε (s) , Xε (s)) , Dϕ (s, Xε (s))〉| = |b (Xε (s) , Xε (s) , Dϕ (s, Xε (s)))|
≤ C |Xε (s) |1|Xε (s) |2 (1+ |Xε (s) |) ≤ λ

2
|Xε (s) |22 + C

(
1+ |Xε (s) |41

)
,

|Tr (QD2ϕ (s, Xε (s))
) |, | 〈 f (s, aε (s)) , Dϕ (s, Xε (s))〉 | ≤ C(1+ |Xε (s) |),

| 〈 f (s, aε (s)) , AXε (s)〉 | (1+ |Xε (s) |21
)m−1 ≤ C

(
1+ |Xε (s) |21

)m
,

and
|Q 1

2 AXε (s) |2 (1+ |Xε (s) |21
)m−2 ≤ C

(
1+ |Xε (s) |21

)m−1
.

Employing the above estimates in (3.475) and then using (3.436) yields

λ

ε

∫ t0+ε

t0

E|Xε (s) |22
(
1+ |Xε (s) |21

)m−1
ds ≤ C (3.476)

for some constant C independent of ε. Therefore there exist sequences εn → 0 and
tn ∈ (t0, t0 + εn) such that

E|Xεn (tn) |22 ≤ C,

and thus there exist subsequences, still denoted by εn, tn , such that

Xεn (tn) ⇀ x̄ weakly in L2(�ν; V2)

for some x̄ ∈ L2(�ν; V2) (and thus alsoweakly in L2(�ν; H)). However, by (3.442),
Xεn (tn) → x0 strongly in L2(�ν; H). Therefore, by the uniqueness of the weak limit
in L2(�ν; H), it follows that x0 = x̄ ∈ V2.

Step 2. We now prove the supersolution inequality. We need to “pass to the limit”
as ε → 0 in (3.474), at least along a subsequence. This operation is rather standard
formost of the terms, more precisely for those that only use convergence in the norms
of H and V . To explain how we deal with the easy terms, let us consider the cost
term.
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Let r ≥ |x0|1. Then, using (3.436), (3.443), (3.445) and (3.446), we have

∣∣∣∣
1

ε
E

∫ t0+ε

t0

[l (Xε (s) , aε (s)) ds − l (x0, aε (s))] ds

∣∣∣∣

≤ 1

ε
E

∫ t0+ε

t0

σr (|Xε (s)− x0|1) ds

+1

ε
E

∫ t0+ε

t0

C
(
1+ |Xε (s) |k1 + |x0|k1

)
1{|Xε(s)|1>r}ds

≤ σr

(
1

ε
E

∫ t0+ε

t0

|Xε (s)− x0|1ds
)
+ C

(
1+ |x0|k1

) 1+ |x0|1
r

≤ σr

(
1

ε
E

∫ t0+ε

t0

√
ωx0(ε)ds

)
+ C

(
1+ |x0|k1

) 1+ |x0|1
r

. (3.477)

The above implies that

∣∣∣∣
1

ε
E

∫ t0+ε

t0

[l (Xε (s) , aε (s)) ds − l (x0, aε (s))] ds

∣∣∣∣ ≤ γ(ε), (3.478)

where limε→0 γ(ε) = 0. Arguing like in (3.477), and using that (−A)
1
2 f is bounded

in H , (−A)
1
2 f (·, a) is uniformly continuous with values in H , uniformly for a ∈ �,

and Q
1
2 (−A)

1
2 extends to a bounded operator in H , we can deal with all the terms

in (3.474), except the terms

− 1

ε
E

∫ t0+ε

t0

〈AXε (s) , Dϕ (s, Xε (s))〉 , (3.479)

1

ε
E

∫ t0+ε

t0

〈B (Xε (s) , Xε (s)) , Dϕ (s, Xε (s))〉 , (3.480)

1

ε
E

∫ t0+ε

t0

2mδ (s) |AXε(s)|2
(
1+ |Xε (s) |21

)m−1
, (3.481)

which require special consideration.
We first notice that

E

∣∣∣∣
1

ε

∫ t0+ε

t0

√
δ(s)AXε (s)

(
1+ |Xε (s) |21

) m−1
2 ds

∣∣∣∣

2

≤ E
1

ε

∫ t0+ε

t0

δ(s)|Xε (s) |22
(
1+ |Xε (s) |21

)m−1
ds ≤ C (3.482)
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by (3.476). Therefore, there exists a sequence εn → 0 and Y ∈ L2(�ν, H) such that

Yn := 1

εn

∫ t0+εn

t0

√
δ(s)AXεn (s)

(
1+ |Xεn (s) |21

) m−1
2 ds ⇀ Y in L2(�ν, H)

as n → ∞. However, using arguments similar to those in (3.477), it is easy to see
that

A−1Yn = 1

εn

∫ t0+εn

t0

√
δ(s)Xεn (s)

(
1+ |Xεn (s)|21

) m−1
2 ds → √

δ(t0)x0
(
1+ |x0|21

) m−1
2

strongly in L2(�ν, H). Therefore it follows that

Y = √δ(t0)Ax0
(
1+ |x0|21

) m−1
2 .

Then, using the first inequality of (3.482), we get

lim inf
n→∞ E

1

εn

∫ t0+εn

t0

δ(s)|AXεn (s) |2 (1+ |Xεn (s) |21
)m−1

ds

≥ δ(t0)|Ax0|2
(
1+ |x0|21

)m−1
.

(3.483)

This takes care of the term (3.481). The same argument also shows that we can
assume that

1

εn

∫ t0+εn

t0

AXεn (s) ds ⇀ Ax0 in L2(�ν, H) as n →∞. (3.484)

As regards (3.479), denoting by ωϕ a modulus of continuity of Dϕ, we have by
(3.476), (3.442), and (3.484)

∣∣∣∣
1

εn
Et0

∫ t0+εn

t0

〈
AXεn (s) , Dϕ

(
s, Xεn (s)

)〉
ds − 〈Ax0, Dϕ (t0, x0)〉

∣∣∣∣

≤ 1

εn

∫ t0+εn

t0

(
E|AXεn (s) |2) 1

2

(
E
(
ωϕ

(
εn + |Xεn (s)− x0|

))2) 1
2
ds (3.485)

+
∣∣∣∣E
〈
1

εn

∫ t0+εn

t0

AXεn (s) ds − Ax0, Dϕ (t0, x0)

〉∣∣∣∣→ 0 as n →∞.

Finally, for (3.480), using (3.431), (3.476), (3.436), (3.442), (3.443), and (3.484),

∣∣∣∣
1

εn
E

∫ t0+εn

t0

b
(
Xεn (s) , Xεn (s) , Dϕ

(
s, Xεn (s)

))
ds − b (x0, x0, Dϕ (t0, x0))

∣∣∣∣

≤ 1

εn
E

∫ t0+εn

t0

|Xεn (s) |1|Xεn (s) |2ωϕ

(
εn + |Xεn (s)− x0|

)
ds
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+ 1

εn
E

∫ t0+εn

t0

|Xεn (s)− x0|1|Xεn (s) |2|Dϕ (t0, x0) |ds

+
∣∣∣∣
1

εn
E

∫ t0+εn

t0

b
(
x0, Xεn (s)− x0, Dϕ (t0, x0)

)
ds

∣∣∣∣

≤ 1

εn

∫ t0+εn

t0

(
E|Xεn (s) |22

) 1
2
(
E|Xεn (s) |41

) 1
4

(
E
(
ωϕ

(
εn + |Xεn (s)− x0|

))4) 1
4
ds

+C 1

εn

∫ t0+εn

t0

(
E|Xεn (s) |22

) 1
2
(
E|Xεn (s)− x0|21

) 1
2 ds (3.486)

+
∣∣∣∣Eb

(
x0,

1

εn

∫ t0+εn

t0

Xεn (s) ds − x0, Dϕ (t0, X0)

)∣∣∣∣→ 0 as n →∞.

In particular, the last term goes to zero since, by (3.484),

1

εn

∫ t0+εn

t0

Xεn (s) ds ⇀ x0 in L2(�ν, V2) as n →∞

and
Z → b (x0, Z , Dϕ (t0, x0))

is a bounded linear functional on L2(�ν, V2).
Therefore, using (3.478) (and similar estimates for other standard terms), (3.483),

(3.485), and (3.486) in (3.474), we obtain for small εn that

−ψt (t0, x0)− 1

2
Tr
(
QD2ψ(t0, x0)

)− 〈Ax0 − B (x0, x0) , Dψ (t, x0)〉

+ 1

εn
E

∫ t0+εn

t0

[〈 f (t0, aε (s)) ,−Dψ (t0, x0)〉 + l (x0, aε (s))] ds ≤ ω1 (εn)

for some modulus ω1. It now remains to take the infimum over a ∈ � inside the
integral and then send n →∞. �

Example 3.137 The following example satisfies the assumptions of Theorem3.136.
Let

l(x, a) = |curl x |2 + 1

2
|a|2,

g(x) = |x |2,

f (t, a) = Ka,

where K ∈ L(H, V ) and � = BH (0, R) ⊂ H . Such a control and the singular
kernel of K can be approximately realized by a suitable Lorentz force distribution in
electrically conducting fluids such as liquid metals and salt water. The Hamiltonian
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function is then
F(x, p) = |curl x |2 + h(K ∗ p),

where h(·) : H → R is given by

h(z) := inf
a∈�

{
〈a, z〉H + 1

2
|a|2
}

and K ∗ is the adjoint of K considered as an operator from H to H . We can in fact
explicitly obtain h as

h(z) =

⎧
⎪⎨

⎪⎩

−1

2
|z|2 for |z| ≤ R

−R|z| + 1
2 R

2 for |z| > R.

We also remark that the optimal feedback control here is given formally as

ã(t) = ϒ(K ∗Du(t, x(t))),

where

ϒ(z) := Dh(z) =
⎧
⎨

⎩

−z for |z| ≤ R,

−z R
|z| for |z| > R.

Under additional conditions on Q, optimal feedback controls for this example are
discussed in Sect. 4.9.1.2 using mild solutions. �

3.14 Bibliographical Notes

Thematerial of Sect. 3.1.1 on B-continuity is based on [141, 142, 506]. The formula-
tion and the proof of the exponential moment estimates of Proposition3.18 is taken
from [541] while the rest of Sect. 3.1.2 mostly follows [142, 374]. More general
formulations of Theorem3.25 are in [403, 535]. Corollary3.26 was first introduced
in [142]. Other smooth or partially smooth perturbed optimization principles can be
found in [67, 185, 381].

The first version of a maximum principle for semicontinuous functions in Hilbert
spaces appeared in [412]. It was an infinite-dimensional version of a maximum
principle in domains of R

n (see e.g. [139]) and was applicable to a class of bounded
second-order equations (3.66). By a reduction to a finite-dimensional case and the use
of thefinite-dimensionalmaximumprinciple it provided test functionswhose second-
order derivatives satisfied proper inequalities on finite-dimensional subspaces, and
with the remaining parts of second-order derivatives becoming negligible for the
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class of equations considered as the dimension of the finite-dimensional subspaces
increased to+∞. A corrected and simplified proof of this result, which also included
its time-dependent version, based on the use of so-called partial sup-convolutions,
appeared in [140]. These maximum principles have been adapted to unbounded
equations first in [361, 537, 538] and later in various settings in [318, 322, 323, 374,
376]. The version stated in Theorem3.27 is general and new as we tried to formulate
it in a way that would be more directly applicable to various classes of equations. Its
proof draws on the collective body of work from the above cited papers. A scaling
reduction to obtain Corollary3.29 was introduced in [361]. A different type of time-
dependent maximum principle, similar in the spirit to its finite-dimensional version
in [139], is in [140], see Remark3.30 for more on this.

A definition of viscosity solution similar to the one presented in Sect. 3.3 was
introduced in [537, 538]. It was based on the notion of a B-continuous viscosity
solution developed by Crandall and P.L. Lions in [141, 142]. An earlier paper [411]
dealing with a specific second-order HJB equation for an optimal control of a Zakai
equation also used some ideas of the B-continuous viscosity solution. The material
of Sect. 3.3 is mostly based on [374, 537, 538], however the definitions of viscosity
solutions are more general. Lemma3.37 is taken from [376]. A different definition
of viscosity solution for second-order equations in Hilbert spaces was proposed by
Ishii in [361]. It was related to the definition for first-order equations in [360]. Ishii’s
viscosity sub/supersolutions are allowed to be discontinuous and the definition uses
a special (convex) function to deal with the unboundedness in the equation. The
function is related to the equation and can be thought of as an energy function
for the controlled deterministic/stochastic PDE related to the HJB equation. The
advantage of this definition is that viscosity solutions can be relatively easily obtained
by Perron’s method and the unbounded operator A (together with other terms) can
be nonlinear. However, it seems to be difficult to apply this definition to control
problems and no attempts have been made in this direction. The idea of using special
functions as part of test functions in the definition of viscosity solution to exploit
the coercivity of the operator A also appeared in [97, 144] (see also [249, 321]) and
later for second-order equations in [318, 322, 323, 376], see Sects. 3.9, 3.11–3.13.

We only brieflymentioned bounded equations in Sect. 3.3.1. The definition of vis-
cosity solution in Sect. 3.3.1 is taken from [412] where the theory of such equations
was developed for equations satisfying Hypothesis3.47. In this paper an equivalent
definition using second-order jets is also discussed. For equations that do not satisfy
Hypothesis3.47 a stronger definition of viscosity solution was introduced in [410].
It allowed for more general test functions which are not necessarily twice Fréchet
differentiable. Both papers contain comparison and existence results. Uniqueness
of solutions is obtained in [410] by a combination of stochastic and analytic tech-
niques. Perron’s method is discussed in [412] while connections with stochastic
optimal control are discussed in [410]. In particular, [410] contains proofs of sub-
and super-optimality inequalities of dynamic programming. Regularity results for
bounded equations and their obstacle problems have been obtained in [410, 542].
Existence and uniqueness results for bounded equations can also be found in [378],
in particular one can find there proofs of comparison principles using a parabolic
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maximum principle from [140], which allows one to relax the way viscosity sub-
solutions and supersolutions attain the initial/terminal values. A Dirichlet boundary
value problem for a linear equation was investigated in [374] and a risk-sensitive
control problem in [540]. An obstacle problem related to optimal stopping and pric-
ing of American options was studied in [293]. Classical results for bounded linear
equations can be found in [179].

The first comparison theorems for B-continuous viscosity sub/supersolutions of
equations discussed in Sect. 3.5 were proved in [537, 538]. These works dealt with
the case of a compact operator B and the proofs of comparison in most part relied on
a combination of techniques developed for first-order equations in [141, 142] and the
maximum principle arguments of [140, 412]. Slightly different techniques, but also
based on the maximum principle of [412], were used to prove the comparison prin-
ciple with Ishii’s definition of solution in [361]. Some of Ishii’s methods were later
used in other comparison proofs. Comparison results for the equations of Sect. 3.5
without the compactness assumption on B are in [374] and the proofs of comparison
in various special cases are contained in [318, 322, 323, 376, 380]. The comparison
theorem for equationswith quadratic gradient terms is in [541]. The papers [361, 376]
show comparison for discontinuous viscosity sub- and supersolutions. The material
of Sect. 3.5 is to some extent new and incorporates formulations and techniques of
[361, 374, 537, 538]. The statements of Theorems3.50, 3.54, 3.56, 3.58 are new and
include general growth conditions for viscosity sub- and supersolutions. The proofs
of the above comparison theorems are also to some extent new. Comparison theo-
rems with general growth conditions for B-continuous viscosity sub/supersolutions
of first-order equations can be found in [403].

Direct proofs that value functions of stochastic optimal control problems inHilbert
spaces are viscosity solutions of their HJB equations can be found, in various cases, in
[323, 410, 411].An early attempt in this directionwas alsomade in [461]. The general
finite time horizon optimal control problem (3.119) and (3.120) and its connection
to B-continuous viscosity solutions of Eq. (3.122) and (3.123) was studied in [374].
Our presentation expands and generalizes [374]. Some results which were part of the
folklore of the theory are stated in Sect. 3.6 for the first time.We presented continuity
properties of the value functions in both finite and infinite horizon cases and under
bothweak and strong B-conditions.Only theweak B-condition casewas discussed in
[374]. The use of the dynamic programming principle is also fully explained and the
proofs that value functions are viscosity solutions of the associated HJB equations
are given in all cases. We tried to include all the details. The proof of a stronger
version of the dynamic programming principle in the stopping time formulation in
Sect. 3.6.2 uses some arguments from [452].

The material of Sect. 3.7 on finite-dimensional approximations is based on the
results of [537, 538], however it contains some improvements of the results and
their proofs. The method of finite-dimensional approximations provides a way to
construct B-continuous viscosity solutions for equations which may not be HJB
equations related to optimal control problems, for instance for Isaacs equations. It
requires, however, that the operator B be compact. The method, together with its
basic techniques, was introduced in [141] for first-order equations, and was later
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generalized to second-order equations in [537, 538]. A version of this method was
also used in [318]. Lemma3.83-(ii) was proved in [141] by viscosity solution argu-
ments. Our proof uses direct functional analytic arguments. Other proofs of exis-
tence employ Perron’s method (see the comments in this section in the paragraph on
Perron’s method). For Isaacs equations, probabilistic representation formulas can be
obtained [260, 464, 466, 539].

Section3.8 on singular perturbations is based on [541]. Singular perturbation
problems in finite dimensional spaces have been studied extensively by viscosity
solution methods and the reader can consult [40, 263] for results and references.
The problems have not yet been widely investigated in Hilbert or other infinite-
dimensional spaces. Nisio studied such a problem in [466] in connection with a risk-
sensitive control problem. Also a singular limit problem related to a risk-sensitive
control problem with bounded evolution in a Hilbert space was studied in [540]. In
[541] convergence of viscosity solutions of singularly perturbed HJB equations was
used to investigate large deviation problems for stochastic PDEs perturbed by small
noise. The case of integro-PDEs was studied in [543]. Both papers [541, 543] use a
general PDE approach to large deviations developed in [250] (see also [246–248]).

Perron’s method for viscosity solutions of PDEs in finite-dimensional spaces was
introduced by Ishii in [358] (see also [139]). It was extended to bounded equations
in Hilbert spaces in [412]. Perron’s method provides another way to obtain existence
of viscosity solutions for equations that may not necessarily be of the HJB type, for
instance for Isaacs equations. For unbounded first and second-order equations it was
shown to work with Ishii’s definitions of viscosity solution [360, 361] and with the
Tataru–Crandall–Lions definition of viscosity solution [143]. For B-continuous vis-
cosity solutions Perron’s method was introduced in [376] under an assumption that
the unbounded operator A has some coercivity properties. Perron’s method requires
the notion of a discontinuous viscosity solution, so in [376] a more general defin-
ition of a discontinuous viscosity solution using B-semicontinuous envelopes was
introduced. This definition borrowed an idea from the definitions in [360, 361] of
combining the upper and lower-semicontinuous envelopes with the radial test func-
tions. The method of half-relaxed limits of Barles–Perthame requires compactness.
The fact that it may not work in infinite-dimensional spaces was noticed in [15,
540] (see Example3.43 in this book). A version of half-relaxed limits presented in
Sect. 3.9 was developed in [376] where more results on Perron’s method and half-
relaxed limits can be found.

The material of Sect. 3.10 is based on [375]. The infinite-dimensional Black–
Scholes equation was analyzed in [302], where the existence of smooth solutions
was proved for smooth data, and an obstacle problem for the Black–Scholes equation
was studied in [583] from the point of view of Bellman’s inclusions. A similar
obstacle problem for a related model was studied in [293]. A non-local Black–
Scholes–Barenblatt equation associated with the HJMM model driven by a Lévy
type noise was investigated in [545]. A Kolmogorov equation related to the problem
of hedging of a derivative of a risky asset whose volatility as well as the claim may
depend on the past history of the asset was studied in [517], where C1+α regularity
of viscosity solutions was obtained on special finite-dimensional subspaces.



362 3 Viscosity Solutions

Section3.11 follows [323]. The first result about viscosity solutions of the HJB
equation for control of the DMZ equation appeared in [411], where the equation was
studied in a standard L2 space and the operators Ska were bounded multiplication
operators. The paper [411] used a combination of probabilistic and analytic tech-
niques to deal with the uniqueness of the viscosity solution of the HJB equation.
In [344] it was shown that the value function is a viscosity solution in a very weak
sense when the HJB equation is considered in the space of measures. (A regularity
result for a related equation in the space of measures was obtained in [346].) Another
paper on the subject is [22]. The approach of [323] used the theory of B-continuous
viscosity solutions of [537, 538] together with an idea that originated in [97, 144]
(also [360, 361] had related ideas) to use a special radial function and the coercivity
of operators in the equation to “improve” the points where the maxima/minima occur
in the definition of a viscosity solution. This idea of using a special energy function
related to the underlying controlled state equation as a part of the test functions was
also used in many cases for first- and second-order equations [249, 318, 321, 322,
376]. The viscosity solution approach of [323] is also presented in [467], where
a different proof of the dynamic programming principle is given. The book [467]
discusses in detail, in Chaps. 5 and 6, a partially observed optimal control problem,
the separated problem, the optimal control of the DMZ equation, and other related
material. It complements the material in Sects. 2.6.6 and 3.11 and gives a slightly
different perspective. Our short introduction to variational solutions in Sect. 3.11.1 is
based on [124, 294, 386, 388, 491]. Semi-linear stochastic parabolic equations and
the DMZ equation are also discussed in [467], where Itô’s formulas are proved for
the original test functions used in [323], which are similar to but different from the
test functions in Sect. 3.11.5. Our presentation of the various energy and continuous
dependence estimates for the DMZ equation follows, with small changes, [323]. The
reader can also find similar results in [467]. The material on viscosity solutions and
the value function of Sects. 3.11.5 and 3.11.6 has some differences from [323] as
we merged it into the presentation of the book and made some improvements and
corrections.

Section3.12 is based on [318] and fills in some missing details there. The HJB
equation in this section has second-order coefficients which are not trace class, so
the equation is also unbounded in the second-order terms. Since the equation is fully
nonlinear it cannot be dealt with by the techniques ofmild solutions.A change of vari-
ables is done to convert the equation to one with bounded second-order terms. This
is a rather ad hoc technique. Viscosity solutions of HJB equations with unbounded
second-order terms coming from control problems with state equations driven by
cylindrical Wiener processes have not yet been studied systematically. The defin-
ition of viscosity solution for the converted equation is similar to that in [97] and
uses a special radial function to guarantee that the points where the maxima/minima
occur belong to a better space (see the previous paragraph for the discussion on the
origins of this definition). A Cauchy problem for equations similar to the “converted”
equation was also studied in [560] using the techniques of [318]. Apart from [318],
boundary control problems and their associated HJB equations have been studied
via viscosity solution techniques in [577] for the stochastic case (with noise at the



3.14 Bibliographical Notes 363

boundary) and in [94, 96, 97, 221, 222] for the deterministic case. Second-order HJB
equations and stochastic boundary control/noise problems have been investigated via
mild solutions and Backward SDEs in [181, 189, 225, 310, 437, 574, 591, 592],
some of them also in connection with stochastic delay equations.

The material of Sect. 3.13 follows [322]. The definition of viscosity solution is
similar to those of [318, 323] (see the previous comments on the origins of these
definitions) however it uses a different energy function (a radial function of the | · |1
norm)which reduces the equation to a subspace of theHilbert space H . In this respect,
the definition is similar to the definitions in [360, 361]. A stationary equation similar
to (3.425) was also investigated in [559]. Viscosity solution approaches to first-
order HJB equations associated to optimal control of deterministic Navier–Stokes
equations are in [321, 526] (see also [534] for earlier attempts). A PDE-viscosity
solution approach to large deviations of stochastic two-dimensional Navier–Stokes
equations with small noise intensities is considered in [541], where convergence
of viscosity solutions of singularly perturbed HJB equations is studied. For results
on Kolmogorov and HJB equations by other approaches [33, 34, 158, 161, 255,
424, 512, 567] we refer to Sect. 4.9.1, and the short discussion at the beginning of
Sect. 3.13.

In this book we have not explicitly discussed Isaacs equations in Hilbert spaces
which are associated to zero-sum two-player stochastic differential games. For Isaacs
equations, one can prove existence of viscosity solutions by showing directly that
the associated upper/lower value function of the game is a viscosity solution of the
upper/lower Isaacs equation. Such results can be found in [260, 464, 466, 539].
This, however, is not easy since the proof of the dynamic programming principle
is very complicated and thus only limited results are available. Related results on
risk-sensitive stochastic control and differential games can be found in [462, 463,
465, 466, 540].

Other types of equations can be studied using the theory of viscosity solutions
presented in this chapter, for instance obstacle problems for HJB equations related to
optimal stopping problems, HJB equations for ergodic control problems. Compari-
son proofs easily extend to the case of obstacle problems. Explicit literature however
is limited. Obstacle problems for bounded equations have been studied in [293, 410,
542]. HJB equations for ergodic control have not been investigated by viscosity solu-
tions. In [301] they have been studied by the perturbation approach to mild solutions
and in [277] byBSDEs.LikewiseHJBequations for singular control problems and for
state constraints problems have not been studied in the infinite-dimensional stochastic
case in the viscosity solution framework. A singular stochastic control problem with
delay is studied by other methods in [6] and [242]. Concerning infinite-dimensional
state constraint control problems and viscosity solutions of the associated HJB equa-
tions, the readers may check [235, 236] for the stochastic case and [93, 238, 239,
244, 379] for the deterministic case. A stochastic viability problem for a subset of a
Hilbert space was studied by viscosity solutions in [86].

The viscosity solution approach toHJB equations for optimal control of stochastic
delay equations has also not been fully explored. Some results on the subject are in
[235, 236, 517], see also [238, 239, 244, 589, 590] for the deterministic case and
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first-order HJB equations. For other methods applicable to HJB equations for control
of stochastic delay equations we refer the reader to Chap. 5 (in particular Sects. 5.5
and 5.6) and Chap.6 (in particular Sect. 6.5).

Another unexplored area is viscosity solutions of HJB equations with unbounded
second-order terms which come from control problems with state equations driven
by Q-Wiener processes with Tr(Q) = +∞, i.e. such that wemay have Tr[(σ(t, x, a)

Q
1
2 )(σ(t, x, a)Q

1
2 )∗] = +∞. So far [318] has been the only paper on the subject in

a specific case. Up to now viscosity solution theory handles well fully nonlinear but
“degenerate” equationswhile the theory ofmild solutions handleswell semilinear but
“nondegenerate” equations. One would expect that the theory of viscosity solutions
can be extended to the fully nonlinear “nondegenerate” HJB equations (see also the
comments about [134] in the paragraph below discussing path-dependent PDEs).

There are also very few explicit results on viscosity solutions of boundary value
problems in Hilbert spaces. Only someDirichlet boundary value problems have been
studied. There exist comparison theorems (see Sect. 3.5), however equations studied
by viscosity solutions are “degenerate” and hence construction of barriers at the
boundary is not easy. Thus value functions may not be continuous up to the boundary
unless some conditions are imposed on the drift. ADirichlet boundary value problem
for a bounded linear equationwas investigated in [374] and a boundary value problem
for a bounded HJB equation related to a risk-sensitive control problem was studied
in [540]. Some results about value functions in bounded sets are sketched in [410].
A related paper for first-order HJB equations is [93]. Results using approaches of
mild and L2 solutions are limited to linear equations. We refer the reader to [36, 37,
165–168, 179, 497, 498, 546] and the references there for more. In [36, 37, 168]
Neumann boundary value problems are considered.

An interesting direction in the evolution of the notion of a viscosity solution in
infinite-dimensional spaces may come from the concept of path-dependent PDEs.
Path-dependent PDEs come from the study of problems driven by path-dependent
SDEs. In the finite dimensional spaces the notion of a path-dependent viscosity
solutionwas introduced in [205] and this notionwas extended to infinite-dimensional
spaces in [134]. In the Markovian case this approach gives an alternative way to treat
the HJB equations studied in this book. Its advantage is that it avoids the use of the
maximum principle and thus it can be applied to “non-degenerate” equations, the
continuity assumptions in the | · |−1 norm can be dropped, and the operator A does
not need to be maximal dissipative. It is not clear if this method can be applied to
fully nonlinear equations.

An emerging area of development for second-order equations in infinite-
dimensional spaces seems to be related to PDEs in spaces of probability measures,
in particular in the Wasserstein space. A second-order HJB equation in the space
of probability measures was studied in [346] in connection with partially observed
control and regularity of solutions was proved. Similar results were obtained for
first-order equations in [345]. Following the program described in [250], first-order
HJB equations can be used to study large deviations for empirical measures of sto-
chastic particle systems. Results in this direction are in [249–252] (see also the
references therein). Equations in the space probability measures also appear in
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context of Mean Field Control and Mean Field Games [48–50, 84, 98–100, 114,
289, 405]. In particular, the so-called Master Equations of Mean Field Games have
attracted a lot of attention. These are non-local equations, which in the case of
second-order or stochastic Mean Field Games are of second-order. So far only lim-
ited results about existence and in some cases uniqueness of classical and strong
solutions of first and second-orderMaster Equations ofMean Field Games have been
obtained in [55, 84, 100, 114, 289]. An interesting approach proposed by P.L. Lions
[98, 405] allows one to convert an equation in the Wasserstein space to an equation
in the Hilbert space L2, where measures with finite second moments become random
variables in L2 with given laws.

Another emerging direction isHJB integro-PDEs inHilbert spaceswhich are asso-
ciated to optimal control problems with state equations driven by Lévy processes or
randommeasures. Viscosity solutions have been introduced for such non-local equa-
tions in [543–545]. Comparison theorems have been proved in [544] and existence of
viscosity solutions and optimal control problems have been studied in [545]. Some
linear non-local PDEs and properties of transition semigroups for processes with
jumps have been studied by other methods in [14, 402, 485, 500–502].



Chapter 4
Mild Solutions in Spaces of Continuous
Functions

In this chapter we present the theory of regular solutions (i.e. at least C1 in the space
variable in a suitable sense) for a class of HJB equations in Hilbert spaces through a
perturbation approach which was first introduced in [147, 340] and then improved
and developed in various subsequent papers like [89, 90, 306, 307, 317] and later
[105, 107, 301, 309, 310, 431–434]. Similar results, but using a different method
based on a convex regularization procedure, were obtained in earlier papers [28–30]
in the special case of convex data and quadratic Hamiltonians.

The type of solutions we study here are calledmild solutions, in the sense that they
solve theHJB equation in a suitable integral form (see (4.5) and (4.9)), where only the
first derivative appears. Such kinds of solutions also appear in subsequent chapters:
Chap. 5, where they are used in a weaker sense (i.e. in spaces of integrable functions
with respect to a suitably chosen measurem), and Chap.6, where mild solutions are,
like here, studied in spaces of continuous functions, but with a completely different
method, based on the study of an associated Backward SDE.

As explained in the preface, the method presented in this chapter, in contrast to the
viscosity solutionmethod, works only for a special class of semilinear HJB equations
featuring suitable smoothing properties of the semigroup associated to the linear part
of the equation: these are the key tool to solve the equation and for this reason this
method is called here a “smoothing method”. The good thing is that this method
allows us to find very powerful results on existence, uniqueness and regularity of
solutions and to apply them to prove verification theorems and existence of optimal
feedback controls in a satisfactory way, an outcome which, up to now, has not been
achieved in the context of viscosity solutions.

We cover both the parabolic and the elliptic cases (associated, respectively, to
finite and infinite horizon optimal stochastic control problems). After an introduction
(Sect. 4.1), where we explain the main setup, and Sect. 4.2 with preliminaries, where
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we present some basic material on G-derivatives and on weighted spaces, we divide
the core of the chapter into eight sections:

• Section4.3 is devoted to smoothing properties of transition semigroups, which is
a key tool used to solve the HJB equations.

• Section4.4 contains general results on existence and uniqueness of mild solutions.
• Section4.5 explains how mild solutions can be seen as strong solutions, i.e. limits
of classical solutions.

• Sections4.6 and 4.7 contain more powerful results obtained when the underlying
transition semigroup is of Ornstein–Uhlenbeck type.

• Section4.8 contains applications of the results of Sects. 4.4 and 4.5 (plus the special
cases of Sects. 4.6 and 4.7) to a class of optimal stochastic control problemswithout
control in the diffusion coefficient.

• Section4.9 is devoted to special cases which can be treated by variants of the
same methods. For each case we present the results on existence and uniqueness
of regular solutions for the HJB equation and applications to stochastic optimal
control. Here proofs are not provided but precise references are given, together
with some ideas of the proofs in a few cases.

• Section4.10 is devoted to cases where an explicit representation of the solutions
can be found allowing us to solve the associated optimal control problem.

We conclude the chapter with bibliographical notes. The setting we use here is
partly borrowed from [179, 309, 310, 431–434, 582].

4.1 The Setting and an Introduction to the Methods

We present the class of HJB equations studied in this chapter and ideas about the
methods used to prove existence, uniqueness and regularity of their solutions. Our
main goal in this chapter is to develop a theory of such HJB equations which can be
used to solve the associated optimal control problems, i.e. to prove the analogues of
the results of Sect. 2.5, in particular the verification theorem (like Theorem 2.36) and
the existence of optimal feedbacks (like Corollary 2.38). Such results are contained
in Sect. 4.8, see in particular Sects. 4.8.1.5, 4.8.1.6, 4.8.2.4, 4.8.2.5.

Let H be a real separable Hilbert space with the inner product 〈·, ·〉H 1 and the
norm | · |H . We consider the following two types of second-order HJB equations2 in
H : the parabolic HJB equation (for a given T > 0)

1We omit the subscript H when it is clear from the context.
2In the literature, such equations are sometimes called semilinear Kolmogorov equations (see e.g.
[284]).
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⎧
⎪⎨

⎪⎩

vt + 1

2
Tr [�(t, x)D2v] + 〈Ax + b(t, x), Dv〉 + F(t, x, v, Dv) = 0,

t ∈ [0, T ), x ∈ H,

v(T, x) = ϕ(x), x ∈ H,

(4.1)

and, for λ > 0, the elliptic HJB equation

λv − 1

2
Tr [�(x)D2v] − 〈Ax + b(x), Dv〉 − F(x, v, Dv) = 0, x ∈ H. (4.2)

In both cases the linear operator A : D(A) ⊂ H → H is the infinitesimal generator
of a strongly continuous semigroup

{
et A
}

t≥0 while the functions � : [0, T ] × H →
L+(H), b : [0, T ] × H → H , F : [0, T ] × H × R× H → H ,3 ϕ : H → R, are
Borelmeasurable functions (possibly unbounded in the sense that theymaybedefined
on smaller dense subsets). Precise assumptions on all such data will be given later
(see Sect. 4.4).

Sincewe have inmind applications to stochastic optimal control, we consider here
terminal value problems for the parabolic case. Clearly also initial value problems
of the same type can be studied using the same techniques.

The main idea for treating such equations here is to use a perturbation method
that we briefly outline in the following subsections, distinguishing the parabolic and
the elliptic cases. We mainly consider the case when the underlying basic space is
Cm(H) (or, in some cases, Bm(H) orUCm(H)) form ≥ 0.4 In most of the literature
the basic space is Cb(H) (or Bb(H) orUCb(H)). We choose to work with functions
with polynomial growth as in most applied examples arising in optimal control this
is a natural requirement for the data while boundedness is usually too restrictive (see
e.g. Sect. 2.6 and, in particular, Sects. 2.6.1 and 2.6.4). The case when the data are in
Cb(H) (or Bb(H) orUCb(H)) will then be a special case of the one presented here.

4.1.1 The Method in the Parabolic Case

We consider the linear operator corresponding to the linear part of Eq. (4.1) and
which is formally given by:

A(t) : D(A(t))⊂Cm(H)→ Cm(H);

A(t)φ = 1

2
Tr [�(t, x)D2φ] + 〈Ax + b(t, x), Dφ〉 ,

3In the elliptic case we have � : H → L(H), b : H → H and F : H × R× H → H .
4Recall that when m = 0 we use the notation Cb(H) and not C0(H) to denote the Banach space of
bounded and continuous functions.
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where D(A(t)) has to be suitably defined. Suppose that b : [0, T ] × H → H and
σ : [0, T ] × H → L(�, H) are given functions, where � is another real separable
Hilbert space (possibly equal to H ), and that5

�(t, x) = σ(t, x)σ∗(t, x).

Then the operator A(t) is, formally, the generator of the (two-parameter) transition
semigroup Pt,s associated to the H -valued diffusion process X (·) which solves the
following SDE in H :

dX (s) = [AX (s)+ b(s, X (s))]ds + σ(s, X (s))dW (s), s ∈ [t, T ], X (t) = x,
(4.3)

where, given a filtered probability space
(
�,F , {Fs}s∈[0,T ] ,P

)
,W = WI is a cylin-

drical Wiener process in�, see Remark 1.89. Assuming well-posedness of (4.3) and
denoting by X (·; t, x) its unique solution, the semigroup Pt,s is formally defined, for
any φ ∈ Bm(H) (m ≥ 0), as

Pt,s[φ](x) := E[φ(X (s; t, x)], 0 ≤ t ≤ s ≤ T,

(see Sect. 1.6, Eq. (1.95)). Using the operator A(t), the Eq. (4.1) can be rewritten as

⎧
⎨

⎩

vt +A(t)v + F(t, x, v, Dv) = 0, t ∈ [0, T ), x ∈ H,

v(T, x) = ϕ(x), x ∈ H.

(4.4)

Hence, using the semigroup Pt,s and the formula of variation of constants, we deduce
the following integral form (usually called the mild form) of Eq. (4.1):

v(t, x) = Pt,T [ϕ](x)+
∫ T

t
Pt,s [F(s, ·, v(s, ·), Dv(s, ·))] (x)ds, x ∈ H. (4.5)

Such form of our equation is weaker than the classical one in the sense that it requires
less regularity. We only need one derivative of the unknown function v instead of
two. Moreover, apart from ϕ and F , this equation depends on the other data only
through the operators Pt,s . Thus (4.5) is the equation studied in this chapter for the
parabolic case and the theory of existence and uniqueness of solutions is developed
making the assumptions, beyond those on ϕ and F , directly on the operators Pt,s .
Hence the theory may be applicable to more general cases, e.g. when the underlying
process X (·; t, x) is not a diffusion.

It is important to note that in many papers in the literature the authors study
initial value problems. To cover such problems we can simply reverse time, defining
u(t, x) := v(T − t, x). In this way the terminal value problem (4.1) becomes an

5This can always be done by choosing � = H and σ(t, x) = √�(t, x) for every (t, x) ∈ [0, T ] ×
H , see e.g. Theorem 12.33 of [521].
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initial value problem and the mild form is changed accordingly. Here we will keep
the terminal value problem as it is the natural form in which the HJB equations are
formulated when they are associated to optimal control problems.

To solve Eq. (4.5) we use a fixed point argument in a suitable space. Setting aside
technicalities, this is typically possible for any initial datum ϕ ∈ Cm(H), m ≥ 0, if
the semigroup Pt,s possesses the following smoothing property:

• the function x → Pt,s[ϕ](x) is differentiable (Gâteaux or Fréchet) for s > t
and there exists an integrable map γ : (0, T ] → (0,+∞) such that
‖DPt,s[ϕ]‖Cm ≤ γ(s − t)‖ϕ‖Cm ∀ϕ ∈ Cm(H), s ∈ (t, T ], x ∈ H.

(4.6)
Of course, if we want to take ϕ ∈ Bm(H), the above property should be true for all
such functions.

In the literature, in many cases, the function γ(s − t) is substituted, for simplic-
ity, with C(s − t)−α for some C > 0 and α ∈ (0, 1): occasionally we will also do
this here. When the Hamiltonian F is globally Lipschitz continuous in the last two
arguments (see Hypothesis 4.72) the Contraction Mapping Principle applied in a
suitable space allows us to find directly a global solution of (4.5) which is (Gâteaux
or Fréchet) differentiable. This case is treated in Sect. 4.4.1.

In the case when F is only locally Lipschitz (see Hypothesis 4.169) things are
more complicated: we need to take more regular final datum ϕ (at least globally
Lipschitz) and to assume more regularity on F (namely a certain local Lipschitz
continuity of the derivative). With these assumptions we find local solutions by the
Contraction Mapping Principle and we prove that such solutions are global, using
suitable a priori estimates (see Sect. 4.7).

The solution of (4.5) that we will find with the method described above will be
called a mild solution of Eq. (4.1) (see Definition 4.70).

To perform the optimal synthesis in the case when the HJB equation (4.1) arises
from a stochastic optimal control problem, we need to extend to mild solutions some
results presented in Sect. 2.5.1 when the solutions are taken in a classical sense (see
e.g. Definition 2.32).

To do this we prove that the mild solution of (4.1) is a strong solution, i.e. it is the
limit (in some sense which involves the so-called K-convergence or π-convergence,
see Appendix B.5.1) of classical solutions (defined similarly to Definition 2.32) of
suitably chosen approximating equations (see Definitions 4.129 and 4.132).

In performing applications to stochastic optimal control it often happens that the
“standard” derivative Dv is not the right one needed to find the optimal feedback
control. This happens, for example, in the boundary control case (see Sect. 2.6.2) or in
the cases treated in Sects. 2.6.4 and 2.6.8.1 (when “the noise enters the systemwith the
control”, see Chap. 6 and also [431, 432]). In such cases the Hamiltonian F depends
on the differential Dv “through an operator G”. When G is a constant (possibly
unbounded) operator on H (we refer to Sect. 4.2.1 or to [432] for more general and
precise definitions) this roughly means that F(t, x, v, Dv) = F0(t, x, v,G∗Dv) for
a suitable function F0. In such cases the method described above can be applied with
a different smoothing assumption (which we call G-smoothing) on the semigroup
Pt,s , namely that, denoting G∗D formally by DG ,
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• the function x → DGPt,s[ϕ](x) is well defined (in some sense) for s > t
and there exists an integrable map γG : (0, T ] → (0,+∞) such that
‖DGPt,s[ϕ]‖Cm ≤ γG(s − t)‖ϕ‖Cm ∀ϕ ∈ Cm(H), s ∈ (t, T ], x ∈ H.

(4.7)
The most common choice in the literature for the function γG is γG(s) = Cs−α for
some C > 0 and α ∈ (0, 1) (see e.g. [431, 432]).

This G-smoothing property holds under different assumptions than those guar-
anteeing the smoothing property (4.6). For example, in the boundary control case
(see Sect. 2.6.2) G = (−A)β (where A is the Laplace operator) is unbounded and so
the G-smoothing is somehow stronger and more difficult to obtain. In the cases of
Sects. 2.6.4 and 2.6.8, G is bounded and with “narrow” image (finite-dimensional in
the delay case) so the G-smoothing is a weaker property and easier to obtain.

We will use this setting (which includes the previous one as the particular case
when G = I ) in the rest of the chapter.

4.1.2 The Method in the Elliptic Case

The stationary HJB equation (4.2) is treated by a similar method. We first consider,
formally, as for the parabolic case, the operator

A : D(A)⊂Cm(H)→ Cm(H); Aφ = 1

2
Tr [�(x)D2φ] + 〈Ax + b(x), Dφ〉 ,

where D(A) has to be properly defined. Suppose that b : H → H and σ : H →
L(�, H) are given functions for some real separable Hilbert space � and �(x) =
σ(x)σ∗(x). Then the operator A is, again formally, the generator of the (one-
parameter) transition semigroup Ps associated to the H -valued diffusion process
X which solves the SDE

dX (s) = [AX (s)+ b(X (s))]ds + σ(X (s))dW (s), s ∈ [0,+∞), X (0) = x ∈ H. (4.8)

As in the previous section, W = WI is a cylindrical Wiener process in �, on a
given filtered probability space (�,F , {Fs}s≥0 ,P). Assuming well-posedness of
(4.8) and denoting by X (·; 0, x) = X (·; x) its unique solution, the semigroup Ps is
formally defined, for any φ ∈ Bm(H) (m ≥ 0), as

Ps[φ](x) := E[φ(X (s; x)], 0 ≤ s < +∞

(see Sect. 1.6, in particular Eq. (1.99)). Similarly to what is done in the parabolic case
we can then rewrite the HJB equation (4.2) as

[(λI −A)u](x) = F(x, u(x), Du(x))

and so, by expressing formally the resolvent as the Laplace transform of the semi-
group (see e.g. [479], proof of Theorem 3.1, p. 8–9), as
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u(x) = (λI −A)−1[F(·, u, Du)](x) =
∫ +∞

0
e−λs Ps[F(·, u, Du)](x)ds. (4.9)

We call (4.9) the mild form of Eq. (4.2) and solutions of it are called mild solutions
of Eq. (4.2) (see Definition 4.102). Similarly to the parabolic case, this equation only
depends on the operators Ps and the function F and thus the theorymay be applicable
to more general cases, e.g. when the underlying process X (·; t, x) is not a diffusion.

As for the parabolic case, this equation is solved by a fixed point argument,
finding a unique (Gâteaux or Fréchet) differentiable solution, if the semigroup Ps
has the following smoothing property, completely analogous to the one required for
the parabolic case (except for the exponential term which is needed here to control
the growth at infinity):

• the function x → Ps[ϕ](x) is differentiable (Gâteaux or Fréchet) for s > 0 and
there exist a ≥ 0 and a map γ : (0,+∞)→ (0,+∞) integrable on (0,T)
for each T > 0 and bounded in a neighborhood of +∞, such that
‖DPs[ϕ]‖Cm ≤ γ(s)eas‖ϕ‖Cm ∀ϕ ∈ Cm(H), s ∈ (0,+∞), x ∈ H.

(4.10)
In contrast to the parabolic case, an existence/uniqueness theorem (see Sect. 4.4.2)
holds in general only if the number λ is big enough; this is a standard fact which
also arises with other techniques, see e.g. Hypothesis 3.72 in Chap.3 on viscosity
solutions. Under suitable additional hypotheses and using monotone operator tech-
niques, one can extend such a result to any λ > 0, see Sects. 4.6.2 and 6.7. As for the
parabolic case, to perform the optimal synthesis in applications to stochastic optimal
control, one needs to prove that the mild solution is indeed a strong solution (see
Definition 4.140), i.e. the limit (in a suitable sense involving π or K-convergence)
of classical solutions (see Definition 4.139).

Finally, again as in Sect. 4.1.1, to cover important families of applied examples,
here it is more convenient to study directly the case when the Hamiltonian F is, for
a given possibly unbounded operator G, of the form

F(x, v, Dv) = F0(x, v, DGv),

where DGv (roughly equal to G∗Dv) is the G-derivative, as explained heuristically
in the previous subsection and, more precisely, in Sect. 4.2.1. This setting will be
used in the rest of the chapter.

4.2 Preliminaries

4.2.1 G-Derivatives

We start by recalling the notion of G-derivative as in [286] (see also [431], Sect. 4
and [432]).
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Definition 4.1 Let X , Y and Z be three real Banach spaces. Let G : X → L(Z , X)

and consider a mapping f : X → Y .

• The G-directional derivative ∇G f (x; h) at a point x ∈ X in the direction h ∈ Z
is defined as

∇G f (x; h) := lim
s→0

f (x + sG (x) h)− f (x)

s
, s ∈ R, (4.11)

where the limit above is taken in the norm of Y .
• We say that f is G-Gâteaux differentiable at a point x ∈ X if f admits the G-
directional derivative in every direction h ∈ Z and there exists a bounded linear
operator, the G-Gâteaux derivative ∇G f (x) ∈ L(Z , Y ), such that ∇G f (x; h) =
∇G f (x)h for all h ∈ Z . We say that f is G-Gâteaux differentiable on X if it is
G-Gâteaux differentiable at every point x ∈ X .

• We say that f is G-Fréchet differentiable (or simply G-differentiable) at a point
x ∈ X if it is G-Gâteaux differentiable and if the limit in (4.11) is uniform for h in
the unit ball of Z . In this case we call DG f (x) the G-Fréchet derivative (or simply
the G-derivative) of f at x . We say that f is G-Fréchet differentiable on X if it is
G-Fréchet differentiable at every point x ∈ X .

Note that, in the definition of the G-derivative, one considers only the directions
in X selected by the image of G(x). This is similar to what is done in many papers
in the theory of abstract Wiener spaces, considering the K -derivative, where K is
a subspace of X , see e.g. [329]. Similar concepts are also used in [147, 492] and
in Sect. 3.3.1 of [179]. A generalized notion of G-derivative in spaces L p(H,m)

is considered in relation to Dirichlet forms, see e.g. [422] (or also [154], Chap.3,
where it is called aMalliavin derivative). The same notion is used in Chap. 5 but with
a slightly different notation (see Definition 5.11 and the subsequent remark).

If f is Gâteaux (Fréchet) differentiable on X then, given anyG as in the definition
above, f is G-Gâteaux (Fréchet) differentiable on X and

∇G f (x) h = ∇ f (x) (G (x) h),
(
DG f (x) h = Df (x) (G (x) h)

)
, (4.12)

i.e. the G-directional derivative in the direction h ∈ Z is just the usual directional
derivative at a point x ∈ X in the direction G (x) h ∈ X . However, the notion of the
G-derivative allows us to deal with functions which are not Gâteaux differentiable.

Example 4.2 Consider f : R2 → R so that in the previous notation X = R
2,Y = R.

The function f (x) = |x1| x2 does not admit the directional derivative in the direction
h = (1, 0) at x = (0, x2) for x2 �= 0.However, taking Z = R andG(x1, x2) ≡ (0, 1),
we see that f admits the G-Fréchet derivative at every x ∈ R

2. �

Notation 4.3 If Y = R then the G-derivative (Gâteaux or Fréchet) takes values in
L(Z ,R) = Z∗. If Z is a Hilbert spacewewill identify Z with its dual, sowewill have
∇G f : X → Z and we will write

〈∇G f (x), h
〉

Z for ∇G f (x) h. Similar comments
apply to the G-Fréchet derivative.
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In the same spirit, when Y = R and both X and Z are Hilbert spaces, we iden-
tify the spaces X and Z with their duals. Hence, whenever f is Gâteaux (Fréchet)
differentiable at x ∈ X , identity (4.12) becomes

〈∇G f (x), h
〉

Z = 〈∇ f (x),G (x) h〉X =
〈
G (x)∗ ∇ f (x), h

〉

Z ,

and similarly for the Fréchet derivatives. �

We denote by Lu(Z , X) the set of linear closed operators (possibly unbounded)
with dense domain from Z to X . We extend the concept of the G-derivative to the
case when G : X → Lu(Z , X).

Definition 4.4 Let X , Y and Z be three real Banach spaces, let f : X → Y and let
G : X → Lu(Z , X).

• The G-directional derivative ∇G f (x; h) at a point x ∈ X in the direction h ∈
D(G(x)) is defined exactly as in (4.11).

• We say that f is G-Gâteaux differentiable at a point x ∈ X if f admits the G-
directional derivative in every direction h ∈ D(G(x)) and there exists a bounded
linear operator, the G-Gâteaux derivative ∇G f (x) ∈ L (Z , Y ), such that ∇G f
(x; h) = ∇G f (x) h for x ∈ X and h ∈ D(G(x)). We say that f is G-Gâteaux
differentiable on X if it is G-Gâteaux differentiable at every point x ∈ X .

• We say that f is G-Fréchet differentiable (or simply G-differentiable) at a point
x ∈ X if it is G-Gâteaux differentiable and if the limit in (4.11) is uniform for
h in the unit ball of Z intersected with D(G(x)). In this case we call DG f (x)
the G-Fréchet derivative (or simply the G-derivative) of f at x . We say that f
is G-Fréchet differentiable on X if it is G-Fréchet differentiable at every point
x ∈ X .

Remark 4.5 Even if f is Fréchet differentiable at x ∈ X , the G-derivative may not
exist at x when G is unbounded. Indeed, consider the following case. Let X be a
Hilbert space and G : D(G)⊂X → X be a closed linear operator on X with dense
domain and with unbounded adjointG∗ on X whose domain is D(G∗). Let f : X →
R be Fréchet differentiable on X . By the definition of G-directional derivative we
have, for every x ∈ X and h ∈ D(G),

∇G f (x; h) = 〈Df (x) ,Gh〉X .

On the other hand, if the G-derivative of f exists at x ∈ X then we should
have DG f (x) ∈ L(X,R) = X∗ (which we identify with X ). Hence, if f was G-
differentiable on X this would imply that, for any x ∈ X ,

∇G f (x; h) = 〈DG f (x), h
〉

X ,

from which we get

|∇G f (x; h) | = ∣∣〈DG f (x), h
〉

X

∣
∣ ≤ c|h|, ∀h ∈ D(G).
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This would mean that Df (x) ∈ D(G∗) for all x ∈ X . This may not be true, e.g.
when f (x) = |x |2. �

Remark 4.6 Let X be a Hilbert space. Observe that if G : D(G)⊂X → X is an ele-
ment of Lu(X, X) then we can consider it as a constant function X → L(D(G), X)

and, taking Z = D(G) (with the usual Hilbert structure on D(G), where the inner
product is given by 〈x, y〉 + 〈Gx,Gy〉), we fall into the setting of Definition 4.1.
In this case, denoting by Ḡ∗ the adjoint of G as an operator from D(G) to X , if
f : X → R is Gâteaux (Fréchet) differentiable at x ∈ X we have, for h ∈ D(G),

∇G f (x) h = 〈∇ f (x),Gh〉X =
〈
Ḡ∗∇ f (x), h

〉

Z ,

and similarly for the Fréchet derivatives. It should be clear to the reader that this
way of seeing the G-derivative for unbounded operators G is weaker than that of
Definition 4.4 due to the weaker continuity requirement on the G-derivative. For our
purposes (in particular in treating boundary control problems) we will be using the
stronger requirement of Definition 4.4. �

We now define, following [284, 431, 432], relevant classes of spaces.

Definition 4.7 Let X , Y and Z be three real Banach spaces and let X0 be a Borel
subset of X . For m ≥ 0, we define the linear space Bs

m(X0,L(Z , Y )) (respectively,
Cs
m (X0,L (Z , Y ))) to be the space of the mappings L : X0 → L (Z , Y ) such that,

for every z ∈ Z , L(·)z ∈ Bm (X0, Y ),6 (respectively, L(·)z ∈ Cm (X0, Y )).7 These
spaces are equippedwith the norm (which is finite by theBanach–Steinhaus theorem)

‖L‖Bs
m (X0,L(Z ,Y )) := sup

x∈X0

‖L (x)‖L(Z ,Y )

1+ |x |m . (4.13)

When L ∈ Cs
m (X0,L (Z , Y )) we write ‖L‖Cs

m (X0,L(Z ,Y )). When it is clear from the
context we will simply write ‖L‖Bs

m
and, for elements of Cs

m (X0,L (Z , Y )), ‖L‖Cs
m
.

When Y = R and Z is a Hilbert space, we identify Z with its dual and so L (Z , Y )

with Z , hence we will write Cs
m (X0, Z). In this case the strong continuity of a map

f : X0 → Z means that the map 〈 f (·), z〉Z is continuous for every z ∈ Z . When
m = 0, we will use the notation Bs

b (X0,L (Z , Y )) and Cs
b (X0,L (Z , Y )).

Proposition 4.8 Let m ≥ 0 and X0, X, Y and Z be as in Definition 4.7. The spaces
Bs
m(X0,L(Z , Y )) andCs

m (X0,L (Z , Y )), endowedwith the norm (4.13), are Banach
spaces.

6This property is usually called strong measurability of L . Note that, thanks to the Pettis measur-
ability theorem (see Lemma 1.17-(iv)), when Z is separable and Y = R

n , strong measurability of
L is equivalent to its measurability since the space L(Z ,Rn) is separable. This is not the case, in
general, when Y is infinite-dimensional.
7This property is usually called strong continuity of L .
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Proof We prove the claim for Cs
m (X0,L (Z , Y )). The proof for Bs

m (X0,L (Z , Y ))

is the same. Let ( fn)n∈N be a Cauchy sequence in Cs
m (X0,L (Z , Y )). Then, for

each x ∈ X0, by completeness of L(Z , Y ), fn(x)→ f (x) in L(Z , Y ) for some
f (x) ∈ L(Z , Y ). On the other hand, by completeness of Cm(X0, Y ), we also have,
for each z ∈ Z , fn(·)z → fz(·) in Cm(X0, Y ) for some fz ∈ Cm(X0, Y ). By unique-
ness of the limit we have f (x)z = fz(x) for each z ∈ Z and x ∈ X0. Hence,
f ∈ Cs

m (X0,L (Z , Y )). It remains to show that fn → f in the ‖·‖Cs
m (X0,L(Z ,Y )) norm,

that is

sup
x∈X0

sup
|z|Z=1

|( fn(x)− f (x))z|Y
1+ |x |m → 0.

To this end, for every z ∈ Z , |z|Z = 1 and n ∈ N , we have

|( fn(x)− f (x))z|Y
1+ |x |m = lim

k→∞
|( fn(x)− fk(x))z|Y

1+ |x |m ≤ lim sup
k→∞

‖ fn − fk‖Cs
m (X0,L(Z ,Y )).

The result follows since ( fn)n∈N is a Cauchy sequence in Cs
m (X0,L (Z , Y )). �

Definition 4.9 Let X , Y and Z be three real Banach spaces and let G : X →
Lu(Z , X). Let m ≥ 0.

A mapping f : X → Y belongs to the class B1,G
m (X, Y ) if f ∈ Bm (X, Y ), f is

G-Gâteaux differentiable on X , and ∇G f ∈ Bs
m (X,L(Z , Y )).8 We write

B1,G
m (X, Y ) := { f ∈ Bm (X, Y ) : ∇G f ∈ Bs

m (X,L(Z , Y ))
}
. (4.14)

Moreover, amapping f : X → Y belongs to the classG1,G
m (X, Y ) if f ∈ B1,G

m (X, Y ),
f is continuous, and itsG-Gâteaux derivative∇G f (·) is strongly continuous, namely

G1,G
m (X, Y ) := { f ∈ Cm (X, Y ) : ∇G f ∈ Cs

m (X,L(Z , Y ))
}
. (4.15)

Similarly we define

C1,G
m (X, Y ) := { f ∈ Cm (X, Y ) : DG f ∈ Cm (X,L(Z , Y ))

}
, (4.16)

UC1,G
m (X, Y ) := { f ∈ UCm (X, Y ) : DG f ∈ UCm (X,L(Z , Y ))

}
. (4.17)

Note that in the last two cases we require G-Fréchet differentiability.9 When
m = 0 we employ, as usual, the notation B1,G

b (X, Y ), G1,G
b (X, Y ), C1,G

b (X, Y ),
UC1,G

b (X, Y ). Moreover, when Y = R we omit it in the notation.

8Recall that, as noted above, when Z is separable and Y = R
n , we have Bs

m(X,L(Z , Y )) =
Bm(X,L(Z , Y )) thanks to the Pettis measurability theorem.
9One may think that, in such cases, G-Fréchet differentiability follows from the continuity of the
Gâteaux differential, however this is not obvious without further assumptions, see Remark 4.19.
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We endow B1,G
m (X, Y ) and its subspacesG1,G

m (X, Y ),C1,G
m (X, Y ),UC1,G

m (X, Y )

with the norm

‖ f ‖B1,G
m (X,Y ) := sup

x∈X
| f (x)|Y
1+ |x |m + sup

x∈X

∣
∣∇G f (x)

∣
∣
L(Z ,Y )

1+ |x |m , (4.18)

which we denote by ‖ f ‖G1,G
m (X,Y ) (respectively, ‖ f ‖C1,G

m (X,Y ) or ‖ f ‖UC1,G
m (X,Y )) when

f ∈ G1,G
m (X, Y ) (respectively, f ∈ C1,G

m (X, Y ) or f ∈ UC1,G
m (X, Y )). If it is clear

from the context, wewill often simplywrite ‖ f ‖B1,G
m

and ‖ f ‖G1,G
m
, ‖ f ‖C1,G

m
, ‖ f ‖UC1,G

m
.

Remark 4.10 In Appendix A the function spaces C1
m(X, Y ) and UC1

m(X, Y ), are
defined. It is immediate from the definitions that, when Z = X and G = I ,

C1,I
m (X, Y ) = C1

m(X, Y ), UC1,I
m (X, Y ) = UC1

m(X, Y ).

See Remark A.1 for more on the definition of spaces with polynomial growth. �

Wewill need to perform theG-differentiation under the integral sign, in particular
when we apply the Contraction Mapping Principle to find the mild solutions of (4.1)
and (4.2). We will discuss two ways (Corollary 4.14 and Proposition 4.16) to do
this task, however we will only use Proposition 4.16 in this book. We present both
to make the reader aware of the difficulties arising here. The setting and the results
given in the remainder of this subsection are mainly taken from [241].

We need the following assumption.

Hypothesis 4.11 Let X and Z be real separable Hilbert spaces. The map G : X →
Lu(Z , X) satisfies the following.

(i) D(G(x)) = D(G(y)) for every x, y ∈ X ; we denote by D(G)⊂Z the common
domain.

(ii) R(G(x)) = R(G(y)) for every x, y ∈ X ; we denote by R(G)⊂X the common
range.

(iii) Let G(x)−1 : R(G)→ D(G) be the pseudo-inverse of G(x) according to Def-
inition B.1. For each k ∈ R(G) the map X → Z , x → G(x)−1k is bounded on
compact sets.

We will also use the following hypothesis.

Hypothesis 4.12 Hypothesis 4.11 holds true with bounded replaced by continuous
in (iii).

The first way to perform differentiation under the integral sign is by using the
closedness of the G-derivative operator.

Proposition 4.13 Let Hypothesis 4.12 hold and let Y be a real separable Banach
space. The spaces G1,G

m (X, Y ), C1,G
m (X, Y ), and UC1,G

m (X, Y ) are Banach spaces
when endowed with the norm (4.18).
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Proof We give the proof for G1,G
m . The proofs for C1,G

m and UC1,G
m are analogous.

Let (�n)n∈N be a Cauchy sequence in G1,G
m (X, Y ). In particular, (�n)n∈N is a

Cauchy sequence in Cm (X, Y ), so that �n converges to a function � ∈ Cm(X, Y ).
Now, for all x ∈ X ,

(∇G�n (x)
)

n∈N is a Cauchy sequence of linear bounded
operators in L (Z , Y ), so that ∇G�n (x) converges to a linear bounded operator
A(x). On the other hand, for all z ∈ Z , the sequence

(∇G�n(·)z
)

n∈N is a Cauchy
sequence in Cm (X, Y ) so that ∇G�n(·)z converges to a function Az ∈ Cm (X, Y ).
Hence, we have Az(x) = A(x)z, which yields A ∈ Cs

m(X,L(Z , Y )).
Nownotice that, by the definition of∇G�n(x), we have∇G�n(x)h = 0whenever

h ∈ ker(G(x)). It follows that

ker (G(x))⊂ ker (A(x)), ∀x ∈ X. (4.19)

We are now going to prove that � ∈ G1,G
m (X, Y ) and A = ∇G�. Let x ∈ X , h ∈

D(G). Set, for r ∈ R, y(r) := x + rG(x)h and ϕn(r) := �n(x + rG(x)h). Then,

ϕ′n(r) = lim
τ→0

�n(x + (r + τ )G(x)h)−�n(x + rG(x)h)

τ

= lim
τ→0

�n(y(r)+ τG(x)h)−�n(y(r))

τ

= lim
τ→0

�n(y(r)+ τG(y(r))G(y(r))−1G(x)h)−�n(y(r))

τ

= ∇G�n(y(r))G(y(r))−1G(x)h, ∀r ∈ R.

Notice that, as ∇G�n ∈ Cs
m(X,L(Z , Y )), by the Banach–Steinhaus Theorem the

family {∇G�n(y(r))}r∈[−1,1] is a family of uniformly bounded operators inL(X, Y ).
We have, for every r, r0 ∈ [−1, 1],

|ϕ′n(r)− ϕ′n(r0)|Y ≤ |
(∇G�n(y(r))G(y(r))−1 −∇G�n(y(r0)G(y(r0)

−1)G(x)h|Y
≤ |∇G�n(y(r))|L(Z ,Y )|(G(y(r))−1 − G(y(r0))

−1)G(x)h|Z
+ | (∇G�n(y(r))−∇G�n(y(r0))

)
G(y(r0))

−1G(x)h|Z
≤
(

sup
s∈[−1,1]

|∇G�n(y(s))|L(Z ,Y )

)

|(G(y(r))−1 − G(y(r0))
−1)G(x)h|Z

+ |(∇G�n(y(r))−∇G�(y(r0)))G(y(r0))
−1G(x)h|Z .

Thus, by Hypothesis 4.12 and again by the fact that ∇G�n ∈ Cs
m(X,L(Z , Y )), we

see that ϕ′n(r)→ ϕ′n(r0) as r → r0. Hence ϕ′n ∈ C([−1, 1], Y ). We can then apply
TheoremD.20 obtaining for all s ∈ [−1, 1] \ {0}

�n(x + sG(x)h)−�n(x)

s
= 1

s

∫ s

0
ϕ′n(r)dr =

1

s

∫ s

0
∇G�n(y(r))G(y(r))−1G(x)hdr.

(4.20)
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Now, as n→∞, we have the convergences

�n(x + sG(x)h)→ �(x + sG(x)h),

�n(x)→ �(x),

∇G�n(y(r))G(y(r))−1G(x)h → A(y(r))G(y(r))−1G(x)h, r ∈ R.

Thus, from (4.20), we get

�(x + sG(x)h)−�(x)

s
= 1

s

∫ s

0
A(y(r))G(y(r))−1G(x)hdr. (4.21)

Now, since A ∈ Cs
m(X,L(Z , Y )), arguing as we did above for ∇G�n and using

Hypothesis 4.12we see that the function [−1, 1] → R, r→A(y(r))G(y(r))−1G(x)h
is continuous. Therefore, it follows from (4.21) that

lim
s→0

�(x + sG(x)h)−�(x)

s
= A(x)G(x)−1G(x)h. (4.22)

Let k := G(x)−1G(x)h. We observe that G(x)h = G(x)k, i.e. h − k ∈ ker (G(x)).
We now obtain from (4.22) and (4.19) that ∇G�(x) exists and it coincides with
A(x). The convergence of �n to � in the norm ‖·‖G1,G

m
then follows as in the proof

of Proposition4.8, completing the proof. �

A straightforward consequence of the above result is the following corollary on
differentiation under the integral sign.

Corollary 4.14 Let Hypothesis 4.12 hold, let Y be a real separable Banach space
and let m ≥ 0. Let T ∈ (0,+∞], where as always, when T = +∞, [0, T ] means
[0,+∞).

(i) The unbounded operators

∇G : G1,G
m (X, Y ) ⊂ Cm (X, Y )→ Cs

m (X,L (Z , Y )) ,

DG : C1,G
m (X, Y ) ⊂ Cm (X, Y )→ Cm (X,L (Z , Y )) ,

DG : UC1,G
m (X, Y ) ⊂ UCm (X, Y )→ UCm (X,L (Z , Y )) ,

are closed.
(ii) Let f : [0, T ]→ G1,G

m (X, Y ) be measurable and such that

∫ T

0

[
‖ f (t)‖Cm

+ ∥∥∇G f (t)
∥
∥
Cs
m

]
dt < +∞.

Then
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∫ T

0
f (t)dt ∈ G1,G

m (X, Y ) and ∇G
∫ T

0
f (t)dt =

∫ T

0
∇G f (t)dt.

The same holds if we replace G1,G
m (X, Y ) with C1,G

m (X, Y ) or UC1,G
m (X, Y ),

substituting ∇G with DG.

Proof We only consider the space G1,G
m (X, Y ) as the other cases are completely

similar. The first part is a straightforward consequence of Lemma 4.13. The second
part is a consequence of the first part, Remark 1.31 and the assumptions on f . �

Remark 4.15 The result of Corollary 4.14-(ii) is not sufficient for our purposes. First
of all the proof of Proposition 4.13 does not work for the space B1,G

m (X, Y ) as in the
last part we need to use the continuity of the map r→A(y(r))(G(y(r))−1G(x)h),
which is not guaranteed in that case. This prevents the extension of it and of Corollary
4.14 to B1,G

m (X, Y ).
Secondly, the result of Corollary 4.14-(ii) requires that the function f : [0, T ]→

G1,G
m (X, Y ) be measurable. This assumption is in general not true for the maps f

arising when we construct solutions of equations (4.1) or (4.2) in the mild form
through the contraction mapping principle.

Indeed, in such cases we may have, for example, f (t) = Pt [ψ], where ψ is a
given function inCm(H) and Pt is a suitable transition semigroup, e.g. the Ornstein–
Uhlenbeck semigroup defined in Sect. 4.3.1. As recalled in Proposition B.89, such
transition semigroups are not strongly continuous in Cm(H), hence the function
R
+ → Cm(H), t → Pt [ψ] is not measurable in general. This problem can be over-

come by performing “pointwise” differentiation, as will be shown in Proposition
4.16, see also [241] for more on this. Another approach to resolving this problem
may involve a change of the topology used in such spaces, see [243]. �

The next result shows how we can differentiate “pointwise” under the integral
sign for functions with values in the spaces B1,G

m , and consequently also in G1,G
m ,

C1,G
m , UC1,G

m .

Proposition 4.16 Let Hypothesis 4.11 hold and let Y be a real separable Banach
space. Let T ∈ (0,+∞], where, when T = +∞, [0, T ]means [0,+∞). Let m ≥ 0,
f : [0, T ] × X → Y and assume that:

• f is jointly measurable and there exists a g ∈ L1(0, T ;R+) such that

| f (t, x)|Y ≤ g(t)(1+ |x |m) for a.e. t ∈ [0, T ], ∀x ∈ X. (4.23)

• f (t, ·) ∈ B1,G
m (X, Y ) (respectively, G1,G

m (X, Y ), C1,G
m (X, Y )), for a.e. t ∈ [0, T ],

and ∇G f is jointly strongly measurable. Moreover, we have

|∇G f (t, x)|L(Z ,Y ) ≤ g(t)(1+ |x |m) for a.e. t ∈ [0, T ], ∀x ∈ X, (4.24)

where g is from (4.23).
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Then the function L : X → Y , L(x) := ∫ T
0 f (t, x) dt, belongs to B1,G

m (X, Y ) (respec-
tively, G1,G

m (X, Y ), C1,G
m (X, Y )) and

∇GL(x)h =
∫ T

0
∇G f (t, x)h dt, ∀h ∈ Z . (4.25)

When L belongs to C1,G
m (X, Y ) this last formula also holds with DG in place of ∇G.

If we also assume that, for a.e. t ∈ [0, T ], we have f (t, ·) ∈ UC1,G
m (X, Y ) and,

for all x, y ∈ X,

| f (t, x)− f (t, y)|Y + |∇G f (t, x)−∇G f (t, y)|L(Z ,Y ) ≤ g(t)ρ(|x − y|),

where ρ is a suitable modulus and g is as above, then L ∈ UC1,G
m (X, Y ).

Proof We first prove the claim for B1,G
m . The function L is well defined, measurable

and it belongs to Bm(X, Y ) thanks to (4.23) and Theorem 1.33.
Let now x ∈ X, h ∈ D(G) and consider the limit

lim
s→0

L(x + sG(x)h)− L(x)

s
= lim

s→0

∫ T

0

1

s
[ f (t, x + sG(x)h)− f (t, x)]dt.

(4.26)
By our assumptions the integrand of the right-hand side converges, for a.e. t , to
∇G f (t, x)h. We will show that the integrand is bounded by an integrable function,
uniformly for s in a neighborhood of 0. To do this we set

y : R→ X, y(r) := x + rG(x)h; ϕ : [0, T ] × R→ Y, ϕ(t, r) := f (t, y(r)).

Then, using Hypothesis 4.11-(i) and (ii), we obtain for a.e. t ∈ [0, T ] and every
r ∈ R

∂

∂r
ϕ(t, r) = lim

η→0

f (t, y(r)+ ηG(x)h)− f (t, y(r))

η

= lim
η→0

f (t, y(r)+ ηG(y(r))G(y(r))−1G(x)h)− f (t, y(r))

η

= ∇G f (t, y(r))(G(y(r))−1G(x)h).

Hence ∂
∂r ϕ(t, r) exists for every r and moreover, by (4.24), we have

∣
∣
∣
∣

∂

∂r
ϕ(t, r)

∣
∣
∣
∣ ≤ g(t)(1+ |y(r)|m)|G(y(r))−1G(x)h|Y .

Now, by Hypothesis 4.11-(iii), there exists a C > 0, depending on G(x)h but inde-
pendent of t , such that

|G(y(r))−1G(x)h|Y ≤ C, for every r ∈ [−1, 1].
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The last two estimates give, for a.e. t ∈ [0, T ] and every r ∈ [−1, 1],
∣
∣
∣
∣

∂

∂r
ϕ(t, r)

∣
∣
∣
∣ ≤ Cg(t)

[
1+ (|x | + |G(x)h|)m] . (4.27)

The integrand in the right-hand side of (4.26) is equal to s−1[ϕ(t, s)− ϕ(t, 0)]. Since,
for a.e. t ∈ [0, T ], ϕ(t, ·) is everywhere differentiable, then it is also continuous.
Hence using the Mean Value Theorem for functions with values in Y (see Theorem
D.20 or [586], Proposition 3.5, p. 76), and (4.27), we obtain, for a.e. t ∈ [0, T ],

s−1[ϕ(t, s)− ϕ(t, 0)] ≤ Cg(t)
[
1+ (|x | + |G(x)h|)m] , ∀s ∈ (0, 1).

This gives the required uniform bound for s ∈ (0, 1). Applying the dominated con-
vergence theorem to (4.26) we now conclude

∇GL(x; h) =
∫ T

0
∇G f (t, x)hdt,

which implies that, for every x ∈ X and h ∈ D(G),

|∇GL(x; h)|Y ≤
(∫ T

0
‖∇G f (t, x)‖L(Z ,Y )dt

)

|h| ≤
(∫ T

0
g(t)(1+ |x |m)dt

)

|h|.

This proves the required G-Gâteaux differentiability and (4.25). Theorem 1.33 and
(4.25) imply that ∇GL is strongly measurable and it belongs to Bs

m(X,L(Z , Y )).
To prove the claim for G1,G

m (X, Y ) (respectively,C1,G
m (X, Y )) it is enough to show

that, if f (t, ·) belongs to G1,G
m (X, Y ) for a.e. t ∈ [0, T ], then L ∈ Cm(X, Y ) and

∇GL ∈ Cs
m(X,L(Z , Y )) (respectively, Cm(X,L(Z , Y ))). We do this in the first case

as the second one is completely analogous. Take any x ∈ X and any sequence xn →
x . Without loss of generality we can assume |xn| ≤ 2|x |. Then, for a.e. t ∈ [0, T ]
and for all h ∈ Z we have, as n→+∞,

f (t, xn)→ f (t, x), and ∇G f (t, xn)h → ∇G f (t, x)h.

Thanks to (4.23) and (4.24) we get the claim by the dominated convergence theorem.
To prove the last statement we observe that, under the assumption there, for

x, y ∈ X ,

|L(x)− L(y)|Y ≤
∫ T

0
| f (t, x)− f (t, y)|Y dt ≤

∫ T

0
g(t)ρ(|x − y|)dt

and similarly we can estimate |DGL(x)− DGL(y)|L(Z ,Y ). �

We finally define analogues of the spaces introduced in Definition 4.9 when the
functions are defined on [0, T ] × X for some T > 0 (see e.g. [283], Sect. 2).
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Definition 4.17 Let I be an interval in R and let X, Y, Z be real separable Banach
spaces. Let G : I × X → Lu(Z , X). Let m ≥ 0. We say that a mapping f : I ×
X → Y belongs to the space B0,1,G

m (I × X, Y ) (respectively, f ∈ G0,1,G
m (I × X, Y ),

C0,1,G
m (I × X, Y ), UC0,1,G

m (I × X, Y )) if:

• f ∈ Bm (I × X, Y ) (respectively, Cm (I × X, Y ) in the first two cases and
UCx

m (I × X, Y ) in the last one);
• For every t ∈ I , f (t, ·) belongs to B1,G(t,·)

m (X, Y ) (respectively, G1,G(t,·)
m (X, Y ),

C1,G(t,·)
m (X, Y ), UC1,G(t,·)

m (X, Y ));
• The map (t, x)→ ∇G(t,x) f (t, x) belongs to Bs

m(I × X,L(Z , Y )) (respectively
Cs
m(I × X,L(Z , Y )), Cm(I × X,L(Z , Y )), UCx

m(I × X,L(Z , Y ))).

When the image space Y = R, it will be dropped from the notation in all cases
above.

The G-Gâteaux (Fréchet) derivative of f with respect to x in such spaces will
always be denoted by ∇G f (DG f ) or, if we want to underline the time dependence,
∇G(t,·) f (t, ·) (DG(t,·) f (t, ·)).

We endow B0,1,G
m (I × X, Y ) and its subspaces G0,1,G

m (I × X, Y ), C0,1,G
m

(I × X, Y ), UC0,1,G
m (I × X, Y ) with the norm10

‖ f ‖B0,1,G
m (I×X,Y ) := sup

(t,x)∈I×X

| f (t, x)|Y
1+ |x |m + sup

(t,x)∈I×X

∣
∣∇G(t,·) f (t, x)

∣
∣
L(Z ,Y )

1+ |x |m , (4.28)

whichwedenote by‖ f ‖G0,1,G
m (I×X,Y ) (respectively,‖ f ‖C0,1,G

m (I×X,Y ),‖ f ‖UC0,1,G
m (I×X,Y ))

when f ∈ G0,1,G
m (I × X, Y ) (respectively, f ∈ C0,1,G

m (I × X, Y ), f ∈ UC0,1,G
m (I ×

X, Y )). If it is clear from the context, we will often simply write ‖ f ‖B0,1,G
m

and
‖ f ‖G0,1,G

m
, ‖ f ‖C0,1,G

m
, ‖ f ‖UC0,1,G

m
.

Notation 4.18 When Z = X and G = I we drop the superscript G in the notation
for derivatives and all the spaces introduced in this subsection, writing for example
G1
m (X, Y ) for G1,I

m (X, Y ). �
Remark 4.19 We point out that, dealing with G-gradients, other properties, beyond
the already discussed exchange of differentiation and integration, are also not obvi-
ous. For instance, consider the following standard property (see Prop.4.8(c), p. 137
in [586]): if f : X → Y is Gâteaux differentiable and ∇ f : X → L(X, Y ) is con-
tinuous at x ∈ X , then f is Fréchet differentiable at x and Df (x) = ∇ f (x). If we
want to extend this property to G-gradients, we find problems similar to the ones in
Proposition 4.13. A way to prove it is to strengthen Assumption 4.12, requiring that

lim
y→x

sup
h∈D(G)∩(ker G)⊥

|G−1(y)G(x)h − h|
|h| = 0.

Without an assumption of this kind the conclusion does not seem guaranteed.

10Arguing as in Proposition 4.13 one can prove that the three subspaces are Banach spaces with
this norm when Hypothesis 4.12 holds for G(t, ·), for every t ∈ I . We will not need this fact.
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Another important remark is that, in Proposition 4.16 we do not require any
measurability of the map G. Indeed, we do not need it explicitly since we directly
require the measurability of ∇G f (which in order to be true usually needs some
measurability of G). However, keeping the assumption on ∇G f seems a bit sharper
as it allows, for example, “bad” behavior of G in directions where f is constant. �

4.2.2 Weighted Spaces

We introduce suitable weighted spaces: these are Banach spaces of continuous func-
tions in time and space ((t, x) ∈ (0, T ] × X for given T > 0 and a Banach space X )
blowing up at t = 0 at a prescribed rate. They will be used to apply the contraction
mapping principle to solve the HJB equations (4.1) and (4.2). We also note that the
setting used here is slightly different from the one introduced in part of the previous
literature (see e.g. [89, 306]). Our setting is more general (close to that of [189, 309,
431, 432]).

We first define two classes of weights I1 and I2 as follows:

I1 :=
{

η : (0,+∞)→ (0,+∞) decreasing and η ∈ L1(0, T ), ∀T > 0

}

, (4.29)

I2 :=
{

η ∈ I1 : ∃ lim
t↘0+

1

η(t)

∫ t

0
η(s)η(t − s)ds = 0

}

. (4.30)

Remark 4.20 The two classes above are those that theweight γG , introduced in (4.7),
must belong to in order for us to be able to solve theHJBequations (4.1) and (4.2). The
class I2 is for the parabolic HJB equation (4.1) and I1 for the elliptic HJB equation
(4.2). It is not clear if the two classes coincide or not. Clearly the function η(t) = t−θ

for θ ∈ (0, 1) belongs to I2. Moreover, for any β > 1 the function η(t) = t−1| ln t |−β

also belongs to I2.
If η1 ≤ η2 and η2 ∈ I1, then also η1 ∈ I1 while the same is not clear for I2.

Similarly if η1, η2 ∈ I1, also η1 ∨ η2 ∈ I1 but the same is not clear for I2. �

We have the following.

Proposition 4.21 Let η ∈ I1. Then:
(i) lim inf t→0+

1
η(t)

∫ t
0 η(s)η(t − s)ds = 0.

(ii) limt→0+ tη(t) = 0.
(iii) Let η0 ∈ I1. Then for all t > 0 we have

∫ t

0
η(s)η0(t − s)ds ≤ η(t/2)

∫ t/2

0
η0(s)ds + η0(t/2)

∫ t/2

0
η(s)ds.
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Hence, for every T > 0,

∫ t

0
η(s)η0(t − s)ds ≤ η1(t) :=η(t/2)

∫ T

0
η0(s)ds + η0(t/2)

∫ T

0
η(s)ds, ∀t ∈ (0, T ]

and the right-hand side belongs to I1 if we set η1(t) = η1(T ) for t > T .
(iv) For η ∈ I1 we have, for every T > 0,

sup
t∈(0,T )

{∫ T

t
η(T − s)e−β(s−t)ds

}

−→ 0

as β →+∞.
(v) For η ∈ I2 and β ≥ 0 define the function

fβ : (0,+∞)→ (0,+∞), fβ(t) := 1

η(t)

∫ t

0
η(s)η(t − s)e−βsds.

Then, as β →+∞, fβ converges to 0 uniformly on (0, T ) for all T > 0. More-
over, for all T > 0 there exists a constant C(T ) > 0 such that, for all β ≥ 0

sup
t∈(0,T )

fβ(t) ≤ C(T ).

Exactly the same claims hold for the function

f̄β : (0,+∞)→ (0,+∞), f̄β(t) := 1

η(t)

∫ t

0
η(s)e−βsds.

Proof We first show (i). Let η ∈ I1 and define η̄(t) := ∫ t
0 η(s)ds and η∗2(t) =

∫ t
0 η(s)η(t − s)ds. Observe first that, by exchanging the integrals
∫ t

0
η∗2(s)ds =

∫ t

0

∫ s

0
η(r)η(s − r)drds =

∫ t

0
η(r)

∫ t

r
η(s − r)dsdr =

∫ t

0
η(r)η̄(t − r)dr.

Since limt→0+ η̄(t) = 0, we obtain that for all ε > 0 there exists a tε > 0 such that,
if t ≤ tε then ∫ t

0
η∗2(s)− εη(s)ds < 0.

If

lim inf
t→0+

η∗2(t)
η(t)

= L > 0
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then for s > 0 sufficiently smallwemust have η∗2(s) ≥ L
2 η(s); hence, for sufficiently

small t > 0 we get ∫ t

0
η∗2(s)− L

2
η(s)ds ≥ 0,

which is a contradiction. Note that here we did not use the fact that η is decreasing.

We now prove (ii). We suppose by contradiction that (ii) is not true for a given
η ∈ I1. Then there exists a sequence (tn)n∈N such that tn ↘ 0 and limn→+∞ tnη(tn) =
L > 0. By refining such a sequence we can assume that tn+1 ≤ 1

2 tn for all n ∈ N.
This means that there exists an n̄ such that, for all n ≥ n̄, tnη(tn) > L/2, i.e. η(tn) >

L/(2tn). Since η is decreasing we get

∫ 1

0
η(t)dt ≥

∑

n∈N
η(tn) (tn − tn+1) ≥

∑

n>n̄

η(tn) (tn − tn+1)

≥
∑

n>n̄

L

2tn
(tn − tn+1) = L

2

∑

n>n̄

tn − tn+1
tn

.

Since tn+1 ≤ 1
2 tn for all n ∈ N,

∑

n>n̄

tn − tn+1
tn

≥
∑

n>n̄

1

2
= +∞.

This contradicts the integrability of η, so (ii) is shown.

The first part of claim (iii) follows by writing

∫ t

0
η(s)η0(t − s)ds =

∫ t/2

0
η(s)η0(t − s)ds +

∫ t

t/2
η(s)η0(t − s)ds

≤ η0(t/2)
∫ t/2

0
η(s)ds + η(t/2)

∫ t/2

0
η0(s)ds.

The second part is an immediate consequence of the first and the fact that for α > 0
the functions t → η(αt), t → η0(αt) belong to I1.

To prove (iv) we observe that, for η ∈ I1 and 0 < t < T ,

∫ T

t
η(T − s)e−β(s−t)ds =

∫ T−t

0
η(T − t − s)e−βsds ≤

∫ T−t

0
η(T − t − s)ds

=
∫ T−t

0
η(s)ds.

Now for arbitrary ε > 0 take tε such that, for t ∈ [tε, T )
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∫ T−t

0
η(s)ds ≤ ε/2.

Then observe that, for t ∈ (0, tε), since η is decreasing,

∫ T−t

0
η(T − t − s)e−βsds ≤

∫ T−tε

0
η(T − tε − s)ds +

∫ T−t

T−tε
η(T − t − s)e−βsds

≤ ε/2+ e−β(T−tε)
∫ T

0
η(s)ds,

from which the claim follows, since ε is arbitrary.

We prove (v) only for fβ as the proof for f̄β is exactly the same and even simpler.
Observe first that for every β ≥ 0 we have, for all t > 0,

fβ(t) ≤ 1

η(t)

∫ t

0
η(s)η(t − s)ds.

Now let T > 0. Since η ∈ I2, fixing any ε > 0, we can take tε ∈ (0, T ) such that,
for all t ∈ (0, tε], fβ(t) < ε/2. For t ∈ (tε, T ), thanks to the monotonicity of η, we
have the following estimate

fβ(t) ≤ 1

η(T )

[∫ tε

0
η(s)η(t − s)e−βsds +

∫ t

tε

η(s)η(t − s)e−βsds

]

≤ 1

η(T )

∫ tε

0
η(s)η(tε − s)e−βsds + 1

η(T )

∫ t

tε

η(tε)η(t − s)e−βsds

≤ 1

η(T )

∫ tε

0
η(s)η(tε − s)e−βsds + η(tε)

η(T )
e−βtε

∫ T

0
η(s)ds.

Hence (using the dominated convergence theorem for the first term), there exists a βε

such that supt∈(0,T ) fβ(t) ≤ ε for all β > βε and the claim of convergence follows.
Concerning the uniform boundedness it is enough to show it for β = 0, which imme-
diately follows from the estimates used to prove the convergence, for, say, ε = 1.
�

We now present the list of the weighted spaces we use. Below we fix T > 0,
η ∈ I1 and X , Y and Z are real Banach spaces.

Bm,η ((0, T ] × X, Y ) and its subspaces. Let m ≥ 0. Define:
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Bm,η ((0, T ] × X, Y ) := {w : (0, T ] × X → Y measurable :
w ∈ Bm([τ , T ] × X, Y ) ∀τ ∈ (0, T ) and η−1w ∈ Bm((0, T ] × X, Y )

}

(4.31)

and its subspaces

Cm,η ((0, T ] × X, Y ) :=
{
w ∈ Bm,η ((0, T ] × X, Y ) : w ∈ Cm([τ , T ] × X, Y ) ∀τ ∈ (0, T )

}
,

(4.32)

UCx
m,η ((0, T ] × X, Y ) :=
{
w ∈ Cm,η ((0, T ] × X, Y ) : w ∈ UCx

m([τ , T ] × X, Y ) ∀τ ∈ (0, T )
}
.

(4.33)

The three spaces above are Banach spaces when endowed with the norm (see e.g.
[306, 310] for the case m = 0 and [102] for the case m > 0)

‖w‖Bm,η((0,T ]×X,Y ) := sup
(t,x)∈(0,T ]×X

η(t)−1(1+ |x |m)−1 |w(t, x)|Y .

Often we will simply write ‖w‖Bm,η
and, for the subspaces, ‖w‖Cm,η

or ‖w‖UCx
m,η
.

When η(t) = t−θ for θ ∈ (0, 1) we will use the notation Bm,θ ((0, T ] × X, Y ),
Cm,θ ((0, T ] × X, Y ), UCx

m,θ ((0, T ] × X, Y ). When Y = R we will omit it in the
notation, as usual.

Also, when m = 0, we will write Bb,η instead of B0,η and similarly for the other
spaces.

Bs
m,η((0, T ] × X,L(Z , Y )) and its subspaces. Given m ≥ 0 we denote by Bs

m,η

((0, T ] × X,L(Z , Y )) the linear space of the mappings L : (0, T ]× X → L(Z , Y )

such that for every z ∈ Z , L(·, ·)z ∈ Bm,η((0, T ] × X). The space Bs
m,η((0, T ] ×

X,L(Z , Y )) is a Banach space if it is endowed with the norm11

‖L‖Bs
m,η((0,T ]×X,L(Z ,Y )) := sup

(t,x)∈(0,T ]×X
η(t)−1(1+ |x |m)−1 ‖L(t, x)‖L(Z ,Y ) .

The subspace Cs
m,η((0, T ] × X,L(Z , Y )) (respectively, UCx,s

m,η((0, T ] × X,

L(Z , Y ))) is the space of all elements of Bs
m,η((0, T ] × X,L(Z , Y )) such that for

every z ∈ Z , L(·, ·)z ∈ Cm,η((0, T ] × X) (respectively, L(·, ·)z ∈ UCx
m,η((0, T ] ×

X)). When Y = R we have L(Z ,R) = Z∗. If Z is a Hilbert space we will identify
Z∗ with Z and so we will write Z in place of L(Z ,R) in the above notation. As
before, when m = 0 we use the subscript b instead of 0.

11The proof is similar to the proof of Proposition 4.8. Note also that Bs
m,η((0, T ] × X,L(Z , Y ))

can be identified with the space of operators L (Z , Bm,η((0, T ] × X, Y )
)
.
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Remark 4.22 If f ∈ Bm,η ((0, T ] × X, Y ), then for every t ∈ (0, T ] the function
f (t, ·) belongs to Bm(X, Y ) (using Lemma 1.8-(iv)). However, see the discussion
before Lemma 1.21, it is not true in general that the function

(0, T ] → Bm(X, Y ), t→ f (t, ·)

is Borel measurable. On the other hand, by Lemma 1.21, if X is separable, then the
map

ρ1 : (0, T ] → R, t → ‖ f (t, ·)‖Bm (X,Y ) (4.34)

is always Lebesgue measurable.
Thus, when X is separable, asking that there exists an η ∈ I1 such that the function

f belongs to Bm,η ((0, T ] × X, Y ) clearly implies that

∫ T

0
‖ f (t, ·)‖Bmdt < +∞. (4.35)

Conversely, if a function f : (0, T ] × X → Y is jointly Borel measurable and sat-
isfies (4.35) then, setting η(t) = ‖ f (t, ·)‖Bm , we have η ∈ L1(0, T ;R+) and, if also
η ∈ I1, f ∈ Bm,η ((0, T ] × X, Y ). �

Let now, as in Definition 4.17, G : [0, T ] × X → Lu(Z , X). For m ≥ 0 and η ∈
I1, we introduce the linear space12

B0,1,G
m,η ([0, T ] × X) := {v ∈ Bm([0, T ] × X) : ∇Gv ∈ Bm,η((0, T ] × X, Z∗)

}

(4.36)
and its subspaces

G0,1,G
m,η ([0, T ] × X) := {v ∈ Cm([0, T ] × X) : ∇Gv ∈ Cs

m,η

(
(0, T ] × X, Z∗

)}
,

(4.37)

C0,1,G
m,η ([0, T ] × X) := {v ∈ Cm([0, T ] × X) : DGv ∈ Cm,η((0, T ] × X, Z∗)

}
,

(4.38)

UC0,1,G
m,η ([0, T ] × X) :=

{
v ∈ UCx

m([0, T ] × X) : DGv ∈ UCx
m,η

(
(0, T ] × X, Z∗

)}
.

(4.39)
We endow such spaces with the norm

‖v‖B0,1,G
m,η ([0,T ]×X) := ‖v‖Bm ([0,T ]×X) + ‖η−1∇Gv‖Bm ((0,T ]×X,Z∗). (4.40)

12Recall that here, since Y = R, strong measurability of ∇Gv is equivalent to its measurability, see
the previous footnotes.
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We will often just write ‖v‖B0,1,G
m,η

and, for the subspaces, ‖v‖G0,1,G
m,η

, ‖v‖C0,1,G
m,η

or
‖v‖UC0,1,G

m,η
. When Z is Hilbert, we identify it with its dual and thus write Z in place

of Z∗ in the above notation.WhenG = I we drop it from the function space notation
according to the convention of Notation 4.18. Using the same method as employed
in the proof of Proposition 4.13, one can prove that the three spaces in (4.37)–(4.39)
equipped with the norm (4.40) are Banach spaces when Hypothesis 4.12 holds for
G(t, ·), for every t ∈ [0, T ].

We also define, for m ≥ 0, analogous spaces related to higher derivatives in the
case when X = Z is a Hilbert space and G = I :

B0,2,s
m,η ([0, T ]×X) := {v ∈ Bm([0, T ] × X) : ∇v ∈ Bm([0, T ] × X, X),

∇2v ∈ Bs
m,η ((0, T ] × X,L(X))

}
(4.41)

and its subspaces

C0,2,s
m,η ([0, T ]×X) := {v ∈ Cm([0, T ] × X) : Dv ∈ Cm([0, T ] × X, X),

D2v ∈ Cs
m,η ((0, T ] × X,L(X))

}
,

(4.42)

UC0,2,s
m,η ([0, T ]×X) := {v ∈ UCx

m([0, T ] × X) : Dv ∈ UCx
m([0, T ] × X, X),

D2v ∈ UCx,s
m,η ((0, T ] × X,L(X))

}
.

(4.43)

All of them are Banach spaces if we use the norm

‖v‖B0,2,s
m,η ([0,T ]×X) : = ‖v‖Bm ([0,T ]×X)

+ ‖∇v‖Bm ([0,T ]×X,X) + ‖η(T − ·)∇2v‖Bm ((0,T ]×X,L(X)).

As always, to make the notation less cumbersome we will often drop the spaces from
the notation by simply writing ‖v‖B0,2,s

m,η
and similarly for all the terms appearing in

its definition. On the subspaces (substituting ∇ with D) the norms will be denoted
by ‖v‖C0,2,s

m,η
and ‖v‖UC0,2,s

m,η
.

When γ(t) = tθ for some θ ≥ 0 we will write B0,1,G
m,θ ([0, T ] × X) for B0,1,G

m,η

([0, T ] × X) and B0,2,s
m,θ ([0, T ] × X) for B0,2,s

m,η ([0, T ] × X). Similar conventionwill
be used for other spaces.

We finally observe that all the spaces presented in this subsection can also be
defined if we replace [0, T ] by a closed bounded interval I ⊂ R.

Remark 4.23 In some of the spaces defined in this and the previous subsection we
require continuity in the so-called strong sense, i.e. continuity of the maps L(·)z :
X → Y or L(·, ·)z : [0, T )× X → Y for all z ∈ Z .
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One reason for doing this is that sometimes (see some examples in Sect. 4.3.3,
Remark 4.63) theG-Gâteaux derivatives of the solution of the HJB equation (even in
the linear case) may neither be G-Fréchet nor continuous, hence it is not reasonable
to require more than strong continuity from them.

Another reason is that, even when first space derivatives of the solution of the
HJB equation are taken in the classical Fréchet sense, the second derivatives may
fail to be continuous or even measurable. As an example, take v(t, x) = 〈et Ax, x 〉 /2,
where A is the generator of a strongly continuous semigroup which is also self-
adjoint. Then D2v(t, x) = et A, which is not even measurable in general when it
is considered as a map [0, T ] × X → L(X), while for every fixed ξ ∈ X , the map
D2v(·, ·)ξ : [0, T ] × X → X is continuous (see e.g. [180], Sect. 1.2 for more on
this). �

We finally define weighted spaces with singularities at the right end of the time
interval.

Definition 4.24 Let η ∈ I1. We define Bm,η ([0, T )× X, Y ) to be the Banach space
of all functions ψ : [0, T )× X → Y such that ψ(T − ·, ·) ∈ Bm,η ((0, T ] × X, Y ),
with the norm ‖ψ‖Bm,η([0,T )×X,Y ) := ‖ψ(T − ·, ·)‖Bm,η((0,T ]×X,Y ). In the same way we

define its subspaces Cm,η ([0, T )× X, Y ) and UC
x
m,η ([0, T )× X, Y ).

In exactly the same way we define:

• The spaces B
s
m,η([0, T )× X,L(Z , Y )), C

s
m,η([0, T )× X,L(Z , Y )) and

UC
x,s
m,η([0, T )× X,L(Z , Y )).

• For G : [0, T ] × X → Lu(Z , X), the spaces B
0,1,G
m,η ([0, T ] × H), G0,1,G

m,η ([0, T ] ×
H), C

0,1,G
m,η ([0, T ] × H), UC

0,1,G
m,η ([0, T ] × H).

• The spaces B
0,2,s
m,η ([0, T ] × H), C

0,2,s
m,η ([0, T ] × H), UC

0,2,s
m,η ([0, T ] × H).

The bar will always indicate a space with a “singularity” at T . As usual, whenG = I
we will drop it in the notation of such spaces.

4.3 Smoothing Properties of Transition Semigroups

In this section we recall some known results about smoothing properties of tran-
sition semigroups associated to SDEs of the form (4.3) and (4.8). Such results, as
explained in Sect. 4.1, are a key ingredient to proving existence and uniqueness of
mild solutions of the HJB equations (4.1) and (4.2). We divide the section into
three parts corresponding to the methods used in the proofs. Section4.3.1 is the
main one and is equipped with full proofs. It deals with the Ornstein–Uhlenbeck
case, where the smoothing property is proved using a change of measure based on
the Cameron–Martin theorem (Theorem 1.60). Section4.3.2 considers the case of a
perturbed Ornstein–Uhlenbeck semigroup, where the smoothing property is proved
by a suitable integration by parts performed using Malliavin calculus. Section4.3.3
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considers the case when one can apply the so-called Bismut–Elworthy–Li formula,
which again is a way of performing integration by parts. In the last two subsections
most of the results are presented without proofs, for which references to the literature
are given.

4.3.1 The Case of the Ornstein–Uhlenbeck Semigroup

4.3.1.1 The Equation

Let H and� be two real separable Hilbert spaces. Let X be the Ornstein–Uhlenbeck
process in H , i.e. the solution of the SDE

{
dX (s) = AX (s) ds + σdW (s) , s ∈ [t, T ]
X (t) = x,

(4.44)

whereW (·) is a cylindrical Wiener process in�, with identity covariance, on a given
filtered probability space (�,F , {Fs}s≥0 ,P) and A and σ satisfy Hypothesis 4.25
below. Equation (4.44) is (4.3)with b = 0 andσ (t, x) = σ ∈ L(�, H). For the study
of the properties of this process one can see, for example, Chaps. 5 and 9 of [180]
and Chaps. 6 and 10 of [179].

Hypothesis 4.25 H and � are real separable Hilbert spaces.

(i) The linear operator A is the generator of a strongly continuous semigroup{
et A, t ≥ 0

}
in the Hilbert space H and, for some M ≥ 1,ω ∈ R,

‖et A‖ ≤ Meωt , t ≥ 0. (4.45)

(ii) σ ∈ L(�, H), esAσσ∗esA∗ ∈ L1(H) for all s > 0 and, for all t ≥ 0,

∫ t

0
Tr
[
esAσσ∗esA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAσσ∗esA

∗
ds, (4.46)

is of trace class for every t ≥ 0.

Under these assumptions (see Theorem 1.152) Eq. (4.44) has a unique mild solu-
tion X (·; t, x) (or simply X (·)) written in the mild form as

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)AσdW (r).
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We recall that, under Hypothesis 4.25, continuity of the above process is not guar-
anteed (only mean square continuity holds, see Proposition 1.144 or also Theorem
5.2-(i) of [180]). If one adds the assumption that, for some θ ∈ (0, 1) and T > 0

∫ T

0
s−θTr

[
esAσσ∗esA

∗]
ds < +∞, (4.47)

then the trajectories of X (·) are continuous (see Theorem 1.152 and also Theorem
5.11 of [180]). Without this additional assumption continuity of trajectories may fail
to hold, see e.g. [357].

Remark 4.26 In cases of noise on the boundary (see e.g. [177], Chap.13 or Sect. 2.6.3
for related control problems) the operator σ is unbounded but the process X (·) may
still be well defined. We do not consider such cases here as they give rise to functions
γG in (4.7) which are not integrable (see the introduction of [181]) and so the method
used in this chapter to solve the related HJB equations cannot be used. �
Remark 4.27 In some literature (see e.g. [153], p.117), one takes� = H , and, given
a bounded symmetric and positive operator� in H , the Ornstein–Uhlenbeck process
is the solution to the equation

{
dX (s) = AX (s) ds +√�dW (s) , s ∈ [t, T ] ,
X (t) = x .

(4.48)

If we take � = σσ∗ (where σ is the operator introduced in (4.44)) the transition
semigroup generated by the process (4.48) is the same as the one generated by the
process (4.44). So, if one is only concerned about the transition semigroup, one may
refer to (4.48) instead of (4.44). In what follows we always denote by � the operator
σσ∗. �

4.3.1.2 The Semigroup and the Associated Kolmogorov Equation

The process X is clearly time-homogeneous so the associated transition semigroup
is a one-parameter semigroup. Since it is a special one we will denote it by Rt instead
of Pt , which is the notation used in the general case. It is well known that for every
φ ∈ Bm(H), m ≥ 0, we have,13 for t ≥ 0,

Rt [φ](x) := E [φ(X (t; 0, x))] = E
[
φ(et Ax +W A(t)))

]
, (4.49)

where W A(t) = ∫ t
0 e

(t−s)AσdW (s) as in Sect. 1.5.2. Using Gaussian measures we
can write

Rt [φ](x) =
∫

H
φ (y)N (

et Ax, Qt
)
(dy) =

∫

H
φ(et Ax + y)NQt (dy), (4.50)

13See e.g. Sect. 6.3 of [179] for m = 0, [102, 300] for m > 0.
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where, for given a ∈ H and Q ∈ L+(H), N (a, Q) (dy) (or NQ(dy) when a = 0)
denotes the Gaussian measure in H with mean a and covariance operator Q (see
Definition 1.58 and also, for example, Chap. 1 of [179] for the related theory).

Since Hypotheses 1.143 and 1.145 are satisfied here, we can apply Theorem
1.157, which guarantees the semigroup property of Rt , and Theorem 1.162, which
ensures that Rt has the Feller property (see Definition 1.159 and Lemma 1.160).
Other continuity properties of Rt are discussed in Proposition 4.50.

The semigroup Rt is not strongly continuous on Cb(H) (nor inUCb(H), Bb(H),
Cm(H), UCm(H), Bm(H) for m > 0), see e.g. [101, 492] and also Proposition
B.89. It is a π-continuous and aK-continuous semigroup, see the precise definitions
in Appendix B.5.2, and its generator is the operatorA, which can be formally written
as

A f (x) = 1

2
Tr
(
�D2 f (x)

)+ 〈Ax, Df (x)〉.

It is well known (see Theorem 6.1.2 of [179]) that for any function φ ∈ UC2
b (H)

such that BB∗D2φ ∈ UCb(H,L1(H)), the function

u(t, x) = Rt [φ](x) (4.51)

is a strict solution of the Kolmogorov equation with terminal value

ut + 1

2
Tr
(
�D2u

)+ 〈Ax, Du〉 = 0, u(T, x) = φ(x), x ∈ H, (4.52)

in the following sense.

Definition 4.28 A function u(t, x), t ∈ [0, T ], x ∈ H , is said to be a strict solution
to Eq. (4.52) if:

(i) u is continuous on [0, T ] × H and u(T, ·) = φ,

(ii) u(t, ·) ∈ UC2
b (H) for all t ∈ [0, T ], and �D2u(t, x) ∈ L1(H) for all x ∈ H

and t ∈ [0, T ],
(iii) for any x ∈ D(A), u(·, x) is continuously differentiable on [0, T ] and (4.52) is

satisfied pointwise on [0, T )× D(A).

If φ ∈ Cb(H) (or Bb(H), or also Bm(H) for some m > 0) then the function u
defined by (4.51) is called (see e.g. Sect. 6.2, p. 103 of [179]) the generalized solution
(or sometimes also the mild solution) of (4.52). For more on the relationship between
the semigroup Rt and the above Kolmogorov equation, see Appendix B.7.
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4.3.1.3 Smoothing Properties of Rt : Assumptions and Null
Controllability

We now provide conditions that guarantee the smoothing properties (4.6) and, more
generally, (4.7). These smoothing properties will immediately yield regularity of
generalized solutions of (4.52).

We start with the following hypothesis, introduced first in [579] in the caseU = H
and G = I , which will guarantee the differentiability of Rt [φ].
Hypothesis 4.29 Let U be a real separable Hilbert space and G : U → H be a
closed linear operator (possibly unbounded) with dense domain D(G). Assume,
whenever G is bounded, that

et AG(U )⊂Q1/2
t (H), ∀t > 0 (4.53)

and, whenever G is unbounded, that for all t > 0 the operator et AG : D(G) ⊂ U →
H extends to a bounded operator, which we still denote by et AG : U → H , such
that

et AG(U )⊂Q1/2
t (H), ∀t > 0. (4.54)

Remark 4.30 When U = H and G = I , Hypothesis 4.29 is equivalent to asking
that, for every t > 0, the deterministic control system

z′ = Az + σa, z(0) = x, (4.55)

is null controllable, with controls in L2(0, t;�), fromevery initial datum x ∈ H . This
means that for every t > 0 and x ∈ H , there is a control strategy a(·) ∈ L2(0, t;�)

such that z(t; 0, x, a(·)) = 0. In terms of operators, since

z(t) = et Ax +
∫ t

0
e(t−s)Aσa(s)ds,

denoting by Lt the operator

Lt : L2(0, t;�)→ H, Lt a(·) =
∫ t

0
e(t−s)Aσa(s)ds, (4.56)

the null controllability for an initial datum x ∈ H means that

et Ax ∈ Lt (L
2(0, t;�)).

The equivalence mentioned above then follows from the fact that, after easy compu-
tations, we get

|L∗t x |2 = 〈Qt x, x〉 = |Q1/2
t x |2, x ∈ H, (4.57)
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and so, by Proposition B.2,

Lt (L
2(0, t;�)) = Q1/2

t (H) (4.58)

(see also [180], Corollary B.7).
WhenG is bounded, in view ofwhatwas said above,Hypothesis 4.29 is equivalent

to asking that system (4.55) is null controllable for every initial datum x ∈ G(U )⊂H
(see also Sect. 3.1 of [432]).

When G is unbounded we may consider Hypothesis 4.29 as a null controllability
assumption for the extension of system (4.55) to a suitable extrapolation space (see
e.g. [217], Sect. 2.5 for a definition).

Finally, we observe that when U = H and G = I , if (4.53) holds for a given
t0 > 0, it must hold for all t > t0 thanks to the fact that the images of et A decrease
with t (by the semigroup property) while those of Q1/2

t increase with t (by (4.58)).14

This is not ensured when G �= I . Since in many cases we will be interested in the
smoothing property of Rt on finite intervals (0, T ] for a given T > 0, in such cases
(4.53) or (4.54) may be required to hold only for t ∈ (0, T ]. �

We note that if (4.53) or (4.54) holds then the operator �G(t) : U → H ,

�G(t) := Q−1/2t et AG (4.59)

(where Q−1/2t is the pseudoinverse of Q1/2
t , see Definition B.1), is bounded by the

closed graph theorem, so it belongs to L(U, H). When U = H and G = I we will
often simply write �(t) := Q−1/2t et A.

Remark 4.31

(i) If Hypothesis 4.29 holds, then, by Proposition B.2, for any t > 0 there exists a
constant ct > 0 such that

|(et AG)∗x |2U ≤ ct 〈Qt x, x〉H , ∀x ∈ H, (4.60)

or equivalently (in the sense of the ordering of positive operators),

et AG(et AG)∗ ≤ ct Qt . (4.61)

The smallest ct with such property is exactly ‖�G(t)‖2. Since Qt is of trace
class, this implies that et AG ∈ L2(H) (and so it is compact) for all t > 0.

(ii) Since the images Q1/2
t (H) increase as t increases, we clearly have that if

Hypothesis 4.29 holds then also

esAG(H) ⊂ Q1/2
t (H), 0 < s < t. (4.62)

Since we can write, for 0 < s < t ,

14It is indeed constant when U = H and G = I and (4.53) holds, see e.g. [179], Theorem B.2.2.
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�G(t) = Q−1/2t e(t−s)AesAG, 0 < s < t, (4.63)

then, whenU = H and G = I , also �(t) ∈ L2(H). This may not be true when
G �= I , in general.

For the proofs of all these facts the reader can see Appendix B of [179]. There
the proofs are given for U = H and G = I but the generalizations to our case are
completely straightforward. Such facts can be employed to get conditions for the
regularity of the generalized solution u from (4.51), see [179], Sect. 6.2. �

We now introduce the second hypothesis which, recalling (4.7), guarantees the
existence of an integrable weight γG in this case.

Hypothesis 4.32 Let U be a real separable Hilbert space and G : U → H be a
closed linear operator (possibly unbounded) with dense domain D(G). Assume that
Hypothesis 4.29 holds and that

the function t→‖�G(t)‖ is integrable in a right neighborhood of 0. (4.64)

Remark 4.33 In many cases in the literature assumption (4.64) is substituted, for
simplicity, by the requirement that, for suitable C > 0 and θ ∈ (0, 1), one has

‖�G(t)‖ ≤ Ct−θ, for t ∈ (0, T ] (4.65)

in the parabolic case with finite horizon T and

‖�G(t)‖ ≤ C(1 ∨ t−θ), for t > 0, (4.66)

in the elliptic case. We will occasionally do this here in Sects. 4.6–4.8. �

Remark 4.34 Define, for any t > 0 and x ∈ H , the minimal energy to steer, in time
t , the deterministic control system (4.55) from x to 0, as

E(t, x) := inf

{(∫ t

0
|a(s)|2ds

)1/2

: a(·) ∈ L2(0, t;�), z(t; 0, x, a(·)) = 0

}

, (4.67)

with the agreement that the infimum of the empty set is +∞. When U = H and
G = I we have (see e.g. Appendix B, Remark B.9 of [180]) E(t, x) = |�(t)x | and
so Hypothesis 4.32 is equivalent to asking that the function

t → sup
x∈H, |x |≤1

E(t, x) is integrable in a right neighborhood of 0.

In the case when G is bounded (see e.g. [432], Sect. 3.1, Proposition 3.9) we have
E(t,Gk) = |�G(t)k| and so Hypothesis 4.32 is equivalent to asking that the function

t → sup
k∈U, |k|≤1

E(t,Gk) is integrable in a right neighborhood of 0.
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When G is unbounded we may view Hypothesis 4.32 as an estimate of the minimal
energy for the extension of system (4.55) to a suitable extrapolation space.

Using this interpretation it is not difficult to prove that the function t→‖�G(t)‖ is
decreasing. This fact is proved, in the case when G = I , e.g. in [312], Theorem 3.7-
(ii). In Lemma 4.35we give a general proof. Finally, we alsomention that t→�G(t) is
strongly continuous (see [312], Theorem 3.7-(iii) when G = I ) while the continuity
may fail in general. �

Lemma 4.35 Let Hypotheses 4.25 and 4.29 hold. Then for each k ∈ U the map t →
|�G(t)k| is monotonically decreasing. Consequently the map t → ‖�G(t)‖L(U,H) is
also monotonically decreasing.

Proof Let first k ∈ D(G). Consider the deterministic control system (4.55) with
initial datum x = Gk. Using the operator Lt defined in (4.56) we can write the
solution of (4.55) as

z(t; k, a(·)) = et AGk + Lt a(·)

for any a(·) ∈ L2(0, t;�). If k ∈ U the last equation still makes sense, recalling that
the operator et AG extends to all of U by Hypothesis 4.29.

Nowgiven any controla(·) ∈ L2(0, t;�),wehave z(t) = 0 if andonly ifLt a(·) =
−et AGk, i.e. if and only if a(·) belongs to the inverse image (throughLt ) of−et AGk.
Among all such controls, the one of minimum norm is, by the definition of the
pseudoinverse, āt (·) := L−1t

(−et AGk
)
for all t ≥ 0. Its norm is clearly given by

|L−1t

(−et AGk
) |L2(0,t;�). Now, from (4.57) and Proposition B.2-(ii), we get

|L−1t

(−et AGk
) |L2(0,t;�) = |Q−1/2t

(−et AGk
) |H = |�G(t)k|.

Thus it is enough to show that the norm |āt (·)|L2(0,t;�) is decreasing in t . Indeed, let
t1 > t2 and consider the control a1(·) ∈ L2(0, t1;�) defined as

a1(s) =
{
āt2(s) s ∈ [0, t2],
0 s ∈ (t2, t1].

Then we have z(t1; 0, k, a1(·)) = 0 since, by the definition of a1(·),

et1AGk + Lt1a1 = e(t1−t2)A
[

et2AGk +
∫ t2

0
e(t2−s)Aσāt2(s)

]

= 0

(here we used the fact that et1AGk = e(t1−t2)Aet2AGk, which is obvious for k ∈ D(G)

and follows by density for all k ∈ U ). It thus follows, by the minimality of
|āt1 |L2(0,t1;�) and the definition of a1(·), that

|āt1(·)|L2(0,t1;�) ≤ |a1(·)|L2(0,t1;�) = |āt2(·)|L2(0,t2;�),

which gives the claim. �
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Remark 4.36 The two key Hypotheses 4.29 and 4.32 can also be formulated if G
depends on (s, x) ∈ [0, T ] × H for given T > 0. In this case we have to ask that
(4.53) (or (4.54)) holds for all (s, x) ∈ [0, T ] × H , so that the bounded linear operator
from U to H ,

�G(t, s, x) := Q−1/2t et AG(s, x),

is bounded for all (t, s, x) ∈ (0, T ] × [0, T ] × H . Moreover, assumption (4.64)
would then require that the function

t → sup
(s,x)∈[0,T ]×H

‖�G(t, s, x)‖

(which is still decreasing thanks to the above remarks) is integrable in a right neigh-
borhood of 0. �

4.3.1.4 Smoothing Properties of Rt : Results and Estimates

We begin by recalling a well known result for the case U = H and G = I when
Hypothesis 4.29 holds (see Theorem 6.2.2 and Exercise 6.3.3 of [179]).

Theorem 4.37 Assume that Hypotheses 4.25 and 4.29 for U = H and G = I hold.
Then for any φ ∈ Bb(H) and any t > 0 we have Rt [φ] ∈ UC∞b (H).

In particular, for any k, h, x ∈ H, we have

〈DRt [φ](x), k〉 =
∫

H
〈�(t)k, Q−1/2t y〉φ(et Ax + y)NQt (dy) (4.68)

and

〈D2Rt [φ](x)k, h〉

=
∫

H
[〈�(t)k, Q−1/2t y〉〈�(t)h, Q−1/2t y〉 − 〈�(t)k, �(t)h〉]φ(et Ax + y)NQt (dy).

(4.69)
Moreover, the following estimates hold:

|DRt [φ](x)| ≤ ‖�(t)‖ ‖φ‖0, t > 0, x ∈ H, (4.70)

‖D2Rt [φ](x)‖ ≤
√
2 ‖�(t)‖2 ‖φ‖0, t > 0, x ∈ H. (4.71)

More generally, for every n ∈ N there exists a constant Cn > 0 such that

‖DnRt [φ](x)‖ ≤ Cn‖�(t)‖n‖φ‖0, n ∈ N, t > 0, x ∈ H. (4.72)
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If, conversely, Hypothesis 4.25 holds withU = H and G = I and Rt [φ] ∈ Cb(H)

for any φ ∈ Bb(H) and any t > 0, then (4.53) is satisfied (for U = H and G = I ).

Remark 4.38 The result above is generalized to the case when the datum φ ∈
UCm(H) (m ∈ N) in [102] and the arguments used there can easily be applied to
obtain the same result whenφ ∈ Bm(H) or,with some changes, to L2(H,N (0, Q∞))

(see [179], Propositions 10.3.1 and 10.3.5). �

We now prove an analogous result for the case of G-derivatives (G possibly
unbounded) which generalizes Lemma 3.4 of [432] and which can be found, in a
similar form, in [189] and, in a slightly more general form, in [316].

We need two lemmas. In the following, the symbol [t] denotes the greatest integer
part of t ∈ [0,+∞).

Lemma 4.39 Let Hypothesis 4.25 hold and let M ≥ 1, ω ∈ R be as in (4.45). Then

Tr[Qt ] ≤ Tr[Q1]M2 e
2ω([t]+1) − 1

e2ω − 1
, ∀t ≥ 0,

with the agreement
e2ω([t]+1) − 1

e2ω − 1
:= [t] + 1, if ω = 0.

Proof Note that

Qt = Qt−1 +
∫ t

t−1
esA�esA

∗
ds = Qt−1 + e(t−1)AQ1e

(t−1)A∗ , ∀t ≥ 1.

Now, recall that, see Proposition B.28-(i), if T ∈ L1(H) and S ∈ L(H), then T S ∈
L1(H) and |T S|L1(H) ≤ |T |L1(H)|S|L(H) and that the trace is additive. Thus, setting
an := Tr [Qn], n ∈ N, and q := Tr [Q1], we get

a0 = 0, an ≤ an−1 + qM2e2ω(n−1), ∀n ∈ N \ {0}.

This implies

an ≤ qM2
n∑

k=1
e2ω(k−1) = qM2 e

2ωn − 1

e2ω − 1

(with the agreement specified in the statement when ω = 0). The claim follows
simply by observing that t ≤ [t] + 1. �

The following lemma is an extension of Proposition 2.19 of [179] and of Lemma
3.1 of [102].

Lemma 4.40 LetHypothesis 4.25 hold. Then for everyα ≥ 0 there exists a K1(α) ≥
1 such that for all t ≥ 0 we have, for all x ∈ H,
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∫

H
|y + et Ax |αNQt (dy) ≤ K1(α)(1+ |x |α)eα(ω∨0)t , i f ω �= 0, (4.73)

∫

H
|y + et Ax |αNQt (dy) ≤ K1(α)(1+ |x |α)(1+ tα), i f ω = 0. (4.74)

Proof The case α = 0 is obvious. Let α > 0. We have

|y + et Ax |α ≤ (1 ∨ 2α−1)(|y|α + |et Ax |α),

so ∫

H
|y + et Ax |αNQt (dy) ≤ (1 ∨ 2α−1)

(

|et Ax |α +
∫

H
|y|αNQt (dy)

)

.

By Proposition 1.59 we have

∫

H
|y|αNQt (dy) ≤ K (α/2)(Tr[Qt ])α/2,

where the constant K (α/2) is the one from (1.10), which is independent of t . We
now use Lemma 4.39 for ω �= 0 getting

Tr[Qt ]α/2 ≤ Tr[Q1]α/2Mα

[
e2ω([t]+1) − 1

e2ω − 1

]α/2

.

We thus obtain, using (4.45),

∫

H
|y + et Ax |αNQt (dy)

≤ (1 ∨ 2α−1)

(

Mαeαωt |x |α + K (α/2)Tr[Q1]α/2Mα

[
e2ω([t]+1) − 1

e2ω − 1

]α/2
)

.

The claim for ω �= 0 follows by suitably choosing K1(α). For ω = 0 we have, by
Lemma 4.39,

Tr[Qt ]α/2 ≤ Tr[Q1]α/2Mα([t] + 1)α/2,

so
∫

H
|y + et Ax |αNQt (dy)

≤ (1 ∨ 2α−1)
(
Mα|x |α + K (α/2)Tr[Q1]α/2Mα([t] + 1)α/2

)

and the claim follows by properly choosing K1(α). �
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Theorem 4.41 Let Hypotheses 4.25 and 4.29 hold true and let m ≥ 0. Then we have
the following:

(i) For every φ ∈ Bm(H) and t > 0, Rt [φ] is G-Fréchet differentiable in H and,
for every x ∈ H, k ∈ U we have the formula

〈
DGRt [φ](x), k

〉

U =
∫

H
φ
(
y + et Ax

) 〈
�G(t)k, Q−1/2t y

〉
NQt (dy) (4.75)

and the estimates (here K1(·) is the constant from Lemma 4.40)

|Rt [φ](x)|R ≤ ‖φ‖Bm (1+ |x |m)2K1(m)em(ω∨0)t , (4.76)

|DGRt [φ](x)|U ≤ ‖�G(t)‖ ‖φ‖Bm (1+ |x |m)2[K1(2m)]1/2em(ω∨0)t , (4.77)

where ω �= 0 is as in (4.45). If ω = 0 the estimates above hold substituting
em(ω∨0)t with 1+ tm.

(ii) Moreover, if φ ∈ Cm(H), then also DG Rt [φ] ∈ Cm(H) for all t > 0.
(iii) Finally, if φ ∈ C1

m(H), then for all t > 0

〈
DGRt [φ](x), k

〉

U
=
∫

H

〈
Dφ

(
y + et Ax

)
, et AGk

〉NQt (dy). (4.78)

Proof
Proof of (i).We first compute, for k ∈ D(G)⊂U , the limit

lim
s→0

1

s
[Rt [φ](x + sGk)− Rt [φ](x)] .

Using (4.50) we have

1

s
[Rt [φ](x + sGk)− Rt [φ](x)]

= 1

s

[∫

H
φ
(
y + et A(x + sGk)

)NQt (dy)−
∫

H
φ
(
y + et Ax

)NQt (dy)

]

= 1

s

[∫

H
φ
(
y + et Ax

)N (
set AGk, Qt

)
(dy)−

∫

H
φ
(
y + et Ax

)NQt (dy)

]

.

TheGaussianmeasuresN (
set AGk, Qt

)
andNQt are equivalent since, byHypothesis

4.29, set AGk ∈ Q1/2
t (H). Applying theCameron–Martin formula (seeTheorem1.60

or, e.g., Theorem 1.3.6 of [179]), we define
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d (t, x, sGk, y) = dN (
et AsGk, Qt

)

dNQt

(y)

= exp

{〈
sQ−1/2t et AGk, Q−1/2t y

〉
− 1

2
s2
∣
∣
∣Q

−1/2
t et AGk

∣
∣
∣
2
}

and we get bringing, formally, the limit inside the integral,

lim
s→0

1

s
[Rt [φ](x + sGk)− Rt [φ](x)]

= lim
s→0

∫

H
φ
(
y + et Ax

) (d (t, x, sGk, y)− 1)

s
NQt (dy)

=
∫

H
φ
(
y + et Ax

)
lim
s→0

(d (t, x, sGk, y)− 1)

s
NQt (dy)

=
∫

H
φ
(
y + et Ax

) 〈
Q−1/2t et AGk, Q−1/2t y

〉
NQt (dy).

We now justify the limit above and get the required estimate. First note that, by

the definition of the pseudoinverse (Definition B.1), R(Q−1/2t ) =
[
ker

(
Q1/2

t

)]⊥
,

hence Q−1/2t et AGk ∈ R(Q1/2
t ). So, fromProposition 1.59 (see also [179] Sect. 1.2.4),

we see that the function y →
〈
Q−1/2t et AGk, Q−1/2t y

〉
is well defined and square-

integrable with respect to the measure NQt . Moreover, using the Cauchy–Schwarz
inequality we get

∣
∣
∣
∣

∫

H
φ
(
y + et Ax

) 〈
Q−1/2t et AGk, Q−1/2t y

〉
NQt (dy)

∣
∣
∣
∣

≤ ‖φ‖Bm

∫

H
(1+ |y + et Ax |m)

∣
∣
∣

〈
Q−1/2t et AGk, Q−1/2t y

〉∣
∣
∣NQt (dy)

≤ ‖φ‖Bm

(∫

H
(1+ |y + et Ax |m)2NQt (dy)

)1/2

×
(∫

H

∣
∣
∣

〈
Q−1/2t et AGk, Q−1/2t y

〉∣
∣
∣
2
NQt (dy)

)1/2

≤ ‖φ‖Bm

(∫

H
2(1+ |y + et Ax |2m)NQt (dy)

)1/2 ∥
∥
∥Q

−1/2
t et AG

∥
∥
∥ |k|

≤ ‖φ‖Bm

[
2+ 2K1(2m)(1+ |x |2m)e2m(ω∨0)t]1/2

∥
∥
∥Q

−1/2
t et AG

∥
∥
∥ |k|

≤ ‖φ‖Bm
2[K1(2m)]1/2(1+ |x |m)em(ω∨0)t

∥
∥
∥Q

−1/2
t et AG

∥
∥
∥ |k| . (4.79)

In the last three lines we used (1.8), Lemma 4.40 for ω �= 0, and the fact that (1+
|x |2m)1/2 ≤ 1+ |x |m . Ifω = 0 we substitute the term em(ω∨0)t with 1+ tm . From this
last estimate we can easily see that the limit is uniform for k in the unit ball of U
intersected with D(G). So we can extend all the above computations to k ∈ U and,
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using the definition of �G(t), we conclude that Rt [φ] is G-Fréchet differentiable and

DGRt [φ](x)k =
∫

H
φ
(
y + et Ax

) 〈
�G(t)k, Q−1/2t y

〉
NQt (dy).

Estimate (4.77) follows easily from (4.79). Estimate (4.76) follows observing that

|Rt [φ](x)|R =
∣
∣
∣
∣

∫

H
φ
(
y + et Ax

)NQt (dy)

∣
∣
∣
∣ ≤ ‖φ‖Bm

∫

H

(
1+ |y + et Ax |m)NQt (dy)

and then using Lemma 4.40.

Proof of (ii). Let now φ ∈ Cm(H), (t, x) ∈ (0, T ] × H and take any sequence
xn → x in H . Arguing similarly to (4.79) we get,

|DGRt [φ](xn)− DGRt [φ](x)| = sup
|k|U=1

〈
DGRt [φ](xn)− DGRt [φ](x), k

〉

U

= sup
|k|U=1

∫

H

[
φ
(
y + et Axn

)− φ
(
y + et Ax

)] 〈
�G(t)k, Q−1/2t y

〉

H
NQt (dy)

≤
(∫

H

∣
∣φ
(
y + et Axn

)− φ
(
y + et Ax

)∣
∣2 NQt (dy)

)1/2

‖�G(t)‖.

Hence the claim follows by the dominated convergence theorem.

Proof of (iii). Taking φ ∈ C1
m(H), t > 0 and k ∈ D(G)⊂U , we have, using (4.49)

and the dominated convergence theorem,

〈
DGRt [φ](x), k

〉

U = lim
s→0

1

s
[Rt [φ](x + sGk)− Rt [φ](x)]

= lim
s→0

∫

H

1

s

[
φ
(
y + et A(x + sGk)

)− φ
(
y + et Ax

)]NQt (dy)

=
∫

H

〈
Dφ

(
y + et Ax

)
, et AGk

〉NQt (dy).

This is the claim when k ∈ D(G)⊂U . The claim when k ∈ U simply follows using
the density of D(G) in U and the fact that, by Hypothesis 4.29, the operator et AG
extends to a bounded operator defined on the whole U . �

Remark 4.42

(i) Under the assumptions of Theorem 4.41 it is possible to prove, as was done in
Theorem 4.37, the existence of the second (and higher) G-derivative with a for-
mula like (4.69) and an estimate like (4.71) (or (4.72) for higher G-derivatives)
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with �G in place of �. We do not do this here as we will not be using such
regularity properties in this chapter.

(ii) In Theorem 4.41, in contrast to Theorem 4.37, we cannot say in general that
the semigroup Rt is strongly Feller (Definition 1.159). Indeed the G-Fréchet
differentiability of Rt [φ]may not imply, whenφ is not continuous, its continuity
(taking, for example, G as in Example 4.2 and suitably choosing φ and �).
Similarly we cannot say that DGRtφ is continuous if φ is not continuous.

(iii) Note that Theorem 4.37 applies only when φ is bounded while in Theorem 4.41
polynomial growth of φ is also allowed (similarly to what is done in a special
case in [102], Theorem 4.2).

(iv) By a straightforwardmodification of the proof, Theorem4.41 canbegeneralized
to the case when, for a given T > 0, G is a map from [0, T ] × H to the set of
linear closed operators fromU to H satisfying Hypothesis 4.11 for G(t, ·), for
every t ∈ [0, T ]. To obtain the result, due to measurability problems, one has to
assume a bit more than the modification of Hypothesis 4.29 stated in Remark
4.36. The following would be a reasonable requirement.
For every (t, x) ∈ (0, T ] × H , s ∈ [0, T ] the linear operator et AG(s, x) can be
extended to a bounded operator, which we still denote by et AG(s, x) : U → H ,
such that the map

(0, T ] × [0, T ] × H → L(U, H),

(t, s, x) → et AG(s, x)

is strongly measurable and for every (t, s, x) ∈ (0, T ] × [0, T ] × H

et AG(s, x)(U )⊂Q1/2
t (H).

�

4.3.1.5 Smoothing Properties of Rt : Examples with Diagonal Operators

We consider here the case whenU = � = H and the operators A, � := σσ∗ and G
are all diagonal with respect to the same orthonormal basis.We assume the following.

Hypothesis 4.43 Let U = � = H and let {ek} be an orthonormal basis of H . We
assume that σ ∈ L(H) is constant and A, � = σσ∗ and G satisfy the following:

Aek = −αkek, �ek = qkek, Gek = gkek, k ∈ N, (4.80)

where for all k ∈ N we have αk ≥ 0, qk > 0 and gk ∈ R. Moreover, αk ↗ +∞.

Due to the assumptions, the set N0 := {k ∈ N : αk = 0} is finite. Set N1 := N−
N0. We have the following result (see [180], Proposition 9.44).

Proposition 4.44 Let Hypothesis 4.43 hold. Then, for any t > 0, we have the fol-
lowing.
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(i) The condition
∑

k∈N1

qk
αk

< +∞ (4.81)

is equivalent to requiring that esA�esA
∗ ∈ L+1 (H) for all s > 0 and

∫ t
0 Tr[esA�esA

∗ ]ds < +∞ for all t > 0, i.e. Hypothesis 4.25-(ii). In this case
the operator Qt =

∫ t
0 e

sA�esA
∗
ds is diagonal and nuclear and

Qtek = qk
2αk

(1− e−2αk t )ek

under the agreement that 1−e−2αk t
2αk

=: t for k ∈ N0. Moreover, (4.47) is satisfied
if

∑

k∈N1

qk
α1−θ
k

< +∞. (4.82)

(ii) The operator et AG : D(G)→ H extends to a bounded operator in L(H)

(which we still denote by et AG) if and only if

sup
k∈N

e−tαkgk < +∞. (4.83)

Moreover, we have15 D(A)⊂D(G) and |Gz| ≤ c|Az| for all z ∈ D(A) for some
c > 0, if and only if gk = 0 for k ∈ N0 and

sup
k∈N1

gk

αk
< +∞, (4.84)

which also implies (4.83).
(iii) The operator �G(t) is well defined on the elements of {ek},

�G(t)ek =
√

2αk

e2tαk − 1
· g2k
qk

ek

and Hypotheses 4.29 and 4.32 hold if and only if there exists a function γG ∈ I1
such that

‖�G(t)‖ = sup
k∈N

√

2αk

e2tαk − 1
· g2k
qk

≤ γG(t), t > 0. (4.85)

Proof Concerning point (i) observe that, when (4.81) holds, we clearly have

15This condition will be used to obtain strong solutions of HJB equations, see Proposition 4.148
and Theorems 4.150–4.158.



408 4 Mild Solutions in Spaces of Continuous Functions

∑

k∈N
qke

−2sαk =
∑

k∈N

qk
αk

e−2sαkαk < +∞ for all s > 0,

since for each s > 0, e−2sαkαk ≤ (2es)−1. Moreover, since (recall the convention
when αk = 0) ∫ t

0
e−2sαk qkds = qk

2αk
(1− e−2αk t ),

we can apply Fubini’s Theorem 1.33-(ii) to get
∫ t
0 Tr[esA�esA

∗ ]ds < +∞ for all
t > 0.

In the other direction, sincewe always have Qtek = qk
2αk

(1− e−2αk t )ek , it is imme-
diate that if Qt is nuclear, then (4.81) must hold.

The last part of point (i) follows observing that, by a simple change of variable,

∫ t

0
s−θe−2sαk ds ≤ αθ−1

k

∫ +∞

0
s−θe−2sds,

and using again Fubini’s Theorem 1.33-(ii).
Concerning point (ii), the first part is immediate. The second part of (ii) can be

easily seen since Gz =∑+∞
k=1 gk 〈z, ek〉 ek and Az =∑+∞

k=1 αk 〈z, ek〉 ek on elements
of their domains.

Regarding (iii), on the elements of the basis {ek}, we have

�G(t)ek = Q−1/2t et AGek =
√

2αk

(1− e−2tαk )qk
e−tαkgkek =

√

2αk

e2tαk − 1
· g2k
qk

ek .

Thus the claim follows since the boundedness of �G(t) is equivalent to
supk∈N |�G(t)ek | < +∞. �

The following corollary lists three common cases in which Hypotheses 4.25 and
4.32 are satisfied when Hypothesis 4.43 holds. We will denote by γG any function
in I1 which dominates ‖�G(·)‖.
Corollary 4.45 Let Hypothesis 4.43 be satisfied. Then we have the following.

(i) Let G = (−A)δ and � = (−A)−β for some δ,β ∈ [0, 1). In this case

‖�G(t)‖2 = sup
k∈N

2α1+β+2δ
k

e2tαk − 1
≤ C

t1+β+2δ ,

where C = sups>0
2s1+β+2δ
e2s−1 . Here (4.85) holds when β + 2δ < 1 with γG(t) =

C1/2t−(1+β+2δ)/2. Note that, in this case, at least formally, β < 0 would also be
fine.16 Moreover, in this case (4.81) (respectively, (4.82)) is satisfied if and only

16This can be understood by looking at the control-theoretic interpretation of Hypotheses 4.29
and 4.32 given in Remarks 4.30 and 4.34. Indeed, it corresponds to the intuitive fact that if β < 0
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if

∑

k∈N1

α
−β−1
k < +∞,

⎛

⎝ respectively,
∑

k∈N1

α
θ−β−1
k < +∞

⎞

⎠ .

Both are true (the second for sufficiently small θ) e.g. if αk ∼ kη for
η(1+ β) > 1.

(ii) Let G = √� (which includes the case G = � = I ). In this case

‖�G(t)‖2 = sup
k∈N

2αk

e2tαk − 1
≤ C

t
,

where C = sups>0
2s

e2s−1 . Thus (4.85) holds with γG(t) = C1/2t−1/2. Conditions
(4.81) and (4.82) are unchanged.

(iii) Let G = (−A)β
√

� for some β ∈ (0, 1/2). In this case we have g2k = α
2β
k qk

for every k ∈ N, hence

‖�G(t)‖2 = sup
k∈N

2α1+2β
k

e2tαk − 1
≤ C

t1+2β
,

where C = sups>0
2s1+2β
e2s−1 and so (4.85) holds with γG(t) = Ct−(1/2+β). Also in

this case (4.81) and (4.82) are unchanged.

Proof The result easily follows from Proposition 4.44. �

The above examples canbe easily extended to caseswhen some (possibly infinitely
many) of the qk are zero provided that the corresponding gk are zero too.

We now present a concrete example where Hypothesis 4.43 is satisfied (see e.g.
Example 6.3 of [306], Example 13.1.2 of [179]) and [240, 241].

Example 4.46 LetCd = (0,π)d and H = L2(Cd), d ∈ N. Take (see Proposition C.3
and Remark C.9) the Laplace operator with Dirichlet boundary condition

D(AD) = H 2(Cd) ∩ H 1
0 (Cd), ADx = �x, for x ∈ D(AD)

and (see Proposition C.7 and Remark C.9) the Laplace operator with Neumann
boundary condition

D(AN ) = {x ∈ H 2(Cd) : ∂x
∂n = 0 on ∂Cd

}
, AN x = �x, for x ∈ D(AN ),

(Footnote 16 continued)
then the image of (−A)−β (in a suitable extrapolation space) is bigger and it is easier to steer any
point x ∈ H to zero. This case should not be confused with the case of boundary noise, where � is
unbounded but with a very narrow image, see Sect. 2.6.3 and also Sects.C.4 and C.5. For example,
in the case of Neumann boundary noise described in Sect. 2.6.3 we have� := (λI − A)Nλ : R2 →
H−1(0,π), hence the image of � is only two-dimensional.
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where ∂x
∂n is the derivative in the normal direction. Both operators AD and AN sat-

isfy Hypothesis 4.25-(i) and generate analytic semigroups of compact operators.
Moreover, they are both diagonal. For AD the orthonormal basis of eigenvectors is

eDn1,..,nd (ξ) =
(
2

π

) d
2

sin(n1ξ1) · · · sin(ndξd), ni = 1, 2, ..., i = 1, ..., d,

with the eigenvalues −αD
n1,..,nd where

αD
n1,..,nd = n21 + · · · + n2d . (4.86)

For AN the orthonormal basis of eigenvectors is

eNn1,..,nd (ξ) = Cn1,..,nd cos(n1ξ1) · · · cos(ndξd), ni = 0, 1, 2, ..., i = 1, ..., d,

for appropriate constants Cn1,..,nd with the eigenvalues −αN
n1,..,nd where

αN
n1,..,nd = n21 + · · · + n2d . (4.87)

In both cases, ordering the eigenvalues with a single index k, we have

αk ≈ k
2
d as k →+∞. (4.88)

Note that, in the case of Neumann boundary condition there is a zero eigenvalue and
so, in defining fractional powers, we have to take the operator λI − AN for some
λ > 0 (which has eigenvalues λ+ αN

n1,..,nd > 0 and the same eigenvectors as AN ),
and take, in Corollary 4.45-(i) and (iii), (λI − AN )β in place of (−AN )β .

Let us look at the three cases of Corollary 4.45 for the operator A = AD or
A = AN . We discuss when the key conditions (4.85) and (4.81) are satisfied.

(i) Gek = αδ
kek and �ek = α

−β
k ek , δ,β ∈ [0, 1). Here (4.85) holds, when β +

2δ < 1.Moreover, Qt is nuclear if and only if (1+ β) 2d > 1, i.e. d < 2(1+ β).
Hence if d = 1 (respectively, d = 2) one can take β = 0 (respectively, β >

0 arbitrarily small) and δ < 1/2, allowing us to cover the case of Neumann
boundary control when � = I (respectively, � = (−A)−β for β ∈ (0, 1/2)),
see e.g. [240, 241] and Sects. 2.6.2 and 4.8. Recall that for Neumann boundary
control (see Sect.C.4) one has to take δ = 1/4+ ε for arbitrarily small ε > 0.
The case d = 1 with G = I is also treated in [90].
If d = 3 one has to take β > 1/2 and so one can treat the case when G = I
but not the case of Neumann boundary control since in this case δ = 1/4+ ε,
hence the condition β + 2δ < 1 cannot be satisfied.

(ii) G = �1/2. Here any d ∈ N can be considered by suitably choosing �. For
example, taking �ek = 0 for all but a finite set of eigenvectors, Qt is nuclear
for every d ∈ N. Taking �ek = α

−β
k , for β > 0 we can take all d smaller than

2(1+ β).
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(iii) G = (−A)β�1/2 for β ∈ (0, 1/2). Also here any d ∈ N can be considered for
a suitable choice of �.

�

4.3.1.6 Smoothing Properties of Rt : Other Examples

Example 4.47 This example is taken from Example 3.10 in [432]. LetU = � = H ,
� ∈ L+(H), G = σ = �1/2. Suppose that, for t > 0,

et A�1/2(H) ⊂ �1/2(H),

i.e. that�1/2(H) is invariant for the semigroup et A. By the closed graph theorem this
implies that �−1/2et A�1/2 is a bounded operator so we can write

et A�1/2x = 1

t

∫ t

0
e(t−s)A�1/2�−1/2esA�1/2xds.

Nowwe use the minimum energy formulation of Hypothesis 4.32 (see Remarks 4.30
and 4.34). Defining for any x ∈ H , ut,x (s) = − 1

t �
−1/2esA�1/2x , we see that, setting

z(r) = er A�1/2x +
∫ r

0
e(r−s)A�1/2ut,x (s)ds, r ∈ [0, t],

we have z(t) = 0. This means that R(et A�1/2)⊂R(Lt ). If we assume further that the
function

[0,+∞)→ R, s→‖�−1/2esA�1/2‖

is locally p-summable for some p ∈ (2,+∞], then, for some C > 0,

(∫ t

0

∣
∣ut,x (s)

∣
∣2 ds

)1/2

= 1

t

(∫ t

0

∣
∣�−1/2esA�1/2x

∣
∣2 ds

)1/2

≤ C |x |
t
1
2+ 1

p

.

In this case, (4.66) is satisfied with θ = 1
2 + 1

p , with the agreement that 1/p = 0
when p = +∞. �

Remark 4.48 If G = σ and �, H are finite-dimensional spaces (take H = R
n and

U = � = R
m), Hypotheses 4.29 and 4.32 (with θ = 1/2 in (4.65)) are always sat-

isfied. Indeed, in finite dimension the system (4.55), even when it is not null con-
trollable, has the property that every x in the subspace σ(H) can be driven to 0 in
any time t > 0 with minimal energy smaller than Ct− 1

2 |x |, for a suitable constant C
independent of t and x , see [525], Sect. 4.

When H is infinite-dimensional this fact is false in general. It is true in Example
4.47 and it is also true in the case when (4.44) is a linear stochastic wave equation
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with additive noise (see on this e.g. [432], Sect. 6.1, see also Example 3.69 for a
more general wave equation). We give an example where this is false. Consider, on
a given filtered probability space

(
�,F , {Fs}s≥0 ,P

)
, the following 1-dimensional

stochastic delay equation with pointwise delay r > 0, starting at time t ≥ 0,

dy(s) = β1y(s − r)ds + dW0(s), y(t) = x0, y(t + ξ) = x1(ξ), ξ ∈ [−r, 0),

driven by the 1-dimensional Wiener process W0. In the setting introduced in
Sect. 2.6.8.1 such equation can be rewritten as an SDE in the Hilbert space H := R×
L2(−r, 0;R) for the new state variable X (t) = (X0(t), X1(t)(·)) = (y(t), y(t + ·)),
t ≥ 0. The noise space is � = R and the SDE is

dX (t) = AX (t)+ σdW0(t),

where
σw0 = (w0, 0)

and {
D (A) = {(x0, x1(·)) ∈ R×W 1,2(−r, 0;R), x0 = x1(0)

}

A (x0, x1(·)) =
(
β1x1(−r), x ′1(·)

)
.

The operator A generates a strongly continuous semigroup et A on H . In the easi-
est case, when β1 = 0, by simple computations we have, for x = (x0, x1) ∈ H and
0 ≤ t ≤ r ,

et Ax = (x0, x01[−t,0](·)+ x1(t + ·)1[−d,−t](·)). (4.89)

Now we consider, for 0 < t ≤ r , the associated deterministic control system (here
the control u(·) belongs to L2(0, t;�))

z′(s) = Az(s)+ σu(s), z(0) = x ∈ H,

whose mild solution is

z(t; 0, x, u(·)) = et Ax +
∫ t

0
e(t−s)Aσu(s)ds.

Hypothesis 4.29 in this case is equivalent to requiring that for every k ∈ � = R there
exists a control ut,k(·) ∈ L2(0, t;�) such that z(t; 0,σk, ut,k(·)) = 0. We show that
this is impossible when k �= 0. Indeed, by (4.89) we have, for any k ∈ R,

et Aσk = et A(k, 0) = (k, k1[−t,0](·))

and, for any u(·) ∈ L2(0, t;�),
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∫ t

0
e(t−s)Aσu(s)ds =

(∫ t

0
u(s)ds,

∫ t

0
u(s)1[−(t−s),0](·)ds

)

=
(∫ t

0
u(s)ds,

∫ t+·

0
u(s)ds

)

.

To have null controllability wemust be able to choose u(·) such that both components
of z(t; 0,σk, u(·)) become 0. This means

k +
∫ t

0
u(s)ds = 0 and k +

∫ t+ξ

0
u(s)ds = 0 ∀ξ ∈ [−t, 0),

which is clearly impossible, unless k = 0. �

4.3.1.7 Joint Space–Time Regularity of Rt

Measurability and continuity properties of the function (t, x)→Rt [φ](x) and of
related convolutions are useful to establish the regularity of the solutions of our
HJB equations in the parabolic case, see Sect. 4.4.1 and, in the specific Ornstein–
Uhlenbeck case, Sects. 4.6 and 4.7.

We begin with a lemma about compactness properties of a particular family of
Gaussian measures.

Lemma 4.49 Let H be a real separable Hilbert space and let Hypothesis 4.25 be
satisfied.Givenany T > 0 andany compact setU ∈ H, the family

{NQt : t ∈ [0, T ]
}

of probability measures on H is tight.17

Moreover, if tn → t as n→+∞, then ‖Qtn − Qt‖L1(H) → 0 andNQtn
converges

weakly to NQt .

Proof Regarding the first part we use Theorem 1.63 (see also [101], proof of Lemma
6.3, for a similar result). First of all, by the definition of Qt we immediately have
that, for 0 < s < t ,

Qt − Qs = esAQt−sesA
∗
, (4.90)

which implies that Qs ≤ Qt .
Now, taking a complete orthonormal system {ei }i in H , we have, for every t ∈

[0, T ], see (1.8),
∫

H

+∞∑

i=N

〈x, ei 〉2NQt (dx) =
+∞∑

i=N

〈Qtei , ei 〉 ≤
+∞∑

i=N

〈QT ei , ei 〉 −→ 0 as N →+∞.

Hence, by Theorem 1.63, the family
{NQt : t ∈ [0, T ]

}
is relatively compact and

then tight by Theorem 1.62.
To prove the second part, in view of Proposition 1.64, it is enough to show that

‖Qtn − Qt‖L1(H) → 0 as n→+∞. By (4.90) and Proposition B.28-(i) it is enough

17See Definition 1.61-(iii).
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to prove that, if tn ↘ 0, then Tr[Qtn ] → 0. Since, by the monotone convergence
theorem, we have for every t ∈ [0, T ]

Tr[Qt ] =
∫ t

0
Tr
[
esA�esA

∗]
ds

and, by Hypothesis 4.25, the map s→Tr
[
esA�esA

∗]
is integrable, the claim

follows. �

The next result deals with the joint measurability and continuity of Rt .

Proposition 4.50 Let T > 0 and m ≥ 0. Suppose that Hypothesis 4.25 is satisfied.
Then we have the following.

(i) For every φ ∈ Bm(H) (respectively φ ∈ Cm(H)) the function

φ0
R : [0, T ] × H → R, (t, x)→Rt [φ](x)

belongs to Bm([0, T ] × H) (respectively Cm([0, T ] × H)). If φ ∈ C1
m(H) then

Dφ0
R ∈ Cm([0, T ] × H, H).

(ii) Given any η ∈ I1 and ψ ∈ Bm,η((0, T ] × H), defining I0 := {(s, t) : 0 < s ≤
t ≤ T }, the function

ψ̄0
R : I0 × H → R, (t, s, x)→Rt−s[ψ(s, ·)](x)

is measurable and the function18

ψ0
R : [0, T ] × H → R, (t, x)→

∫ t

0
Rt−s[ψ(s, ·)](x)ds

belongs to Bm([0, T ] × H). If also ψ(s, ·) ∈ Cm(H) for all s ∈ (0, T ], then
ψ0

R ∈ Cm([0, T ] × H).

(iii) Let G : D(G)⊂U → H be a closed linear operator such that Hypothesis 4.29
holds for it. Then, for every φ ∈ Bm(H), the function

φ1
R : (0, T ] × H → U, (t, x)→DGRt [φ](x)

belongs to Bm,γG ((0, T ] × H,U ), where γG(t) := ‖�G(t)‖. Moreover, if φ ∈
Cm(H) then φ1

R is continuous in x.

(iv) Let G as in point (iii) above be such that Hypotheses 4.29 and 4.32 hold.
Given any η ∈ I1 and ψ ∈ Bm,η((0, T ] × H), defining I1 := {(s, t) : 0 < s <

t ≤ T }, the function

18For t = 0 such function is defined to be 0 by continuity.
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ψ̄1
R : I1 × H → U, (t, s, x)→DGRt−s[ψ(s, ·)](x)

is measurable, and

ψ1
R : (0, T ] × H → U, (t, x)→

∫ t

0
DGRt−s[ψ(s, ·)](x)ds

belongs to Bm,η1((0, T ] × H,U ), where η1 ∈ I1 is defined in Proposition 4.21-
(iii) for η0 = �G. Moreover, if ψ(s, ·) ∈ Cm(H) for all s ∈ (0, T ], then ψ1

R is
continuous in x.

Proof
Proof of (i). Let first φ ∈ Bm(H). The joint measurability of φ0

R simply follows from
(4.49), while its polynomial growth follows by observing that, by (4.49),

|φ0
R(t, x)|

1+ |x |m ≤ ‖φ‖Cm

∫

H

1+ |y + et Ax |m
1+ |x |m NQt (dy)

and then using Lemma 4.40.

Let φ ∈ Cm(H). Let (tn, xn)→ (t, x) ∈ [0, T ] × H , as n→+∞. We evaluate,
using (4.49),

φ0
R(tn, xn)− φ0

R(t, x) =
∫

H
φ(etn Axn + y)NQtn

(dy)−
∫

H
φ(et Ax + y)NQt (dy)

=
∫

H

[
φ(etn Axn + y)− φ(et Ax + y)

]NQtn
(dy)

+
(∫

H
φ(et Ax + y)NQtn

(dy)−
∫

H
φ(et Ax + y)NQt (dy)

)

=: I1 + I2. (4.91)

We estimate each term separately. We first observe that, by Lemma 4.49, the family
of measuresNQt , t ∈ [0, T ] is tight. Hence, for any ε > 0, we can choose a compact
set Kε in H such that NQt (H − Kε) < ε for any t ∈ [0, T ]. Then we have

|I1| ≤ ‖φ‖Cm

∫

H−Kε

[
(1+ |y + etn Axn|m)+ (1+ |y + et Ax |m)

]NQtn
(dy)

+
∫

Kε

∣
∣φ(etn Axn + y)− φ(et Ax + y)

∣
∣NQtn

(dy).

Standard computations yield that, for some constant C(m) > 0,

∫

H−Kε

[
(1+ |y + etn Axn|m)+ (1+ |y + et Ax |m)

]NQtn
(dy)

≤ εC(m)(1+ |x |m)+ C(m)

∫

H−Kε

|ym |NQtn
(dy) ≤ εC(m)(1+ |x |m)+ ρm(ε)



416 4 Mild Solutions in Spaces of Continuous Functions

for some modulus ρm . Moreover, since Kε is compact it is easy to see that

sup
y∈Kε

∣
∣φ(etn Axn + y)− φ(et Ax + y)

∣
∣ ≤ ρε(1/n) = 0

for some modulus ρε. Thus we obtain

|I1| ≤ ‖φ‖Cm [εC(m)(1+ |x |m)+ ρm(ε)] + ρε(1/n).

Wenow look at I2. By Lemma 4.49we know that, as n→+∞, ‖Qtn − Qt‖L1(H) →
0 and the measures NQtn

weakly converge to NQt , i.e. for every f ∈ Cb(H),∫

H f (y)NQtn
(dy)→ ∫

H f (y)NQt (dy). Define, for M > 0, f∞(y) := φ(et Ax + y)
and fM(y) := φ(et Ax + y) ∧ M . We have

I2 =
(∫

H
fM(y)NQtn

(dy)−
∫

H
fM(y)NQt (dy)

)

+
(∫

H
( f∞ − fM)(y)NQtn

(dy)−
∫

H
( f∞ − fM)(y)NQt (dy)

)

. (4.92)

We fix ε > 0 and choose M > 0 such that fM(y) = f∞(y) for all y ∈ Kε. This
implies that the second term of the right-hand side of (4.92) can be estimated, simi-
larly as it was done for I1, by 2‖φ‖Cm [εC(m)(1+ |x |m)+ ρm(ε)]. Moreover, when
tn → t the first term goes to 0 since fM is bounded.

Therefore we obtained that, for all ε > 0,

lim
n→+∞ |φ

0
R(tn, xn)− φ0

R(t, x)| ≤ 3‖φ‖Cm [εC(m)(1+ |x |m)+ ρm(ε)],

which gives the joint continuity by the arbitrariness of ε.

Let now φ ∈ C1
m(H). We use (4.50) and differentiate with respect to x under the

integral sign (using the closedness of the derivative operator, see Corollary 4.14, and
Remark 1.31) obtaining, for x, h ∈ H ,

〈
Dφ0

R(t, x), h
〉 =

∫

H

〈
Dφ(y + et Ax), et Ah

〉NQt (dy).

We now take (tn, xn)→ (t, x) and evaluate

|Dφ0
R(tn, xn)− Dφ0

R(t, x)| = sup
|h|=1

〈
Dφ0

R(tn, xn)− Dφ0
R(t, x), h

〉

= sup
|h|=1

[∫

H

〈
etn A

∗
Dφ(y + etn Axn), h

〉
NQtn

(dy)−
∫

H

〈
et A

∗
Dφ(y + et Ax), h

〉
NQt (dy)

]

.

When h is fixed, the fact that
〈
Dφ0

R(tn, xn)− Dφ0
R(t, x), h

〉
goes to 0, as n→+∞,

follows the same arguments as these we used above for φ0
R(tn, xn)− φ0

R(t, x). To get
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the claim we need to show that in the above procedure the limit is uniform in h with
|h| = 1. It is not difficult to see that the continuity of Dφ and the strong continuity of
et A imply the required uniformity in the estimates for the term analogous to I1 defined
in (4.91). Concerning the term analogous to I2, the second term of the right-hand
side of (4.92) is estimated uniformly as before. For the first term we need uniformity
in the weak convergence of measures. This is guaranteed by Theorem 1.65, which
then allows us to conclude.

Proof of (ii). Let ψ ∈ Bm,η((0, T ] × H). The measurability of ψ̄0
R follows from

themeasurability ofψ and from the definition of the semigroup Rt in (4.49). Defining
ψ0(s, x) := η(s)−1ψ(s, x), by the assumptions onψ, we have that ψ0(s,x)

1+|x |m is bounded.

Moreover, ψ̄0
R(t, s, x) := η(s)Rt−s[ψ0(s, ·)](x).

The joint measurability ofψ0
R immediately follows from the Fubini theorem (The-

orem 1.33-(i)) since

ψ0
R(t, x) =

∫ t

0
η(s)Rt−s[ψ0(s, ·)](x)ds. (4.93)

Moreover, ψ0
R ∈ Bm([0, T ] × H) since, for (t, x) ∈ [0, T ] × H ,

|ψ0
R(t, x)| ≤

∫ t

0
η(s) |Rt−s[ψ0(s, ·)](x)| ds

≤ C(m)(1+ |x |m)‖ψ‖Bm,η((0,T ]×H)

∫ t

0
η(s)ds. (4.94)

We now add the assumption that ψ(s, ·) ∈ Cm(H) for all s ∈ (0, T ], and prove
that ψ0

R ∈ Cm([0, T ] × H).
First we observe that in such a case the function ψ̄0

R is continuous in the vari-
ables (t, x). When ψ(s, ·) ∈ Cm(H) for all s ∈ (0, T ], we observe that ψ̄0

R(t, s, x) =
(w1 ◦ g)(t, s, x), where g : I0 → [0, T ] × (0, T ] × H , g(t, s, x) = (t − s, s, x) and
w1 : [0, T ] × (0, T ] × H → R, w1(t1, s, x) = Rt1 [ψ(s, ·)](x). The continuity fol-
lows since g is clearly continuous and since, for all s ∈ (0, T ], w1(·, s, ·) is contin-
uous thanks to part (i).

From the above we thus have that the integrand in (4.93) is continuous in (t, x),
integrable in s, and dominated in s uniformly for (t, x) ∈ (0, T ] × H0 for every
bounded subset H0 of H . This immediately gives the required continuity by a straight-
forward application of dominated convergence.

Proof of (iii). Let φ ∈ Bm(H). We observe first that by (4.75) we have, for (t, x) ∈
(0, T ] × H , k ∈ U ,

〈
DGRt [φ](x), k

〉

U =
∫

H
φ
(
y + et Ax

) 〈
�G(t)k, Q−1/2t y

〉

H
NQt (dy).
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This formula immediately implies the measurability of φ1
R . Moreover, by using the

Cauchy–Schwarz inequality exactly as in (4.79), we get that φ1
R ∈ Bm,γG ((0, T ] ×

H,U ).
When φ ∈ Cm(H) the continuity of φ1

R in x follows directly from
Theorem 4.41-(ii).

Proof of (iv). We observe first that, by (4.75), taking ψ0 as in (4.93) we have

〈
DGRt−s [ψ0(s, ·)](x), k

〉

U
=
∫

H
ψ0

(
s, y + e(t−s)Ax

) 〈
�G(t − s)k, Q−1/2t−s y

〉
NQt−s (dy).

Clearly the function above is measurable in (t, s, x). Moreover, using the Cauchy–
Schwarz inequality exactly as in (4.79), we get

| 〈DGRt−s[ψ0(s, ·)](x), k
〉

U | ≤ C(m)(1+ |x |m)‖ψ0‖Bm ((0,T ]×H)|�G(t − s)k|.

We then deduce that the integral

ψ1
R(t, x) :=

∫ t

0
DGRt−s[ψ(s, ·)](x)ds =

∫ t

0
η(s)DGRt−s[ψ0(s, ·)](x)ds

is well defined for all (t, x) ∈ (0, T ] × H since the integrand is measurable in s and
the norm of the integrand is estimated from above by

C(m)(1+ |x |m)η(s)‖�G(t − s)‖ ‖ψ‖Bm,η([0,T )×H), s ∈ (0, t),

which is integrable on [0, t] for t ∈ (0, T ]. The measurability of ψ1
R is immediate

from the measurability of the integrand while the boundedness of ψ1
R(t,x)

η1(t)(1+|x |m )
on

(0, T ] × H follows observing that, for (t, x) in this set, arguing as in (4.79),

|ψ1
R(t, x)|

1+ |x |m ≤ C(m)‖ψ‖Bm,η((0,T ]×H)

∫ t

0
η(s)‖�G(t − s)‖ ds

for a suitable constantC(m) > 0. Thus the claim follows from Proposition 4.21-(iii).
Assume now that ψ(s, ·) is continuous in x for all s ∈ (0, T ]. The continu-

ity of ψ1
R in x then follows, applying the dominated convergence theorem as in

part (iii). �

The following result holds under stronger assumptions which are satisfied, for
instance, in examples with boundary control (see Sect. 2.6.2).

Proposition 4.51 Let T > 0 and m ≥ 0. Suppose that Hypothesis 4.25 is satisfied,
Hypothesis 4.29 holds with U = H and G = I and define γI (t) := ‖�(t)‖. Then, in
addition to the claims of Proposition 4.50, we have the following.

(i) For every φ ∈ Bm(H) we have φ0
R ∈ Cm((0, T ] × H).

(ii) Given any η ∈ I1 and ψ ∈ Bm,η((0, T ] × H), we have ψ0
R ∈ Cm([0, T ] × H).
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(iii) Let G : D(G)⊂U → H be a closed linear operator such that Hypothesis 4.29
holds for it. Then, for every φ ∈ Bm(H), we have φ1

R ∈ Cm,γG ((0, T ] × H,U ).
Moreover, Dφ0

R ∈ Cm,γI ((0, T ] × H, H).

(iv) Let G be as in part (iii) above and such thatHypotheses 4.29 and 4.32 hold. Then
for every η ∈ I1 and ψ ∈ Bm,η((0, T ] × H), we have ψ1

R ∈ Cm,η1((0, T ] ×
H,U ) with η1 as in Proposition 4.50-(iv) (for η0 = γG).

Proof
Proof of (i). If Hypothesis 4.29 holds with U = H and G = I , then the semigroup
Rt is strongly Feller (see Definition 1.159) by Theorem 4.41. Hence, given φ ∈
Bm(H), for all ε > 0 we have Rε[φ] ∈ Cm(H). Thus, writing for t > ε, φ0

R(t, x) =
Rt−ε[Rε[φ]](x), by the previous part we get φ0

R ∈ Cm([ε, T ] × H). The claim fol-
lows from the arbitrariness of ε.

Proof of (ii). Consider the function w0 defined in the first lines of the proof of
part (ii) of Proposition 4.50. Thanks to part (i) of this proposition this function is
continuous in the variables (t, x). Thus the integrand in (4.93) is continuous in (t, x),
integrable in s and dominated, uniformly for (t, x) ∈ (0, T ] × H0 for every bounded
subset H0 of H . This immediately gives the required continuity by a straightforward
application of dominated convergence.

Proof of (iii). Let φ ∈ Bm(H). Since Hypothesis 4.29 holds with U = H and
G = I we apply Theorem 4.37 and Remark 4.38 (see also Remark 4.42) obtaining
that, for all ε > 0, the functionφε := Rε[φ] belongs toC1

m(H). ByTheorem4.41-(iii)
we then have, for x ∈ H , k ∈ U and t > ε,

〈
DGRt [φ](x), k

〉

U =
〈
DGRt−ε[φε](x), k

〉

U

=
∫

H

〈
Dφε(y + e(t−ε)Ax), e(t−ε)AGk

〉NQt−ε
(dy).

Now the joint continuity of the φ1
R in (ε, T ] × H is proved exactly as the joint

continuity of Dφ0
R when φ ∈ C1

m(H), once we know that the map t → et AG is
strongly continuous for t > 0. This is guaranteed since, by the semigroup property,
we have for t1, t2 > 0

e(t1+t2)AGk = et1Aet2AGk.

The above is easily proved first for k ∈ D(G) and then, by density, for all k ∈ U .
The claim then follows by the arbitrariness of ε > 0.

The fact that DφR
0 ∈ Cm,γI ((0, T ] × H, H) follows using claim (iii) of Propo-

sition 4.50 when G = I and, for the joint continuity, the arguments above when
G = I .

Proof of (iv). By the proof of part (iii), for all s ∈ (0, T ) the function (t, x)→DG

Rt−s[ψ(s, ·)](x) is continuous in (s, T ] × H . Thus, if (tn, xn)→ (t, x) ∈ (0, T ] ×
H , the convergence ψ1

R(tn, xn)→ ψ1
R(t, x) follows easily by the dominated conver-

gence theorem. �
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Remark 4.52

(i) One may expect that, in part (iii) of Proposition 4.50, the continuity of φ would
imply the joint continuity of φ1

R in (t, x). This may indeed be true but, unfortu-
nately, we are not able to prove it. A natural way to show such joint continuity,
used, for example, in Lemma 4.8 of [306], would be to prove uniform continu-
ity of the first G-derivative DGRt [φ] by showing that its (standard) derivative
D
(
DGRt [φ]

)
is well defined and bounded. This can clearly be done if, as in

Proposition 4.51-(iii), we also require that Hypothesis 4.29 holds for U = H
andG = I , as it happens, for instance, in our example with Neumann boundary
control (Example 4.225). Similar remarks apply to part (iv) of Propositions 4.50
and 4.51.

(ii) Since the Ornstein–Uhlenbeck process X (·) is mean square continuous (see
Proposition 1.144 or also, e.g., Theorem 5.2-(i) of [180]), the proof of the first
statement of Proposition 4.50-(i) can be done directly using this fact, as is done
in the proof of Proposition 4.67-(i). Here we presented a different proof, based
on the Gaussian law of the process.

�

Remark 4.53 The claims of Propositions 4.50 and 4.51 can be generalized or adapted
by suitably modifying the proofs in the following directions.

(i) Let φ ∈ UCm(H) (m ≥ 0). Then φ0
R in Proposition 4.50-(i) belongs

to UCx
m([0, T ] × H).

Moreover, if φ ∈ UCm(H) (m ≥ 0), then φ1
R in Proposition 4.51-(iii) belongs

to UCx
m,γG

((0, T ] × H,U ) and DφR
0 ∈ UCx

m,γI
((0, T ] × H, H). See for both

statements Proposition 3.3-(ii) of [306] in the case m = 0; the case m > 0 can
be proved with straightforward modifications along the lines of what is done in
Theorem 3.3 in [102].
Similar claims can be proved for the functions ψ0

R in part (ii) and ψ1
R in

part (iv).
(ii) If G depends on (s, x) ∈ [0, T ] × H then statements (iii) and (iv) of Propo-

sitions 4.50 and 4.51 remain true under suitable measurability and continuity
assumptions about the maps (t, s, x)→et AG(s, x) and (t, s, x)→�G(t, s, x).
For example, a sufficient condition would be to ask that both maps be strongly
continuous, the first be bounded on (0, T ] × [0, T ] × H and the second be such
that

t→ sup
(s,x)∈[0,T ]×H

‖�G(t, s, x)‖

is integrable in a right neighborhood of 0.

�
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4.3.2 The Case of a Perturbed Ornstein–Uhlenbeck
Semigroup

We consider here the case, studied in [64, 271, 272, 311, 431, 434], when the
transition semigroup is associated to an SDE of Ornstein–Uhlenbeck type with a
Lipschitz perturbation of the drift. The proofs (which we do not provide) are based
mainly on the Girsanov Theorem (see Theorem 6.34) and Malliavin calculus (see
Sect. 6.2.2 for some basic material on it).

Let H and � be two real separable Hilbert spaces. Given a filtered probability
space

(
�,F , {Fs}s∈[0,T ],P

)
, and a cylindricalWiener processW on�, we consider

the time homogeneous SDE in H

{
dX (s) = AX (s)ds + σR(X (s))ds + σdW (s), s ∈ [t, T ] ,
X (t) = x ∈ H,

(4.95)

where T > 0, 0 ≤ t < T and we assume that A and σ satisfy Hypotheses 4.25 and
4.29 for U = H and G = I . Moreover, regarding the nonlinear term R : H → �,
we assume the following hypothesis.

Hypothesis 4.54 The map R is globally Lipschitz continuous, i.e. for all x, y ∈ H ,
we have

|R(x)− R(y)|� ≤ ‖R‖0,1|x − y|.

Under the above assumptions Eq. (4.95) admits a unique mild solution X (·; t, x)
(e.g. by Proposition 1.147). We write X (·; x) for X (·; 0, x). In mild form we have

X (s; x) = esAx +
∫ s

0
e(s−r)AσR(X (s; x))ds +W A(s), (4.96)

where, as in (1.64),

W A(s) =
∫ s

0
e(s−r)AdW (s). (4.97)

We denote by Pt the associated transition semigroup (see Sect. 1.6).
We will also use a stronger assumption about R.

Hypothesis 4.55 R is Fréchet differentiable and DR ∈ Cb(H,L(H, �)).

We have the following result, proved first in [271] and then, with a simplified
method, in [64].

Theorem 4.56 Assume thatHypotheses 4.25, 4.29 (forU = H andG = I ) and 4.55
hold and that (4.47) is satisfied. Let φ ∈ Bb(H) and t > 0. Then Pt [φ] is Fréchet
differentiable on H and for all x, h ∈ H, we have19

19In the formula below the operator Q−1/2t e(t−s)AQ1/2
s is always well defined for 0 ≤ s ≤

t since, thanks to Lemma 2.3 of [271] (see also Lemma 5 of [64]), we always have

Range
(
e(t−s)AQ1/2

s

)
⊂Range

(
Q1/2

t

)
and ‖Q−1/2t e(t−s)AQ1/2

s ‖ ≤ 1.
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〈DPt [φ](x), h〉 = E

[
φ(X (t; x))

〈
WA(t), Q−1/2t �(t)h

〉]

+E
[

φ (X (t; x))
∫ t

0

〈
DR (X (s; x))

(
esAh − Q1/2

s

(
Q−1/2t e(t−s)AQ1/2

s

)∗
�(t)h

)
, dW (s)

〉]

.

(4.98)
The following estimate holds:

|DPt [φ](x)| ≤ Ct‖φ‖0, x ∈ H,

where

Ct = ‖�(t)‖ + ‖R‖0,1
(∫ t

0
‖esA‖2ds

)1/2

+ ‖�(t)‖‖R‖0,1
(∫ t

0
‖Qs‖2ds

)1/2

.

(4.99)
Hence, for some C > 0

Ct ≤ C
(
e(ω∨0)t +√t

)
(1+ ‖�(t)‖) .

Proof See the proofs of Theorem 2.5 and Corollary 2.7 in [271]. See also the proof
of Theorem 8 in [64]. �

Remark 4.57 If we remove the regularity assumption of Hypothesis 4.55, the only
known results are these contained in Theorem 2.6 of [271] or in Theorem 8 of [64],
i.e. that, for every t > 0, φ ∈ Bb(H), x, y ∈ H

|Pt [φ](x)− Pt [φ](y)| ≤ Ct‖φ‖0|x − y|, (4.100)

whereCt is the constant from (4.99). It may be possible, with a careful use of approxi-
mation procedures, to improve such results, indeed obtaining Fréchet differentiability
of Pt [φ] in such case. In [64, 271] this was not done as the main focus of the authors
(as in [486] in a different context) was to prove the strong Feller property for which
estimate (4.100) is enough.

Another way of removing Hypothesis 4.55 in Theorem 4.56 is to use Theorem
3.7 of [311]. Indeed, this theorem states that, under Hypotheses 4.25, 4.29, 4.32
(both for U = H and G = I ) and (4.47), the semigroup Pt transforms Lipschitz
continuous functions into Fréchet differentiable functions with the estimate (for any
given T > 0),

‖DPt [φ]‖0 ≤ CT ‖φ‖0,1, ∀t ∈ (0, T ]

for a suitable constant CT > 0. Hence adding Hypothesis 4.32 (for U = H and
G = I ) and using the semigroup property of Pt one can prove the smoothing property
of Theorem 4.56 without assuming Hypothesis 4.55.

Finally, it is worth mentioning here the papers [272, 434] where cases of non-
Lipschitz R have been studied. In [236] the author uses an ad hoc technique proving
a formula similar to (4.98) and the consequent smoothing property. There � = H ,
� = σσ∗ and R(x) = −�1/2DU (x) where U : H → R is a suitable smooth map



4.3 Smoothing Properties of Transition Semigroups 423

with unbounded derivative and having special properties. In [434] the author exploits
the dissipativity of R to prove a smoothing property in Banach spaces. �

Remark 4.58 Onemay ask why the smoothing properties of the perturbed Ornstein–
Uhlenbeck semigroup have only been studied in the literature when the nonlinearity
is of the type σR, where σ is the noise operator. One reason is that a generic Lipschitz
perturbation may destroy the smoothing property of the non-perturbed semigroup.
Consider the following simple two-dimensional example. Let H = R

2, � = R,

A =
(
0 1
0 0

)

, σ =
(
0
1

)

.

Moreover, take the linear perturbation term Bx with B = −A. It is immediate to
see that the original Ornstein–Uhlenbeck semigroup satisfies Hypothesis 4.29 with
U = H and G = I while the perturbed one does not.

If we add the assumption that the original Ornstein–Uhlenbeck semigroup also
satisfies Hypothesis 4.32 with U = H and G = I then the above example does not
work and we do not know if there are any counterexamples. �

Remark 4.59 Wefinally make some remarks about possible extensions of the results
of Theorem 4.56.

(i) In Sect. 5.4 in [431] it is suggested that Theorem 4.56 may also hold when
R is time-dependent, i.e. when, for a given T > 0, R : [0, T ] × H → � is
measurable and, for some constant CR > 0, we have

|R(t, x)− R(t, y)|� ≤ CR|x − y|, |R(t, x)|� ≤ CR(1+ |x |).

(ii) It is also suggested in [431] (Sect. 5.4) that the results of Theorem 4.56 can
possibly be extended to the case when we look for the G-Fréchet derivative
when G = σ, under Hypothesis 4.29 for such G.

(iii) Theorem 4.56 should extend to the case when the datum φ belongs to Bm(H),
for some m > 0.

�

We conclude this section noting that the analogues of Propositions 4.50 and 4.51
(see also Proposition 4.67) can be proved. We do not do this here since we will not
deal with this case in our main examples.

4.3.3 The Case of an Invertible Diffusion Coefficient

A useful method to prove the smoothing property stated in (4.6) (and consequently
the one in (4.7), at least for boundedG) is to apply the so-called Bismut–Elworthy–Li
formula, introduced in [60] and, later, revisited in [216] (see also [486] Lemma 2.4,
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[179] Lemma 7.7.3, [283] for the version used here, and, for a generalization to the
nonlinear superquadratic case, [439]).

The idea behind this method is similar to that described in Sect. 4.3.2: to exploit
the tools of Malliavin calculus (see Sect. 6.2.2 for basic material on this) and to
perform integration by parts, moving the derivative operation on the process, hence
on the data of the SDE defining the semigroup.

As far as we know the Bismut–Elworthy–Li formula has been used to prove
smoothing properties of transition semigroups in three main cases:

• stochastic Burgers and Navier Stokes equations (see [155, 158]);
• stochastic reaction-diffusion equations (see [103] and [106], Chaps. 6 and 7);
• SDEs with invertible diffusion coefficient (see e.g. [486] and, later, [283, 439] in
more general cases).

Here we present the third case. The first two cases concern specificmodels and are
postponed to Sect. 4.9. As in the previous sections we skip the proofs, giving a few
comments on some generalizations and sending the reader to the paper [283] for the
details.Moreover here, for simplicity,weonly present estimates for the gradient∇Pt,s
of the semigroup on bounded time intervals, which do take into accountwhat happens
when s − t approaches infinity, and hence can be used only to study finite horizon
control problems. Estimates on an infinite time interval can be proved under further
assumptions, as is done in Proposition 4.6-(ii) of [285], allowing then applications
to infinite horizon control problems.

Let T > 0 and let H and � be two real separable Hilbert spaces. Given a filtered
probability space

(
�,F , {Fs}s∈[0,T ],P

)
, and a cylindrical Wiener process W on �

with identity covariance, we consider the SDE in H

{
dX (s) = AX (s) ds + b (s, X (s)) ds + σ (s, X (s)) dW (s) , s ∈ [t, T ] ,
X (t) = x ∈ H,

(4.101)
where we assume that the coefficients satisfy Hypothesis 1.149.

By Theorem 1.152 we know that, under such assumptions, there exists a unique
mild solution X (·; t, x) of (4.101) for every initial data (t, x) ∈ [0, T ] × H . Such
solution has continuous trajectories and satisfies, for every p ∈ (0,∞), the estimate
E supτ∈[t,T ] |X (τ ; t, x)|p < Cp (1+ |x |p), for some constant Cp > 0.

As discussed in Sect. 1.6, Theorems 1.157 and 1.162, the (two-parameter) tran-
sition semigroup Pt,s associated to the process X (·; t, x) is well defined, for φ ∈
Bm(H), by the formula

Pt,s [φ] (x) = Eφ (X (s; t, x)) (4.102)

and it has the Feller property.
To establish the smoothing property (4.6) through the Bismut–Elworthy–Li for-

mula we first need to look at the derivative of the process X (·; t, x) with respect to
the initial datum x . We need the following assumption.
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Hypothesis 4.60 Let T > 0 and let A and σ be as in Hypothesis 1.149 (i) and (iv).
Assume, moreover, the following.

(i) b : [0, T ] × H → H is measurable and such that

|b(t, x)| ≤ L(1+ |x |), for all t ∈ [0, T ], x ∈ H, (4.103)

|b(t, x)− b(t, y)| ≤ L|x − y|, for all t ∈ [0, T ], x, y ∈ H, (4.104)

where the constant L is that of Hypothesis 1.149-(iv).
(ii) For all t ∈ [0, T ] and x ∈ H we have for the same constant L above,

|σ (t, x)|L(�,H) ≤ L .

(iii) For every t ∈ [0, T ] and s ∈ (0, T ], the mapping b(t, ·) : H → H belongs to
G1(H, H) while esAσ(t, ·) : H → L2(�, H) belongs to G1(H,L2(�, H)).

Under the above assumptions we have the following result, which is Proposition
6.10, and which we repeat here for the reader’s convenience.

Proposition 4.61 Let T > 0. Let Hypotheses 1.149 and 4.60 be satisfied. Then for
every p ∈ [2,+∞) the following hold.20

(i) The map (t, x)→X (·; t, x) belongs to the space

G0,1([0, T ] × H, L p
P(�,C([0, T ], H))).

(ii) Denoting by ∇x the partial Gâteaux derivative in x, for every direction h ∈ H,
the directional derivative process ∇x X (s; t, x)h, s ∈ [0, T ] solves, for all h ∈
H, P-a.s., the equation

∇x X (s; t, x)h = e(s−t)Ah +
∫ s

t
e(s−τ )A∇xb(τ , X (τ ; t, x))∇x X (s; t, x)hdτ

+
∫ s

t
∇x
(
e(s−τ )Aσ(τ , X (τ ; t, x)))∇x X (s; t, x)hdW (r).

(iii) We have
|∇x X (s; t, x)h|L p

P (�,C([0,T ],H)) ≤ C |h|

for some constant C > 0 depending only on L , γ2 from Hypothesis 1.149, T ,
p, and M0 := sups∈[0,T ] ‖esA‖.

Remark 4.62 Proposition 4.61 belongs to a class of results concerning the regu-
larity properties of the solutions of SDEs like (4.101) with respect to the initial

20The space L p
P (�,C([0, T ], H)) is defined in Sect. 6.1.1.
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conditions. Such results are usually proved by means of the so-called parameter-
dependent contraction mapping principle (see e.g. [180], Lemma 9.2 or [179], The-
orems 7.1.2 and 7.1.3). With this method one needs to differentiate the mapK given
in (1.81) with respect to the process Y ∈ Hp(0, T0; H). The differentiability results
of [180], Sect. 9.1.1 or [179], Sect. 7.3, (like the ones quoted above) are formulated
for Gâteaux derivatives. For analogous results proving continuous Fréchet differen-
tiability see e.g. [177], Theorem 5.4.1 and [154], Sect. 8.3, [106], Sects. 4.2 and 6.3,
[294], Theorem 3.9. We finally mention [269], Chap.4, for an analysis of the first-
order differentiability in both the Gâteaux and Fréchet cases and the recent working
paper [516] where results on Gâteaux and Fréchet derivatives are given, together
with a generalization of the above quoted results. �

Remark 4.63 The assumptions of the Proposition 4.61 are also designed to cover
the cases when, as for reaction-diffusion equations (see e.g. [177], Chap. 11 or, our
Chap. 2, Sect. 2.6.1 and, in particular, Eqs. (2.79) and (2.83)), where � = H and the
operators b and σ are nonlinear Nemytskii type operators. Indeed, in such cases
it is well known that, when the underlying space is L2(O) (O ⊂ R

n , open), the
operatorb(t, ·) is never Fréchet differentiablewhile itsGâteauxdifferentiability holds
under a differentiability condition for the underlying real-valued function defining
the Nemytskii operator (see e.g. [10], Sect. 1.2).

Similarly, in such cases, the operator σ(t, ·) : H → L(H) is never Lipschitz
continuous (see Remark 1.150) while the operator esAσ(t, ·) : H → L2(H) can be
proved to be Gâteaux differentiable (Fréchet differentiability fails in general) when
the underlying real-valued function defining the Nemytskii operator is differentiable.
�

To obtain the Bismut–Elworthy–Li formula and, consequently, the required
smoothing property, we also need the following assumption (see [486] for the
autonomous case and [283] for the non-autonomous case).

Hypothesis 4.64 Let A, b and σ be as in Hypothesis 4.60. Let T > 0. For every t ∈
[0, T ] and x ∈ H, σ (t, x) is invertible and there is a constant L > 0 (for simplicity
assumed to be the same as that in Hypothesis 4.60) such that

∣
∣σ−1 (t, x)

∣
∣
L(H,�)

≤ L

for all t ∈ [0, T ], x ∈ H .

We have the following result (see [283], Theorem 4.2).

Theorem 4.65 Let T > 0 and let Hypotheses 4.60 and 4.64 be satisfied. Let φ ∈
Cm(H) (m ≥ 0). Then for every 0 < s ≤ T the function (t, x)→Pt,s[φ](x) belongs
toG0,1([0, s)× H). Moreover, there exists a constant C(m) > 0 (possibly depending
on T ) such that, for all φ ∈ Cm(H) and all 0 ≤ t < s ≤ T ,

|∇Pt,s[φ](x)| ≤ C(m)

(s − t)1/2
‖φ‖Cm (1+ |x |m), x ∈ H, (4.105)
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and we have the representation formula (Bismut–Elworthy–Li formula)

〈∇Pt,s[φ](x), h
〉 = E

[
φ(X (s; t, x))Uh(s, t, x)

]
, x, h ∈ H, (4.106)

where (denoting by ∇x , as in Proposition 4.61, the partial Gâteaux derivative with
respect to x),

Uh(s, t, x) := 1

s − t

∫ s

t

〈
σ(τ , X (τ ; t, x))−1∇x X (τ ; t, x)h, dW (τ )

〉
. (4.107)

Proof The result is a special case of Theorem 4.2 of [283]. �

Remark 4.66 Similarly to what happens in the case of a perturbed Ornstein–
Uhlenbeck semigroup treated in the previous subsection (Theorem4.56), the smooth-
ing result above can be generalized to the case when the initial datum φ belongs to
Bm(H) form ≥ 0. Indeed, one can first prove that the strong Feller property holds by
using an approximation procedure like the one used to prove Theorem 1.2 of [486]
(see also Theorem 7.7.1 in [179]) and then simply apply the semigroup property.

Moreover, requiring more regularity of the data, it is also possible to prove the
Fréchet differentiability in Theorem 4.65. We do not do this here as, in view of
Remark 4.63, we prefer to keepmore reasonable assumptions on the data. For Fréchet
differentiability one can see the references given in Remark 4.62.

Finally, observe that, using the exponential estimate given in Proposition 4.208
(see also [285], Proposition 4.6), we can extend the above result to the case when
T = +∞. More precisely, we can show that (4.105) holds for all 0 ≤ t ≤ s with
C(m) substituted by C1(m)eC2(m)(s−t), for some C1(m),C2(m) > 0 depending on m
and independent of t, s. �

We now prove a useful result about the joint continuity of the two-parameter
Markov semigroup Pt,s .

Proposition 4.67 Let T > 0 and m ≥ 0. Suppose that Hypotheses 4.60 and 4.64
are satisfied. Then we have the following.

(i) For every φ ∈ Bm(H) the function

φ0
P : [0, T ] × H → R, (t, x)→Pt,T [φ](x),

belongs to Cm([0, T )× H). If φ ∈ Cm(H) then φ0
P ∈ Cm([0, T ] × H).

(ii) Given any η ∈ I1 and ψ ∈ Bm,η([0, T )× H), defining I0 := {(t, s) : 0 ≤ t ≤
s < T }, the function

ψ̄0
P : I0 × H → R, (t, s, x)→ Pt,s[ψ(s, ·)](x),

is measurable, continuous in (t, x) and
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ψ0
P : [0, T ] × H → R, (t, x)→

∫ T

t
Pt,s[ψ(s, ·)](x)ds,

belongs to Cm([0, T ] × H).
(iii) For every φ ∈ Bm(H) the function

φ1
P : [0, T )× H → H, (t, x)→∇Pt,T [φ](x),

belongs to Bm,1/2([0, T )× H, H). Moreover, φ1
P is strongly continuous.

(iv) Let η, ψ be as in part (ii) above. Defining I1 := {(t, s) : 0 ≤ t < s < T }, the
function

ψ̄1
P : I1 × H → H, (t, s, x)→ ∇Pt,s[ψ(s, ·)](x),

is measurable, continuous in (t, x) and

ψ1
P : [0, T ] × H → H, (t, x)→

∫ T

t
∇Pt,s[ψ(s, ·)](x)ds,

belongs to Bm,η1([0, T )× H, H), where η1 ∈ I1 is defined in Proposition 4.21-
(iii) for η0(t) = t−1/2. Moreover, ψ1

P is strongly continuous.

Proof
Proof of (i). Part (i) substantially follows from the statement of Theorem 4.65 proved
in [283], however we give the proof for completeness. We first take φ ∈ Cm(H) and
(tn, xn)→ (t, x) ∈ [0, T ] × H , as n→+∞. Then, by using estimate (1.83) and the
fact that we can assume |xn| ≤ |x | + 1/2, we have

E[|X (T ; tn, xn)−X (T ; t, x)|2]
≤ 2C2

[|xn − x |2 + (1+ |x |2)|tn − t |γ3 + |e(tn−t)Ax − x |2] .

This means that, as n→+∞, we have X (T ; tn, xn)→ X (T ; t, x) in L2(�), and
hence in probability. Using (1.80) and Lemma 1.51 we thus obtain φ0

P(tn, xn)→
φ0
P(t, x). Moreover, since φ ∈ Cm(H), we have

|φ0
P(t, x)| ≤ ‖φ‖CmE[1+ |X (T ; t, x)|m].

Using (1.80) we then easily get the claim.
Let now φ ∈ Bm(H). By the strong Feller property (see Remark 4.66) we have,

for all T > ε > 0, φε := PT−ε,T [φ] ∈ Cm(H). Since φ0
P(t, x) = Pt,T−ε[φε](x), the

claim follows by the first part of the proof and by the arbitrariness of ε.

Proof of (ii). Define ψ0(s, x) := η(T − s)−1ψ(s, x). To prove that ψ̄0 is continu-
ous in (t, x) we argue exactly as in part (i), simply freezing s. The measurability in
s for each fixed (t, x) is a consequence of the measurability in (s,ω) of the process
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ψ0(s, X (s; t, x)) and Theorem 1.33-(i). Then the measurability in (t, s, x) follows
from Lemma 1.18.

From the assumptions on ψ, it immediately follows that ψ̄0
P (t,s,x)
1+|x |m is bounded. We

now have

ψ0
P(t, x) =

∫ T

t
η(T − s)Pt,s[ψ0(s, ·)](x)ds.

Since the integrand is continuous in (t, x) we can apply the dominated convergence
theorem to get that ψ0

P is continuous. Moreover,

|ψ0
P(t, x)| ≤

∫ T

t
η(T − s)|Pt,s[ψ0(s, ·)](x)|ds

≤ C(m)(1+ |x |m)‖ψ‖Bm,η((0,T ]×H)

∫ T

t
η(T − s)ds. (4.108)

Proof of (iii). When φ ∈ Cm(H) joint strong continuity is already contained in
the claim of Theorem 4.65. This implies joint measurability thanks to the Pettis
measurability Theorem (see Lemma 1.17-(iv)). When φ ∈ Bm(H) we use Remark
4.66 and apply the semigroup property. Finally, the estimate about the singularity
when t approaches T follows from (4.105).

Proof of (iv). We immediately deduce from Theorem 4.65 that the function ψ̄0
P

is strongly continuous in (t, x). Moreover, for every fixed (t, x) ∈ [0, T ] × H , it
is measurable in s. To see this we use the representation formula (4.106) and
(4.107). Indeed, the process φ(X (s; t, x)) is clearly measurable in (s,ω) while the
process Uh(s, t, x) defined in (4.107) is also measurable in (s,ω), for instance by
Lemma 1.73, since it is mean square continuous and hence stochastically continuous.
Mean square continuity follows since, by Hypothesis 4.64 and Proposition 4.61-(iii),
defining Ū h(s, t, x) := (s − t)Uh(s, t, x), we get E[|Ū h(s, t, x)|2] ≤ C1|h|2 and,
for t ≤ s1 ≤ s2 ≤ T ,

E[|Ū h(s2, t, x)− Ū h(s1, t, x)|2] ≤
∫ s2

s1

|σ(τ , X (τ ; t, x))−1∇x X (τ ; t, x)h|2dτ

≤ C1(s2 − s1)|h|2.

The measurability in (t, s, x) then follows from Lemma 1.18.
Moreover, we also have, by (4.105),

|∇Pt,s[ψ0(s, ·)](x)| ≤ ‖ψ0‖Bm (s − t)−1/2C(m)(1+ |x |m).

We then get that the integral

ψ1
P(t, x) :=

∫ T

t
∇Pt,s[ψ(s, ·)](x)ds =

∫ T

t
η(T − s)∇Pt,s[ψ0(s, ·)](x)ds
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is well defined for all (t, x) ∈ [0, T )× H since the integrand is measurable in s and
the norm of the integrand is estimated from above by

η(T − s)(s − t)−1/2 ‖ψ‖Bm,η((0,T ]×H)C(m)(1+ |x |m), s ∈ (t, T ),

which is integrable on (t, T ) for t ∈ [0, T ). Measurability of ψ1
P is immediate from

the measurability of the integrand. Strong continuity of ψ1
P follows by dominated

convergence while boundedness of ψ1
P (T−t,x)

η1(t)(1+|x |m )
on (0, T )× H follows, observing

that, for (t, x) in this set,

|ψ1
P(t, x)| ≤ ‖ψ‖Bm,η((0,T ]×H)C(m)(1+ |x |m)

∫ T

t
η(T − s)(s − t)−1/2 ds

and noticing that, by Proposition 4.21-(iii),

∫ T

t
η(T − s)(s − t)−1/2 ≤ η1(T − t).

�

Remark 4.68 In contrast to Proposition 4.50, the results in parts (iii) and (iv) give
strong continuity in (t, x). This follows from the properties given in Proposition 4.61
and Theorem 4.65, which come from Hypotheses 4.60 and 4.64, which are stronger,
in the Ornstein–Uhlenbeck case, than Hypothesis 4.25 as they imply, in particular,
that G = I , hence Proposition 4.51 applies. Similarly to what was said in Remark
4.52-(i), it is not clear, at this stage, if such joint strong continuity would hold in the
Ornstein–Uhlenbeck case under Hypotheses 4.25, 4.29 and 4.32.

The arguments of the proof of part (i) of Proposition 4.67 can also be used to
prove part (i) of Proposition 4.50. �

Remark 4.69 Proposition 4.67 can be generalized or adapted, by suitably modifying
the proof, to the case whenφ ∈ UCm(H) (m ≥ 0) or whenψ ∈ UC

x
m,η((0, T ] × H).

In such a case the statement (i) holds with UCx
m([0, T ] × H) in place of

Cm([0, T )× H). To prove it for m = 0 the argument is straightforward. Let φ ∈
UCb(H). We estimate, for t ∈ [0, T ] and x1, x2 ∈ H ,

|Pt,T [φ](x1)− Pt,T [φ](x2)| ≤ Eρφ(|X (T ; t, x1)− X (T ; t, x2)|),

where ρφ is a modulus of continuity of φ. Since this modulus can be chosen to be
concave (see Sect.D.1) then we have, by Jensen’s inequality,

|Pt,T [φ](x1)− Pt,T [φ](x2)| ≤ ρφ(E|X (T ; t, x1)− X (T ; t, x2)|)

≤ ρφ(E|X (T ; t, x1)− X (T ; t, x2)|2) ≤ ρφ(C2|x1 − x2|2),
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where in the last inequality we used (1.83). The claim then follows. The proof when
m > 0 is more complicated. Denoting by ρφ the modulus of continuity of φ(x)/(1+
|x |m), we estimate ∣

∣
∣
∣
Pt,T [φ](x1)
1+ |x1|m − Pt,T [φ](x2)

1+ |x2|m
∣
∣
∣
∣

=
∣
∣
∣
∣E

[
φ(X (T ; t, x1))

1+ |X (T ; t, x1)|m ·
1+ |X (T ; t, x1)|m

1+ |x1|m
]

− E

[
φ(X (T ; t, x2))

1+ |X (T ; t, x2)|m ·
1+ |X (T ; t, x2)|m

1+ |x2|m
]∣
∣
∣
∣

≤
∣
∣
∣
∣E

[

ρφ(|X (T ; t, x1)− X (T ; t, x2)|)1+ |X (T ; t, x1)|m
1+ |x1|m

]∣
∣
∣
∣

+‖φ‖UCm

∣
∣
∣
∣E

[
1+ |X (T ; t, x1)|m

1+ |x1|m − 1+ |X (T ; t, x2)|m
1+ |x2|m

]∣
∣
∣
∣ ,

and then apply estimates (1.80) and (1.83).
Similar statements also hold for parts (ii)–(iii)–(iv). �

4.4 Mild Solutions of HJB Equations

In this section we prove two general theorems on the existence and uniqueness of
regular (mild) solutions for the HJB equations (4.1) and (4.2). Such theorems are
proved following the methods explained in Sect. 4.1 and they use, as the fundamental
assumption, the smoothing property of the linear transition semigroup Pt,s described,
for the parabolic case, in (4.6) (or in (4.7)). Here we will assume that this smoothing
property, together with other basic assumptions, holds without making any connec-
tions between Pt,s and the data of the underlying SDE (Eq. (4.3) in the parabolic case
and (4.8) in the elliptic one). In Sect. 4.5, to prove that mild solutions can be approxi-
mated by classical solutions, we will require such a connection. In Sects. 4.6 and 4.7,
we will then study more deeply the case when the linear part of the HJB equations
(4.1) and (4.2) is of Ornstein–Uhlenbeck type, obtaining stronger regularity results.

4.4.1 The Parabolic Case

Let H be a real separable Hilbert space and T > 0. The parabolic HJB equation
in [0, T ] × H we consider is slightly different from (4.1) since, as announced in
Sect. 4.1.1, the dependence on Dv in the Hamiltonian function is through an operator
function G (which may reduce to the identity) which maps [0, T ] × H into the set
of closed linear operators with dense domain from U to H where U is another real
separable Hilbert space. Our Hamiltonian thus has the form F0(t, x, v, DGv) instead
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of F(t, x, v, Dv). We will identify U with its topological dual U ∗, so DGv will
always take values in U and F0 : [0, T ] × H × R×U → R is Borel measurable.
The HJB equation is the following.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt + 1

2
Tr [�(t, x)D2v] + 〈Ax + b(t, x), Dv〉 + F0(t, x, v, DGv) = 0,

t ∈ [0, T ), x ∈ H,

v(T, x) = ϕ(x), x ∈ H.

(4.109)

Here, as in (4.1), the linear operator A : D(A) ⊂ H → H is the infinitesimal
generator of a strongly continuous semigroup

{
et A
}

t≥0 while the functions � :
[0, T ] × H → L+(H), b : [0, T ] × H → H , ϕ : H → R, are Borel measurable
(possibly unbounded in the sense that they may be defined on smaller dense subsets).

Note that to denote the derivatives in theHJB equationswe always use the symbols
D and DG , unless it is explicitly stated that the solution only possesses Gâteaux
derivatives. We do not study Eq. (4.109) directly. We first give a formal argument to
introduce its mild form and then we study such a mild form in an abstract way.

4.4.1.1 Formal Derivation of the Mild Form

Given T > 0 we take a generalized reference probability space
(
�,F , {Fs}s∈[0,T ],

P,W ) (whereW is a cylindrical Wiener process in a real separable Hilbert space �)
and fix (t, x) ∈ [0, T ] × H . Consider, formally, the SDE related to the linear part of
(4.109), where21 σ(t, x) = √�(t, x),

{
dX (s) = [AX (s)+ b (s, X (s))] ds + σ (s, X (s)) dW (s) , s ∈ [t, T ] ,
X (t) = x, x ∈ H.

(4.110)

Again, formally, we define for every φ ∈ Bm(H) (m ≥ 0), the (two-parameter) tran-
sition semigroup associated to such an SDE

Pt,s[φ](x) = E[φ(X (s; t, x)], 0 ≤ t ≤ s ≤ T, (4.111)

where X (·; t, x) is the solution of (4.110). Still, formally, the generator of the semi-
group Pt,s will be the operator

A(t)φ = 1

2
Tr [�(t, x)D2φ] + 〈Ax + b(t, x), Dφ〉

with domain D(A(t)) that has to be suitably defined, and the function

u(t, x) = Pt,T [ϕ](x)

21Recall that such square root always exists, see e.g. Theorem 12.33 of [521].
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should be the solution of (4.109) when F0 = 0. So (4.109) can be formally written
as

vt (t, x)+ (A(t)v)(t, x)+ F0(t, x, v(t, x), DG(t,·)v(t, x)) = 0, v(T, x) = ϕ(x)

and applying the variation of constants formula we get, for t ∈ [0, T ], x ∈ H ,

v(t, x) = Pt,T [ϕ] (x)+
∫ T

t
Pt,s

[
F0(s, ·, v (s, ·) , DG(s,·)v (s, ·)] (x) ds. (4.112)

This is the equation we want to study, which we call themild form of (4.109). As we
mentioned before, we will always use the symbols DG in such an equation unless it
is explicitly stated that the solution only possesses Gâteaux derivatives. Note that, to
deal with Eq. (4.112), we only need to consider the data ϕ, F0, G and the operators
Pt,s , regardless of their origins. Indeed, the family of operators Pt,s could be defined
by (4.111) but also, without using the SDE (4.110), directly from the solution of the
linear Kolmogorov equation (4.109) with F0 = 0 (see e.g. Chap.3 of [536] and [161]
for results in this direction).

Moreover, with an appropriate choice of the operators Pt,s the integral equation
(4.112) could be seen as the mild form of a different, possibly more general, semi-
linear parabolic equation, e.g. when Pt,s is associated with jump diffusions driven
by Lévy processes and hence to non-local generators A(t). Also in these cases the
results for (4.112) will only depend, besides the data ϕ, F0 G, on the properties of
the family Pt,s .

Hence, to provide results that can be used in different or more general contexts, we
will formulate all assumptions in terms of ϕ, F0,G and the operators Pt,s , without
specifying their relation to the SDE (4.110) or the operatorsA(t). In Sect. 4.4.1.9 we
will explain the validity of the assumptions in various interesting cases discussed in
Sect. 4.3.

4.4.1.2 Definition of Mild Solution

We now introduce the notion of a mild solution of the HJB equation (4.109).

Definition 4.70 We say that a function u : [0, T ]× H → R is a mild solution of
the HJB equation (4.109) if, for some m ≥ 0, the following are satisfied:

(i) There exists an η ∈ I1 such that u ∈ B
0,1,G
m,η ([0, T ] × H).

(ii) Equality (4.112) holds.

It might be better and more precise to say that Definition 4.70 defines a solution
of the integral equation (4.112) since, as we discussed before, it is more general than
(4.109). However, in the following sections we only study Eq. (4.109), so we decided
to keep the description “a mild solution of Eq. (4.109)”.
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Remark 4.71 Concerning the above definition we observe the following.

(i) The space B
0,1,G
m,η ([0, T ] × H) is, in some sense, the minimal one where the

solution can exist, hence the one where it is easier to find solutions with a
minimal set of assumptions. However, if the solutions only exist in this space
we are not able to approximate them with classical solutions (see Sect. 4.5.1).
Hence, after proving a result about existence and uniqueness in such a space,
we will prove that, in many cases, the mild solution u is more regular, e.g. u

belongs to G0,1,G
m,η ([0, T ] × H), C

0,1,G
m,η ([0, T ] × H) or UC

0,1,G
m,η ([0, T ] × H).

(ii) We point out that several things are implicitly implied by the definition of a
mild solution. Firstly, Pt,T [ϕ] (x)must be well defined for every x ∈ H and t ∈
[0, T ] and secondly the function s → Pt,s[F0

(
s, ·, u(s, ·), DG(s,·)u(s, ·))](x)

must be integrable on [t, T ] for every x ∈ H and t ∈ [0, T ]. This requires appro-
priate conditions on the family Pt,s and the functions F0,ϕ. Moreover, it also
suggests that, in Part (i) of Definition 4.70, we could require less as long as all
terms on both sides of (4.112) are well defined and measurable.

�

4.4.1.3 Existence and Uniqueness in Bm Spaces: Assumptions

The first assumption ensures enough regularity of the data F0 and ϕ to apply a fixed
point argument.

Hypothesis 4.72 The functions F0 : [0, T ] × H × R×U → R and ϕ : H → R

satisfy the following, for given constants L , L ′ > 0 and m ≥ 0.

(i) For every t ∈ [0, T ], x ∈ H , y1, y2 ∈ R, z1, z2 ∈ U .

|F0 (t, x, y1, z1)− F0 (t, x, y2, z2)| ≤ L (|y1 − y2| + |z1 − z2|U ) .

(ii) For every t ∈ [0, T ], x ∈ H, y ∈ R, z ∈ U .

|F0(t, x, y, z)| ≤ L ′
(
1+ |x |m + |y| + |z|U

)
.

(iii) F0 is Borel measurable.
(iv) ϕ ∈ Bm(H).

It is clear that, if Hypothesis 4.72 holds for a given m ≥ 0, then it also holds for
all m1 > m.

Remark 4.73

(i) In principle it is also possible to study, with the techniques presented in this
chapter, the casewhen theHamiltonian F0 is locallyLipschitz in the last variable.
This case is very interesting for applications but the procedure is long and
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technical and has been investigated only in some special cases (see [105, 307,
438, 442]). We will treat this case in Sect. 4.7 in the special case where the
underlying transition semigroup is ofOrnstein–Uhlenbeck type (the case studied
in [307, 438]) and in Sect. 4.9.2, only presenting the results.

(ii) If the Hamiltonian F0 is more regular it is possible to obtain better regularity of
mild solutions (i.e.C2 regularity). A result of this type, up to now, has only been
obtained in the case when the underlying transition semigroup is of Ornstein–
Uhlenbeck type in [306] and is presented in Sect. 4.6.1.1.

�

We now give the assumptions for the operators Pt,s . We divide them into three
parts. The first establishes the semigroup property and a basic estimate.

Hypothesis 4.74 Let m ≥ 0 be from Hypothesis 4.72. For every 0 ≤ t ≤ s ≤ T ,
Pt,s ∈ L(Bm(H)). The family of operators Pt,s satisfies Pt,t = I for all t ∈ [0, T ]
and the semigroup property

Pt,r Pr,s = Pt,s, ∀0 ≤ t ≤ r ≤ s ≤ T .

Moreover, there exists a C(m) > 0 such that, for φ ∈ Bm(H) and 0 ≤ t ≤ s ≤ T ,

∣
∣Pt,s[φ](x)

∣
∣ ≤ C(m)‖φ‖Bm (1+ |x |m), x ∈ H. (4.113)

Remark 4.75 Assume that the SDE (4.110) has a unique mild solution X (·; t, x) for
all (t, x) ∈ [0, T ] × H , and set Pt,s[φ](x) = E[φ(X (s; t, x)], for 0 ≤ t ≤ s ≤ T ,
x ∈ H . Then, when m = 0, the transition semigroup Pt,s is a semigroup of contrac-
tions and (4.113) is immediately true with C(0) = 1/2. When m > 0 instead we
know that

∣
∣Pt,s[φ](x)

∣
∣ ≤ ‖φ‖BmE

[
1+ |X (s; t, x)|m] , x ∈ H, 0 ≤ t ≤ s ≤ T,

and so the validity of (4.113) depends on the estimates of themoments of the solutions
of (4.110) like the one in (1.80). �

The second hypothesis is the key one and the most restrictive in applications. It
is needed to ensure the smoothing property of the transition semigroup Pt,s .

Hypothesis 4.76 Let m ≥ 0 be from Hypothesis 4.72. Given another real separable
Hilbert space U (possibly equal to H ), the function G maps [0, T ] × H into the
set of linear closed operators (possibly unbounded) from U to H . Moreover, G(t, ·)
satisfies, for all t ∈ [0, T ], Hypothesis 4.11, and, for all φ ∈ Bm(H), we have the
following.
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(i) The function Pt,s [φ] (·) isG (t, ·)-Gâteaux differentiable for every 0 ≤ t < s ≤
T .

(ii) There exists a γG ∈ I2 (possibly depending on m and T ) such that for 0 ≤ t <

s ≤ T ,

∣
∣∇G(t,·)Pt,s [φ] (x)

∣
∣
U ≤ γG (s − t) ‖φ‖Bm (1+ |x |m), x ∈ H. (4.114)

The third hypothesis is needed to guarantee the joint measurability properties
required to meet the definition of a mild solution and to apply Proposition 4.16.

Hypothesis 4.77 Let m ≥ 0 be from Hypothesis 4.72 and γG be from Hypothesis
4.76.

(i) For all φ ∈ Bm(H) the map

φ0
P : [0, T ] × H → R, (t, x)→Pt,T [φ](x) (4.115)

ismeasurable. Let I0 = {(t, s) : 0 ≤ t ≤ s < T }. For everyψ ∈ Bm,γG ([0, T )×
H) the function

ψ̄0
P : I0 × H → R, (t, s, x)→Pt,s[ψ(s, ·)](x), (4.116)

is measurable.
(ii) Let Hypothesis 4.76 hold. For all φ ∈ Bm(H) the map

φ1
P : [0, T )× H → U, (t, x)→∇G(t,·)Pt,T [φ](x) (4.117)

is measurable. Moreover, define I1 = {(t, s) : 0 ≤ t < s < T } and let ψ be as
in point (i) above. The function

ψ̄1
P : I1 × H → U, (t, s, x)→∇G(t,·)Pt,s[ψ(s, ·)](x), (4.118)

is measurable.

Remark 4.78 Hypothesis 4.77-(i) is a substitute of strong continuity of the semigroup
Pt,s , i.e. continuity of the map

[t, T ] → Bm(H), s → Pt,s[φ] (4.119)

for every φ ∈ Bm(H), which is not true. Indeed, even in the simple case when Pt,s is
the Ornstein–Uhlenbeck semigroup with H = R, strong continuity fails, not only in
Bm(H) but also in Cm(H) and UCm(H) (see Proposition B.89-(ii)). Consequently
measurability of the map in (4.119) also fails (see Proposition B.89-(iii)). However
Hypothesis 4.77 is satisfied in all the main examples we study and it allows us to
apply Proposition 4.16. �

We will need the following simple lemma.
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Lemma 4.79 Let Hypotheses 4.74, 4.76 and 4.77 hold. Let ψ ∈ Bm,γG ([0, T )× H)

We then have the following.

(i) The maps

ψ0
P : [0, T ] × H → R, (t, x)→

∫ T

t
Pt,s[ψ(s, ·)](x)ds,

ψ1
P : [0, T )× H → U, (t, x)→

∫ T

t
∇G(t,·)Pt,s[ψ(s, ·)](x)ds,

are measurable.
(ii) If the map ψ̄0

P in Hypothesis 4.77-(i) is continuous in (t, x), then ψ0
P is contin-

uous.
If the map ψ̄1

P in Hypothesis 4.77-(ii) is continuous (respectively, strongly con-
tinuous) in (t, x), then ψ1

P is continuous (respectively, strongly continuous).

Proof Part (i) is a direct consequence of Theorem 1.33-(i).
Part (ii) is a consequence of the continuity (respectively, strong continuity), the

estimates (4.113) and (4.114) and the dominated convergence theorem. Here we
only observe that, to prove the strong continuity of ψ1

P , i.e. that, for any h ∈ U , the
function

[0, T )× H → R, (t, x)→ 〈
ψ1

P(t, x), h
〉

U

is continuous, we compute

〈
ψ1

P(t, x), h
〉

U =
〈∫ T

t
∇G(t,·)Pt,s[ψ(s, ·)](x)ds, h

〉

U

=
∫ T

t

〈∇G(t,·)Pt,s[ψ(s, ·)](x), h〉U ds,

where in the last equality we used Corollary 1.30 applied to the linear functional
Th = 〈·, h〉. The claim now follows from the dominated convergence theorem. �

4.4.1.4 Existence and Uniqueness of Mild Solutions in Bm Spaces

The following theorem on the existence and uniqueness of mild solutions of
Eq. (4.109) is the main result of this section.

Theorem 4.80 Let m ≥ 0 be such that Hypotheses 4.72, 4.74, 4.76, and 4.77 are
satisfied. We have the following.

(i) Equation (4.109) has a mild solution u (in the sense of Definition 4.70) with

u ∈ B
0,1,G
m,γG

([0, T ] × H). Any mild solution u∗ ∈ B
0,1,G
m,γG

([0, T ] × H) is equal to
u.
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(ii) If ϕ ∈ B1,G(T,·)
m (H) and the map (t, x)→ ∇G(t,·)Pt,T [ϕ](x) belongs to Bm

([0, T ] × H,U ), then ∇Gu ∈ Bm([0, T ] × H,U ).

Proof In both parts we use the contraction mapping principle in a suitable Banach
space.

Proof of (i). We consider the product space Bm ([0, T ] × H)× Bm,γG ([0, T )×
H,U ) (see Definition 4.24), endowed with the product norm given by the sum of
the norms of the factor spaces. In this space we define the operator ϒ = (ϒ1, ϒ2):

ϒ1 [u, v] (t, x) = Pt,T [ϕ](x)+
∫ T

t
Pt,s [F0 (s, ·, u(s, ·), v(s, ·))] (x)ds, (4.120)

ϒ2 [u, v] (t, x) = ∇G(t,·)Pt,T [ϕ](x)+
∫ T

t
∇G(t,·)Pt,s [F0 (s, ·, u(s, ·), v(s, ·))] (x)ds.

(4.121)

The proof will be accomplished in three steps.

Step 1. The map ϒ is well defined.
We first prove that ϒ is well defined on Bm ([0, T ] × H)× Bm,γG ([0, T )×

H,U ),with values in itself. Let (u, v) ∈ Bm ([0, T ] × H)× Bm,γG ([0, T )× H,U ).
Concerning ϒ1[u, v] the first term is in Bm ([0, T ] × H) thanks to Hypothesis

4.77-(i) and (4.113). For the second term we define

ψ(s, x) := F0 (s, x, u(s, x), v(s, x)) (4.122)

and prove that such ψ satisfies the requirements of Hypothesis 4.77-(i). Indeed, ψ
is Borel measurable since F0 is measurable (Hypothesis 4.72-(iii)). Moreover, the
function

(s, x)→ 1

γG(T − s)

ψ(s, x)

1+ |x |m

is bounded since, by Hypothesis 4.72-(ii), (writing from now on ‖v‖Bm,γG
for

‖v‖Bm,γG ([0,T )×H,U ))

|F0 (s, x, u(s, x), v(s, x))| ≤ L ′
(
1+ |x |m + |u(s, x)| + |v(s, x)|U

)

≤ L ′(1+ |x |m)
(
1+ ‖u‖Bm + γG(T − s)‖v‖Bm,γG

)
. (4.123)

The above implies, by Hypothesis 4.77-(i), that the map ψ̄0
P , associated to ψ defined

in (4.122), is measurable. Hence, by Lemma 4.79-(i), the associated map ψ0
P , which

is equal to the second term of ϒ1, is also measurable. Finally, ψ0
P ∈ Bm([0, T ] × H)

by estimate (4.113).
Concerning ϒ2[u, v], the first term belongs to Bm,γG ([0, T )× H,U ) thanks to

Hypothesis 4.77-(ii) and (4.114). The second term ismeasurable byHypothesis 4.77-
(ii) (using the properties of ψ discussed above) and Lemma 4.79-(i). To show that
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the second term belongs to Bm,γG ([0, T )× H,U ) we estimate, using (4.114) and
(4.123),

1

γG(T − t)(1+ |x |m)

∣
∣
∣
∣

∫ T

t
∇G(t,·)Pt,s [F0 (s, ·, u(s, ·), v(s, ·))] (x)ds

∣
∣
∣
∣

≤ L ′

γG(T − t)

∫ T

t
γG(s − t)

(
1+ ‖u‖Bm + γG(T − s)‖v‖Bm,γG

)
ds

≤ L ′

γG(T − t)

(
1+ ‖u‖Bm

)
∫ T

t
γG(s − t)ds

+ ‖v‖Bm,γG

L ′

γG(T − t)

∫ T

t
γG(s − t)γG(T − s)ds. (4.124)

The claim now follows from Proposition 4.21-(v) applied for β = 0.

Step 2.ϒ is a contraction on Bm ([0, T ] × H)× Bm,γG ([0, T )× H,U ) endowed
with a suitable equivalent norm.
We define on Bm ([0, T ] × H) the equivalent norm

‖ f ‖β,Bm
:= sup

(t,x)∈[0,T ]×H
exp (−β (T − t))

| f (t, x)|
1+ |x |m ,

and on Bm,γG ([0, T )× H,U ) the equivalent norm

‖ f ‖β,Bm,γG
:= sup

(t,x)∈[0,T )×H
exp (−β(T − t))

1

γG(T − t)

| f (t, x)|U
1+ |x |m ,

where β is a positive constant to be fixed later in the proof.We are going to prove that,
for a suitable β > 0, the map ϒ = (ϒ1, ϒ2) is a contraction on (Bm ([0, T ]× H) ,

‖·‖β,Bm

)×
(
Bm,γG ([0, T )× H,U ) , ‖·‖β,Bm,γG

)
endowed with the product norm

given by the sum of the norms of the factor spaces. We start with estimates on ϒ1

(defined in (4.120)). Taking any elements (u1, v1) and (u2, v2) of Bm([0, T ] × H)×
Bm,γG ([0, T )× H,U )we have, using (4.113), Hypothesis 4.72-(i) and the definition
of the equivalent norms,

|ϒ1[u1, v1](t, x)−ϒ1[u2, v2](t, x)|

=
∣
∣
∣
∣

∫ T

t
Pt,s [F0(s, ·, u1(s, ·), v1(s, ·))− F0(s, ·, u2(s, ·), v2(s, ·))] (x)ds

∣
∣
∣
∣

≤ C(m)(1+ |x |m)

∫ T

t
‖F0(s, ·, u1(s, ·), v1(s, ·))− F0(s, ·, u2(s, ·), v2(s, ·))‖Bm

ds

≤ C(m)(1+ |x |m)

∫ T

t
L
[‖u1(s, ·)− u2(s, ·)‖Bm

+ ‖v1(s, ·)− v2(s, ·)‖Bm

]
ds
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≤ C(m)L(1+ |x |m)

∫ T

t

[
eβ(T−s) ‖u1 − u2‖β,Bm+ γG(T − s)eβ(T−s) ‖v1 − v2‖β,Bm,γG

]
ds

≤ C(m)L(1+ |x |m)
[
‖u1 − u2‖β,Bm

+ ‖v1 − v2‖β,Bm,γG

]

×
[(∫ T

t
eβ(T−s)ds

)

∨
(∫ T

t
γG(T − s)eβ(T−s)ds

)]

.

(Note that in the lines above we had to use Lemma 1.21 to ensure the measurability
of functions like s→‖u1(s, ·)− u2(s, ·)‖Bm

.) It follows that

‖ϒ1[u1, v1] −ϒ1[u2, v2]‖β,Bm

= sup
t∈[0,T ]

{
e−β(T−t) ‖ϒ1[u1, v1](t, ·)−ϒ1[u2, v2](t, ·)‖Bm

}

≤ C(m)LC1(β)
[
‖u1 − u2‖β,Bm

+ ‖v1 − v2‖β,Bm,γG

]
,

where

C1(β) := sup
t∈[0,T ]

{

e−β(T−t)
[(∫ T

t
eβ(T−s)ds

)

∨
(∫ T

t
γG(T − s)eβ(T−s)ds

)]}

= sup
t∈[0,T ]

{
1− e−β(T−t)

β
∨
∫ T

t
γG(T − s)e−β(s−t)ds

}

≤ 1

β
∨ sup

t∈[0,T ]

{∫ T

t
γG(T − s)e−β(s−t)ds

}

.

Thanks to Proposition 4.21-(iv) we have C1(β)→ 0 as β →+∞.
We now look at ϒ2. By using (4.114) and Hypothesis 4.72-(i) we get, for any

(u1, v1) and (u2, v2) in Bm([0, T ] × H)× Bm,γG ([0, T )× H,U ) (still usingLemma
1.21 to ensure the measurability of functions like s→‖u1(s, ·)− u2(s, ·)‖Bm

),

|ϒ2 [u1, v1] (t, x)−ϒ2 [u2, v2] (t, x)|

=
∣
∣
∣
∣

∫ T

t
∇G(t,·)Pt,s [F0 (s, ·, u1(s, ·), v1(s, ·))− F0 (s, ·, u2(s, ·), v2(s, ·))] (x)ds

∣
∣
∣
∣

≤ (1+ |x |m)

∫ T

t
γG(s − t) ‖F0 (s, ·, u1(s, ·), v1(s, ·))− F0 (s, ·, u2(s, ·), v2(s, ·))‖Bm ds

≤ L(1+ |x |m)

∫ T

t
γG(s − t)

[‖u1(s, ·)− u2(s, ·)‖Bm + ‖v1(s, ·)− v2(s, ·)‖Bm
]
ds

≤ L(1+ |x |m)

∫ T

t
γG(s − t)

[

eβ(T−s) ‖u1 − u2‖β,Bm

+ γG(T − s)eβ(T−s) ‖v1 − v2‖β,Bm,γG

]

ds
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≤ L(1+ |x |m)C2(t,β)
[
‖u1 − u2‖β,Bm + ‖v1 − v2‖β,Bm,γG

]
,

where we set

C2(t,β) :=
[(∫ T

t
γG(s − t)eβ(T−s)ds

)

∨
(∫ T

t
γG(s − t)γG(T − s)eβ(T−s)ds

)]

.

It follows that

‖ϒ2[u1, v1](t, x)−ϒ2[u2, v2](t, x)‖β,Bm,γG

≤ LC2(β)
[
‖u1 − u2‖β,Bm

+ ‖v1 − v2‖β,Bm,γG

]
,

where, changing variables in the integrals, we have

C2(β) := sup
t∈[0,T )

{

e−β(T−t) 1

γG(T − t)
C2(t,β)

}

= sup
t∈[0,T )

{(
1

γG(T − t)

∫ T−t

0
γG(s)e−βsds

)

∨
(

1

γG(T − t)

∫ T−t

0
γG(s)γG(T − t − s)e−βsds

)}

.

Since γG ∈ I2, by Proposition 4.21-(iv) and (v), we obtainC2(β)→ 0 as β →+∞.
We conclude that there exists a β0 > 0 such that, for β ≥ β0

‖ϒ1 (u1, v1)−ϒ1 (u2, v2)‖β,Bm
+ ‖ϒ2 (u1, v1)− ϒ2 (u2, v2)‖β,Bm,γG

≤ 1

2

[
‖u1 − u2‖β,Bm

+ ‖v1 − v2‖β,Bm,γG

]

so ϒ is a contraction and thus it has a unique fixed point.

Step 3. The first component of the fixed point of ϒ is the unique mild solution of
(4.109).

We first observe that we do not know that theG-derivative is a closed operator (see
Remark 4.15) and that we do not know if the integrands of the second terms ofϒ1 and
ϒ2 are measurable as functions of s with values in Bm(H) and Bm(H, H), respec-
tively, as required by Corollary 4.14. Hence we have to apply Proposition 4.16. The
required assumptions are satisfied thanks toHypothesis 4.76 and 4.77.We then obtain
that, for all (u, v) ∈ Bm ([0, T ] × H)× Bm,γG ([0, T )× H,U ), (t, x) ∈ [0, T ] ×
H , h ∈ U ϒ1 [u, v] (t, x) is G-Gâteaux differentiable and 〈ϒ2 [u, v] (t, x), h〉U =〈∇G(t,·)ϒ1 [u, v] (t, x), h

〉

U .
Let now [u, v]be thefixedpoint ofϒ , soϒ[u, v] = (u, v). It follows thatv(t, x) =

∇G(t,·)u(t, x). So the first component u of the unique fixed point of ϒ satisfies the
following:
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• u(t, x) = Pt,T [ϕ] (x)+
∫ T
t Pt,s

[
F0
(
s, ·, u (s, ·) ,∇G(s,·)u (s, ·))] (x) ds;

• u ∈ Bm ([0, T ]× H);
• u is G-Gâteaux differentiable and ∇Gu ∈ Bm,γG ([0, T )× H,U ).

The above imply that u is a mild solution of (4.109).

The required uniqueness is immediate since any other solution u∗ ∈ B
0,1,G
m,γG

([0, T ] × H) must be, thanks to Proposition 4.16, equal to the first component of
the fixed point of ϒ in Bm([0, T ] × H)× Bm,γG ([0, T )× H,U ), hence it must be
equal to u.

Proof of (ii). If ϕ ∈ B1,G(T,·)
m (H) and the map (t, x)→ ∇G(t,·)Pt,T [ϕ](x) belongs

to Bm([0, T ] × H,U ), then we can perform the fixed point argument in the space
Bm([0, T ] × H)× Bm([0, T ] × H,U ), where the second space now has the norm

‖ f ‖β,Bm
= sup

(t,x)∈[0,T ]×H
exp (−β (T − t))

| f (t, x)|U
1+ |x |m .

The same proof works in this product space. Indeed, it is easier and it also holds
when γG ∈ I1. �
Remark 4.81 The uniqueness statement of Theorem 4.80 can be generalized in the
following way. Let u be the mild solution found in Theorem 4.80 and let u∗ be

anothermild solutionofEq. (4.109) such thatu∗ ∈ B
0,1,G
m,η ([0, T ] × H) forη ∈ I1 and

such that γ1 := γG ∨ η belongs to I2. We then must have u∗ ∈ B
0,1,G
m,γ1

([0, T ] × H).
Moreover,

u∗(t, x) = Pt,T [ϕ](x)+
∫ T

t
Pt,s

[
F0
(
s, ·, u∗(s, ·),∇G(s,·)u∗(s, ·))] (x)ds,

and using again Proposition 4.16,

∇G(t,·)u∗(t, x) = ∇G(t,·)Pt,T [ϕ](x)+
∫ T

t
∇G(t,·)Pt,s

[
F0
(
s, ·, u∗(s, ·),∇G(s,·)u∗(s, ·)

)]
(x)ds.

This implies that
(
u∗,∇Gu∗

)
is a fixed point of ϒ in the space Bm([0, T )× H)×

Bm,γ1([0, T )× H,U ). Arguing as in the case of the weight γG , we get that also in
Bm([0, T )× H,U )× Bm,γ1([0, T )× H,U ) there exists a unique fixed point of ϒ .
But this point must be equal to (u,∇Gu), hence u∗ = u. In particular, if γG = Ct−θ

for some C > 0 and θ ∈ (0, 1), this implies that for any β ∈ (0, 1) any solution

u∗ ∈ B
0,1,G
m,η ([0, T ] × H) with η = C1t−β , for some C1 > 0, is equal to u. �

4.4.1.5 Existence and Uniqueness of Mild Solutions in Gm Spaces

In applications to optimal control it is important to show that the mild solution
found in Theorem 4.80 has more regularity properties. This is true under stronger
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assumptions. We start with a result where we show that the mild solution belongs to

G0,1,G
m,γG

([0, T ] × H).
We first introduce new assumptions about the data F0 and ϕ.

Hypothesis 4.82 Let m ≥ 0 be fixed. The following are satisfied.

(i) F0 : [0, T ] × H × R×U → R satisfies, for m fixed here and for given con-
stants L , L ′ > 0, parts (i) and (ii) of Hypothesis 4.72.

(ii) Denote by (U, τw
U ) the spaceU endowed with the weak topology. F0 is sequen-

tially continuous as a function from [0, T ] × H × R× (U, τw
U ) to R.

(iii) ϕ ∈ Cm(H).

Remark 4.83 The reasonwhy inHypothesis 4.82-(ii) we requiremore than the conti-
nuity of F is the following.Toprove that themild solution fromTheorem4.80belongs

to G0,1,G
m,γG

([0, T ] × H) we apply the fixed point theorem in a space of more regular

functions, i.e.Cm([0, T ] × H)× C
s
m,γG

([0, T )× H,U ) (see Definition 4.24). To do
this we need to know that the integral term in (4.120) is continuous in (t, x) when v

there (which is theG-Gâteaux derivative of the solution) is only strongly continuous.
However, in such a case the composition of F0 with v may not be continuous, for
example when F0 depends on the norm of v and U is infinite-dimensional, a case
frequent in applications, see e.g. Sects. 2.6.1 and 2.6.4. Thus to have the continuity
of the integral term in (4.120), we would need either a strong Feller property of
the semigroup Pt,s (a case which will be dealt with in Sect. 4.4.1.8), or a stronger
continuity property of F0 like the one used in Hypothesis 4.82-(ii). Indeed, under
these assumptions it is easy to see that F0 is continuous (with respect to the standard
topologies) and has the following property: for every (t, y) ∈ [0, T ] × R, and every
measurable map w : [0, T )× H → U which is strongly continuous in the x vari-
able, the function x → F0(t, x, y, w(t, x)) is continuous in H . This is exactly what
is needed to apply the fixed point argument, see the proof of Theorem 4.85.

We finally observe that Hypothesis 4.82, even if it is too restrictive to be applied in
the cases discussed above, is equivalent to the assumption of “standard” continuity of
F0 when U is finite-dimensional, a case which arises, for example, in many control
problems driven by delay equations (see Sect. 2.6.8) where the Hamiltonian function
only depends on a finite-dimensional projection of the gradient (see on this [236,
238, 239, 244, 313, 316]). �

We now state the assumptions about the semigroup which are variations of
Hypotheses 4.74, 4.76 and 4.77.

Hypothesis 4.84 Let m ≥ 0 be from Hypothesis 4.82. We assume the following.

(i) Hypothesis 4.74 is satisfied substituting everywhereCm(H) in place of Bm(H).
(ii) Hypothesis 4.76 is satisfied substituting everywhereCm(H) in place of Bm(H).
(iii) Hypothesis 4.77 is satisfied in the following form.

(a) For all φ ∈ Cm(H) the map φ0
P in (4.115) is continuous. For every

ψ ∈ Cm,γG ([0, T )× H), the map ψ̄0
P in (4.116) is measurable in s and

continuous in (t, x).
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(b) For allφ ∈ Cm(H) themapφ1
P in (4.117) is strongly continuous.Moreover,

for every ψ as in point (a) above, the map ψ̄1
P in (4.118) is measurable in s

and strongly continuous in (t, x).

We have the following result.

Theorem 4.85 Let m ≥ 0 be such that Hypotheses 4.82 and 4.84 are satisfied. Then
the following are true.

(i) Equation (4.109) admits a mild solution u in the sense of Definition 4.70

with u ∈ G0,1,G
m,γG

([0, T ] × H). Any mild solution u∗ ∈ G0,1,G
m,γG

([0, T ] × H) is
equal to u.

(ii) If ϕ ∈ G1,G(T,·)
m (H) and the map (t, x)→ ∇G(t,·)Pt,T [ϕ](x) belongs to Cs

m
([0, T ] × H,U ), then ∇Gu ∈ Cs

m([0, T ] × H,U ).

Proof The proof is analogous to the proof of Theorem 4.80. We only explain the
changes needed here.

Proof of (i).Weperform thefixedpoint argument in the product spaceCm ([0, T ]×
H)× C

s
m,γG

([0, T )× H,U ), endowed with the product norm given by the sum of
the norms of the factor spaces. In this space we consider the operator ϒ = (ϒ1, ϒ2)

defined by (4.120) and (4.121). Once we show that ϒ maps Cm ([0, T ] × H)×
C

s
m,γG

([0, T )× H,U ) into itself, the rest of the proof is exactly the same as the
proof of part (i) of Theorem 4.80, and will be omitted.

Let (u, v) ∈ Cm ([0, T ] × H)× C
s
m,γG

([0, T )× H,U ).
The first term of ϒ1[u, v] is in Cm ([0, T ] × H) by Hypothesis 4.84-(iii)-(a) and

(4.113). Regarding the second term we define

ψ(s, x) := F0 (s, x, u(s, x), v(s, x))

and observe thatψ is continuous. Indeed, if (sn, xn)→ (s, x) ∈ [0, T )× H we have,
by the strong continuity of v, that v(sn, xn) converges weakly inU to v(s, x). Hence,
thanks to Hypothesis 4.82-(i), ψ(sn, xn)→ ψ(s, x). Moreover, using Hypothesis
4.82-(ii) and arguing as in (4.123), the function

(s, x)→ 1

γG(T − s)

ψ(s, x)

1+ |x |m

is bounded. Thus the second term of ϒ1[u, v] belongs to Cm ([0, T ] × H) thanks to
Hypothesis 4.84-(iii)-(a) and Lemma 4.79-(ii).

Concerning ϒ2[u, v], its first term belongs to C
s
m,γG

([0, T )× H,U ) thanks to
Hypothesis 4.84-(iii)-(b) and (4.114). The second term is strongly continuous by
Hypothesis 4.84-(iii)-(b) and Lemma 4.79-(ii) (using the continuity of ψ explained
above). To show that the second term belongs to C

s
m,γG

([0, T )× H,U ) we argue
exactly as in the proof of Theorem 4.80, using (4.124).

Proof of (ii).We consider the mapϒ in the spaceCm([0, T ] × H)× Cs
m([0, T ] ×

H,U ). The proof that ϒ maps this space into itself is completely similar to what is
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done in part (i) above. The proof that it is a contraction is the same as the proof of
part (ii) of Theorem 4.80. �

Remark 4.86 Hypothesis 4.82 is stronger than Hypothesis 4.72. On the other hand
Hypothesis 4.84 does not imply Hypotheses 4.74, 4.76 and 4.77. However, in most
examples we consider in this chapter, if Hypothesis 4.84 is satisfied then so are
Hypotheses 4.74, 4.76 and 4.77. In such cases Theorem 4.85 shows that, when the
data F0 and ϕ are more regular, the mild solution u found in Theorem 4.80 is also
more regular. �

4.4.1.6 Existence and Uniqueness of Mild Solutions in Cm Spaces

We study when the mild solution belongs to C
0,1,G
m,γG

([0, T ] × H). We need to modify
the assumptions about the data F0 andϕ and modify Hypotheses 4.74, 4.76 and 4.77.

Hypothesis 4.87 Let m ≥ 0 be fixed. The following are satisfied.

(i) F0 : [0, T ] × H × R×U → R satisfies, for m fixed here and for given con-
stants L , L ′ > 0, parts (i) and (ii) of Hypothesis 4.72.

(ii) F0 is continuous.
(iii) ϕ ∈ Cm(H).

Remark 4.88 Note that the assumption about F0 here is weaker than the one in
Hypothesis 4.82 needed for working in the spaces Gm . �

The assumptions about the semigroup are very similar to Hypothesis 4.84.

Hypothesis 4.89 Let m ≥ 0 be from Hypothesis 4.87. We assume the following.

(i) Hypothesis 4.74 is satisfied substituting everywhereCm(H) in place of Bm(H).
(ii) Hypothesis 4.76 is satisfied substituting everywhere Cm(H) in place of Bm(H)

and the G-Fréchet derivative DG in place of the G-Gâteaux derivative ∇G .
(iii) Hypothesis 4.77 is satisfied in the following form.

(a) For all φ ∈ Cm(H) the map φ0
P in (4.115) is continuous. For every

ψ ∈ Cm,γG ([0, T )× H), the map ψ̄0
P in (4.116) is measurable in s and

continuous in (t, x).
(b) For all φ ∈ Cm(H) the map φ1

P in (4.117) is continuous. Moreover, forψ as
in point (a) above the map ψ̄1

P in (4.118) is measurable in s and continuous
in (t, x).

We have the following result.

Theorem 4.90 Let m ≥ 0 be such that Hypotheses 4.87 and 4.89 are satisfied. Then
the following are true.

(i) Equation (4.109) admits a mild solution u in the sense of Definition 4.70 with

u ∈ C
0,1,G
m,γG

([0, T ] × H). Any mild solution u∗ ∈ C
0,1,G
m,γG

([0, T ] × H) is equal
to u.
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(ii) If ϕ ∈ C1,G(T,·)
m (H) and the map (t, x)→ DG(t,·)Pt,T [ϕ](x) belongs to Cm

([0, T ] × H,U ), then DGu ∈ Cm([0, T ] × H,U ).

Proof Similarly to the case of Theorem 4.85, the proof here is analogous to the proof
of Theorem 4.80 and we only explain the changes needed here.

Proof of (i). We consider the product space Cm ([0, T ] × H)× Cm,γG ([0, T )×
H,U ) endowed with the product norm given by the sum of the norms of the factor
spaces. In this space we consider the operator ϒ = (ϒ1, ϒ2) defined by (4.120) and
(4.121). We only show that ϒ maps Cm ([0, T ] × H)× Cm,γG ([0, T )× H,U ) into
itself as the rest of the proof is exactly the same as in the proof of part (i) of Theorem
4.80.

Let (u, v) ∈ Cm ([0, T ] × H)× Cm,γG ([0, T )× H,U ).
The proof that ϒ1[u, v] ∈ Cm ([0, T ] × H) is the same as the proof of this state-

ment in the proof of Theorem 4.85 once we observe that

ψ(s, x) := F0 (s, x, u(s, x), v(s, x))

is obviously continuous thanks to Hypothesis 4.87-(ii).
Concerning ϒ2[u, v], its first term belongs to Cm,γG ([0, T )× H,U ) by Hypoth-

esis 4.89-(iii)-(b) and (4.114). The second term is continuous thanks to Hypothesis
4.89-(iii)-(b) and Lemma 4.79-(ii) (using the continuity of ψ). To prove that the
second term belongs to Cm,γG ([0, T )× H,U ) we argue exactly as in the proof of
Theorem 4.80, using (4.124).

Proof of (ii).We consider the mapϒ in the spaceCm([0, T ] × H)× Cm([0, T ] ×
H,U ). The proof that ϒ maps this space into itself is completely similar to what is
done in the proof of point (i). The proof that it is a contraction follows the proof of
point (ii) of Theorem 4.80. �

Similarly to what has been observed in Remark 4.86, Theorem 4.90 also applies
to most examples studied in this chapter and provides additional regularity of mild
solutions when the data are more regular.

Remark 4.91 In the case when Pt,s = Rs−t is the Ornstein–Uhlenbeck semigroup
described in Sect. 4.3.1, it is known that when φ ∈ Cm(H), the function DGRsφ(x)
is continuous in x (Proposition 4.50-(iii)). However it is not clear, unless additional
assumptions are made (see Proposition 4.51-(iii) and Remark 4.52-(i)), if such a
function is jointly continuous in (s, x). Hence, in such cases, ifwe avoid the additional
assumptions, Theorem 4.90 cannot be applied. Moreover, Theorem 4.85 cannot be
applied as joint strong continuity of DGRsφ(x) is required there. So only Theorem
4.80 applies.

Nevertheless in such cases one can prove more. Indeed, one can modify Hypothe-
ses 4.87 and 4.89 as follows:

• In Hypothesis 4.87-(ii) we require only that F is continuous in x .
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• In Hypothesis 4.89-(iii)-(b) we require only that the map φ̄P
1 is jointly measurable

and continuous in x , and that the map ψ̄P
1 is measurable in (s, t) and continuous

in x .

With this change of the assumptions it is possible to prove, by a straightforward
modification of the proof, that Theorem 4.90 holds with the following variants:

• In Part (i) the mild solution u belongs to Cm([0, T ] × H) while Du ∈ Bm,γG

([0, T )× H,U ) and is continuous in x . Uniqueness holds among functions of the
same type.

• In Part (ii) the function DGu belongs to Bm([0, T ] × H) and is continuous in x .

Such a result is similar to what is proved in [105] (see Sect. 4.9.2 and
Remark 4.98). �

4.4.1.7 Existence and Uniqueness Mild Solutions in UCm Spaces

This case was the first to be studied in the literature. However, it requires more
assumptions and it does not give real advantages with respect to the results of the
previous subsection. Indeed, in the case ofHJBequations arising fromoptimal control
problems, the results of Theorem 4.90, even if they provide a little less regularity
than Theorem4.94, already allow us to obtain verification theorems for the associated
optimal control problem. Moreover, the assumptions are a little more complicated,
as one can see in Hypotheses 4.92-(ii) and 4.93-(iii). For these reasons the results of
the current subsection (and the related ones in this chapter, see e.g. Remark 4.53-(i)
and Sect. 4.6) are presented without going into all the details.

The new assumptions about the data F0,ϕ and the semigroup are the following.

Hypothesis 4.92 Let m ≥ 0 be fixed. The following are satisfied.

(i) F0 : [0, T ] × H × R×U → R satisfies, for m fixed here and for given con-
stants L , L ′ > 0, parts (i) and (ii) of Hypothesis 4.72.

(ii) F0 is continuous and the function (s, x, v, w)→ F0(s, x, v, w)/(1+ |x |m +
|v| + |w|) is uniformly continuous in the last three variables, uniformly with
respect to the first.

(iii) ϕ ∈ UCm(H).

Hypothesis 4.93 Let m ≥ 0 be from Hypothesis 4.92. We assume the following.

(i) Hypothesis 4.74 is satisfied substituting everywhere UCm(H) in place of
Bm(H).

(ii) Hypothesis 4.76 is satisfied substituting everywhere UCm(H) in place of
Bm(H) and the G-Fréchet derivative DG in place of the G-Gâteaux deriva-
tive ∇G .

(iii) Hypothesis 4.77 is satisfied in the following form.
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(a) For all φ ∈ UCm(H) the map φ0
P in (4.115) belongs toUCx

m([0, T ] × H).
For every ψ ∈ UC

x
m,γG

([0, T )× H), the map

(t, s, x)→ (γG(T − s))−1ψ̄0
P(t, s, x)

(see (4.116)) belongs to UCx
m(I0 × H), where I0 = {(t, s) : 0 ≤ t ≤ s <

T }.
(b) For everyφ ∈ UCm(H) themapφ1

P in (4.117) belongs toUC
x
m,γG

([0, T )×
H). Moreover, for ψ as in point (a) above, the map

(t, s, x)→ (γG(T − s))−1(γG(s − t))−1ψ̄1
P(t, s, x)

(see (4.118)) belongs to UCx
m(I1 × H), where I1 = {(t, s) : 0 ≤ t < s <

T }.
We have the following result.

Theorem 4.94 Let m ≥ 0 be such that Hypotheses 4.92 and 4.93 are satisfied. Then
the following are true.

(i) Equation (4.109) admits amild solutionu in the sense ofDefinition4.70with u ∈
UC

0,1,G
m,γG

([0, T ] × H). Any mild solution u∗ ∈ UC
0,1,G
m,γG

([0, T ] × H) is equal to
u.

(ii) If ϕ ∈ UC1,G(T,·)
m (H) and the map (t, x)→ DG(t,·)Pt,T [ϕ](x) belongs to

UCm([0, T ] × H,U ), then DGu ∈ UCx
m([0, T ] × H,U ).

Proof Similarly to Theorems 4.85 and 4.90, the proof is similar to the proof of
Theorem 4.80. We only explain the major changes needed here.

Proof of (i).Weconsider the product spaceUCx
m ([0, T ] × H)×UC

x
m,γG

([0, T )×
H,U ) endowed with the product norm given by the sum of the norms of the factor
spaces and we consider the operator ϒ = (ϒ1, ϒ2) defined by (4.120) and (4.121).
We only argue thatϒ mapsUCx

m ([0, T ] × H)×UC
x
m,γG

([0, T )× H,U ) into itself
as the rest of the proof is exactly the same as the proof of part (i) of Theorem 4.80.

Let (u, v) ∈ UCx
m ([0, T ] × H)×UC

x
m,γG

([0, T )× H,U ).
We look first at ϒ1[u, v]. The first term of it belongs to UCx

m([0, T ] × H) by
Hypothesis 4.93-(iii)-(a). For the second term we consider (as in the proofs of The-
orems 4.80, 4.85, 4.90), the function

ψ(s, x) := F0 (s, x, u(s, x), v(s, x)) .

Straightforward computations, together with Hypothesis 4.92, imply that
ψ ∈ UC

x
m,γG

([0, T )× H). Now, the second term of ϒ1[u, v] can be rewritten as,
see (4.116),

∫ T

t
γG(T − s)

[
(γG(T − s))−1ψ̄0

P(t, s, x)
]
ds.
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Since, by Hypothesis 4.93-(iii)-(a), the term in the square brackets above belongs to
UCx

m (I0 × H), the above integral belongs to UCx
m ([0, T ] × H).

Concerning ϒ2[u, v], the first term belongs toUCm,γG ([0, T )× H,U ) thanks to
Hypothesis 4.93-(iii)-(b). The second term can be rewritten as, see (4.118),

∫ T

t
γG(T − s)γG(s − t)

[
(γG(T − s))−1(γG(s − t))−1ψ̄1

P(t, s, x)
]
ds.

Since, by Hypothesis 4.93-(iii)-(b), the term in the square brackets above belongs to
UCx

m (I1 × H) and γG ∈ I2, the above integral belongs to UC
x
m.γG

([0, T )× H).

Proof of (ii). We consider the map ϒ in the space UCx
m([0, T ] × H)×UCx

m
([0, T ] × H,U ). The proof that ϒ maps this space into itself is completely similar
to the proof of part (i). The proof that it is a contraction follows the proof of part (ii)
of Theorem 4.80. �

Similar comments to what was observed in Remark 4.86 also apply to
Theorem 4.94.

4.4.1.8 Existence and Uniqueness in the “Strong Feller” Case

In this section we add to the hypotheses of Sect. 4.4.1.2 the strong Feller property
of the semigroup Pt,s , a property which is satisfied in many applied problems. For
instance, the strong Feller property holds when U = H and G = I in Hypothesis
4.76. Moreover, under reasonable assumptions, the strong Feller property of Pt,s also
holds in examples discussed in Sects. 2.6.1 (see e.g. [103, 104] and [106], Chaps. 6-
7), 2.6.2 (e.g. when b = 0, using the results of Sect. 4.3.1 for the case when Pt,s is
of Ornstein–Uhlenbeck type), 2.6.4 (see [155, 157]), and 2.6.5 (see [158]).

Hypothesis 4.95 Let m be from Hypothesis 4.72. The family Pt,s , 0 ≤ t ≤ s ≤ T ,
is strongly Feller (see Definition 1.159 and Lemma 1.160) in the sense that

Pt,s(Bm(H))⊂Cm(H), ∀ 0 ≤ t < s ≤ T .

We have the following result.

Theorem 4.96 Let m ≥ 0 be from Hypothesis 4.72. Let Hypotheses 4.72, 4.74,
4.76, 4.77 and 4.95 hold. We have the following.

(i) The mild solution u obtained in Theorem 4.80-(i) (or (ii)) of Eq. (4.109) is
continuous in the variable x ∈ H for all t ∈ [0, T ).

(ii) Let ϕ ∈ Cm(H) and assume that Hypothesis 4.84 holds. Assume in addition
that, for ψ ∈ Bm,γG ([0, T )× H), the function
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(t, x)→
∫ T

t
Pt,s[ψ(s, ·)](x)ds, (respectively, (t, x)→

∫ T

t
∇G(t,·)Pt,s[ψ(s, ·)](x))ds)

is continuous in [0, T ] × H (respectively, strongly continuous in [0, T )× H).

Then u ∈ G0,1,G
m,γG

([0, T ] × H).
(iii) Assume, in addition to the hypotheses of part (ii), thatϕ ∈ G1,G

m (H) and that the
map (t, x)→ ∇G(t,·)Pt,T [ϕ](x) belongs to Cs

m([0, T ] × H,U ). Then ∇Gu ∈
Cs
m([0, T ] × H,U ).

Proof The proof of (i) easily follows from the strong Feller property, estimate (4.113)
and the dominated convergence theorem.

The proofs of (ii) and (iii) are the same (and even easier, thanks to the strong
assumptions made here) as those of Theorem 4.85 (parts (i) and (ii)). �
Remark 4.97 Observe that the joint continuity (strong continuity) required in Theo-
rem 4.96-(ii) is usually satisfied when the strong Feller property is true. This holds,
for example, in the three cases presented in Sect. 4.3.

Observe also that in Theorem 4.96, by appropriately changing the assumptions
and the claims, one could prove statements similar to (ii) and (iii) in Cm spaces. �
Remark 4.98 In [105, 179] the authors prove the existence and uniqueness of a mild
solution applying the fixed point theorem in the space ZT , which is the subspace of
B1,I
b ([0, T ] × H) whose elements are continuous and bounded functions such that,

for all t ∈ [0, T ], u(t, ·) ∈ UC1
b(H). It is possible to prove a version of Theorem

4.80 which establishes existence and uniqueness of solutions in such a space if
one requires continuity of ϕ and F0 in x , see Remark 4.91 for a similar result.
Similarly, it is also possible to prove a version of Theorem 4.96 in the space ZT .
Such results may be useful when joint continuity of the maps φ1

P in (4.117) and ψ̄1
P

in (4.118) are difficult to obtain, like in the Ornstein–Uhlenbeck case discussed in
Remark 4.91. �

4.4.1.9 Examples

Example 4.99 Assume that Pt,s = Rs−t , where Rt is the Ornstein–Uhlenbeck semi-
group considered in Sect. 4.3.1. Assume that Hypotheses 4.25, 4.29 and 4.32 are
satisfied. Then, Hypothesis 4.74 (together with its variants in Hypotheses 4.84-(i),
4.89-(i), 4.93-(i)) is clearly satisfied as a consequence of the definition of Rt . More-
over, Hypothesis 4.76 (together with its variants in Hypotheses 4.84-(ii), 4.89-(ii),
4.93-(ii)) is satisfied thanks to Theorem 4.41.

Hypothesis 4.77 (together with its variant discussed in Remark 4.91) is satisfied
thanks to Proposition 4.50. The variants of Hypothesis 4.77 given in Hypotheses
4.84-(iii), 4.89-(iii), 4.93-(iii) are satisfied if we require that Hypothesis 4.29 also
holds forU = H andG = I . This follows from Propositions 4.50, 4.51, and Remark
4.53-(i).
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Hence, in this Ornstein–Uhlenbeck case, assuming Hypothesis 4.72, Theorem
4.80 applies, and also its version discussed in Remark 4.91.

To apply the other theoremswe need to require that Hypothesis 4.29 also holds for
U = H and G = I . In this case, assuming, in place of Hypothesis 4.72, Hypothesis
4.82 (respectively Hypothesis 4.87 or 4.92), then Theorem 4.85, (respectively 4.90,
4.94) applies, too.Moreover, sinceHypothesis 4.29 also holds forU = H andG = I ,
then also Theorem 4.96 applies. �

Example 4.100 Assume that Pt,s = Ps−t , where Pt is the perturbed Ornstein–
Uhlenbeck semigroup studied in Sect. 4.3.2. Assume thatU = H andG = I and that
for suchG, Hypotheses 4.25, 4.29, 4.32, 4.54 and 4.55 are satisfied. ThenHypothesis
4.74 (together with its variants in Hypotheses 4.84-(i), 4.89-(i), 4.93-(i)) is satisfied
by the definition of Pt . Hypothesis 4.76 (together with its variants in Hypotheses
4.84-(ii), 4.89-(ii), 4.93-(ii)) is satisfied thanks to Theorem 4.56 while the fact that
Hypothesis 4.77 (together with its variants in Hypotheses 4.84-(iii), 4.89-(iii), 4.93-
(iii)) is satisfied can be proved arguing similarly as in the proofs for the standard
Ornstein–Uhlenbeck case in Propositions 4.50, 4.51 and in Remark 4.53.

Hence, for the perturbed Ornstein–Uhlenbeck case, assuming Hypothesis 4.72
(also, when needed, Hypotheses 4.82, 4.87, 4.92), the statements of Theorems 4.80,
4.85, 4.90, 4.94 hold. Since here the strong Feller property holds the same is true for
Theorem 4.96.

Finally, arguing as inRemark4.57, the abovemight beproved avoidingHypothesis
4.55. �

Example 4.101 Assume that Pt,s is the semigroup described in Sect. 4.3.3 and that
Hypotheses 4.60 and 4.64 are satisfied. Then Hypothesis 4.74 (together with its
variants in Hypotheses 4.84-(i), 4.89-(i), 4.93-(i)) is true thanks to estimate (1.80).
Moreover, using Theorem 4.65 and Remark 4.66, we see that Hypothesis 4.76
(together with its variants in Hypotheses 4.84-(ii), 4.89-(ii), 4.93-(ii)) also holds
with U = H,G = I and γG(t) = Ct−1/2 for some C > 0. Finally, by Proposition
4.67 and Remark 4.69, we see that Hypothesis 4.77 (together with its variants in
Hypotheses 4.84-(iii), 4.89-(iii), 4.93-(iii)) is satisfied.

Thus, under Hypotheses 4.60 and 4.64 (also, when needed, Hypothesis 4.82),
the statements of Theorems 4.80 and 4.85 hold. Theorems 4.90 and 4.94 do not
apply since we do not have the continuity of the derivative. However, since here
U = H,G = I and the strong Feller property holds, Theorem 4.96 applies giving
us, in particular, that the solution is in G0,1,G

m ([0, T ] × H) when the initial datum is
continuous.

This result is in line with what is obtained using the BSDE approach in Chap.6,
Theorem 6.32 (see also Theorem 4.2 of [283]). �
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4.4.2 The Elliptic Case with a Big Discount Factor

Similarly to the parabolic case we take a real separable Hilbert space H and we
consider the following elliptic HJB equation in H which is slightly different from
(4.2) since in the Hamiltonian function the dependence on Dv is through an oper-
ator function G(x) (which may reduce to the identity), hence the Hamiltonian is
F0(x, v, DGv) instead of F(x, v, Dv).

λv − 1

2
Tr [�(x)D2v] − 〈Ax + b(x), Dv〉 − F0(x, v, DGv) = 0, x ∈ H.

(4.125)
Recall that, to denote the derivatives in theHJB equations, we always use the symbols
D and DG unless it is precisely stated that the solution only possesses Gâteaux
derivatives. We introduce a mild form of (4.125) and then we study the mild form of
the equation. As in Sects. 3.6.3 and 6.9, we provide results for λ sufficiently big. A
sharper result, which holds for all λ > 0, will be given in Sect. 4.6.2.2 for a specific
Ornstein–Uhlenbeck case.

4.4.2.1 Formal Derivation of the Mild Form

Let us fix x ∈ H and take a generalized reference probability space(
�,F , {Fs}s∈[0,+∞),P,W

)
(whereW is a cylindricalWiener process in a real sepa-

rable Hilbert space�).We describe here a formal argument to obtain themild form of
(4.125). Consider the SDE related to the linear part of (4.125), where σ(x) = √�(x)

{
dX (s) = [AX (s)+ b (X (s))] ds + σ (X (s)) dW (s) , s ∈ [0,+∞),

X (0) = x, x ∈ H,
(4.126)

and denote by X (·; x) its solution (we omit the initial time since it is always equal to
0 in this subsection). For every φ ∈ Bm(H), m ≥ 0, the (one parameter) transition
semigroup associated to such SDE is

Ps[φ](x) = E[φ(X (s; x)], s ≥ 0. (4.127)

The generator of the semigroup Ps is, formally, defined by

Aφ = 1

2
Tr [�(x)D2φ] + 〈Ax + b(x), Dφ〉

and then, for any g ∈ Bm(H), the function

u(x) = (λI −A)−1[g](x) =
∫ +∞

0
e−λs Ps[g](x)ds (4.128)
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(here we use the standard expression for the resolvent, see e.g. [479], proof
of Theorem 3.1, pp. 8–9) is, still formally, the solution of the linear equation
λu(x)− (Au)(x) = g(x). Hence, taking g(x) = F0(x, v(x), DGv(x)), (4.125) can
be rewritten as

λv(x)− (Av)(x) = F0(x, v(x), DGv(x))

and, applying the formula (4.128) for the resolvent, as

v(x) =
∫ +∞

0
e−λs Ps

[
F0(·, v (·) , DGv (·)] (x)ds, x ∈ H. (4.129)

We call this equation themild form of (4.125). According to our convention, to denote
the derivatives in this mild version of the HJB equation, we always use the symbols
D and DG unless it is stated that the solution only possesses Gâteaux derivatives. As
in the parabolic case, Eq. (4.129) is completely determined by F0 and the operators
Ps . Thus the assumptions will be formulated only in terms of F0 and the family
{Ps, s ≥ 0}. In this way our results, once the required assumptions are satisfied, can
be applied to cases where the integral equation (4.129) is associated to other types
of SDE, e.g. when Ps is associated to jump diffusions driven by Lévy processes and
hence to non-local generators A. Examples when the assumptions are satisfied will
be discussed in Sect. 4.4.2.9.

4.4.2.2 Definition of Mild Solution

Here is the notion of a mild solution of the HJB equation (4.125).

Definition 4.102 We say that a function u : H → R is a mild solution of the HJB
equation (4.125) if, for some m ≥ 0, the following are satisfied:

(i) u ∈ B1,G
m (H).

(ii) Equality (4.129) holds.

Definition 4.102 introduces a solution of the integral equation (4.129) which, as
we discussed before, is more general than (4.125). Since in the following sections
we only study Eq. (4.125), we keep the description “a mild solution of Eq. (4.125)”.

Remark 4.103

(i) Similarly to what we observed in the parabolic case, the space B1,G
m (H) is in a

sense the minimal one where the solution can exist and so the one where it is
easier to find solutions under aminimal set of assumptions. However, it may not
be possible to approximate mild solutions in this space by classical solutions
(see Sect. 4.5.2). Hence we will prove that in many cases solutions are more
regular, e.g. they belong to G1,G

m (H), C1,G
m (H) or UC1,G

m (H).
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(ii) The definition of a mild solution implicitly implies that the function s →
e−λs Ps[F0

(·, u(·), DGu(·))](x) is integrable and its integral over [0,+∞) is
measurable in H . Moreover, Definition 4.102 would still make sense without
Part (i) as long as the right-hand side of (4.129) makes sense and is measurable.

�

4.4.2.3 Existence and Uniqueness in Bm Spaces: Assumptions

The assumptions here are very similar to the assumptions in the parabolic case. The
main differences are the independence of the data of the time variable t and the need
for suitable exponential estimates for big t .

The first assumption prescribes conditions on F0 needed to apply our fixed point
argument.

Hypothesis 4.104 The function F0 : H × R×U → R satisfies the following.

(i) There exists a constant L > 0 such that

|F0(x, y1, z1)− F0(x, y2, z2)| ≤ L (|y1 − y2| + |z1 − z2|U )

for every x ∈ H , y1, y2 ∈ R, z1, z2 ∈ U .
(ii) There exist L ′ > 0 and m ≥ 0 such that

|F0(x, y, z)| ≤ L ′
(
1+ |x |m + |y| + |z|U

)

for every x ∈ H, y ∈ R, z ∈ U .
(iii) F0 is Borel measurable.

Remark 4.105

(i) Using fixed point techniques similar to those employed in this section and
suitable a priori estimates, it is also possible to study the case when F0 is
locally Lipschitz in the last variable. This case is very interesting in applications,
however, up to now, it has only been studied in a special case (see [106, 107])
which is briefly presented in Sect. 4.9.2.

(iii) If F0 is more regular, C2 regularity of mild solutions can be obtained. Such a
result has only been proved in the casewhen the underlying transition semigroup
is of Ornstein–Uhlenbeck type in [317]. It is explained in Sect. 4.6.2.1.

�

We now give the assumptions for the operators Ps . They are divided into three
parts. The first establishes the semigroup property and a basic estimate.

Hypothesis 4.106 Let m ≥ 0 be from Hypothesis 4.104. For every s ≥ 0 Ps ∈
L(Bm(H)). The family of operators Ps satisfies P0 = I and the semigroup
property
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Pt Ps = Pt+s, ∀s, t ≥ 0.

Moreover, there exist C(m) > 0 and a(m) ∈ R such that for every φ ∈ Bm(H) and
s ≥ 0,

|Ps[φ](x)| ≤ C(m)ea(m)s‖φ‖Bm (1+ |x |m), x ∈ H. (4.130)

Remark 4.107 Assume that the SDE (4.126) has a unique mild solution X (·; x) for
all x ∈ H and set Ps[φ](x) = E[φ(X (s; x)], for s ≥ 0, x ∈ H . Then, when m = 0,
(4.130) is immediately true with C(0) = 1/2 and a(0) = 0. When m > 0, we have

|Ps[φ](x)| ≤ ‖φ‖BmE
[
(1+ |X (s; x)|m)

]
, x ∈ H, s ≥ 0.

Thus the validity of (4.130) depends on the estimates of the moments of the solution
of (4.126), which must hold for all s ≥ 0 with an exponential growth. A result of this
kind canbe found, for example, in Proposition 4.6 in [285] under suitable assumptions
about the coefficients.Weobservehere that such an estimate canbededuced22 froman
analogous finite horizon estimate.We briefly describe the argument for the casewhen
the coefficients of the SDE (4.126) satisfy Hypothesis 1.149 without the dependence
on s and a. FromTheorem1.152we know that, for ξ ∈ Lm(�,F0,P; H),m ≥ 2, the
SDE (4.126) has a unique solution X (·; ξ) = X (·; 0, ξ). The same holds if the initial
time is t ≥ 0, in this case we denote the mild solution by X (·; t, ξ). By uniqueness
we have X (s; ξ) = X (s; t, X (t; ξ)) for s ≥ t ≥ 0. Moreover, by Theorem 1.152 we
have the estimate (see (1.79))

E[|X (s; ξ)|m] ≤ cm(1+ E[|ξ|m]), ∀s ∈ [0, 1]. (4.131)

Hence, using uniqueness we have

E
[|X (s; ξ)|m] = E

[|X (s; 1, X (1; ξ))|m] , ∀s ∈ (1, 2].

Now we use Theorem 1.152 and estimate (1.79) when the initial time is t = 1,
yielding

E
[|X (s; 1, X (1; ξ))|m] ≤ cm(1+ E[|X (1; ξ)|m]).

The last two equations and (4.131) then give

E
[|X (s; ξ)|m] ≤ cm + c2m(1+ E[|ξ|m])), ∀s ∈ (1, 2].

Arguing by induction we get

22This was suggested to us by Mauro Rosestolato.
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E
[|X (s; ξ)|m] ≤ (cm + . . .+ cn+1m )+ cn+1m E|[ξ|m ]

≤ n(cm ∨ 1)n+1 + cn+1m E[|ξ|m ]
= ne(n+1) log(cm∨1) + e(n+1) log cmE[|ξ|m ], ∀s ∈ (n, n + 1], ∀n ∈ N.

Then, by suitably defining C(m) and a(m), we obtain

E
[|X (s; ξ)|m] ≤ C(m)ea(m)s(1+ E[|ξ|m])

for all s ≥ 0, which is the required estimate. �

The second hypothesis ensures the smoothing property of the transition
semigroup Ps .

Hypothesis 4.108 Let m ≥ 0 be from Hypothesis 4.104. Given another real sepa-
rable Hilbert space U (possibly equal to H ), the function G maps H into the set of
closed linear operators (possibly unbounded) from U to H and satisfies Hypothesis
4.11. Moreover, for all φ ∈ Bm(H), we have the following.

(i) The function Ps [φ] (·) is G-Gâteaux differentiable for every s > 0.
(ii) There exist γG ∈ I1 (possibly depending on m) and a(m) ∈ R such that for

every s > 0,

∣
∣∇G Ps [φ] (x)

∣
∣
U ≤ γG(s)ea(m)s‖φ‖Bm (1+ |x |m), x ∈ H. (4.132)

To avoid unnecessary complicationswe assume that the constantsa(m) inHypothesis
4.106 and here are the same.

Remark 4.109 In contrast to Hypotheses 4.74 and 4.76 in the parabolic case, here
we need to require (in (4.130) and (4.132)) a prescribed exponential growth at infin-
ity for both Ps[φ] and DGPs[φ]. For the case discussed in Remark 4.107, (4.130)
corresponds to exponential estimates for the moments of the solutions of (4.126).
These exponential growth estimates are needed to guarantee the integrability over
R
+ of the right-hand side of (4.129).
Regarding the growth estimates in Hypotheses 4.106 and 4.108 we note that we

generically require a(m) ∈ R. In fact, for transition semigroups (see 1.6), which are
the ones we will be dealing with from the next section on, we always have a(m) ≥ 0
in (4.130) since, by (1.95), constant functions are invariant for such semigroups.
Nevertheless, requiring a(m) ≥ 0 is not necessary for Theorem 4.112 below. We
keep the (a priori weaker) assumption a(m) ∈ R, which may be satisfied in other
cases (e.g. for semigroups Ps which are not transition semigroups and which have
negative type; a case arising when the operator A is strictly dissipative), and may
give rise to a sharper result in Theorem 4.112, whose conclusion may (possibly) also
hold for negative λ.

Finally, in the elliptic case we do not need γG ∈ I2 but only to be in I1, since here
the contraction estimates are simpler. Indeed, we may also avoid requiring γG to be
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decreasing with no change in the results. We keep this requirement since in all our
examples γG is decreasing. �

The third hypothesis guarantees the joint measurability properties required in the
definition of a mild solution and needed to apply Proposition 4.16.

Hypothesis 4.110 Letm ≥ 0 be fromHypothesis 4.104 and γG be fromHypothesis
4.108.

(i) For every φ ∈ Bm(H) the function

φ̄0
P : [0,+∞)× H → R, (s, x)→Ps[φ](x) (4.133)

is measurable.
(ii) For every φ ∈ Bm(H) the function

φ̄1
P : (0,+∞)× H → U, (s, x)→∇G Ps[φ](x) (4.134)

is measurable.

The observations made in Remark 4.78 also apply (with obvious changes) to
Hypothesis 4.110-(i).

The following lemma is the infinite horizon analogue of Lemma 4.79.

Lemma 4.111 Let Hypotheses 4.106, 4.108 and 4.110 hold. Let φ ∈ Bm(H) and
λ > a(m), where a(m) is the constant from (4.130) and (4.132). We then have the
following.

(i) The functions

φ0
P : H → R, x→

∫ +∞

0
e−λs Ps[ψ](x)ds,

φ1
P : H → U, x→

∫ +∞

0
e−λs∇G Ps[ψ](x)ds,

are measurable.
(ii) If the function φ̄0

P in Hypothesis 4.110-(i) is also continuous in x, then φ0
P is

continuous.
If the function φ̄1

P in Hypothesis 4.110-(ii) is also continuous (respectively,
strongly continuous) in x, then ψ1

P is continuous (respectively, strongly
continuous).

Proof The proof is the same (and even simpler) as the proof of Lemma 4.79. �
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4.4.2.4 Existence and Uniqueness of Mild Solutions in Bm Spaces

In this section we prove the existence and uniqueness theorem for mild solutions of
Eq. (4.125).

Theorem 4.112 Let m ≥ 0 be such that Hypotheses 4.104, 4.106, 4.108 and 4.110
are satisfied. Then there exists aλ0 ≥ 0 such that for everyλ > λ0, Eq. (4.125) admits
a unique mild solution u in the sense of Definition 4.102.

Proof The proof is similar to the proof of Theorem 4.80. However, we provide its
full details since the result is important.

We fix m ≥ 0 and consider the product (Banach) space Bm(H)× Bm(H,U )

endowed with the product norm given by the sum of the norms of the factor spaces.
We define the operator ϒ = (ϒ1, ϒ2) on Bm(H)× Bm(H,U ) as

ϒ1 [u, v] (x) =
∫ +∞

0
e−λs Ps [F0(·, u(·), v(·))] (x)ds, (4.135)

ϒ2 [u, v] (x) =
∫ +∞

0
e−λs∇G Ps [F0(·, u(·), v(·))] (x)ds. (4.136)

The proof is accomplished in three steps.

Step 1. The map ϒ is well defined for λ > a(m).
Let λ > a(m) and (u, v) ∈ Bm(H)× Bm(H,U ). We prove that ϒ[u, v] is well

defined and belongs to Bm(H)× Bm(H,U ). Concerningϒ1(u, v)wedefineψ(x) :=
F0 (x, u(x), v(x)) and observe that ψ is Borel measurable thanks to Hypothesis
4.104-(iii). Moreover, the function

x → ψ(x)

1+ |x |m

is bounded since, by Hypothesis 4.104-(ii),

F0 (x, u(x), v(x)) ≤ L ′
(
1+ |x |m + |u(x)| + |v(x)|U

)

≤ L ′(1+ |x |m)
(
1+ ‖u‖Bm + ‖v‖Bm

)
. (4.137)

Thus, by Hypothesis 4.110-(i), the function (s, x)→Ps [F0(·, u(·), v(·))] (x) is mea-
surable. Hence, by Lemma 4.111-(i) and estimate (4.130), ϒ1[u, v] is well defined
for λ > a(m) and it belongs to Bm(H).

Concerning ϒ2[u, v], in view of the fact that ψ ∈ Bm(H), the integral is well
defined for λ > a(m) and belongs to Bm(H,U ) by estimate (4.132), Hypothesis
4.110-(ii) and Lemma 4.111-(i). In particular, using first (4.132) and then (4.137),
we get
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1

1+ |x |m
∣
∣
∣
∣

∫ +∞

0
e−λs∇G Ps[ψ](x)ds

∣
∣
∣
∣ ≤

∫ +∞

0
γG(s)e(λ−a(m))s‖ψ‖Bmds

≤ L ′
(
1+ ‖u‖Bm + ‖v‖Bm

)
∫ +∞

0
γG(s)e−(λ−a(m))sds.

Step 2. ϒ is a contraction in Bm(H)× Bm(H,U ) for sufficiently big λ.
We begin with the estimate for ϒ1. Taking any elements (u1, v1) and (u2, v2) of
Bm(H)× Bm(H,U ) we have, using (4.130) and then Hypothesis 4.104-(i),

|ϒ1 [u1, v1] (x)−ϒ1 [u2, v2] (x)|
=
∣
∣
∣
∣

∫ +∞

0
e−λs Ps [F0(·, u1(·), v1(·))− F0(·, u2(·), v2(·))] (x)ds

∣
∣
∣
∣

≤
∫ +∞

0
C(m)e−(λ−a(m))s(1+ |x |m) ‖F0(·, u1(·), v1(·))− F0(·, u2(·), v2(·))‖Bm

ds

≤ 1

λ− a(m)
C(m)(1+ |x |m)L

(‖u1 − u2‖Bm + ‖v1 − v2‖Bm

)
.

It follows that

‖ϒ1[u1, v1] − ϒ1[u2, v2]‖Bm ≤
C(m)L

λ− a(m)

(‖u1 − u2‖Bm + ‖v1 − v2‖Bm

)
.

We now look at ϒ2. By using (4.132) and Hypothesis 4.104-(i) we get, for any
(u1, v1) and (u2, v2) in Bm(H)× Bm(H,U ),

|ϒ2 [u1, v1] (x)− ϒ2 [u2, v2] (x)|
=
∣
∣
∣
∣

∫ +∞

0
eλs∇G Ps [F0(·, u1(·), v1(·))− F0(·, u2(·), v2(·))] (x)ds

∣
∣
∣
∣

≤
∫ +∞

0
e−(λ−a(m))sγG(s)(1+ |x |m) ‖F0(·, u1(·), v1(·))− F0(·, u2(·), v2(·))‖Bm

ds

≤ L(1+ |x |m)
(‖u1 − u2‖Bm + ‖v1 − v2‖Bm

)
∫ +∞

0
e−(λ−a(m))sγG(s)ds.

It follows that

‖ϒ2[u1, v1] −ϒ2[u2, v2]‖Bm ≤ L
(‖u1 − u2‖Bm + ‖v1 − v2‖Bm

)
∫ +∞

0
e−(λ−a(m))sγG(s)ds.

Therefore we conclude that

‖ϒ1[u1, v1] −ϒ1[u2, v2]‖Bm
+ ‖ϒ2[u1, v1] − ϒ2[u2, v2]‖Bm

≤ L

[
C(m)

λ− a(m)
+
∫ +∞

0
e−(λ−a(m))sγG(s)ds

]
[‖u1 − u2‖Bm

+ ‖v1 − v2‖Bm

]
.
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Defining

C(λ) := L

[
C(m)

λ− a(m)
+
∫ +∞

0
e−(λ−a(m))sγG(s)ds

]

it is easy to see that C(λ) is strictly decreasing and continuous in λ ∈ (a(m),+∞),
limλ→ a(m) C(λ) = +∞ and limλ→ +∞ C(λ) = 0. Hence, if λ0 is the unique number
for which C(λ0) = 1, we obtain that for all λ > λ0 the mapping ϒ is a contraction
and it admits a unique fixed point in Bm(H)× Bm(H,U ).

Step 3. The first component of the fixed point of ϒ is the unique mild solution of
(4.125).

We first observe that, even if we do not know that the G-derivative is a closed
operator (see Remark 4.15), we can still apply Proposition 4.16, obtaining that, for
all (u, v) ∈ Bm(H)× Bm(H,U ), x ∈ H , h ∈ U , ϒ1 [u, v] (x) is G-Gâteaux differ-
entiable and 〈ϒ2 [u, v] (x), h〉 = 〈∇Gϒ1 [u, v] , h〉.

Let now [u, v] be the fixed point of ϒ , i.e. ϒ[u, v] = (u, v). It follows from the
above observation that u is G-Gâteaux differentiable and ∇Gu(x) = v(x), hence
∇Gu ∈ Bm(H,U ). Substituting it into the definition of ϒ1, we get

u(x) =
∫ +∞

0
e−λs Ps

[
F0(·, u(·),∇Gu(·))] (x)ds.

The above implies that u is a mild solution of (4.125) according to Definition 4.102.
To prove uniqueness, let u∗ be another mild solution of Eq. (4.125). Then u∗ is

G-Gâteaux differentiable with ∇Gu∗ ∈ Bm(H,U ). Hence, setting v∗ := ∇Gu∗, we
easily see that (u∗, v∗) is a fixed point ofϒ and so u∗ = u and v∗ = v. This completes
the proof. �

Remark 4.113 Differently from the parabolic case here we can take γG ∈ I1 (see the
end of Remark 4.109) since we do not need to deal with the integral

∫ t
0 γG(s)γG(t −

s)ds in the contraction estimates, as the solution does not depend on t . �

4.4.2.5 Existence and Uniqueness of Mild Solutions in Gm Spaces

We now study cases where the mild solution found in Theorem 4.112 is more regular.
In this section we discuss when the mild solution belongs to G1,G

m (H).
We need new assumptions which are variations of Hypotheses 4.104, 4.106, 4.108

and 4.110.

Hypothesis 4.114 Let m ≥ 0 be fixed. The following are satisfied.

(i) F0 : [0, T ] × H × R×U → R satisfies, for m fixed here and for given con-
stants L , L ′ > 0, parts (i) and (ii) of Hypothesis 4.104.

(ii) Denote by (U, τw
U ) the spaceU endowed with the weak topology. F0 is sequen-

tially continuous as a function from H × R× (U, τw
U ) to R.
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The observations made in Remark 4.83 apply (with obvious changes) to
Hypothesis 4.114.

Hypothesis 4.115 Let m ≥ 0 be from Hypothesis 4.114. We assume the following.

(i) Hypothesis 4.106 is satisfied substituting everywhere Cm(H) in place of
Bm(H).

(ii) Hypothesis 4.108 is satisfied substituting everywhere Cm(H) in place of
Bm(H).

(iii) Hypothesis 4.110 is satisfied in the following form.

(a) For all φ ∈ Cm(H) the function φ̄0
P in (4.133) is measurable in s and con-

tinuous in x .
(b) For all φ ∈ Cm(H) the function φ̄1

P in (4.134) is measurable in s and
strongly continuous in x .

We have the following result.

Theorem 4.116 Let m ≥ 0 be such that Hypotheses 4.114 and 4.115 are satisfied.
Let λ0 be from Theorem 4.112. Then for every λ > λ0, Eq. (4.125) admits a unique
mild solution u in G1,G

m (H).

Proof The proof is similar to the proof of Theorem 4.112. We only explain the
changes needed here.

We consider the product space Cm (H)× Cs
m (H,U ), endowed with the product

norm given by the sum of the norms of the factor spaces. In this space we consider
the operator ϒ = (ϒ1, ϒ2) defined by (4.135) and (4.136). Once we show that ϒ

maps Cm (H)× Cs
m (H,U ) into itself, the rest of the proof is exactly the same as the

proof of Theorem 4.112, and will be omitted.
Let (u, v) ∈ Cm (H)× Cs

m (H,U ). Observe that the function

ψ : H → H, ψ(x) := F(x, u(x), v(x))

is continuous. Indeed, if xn → x ∈ H we have, by the strong continuity of v, that
v(xn) converges weakly in U to v(x). Hence, thanks to Hypothesis 4.114-(ii),
ψ(xn)→ ψ(x).

ByHypothesis 4.115-(iii)-(a) and Lemma 1.18, the integrand inϒ1[u, v] is jointly
measurable and is continuous in x . Hence, by estimate (4.130) and Lemma 4.111-(ii),
the integral is well defined and ϒ1[u, v] ∈ Cm(H).

Concerning ϒ2[u, v], by Hypothesis 4.115-(iii)-(b), Lemma 1.18 and Lemma
1.17, the integrand in ϒ2[u, v] is jointly measurable and is strongly continuous in x .
Hence, by estimate (4.132) and Lemma 4.111-(ii), the integral is well defined and
ϒ2[u, v] ∈ Cs

m(H,U ).
The rest follows the proof of Theorem 4.112. �

The observations made in Remark 4.86 apply (with obvious changes) to Theorem
4.116.
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4.4.2.6 Existence and Uniqueness of Mild Solutions in Cm Spaces

In this section we investigate mild solutions in C1,G
m (H). The modifications of

Hypotheses 4.104, 4.106, 4.108 and 4.110 are the following.

Hypothesis 4.117 Let m ≥ 0 be fixed. The following are satisfied.

(i) F0 : H × R×U → R satisfies, for the m here and for given constants L , L ′ >
0, parts (i) and (ii) of Hypothesis 4.104.

(ii) F0 is continuous.

Remark 4.118 Note that the assumption about F0 here is weaker than the one in
Hypothesis 4.104, needed for working in the spaces Gm . �

Hypothesis 4.119 Let m ≥ 0 be from Hypothesis 4.117. We assume the following.

(i) Hypothesis 4.106 is satisfied substituting everywhere Cm(H) in place of
Bm(H).

(ii) Hypothesis 4.108 is satisfied substituting everywhereCm(H) in place of Bm(H)

and the G-Fréchet derivative DG in place of the G-Gâteaux derivative ∇G .
(iii) Hypothesis 4.110 is satisfied in the following form.

(a) For all φ ∈ Cm(H) the function φ̄0
P in (4.133) is measurable in s and con-

tinuous in x .
(b) For all φ ∈ Cm(H) the function φ̄1

P in (4.134) is measurable in s and con-
tinuous in x .

We have the following result. It applies to most examples studied in this chapter
and provides additional regularity of mild solutions when the data are more regular.

Theorem 4.120 Let m ≥ 0 be such that Hypotheses 4.117 and 4.119 are satisfied.
Let λ0 be from Theorem 4.112. Then for every λ > λ0, Eq. (4.125) admits a unique
mild solution u in C1,G

m (H).

Proof Similarly to Theorem 4.90, the proof is analogous to the proof of Theorem
4.112 and we only explain the changes which have to be implemented here.

We consider the product space Cm (H)× Cm (H,U ), endowed with the product
norm given by the sum of the norms of the factor spaces. In this space we consider
the operator ϒ = (ϒ1, ϒ2) defined by (4.135) and (4.136). We only show that ϒ

maps Cm (H)× Cm (H,U ) into itself as the rest of the proof is exactly the same as
in the proof of Theorem 4.112.

Let (u, v) ∈ Cm (H)× Cm (H,U ). The proof thatϒ1[u, v] ∈ Cm (H) is the same
as the proof of this statement in the proof of Theorem 4.116 once we observe that

ψ(x) := F0 (x, u(x), v(x))

is obviously continuous, thanks to Hypothesis 4.117-(ii).



4.4 Mild Solutions of HJB Equations 463

Concerning ϒ2[u, v], by Hypothesis 4.119-(iii)-(b) and Lemma 1.18, the inte-
grand in ϒ2[u, v] is jointly measurable and is continuous in x . Hence, by esti-
mate (4.132) and Lemma 4.111-(ii), the integral is well defined and ϒ2[u, v] ∈
Cm(H,U ). �

4.4.2.7 Existence and Uniqueness of Mild Solutions in UCm Spaces

As for the parabolic equation (4.109), this case was the first to be studied in the
literature but it requires more assumptions and it does not provide real advantages
compared to the results of the previous subsection. For HJB equations arising from
optimal control problems, Theorem 4.120 already guarantees enough regularity to
obtain verification theorems for the associated optimal control problem. Moreover,
the assumptions of Theorem 4.123 are a little more complicated. Hence the results
of this subsection (and related results, see e.g. Sect. 4.6) are not presented with all
the details.

The new assumptions about F0 and the semigroup are the following.

Hypothesis 4.121 Let m ≥ 0 be fixed. The following are satisfied.

(i) F0 : H × R×U → R satisfies, form fixedhere and for given constants L , L ′ >
0, parts (i) and (ii) of Hypothesis 4.104.

(ii) The function (x, y, z)→ F0(x, v, w)/(1+ |x |m + |y| + |z|U ) is uniformly con-
tinuous.

Hypothesis 4.122 Let m ≥ 0 be from Hypothesis 4.121. We assume the following.

(i) Hypothesis 4.106 is satisfied substituting everywhere UCm(H) in place of
Bm(H).

(ii) Hypothesis 4.108 is satisfied substituting everywhere UCm(H) in place of
Bm(H) and the G-Fréchet derivative DG in place of the G-Gâteaux
derivative ∇G .

(iii) Hypothesis 4.110 is satisfied in the following form.

(a) For every φ ∈ UCm(H), the function φ̄0
P in (4.133) multiplied by e−a(m)s

is measurable in s and uniformly continuous in x , uniformly with respect
to s.

(b) For every φ ∈ UCm(H), the function φ̄1
P in (4.134) multiplied by e−a(m)s

is measurable in s and uniformly continuous in x , uniformly with respect
to s.

We have the following result.

Theorem 4.123 Let m ≥ 0 be such that Hypotheses 4.121 and 4.122 are satisfied.
Let λ0 be from Theorem 4.112. Then, for every λ > λ0, Eq. (4.125) admits a unique
mild solution u in UC1,G

m (H).
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Proof The proof is similar to the proof of Theorem 4.112. We consider the product
space UCm (H)×UCm (H,U ), endowed with the product norm given by the sum
of the norms of the factor spaces, andwe consider the operatorϒ = (ϒ1, ϒ2) defined
by (4.135) and (4.136). We only argue that ϒ maps UCm (H)×UCm (H,U ) into
itself as the rest of the proof is exactly the same as the proof of Theorem 4.112.

Let (u, v) ∈ UCm (H)×UCm (H,U ) and define

ψ(x) := F0 (x, u(x), v(x)) .

Straightforward computations, together with Hypothesis 4.121, imply that ψ ∈
UCm(H). Hence, arguing as in the proof of Theorem 4.120 we obtain that, when
λ > a(m), ϒ1[u, v] ∈ Cm(H) and ϒ2[u, v] ∈ Cm(H,U ). To prove uniform conti-
nuity of ϒ1[u, v] we use Hypothesis 4.122-(iii)-(a), since for x1, x2 ∈ H ,

|ϒ1[u, v](x1)−ϒ1[u, v](x2)|
≤
∫ +∞

0
e−(λ−a(m))s

∣
∣e−a(m)s Ps[ψ](x1)− e−a(m)s Ps[ψ](x2)

∣
∣ ds

≤
∫ +∞

0
e−(λ−a(m))sρ(|x1 − x2|)ds.

Arguing in the same way and using Hypothesis 4.122-(iii)-(b) we obtain ϒ2[u, v] ∈
UCm(H,U ) when λ > a(m). �

Similar comments to what was observed in Remark 4.86 also apply to Theorem
4.123.

4.4.2.8 Existence and Uniqueness in the “Strong Feller” Case

In this section we proceed as in Sect. 4.4.1.8, i.e. we add to the hypotheses of
Sect. 4.4.2.2 the strong Feller property of the semigroup Ps (see the beginning of
Sect. 4.4.1.8 for references about the strong Feller property).

Hypothesis 4.124 Let m ≥ 0 be from Hypothesis 4.104. The family Ps , s ≥ 0, is
strongly Feller (see Definition 1.159 and Lemma 1.160) in the sense that

Ps(Bm(H))⊂Cm(H), ∀s > 0.

We have the following result.

Theorem 4.125 Let m ≥ 0 be fromHypothesis 4.104. Let Hypotheses 4.104, 4.106,
4.108, 4.110 and 4.124 hold true. Let λ0 be from Theorem 4.112 and let λ > λ0 in
Eq. (4.125). Then we have the following.
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(i) The unique mild solution u of Eq. (4.125) (obtained in Theorem 4.112) is con-
tinuous.

(ii) Assume, moreover, that

Ps(Bm(H))⊂G1,G
m (H), ∀s > 0.

Then u ∈ G1,G
m (H).

(iii) Assume, moreover, that

Ps(Bm(H))⊂C1,G
m (H), ∀s > 0.

Then u ∈ C1,G
m (H).

Proof Concerning claim (i), it is enough to observe that u solves the integral equation
(4.129) and the right-hand side is continuous by the strong Feller property, estimate
(4.130) and the dominated convergence theorem.

The proof of claim (ii) (respectively, (iii)) is exactly the same once we observe
that from (4.129) we have (see the proof of Theorem 4.112)

∇Gu(x) =
∫ +∞

0
e−λs∇G Ps

[
F0(·, u(·),∇Gu(·))] (x)ds. (4.138)

By assumption the integrand is jointly measurable and strongly continuous (respec-
tively, continuous) in x . Hence the claim follows by (4.132) and the dominated
convergence theorem. �

Remark 4.126 We remark that the additional assumption in (ii) of Theorem 4.125
is satisfied in the case presented in Sect. 4.3.3 while the one in (iii) is satisfied in the
case presented in Sect. 4.3.1. �

4.4.2.9 Examples

Webriefly discuss how to apply the results of the present subsection (Theorems4.112,
4.116, 4.120, 4.123 and 4.125) to Examples 4.99–4.101 presented in the parabolic
case. Most of the discussion is exactly the same, hence we only focus on the main
differences.

The main difference is that, to apply Theorems 4.112, 4.116, 4.120, 4.123 and
4.125, one needs first to prove that estimates (4.130) and (4.132) hold. These bounds
with exponential growth in time are guaranteed in Examples 4.99 and 4.100 for
which such estimates are proved in Theorems 4.41 and 4.56.23 For Example 4.101

23In Theorem 4.56 only the case m = 0 is considered. However, as noted in Remark 4.59-(iii), it
does not seem to be difficult to extend such a result to the case m > 0.
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such estimates, as recalled at the beginning of Sect. 4.3.3, are proved under additional
assumptions24 which the reader can find in Proposition 4.6-(ii) of [285].

Moreover, concerning Example 4.99 we observe that, differently from the par-
abolic case, Hypothesis 4.110 and all its variants given in Hypotheses 4.115-(iii),
4.119-(iii), 4.122-(iii), are satisfied without requiring that Hypothesis 4.29 also holds
for U = H and G = I . This follows from Proposition 4.50. Hence, to apply Theo-
rems 4.116, 4.120 and 4.123 we do not need such an extra assumption. On the other
hand, to apply Theorem 4.125 we need the strong Feller property, hence we need to
require that Hypothesis 4.29 also holds for U = H and G = I .

4.5 Approximation of Mild Solutions: Strong Solutions

In applications to optimal control (see Sect. 4.8) it is desirable to know that the mild
solutions obtained in the previous section are (or can be characterized as) the limits, in
a sense to be made precise, of very regular (enough to apply Itô’s formula) solutions
that we call classical solutions. We cannot hope for uniform convergence for reasons
recalled in Sects.B.6 and D.3. Hence we use the so-called π-convergence and K-
convergence. We refer the reader to Appendix B.5 for basic definitions and results
about these notions of convergence.

Since solutions that are obtained as limits of solutions of approximating problems
are usually called strong solutions, we will use here the terminology π-strong and
K-strong solutions (see Appendix B.7 for some basic results about mild and strong
solutions for linear Cauchy problems for Kolmogorov equations).

4.5.1 The Parabolic Case

We first define the classical solutions25 of (4.109). To do this, in contrast to the
previous section, we connect Eq. (4.109), and thus the coefficients A, b, �, with the
SDE (4.110).

Let T > 0 and let
(
�,F , {F 0

s }s∈[0,T ],P,W
)
, where W is a cylindrical Wiener

process in a real separable Hilbert space �, be a generalized reference probability
space. For (t, x) ∈ [0, T ] × H we consider the SDE

{
dX (s) = [AX (s)+ b (s, X (s))] ds + σ (s, X (s)) dW (s) , s ∈ [t, T ] ,
X (t) = x, x ∈ H.

(4.139)

24Using the argument of Remark 4.107, one can prove estimate (4.130) without such additional
assumptions. It is likely that a similar argument might also be applied to prove (4.132).
25This definition is similar to Definition B.82 and is a bit more restrictive than the one used in
Sect. 6.2 of [179], see Remark B.83-(1) for explanations.
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We assume the following.

Hypothesis 4.127 Let T > 0.

(i) The functions F0 and ϕ satisfy Hypothesis 4.72 for somem ≥ 0 and L , L ′ > 0.
(ii) The operator A and the functions b and σ in (4.139) satisfy, in [0, T ] × H ,

either Hypothesis 1.149 with b and σ independent of a, or Hypotheses 1.143
and 1.145 without dependence on a1 and with a2(·) = 0. We have �(t, x) :=
σ(t, x)σ∗(t, x).

(iii) There exist r ∈ R, r ∈ �(A) such that (r I − A)−1b : [0, T ] × H → H is con-
tinuous and for every y, z ∈ H the function 〈�y, z〉 : [0, T ] × H → R is con-
tinuous. Moreover, there exists a C > 0 such that, for all (t, x) ∈ [0, T ] × H ,

{ |(r I − A)−1b(t, x)| ≤ C(1+ |x |)
‖σ(t, x)‖L(�,H) ≤ C(1+ |x |). (4.140)

(iv) For all t ≤ s ≤ T , φ ∈ Bm(H), where m ≥ 0 is from point (i) above, we have
Pt,s[φ](x) = E[φ(X (s; t, x))], where X (·; t, x) is the mild solution of SDE
(4.139) (which exists and is unique by Theorem 1.152 or Proposition 1.147).

Remark 4.128 The assumptions of Hypothesis 4.127-(ii) imply that the family Pt,s
defined in (iv) has the semigroup property. This follows from Theorem 1.157 and
Corollary 1.158, and is used in Theorem 4.135 to guarantee that Hypothesis 4.74 is
satisfied. Moreover, if Hypothesis 1.149 is satisfied in Hypothesis 4.127-(ii), using
moment and continuous dependence estimates for solutions of (4.139) and the con-
tinuity of the trajectories of their solutions, it follows that the functions φ0

P and ψ̄0
P

in Hypothesis 4.77 are continuous in (t, x) and (t, s, x), respectively, if φ and ψ are
continuous there. In particular, Hypothesis 4.89-(iii)(a) is satisfied. The same is true
if Hypotheses 1.143 and 1.145 hold in Hypothesis 4.127-(ii) if we use moment and
continuous dependence estimates for solutions of (4.139) for this case and mean
square continuity of the solutions. On the other hand one can employ Lemma 1.18
and the argument outlined in Sect. 1.6 before Theorem 1.157 to show that Hypothesis
4.77-(i) is also satisfied.

Finally, observe that Hypothesis 4.127-(iii) contains the conditions in the assump-
tions of Proposition 1.168. �

Similarly to what is done in Appendix B.7 (see also Sect. 4.3 of [306] or Sect. 6.2
of [179]), we define the operator A1(t) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D(A1(t)) =
{

φ ∈ UC2
b (H) : A∗Dφ ∈ UCb(H, H), D2φ ∈ UCb(H,L1(H))

}

A1(t)[φ](x) = 1
2 Tr [�(t, x)D2φ(x)] + 〈x, A∗Dφ(x)

〉

+
〈
(r I − A)−1b(t, x), (r I − A)∗Dφ(x)

〉
.

(4.141)
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Above r ∈ R belongs to the resolvent set �(A). Since D(A1(t)) is independent of t
we denote it simply by D(A1) from now on. By Hypothesis 4.127 it is clear that for
all t ∈ [0, T ]

A1(t) : D(A1) ⊂ Cm(H) −→ Cm(H), for m ≥ 2.

We endow the space D(A1) with the norm

‖φ‖D(A1) := ‖φ‖0 + ‖Dφ‖0 + ‖A∗Dφ‖0 + sup
x∈H

‖D2φ(x)‖L1(H). (4.142)

The space D(A1)with this norm is a Banach space (see Appendix B.7.1 for a similar
result). We now define the notion of a classical solution.

Definition 4.129 A function u : [0, T ] × H → R is a classical solution of the equa-
tion
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt + 1

2
Tr [�(t, x)D2v] + 〈Ax + b(t, x), Dv〉 + F0(t, x, v, DGv) = g(t, x),

t ∈ [0, T ), x ∈ H,

v(T, x) = ϕ(x), x ∈ H,

(4.143)
(where g is a given Borel measurable function and the other data are as in Hypothesis
4.127) if u has the regularity properties

⎧
⎪⎪⎨

⎪⎪⎩

u(·, x) ∈ C1([0, T ]), ∀x ∈ H ;
u(t, ·) ∈ D(A1), ∀t ∈ [0, T ], and supt∈[0,T ] ‖u(t, ·)‖D(A1) < +∞;
u ∈ Cb([0, T ] × H), Du, A∗Du ∈ Cb([0, T ] × H, H);
D2u ∈ Cb([0, T ] × H,L1(H)), DGu ∈ Cb([0, T ] × H,U ),

(4.144)
satisfies u(T, ·) = ϕ and, for some r ∈ R ∩ �(A),

ut (t, x)+ 1

2
Tr[�(t, x)D2u(t, x)] + 〈x, A∗Du(t, x)

〉

+
〈
(r I − A)−1b(t, x), (r I − A)∗Du(t, x)

〉
+ F0(t, x, u(t, x), DGu(t, x)) = g(t, x)

(4.145)

for all (t, x) ∈ [0, T )× H .

Remark 4.130 The above definitions of the operatorA1(t) and of a classical solution
are independent of the choice of r ∈ R ∩ �(A). Indeed, let r1, r2 ∈ �(A) ∩ R and
observe that, for (t, x) ∈ [0, T )× H , using the resolvent identity (B.1),

〈
(r1 I − A)−1b(t, x), (r1 I − A)∗Du

〉− 〈(r2 I − A)−1b(t, x), (r2 I − A)∗Du
〉

= 〈[(r1 I − A)−1 − (r2 I − A)−1
]
b(t, x), (r1 I − A)∗Du

〉

+ 〈(r2 I − A)−1b(t, x),
[
(r1 I − A)∗ − (r2 I − A)∗

]
Du
〉
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= (r2 − r1)
〈[
(r1 I − A)−1(r2 I − A)−1

]
b(t, x), (r1 I − A)∗Du

〉

+ 〈(r2 I − A)−1b(t, x), (r1 − r2)Du
〉 = 0.

Finally, note that in the definition above we do not require the continuity of ut .
This will be guaranteed if the datum F0 is continuous. �

Before defining strong solutions we give a variant of the definitions of
π-convergence and K-convergence (see Definitions B.55 and B.56).

Definition 4.131 Let m ≥ 0, η ∈ I1 and let Z be a real separable Hilbert space.
We say that a sequence ( fn)n∈N ⊂ Bm,η((0, T ] × H, Z) π-converges to f ∈ Bm,η

((0, T ] × H, Z) if

⎧
⎪⎨

⎪⎩

sup
n∈N
‖ fn‖Bm,η((0,T ]×H,Z) < +∞,

lim
n→+∞

1

η(t)
| fn(t, x)− f (t, x)| = 0 ∀x ∈ H and for a.e. t ∈ [0, T ]. (4.146)

In such a casewewriteπ − limn→+∞ fn = f in Bm,η([0, T )× H, Z). Moreover, we
say that ( fn)n∈N ⊂ Bm,η((0, T ] × H, Z) K-converges to f ∈ Bm,η((0, T ] × H, Z)

if ⎧
⎪⎨

⎪⎩

sup
n∈N
‖ fn‖Bm,η((0,T ]×H,Z) < +∞,

lim
n→+∞ sup

(t,x)∈(0,T ]×K

1

η(t)
| fn(t, x)− f (t, x)| = 0,

(4.147)

for every compact set K ⊂ H . In such a case we write K − limn→+∞ fn = f in
Bm,η((0, T ] × H, Z) or, if all functions are also continuous, inCm,η((0, T ] × H, Z).

Recalling the notation introduced in Definition 4.24, we say that ( fn)n∈N ⊂
Bm,η([0, T )× H, Z) π-converges (K-converges) to f ∈ Bm,η([0, T )× H, Z) if
( fn(T − ·, ·))n∈N ⊂ Bm,η((0, T ] × H, Z) π-converges (K-converges) to f (T − ·, ·)
∈ Bm,η((0, T ] × H, Z). The same definition applies to the π-convergence
(K-convergence) in Cm,η ([0, T )× H, Z).

Definition 4.132 We say that a function u : [0, T ] × H → R is a π-strong solution
(respectively a K-strong solution) of Eq. (4.109) if there exist m ≥ 0 and η ∈ I1
such that u ∈ B

0,1,G
m,η ([0, T ] × H)26 and there exist three sequences (ϕn) ⊂ D(A1),

(un) ⊂ Cb([0, T ] × H) and (gn) ⊂ Bm,η([0, T )× H) such that, for every n ∈ N, un
is a classical solution of the Cauchy problem

{
wt +A1(t)w + F0(t, x, w, DGw) = gn(t, x)
w(T, x) = ϕn(x),

(4.148)

and moreover as n→+∞, using the notation of Definition B.55,

26This means that u satisfies (i) of Definition 4.70.
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{
π − lim

n→+∞ϕn = ϕ in Bm(H)

π− lim
n→+∞ un = u in Bm([0, T ] × H),

(4.149)

and, using the notation of Definition 4.131,

⎧
⎨

⎩

π − lim
n→+∞ gn = 0 in Bm,η([0, T )× H)

π− lim
n→+∞ DGun = ∇Gu in Bm,η([0, T )× H,U )

(4.150)

(respectively, when all four convergences above hold in the K sense, using the nota-
tion of Definitions B.56 and 4.131).

The resultwewould like to prove is that anymild solution in the sense ofDefinition
4.70 is also a strong solution in the sense of Definition 4.132 (and possibly also the
opposite). To prove such a result one needs to define properly the approximating
sequence un . The choice of such un clearly depends on the properties of the transition
semigroup Pt,s . Heuristically speaking there are two main cases:

• When the data of the SDE (4.110) are very regular (e.g. the Ornstein–Uhlenbeck
case of Sect. 4.3.1) and the semigroup maps D(A1) into itself. In this case it is
enough to approximate only ϕ and F0.

• When the data of the SDE are not regular enough (e.g. the case of invertible
diffusion coefficient of Sect. 4.3.3 and the case of reaction-diffusion equations of
Sect. 4.9.2) and the semigroup does not map D(A1) into itself. In this case, in
addition to ϕ and F0, one also needs to approximate the semigroup Pt,s .

Here we present a result which only deals with the first case. The second case is
more difficult and strongly dependent on a specific problem. Up to now it has only
been studied in the specific case of reaction-diffusion equations (see [103, 105, 107]
and also [106], Chaps. 9 and 10) which is presented briefly in Sect. 4.9.2.

We will need additional assumptions about the transition semigroup.

Hypothesis 4.133 Let T > 0 and let m ≥ 0 be from Hypothesis 4.72 (and hence
also Hypothesis 4.127).

(i) For all 0 ≤ t ≤ s ≤ T , and all ϕ ∈ FC∞,A∗
0 (H), f ∈ FC∞,A∗

0 ([0, T )× H),
the function

(t, x)→ Pt,T [ϕ](x)+
∫ T

t
Pt,s[ f (s, ·)](x)ds

satisfies the last three lines of (4.144).
(ii) If ϕn

π−−−→
n→∞ ϕ in Bm(H) then

DGPt,T [ϕn] π−−−→
n→∞ ∇G Pt,T [ϕ] in Bm,γG ([0, T )× H,U ).
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(iii) If fn
π−−−→

n→∞ f in Bm,γG ([0, T )× H)

then

∫ T

t
DG Pt,s[ fn]ds π−−−→

n→∞

∫ T

t
∇G Pt,s[ f ]ds in Bm,γG ([0, T )× H,U ).

Observe that point (i) above will guarantee the regularity of the approximating
solutionswhile points (ii) and (iii) will guarantee the convergence of their derivatives.

Before we state the main result, Theorem 4.135, we show a lemma which will be
used in its proof.

Lemma 4.134 Let the assumptions ofHypothesis 4.127-(ii)-(iii) be satisfied. Letϕ ∈
C([0, T ] × H) be such that Dϕ, A∗Dϕ ∈ C([0, T ] × H, H), D2ϕ ∈ C([0, T ] ×
H,L1(H)). Then the function

1

2
Tr[�(t, x)D2ϕ(t, x)] + 〈x, A∗Dϕ(t, x)

〉+
〈
(r I − A)−1b(t, x), (r I − A)∗Dϕ(t, x)

〉

is continuous on [0, T ] × H.

Proof We only need to show the continuity of F(t, x) := 1
2Tr[�(t, x)D2ϕ(t, x)] as

the continuity of the other terms is obvious. If F is not continuous then there are
(t0, x0) ∈ [0, T ] × H , a sequence (tn, xn) ∈ [0, T ] × H converging to (t0, x0) and
ε > 0 such that

|F(t0, x0)− F(tn, xn)| ≥ ε for all n = 1, 2, ....

Let {ei }i∈N be an orthonormal basis of H composed of eigenvectors of D2ϕ(t0, x0)
and denote by PN the orthogonal projection in H onto span{e1, ...eN }. Then, since
D2ϕ ∈ C([0, T ] × H,L1(H)), it is easy to see that there exists an N ∈ N such that

∣
∣
∣
∣
1

2
Tr[�(t0, x0)D

2ϕ(t0, x0)PN ] − 1

2
Tr[�(tn, xn)D

2ϕ(t0, x0)PN ]
∣
∣
∣
∣ ≥

ε

2
(4.151)

for sufficiently large N . But

Tr[�(tn, xn)D
2ϕ(t0, x0)PN ] =

N∑

i=1
〈�(tn, xn)D

2ϕ(t0, x0)ei , ei 〉

→
N∑

i=1
〈�(t0, x0)D

2ϕ(t0, x0)ei , ei 〉 = Tr[�(t0, x0)D
2ϕ(t0, x0)PN ]

by Hypothesis 4.127-(iii). This contradicts (4.151). �

Theorem 4.135 Let T > 0. Let Hypotheses 4.76, 4.77, 4.127 and 4.133 be satisfied.
Let m ≥ 0 be from Hypothesis 4.127. Let u be the unique mild solution of Eq. (4.109)
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in B
0,1,G
m,γG

([0, T ] × H). Assume that u is continuous on [0, T ] × H and also that the
function f (t, x) := F0(t, x, u(t, x),∇Gu(t, x)) is continuous on [0, T )× H. Then

u is also the unique π-strong solution, in B
0,1,G
m,γG

([0, T ] × H), of the Cauchy problem
(4.109).

If Hypothesis 4.133 holds substituting everywhere π-convergence by K-

convergence, then u is the uniqueK-strong solution in B
0,1,G
m,γG

([0, T ] × H) of (4.109).

Proof We observe first that Hypothesis 4.74 is automatically satisfied thanks to
Hypothesis 4.127-(ii) and estimate (1.80) (or (1.69)). This, together with the other

assumptions, ensures the existence and uniqueness, in B
0,1,G
m,γG

([0, T )× H), of the
mild solutionu of (4.109) byTheorem4.80-(i).We thenhave, for (t, x) ∈ [0, T ] × H ,

u(t, x) = Pt,T [ϕ](x)+
∫ T

t
Pt,s [ f (s, ·)] (x)ds. (4.152)

It follows from the assumptions that f ∈ Cm,γG ([0, T )× H). To find the family un
we first define suitable approximations ϕn of ϕ and fn of f , then we define

un(t, x) = Pt,T [ϕn](x)+
∫ T

t
Pt,s [ fn(s, ·)] (x)ds (4.153)

and show that un satisfies the required properties. This is done in three steps.

Step 1. The approximating functions un satisfy the last three lines of (4.144).
Let ϕn be a sequence provided by Lemma B.78 for B = A∗ there (i.e. taking

an orthonormal basis contained in D(A∗)). We then have ϕn ∈ FC∞,A∗
0 (H) and

ϕn
K−−−→

n→∞ ϕ.

We now show thatFC∞,A∗
0 (H) ⊂ D(A1) since Definition 4.132 requires (ϕn) ⊂

D(A1). Let ψ ∈ FC∞,A∗
0 (H). It is clear that ψ ∈ UC2

b (H). Moreover, by its def-
inition, ψ(x) = ψ(Px) for some finite-dimensional orthogonal projection P with
P(H) ⊂ D(A∗). Thus Dψ(x) ∈ D(A∗) and the map x→A∗Dψ(x) belongs to
UCb(H, H). Finally, since ψ depends on a finite number of coordinates, it is easy to
see that the function x→D2ψ(x) takes values inL1(H) and is uniformly continuous
and bounded there.

Since f may not belong to Cm([0, T )× H) due to the singularity at t = T ,
we have to modify a little the approximation argument of Lemma B.78. For each
sufficiently big k ∈ Nwedefine, for t ∈ [0, T )× H , f̂h(t, x) := χk(t) f (t, x), where
χk : [0, T )→ [0, 1] is a smooth function such that χk(t) = 1 for t ∈ [0, T − 2/k]
and χk(t) = 0 for t ∈ [T − 1/k, T ). Then, for every sufficiently big k, we take a
sequence ( fk,n)n from Lemma B.78, which K-converges to f̂k . Then the diagonal
sequence ( fn)n := ( fn,n)n has elements in FC∞,A∗

0 ([0, T ] × H) and can be proved
toK-converge to f in Bm,γG ([0, T )× H) exactly as in the last part of Lemma B.78.

With this choice of ϕn and fn the last three lines of (4.144) immediately follow
from Hypothesis 4.133-(i).
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Step 2. un satisfies the first regularity property of (4.144) and is a classical solution
of (4.148) for a suitable gn .

The proof that un is a classical solution is based on the proof of Theorem 7.5.1
of [179] (see also Theorem 9.25 [180]) however here we also have to deal with the
non-homogeneous term f . The proof is similar to that of Proposition B.91-(i) where
we consider the case when Pt,s is of Ornstein–Uhlenbeck type.

Let X (s; t, x) be themild solution of (4.110) at time s.We applyDynkin’s formula
of Proposition1.168 or Proposition1.169 (whose assumptions are satisfied thanks to
Hypothesis 4.127) to the process ϕn(X (s; t, x)) on the interval s ∈ [t, T ], obtaining

Eϕn(X (T ; t, x)) = ϕn(x)+ E

∫ T

t

〈
X (s; t, x), A∗Dϕn(X (s; t, x))〉 ds

+ E

∫ T

t

[
〈
(r I − A)−1b(s, X (s; t, x)), (r I − A)∗Dϕn(X (s; t, x))〉 ds

+ 1

2
Tr
(
�(s, X (s; t, x))D2ϕn(X (s; t, x)))

]

ds.

(4.154)

We now compute the left derivative of un at t = T . We observe that by the definition
of un ,

un(T, x)− un(T − h, x)

h

= ϕn(x)− PT−h,T [ϕn](x)
h

− 1

h

∫ T

T−h
PT−h,s[ fn(s, ·)](x)ds. (4.155)

We see that by Lemma 4.134, the function

F(s, y) := 〈y, A∗Dϕn(y)
〉+

〈
(r I − A)−1b(s, y), (r I − A)∗Dϕn(y)

〉
+ 1

2
Tr
(
�(s, y)D2ϕn(y)

)

is continuous. Moreover, by (4.140), |F(s, y)| ≤ C1(1+ |y|2), (s, y) ∈ [0, T ] × H
for some constant C1.

In the case when A, b and σ satisfy Hypothesis 1.149, by Theorem 1.152, (1.80) is
satisfied where the supremum is taken over s ∈ [t, T ] and, by (1.83), E|X (s; t, x)−
x |2 ≤ ρ(s − t) for some modulus ρ independent of t . When A, b and σ satisfy
Hypotheses 1.143 and 1.145, by (1.69) we have sups∈[t,T ] E|X (s; t, x)|p ≤ Cp for
someCp independent of t .Moreover, it is also easy to see that we haveE|X (s; t, x) −
x |2 ≤ ρ(s − t) for some modulus ρ independent of t . Thus, using continuity and
growth of F and arguing similarly as in the proof of Theorem 3.66 we can conclude
that when h ↘ 0, the first term of the right-hand side of (4.155) converges to

− 〈x, A∗Dϕn(x)
〉−

〈
(r I − A)−1b(T, x), (r I − A)∗Dϕn(x)

〉
− 1

2
Tr[�(T, x)D2ϕn(x)].
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Concerning the second term of the right-hand side of (4.155), we observe first
that PT−h,s[ fn(s, ·)](x) = E[ fn(s, X (s; T − h, x))]. Thus, using the mean square
continuity estimates above we obtain that the second term of the right-hand side of
(4.155) converges to fn(T, x) as h ↘ 0.

Thus, denoting by D−t the left time derivative, we have

D−t un(T, x) = lim
h↘0

un(T, x)− un(T − h, x)

h

= − 〈x, A∗Dϕn(x)
〉− 〈(r I − A)−1b(T, x), (r I − A)∗Dϕn(x)

〉

− 1

2
Tr[�(T, x)D2ϕn(x)] + fn(T, x),

hence the equation is satisfied for t = T .
For t < T we observe that by the semigroup property (see Theorem 1.157)

un(t − h, x) = Pt−h,t [un(t, ·)](x)+
∫ t

t−h
Pt−h,s[ fn(s, ·)](x)ds,

hence we have

un(t, x)− un(t − h, x)

h
= un(t, x)− Pt−h,t [un(t, ·)](x)

h
− 1

h

∫ t

t−h
Pt−h,s [ fn(s, ·)](x)ds

and, arguing as for the case t = T with u(t, ·) in place of ϕ, we get

D−t un(t, x) = −
〈
x, A∗Dun(t, x)

〉− 〈(r I − A)−1b(t, x), (r I − A)∗Dun(t, x)
〉

− 1

2
Tr[�(t, x)D2un(t, x)] − fn(t, x).

Since, by Lemma 4.134, the right-hand side of the above identity is a continuous
function on [0, T ] × H , it follows from Lemma D.19 that un(·, x) is continuously
differentiable. Thus we obtain that (un)t is continuous and un solves the equation

(un)t +A1(t)un + fn = 0, un(T, ·) = ϕn.

The claim now follows setting

gn(t, x) := F0(t, x, un(t, x), D
G(t,·)un(t, x))− fn(t, x).

Step 3. Proof of (4.149) and (4.150) and of uniqueness.
By construction and by the beginning of Step 1 we have that (ϕn) ⊂ D(A1)

and ϕn
K−−−→

n→∞ ϕ in Cm(H) which also gives the π-convergence of ϕn to ϕ. The

π-convergence of un to u follows applying the dominated convergence theorem.
The required π-convergence of DGun to ∇Gu follows from Proposition 4.16 (which
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allows us to move DG or ∇G inside the integral) and Hypothesis 4.133-(ii) (iii). The
π-convergence of gn to 0 now follows from the π-convergence of fn to f and the
continuity of F0 in the last two arguments.

Concerning uniqueness in B
0,1,G
m,γG

([0, T ] × H), we observe that any π-strong
solution u∗ must possess an approximating sequence (un) satisfying (4.153) for
some sequences (ϕn) and ( fn), K-converging (hence also π-converging) to ϕ and
to f ∗(t, x) = F0(t, x, u∗(t, x),∇Gu∗(t, x)), respectively. Then, by the dominated
convergence theorem we get that u∗ must be a mild solution and so it is unique in

B
0,1,G
m,γG

([0, T ] × H) by Theorem 4.80.

The proof of the final statement is the same if we take into account that the
sequences ϕn and fn are already K-convergent. �

Remark 4.136

(i) The assumption of continuity in x of the function f in Theorem 4.135 seems
essential to perform the above proof. On the other hand the continuity of
f in t is less essential and could be avoided by refining the approxima-
tion result of Lemma B.78, allowing for f only measurable in t . In such a
case only π-convergence would hold, since K-convergence would also imply
continuity in t .

(ii) The continuity of u and f in Theorem 4.135 is guaranteed, for example, if
Hypothesis 4.87 (or 4.82) holds. However, all points of Hypothesis 4.133 are
nontrivial to check. In the next example we will see that they are satisfied in the
case of the Ornstein–Uhlenbeck semigroup.

(iii) In Theorem 4.135 the uniqueness of strong solutions is a consequence of the
uniqueness of mild solutions provided by Theorem 4.80, which holds in the

space B
0,1,G
m,γG

([0, T ] × H). Since, as noted in Remark 4.81, uniqueness of mild
solutions holds in a more general framework, the same applies to strong solu-
tions.

(iv) In some applications to control problems, it may be useful to extend Theorem
4.135 to the case when the data are not continuous in x , hence the mild solution
u only belongs to B

0,1,G
m,γG

([0, T ] × H). This may be possible, in principle, if
the functions ϕ and f in (4.152) can be approximated, using π-convergence,
by a sequence (or a multisequence, as in [500], Sect. 5.2) of smooth functions,
similarly to what is done in Lemma B.78. This cannot be achieved for all Borel
measurable functions (see on this e.g. [563], Chap.5), however it might be
possible to do it for suitable classes of functions arising in applications.

(v) If the final datum ϕ is in C1
m(H) then, using the result of Theorem 4.80

(or Theorem 4.90), by a straightforward modification of the above proof, we
can show that the convergences of gn and DGun in Theorem 4.135 hold in
Bm([0, T ] × H). This is used later in the proof of Proposition 4.174.

(vi) It is clear from the proof that the claim of Theorem 4.135 still holds if we substi-
tute Hypotheses 4.76 and 4.77 with Hypothesis 4.89-(ii)-(iii) and in addition we
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require that ϕ and F0 are continuous. In this case u is the unique mild solution

in C
0,1,G
m,γG

([0, T ] × H). Thus u and f are automatically continuous.

�

Example 4.137 Take Pt,s = Rs−t , where R is the Ornstein–Uhlenbeck semigroup
studied in Sect. 4.3.1. Assume that Hypotheses 4.25, 4.29 and 4.32 are satisfied,
requiring also that, as noted in Remark 4.52, Hypotheses 4.29 and 4.32 hold for
U = H and G = I .

Assuming Hypothesis 4.82 (or 4.87) we can apply Theorem 4.85 (or 4.90). This
gives the continuity of u and f required in the statement of Theorem 4.135.

Hypothesis 4.127 is immediately true in this case as Hypotheses 1.143 and 1.145
are satisfied.

Concerning the validity of Hypothesis 4.133, parts (ii) and (iii) directly follow
(also for K-convergence) from formula (4.75) and the dominated convergence the-
orem. Part (i) is a consequence of Proposition B.91-(i) when U = H and G = I ,
but the same proof also works when G �= I if G is bounded or if D(A∗) ⊂ D(G∗)
and, for some c > 0, |G∗z| ≤ c|A∗z| for all z ∈ D(A∗). See Proposition 4.148-(ii)
for more on this.

Thus, under the above assumptions, we can apply Theorem 4.135. See also The-
orem 4.150 for a more specific statement in this case.

It would be interesting to study concrete examples (e.g. control problems with
delay, see Sect. 2.6.8 and also [316]) to show that in some cases mild solutions are
also strong solutions without the additional requirement that Hypotheses 4.29 and
4.32 also hold forU = H and G = I . In such a case, using Remark 4.91, one would
have a mild solution u with u jointly continuous but DGu continuous only in x .
Then, if F0 is continuous in x , the function f in the statement of Theorem 4.135
would only be continuous in x . It seems possible, by refining the argument of the
proof of Lemma B.78, that the approximation result given there also holds, with
π-convergence, for functions f which are continuous in x but only measurable in t .
If this can be done, then one can also prove a variant of Theorem 4.135 that applies
to this case.

Finally, Theorem 4.135 can be applied to the cases of Examples 4.100 and 4.101
if one is able to prove that Hypothesis 4.133 is satisfied. We are not aware of any
references regarding this but it seems possible under suitable regularity assumptions
about b and σ. �

4.5.2 The Elliptic Case

Similarly to the parabolic case, to define a classical solution27 of (4.125), we connect
Eq. (4.125) to the SDE (4.126).

27This definition is similar to the definition of a strict solution used in Sect. 6.4 of [179].
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Let x ∈ H and let
(
�,F , {Fs}s≥0,P,W

)
be a generalized reference probability

space, where W is a cylindrical Wiener process in a real separable Hilbert space �.
Consider the SDE

{
dX (s) = [AX (s)+ b (X (s))] ds + σ (X (s)) dW (s) , s ≥ 0,
X (0) = x, x ∈ H.

(4.156)

We assume the following.

Hypothesis 4.138

(i) The function F0 satisfies Hypothesis 4.104 for some m ≥ 0 and L , L ′ > 0.
(ii) For some T > 0 (e.g. T = 1) the operator A and the functions b andσ in (4.156)

satisfy, in H , either Hypothesis 1.149 with b and σ independent of t and a, or
Hypotheses 1.143 and 1.145 without dependence on s, a1 and with a2(·) = 0.
We have �(x) := σ(x)σ∗(x).

(iii) There exists r ∈ R, r ∈ �(A) such that (r I − A)−1b : H → H is continuous
and for every y, z ∈ H the function 〈�y, z〉 : H → R is continuous. Moreover,
there exists a C > 0 such that, for all x ∈ H ,

{ |(r I − A)−1b(x)| ≤ C(1+ |x |)
‖σ(x)‖L(�,H) ≤ C(1+ |x |). (4.157)

(iv) For all s ≥ 0, φ ∈ Bm(H), where m ≥ 0 is from point (i) above, we have
Ps[φ](x) = E[φ(X (s; x))], where X (·; x) is the mild solution of the SDE
(4.156) (which exists and is unique by Theorem 1.152 or Proposition 1.147).

Similar comments to those in Remark 4.128 apply here.
As in the parabolic case we consider the operator A1 which is time-independent

here (see the operator A0 in Appendix B.7.1):
⎧
⎪⎪⎨

⎪⎪⎩

D(A1) =
{

φ ∈ UC2
b (H) : A∗Dφ ∈ UCb(H, H), D2φ ∈ UCb(H,L1(H))

}

A1φ(x) = 1
2 Tr [�(x)D2φ(x)] + 〈x, A∗Dφ(x)〉 + 〈(r I − A)−1b(x), (r I − A)∗Dφ(x)

〉
.

(4.158)
Above r ∈ R belongs to the resolvent set �(A). Notice that the space D(A1) is the
same as in (4.141), hence it is a Banach space with the norm defined in (4.142).

Definition 4.139 A function u : H → R is a classical solution of equation

λv − 1

2
Tr[�(x)D2v] − 〈Ax + b(x), Dv〉 − F0(x, v, DGv) = g(x), x ∈ H,

(4.159)
(where g is a given Borel measurable function and the other data are as in Hypothesis
4.138) if u ∈ D(A1), DGu ∈ Cb(H) and, for some r ∈ R ∩ �(A),
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λv(x)− 1

2
Tr [�(x)D2v(x)] − 〈x, A∗Dv(x)

〉−
〈
(r I − A)−1b(x), (r I − A)∗Dv(x)

〉

− F0(x, v(x), DGv(x)) = g(x) (4.160)

for every x ∈ H .

Observe that, as proved in Remark 4.130, the above definitions of the operator
A1 and of a classical solution are independent of r ∈ R ∩ �(A).

Now we explain the notions of π- and K-strong solutions.

Definition 4.140 We say that a function u : H → R is a π-strong solution (respec-
tively, a K-strong solution) of Eq. (4.125) if there exists an m ≥ 0 such that u ∈
B1,G
m (H) and there exist two sequences, (gn) ⊂ Bm(H) and (un) ⊂ D(A1), such

that for every n ∈ N, un is a classical solution of the equation

λw −A1w − F0(x, w, DGw) = gn(x) (4.161)

and moreover, as n→+∞, using the notation of Definition B.55,

⎧
⎪⎪⎨

⎪⎪⎩

π − lim
n→+∞ un = u in Bm(H)

π − lim
n→+∞ DGun = ∇Gu in Bm(H,U )

π − lim
n→+∞ gn = g in Bm(H)

(4.162)

(respectively, when all three convergences above hold in the K sense, using the
notation of Definition B.56).

As in the parabolic case, to establish that any mild solution in the sense of Defi-
nition 4.102 is also a strong solution in the sense of Definition 4.140 (and, possibly,
also the opposite), we need to define properly the approximating sequence un . Here
too we have the same two main cases:

• When the data of the SDE (4.156) are very regular (e.g. the Ornstein–Uhlenbeck
case of Sect. 4.3.1), and the semigroup Ps maps D(A1) into itself. In this case it
is enough to approximate only F0.

• When the data of the SDE (4.156) are not regular (e.g. the case of invertible
diffusion coefficient of Sect. 4.3.3 and the case of reaction-diffusion equations of
Sect. 4.9.2) and the semigroup Ps does not map D(A1) into itself. In this case, in
addition to F0, we also need to approximate the semigroup Ps .

Similarly to the parabolic case we only present a result which deals with the first
case. The second case, up to now, has only been studied in the context of reaction-
diffusion equations in [107] (see also [106], Chap.10) and is briefly presented in
Sect. 4.9.2.

Hypothesis 4.141 Letm ≥ 0 be fromHypothesis 4.104 (and hence also Hypothesis
4.138).
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(i) For all s ≥ 0 and all φ ∈ FC∞,A∗
0 (H), the function

(s, x)→ Ps[φ](x)

satisfies the last three lines of (4.144) for every T > 0. Moreover, there exists
C1 > 0 and a1 ≥ 0 such that, for every φ ∈ FC∞,A∗

0 (H),

‖Ps[φ]‖D(A1) ≤ C1‖φ‖D(A1)e
a1s, ∀s ≥ 0. (4.163)

(ii) If φn
π−−−→

n→∞ φ in Bm(H) then, for every s > 0,

DGPs[φn] π−−−→
n→∞ ∇G Ps[φ] in Bm(H,U ).

Remark 4.142 The semigroup assumptions of Hypothesis 4.141 are similar to those
ofHypothesis 4.133 and address the preservation of regularity (i) and the convergence
of derivatives (ii). What is new here is the exponential estimate for ‖Ps[φ]‖D(A1)

which (like the exponential estimates in Sect. 4.4.2) is needed to ensure convergence
of the integrals on infinite time intervals. �

Theorem 4.143 Let Hypotheses 4.108, 4.110, 4.138 and 4.141 be satisfied. Let
m ≥ 0 be from Hypothesis 4.138. Let λ > λ0 ∨ a1, where λ0 is from Theorem 4.112
and a1 from (4.163). Let u be the unique mild solution, in B1,G

m (H), of Eq. (4.125).
Assume that u and the function f (x) := F0(x, u(x),∇Gu(x)) are continuous in H.
Then u is also the unique π-strong solution of (4.125) in B1,G

m (H).
If Hypothesis 4.141 holds substituting everywhere π-convergence by K-

convergence, then u is the unique K-strong solution of (4.125) in B1,G
m (H).

Proof The proof is very similar to the proof of Theorem 4.135 except for the proof
that the approximations are classical solutions of the approximating equations.

We see that Hypothesis 4.106 is satisfied thanks to Hypothesis 4.138-(ii), estimate
(1.80) (or (1.69)) and Remark 4.107. This, together with the other assumptions,
ensures the existence and uniqueness, in B1,G

m (H), of the mild solution u of (4.125)
thanks to Theorem 4.112-(i). We then have, for x ∈ H ,

u(x) =
∫ +∞

0
e−λs Ps[ f ](x)ds. (4.164)

We know, by assumption, that f ∈ Cm(H). We approximate f by the sequence ( fn)
from Lemma B.78 with B = A∗ there (i.e. for an orthonormal basis contained in
D(A∗)). We then have fn ∈ FC∞,A∗

0 (H) ⊂ D(A1) (see the proof of Theorem 4.135

Step 1) and fn
K−−−→

n→∞ f . We define

un(x) =
∫ +∞

0
e−λs Ps[ fn](x)ds (4.165)
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and show that un satisfies the required properties.

Step 1: un is a classical solution of (4.125) with fn in place of f .
Consider the function

wn : [0,+∞)× H → R, wn(t, x) = Pt [ fn](x).

Using Hypothesis 4.141-(i) and arguing as in the proof of Theorem 4.135 (see also
Proposition B.91-(i), Theorem 7.5.1 of [179] and Theorem 9.25 of [180]) we know
that wn is a classical solution of the equation

wt = A1w, w(0) = fn. (4.166)

Now, by the last three lines of (4.144), we have wn(s, ·) ∈ D(A1) for every s ≥ 0,
and the function (s, x)→ A1wn(s, x) is continuous. Since estimate (4.163) also
holds and λ > a1, the function

H → R, x →
∫ +∞

0
e−λsA1[wn(s, ·)](x)ds

is well defined and continuous in H . The facts above allow us to compute A1un
from (4.165), differentiating under the integral sign thanks to Proposition 4.16,28

obtaining that un ∈ D(A1) and

A1un(x) =
∫ +∞

0
e−λsA1[wn(s, ·)](x)ds. (4.167)

Now, for any T > 0 and x ∈ H , we compute, integrating by parts on [0, T ],
∫ T

0
e−λswn(s, x)ds = − 1

λ
[e−λTwn(T, x)− wn(0, x)] + 1

λ

∫ T

0
e−λs(wn)s(s, x)ds.

Hence, using (4.166),

∫ T

0
e−λswn(s, x)ds = 1

λ
[−e−λTwn(T, x)+ fn(x)] + 1

λ

∫ T

0
e−λsA1[wn(s, ·)](x)ds.

(4.168)
We know by (4.130) that

lim
T→+∞ e−λTwn(T, x) = 0.

Moreover, since λ > a1, the function s→e−λs‖wn(s, ·)‖D(A1) is integrable on
[0,+∞), hence we get

28As in other cases we cannot apply Corollary 4.14 here since the mapR+ → Cb(H), s → Ps [ fn],
may not be measurable, see Remark 4.15.
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lim
T→+∞

∫ T

0
e−λsA1[wn(s, ·)](x)ds =

∫ +∞

0
e−λsA1[wn(s, ·)](x)ds.

Thus passing to the limit as T →+∞ in (4.168) and using (4.165) and (4.167) we
obtain

λun(x) = fn(x)+A1un(x).

The claim follows setting

gn(x) := fn(x)− F0(x, un(x), D
Gun(x)).

Step 3. Proof of (4.162) and the uniqueness.

Concerning the convergences, by construction we have fn
K−−−→

n→∞ f in Cm(H).

The π-convergence of un to u follows applying the dominated convergence theo-
rem. The π-convergence of DGun to ∇Gu follows by Hypothesis 4.141-(ii). The
π-convergence of gn to 0 follows by the convergence of fn to f and the continuity
of F0 in the last two arguments.

Concerning uniqueness, we observe that any π-strong solution u∗ belongs to
B1,G
m (H) by definition and must possess an approximating sequence (un) satisfying

(4.165) for some sequence ( fn), π-converging to f ∗(x) = F0(x, u∗(x),∇Gu∗(x)).
Then, by dominated convergence we obtain that u∗ must be a mild solution in
B1,G
m (H) and so it is unique by Theorem 4.112.

The proof of the final statement is immediate, after noticing that the sequences
ϕn and fn are already K-convergent. �

Remark 4.144

(i) Similarly to the parabolic case, the assumption of continuity of the functions u
and f in Theorem 4.143 seems essential to perform the above proof. Extensions
to cases where u and f are not continuous might be possible following the ideas
explained in Remark 4.136-(iv).

(ii) The continuity of u and f are guaranteed, for example, if Hypothesis 4.117
(or 4.114) holds. However, Hypothesis 4.141 is not easy to check. From the
discussion in Example 4.137 we see that points (i) and (ii) are satisfied in the
case of the Ornstein–Uhlenbeck semigroup, except for estimate (4.163). This
estimate holds by Lemma B.90-(i).

(iii) Similar observations as those in points (iii), (iv) and (vi) of Remark 4.136
apply here. In particular, the claim of Theorem 4.143 still holds if we substitute
Hypotheses 4.108 and 4.110 with Hypothesis 4.119-(ii)-(iii) and in addition
we require that F0 is continuous. In this case u is the unique mild solution in
C1,G
m (H). Also in this case the functions u and f are automatically continuous.

�
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We conclude remarking that, as observed for the parabolic case in Example 4.137,
one can apply Theorem 4.143 to the Ornstein–Uhlenbeck case mentioned there.
Moreover, Theorem 4.143 could also be applied to the infinite horizon version of
Examples 4.100 and 4.101 if one could prove that Hypothesis 4.141 is satisfied. This
has not been studied but it seems possible under proper regularity assumptions about
b and σ.

4.6 HJB Equations of Ornstein–Uhlenbeck Type: Lipschitz
Hamiltonian

In Sects. 4.6 and 4.7 we consider special cases of HJB equations (4.109) and (4.125)
where the linear parts of these HJB equations are associated to a stochastic process
of Ornstein–Uhlenbeck type, namely a process of the type described in Sect. 4.3.1
(see also Sect.B.7.2).

Such equations were the first to be studied in the literature and better results can be
proved for them. In this section we consider the case when the Hamiltonian F0 is (as
in Sect. 4.4) Lipschitz continuous in the last two variables while in the next section
we consider the case when F0 is only locally Lipschitz continuous. We always use
Fréchet derivatives in these two sections.

As always H is a real separable Hilbert space. The parabolic and elliptic equations
we study are the following (compare with (4.109) and (4.125)).

{

vt + 1

2
Tr [�D2v] + 〈Ax, Dv〉 + F0(t, x, v, DGv) = 0, t ∈ [0, T ), x ∈ D(A),

v(T, x) = ϕ(x), x ∈ H,

(4.169)

λv − 1

2
Tr [�D2v] − 〈Ax, Dv〉 − F0(x, v, DGv) = 0, x ∈ D(A), (4.170)

where λ > 0. We make the following assumption in this section.

Hypothesis 4.145

(i) The linear operator A : D(A) ⊂ H → H is the infinitesimal generator of a
strongly continuous semigroup

{
et A
}

t≥0 on H so there exist M ≥ 1 and ω ∈ R

such that
‖et A‖ ≤ Meωt ∀t ≥ 0.

(ii) � ∈ L+(H) and for any s > 0, esA�esA
∗ ∈ L1(H). Moreover, for all t ≥ 0,

∫ t

0
Tr
[
esA�esA

∗]
ds < +∞, (4.171)

so Tr [Qt ] < +∞, where Qt =
∫ t
0 e

sA�esA
∗
ds.



4.6 HJB Equations of Ornstein–Uhlenbeck Type: Lipschitz Hamiltonian 483

(iii) The operator G : D(G)⊂U→H is linear, closed (possibly, but not necessarily,
unbounded), where U is another real separable Hilbert space, possibly equal
to H .

(iv) For every t > 0 the operator et AG can be extended to a bounded operator, which
we still denote by et AG : U → H , and et AG(U ) ⊂ Q1/2

t (H).
(v) Setting, for t > 0, �G(t) = Q−1/2t et AG, the map t→‖�G(t)‖ belongs to I1.
We recall that we denote by γG a function in I2 (respectively I1) satisfying

Hypothesis 4.76 (respectively, 4.108). Hence in this section, in light of Hypothesis
4.145 and Theorem 4.41, γG will be a properly chosen function in I2 (or I1) such
that γG(t) ≥ c‖�G(t)‖, for given c > 0 and for all t > 0.

Remark 4.146

• A typical case where the operatorG is not bounded is when we consider stochastic
optimal control problems with the control acting only on the boundary or in a
subdomain (see e.g. Sect. 2.6.2 for an explanation of the model and [189, 241,
310] for results in this case using the approach of mild solutions). Hypothesis
4.145 above is satisfied, for example, in the case when A is the Laplace operator
with Neumann boundary conditions and one controls the normal derivative of the
state on the boundary, (see Chap.2, Sect. 2.6.2), taking in this case G = (−A)β

for some β ∈ (1/4, 1/2). If A is the Laplace operator with Dirichlet boundary
conditions and we control the value of the state on the boundary, then taking
G = (−A)β for some β ∈ (3/4, 1), Hypothesis 4.145 holds except for point (v).
Some ideas to remove this difficulty are in the recent paper [315].

• Another case where the operator G is unbounded comes from problems with
pointwise delay in the control (see Sect. 2.6.8) which are studied in [316] by a
variation of the approach of this chapter.

• In stochastic optimal control problems with noise at the boundary (see Sect. 2.6.3)
both operators� and G are unbounded. The methods used in this chapter have not
yet been applied to such a case. As is explained in the introduction of [181], in this
case it is difficult to obtain the validity of Hypothesis 4.145-(v) since, even in the
simplest cases, theminimal energy E(t, x) (which is equal to |�G(t)x |, see Remark
4.34) needed to steer a given state x to 0 in time t blows up in a non-integrable
way (indeed, in some cases, with a rate bigger than e−1/t ) as t → 0+. This case
can be studied using the BSDE approach, see Chap. 6. We do not consider it here
but we refer to the recent paper [315] where some new ideas to apply the approach
of this chapter to such boundary noise/control problems are introduced.

• We finally recall that, choosing G to be the identity operator, our setting reduces
to the cases investigated in [89, 90, 306, 307].

�

The transition semigroup Rt formally associated to the linear part of (4.169)
and (4.170), and called the Ornstein–Uhlenbeck semigroup, is given (see (4.49) and
(4.50)) by
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Rt [φ](x) =
∫

H
φ(y + et Ax)NQt (dy)

for anyφ ∈ Bm(H). It is associated to the SDE (4.44) ifσσ∗ = �. Using the results of
Sect. 4.3.1 we easily prove that Hypothesis 4.145 implies the regularity properties of
Rt which are needed to solve the HJB equations (4.169) and (4.170). More precisely,
we have the following results, the first concerning the assumptions for the theorems
about mild solutions, the second concerning additional assumptions for the theorems
about strong solutions.

Proposition 4.147 Let Hypothesis 4.145 be satisfied. Consider the transition semi-
group Pt,s = Rs−t . Then for any m ≥ 0 we have the following (recall that K1(m)

below is the constant from Theorem 4.41).

(A) Parabolic case.

(i) Hypothesis 4.74 is satisfied with C(m) = 2K1(m)em(ω∨0)T when ω �= 0,
and with C(m) = 2K1(m)(1+ Tm) when ω = 0.

(ii) If the function t→‖�G(t)‖ belongs to I2, then Hypothesis 4.76 is satisfied
for allφ ∈ Bm(H), where in addition we have the continuous G-Fréchet dif-
ferentiability of Rs−t [φ], for s > t ≥ 0. Moreover, we can choose γG(s) =
2K1(m/2)1/2em(ω∨0)T ‖�G(s)‖whenω �= 0 andγG(s) = 2K1(m/2)1/2(1+
Tm)‖�G(s)‖ when ω = 0.

(iii) Parts (i) and (ii) of Hypotheses 4.84, 4.89, 4.93 are satisfied.
(iv) Hypothesis 4.77 is satisfied, together with its variant given in Remark 4.91.
(v) Assume, moreover, that Hypothesis 4.145-(iv) also holds for U = H and

G = I . Then the variants of Hypothesis 4.77 described in parts (iii) of
Hypotheses 4.84, 4.89, 4.93 are also satisfied.

(B) Elliptic case.

(i) Hypothesis 4.106 is satisfiedwithC(m) = 2K1(m)anda(m) = ε+ m(ω ∨
0) (for any ε > 0 which can be chosen to be 0 if ω �= 0).

(ii) Hypothesis 4.108 is satisfied for all φ ∈ Bm(H), where in addition we have
the continuous G-Fréchet differentiability of Rs[φ], for s > 0. Moreover,
we can choose γG(s) = 2K1(2m)1/2‖�G(s)‖ and a(m) = ε+ m(ω ∨ 0)
(for any ε > 0, which can be chosen to be 0 if ω �= 0).

(iii) Parts (i) and (ii) of Hypotheses 4.115, 4.119, 4.122 are satisfied.
(iv) Hypothesis 4.110 is satisfied, together with its variants described in parts

(iii) of Hypotheses 4.115, 4.119, 4.122.

Proof Parabolic case.

(i) Concerning Hypothesis 4.74, the semigroup property follows from Corollary
1.158 while estimate (4.113) follows from (4.76).

(ii) Hypothesis 4.76 follows from Theorem 4.41.
(iii) Parts (i) and (ii) of Hypotheses 4.84, 4.89, 4.93 follow from points (i) and (ii)

of the parabolic case of this proposition.
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(iv) Hypothesis 4.77 and its variant given in Remark 4.91 follows from Proposition
4.50.

(v) When Hypothesis 4.145-(iv) also holds for U = H and G = I , the variants of
Hypothesis 4.77 described in (iii) of Hypotheses 4.84, 4.89, 4.93 follow from
Proposition 4.51 and Remark 4.53-(i).

Elliptic case.

(i) The semigroup property in Hypothesis 4.106 follows from Corollary 1.158 and
(4.130) follows from (4.76).

(ii) Hypothesis 4.108 follows from Theorem 4.41.
(iii) Parts (i) and (ii) of Hypotheses 4.84, 4.89, 4.93 follow from points (i) and (ii)

of the elliptic case of this proposition.
(iv) Hypothesis 4.110 and its variants described in parts (iii) of Hypotheses 4.115,

4.119, 4.122, follow from Proposition 4.50 and Remark 4.53-(i). Note that, in
Proposition 4.50 and Remark 4.53-(i), T is arbitrary.

�

Proposition 4.148 Let Hypothesis 4.145 be satisfied. Consider the transition semi-
group Pt,s = Rs−t . Then we have the following.

(A) Parabolic case.

(i) Hypothesis 4.127-(ii)-(iii)-(iv) is satisfied.
(ii) Hypothesis 4.133 is satisfied (both with π- and K-convergence) when G is

bounded or when D(A∗) ⊂ D(G∗) and, for some c > 0, |G∗z| ≤ c|A∗z|
for all z ∈ D(A∗).

(B) Elliptic case.

(i) Hypothesis 4.138-(ii)-(iii)-(iv) is satisfied.
(ii) Hypothesis 4.141 is satisfied (both with π- and K-convergence) when G is

bounded or when D(A∗) ⊂ D(G∗) and, for some c > 0, |G∗z| ≤ c|A∗z|
for all z ∈ D(A∗).

Proof Parabolic case.

(i) Since here b = 0 and we can take σ = √�, which is constant, parts (iii) and
(iv) of Hypothesis 4.127 are immediately satisfied. Hypothesis 4.127-(ii) follows
from Hypothesis 4.145, in particular from (4.171).

(ii) Concerning Hypothesis 4.133, if U = H and G = I , part (i) is a direct conse-
quence of Proposition B.91. When G �= I the only thing which remains to be
proved is that the function in point (i) of Hypothesis 4.133 (which we call u)
admits a G-derivative with respect to x and that DGu ∈ Cb([0, T ] × H). When
G is bounded this follows since Du ∈ Cb([0, T ] × H). When G is unbounded
and D(A∗) ⊂ D(G∗) and, for some c > 0, |G∗z| ≤ c|A∗z| for all z ∈ D(A∗),
this follows since A∗Du ∈ Cb([0, T ] × H). Parts (ii) and (iii) directly follow
from formula (4.75) and the dominated convergence theorem.
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Elliptic case.

(i) Parts (ii), (iii) and (iv) of Hypothesis 4.127 are true for the same reasons as in
the parabolic case.

(ii) Concerning Hypothesis 4.141, the regularity in part (i) follows by Proposition
B.91 exactly as in the parabolic case. The exponential estimate (4.163) is a
consequence of Lemma B.90-(i). Part (ii) directly follows from formula (4.75)
and the dominated convergence theorem.

�
To be able to use Gronwall’s lemma estimate of Proposition D.30, we will some-

times work with the stronger assumption (used in most of the literature, see e.g. [89,
90, 306, 307]) that, for every t ≥ 0,

‖�G(t)‖ ≤ C(1 ∨ t−α) for some C > 0 and α ∈ (0, 1). (4.172)

Recalling the operator A0 introduced in Sect.B.7.1, we can rewrite the two HJB
equations (4.169) and (4.170) in a slightly stronger form (since we require Dv ∈
D(A∗)):

⎧
⎨

⎩

vt +A0v + F0(t, x, v, DGv) = 0, t ∈ [0, T ), x ∈ H,

v(T, x) = ϕ(x), x ∈ H,

(4.173)

λv −A0v − F0(x, v, DGv) = 0, x ∈ H. (4.174)

The same can be done substituting the operatorA0 with Â0, which is also introduced
in Sect.B.7.1.

Since (see Proposition B.92) the operatorsA0 (respectively Â0) areK-closable in
Cm(H) for m ≥ 1 (respectively for m ≥ 0) and their K-closureAm is the generator,
in the sense ofK-semigroups,29 of the Ornstein–Uhlenbeck semigroup Rt inCm(H),
we can write the above two equations in the weaker forms

⎧
⎨

⎩

vt +Amv + F0(t, x, v, DGv) = 0, t ∈ [0, T ), x ∈ H,

v(T, x) = ϕ(x), x ∈ H,

(4.175)

λv −Amv − F0(x, v, DGv) = 0, x ∈ H. (4.176)

The mild forms of the equation are thus the following:

v(t, x) = RT−t [ϕ](x)+
∫ T

t
Rs−t

[
F0(s, ·, v(s, ·), DGv(s, ·))

]
(x)ds, t ∈ [0, T ], x ∈ H,

(4.177)

29This result can also be proved using the π-semigroups framework, see [493], Part III.
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v(x) =
∫ +∞

0
e−λs Rs

[
F0(·, v(·), DGv(·))] (x)ds, x ∈ H. (4.178)

We analyze separately the parabolic and the elliptic equations.

4.6.1 The Parabolic Case

The first result is a straightforward corollary of Theorems 4.80, 4.96 and Proposition
4.147. Recall that the concept of a mild solution we use here is the one introduced
in Definition 4.70.

Theorem 4.149 Let Hypothesis 4.145 hold with the function t→‖�G(t)‖ belong-
ing to I2 and assume Hypothesis 4.72 is satisfied for a given m ≥ 0. We have the
following.

(i) Equation (4.169) has a mild solution u which is unique in B
0,1,G
m,γG

([0, T ] × H)

for γG from Proposition 4.147. Moreover, if F0 is also continuous in x and ϕ
is continuous, then u and DGu are also continuous in x. If ϕ ∈ C1

m(H) then
DGu ∈ Bm([0, T ] × H,U ).

(ii) If Hypothesis 4.145 also holds with U = H and G = I in point (iv), then,
even if ϕ ∈ Bm(H), the functions u and DGu are jointly continuous in (t, x) ∈
[0, T )× H. If in addition Hypothesis 4.145-(v) also holds with U = H and
G = I then also Du is jointly continuous in (t, x) ∈ [0, T )× H.

(iii) Let Hypothesis 4.145 also hold with U = H and G = I in point (iv). If ϕ ∈
Cm(H) and F0 is continuous then themild solution u belongs toC

0,1,G
m,γG

([0, T ] ×
H) for γG as in point (i). If ϕ ∈ C1

m(H) then DGu ∈ Cm([0, T ] × H,U ).
(iv) Let Hypothesis 4.145 also hold with U = H and G = I in point (iv). Let ϕ ∈

UCm(H) and the function (s, x, y, z) → F0((s, x, y, z)/(1+ |x |m + |y| + |z|)
be uniformly continuous in the last three variables, uniformly with respect to

the first. Then the mild solution u belongs to UC
0,1,G
m,γG

([0, T ] × H) for γG as in
point (i). If ϕ ∈ UC1

m(H) then DGu ∈ UCx
m([0, T ] × H,U ).

Proof The first part of (i) follows from Theorem 4.80 and Proposition 4.147-(A).
Continuity in x follows from Remark 4.91. When ϕ ∈ C1

m(H), the claim is a conse-
quence of Theorem 4.41-(iii).

Point (ii), when Hypothesis 4.145-(iv) (respectively, Hypothesis 4.145-(iv)-(v))
also holds with U = H and G = I , follows since u satisfies (4.177) whose right-
hand side is continuous, together with its derivative DG (respectively, D), thanks to
Proposition 4.51.

Point (iii) follows from Theorem 4.90, Proposition 4.147-(A) and, when ϕ ∈
C1
m(H), from Theorem 4.41-(iii).
Point (iv) follows from Theorem 4.94, Proposition 4.147-(A) and, when ϕ ∈

UC1
m(H), from Theorem 4.41-(iii). �
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We now prove two results. The first is relatively simple and deals with the conver-
gence of approximating sequences to the mild solution. The second concerns the C2

space regularity of the mild solutions. Since it is more complex it will be the subject
of a separate subsection.

Concerning strong solutions we show that Theorem 4.135 holds here with a
stronger type of convergence.

Theorem 4.150 Let T > 0 and let Hypothesis 4.145 be satisfied with the following
additions.

(i) The map t→‖�G(t)‖ belongs to I2.
(ii) Either G is bounded or D(A∗) ⊂ D(G∗) and, for some c > 0, |G∗z| ≤ c|A∗z|

for all z ∈ D(A∗).

Let Hypothesis 4.72 be satisfied for some m ≥ 0 and assume, moreover, that ϕ is
continuous. Let u be the mild solution of Eq. (4.169) from Theorem 4.149 and let the
function F0(·, ·, u(·, ·),∇Gu(·, ·)) be continuous on [0, T )× H. Then the function u

is the uniqueK-strong solution ofEq. (4.169) among solutions in B
0,1,G
m,γG

([0, T ] × H),
for γG from Proposition 4.147.

Assume moreover that Hypothesis 4.145 also holds with U = H and G = I in
point (iv). Then the sequence un approximating u can be chosen so that its conver-
gence to u is uniform on [0, T − ε] × H0 for all ε ∈ (0, T ) and all bounded subsets
H0 of H.

Proof We know from Propositions 4.147-(A) and 4.148-(A) that the assumptions of
Theorem 4.135 are satisfied. Hence Theorem 4.135 still holds in this case and u is
also the unique K-strong solution as claimed in the statement. The improvement of
the convergence follows from the compactness of the operators et A, t > 0, which
follows from Remark 4.31-(i) taking there U = H and G = I . Recall that, setting
f (t, x) = F0(t, x, u(t, x), DGu(t, x)), the mild solution u is written as

u(t, x) = RT−t [ϕ](x)+
∫ T

t
Rs−t [ f (s, ·)](x)ds

and its approximations un , as in Theorem 4.135, are

un(t, x) = RT−t [ϕn](x)+
∫ T

t
Rs−t [ fn(s, ·)](x)ds

for suitable sequences (ϕn), ( fn) which K-converge to ϕ in Cm(H) and to f in
Bm,γG ([0, T )× H), respectively.

We first prove the required convergence for the first terms of the above formulae.
Let ϕn be K-convergent to ϕ and observe that, for s ≥ ε > 0, x ∈ H ,

Rs[ϕn](x)− Rs[ϕ](x) = Rs−εRε[ϕn − ϕ](x).

Now, defining zε
n(x) := Rε[ϕn − ϕ](x), we see that for any bounded subset

H0 of H ,
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sup
x∈H0

|zε
n(x)| ≤

∫

H
[ sup
x∈H0

∣
∣(ϕn − ϕ)(y + eεAx)

∣
∣]NQε

(dy).

By compactness of the operator eεA we immediately conclude that the right-hand
side converges to 0. Now, for fixed 0 < ε < T , we have

sup
s∈[ε,T ],x∈H0

|Rs[ϕn](x)−Rs[ϕ](x)| = sup
s∈[ε,T ],x∈H0

|Rs−ε[zε
n](x)|

≤
∫

H
[ sup
s∈[ε,T ],x∈H0

|zε
n(y + e(s−ε)Ax)|]NQs−ε

(dy).

Since zε
n converges to 0 uniformly on bounded subsets of H we obtain that the last

term converges to 0 as n→+∞.
We now look at the second terms. We have, for (t, x) ∈ [0, T ] × H , n ∈ N,

∣
∣
∣
∣

∫ T

t
Rs−t [ fn(s, ·)](x)ds −

∫ T

t
Rs−t [ f (s, ·)](x)ds

∣
∣
∣
∣

≤
∫ T−t

0
|Rs[( fn − f )(s + t, ·)](x)| ds ≤

∫ T

0
|Rs[( fn − f )(s, ·)](x)| ds.

Let H0 be a bounded subset of H . We have, for n ∈ N,

sup
x∈H0

∫ T

0
|Rs [( fn − f )(s, ·)](x)| ds ≤

∫ T

0

∫

H
sup
x∈H0

∣
∣
∣( fn − f )

(
s, y + esAx

)∣
∣
∣NQs (dy)ds.

Now, by the compactness of esA, we have for any s ∈ (0, T ] and y ∈ H , supx∈H0∣
∣( fn − f )

(
s, y + esAx

)∣
∣→ 0 as n→+∞. Moreover, for each s ∈ (0, T ], n ∈ N,

and z ∈ H , using Definition 4.131 of K-convergence in Bm,γG ([0, T )× H) and the
fact that the approximating functions ( fn) satisfy (B.31), we have

|( fn − f ) (s, z)| ≤ C1γG(s)‖ f ‖Bm,γG
(1+ |z|m)

for some C1 > 0. Hence, by the boundedness of H0, we obtain for n ∈ N,

sup
x∈H0

∣
∣( fn − f )

(
s, y + esAx

)∣
∣

≤ C1γG(s)‖ f ‖Bm,γG
sup
x∈H0

(1+ |y + esAx |m) ≤ C2γG(s)(1+ |y|m)

for some C2 > 0. Then, by the dominated convergence theorem, for any s ∈ (0, T ],

f n(s) :=
∫

H
sup
x∈H0

∣
∣( fn − f )

(
s, y + esAx

)∣
∣NQs (dy)→ 0, as n→+∞.
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Since for n ∈ N, f n(s) ≤ C3γG(s) for some C3 > 0, we can apply the dominated
convergence theorem again to get the claim. �

4.6.1.1 C2 Regularity of Mild Solutions

We prove, under additional assumptions, C2 regularity in x of the mild solution,
following and generalizing [306]. Even if some generalizations seem possible, we
only consider the case when U = H,G = I and m = 0. In this subsection (as was
done, for example, in Sect. 4.3.1), we set �(t) := �I (t) (see (4.59)) and γ(t) :=
‖�(t)‖.
Hypothesis 4.151 Let U = H and T > 0. Assume that F0 satisfies Hypothesis
4.72 for m = 0 and is continuous. Assume, moreover, that the map (x, v, p)→F0

(t, x, v, p) is Fréchet differentiablewith continuousFréchet derivatives Dx F0, DvF0,

DpF0. Suppose also that for some constant C1 ≥ (L ∨ L ′) > 0, we have, for all
t ∈ [0, T ], x ∈ H , v1, v2 ∈ R, p1, p2 ∈ H ,

|Dx F0(t, x, v1, p1)− Dx F0(t, x, v2, p2)| + |DvF0(t, x, v1, p1)− DvF0(t, x, v2, p2)|
+ |DpF0(t, x, v1, p1)− DpF0(t, x, v2, p2)| ≤ C1(|v1 − v2| + |p1 − p2|) (4.179)

and30

|Dx F0(t, x, v, p)| ≤ C1(1+ |v| + |p|),
|DvF0(t, x, v, p)| + |DpF0(t, x, v, p)| ≤ C1, (4.180)

for all t ∈ [0, T ], x ∈ H , v ∈ R, p ∈ H .

The first theorem deals with the case when the initial datum belongs to C1
b(H).

Theorem 4.152 Let Hypothesis 4.145 hold with U = H, G = I and γ ∈ I2 and
assume that Hypothesis 4.151 is satisfied. Let T > 0, ϕ ∈ C1

b(H), and let u ∈
C0,1
b ([0, T ] × H) be the mild solution of (4.169) from Theorem 4.149. Then

u is twice Fréchet differentiable with respect to x on [0, T )× H and D2u ∈
C

s
b,γ ([0, T )× H,L(H)).

Proof The mild solution u of (4.169) obtained in Theorem 4.149 belongs to
C0,1
b ([0, T ] × H). To show the higher regularity we consider the map

ϒ[v](t, x) = RT−t [ϕ](x)+
∫ T

t
Rs−t [F0(s, ·, v(s, ·), Dv(s, ·))] (x)ds. (4.181)

We know from Theorem 4.149 that u is a fixed point of ϒ in the space C0,1
b

([0, T ] × H). We now consider ϒ in the Banach space of more regular functions
(depending on T0 to be fixed later)

30The second inequality in (4.180) follows from Hypothesis 4.72-(i) and the fact that C1 ≥ L , but
we repeat it here for the reader’s convenience.
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HT0,T = {v ∈ Cb ([T0, T ] × H) : Dv ∈ Cb ([T0, T ] × H, H) ,

D2v ∈ C
s
b,γ ([T0, T )× H,L(H))} (4.182)

with the norm

‖v‖HT0 ,T
= supt∈[T0,T )

[‖v(t, ·)‖0 + ‖Dv(t, ·)‖0 + γ(T − t)−1‖D2v(t, ·)‖0
]
,

where C
s
b,γ ([T0, T )× H,L(H)) is as in Definition 4.24.

We look at the equation v = ϒ[v] in this space.
Step 1. ϒ : HT0,T → HT0,T .

Setting, for v ∈ HT0,T , (s, x) ∈ [T0, T )× H ,

ψv(s, x) = F0(s, x, v(s, x), Dv(s, x)) (4.183)

we have ψv ∈ C0,1
b,γ([T0, T )× H) and, for (s, x) ∈ [T0, T )× H , h ∈ H ,

〈Dψv(s, x), h〉 = 〈Dx F0(s, x, v(s, x), Dv(s, x)), h〉
+DvF0(s, x, v(s, x), Dv(s, x)) 〈Dv(s, x), h〉
+ 〈DpF0(s, x, v(s, x), Dv(s, x)), D2v(s, x)h

〉
.

(4.184)

By (4.181) and Propositions 4.50 and 4.51, it follows that ϒ[v] ∈ Cb([T0, T ] × H)

for v ∈ HT0,T . Moreover, by Proposition 4.16, differentiating (4.181) we obtain for
(t, x) ∈ [T0, T )× H ,

Dϒ[v](t, x) = DRT−t [ϕ](x)+
∫ T

t
DRs−t

[
ψv(s, ·)] (x)ds. (4.185)

Since we can write, for (t, x) ∈ [T0, T )× H ,

ϒ[v](t, x) =
∫

H
ϕ(y + et Ax)NQt (dy)+

∫ T

t

∫

H
ψv(s, y + e(s−t)Ax)NQs−t (dy)ds,

(4.186)
then, for (t, x) ∈ [T0, T )× H , h ∈ H , we have, using Theorem 4.41-(iii) (see also
the proof of Lemma B.90),

〈Dϒ[v](t, x), h〉 =
∫

H
〈Dϕ(y + et Ax), et Ah〉NQt (dy)

+
∫ T

t

∫

H

〈
Dψv(s, y + e(s−t)Ax), e(s−t)Ah

〉NQs−t (dy)ds, (4.187)

i.e.
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〈Dϒ[v](t, x), h〉 = RT−t [
〈
Dϕ, et Ah

〉](x)+
∫ T

t
Rs−t

[〈
Dψv(s, ·), e(s−t)Ah

〉]
(x)ds

(4.188)
so, again from Propositions 4.50 and 4.51 and from the strong continuity of the
semigroup et A, we get Dϒ[v] ∈ Cb([T0, T ] × H, H). Finally, for (t, x) ∈ [T0, T )×
H , h ∈ H , we get, similarly to (4.185),

D2ϒ[v](t, x)h = DRT−t [
〈
Dϕ, et Ah

〉
](x)+

∫ T

t
DRs−t

[〈
Dψv(s, ·), e(s−t)Ah

〉]
(x)ds.

(4.189)
Since in the right-hand side of (4.189) we have first derivatives applied to the semi-
group Rt , we can use Theorem 4.41 and Propositions 4.50–4.51, together with
the strong continuity of the semigroup et A, to see that D2ϒ[v] ∈ C

s
b,γ ([T0, T )×

H,L(H)).

Step 2. Local existence.
Let T0 ∈ [0, T ]. Using (4.181), (4.188), (4.189) and standard computations we have,
for v ∈ HT0,T and t ∈ [T0, T ] (note that integrability of the norms below follows
from Lemma 1.21)

‖ϒ[v](t, ·)‖0 ≤ ‖ϕ‖0 +
∫ T

t
‖ψv(s, ·)‖0ds

‖Dϒ[v](t, ·)‖0 ≤ Me(ω∨0)T
[

‖Dϕ‖0 +
∫ T

t
‖Dψv(s, ·)‖0ds

]

‖D2ϒ[v](t, ·)‖0 ≤ Me(ω∨0)T
[

γ(T − t)‖Dϕ‖0 +
∫ T

t
γ(s − t)‖Dψv(s, ·)‖0ds

]

(4.190)

(using (4.70) in the last inequality) so that

γ(T−t)−1‖D2ϒ[v](t, ·)‖0
≤ Me(ω∨0)T

[

‖Dϕ‖0 + γ(T − t)−1
∫ T

t
γ(s − t)‖Dψv(s, ·)‖0ds

]

,

(4.191)

which gives

‖ϒ[v]‖HT0 ,T
≤ ‖ϕ‖0 + 2Me(ω∨0)T ‖Dϕ‖0 + (T − T0)‖ψv‖0

+Me(ω∨0)T
∫ T

t

(

γ(T − s)+ γ(s − t)γ(T − s)

γ(T − t)

)

γ(T − s)−1‖Dψv(s, ·)‖0ds



4.6 HJB Equations of Ornstein–Uhlenbeck Type: Lipschitz Hamiltonian 493

≤ Me(ω∨0)T ‖ϕ‖1 + ρ1(T − T0)

[

‖ψv‖0 + sup
s∈[T0,T )

[γ(T − s)−1‖Dψv(s, ·)‖0]
]

, (4.192)

where

ρ1(T − T0) := Me(ω∨0)T
(

(T − T0) ∨ sup
t∈[T0,T )

∫ T

t

(

γ(T − s)+ γ(s − t)γ(T − s)

γ(T − t)

)

ds

)

.

(4.193)
Moreover, by (4.183) and Hypothesis 4.72-(ii),

‖ψv‖0 ≤ C1[2+ ‖v‖0 + ‖Dv‖0]

and, by (4.184) and (4.180),

‖Dψv(t, ·)‖0 ≤ 2C1
[
1+ ‖v(t, ·)‖0 + ‖Dv(t, ·)‖0 + ‖D2v(t, ·)‖0

]
. (4.194)

Hence, for C2 = 2C1(γ(T )−1 ∨ 1), we have

sup
t∈[T0,T )

γ(T − t)−1‖Dψv(t, ·)‖0

≤ C2

[

1+ ‖v‖0 + ‖Dv‖0 + sup
t∈[T0,T )

γ(T − t)−1‖D2v(t, ·)‖0
]

(4.195)

and then estimate (4.192) becomes

‖ϒ[v]‖HT0 ,T
≤ Me(ω∨0)T ‖ϕ‖1

+(2C1 + C2)ρ1(T − T0)

[

1+ ‖v‖0 + ‖Dv‖0 + sup
t∈[T0,T )

γ(T − t)−1‖D2v(t, ·)‖0
]

,

which gives, taking ρ2(T − T0) := (2C1 + C2)ρ1(T − T0) and C3 := Me(ω∨0)T ,

‖ϒ[v]‖HT0 ,T
≤ C3‖ϕ‖1 + ρ2(T − T0)

[
1+ ‖v‖HT0 ,T

]
. (4.196)

Now take w1, w2 ∈ HT0,T . We have

ϒ[w1](t, x)−ϒ[w2](t, x) =
∫ T

t
Rs−t

[
ψw1(s, ·)− ψw2(s, ·)] (x)ds.

We estimate the right-hand side exactly as in (4.192) taking ϕ = 0 and ψw1 − ψw2

in place of ψv . We then get
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‖ϒ[w1] −ϒ[w2]‖HT0 ,T

≤ ρ1(T − T0)

[

‖ψw1 − ψw2‖0 + sup
t∈[T0,T )

[
γ(T − t)−1‖Dψw1 (t, ·)− Dψw2 (t, ·)‖0

]
]

.

(4.197)

Observe now that, by (4.183), (4.184) and Hypotheses 4.72-(i) and 4.151, we have

‖ψw1(t, ·)− ψw2(t, ·)‖0 ≤ C1 [‖w1(t, ·)− w2(t, ·)‖0 + ‖Dw1(t, ·)− Dw2(t, ·)‖0]
and

‖Dψw1 (t, ·)− Dψw2 (t, ·)‖0 ≤ C1

[
‖D(w1 − w2)(t, ·)‖0 + ‖D2(w1 − w2)(t, ·)‖0

]
+

+ C1 [‖(w1 − w2)(t, ·)‖0 + ‖D(w1 − w2)(t, ·)‖0]
[
1+ ‖Dw1(t, ·)‖0 + ‖D2w1(t, ·)‖0

]
.

(4.198)

We then obtain, by standard calculations,

‖ϒ[w1] −ϒ[w2]‖HT0 ,T

≤ C4ρ1(T − T0)
[
‖w1 − w2‖HT0 ,T

+ ‖w1‖HT0 ,T
‖w1 − w2‖C1

b ([T0,T ]×H)

]

(4.199)

for a suitable C4 > 0.
We now define a subset of HT0,T where it is possible to apply the contraction

mapping principle. Let u ∈ C0,1
b ([0, T ] × H) be the mild solution of (4.169) and set

‖u‖C0,1
b
:= ‖u‖C0,1

b ([0,T ]×H), so that

‖ϕ‖1 ≤ ‖u‖C0,1
b

.

We then take
R > C3‖u‖C0,1

b
(4.200)

and choose T0 ∈ [0, T ) such that (see (4.196))

C3‖u‖C0,1
b
+ ρ2(T − T0)(1+ R) < R (4.201)

and (see (4.199))

C4ρ1(T − T0)(1+ R) <
1

2
. (4.202)

This is possible since limt→0+ ρ1(t) = 0 due to γ ∈ I2 (see (4.30)). Let BT0(0, R) be
the closed ball centered at 0 with radius R in the spaceHT0,T . Then, applying (4.201)
and (4.202) to (4.196) and (4.199), it follows that ϒ is a contraction in BT0(0, R).
Thus the contraction mapping principle guarantees that there exists a unique solution
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of v = ϒ[v] in BT0(0, R). This solutionmust coincide with the restriction of the mild
solution u to [T0, T ] × H sincewe have a uniquemild solution inC0,1

b ([T0, T ] × H).

Step 3. Global existence. We repeat the argument of Step 2 in the space
H(3T0−T )/2,(T+T0)/2. (If 3T0 < T we use the space H0,(T+T0)/2.) Now the final datum
at (T + T0)/2 is u((T + T0)/2, ·) ∈ C1

b(H). Hence if R is as in (4.200)31 then
(4.201) and (4.202) still hold with T replaced by (T + T0)/2 and T0 replaced
by (3T0 − T )/2 and so ϒ has a unique fixed point in the closed ball of radius
R centered at 0 of H(3T0−T )/2,(T+T0)/2. This fixed point must coincide with the
restriction of the mild solution u to [(3T0 − T )/2, (T + T0)/2] × H since we have
a unique mild solution in C0,1

b ([(3T0 − T )/2, (T + T0)/2] × H). This shows that
D2u ∈ Cs

b([(3T0 − T )/2, (T + T0)/2] × H,L(H)). Finally, we can get an explicit
estimate. If R is from (4.200) then for t ∈ [T0, T )

‖D2u(t, ·)‖ ≤ Rγ(T − t)

and, since γ is decreasing, we have for t ∈ [(3T0 − T )/2, T0],

‖D2u(t, ·)‖ ≤ Rγ((T + T0)/2− t) ≤ Rγ((T − T0)/2).

Hence, for t ∈ [(3T0 − T )/2, T ),

‖D2u(t, ·)‖ ≤ R[γ(T − t) ∨ γ((T − T0)/2)].

This implies that D2u ∈ C
s
b,γ([(3T0 − T )/2, T )× H,L(H)).

If (3T0 − T )/2 > 0 we repeat the above argument a finite number of times to
obtain the claim. �

Remark 4.153

(i) The above proof does not work when m > 0 since, estimating the difference
Dψw1 − Dψw2 as in (4.198), the product of two functions in Cm arises and we
do not know if such a product is still in Cm unless m = 0.

(ii) In principle, the above scheme of proof may also work in the case when G �= I ,
clearly adjusting the assumptions and finding second-order G-derivatives.

(iii) If we also assume that (4.172) holds, then one can use Gronwall’s inequality of
Proposition D.30 to estimate more precisely the norm of the second derivative.
Indeed, using that u = ϒ[u] on [0, T ] × H , we get from (4.190) and (4.195)

‖D2u(t, ·)‖0 ≤ Me(ω∨0)T
[

γ(T − t)‖Dϕ‖0 + 2C1

∫ T

t
γ(s − t) (1+ ‖u(s, ·)‖2) ds

]

≤ C5

[

γ(T − t)‖ϕ‖1 + (1+ ‖u‖C0,1
b

)+
∫ T

t
γ(s − t)‖D2u(s, ·)‖0ds

]

. (4.203)

31Indeed, in (4.200) it would have been enough to choose R > C3‖ϕ‖1. The choice R > C3‖u‖C0,1
b

allows us to repeat the argument in the subsequent intervals.
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for some C5 > 0. Using (4.172) and Gronwall’s inequality of Proposition D.30
we get (also using ‖ϕ‖1 ≤ ‖u‖C0,1

b
)

‖D2u(t, ·)‖0 ≤ (T − t)−αK1(1+ ‖u‖C0,1
b

) (4.204)

for some constant K1.

�

We now consider the case when ϕ is only measurable and bounded. We need the
following lemma.

Lemma 4.154 Let Hypothesis 4.145 hold with U = H, G = I and γ ∈ I2 and
assume that Hypothesis 4.151 is satisfied. Let T > 0, ϕ ∈ Bb(H) and let u be
the mild solution of (4.169) from Theorem 4.149. Take ε ∈ (0, T ) and define
ϕε(x) = u(T − ε, x) for every x ∈ H.Consider the integral equation (for t ∈ [0, T ],
x ∈ H)

w(t, x) = RT−ε−t [ϕε](x)+
∫ T−ε

t
Rs−t [F0(s, ·, w(s, ·), Dw(s, ·))] (x)ds.

(4.205)
Then the function u, restricted to [0, T − ε] × H, is the unique mild solution of
(4.205) in C0,1

b ([0, T − ε] × H).

Proof Uniqueness of the mild solution of (4.205) comes from Theorem 4.149. To
get the claim it is then enough to prove that u solves (4.205). Observe that, since u
solves (4.177), we have

ϕε(x) = Rε[ϕ](x)+
∫ T

T−ε

Rs−(T−ε) [F0(s, ·, u(s, ·), Du(s, ·))] (x)ds.

Moreover, using the semigroup property of Rt , for every 0 ≤ t ≤ T − ε we have

u(t, x) = RT−ε−t [Rεϕ](x)+
∫ T−ε

t
Rs−t [F0(s, ·, u(s, ·), Du(s, ·))] (x)ds

+
∫ T

T−ε

RT−ε−t
[
Rs−(T−ε) [F0(s, ·, u(s, ·), Du(s, ·))]] (x)ds

= RT−ε−t [ϕε](x)+
∫ T−ε

t
Rs−t [F0(s, ·, u(s, ·), Du(s, ·))] (x)ds

(in the last equality we use Fubini Theorem 1.33-(i)), which gives the claim. �

Theorem 4.155 Let Hypothesis 4.145 hold with U = H, G = I and γ ∈ I2 and
assume that Hypothesis 4.151 is satisfied. Let T > 0, ϕ ∈ Bb(H) and let u be
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the mild solution of (4.169) from Theorem 4.149. Then u is twice Fréchet dif-
ferentiable with respect to x on [0, T )× H and, for every ε ∈ (0, T ), D2u ∈
Cs
b ([0, T − ε] × H,L(H)).

Proof Let u be the mild solution of (4.169) from Theorem 4.149-(i). Set, for every
ε > 0,

ϕε = u(T − ε, ·).

By Theorem 4.149-(i) we have ϕε ∈ C1
b(H) for every ε > 0. Consider the following

map defined on C0,1
b ([0, T − ε] × H),

ϒ[w](t, x) = RT−ε−t [ϕε](x)+
∫ T−ε

t
Rs−t [F0(s, ·, w(s, ·), Dw(s, ·))] (x)ds.

We already know, using Lemma 4.154 and Theorem 4.149, that u is a fixed point of
ϒ in the space C0,1

b ([0, T − ε] × H). Moreover, by Theorem 4.152 applied on the
interval [0, T − ε], we immediately get that u is twice Fréchet differentiable with
respect to x on [0, T − ε)× H and D2u ∈ Cs

b ([0, T − ε)× H,L(H)). The result
thus follows by the arbitrariness of ε > 0. �
Remark 4.156 Assume that γ satisfies (4.172). Then, using D2u ∈ Cs

b ([0, T − ε]
×H,L(H)) and estimate (4.204) (which is valid only when the initial datum is C1),
we obtain, for a suitable constant C > 0,

‖D2u(t, ·)‖0 ≤ C(T − t)−2α, ∀t ∈ [0, T ).

Indeed using (4.204) we have, fixing any t ∈ [0, T ) and taking ε = (T − t)/2,

‖D2u(t, ·)‖0 ≤ K1(1+ ‖u‖C0,1
b ([0,T−ε]×H))(T − ε− t)−α

and since by Theorem 4.149, u ∈ C0,1
b,α([0, T ] × H), we obtain for some K2 > 0

(which may depend on u)

‖D2u(t, ·)‖0 ≤ K2ε
−α(T − ε− t)−α = K22

2α(T − t)−2α.

We finally observe that the procedure used in this section to prove C2 regularity
can be iterated (of course under stronger and stronger assumptions) to obtain higher
regularity and similar estimates for the singularities of higher derivatives. �

4.6.2 The Elliptic Case

Concerning the elliptic HJB equation (4.170) and its mild form (4.178), we will
always assume that Hypotheses 4.104 and 4.145 hold. We begin with a result which
is an easy corollary of Theorems 4.112, 4.125 and Proposition 4.147.
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Theorem 4.157 Let Hypothesis 4.145 hold. Let Hypothesis 4.104 be satisfied for
some m ≥ 0 and let λ0 be from Theorem 4.112. Then we have the following.

(i) For every λ > λ0 Eq. (4.170) admits a unique mild solution u, in the sense of
Definition 4.102. If Hypothesis 4.145 holds also with U = H and G = I in
point (iv), then u and DGu are continuous in H. If in addition point (v) of
Hypothesis 4.145 holds with U = H and G = I then also Du is continuous
in H.

(ii) If F0 is continuous then the mild solution u belongs to C1,G
m (H).

(iii) If the function (x, v, w)→F0(x, v, w)/(1+ |x |m + |v| + |w|) is uniformly con-
tinuous, then the mild solution u belongs to UC1,G

m (H).

Proof The first part of (i) follows from Theorem 4.112 and Proposition 4.147-(B).
The second part of (i), when Hypothesis 4.145 also holds with U = H and G = I
in point (iv) (respectively, (iv)-(v)), follows since u satisfies (4.178) whose right-
hand side is continuous, together with its derivative DG (respectively, D), thanks to
Proposition 4.51.32

Part (ii) follows from Theorem 4.120 and Proposition 4.147-(B).
Part (iii) follows from Theorem 4.123 and Proposition 4.147-(B). �

Concerning strong solutions, as in Theorem 4.150 for the parabolic case, we show
here that Theorem 4.143 holds with a stronger convergence.

Theorem 4.158 Let Hypothesis 4.145 be satisfied with the following addition.

(i) Either G is bounded or D(A∗) ⊂ D(G∗) and, for some c > 0, |G∗z| ≤ c|A∗z|
for all z ∈ D(A∗).

Let Hypothesis 4.104 be satisfied for some m ≥ 0. Let λ > λ0 ∨ a1 where λ0 is from
Theorem 4.112 and a1 is from (4.163).33 Let u ∈ B1,G

m (H) be the mild solution of
Eq. (4.170) and assume, moreover, that u and F0(·, u(·),∇Gu(·)) are continuous.

Then the function u is the uniqueK-strong solution of (4.170) in B1,G
m (H). Assume

that Hypothesis 4.145 also holds with U = H and G = I in point (iv). Then the
sequence un approximating u can be chosen so that the convergence is uniform on
bounded subsets of H.

Proof Wealreadyknow, fromPropositions 4.147-(B) and4.148-(B), that the assump-
tions of Theorem 4.143 hold, so u is the unique K-strong solution in B1,G

m (H). For
the proof of convergence we argue exactly as we did for the convergence of the
integral terms in the last part of the proof of Theorem 4.150. �

In the remaining part of this subsection we prove, under suitable assumptions, the
following results:

• C2 regularity of mild solutions.
• Existence of mild solutions for all λ > 0.

32In Proposition B.92 the time horizon T < +∞ but the arguments are the same as when T = +∞
once, as in this case, integrability is guaranteed.
33From Lemma B.90-(i) we easily see that, in this case, a1 = 2(ω ∨ 0).
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4.6.2.1 C2 Regularity of Mild Solutions

As inSect. 4.6.1.1we consider the caseU = H ,G = I ,m = 0 and set�(t) := �I (t).

Hypothesis 4.159 Let U = H . Assume that F0 : H × R× H → R satisfies
Hypothesis 4.104 for m = 0, it is continuously Fréchet differentiable and, for some
constant C1 ≥ L > 0 (where L is the constant from Hypothesis 4.104-(i)), we have
for all x ∈ H , v1, v2 ∈ R, p1, p2 ∈ H ,

|Dx F0(x, v1, p1)− Dx F0(x, v2, p2)| + |DvF0(x, v1, p1)− DvF0(x, v2, p2)|
+ |DpF0(x, v1, p1)− DpF0(x, v2, p2)| ≤ C1(|v1 − v2| + |p1 − p2|) (4.206)

and34

|Dx F0(x, v, p)| ≤ C1(1+ |v| + |p|),
|DvF0(x, v, p)| + |DpF0(x, v, p)| ≤ C1, (4.207)

for all x ∈ H , v ∈ R, p ∈ H .

Theorem 4.160 LetHypothesis 4.145 holdwithU = H andG = I and assume that
Hypothesis 4.159 is satisfied. Let λ0 be from Theorem 4.112. Let λ > λ0 and let u ∈
C1
b(H) be the mild solution of (4.170) from Theorem 4.157. Then there exists a λ1 ≥

λ0 such that, forλ > λ1, u is twiceFréchet differentiable and D2u ∈ Cb(H,L(H)).35

Proof The unique mild solution u of (4.170) obtained, for λ > λ0, in Theorem 4.157
belongs to C1

b(H). To show the required regularity we consider, for λ > λ0, the map

ϒ[v](x) =
∫ +∞

0
e−λt Rt [F0(·, v(·), Dv(·))] (x)dt. (4.208)

We know from Theorem 4.157 that u is a fixed point of ϒ in the space C1
b(H). We

now consider ϒ in the Banach space

H = C2
b (H) = {v ∈ C1

b(H) : D2v ∈ Cb (H,L(H))
}

with the norm

‖v‖H = sup
x∈H

[|v(x)| + |Dv(x)|H + ‖D2v(x)‖L(H)

]

34The second inequality in (4.206) follows from Hypothesis 4.104-(i) and the fact that C1 ≥ L , but
we repeat it here for the reader’s convenience.
35In [317], Theorem 3.3, twice differentiability of the mild solution is proved, in a special case,
using a different method, based on interpolation spaces and a bootstrap argument. This method may
also be applied here, under a weak additional assumption about the singularity of ‖�(t)‖ at t = 0,
to show that u is twice differentiable under weaker assumptions about F0.
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and we look at the equation v = ϒ[v] inH.

Step 1. ϒ : H→ H.
Define, for v ∈ H,

ψv(x) = F0(x, v(x), Dv(x)). (4.209)

We have ψv ∈ C1
b(H) and, for h ∈ H ,

〈Dψv(x), h〉 = 〈Dx F0(x, v(x), Dv(x)), h〉 + DvF0(x, v(x), Dv(x)) 〈Dv(x), h〉
+ 〈DpF0(x, v(x), Dv(x)), D2v(x)h

〉
. (4.210)

Since we can write

ϒ[v](x) =
∫ +∞

0
e−λt

∫

H
ψv(y + et Ax)NQt (dy)dt, (4.211)

we can differentiate using Proposition 4.16, as in the proof of Theorem 4.155, obtain-
ing for h ∈ H (recall that λ0 ≥ ω)

〈Dϒ[v](x), h〉 =
∫ +∞

0
e−λt

∫

H

〈
Dψv(y + et Ax), et Ah

〉NQt (dy)dt, (4.212)

i.e.

〈Dϒ[v](x), h〉 =
∫ +∞

0
e−λt Rt

[〈
Dψv(·), et Ah〉] (x)dt. (4.213)

Similarly, for h1, h2 ∈ H ,

〈
D2ϒ[v](x)h1, h2

〉 =
∫ +∞

0
e−λt

〈
DRt

[〈
Dψv(·), et Ah1

〉]
(x), h2

〉
dt

=
∫ +∞

0
e−λt

∫

H

〈
Dψv(y + et Ax), et Ah1

〉 〈
�(t)h2, Q

−1/2
t y

〉
NQt (dy)dt. (4.214)

Hence, given a sequence xn → x as n→+∞, we have

|D2ϒ[v](xn)− D2ϒ[v](x)|L(H) = sup
|h1|=|h2|=1

〈(
D2ϒ[v](xn)− D2ϒ[v](x)

)
h1, h2

〉

= sup
|h1|=|h2|=1

∫ +∞

0
e−λt

∫

H

〈
Dψv(y + et Axn)− Dψv(y + et Ax), et Ah1

〉 〈
�(t)h2, Q

−1/2
t y

〉
NQt (dy)dt

≤ sup
|h1|=1

∫ +∞

0
e−λt‖�(t)‖

[∫

H

〈
Dψv(y + et Axn)− Dψv(y + et Ax), et Ah1

〉2
NQt (dy)

]1/2

dt,
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where in the last line we used Schwarz’s inequality as in (4.79). The continuity of
Dψv now implies the continuity of D2ϒ[v].

Step 2. Contraction estimates and conclusion.
By standard computations using (4.208), (4.212) and (4.214), we have for v ∈ H

‖ϒ[v]‖0 ≤
∫ ∞

0
e−λt‖ψv‖0dt,

‖Dϒ[v]‖0 ≤ M
∫ +∞

0
e−(λ−ω)t‖Dψv‖0dt,

‖D2ϒ[v]‖0 ≤ M
∫ +∞

0
e−(λ−ω)t‖�(t)‖‖Dψv‖0dt, (4.215)

which gives

‖ϒ[v]‖H ≤
1

λ
‖ψv‖0 + ρ1(λ)‖Dψv‖0, (4.216)

where

ρ1(λ) := M
∫ +∞

0
e−(λ−ω)t (1+ ‖�(t)‖)dt.

Moreover, by (4.209) and Hypothesis 4.104-(ii),

‖ψv‖0 ≤ C1[2+ ‖v‖0 + ‖Dv‖0]

and, by (4.210) and (4.207),

‖Dψv‖0 ≤ 2C1
[
1+ ‖v‖0 + ‖Dv‖0 + ‖D2v‖0

]
. (4.217)

Hence estimate (4.216) becomes

‖ϒ[v]‖H ≤ ρ2(λ)
[
2+ ‖v‖0 + ‖Dv‖0 + ‖D2v‖0

]
,

where ρ2(λ) := 1
λ
C1 + 2C1ρ1(λ). Thus, for R > 0, if

ρ2(λ)(2+ R) ≤ R ⇐⇒ ρ2(λ) ≤ R

2+ R
,

then ϒ : B(0, R)→ B(0, R) in H.
Now take w1, w2 ∈ H. We have

ϒ[w1](x)− ϒ[w2](x) =
∫ +∞

0
e−λt Rt

[
ψw1(·)− ψw2(·)] (x)ds.
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We estimate the right-hand side exactly as in (4.216), taking ψw1 − ψw2 in place of
ψv . We get

‖ϒ[w1] −ϒ[w2]‖H ≤
1

λ

[‖ψw1 − ψw2‖0 + ρ1(λ)‖Dψw1 − Dψw2‖0
]
. (4.218)

We observe that, by (4.209) and Hypothesis 4.104-(i),

‖ψw1 − ψw2‖0 ≤ C1 [‖w1 − w2‖0 + ‖D(w1 − w2)‖0]

and, by Hypothesis 4.159 and (4.210),

‖Dψw1 − Dψw2‖0 ≤ C1
[‖D(w1 − w2)‖0 + ‖D2(w1 − w2)‖0

]+
+ C1 [‖(w1 − w2)‖0 + ‖D(w1 − w2)‖0]

[
1+ ‖Dw1‖0 + ‖D2w1‖0

]
. (4.219)

Thus we obtain

‖ϒ[w1] −ϒ[w2]‖H ≤
C1

λ
‖w1 − w2‖C1

b (H)+

+ C1ρ1(λ)
[
‖w1 − w2‖H + ‖w1 − w2‖C1

b (H)

(
1+ ‖w1‖H

)]
. (4.220)

If w1, w2 ∈ B(0, R) then we have

‖ϒ[w1] −ϒ[w2]‖H ≤ ρ2(λ)‖w1 − w2‖H(1+ R). (4.221)

So, choosing R > 1 and λ1 ≥ λ0 such that, for all λ > λ1, we have

ρ2(λ)(1+ R) <
1

2
,

we get that ϒ : B(0, R)→ B(0, R) is a contraction. Then the contraction mapping
principle guarantees that there exists a unique solution of v = ϒ[v] in B(0, R). This
solution must coincide with the mild solution u, so there is a unique mild solution in
C1
b(H). �

Remark 4.161

(i) As in the parabolic case the above proof does not work when m > 0 since,
in estimating the difference Dψw1 − Dψw2 as in (4.198), the product of two
functions inCm arises and we do not know if such a product is still inCm unless
m = 0.

(ii) If, in Hypothesis 4.159, we add the requirement that F0 has uniformly con-
tinuous Fréchet derivatives then Theorem 4.160 holds true with the solution u
belonging to UC2

b (H). The proof repeats the same arguments (with obvious
modifications) in the space H = UC2

b (H).
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(iii) The general scheme of proof may also work in the case when G �= I .

�

4.6.2.2 Existence of Mild Solutions for All λ > 0

In this subsection we take U = H , G = I , m = 0 and set �(t) := �I (t), γ(t) :=
‖�(t)‖.

We assume, in addition toHypothesis 4.145 forU = H andG = I , the following.

Hypothesis 4.162 (i) The semigroup et A, t ≥ 0, is of negative type, i.e. there exist
M ≥ 1, ω < 0 such that ‖et A‖ ≤ Meωt for t ≥ 0.

(ii) The Hamiltonian F0 : H × H → R is of the form

F0(x, p) = 〈b1(x), p〉 + F1(p)+ ψ(x),

where b1 ∈ C0,1
b (H, H),ψ ∈ UCb(H), F1 ∈ C0,1(H). Moreover, F1 is concave.

Remark 4.163 (i) The uniform continuity of data is needed here to prove the crucial
estimates of Lemma4.166. Thus in this subsectionwework in the spaceUCb(H)

instead of the more typical Cb(H).
(ii) Hypothesis 4.162-(ii) implies, in particular, that Hypothesis 4.104 is satisfied

with m = 0 and that F0 is continuous.
(iii) Without loss of generality (replacing ψ by ψ + F1(0) if necessary) we can

assume that F1(0) = 0.
�

Equation (4.170) is rewritten in our case as

λv − 1

2
Tr [�D2v] − 〈Ax, Dv〉 − 〈b1(x), Dv〉 − F1(Dv)− ψ(x) = 0, x ∈ D(A),

(4.222)
and its mild form is

v(x) =
∫ +∞

0
e−λt Rt [〈b1, Dv〉 + F1(Dv)+ ψ](x)dt, x ∈ H. (4.223)

We know by Theorem 4.157-(iii) that, under Hypotheses 4.145 and 4.162, the mild
solution u of (4.222) exists and is unique inUC1

b(H) for all λ > λ0, where λ0 is from
Theorem 4.112. Moreover, thanks to Hypothesis 4.162-(ii), we know that, if b1 ∈
C1
b(H, H), F1 ∈ C1,1

b (H) and ψ ∈ C1
b(H) then Hypothesis 4.159 is satisfied and so,

by Theorem 4.160 if λ > λ1, u is twice differentiable and D2u ∈ Cb(H,L(H)).
To get the existence of solutions for all λ > 0 we use the theory of m-dissipative

operators, see e.g. [26, 146].
The idea is the following. First, similarly to (4.174), Eq. (4.222) can be

rewritten as
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λv − Â0v − 〈b1, Dv〉 − F1(Dv)− ψ = 0, x ∈ H,

where the operator Â0 : D(Â0)⊂UCb(H)→ UCb(H) is defined in Appendix B,
Sect.B.7.1 (note that the analogous operatorA0 there does not take values inUCb(H)

and this is why herewe prefer to use Â0, see RemarkB.97). It is proved in Proposition
B.92-(ii) that the operator Â0 is K-closable in UCb(H) and its K-closure is the
operator36 A which is the generator of the K-continuous semigroup Rt in UCb(H).
Such a generator, see Remark B.72, is defined through the resolvent operator which
is given, for all λ > 0 and φ ∈ UCb(H), by

(λI −A)−1φ(x) :=
∫ +∞

0
e−λt Rt [φ](x)dt, x ∈ H.

It is immediate to see that the mild form (4.223) can then be seen as

v(x) = (λI −A)−1(〈b1, Dv〉 + F1(Dv)+ ψ)(x).

Moreover, as proved in Proposition 4.165 (see the beginning of its proof), when
φ ∈ UCb(H) we must have (λI −A)−1φ ∈ UC1

b(H) so D(A)⊂UC1
b(H). Hence

we can consider the nonlinear operator B : D(B)⊂UCb(H)→ UCb(H) defined as

D(B) = D(A)⊂UC1
b(H), B(u) = Au + 〈b1, Du〉 + F1(Du). (4.224)

Using this operator our Eq. (4.222) can be written, at least formally, as

λv(x)− B(v)(x) = ψ(x)

or applying the resolvent of B as

v = (λI − B)−1(ψ),

which can be seen as another way of writing the mild form (4.223). It is then clear
that the m-dissipativity (see Sect.B.1) of the operator B, which in particular implies
that (λI − B)−1 is well defined for all λ ∈ (0,+∞), is the key property to solving
(4.223) for all λ > 0.

In the literature there are two ways of studying them-dissipativity ofB. One, used
e.g. in [106, 179], looks directly at the operatorB defined above; the other, used e.g. in
[146], studies the m-dissipativity of B through the family of the resolvent operators.

The first approach does not require concavity of F1 but it does require its differ-
entiability. Since here our main interest is in equations coming from optimal control
problems, where F1 is always concave, we follow the second approach, generalizing
the results of [317].

36In Proposition B.92 it is denoted by Am . Here m = 0 and we write A for simplicity.
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Notation 4.164 When λ > λ0 (from Theorem 4.157-(iii)) and ψ ∈ UCb(H), we
denote by uλ,ψ the unique solution of (4.223). We also define, for λ > λ0, the map
R(λ) : UCb(H)→ UC1

b(H) as R(λ)(ψ) := uλ,ψ .
Moreover, for any λ > 0, we denote by Tλ the resolvent of A, i.e. the linear

operator on UCb(H) defined by

Tλψ(x) := (λI −A)−1ψ(x) =
∫ +∞

0
e−λt Rt [ψ](x)dt, ∀x ∈ H, (4.225)

and by T ψ
λ the nonlinear operator on UC1

b(H) defined by

T ψ
λ (u)(x) := Tλ[ψ + 〈b1, Du〉 + F1(Du)](x), ∀x ∈ H and ψ ∈ UCb(H).

Note that Tλ, and thus also T ψ
λ , are well defined for all λ > 0 since (Rt )t>0 is a

contraction semigroup on UCb(H). �
Proposition 4.165 Assume that Hypotheses 4.145 forU = H and G = I and 4.162
hold. Let λ0 be from Theorem 4.157-(iii). Then we have the following.

(i) For all λ,μ ≥ λ0, the following so-called identity of the resolvents holds:

R(λ) = R(μ)◦ (I + (μ− λ)R(λ)) . (4.226)

(ii) For all λ ≥ λ0 the map R(λ) is injective.
(iii) For all λ ≥ λ0 and all ψ,ϕ ∈ UCb(X), we have

‖R(λ)(ψ)− R(λ)(ϕ)‖0 ≤ 1

λ
‖ψ − ϕ‖0. (4.227)

Proof We first observe that, for all λ > 0, Tλ maps UCb(H) into UC1
b(H). Indeed,

using Hypothesis 4.145 forU = H and G = I , we have from Proposition B.92-(iii)
and Remark 4.53-(i) that the function (t, x)→ DRt [ψ](x) is in UCx

m,γ((0, T ] ×
H, H) for every T > 0. Moreover, from (4.70) we have the estimate

|DRt [ψ](x)| ≤ ‖�(t)‖‖ψ‖0, ∀t > 0, x ∈ H.

Then, by Proposition 4.16,

DTλψ(x) =
∫ +∞

0
e−λt DRt [ψ](x)dt, ∀x ∈ H. (4.228)

Hence, by (4.75) (here ρψ is the modulus of continuity of ψ),

|DTλψ(x1)− DTλψ(x2)| ≤
∫ +∞

0
e−λt‖�(t)‖ρψ(|et A(x1 − x2))dt, ∀x1, x2 ∈ H,

(4.229)
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so the uniform continuity of DTλψ follows by straightforward computations.
We also observe that (4.223) is equivalent to u = T ψ

λ (u), so that u ∈ UC1
b(H) is

a mild solution of (4.223) if and only if it is a fixed point of T ψ
λ .

Proof of (i). Letλ,μ > 0,ψ ∈ UCb(H).Wefirst observe that the resolvent identity
holds for the family Tλ. Indeed, using (4.49) we have, for λ > 0,

Rt [Tλψ](x) = E

[
Tλψ(et Ax +W A(t))

]
= E

[(∫ +∞

0
e−λs Rs [ψ](et Ax +W A(t))ds

)]

and so, by the Fubini Theorem 1.33 and the semigroup property of Rt ,

Rt [Tλψ](x) =
∫ +∞
0

e−λs
E

[
Rs [ψ](et Ax +W A(t))

]
ds =

∫ +∞
0

e−λs Rt+s [ψ](x)ds.

When μ,λ > 0, μ �= λ, we then obtain, first changing variables and then integrating
by parts,

Tμ(Tλψ)(x) =
∫ +∞

0
e−μt

∫ +∞

0
e−λs Rt+s [ψ](x)dsdt

=
∫ +∞

0
e−μt

∫ +∞

t
e−λ(r−t)Rr [ψ](x)drdt =

∫ +∞

0
e−(μ−λ)t

∫ +∞

t
e−λr Rr [ψ](x)drdt

= 1

λ− μ

(

−
∫ +∞

0
e−λr Rr [ψ](x)ds +

∫ +∞

0
e−μr Rr [ψ](x)ds

)

= 1

λ− μ

(
Tμψ(x)− Tλψ(x)

)
.

Hence the family Tλ satisfies, for μ,λ > 0, μ �= λ,

Tλ = Tμ◦[I + (μ− λ)Tλ]. (4.230)

Now, take λ,μ > λ0 and observe that if u = uλ,ψ , (4.226) is equivalent to

T ψ+(μ−λ)u
μ (u) = u.

However, using (4.230), we have

Tψ+(μ−λ)u
μ (u) = Tμ [ψ + (μ− λ)u + 〈b1, Du〉 + F1(Du)]

= Tμ
[
ψ + 〈b1, Du〉 + F1(Du)+ (μ− λ)Tλ [ψ + 〈b1, Du〉 + F1(Du)]

]

= Tλ [ψ + 〈b1, Du〉 + F1(Du)] = u

and the proof of (4.226) is complete.
Proof of (ii). Let ϕ,ψ ∈ UCb(H), λ > λ0, and assume that R(λ)(ϕ) =

R(λ)(ψ) =: u. By the definition of R(λ), (4.223) and (4.225) we must have

Tλ(〈b1, Du〉 + F1(Du)+ ϕ) = Tλ(〈b1, Du〉 + F1(Du)+ ψ),
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which gives Tλϕ = Tλψ. On the other hand, by the resolvent identity, for any μ >

λ > λ0,
R(μ)(ϕ+ (μ− λ)u) = R(μ)(ψ + (μ− λ)u),

which, arguing as above, gives Tμϕ = Tμψ. We can now use the injectivity of the
Laplace transform and the continuity of the map t → Rt [ϕ− ψ](x) to deduce that
for all x ∈ H , Rt [ϕ](x) = Rt [ψ](x) for all t > 0. Now, since the semigroup Rt isK-
continuous, for all x ∈ H limt→0+ Rt [ϕ](x) = ϕ(x) and limt→0+ Rt [ψ](x) = ψ(x).
Thus ϕ(x) = ψ(x) for all x ∈ H .

Proof of (iii). Let ϕ,ψ ∈ UCb(H). Let λ ≥ λ0. We set u = R(λ)(ψ) and v =
R(λ)(ϕ). If we try to compute ‖u − v‖0 directly, we cannot obtain the desired esti-
mate since T ψ

λ and T ϕ
λ are nonlinear. The next lemma shows how to approximate the

nonlinear term.

Lemma 4.166 There exists a family of operators (Nε)ε≥0 which satisfies:

(i) For all w1, w2 ∈ UCb(H),

‖Nε(w1)− Nε(w2)‖0 ≤ ‖w1 − w2‖0, ∀ε ≥ 0. (4.231)

(ii) For all w ∈ UC1
b(H),

lim
ε→0

∥
∥
∥
∥
Nε(w)− w

ε
− 〈b1, Dw〉 − F1(Dw)

∥
∥
∥
∥
0

= 0. (4.232)

Proof of Lemma 4.166. Roughly speaking, (Nε)ε≥0 has to be the nonlinear semigroup
associated to the equation

{
zt − 〈b1(x), Dz〉 + F1(Dz) = 0
z(0) = w,

which is a time-dependent first-order HJB equation whose solution “should be” the
value function of the following optimal control problem. The dynamic of the system
is described by the equation

{
y′(s) = b1(y(s))+ α(s), s > 0,
y(0) = x,

whose unique solution at time s is denoted by y(s; x,α(·)) or, when clear from the
context, simply by y(s). The control α(·) belongs to the set

	M =
{
α(·) ∈ L∞(0,+∞; H) : |α(s)| ≤ M for a.e. s ∈ [0+,∞)

}
,

where M > 0 is a constant to be chosen later. The cost functional is given by
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J (t, x;α(·)) =
∫ t

0
g(α(s))ds + w(y(t)),

where the function g on H is defined by

g(α) = sup
|p|≤M

{− 〈α, p〉 + F1(p)}.

The value function is
z(t, x) = inf

α(·)∈	M

J (x, t;α(·)). (4.233)

Now, for w ∈ UCb(H), we set Nε(w) = z(ε, ·), where z is the value function just
defined in (4.233).Wewill prove that such defined operators Nε satisfy the properties
listed in Lemma 4.166.

Let w1, w2 ∈ UCb(H). For all ε > 0 and for all x ∈ H , we have

|Nε(w1)(x)− Nε(w2)(x)| ≤ supα(·)∈	M
|w1(y(ε; x,α(·)))− w2(y(ε; x,α(·)))|

≤ ‖w1 − w2‖0,

which shows (4.231). The proof of (4.232) is more complicated and we do it in three
steps.

Step 1. If M ≥ [F1]0,1 then, for all p ∈ H such that |p| ≤ M , we have

F1(p) = inf|α|≤M{〈α, p〉 + g(α)}.

Let G be defined on H by

G(p) = inf|α|≤M{〈α, p〉 + g(α)}

and let p0 ∈ H be such that |p0| ≤ M . Then

G(p0) = inf|α|≤M sup
|p|≤M

{〈α, p0 − p〉 + F1(p)} ≥ F1(p0)

by choosing p = p0. Moreover,

G(p0) = F1(p0)+ inf|α|≤M sup
|p|≤M

{〈α, p0 − p〉 + F1(p)− F1(p0)}.

Since F1 is concave, we have F1(p)− F1(p0) ≤ 〈q0, p − p0〉 for every q0 in the
superdifferential of F1 at p0. Thus, if q0 is in the superdifferential of F1 at p0,

G(p0) ≤ F1(p0)+ inf|α|≤M sup
|p|≤M

{〈α, p0 − p〉 + 〈q0, p − p0〉}.
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This yields
G(p0) ≤ F1(p0)

by choosing α = q0, which is possible since |q0| ≤ [F1]0,1 ≤ M .
Step 2. Estimate from above.
Let u ∈ UC1

b(H) and choose a constant M ≥ max {‖Du‖0, [F1]0,1}. Let ε > 0
and x ∈ H and set, for all w ∈ UC1

b(X),

ψε(w) = Nε(w)− w

ε
− 〈b1, Dw〉 − F1(Dw). (4.234)

Using Step 1 and the fact that the value function is bounded by the infimum over all
constant controls (which we denote by α) of the cost functional we get

ψε(u)(x) ≤ inf|α|≤M

{

g(α)+ u(y(ε; x, α))− u(x)

ε

}

− inf|α|≤M{〈b1(x)+ α, Du(x)〉 + g(α)}

≤ sup
|α|≤M

{
u(y(ε; x,α))− u(x)

ε
− 〈b1(x)+ α, Du(x)〉

}

.

We have

u(y(ε; x,α))− u(x) =
∫ ε

0
〈b1(y(s; x,α))+ α, Du(y(s; x,α))〉 ds, (4.235)

which then yields

ψε(u)(x) ≤ sup
|α|≤M

{
1

ε

∫ ε

0
[〈b1(y(s; x,α))+ α, Du(y(s; x,α))〉

− 〈b1(x)+ α, Du(x)〉]ds
}

.

Clearly the right-hand side converges to 0 as ε→ 0+, thanks to the uniformcontinuity
of b1 and Du and the fact that |y(s; x,α)− x | → 0 as s → 0+, uniformly with
respect to α for |α| ≤ M . Note that here uniform continuity of Du (at least on
bounded sets) is really needed as the set {y(s; x,α) : s ∈ [0, ε], |α| ≤ M} is not
compact in general. The same comment is relevant for the proof of Step 3 below.

Step 3. Estimate from below.
Let u ∈ UC1

b(H) and choose again a constant M ≥ max {‖Du‖0, [F1]0,1}. Let
ε > 0 and x ∈ H . By the dynamic programming principle we know that there exists
an αε(·) ∈ 	M (which in fact also depends on x) such that

Nε(u)(x) ≥ −ε2 +
∫ ε

0
g(αε(s))ds + u(yε(ε)),
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where yε(s) = y(s; x,αε(·). Therefore, using also the analogue of (4.235) in this
case, we get

ψε(u)(x) ≥ −ε+ 1

ε

∫ ε

0
g(αε(s))ds + u(yε(ε))− u(x)

ε
− 〈b1(x), Du(x)〉 − F1(Du(x))

= −ε+ 1

ε

∫ ε

0
[g(αε(s))+ 〈b1(yε(s))+ αε(s), Du(yε(s))〉] ds − 〈b1(x), Du(x)〉 − F1(Du(x))

= −ε+ 1

ε

∫ ε

0
[〈b1(yε(s)), Du(yε(s))〉 − 〈b1(x), Du(x)〉] ds

+ 1

ε

∫ ε

0
[〈αε(s), Du(yε(s))〉 + g(αε(s))− F1(Du(x))] ds.

Wenowobserve that the integrand of the second termof the right-hand side converges
to 0 as ε→ 0+, thanks to the uniform continuity of b1 and Du and the fact that
|yε(s)− x | → 0 as s → 0+, uniformly with respect to ε. Moreover, thanks to Step 1,
the integrand in the third term is greater thanor equal to F1(Du(yε(s)))− F1(Du(x)).
Arguing as before we can thus conclude that

ψε(u)(x) ≥ −ε+ ρ(ε),

where ρ(ε)→ 0 as ε→ 0+. End of the proof of Lemma 4.166.

Continuation of the proof of (iii).
Let ϕ,ψ ∈ UCb(H). Let λ ≥ λ0. We set u = R(λ)(ψ) and v = R(λ)(ϕ) and

observe that, by Hypothesis 4.162 and Theorem 4.112-(iii), both u and v belong to
UC1

b(H). Let ε > 0 and set μ = λ+ 1/ε in (4.226). We get

u = R

(

λ+ 1

ε

)(

ψ + 1

ε
u

)

= Tλ+ 1
ε

[

ψ + 1

ε
u + 〈b1, Du〉 + F1(Du)

]

and an equivalent identity for v. This yields, using the definition of ψε in (4.234),

u − v = Tλ+ 1
ε

[

ψ − ϕ+ 1

ε
(Nε(u)− Nε(v))− ψε(u)+ ψε(v)

]

and thus, by using (4.231),

‖u − v‖0 ≤ 1

λ+ 1
ε

(

‖ψ − ϕ‖0 + 1

ε
‖u − v‖0 + ‖ψε(u)‖0 + ‖ψε(v)‖0

)

.

This implies
λ‖u − v‖0 ≤ ‖ψ − ϕ‖0 + ‖ψε(u)‖0 + ‖ψε(v)‖0.

We now obtain (4.232) by letting ε→ 0 and using (4.232). �
The next theorem is the main result of this subsection.
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Theorem 4.167 Assume that Hypotheses 4.145 for U = H and G = I and 4.162
hold. Then, for all λ > 0 and ψ ∈ UCb(H), there exists a unique mild solution
u ∈ UC1

b(H) of (4.222).Moreover, the operatorB defined in (4.224) ism-dissipative
and we have, for all λ > 0,

u = (λI − B)−1(ψ).

Finally, if ψ ∈ UC1
b(H), F ∈ C1,1

b (H), b1 ∈ C1
b(H, H), then u ∈ UC2

b (H).37

Proof By (i) and (ii) of Proposition 4.165 andTheorem4.112-(iii) we know that there
exists a λ0 > 0 such that the operator R(λ), defined for all λ ≥ λ0, takes its values
in UC1

b(X), is injective and satisfies the resolvent identity (4.226). Thus, thanks to
Proposition B.19 (see also Proposition I.3.3 of [146]) there exists a unique operator

B1 : D(B1)⊂UC1
b(H)→ UCb(H)

such that R(λ) = (λI − B1)
−1 for all λ ≥ λ0. Moreover, since R(λ) satisfies (4.227)

we know, again by Proposition B.19 (see also Proposition II.9.6 of [146]), that B1 is
m-dissipative.

The m-dissipativity of B1 then yields that R(λ) = (λI − B1)
−1 is well defined

for all λ ∈ (0,+∞) and satisfies (4.226) and (4.227) for any λ,μ > 0 (again by
Proposition B.19, see also Propositions I.3.2 and II.9.1 of [146]).

The proof is completed in three steps.

Step 1. For all λ > 0 and ψ ∈ UCb(X), (λI − B1)
−1(ψ) is a fixed point of T ψ

λ .
Conversely, if u ∈ UC1

b(X) is a fixed point of T ψ
λ , then u = (λI − B1)

−1(ψ).
Recall that, for all λ > λ0, R(λ)(ψ) = (λI − B1)

−1(ψ) is the unique fixed point
of T ψ

λ . Let λ > 0 and u = (λI − B1)
−1(ψ). Since (4.226) holds for (λI − B1)

−1 for
all λ > 0, we have u = ((λ+ λ0)I − B1)

−1(ψ + λ0u), which is the unique fixed
point of T ψ+λ0u

λ+λ0
. Thus, by (4.230) we get

u = Tλ+λ0 [ψ + λ0u + 〈b1, Du〉 + F1(Du)]
= Tλ [ψ + λ0u + 〈b1, Du〉 + F1(Du)+ (λ− (λ+ λ0))u] = T ψ

λ (u)

and u is a fixed point of T ψ
λ .

Conversely, if u is a fixed point of T ψ
λ for λ > 0, then using the same equality

above, we get that we must have u = T ψ+λ0u
λ+λ0

u so

u = ((λ+ λ0)I − B1)
−1(ψ + λ0u) = (λI − B1)

−1(ψ).

Step 2. B1 = B as defined in (4.224).

37The last claim of Theorem 4.167 is proved in Theorem 3.3 of [317] using interpolation spaces
and a bootstrap argument, assuming only b1 ∈ C0,1

b (H, H), F1 ∈ C0,1
b (H) and ψ ∈ C1

b (H) and a
weak additional assumption about the singularity of ‖�(t)‖ at t = 0.
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First we recall that one can define D(A) as the set of all functions Tλψ for
ψ ∈ UCb(X) and for an arbitrary λ > 0, so that D(A) is a subset of UC1

b(X). Now
let u ∈ D(B1) and ψ = λu − B1(u). Then, by Step 1 above,

u = Tλ[ψ + 〈b1, Du〉 + F1(Du)]

and thus u ∈ D(A).
Conversely, let u ∈ D(A) and u = Tλψ for some λ > 0 and ψ ∈ UCb(H). Then

u = Tλ[ψ − 〈b1, Du〉 − F1(Du)+ 〈b1, Du〉 + F1(Du)] = T ψ−〈b1,Du〉−F1(Du)

λ (u)

and thus u ∈ D(B1). Hence D(B1) = D(A) = D(B).
Now let u ∈ D(B) = D(B1) and let ψ = B1(u). We have, for λ > 0, λu − ψ =

λu − B1(u), i.e.

u = T λu−ψ
λ u = Tλ[λu − ψ + 〈b1, Du〉 + F1(Du)].

Thus, since Tλ = (λI −A)−1,

λu −Au = λu − ψ + 〈b1, Du〉 + F1(Du),

i.e.
ψ = Au + 〈b1, Du〉 + F1(Du),

which concludes the proof.

Step 3. If ψ ∈ UC1
b(H), then u ∈ UC2

b (H).
When λ > λ1, where λ1 is from Theorem 4.160, the statement is a direct conse-

quence of Hypothesis 4.162 and Remark 4.161. When λ > 0 we use the fact that, as
seen above, the mild solution u ∈ UC1

b(H) satisfies

u = Tλ+λ1[ψ + λ1u + 〈b1, Du〉 + F1(Du)],

i.e. u is the mild solution of (4.222) with λ substituted by λ+ λ1 and ψ substituted
by ψ + λ1u. The claim thus follows. �

We now show that the mild solution of (4.222) is also a K-strong solution, i.e. it
can be approximated by classical solutions for allλ > 0. The definitions of a classical
solution and a K-strong solution are given by Definitions 4.139 and 4.140 with the
operator A1 in (4.158) replaced by the operator A0 defined in (B.36). It could also
be substituted by the operator Â0 defined in (B.37) without any big difficulties. We
have the following result.

Theorem 4.168 Assume that Hypotheses 4.145 with U = H and G = I and 4.162
are satisfied. Let λ > 0. Then we have the following.

(i) If u is a classical solution of (4.222) then it is also a mild solution.
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(ii) If u is a mild solution of (4.222) and u ∈ D(A0) then u is also a classical
solution.

(iii) u is a mild solution of (4.222) if and only if it is a K-strong solution.

Proof Statement (i) follows immediately from the definitions, since for a classical
solution u ∈ D(A0), we immediately have u ∈ D(B) and λu − B(u) = ψ, hence
u = T ψ

λ u.
Concerning statement (ii) we observe that, if u is a mild solution, we have λu −

B(u) = λu −Au − 〈b1, Du〉 − F1(Du) = ψ. If u ∈ D(A0) thenA0u = Au, hence
u satisfies

λu −Au − 〈b1, Du〉 − F1(Du) = ψ

and then it is a classical solution according to Definition 4.139.
We now prove (iii) starting with the “only if” part.
Let ψ ∈ UCb(H). Let u = (λI − B)−1(ψ) be the mild solution of (4.222). Then

u ∈ D(B) = D(A)⊂UC1
b(H). We now approximate u by a sequence (un)n∈N ⊂

FC∞0 (H)⊂D(A0) given in Lemma B.78. Since both the operators D (the Fréchet
derivative) and A are K-closed, the sequence un satisfies

un
K−→ u, in UCb(H), Dun

K−→ Du, in UCb(H, H),

A0un = Aun
K−→ Au, in UC1(H).

Hence, setting
ψn = λun −A0un − 〈b1, Dun〉 − F1(Dun),

we have ψn ∈ UC1(H) and ψn
K−→ ψ in UC1(H). This concludes the proof of the

“only if” part.
To prove the “if” part, let u be aK-strong solution and let (un)n∈N be the approx-

imating sequence as in Definition 4.140. Then for every n ∈ N, un satisfies

A0un = λun − 〈b1, Dun〉 − F1(Dun)− ψn.

Hence, by Definition 4.140 the right-hand side K-converges to λu − 〈b1, Du〉 −
F1(Du)− ψ. Since the K-closure of A0 is A (see Proposition B.92-(i)) it follows
that u ∈ D(A) and

Au = λu − 〈b1, Du〉 − F1(Du)− ψ ⇐⇒ λu − B(u) = ψ,

which gives the claim. �
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4.7 HJB Equations of Ornstein–Uhlenbeck Type: Locally
Lipschitz Hamiltonian

In this section we again consider the HJB equations (4.169) and (4.170), however
now in the case when, in addition to Hypothesis 4.145 with U = H and G = I , we
only assume that the Hamiltonian F0 is Lipschitz continuous on bounded subsets in
the variable p = Dv. For simplicity we only consider the Hamiltonian F0, which is
independent of v. We analyze the parabolic case, which is mainly taken from [307].
Elliptic equations, up to now, have only been studied for problems related to reaction
diffusion equations (see [106, 107], Sect. 9.5.2) and this material is briefly presented
in Sect. 4.9.2.2.

In this section we take U = H , G = I , m = 0 and set �(t) := �I (t), γ(t) :=
‖�(t)‖.

4.7.1 The Parabolic Case

We replace Hypothesis 4.72 by the following set of assumptions.

Hypothesis 4.169

(i) F0 : [0, T ] × H × H → R is continuous and for every R > 0 there exists a
constant C1,F0(R) such that for all t ∈ [0, T ], x ∈ H , p, p1, p2 ∈ H , |p|, |p1|,
|p2| ≤ R,

|F0(t, x, p1)− F0(t, x, p2)| ≤ C1,F0(R)|p1 − p2|

|F0(t, x, p)| ≤ C1,F0(R).

(ii) F0(t, ·, ·) is Fréchet differentiable with Dx F and DpF continuous and for every
R > 0 there exists a constantC2,F0(R) such that for all t ∈ [0, T ], x, x1, x2 ∈ H ,
p, p1, p2 ∈ H , |p|, |p1|, |p2| ≤ R,

|Dx F0(t, x, p1)− Dx F0(t, x, p2)| ≤ C2,F0(R)|p1 − p2|

|DpF0(t, x1, p1)− DpF0(t, x2, p2)| ≤ C2,F0(R)[|x1 − x2| + |p1 − p2|]

|Dx F0(t, x, p)| ≤ C2,F0(R).

(iii) ϕ ∈ C1
b(H).

Remark 4.170 Hypothesis 4.169 is obviously satisfied in the case (studied in [307])
when F0(t, x, p) = 〈b1(x), p〉 + F1(p)+ g(x), where b1 ∈ UC1

b(H, H), g ∈
UC1

b(H) and F1 ∈ C1,1
b (B(0, R)) for all R > 0. �

In the next three subsections we prove the following results.
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• The existence and uniqueness of a local mild solution. A local mild solution is a
mild solution on a short time interval.

• An a priori estimate for the local solution that allows us to extend it to a global
mild solution.

• The mild solution is a K-strong solution.

4.7.1.1 Local Existence and Uniqueness of Mild Solutions

Weprove the existence and uniqueness of a localmild solution of (4.169) in a suitable
weighted Banach space by applying the contraction mapping principle. The proof
generalizes the ideas from Theorem 4.5 of [307] (see also [90, 107]).

Theorem 4.171 Let Hypothesis 4.145 hold with U = H and G = I and let γ ∈ I2.
Assume that Hypothesis 4.169 holds. Then there exists a T0 ∈ [0, T ] such that the

Cauchy problem (4.169) has a local mild solution u ∈ C
0,2,s
b,γ ([T0, T ] × H). Themild

solution u is unique among all mild solutions in C0,1
b ([T0, T ] × H).

Proof This proof is similar to the first two steps of the proof of Theorem 4.152.
We first prove that the map ϒ defined in (4.181) is a contraction in the space HT0,T
(defined in (4.182)) for a suitably chosen T0 ∈ [0, T ). Set

ψv(s, x) = F0(s, x, Dv(s, x)). (4.236)

Arguing exactly as in Step 2 of the proof of Theorem 4.152, we get the estimate

‖ϒ[v]‖HT0,T
≤ Me(ω∨0)T ‖ϕ‖1 + ρ1(T − T0)

[

‖ψv‖0 + sup
t∈[T0,T )

γ(T − t)−1‖Dψv(t, ·)‖0
]

,

(4.237)
where ρ1 is given as in (4.193). Moreover, by (4.236) and Hypothesis 4.169, we have

‖ψv‖0 ≤ C1,F0(‖Dv‖0),

‖Dψv(t, ·)‖0 ≤ C2,F0(‖Dv‖0)+ C1,F0(‖Dv‖0)‖D2v(t, ·)‖0
so that (using that γ is decreasing) estimate (4.237) becomes

‖ϒ[v]‖HT0 ,T
≤ Me(ω∨0)T ‖ϕ‖1 + ρ1(T − T0)

[

C1,F0(‖Dv‖0)+

γ(T )−1C2,F0(‖Dv‖0)+ C1,F0(‖Dv‖0) sup
t∈[T0,T )

γ(T − t)−1‖D2v(t, ·)‖0
]

,

i.e.

‖ϒ[v]‖HT0 ,T
≤ Me(ω∨0)T ‖ϕ‖1 + ρ2(T − T0, ‖Dv‖0)(1+ ‖v‖HT0 ,T

), (4.238)
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where

ρ2(T − T0, R) := ρ1(T − T0)
[
C1,F0(R)+ [γ(T )−1 ∨ 1]C2,F0(R)

]
.

We now take w1, w2 ∈ HT0,T and estimate ϒ[w1] − ϒ[w2] exactly as in (4.197) to
obtain

‖ϒw1 − ϒw2‖HT0,T

≤ ρ1(T − T0)

[

‖ψw1 − ψw2‖0 + sup
t∈[T0,T )

γ(T − t)−1‖D (ψw1 − ψw2
)
(t, ·)‖0

]

.

(4.239)

Defining R(w1, w2) := ‖Dw1‖0 ∨ ‖Dw2‖0 we get, by (4.236) and Hypothesis
4.169,

‖ψw1(t, ·)− ψw2(t, ·)‖0 ≤ C1,F0(R(w1, w2))‖Dw1(t, ·)− Dw2(t, ·)‖0
and

‖Dψw1(t, ·)− Dψw2 (t, ·)‖0 ≤ C2,F0 (R(w1, w2))‖Dw1(t, ·)− Dw2(t, ·)‖0
+ C2,F0 (R(w1, w2))‖Dw1(t, ·)− Dw2(t, ·)‖0‖D2w1(t, ·)‖0

+ C1,F0 (R(w1, w2))‖D2w1(t, ·)− D2w2(t, ·)‖0.

Combining the above with (4.239), we obtain by straightforward calculations

‖ϒ[w1] − ϒ[w2]‖HT0,T
≤ ρ1(T − T0)‖Dw1 − Dw2‖0×

×
[

C1,F0 (R(w1, w2))+ C2,F0 (R(w1, w2))

(

γ(T )−1+ sup
t∈[T0,T )

γ(T − t)−1‖D2w1(t, ·)‖0
)]

+ ρ1(T − T0)C1,F0 (R(w1, w2)) sup
t∈[T0,T )

γ(T − t)−1‖D2w1(t, ·)− D2w2(t, ·)‖0

which gives

‖ϒ[w1] − ϒ[w2]‖HT0 ,T
≤ ρ2(T − T0, R(w1, w2))(1+ ‖w1‖HT0 ,T

)‖w1 − w2‖HT0 ,T
.

(4.240)

We now define a subset ofHT0,T where it is possible to apply the contractionmapping
principle. We take

R ≥ 2Me(ω∨0)T ‖ϕ‖1 (4.241)

and choose T0 ∈ [0, T ) such that (see (4.238))



4.7 HJB Equations of Ornstein–Uhlenbeck Type: Locally Lipschitz Hamiltonian 517

R/2+ ρ2(T − T0, R)(1+ R) < R (4.242)

and (see (4.240))

ρ2(T − T0, R)(1+ R) <
1

2
. (4.243)

Let BT0(0, R)be the closed ball centered at 0with radius R inHT0,T . Applying (4.242)
and (4.243) to (4.239) and (4.240), it follows that ϒ is a contraction on BT0(0, R).
The contraction mapping principle now guarantees that there exists a unique solu-
tion u of v = ϒ[v] in BT0(0, R). The solution u is also unique in the whole space
C0,1
b ([T0, T ] × H). Indeed, let u1 be another mild solution inC0,1

b ([T0, T ] × H). We
set R1 := ‖Du‖0 ∨ ‖Du1‖0. Since u1 = ϒ[u1], we have, for (t, x) ∈ [T0, T ] × H ,
using that Rt is a contraction semigroup in Cb(H),

|u(t, x)− u1(t, x)| = |ϒ[u](t, x)− ϒ[u1](t, x)|

≤
∫ T

t
|Rs−t [F0(s, ·, Du(s, ·))− F0(s, ·, Du1(s, ·))](x)| ds

≤ C1,F0(R1)

∫ T

t
‖Du(s, ·)− Du1(s, ·)‖0ds

and, using (4.70),

|Du(t, x)− Du1(t, x)| ≤
∫ T

t
|DRs−t [F0(t, ·, Du(t, ·))− F0(t, ·, Du1(t, ·))](x)| ds

≤ C1,F0 (R1)
∫ T

t
γ(s − t)‖Du1(s, ·)− Du2(s, ·)‖0ds.

Thus

‖u(t, ·)− u1(t, ·)‖1 ≤ C1,F0(R1)

∫ T

t
[1+ γ(s − t)]‖u(s, ·)− u1(s, ·)‖1ds,

which gives the required uniqueness thanks to Gronwall’s Lemma D.29.
Clearly the argument above cannot be iterated on a time interval of the same length

without an a priori estimate for the C0,1
b norm of the solution since the choice of R

and then of T0 depend on ‖ϕ‖1. �

4.7.1.2 A Priori Estimates

In this subsection we let the assumptions of Theorem 4.171 hold. We denote by u
the local mild solution of Eq. (4.1). We need the following additional assumption.

Hypothesis 4.172 (i) For every t ≥ 0 we have ‖et A‖ ≤ eωt , i.e. M = 1 in Hypoth-
esis 4.145.
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(ii) For every t ∈ [0, T ], x ∈ H , p ∈ H we have

〈Dx F0(t, x, p), p〉 ≤ C3,F0 |p|2.

Remark 4.173 Thanks to the Lumer–Phillips Theorem B.45 the above assumption
(i) is satisfied if and only if A∗ − ω I is maximal dissipative. So, in particular, for all
p ∈ D(A∗) we must have

〈p, A∗ p〉 ≤ ω|p|2. (4.244)

Moreover, assumption (ii) is satisfied if we take F0(t, x, p) = 〈b1(t, x), p〉 + F1

(p)+ g with bounded Dxb1 and Dg (which is the case studied in [307]) or more
generally if, for some C > 0

〈Dxb1(t, x)p, p〉 ≤ C |p|2, ∀(t, x, p) ∈ [0, T ] × H × H

and Dg is bounded. �

For simplicity, from now on we will use the notation g(t, x) = F0(t, x, 0) and
F2(t, x, p) = F0(t, x, p)− F0(t, x, 0) so that we will substitute F0(t, x, p) by
F2(t, x, p)+ g(t, x). Hence our HJB equation is now written as
{

vt + 1

2
Tr [�D2v] + 〈Ax, Dv〉 + F2(t, x, v, DGv)+ g(t, x) = 0, t ∈ [0, T ), x ∈ D(A),

v(T, x) = ϕ(x), x ∈ H.

(4.245)

We prove an estimate for ‖u‖C0,1
b ([T0,T ]×H) when ϕ ∈ C1

b(H), from which the
global existence will follow easily.

Proposition 4.174 Let Hypothesis 4.145 hold with U = H and G = I and let
γ ∈ I2. Assume that Hypotheses 4.169 and 4.172 hold. Let ϕ ∈ C1

b(H) and let

u ∈ C
0,2,s
b,γ ([0, T − T0] × H) be the local mild solution of (4.245) from Theorem

4.171. Then, setting C = 2(ω + C3,F0 + 1), we have

‖u‖C0,1
b ([T0,T ]×H) ≤ eC(T−T0)

[
‖ϕ‖1 + (T − T0)‖g‖C0,1

b ([T0,T ]×H)

]
. (4.246)

Proof We first prove an estimate for ‖u‖0. For (t, x) ∈ [T0, T ] × H we define

G0(t, x) :=
∫ 1

0
DpF2(t, x,λDu(t, x))dλ. (4.247)

By Hypothesis 4.169 and the regularity of u we deduce that G0 is continuous and
satisfies

|G0(t, x)| ≤ C1,F0(‖Du‖0), ∀(t, x) ∈ [T0, T ] × H, (4.248)

and
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|G0(t, x1)−G0(t, x2)| ≤ C2,F0(‖Du‖0)|[|x1 − x2| + |Du(t, x1)− Du(t, x2)|]
≤ C2,F0(‖Du‖0)

[
1+ γ(t)‖u‖

C
0,2,s
b,γ ([T0,T ]×H)

]
|x1 − x2| (4.249)

for all t ∈ [T0, T ], x1, x2 ∈ H . Hence, G0 satisfies Hypothesis 1.145-(i) for b (when
b0 does not depend on a1 and a2 = 0) on [T0, T ] × H . Thus, by Proposition 1.147,
the SDE

dY (s) = [AY (s)+ G0(s, Y (s))]ds +√�dW (s), s ∈ [t, T ], Y (t) = x,
(4.250)

t ∈ [T0, T ], x ∈ H , has a unique solution Y (s; t, x). For φ ∈ Bb(H) we define
Pt,s[φ](x) := E[φ(Y (s; t, x)] to be the two-parameter transition semigroup asso-
ciated to the above SDE. We claim that, for (t, x) ∈ [T0, T ] × H ,

u(t, x) = Pt,T [ϕ](x)+
∫ T

t
Pt,s[g(s, ·)](x)ds. (4.251)

Indeed, by Theorem 4.150, we know that u is aK-strong solution of (4.245).38 Using
Remark 4.136-(v), this means (by Definition 4.132 where η ≡ 1, m = 0, and spaces
of Borelmeasurable functions are substituted by spaces of continuous functions since
here ϕ, g, u, Du are continuous) that there exist three sequences (ϕn), (gn), (un),
such that un is a classical solution of the Eq. (4.245) with data ϕn and gn and we have

ϕn
K−→ ϕ, in Cb(H), Dun

K−→ Du in Cb([0, T ] × H, H),

gn
K−→ g, un

K−→ u, in Cb([0, T ] × H).

Letting Y (s) = Y (s; t, x) we can then apply Dynkin’s formula of Proposition 1.169
to the process un(s, Y (s)) obtaining

Eϕn(Y (T ))− un(t, x)

= E

∫ T

t
[(un)t (s, Y (s))+A0un(s, Y (s))+ 〈G0(s, Y (s)), Dun(s, Y (s))〉] ds.

Since un is a classical solution of (4.245) with data ϕn and gn , we get

38To be precise, in this case Hypothesis 4.72 is not satisfied. However, looking at the proof of
Theorem 4.150 (which uses Theorem 4.135), we see that this assumption is only used there to
guarantee the existence of a mild solution. Since here we already have a mild solution, the proof
proceeds in exactly the same way.
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Eϕn(Y (T ))− un(t, x) =E
∫ T

t

[

〈G0(s, Y (s)), Dun(s, Y (s))〉

− F2(s, Y (s), Dun(s, Y (s)))− gn(s, Y (s))

]

ds.

Letting n→+∞ and using the dominated convergence theorem we thus obtain

Eϕ(Y (T ))− u(t, x) = E

∫ T

t

[

〈G0(s, Y (s)), Du(s, Y (s))〉

− F2(s, Y (s), Du(s, Y (s)))− g(s, Y (s))

]

ds = −E
∫ T

t
g(s, Y (s))ds,

where to get the last equality we used the definition of G0 and the fact that
F2(t, x, 0) = 0. This shows (4.251) and we immediately get the estimate

‖u(t, ·)‖0 ≤ ‖ϕ‖0 + (T − t)‖g‖0. (4.252)

The proof of the estimate for ‖Du‖0 is more complicated. We use the so-called
Bernstein’s method, consisting in finding the equation satisfied by ‖Du‖20 and using
it to get the required estimate. We set

f (t, x) = F0(t, x, Du(t, x))+ g(t, x).

By Hypothesis 4.169 and the regularity of u we have f ∈ C
0,1
b,γ ([T0, T ] × H). By

TheoremB.95 (which generalizes the approximation schemeused in [108, 308, 494])
we can find two sequences ϕn ∈ FC∞,A∗

0 (H) and fn ∈ FC∞,A∗
0 ([T0, T ] × H) such

that
K − lim

n→∞ϕn = ϕ in Cb(H)

K − lim
n→∞ Dϕn = Dϕ in Cb(H, H)

K − lim
n→∞ fn = f in Cb([T0, T ] × H)

K − lim
n→∞ Dfn = Df in Cb,γ([T0, T )× H, H)

(4.253)

(see Definition 4.131 for the last convergence). If we consider the sequence

un(t, x) = Rt [ϕn](x)+
∫ t

0
Rt−s[ fn(s, ·)](x)ds

then, by Theorem B.95 it follows that, for all n ∈ N, un satisfies (4.144) on [T0, T ].
Moreover, simply differentiating the above formula and using the regularity prop-
erties of Rt , ϕn and fn we get that, for every n ∈ N, t ∈ [T0, T ], the function un
satisfies
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un(t, ·) ∈ UC∞b (H)

D3un(t, ·)Dun(t, ·) ∈ UCb(X,L1(H))

A∗D2un(t, ·)Dun(t, ·) ∈ UCb(H)

(4.254)

and, by (4.253),

K − lim
n→∞ un = u in Cb([T0, T ] × H)

K − lim
n→∞ Dun = Du in Cb([T0, T ] × H, H)

K − lim
n→∞ D2unh = D2uh in Cb,γ([T0, T )× H, H), ∀h ∈ H.

(4.255)

Furthermore, still according to Theorem B.95, every un is a classical solution of the
approximating problem
⎧
⎪⎨

⎪⎩

wt + 1

2
Tr [�D2w] + 〈Ax, Dw〉 + F2(t, x, Dw)+ gn = 0, t ∈ [T0, T ), x ∈ H

w(T, x) = ϕn(x), x ∈ H,

(4.256)
where

gn(t, x) = g(t, x)+ [ fn(t, x)− f (t, x)] + [F2(t, x, Du(t, x))− F2(t, x, Dun(t, x))].

We now set for (t, x) ∈ [T0, T ] × H ,

zn(t, x) = 1

2
|Dun(t, x)|2, z(t, x) = 1

2
|Du(t, x)|2. (4.257)

We prove that, for every n ∈ N, the function zn is a classical solution of a certain
Kolmogorov equation. The required estimate will follow by a suitable representa-
tion of the solution as in the first part of the proof. In the proof we will be using
that D3un(t, x), when it is identified with an element of L3(H), is symmetric (see
Appendix D.2).

Formally, we have

(zn)t (t, x) = 〈Dtxun(t, x), Dun(t, x)〉 . (4.258)

Since by (4.256)

(un)t (t, x) = − 1
2 Tr [�D2un(t, x)] − 〈x, A∗Dun(t, x)〉

−F2(t, x, Dun(t, x))− gn(t, x), t ∈ [T0, T ), x ∈ H,
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then, by (4.254), we can deduce that the map (un)t is continuously differentiable
with respect to x . Indeed, by the definition of the trace, for a given orthonormal basis
{e j } of H and any h ∈ H ,

〈
DTr [�D2un], h

〉
=
〈

D

⎡

⎣
+∞∑

j=1

〈
�D2une j , e j

〉
⎤

⎦ , h

〉

=∑+∞
j=1

〈
D
〈
D2une j , �e j

〉
, h
〉

=
+∞∑

j=1

〈
[D3une j ]�e j , h

〉
=
+∞∑

j=1

〈
[D3unh]e j , �e j

〉
=
+∞∑

j=1

〈
�[D3unh]e j , e j

〉

(4.259)
(in the last line we used that D3un is symmetric) which makes classical sense thanks
to (4.254). Moreover,

〈
D
[〈
x, A∗Dun(t, x)

〉+ F2(t, x, Dun(t, x))+ gn(t, x)
]
, h
〉

= 〈x, A∗D2un(t, x)h
〉+ 〈h, A∗Dun(t, x)

〉+ 〈Dx F2(t, x, Dun(t, x)), h〉

+ 〈DpF2(t, x, Dun(t, x)), D
2un(t, x)h

〉+ 〈Dgn(t, x), h〉,

(4.260)

which again makes classical sense by (4.254). Hence Dtxun is well defined. This
implies that zn(·, x) is differentiable for every x ∈ H and that (4.258) is true. Then
we can write

−(zn)t (t, x) = −〈Dtxun(t, x), Dun(t, x)〉

= 〈D[ 12Tr [�D2un(t, x)] + 〈x, A∗Dun(t, x)〉

+F2(t, x, Dun(t, x))+ gn(t, x)
]
, Dun(t, x)

〉

(4.261)

which yields, by (4.259) and (4.260),

−(zn)t (t, x) = 1

2

+∞∑

j=1

〈
�[D3un(t, x)(Dun(t, x))]e j , e j

〉
+
〈
x, A∗D2un(t, x)Dun(t, x)

〉

+ 〈Dun(t, x), A∗Dun(t, x)
〉+ 〈Dx F2(t, x, Dun(t, x)), Dun(t, x)〉

+
〈
DpF2(t, x, Dun(t, x)), D2un(t, x)Dun(t, x)

〉
+ 〈Dgn(t, x), Dun(t, x)〉 .

(4.262)
This, in particular, implies that (zn)t ∈ Cb([T0, T ] × H), which is a part of the defi-
nition of a classical solution (see Definition 4.129).

Now, by (4.254), zn(t, ·) ∈ UC2
b (H) for every t ∈ [T0, T ] and differentiating with

respect to x we get
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〈Dzn(t, x), h〉 =
〈
D2un(t, x)h, Dun(t, x)

〉
and

〈
D2zn(t, x)h, k

〉 = 〈[D3un(t, x)h]k, Dun(t, x)
〉+ 〈D2un(t, x)h, D2un(t, x)k

〉

(4.263)
for all h, k ∈ H . Observe now that, for h, k ∈ H , since D3un is symmetric,

〈[D3un(t, x)h]�k, Dun(t, x)
〉 = 〈[D3un(t, x)Dun(t, x)]h, �k

〉

= 〈�[D3un(t, x)Dun(t, x)]h, k
〉
.

Hence

〈
�D2zn(t, x)h, k

〉 = 〈D2zn(t, x)h, �k
〉

= 〈[D3un(t, x)h]�k, Dun(t, x)
〉+ 〈D2un(t, x)h, D2un(t, x)�k

〉

= 〈�[D3un(t, x)Dun(t, x)]h, k
〉+ 〈�D2un(t, x)D

2un(t, x)h, k
〉
.

Now (4.254) and (4.263) imply (recall that the operatorA0 is defined in (B.37)) that
‖zn(t, ·)‖D(A0) is bounded on [T0, T ]. Moreover,

A0zn(t, x) = 1
2Tr [�D2zn(t, x)] + 〈x, A∗Dzn(t, x)〉

= 1

2

+∞∑

j=1

(〈
�[D3un(t, x)Dun(t, x)]e j , e j

〉+ 〈�D2un(t, x)D
2un(t, x)e j , e j

〉)

+ 〈x, A∗D2un(t, x)Dun(t, x)
〉
,

(4.264)
so thatA0zn ∈ C1([T0, T ] × H) and, putting (4.263) and (4.264) in (4.262)we obtain
the following equation for zn

−(zn)t (t, x) = A0zn(t, x)− 1

2
Tr [�D2un(t, x)D

2un(t, x)]

+ 〈Dun(t, x), A∗Dun(t, x)+ Dx F2(t, x, Dun(t, x))〉

+ 〈DpF2(t, x, Dun(t, x)), Dzn(t, x)
〉+ 〈Dgn(t, x), Dun(t, x)〉 .

(4.265)

We observe that

〈Dgn(t, x), Dun(t, x)〉 ≤ |Dgn(t, x)||Dun(t, x)|
≤ |Dgn(t, x)|2

2
+ |Dun(t, x)|2

2
= |Dgn(t, x)|2

2
+ zn(t, x)

and, by Hypothesis 4.172,

〈
Dun(t, x), A

∗Dun(t, x)
〉 ≤ ω|Dun(t, x)|2 ≤ 2ωzn(t, x)
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and

〈Dun(t, x), Dx F2(t, x, Dun(t, x))〉
= 〈Dun(t, x), Dx F0(t, x, Dun(t, x))〉 − 〈Dun(t, x), Dgn(t, x)〉
≤ C3,F0 |Dun(t, x)|2 + |Dgn(t, x)|2

2
+ zn(t, x) ≤ [2C3,F0 + 1]zn + |Dgn(t, x)|2

2
.

Then, setting

Ln(t, x) = 1

2
Tr[�D2un(t, x)D

2un(t, x)] +
(

[2ω + 2C3,F0 + 1]zn(t, x)

+|Dgn(t, x)|2
2

− 〈Dun(t, x), A
∗Dun(t, x)+ Dx F2(t, x, Dun(t, x))

〉
)

+
( |Dgn(t, x)|2

2
+ zn(t, x)− 〈Dgn(t, x), Dun(t, x)〉

)

,

(4.266)

we have that Ln ∈ Cb([T0, T ] × H), Ln ≥ 0 and

−(zn)t (t, x) = A0zn(t, x)+
〈
DpF2(t, x, Dun(t, x)), Dzn(t, x)

〉

+|Dgn|2 + 2[ω + C3,F0 + 1]zn(t, x)− Ln(t, x).
(4.267)

Setting

G1(t, x) = DpF2(t, x, Du(t, x)) and C = 2(ω + C3,F0 + 1),

(4.267) can be written as

−(zn)t (t, x) = A0zn(t, x)+ 〈G1(t, x), Dzn(t, x)〉

+ 〈DpF2(t, x, Dun(t, x))− DpF2(t, x, Du(t, x)), Dzn(t, x)
〉

+Czn(t, x)+ |Dgn(t, x)|2 − Ln(t, x).

(4.268)

We now argue exactly as in the first part of the proof but now for the function
e−Ct zn(t, x).

By Hypothesis 4.169 and the regularity of u we deduce that G1 is continuous and
satisfies

|G1(t, x)| ≤ C1,F0(‖Du‖0), ∀(t, x) ∈ [T0, T ] × H, (4.269)

and
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|G1(t, x1)−G1(t, x2)| ≤ C2,F0(‖Du‖0)[|x1 − x2| + |Du(t, x1)− Du(t, x2)|]
≤ C2,F0(‖Du‖0)

[
1+ γ(t)‖u‖

C
0,2,s
b,γ ([T0,T ]×H)

]
|x1 − x2| (4.270)

for all t ∈ [T0, T ], x1, x2 ∈ H . Hence, for every (t, x) ∈ [T0, T ] × H , by Proposition
1.147 the SDE

dY (s) = [AY (s)+ G1(s, Y (s))]ds +√�dW (s), s ∈ [t, T ], Y (t) = x,
(4.271)

has a unique solution Y1(s; t, x). Define P1
t,s[φ](x) := E[φ(Y1(s; t, x)], for φ ∈

Bb(H), to be the two-parameter transition semigroup associated to the SDE (4.271).
We fix (t, x) ∈ [T0, T ] × H . We use Dynkin’s formula of Proposition 1.169 applied
to the function e−C(T−s)zn(s, Y1(s; t, x)), s ∈ [t, T ] and, arguing similarly as in the
first part of this proof, we obtain

zn(t, x) = 1

2
eC(T−t)P1

t,T

[
|Dϕn |2

]
(x)+

∫ T

t
eC(s−t)P1

t,s

[
|Dgn |2(s, ·)− Ln(s, ·)

]
(x)ds

+
∫ T

t
eC(s−t)P1

t,s
[〈
DpF2(s, ·, Dun(s, ·))− DpF2(s, ·, Du(s, ·)), Dzn(s, ·)

〉]
(x)ds,

so that, since Ln ≥ 0,

zn(t, x) ≤ 1

2
eC(T−t)P1

t,T

[
|Dϕn |2

]
(x)+

∫ T

t
eC(s−t)P1

t,s

[
|Dgn |2(s, ·)

]
(x)ds

+
∫ T

t
eC(s−t) ∣∣

∣P1
t,s
[〈
DpF2(s, ·, Dun(s, ·))− DpF2(s, ·, Du(s, ·)), Dzn(s, ·)

〉]
(x)
∣
∣
∣ ds.

At this point we observe that, by (4.255), we have, in Cb([T0, T ] × H),

K − lim
n→∞ DpF2(·, ·, Dun(·, ·)) = DpF2(·, ·, Du(·, ·)), K − lim

n→∞ zn = z

and, in Cb,γ([T0, T )× H, H),

K − lim
n→∞ Dzn = Dz.

Similarly, by (4.253),

K − lim
n→∞ Dϕn = Dϕ in Cb(H)

and
K − lim

n→∞ Dgn = Dg in Cb,γ([T0, T )× H, H),

so that, letting n→∞ and applying the dominated convergence theorem, we get
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z(t, x) ≤ 1

2
eC(T−t)P1

t,T

[
Dϕ|2] (x)+

∫ T

t
eC(s−t)P1

t,s

[|Dg|2(s, ·)] (x)ds, (4.272)

which yields

z(t, x) ≤ eC(T−t)

2
‖Dϕ‖20 +

∫ T

t
eC(s−t)|Dg(s, ·)|20ds

and the claim easily follows. �

4.7.1.3 Global Existence of Mild and Strong Solutions

The following is the main result of this subsection.

Theorem 4.175 Let Hypothesis 4.145 hold with U = H and G = I and let γ ∈ I2.
Assume that Hypotheses 4.169 and 4.172 hold. Then there exists a mild solution u

of (4.169) in C
0,2,s
b,γ ([0, T ] × H), and u is unique in C0,1

b ([0, T ] × H). Assume,

moreover, that γ(t) ≤ C̄t−α, t ∈ (0, T ], for some C̄ > 0 and α ∈ (0, 1). If, in
Hypothesis 4.169, we only require ϕ ∈ C0,1

b (H), then there exists a mild solution

u ∈ C
0,1
b,α([0, T ] × H) of problem (4.169), which is unique in C

0,1
b,α([0, T ] × H).

Proof Step 1. The case ϕ ∈ C1
b(H).

The required global existence follows by the local existence (Theorem 4.171)
and by the a priori estimate for the C0,1

b norm of the solution proved in Proposition
4.174).We iterate a finite number of times the procedure used in the proof of Theorem
4.171, as is done in Step 3 of the proof of Theorem 4.152. To clarify this we look
closely at the second iteration. We consider the map ϒ in the space HT0−t1,T0+t1 ,
where t1 ∈ (0, T − T0) will be defined later. The final datum at T0 + t1 is u(T0 +
t1, ·) ∈ C1

b(H), where u is the solution given by Theorem 4.171. From Proposition
4.174, formula (4.246), we know that, setting C = 2(ω + C3,F0 + 1) and recalling
that g(t, x) = F0(t, x, 0), we have, for all t ∈ [T0, T ],

‖u(t, ·)‖1 ≤ eC(T−T0)
[
‖ϕ‖1 + (T − T0)‖g‖C0,1

b ([T0,T ]×H)

]
(4.273)

≤ eCT
[
‖ϕ‖1 + T ‖g‖C0,1

b ([0,T ]×H)

]
=: K (T ). (4.274)

Similarly to (4.241), we choose R0 := 2Me(ω∨0)T K (T ) ≥ R, where R is from
(4.241), and then t̃1 ∈ [0, T − T0] such that, as in (4.242) and (4.243),

R0/2+ ρ2(2t1, R0)(1+ R0) < R0

and

ρ2(2t1, R0)(1+ R0) <
1

2
.
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The argument of the proof of Theorem 4.171 shows that ϒ has a unique fixed point
in the closed ball centered at 0 with radius R0 in HT0−t1,T0+t1 , and this fixed point
must coincide with the local mild solution u in [T0, T0 + t1] × H since R0 ≥ R.
This proves the existence of a mild solution defined in [T0 − t1, T )× H . By con-
struction we have u ∈ C0,1

b ([T0 − t1, T ] × H) and, thanks to Proposition 4.174,
‖u‖C0,1

b ([T0−t1,T ]×H) ≤ K (T ). Moreover, for all t ∈ [T0, T )

‖D2u(t, ·)‖ ≤ Rγ(T − t)

and, since γ is decreasing, we have for all t ∈ [T0 − t1, T0],

‖D2u(t, ·)‖ ≤ R0γ(T0 + t1 − t) ≤ R0γ(t1).

Hence, for t ∈ [T1, T ),

‖D2u(t, ·)‖ ≤ [Rγ(T − t)] ∨ [R0γ(t1)].

This implies that D2u ∈ C
s
b,γ([T0 − t1, T )× H,L(H)).

If T0 − t1 > 0 we can now repeat the above argument a finite number of times
to get the claim. Indeed, thanks to the a priori estimate (4.274), the choice of R0

remains the same and thus also the choice of t1.
The uniqueness is proved exactly as in the last part of the proof of Theorem 4.171

since the argument works in the same way on the interval [0, T ] instead of [T0, T ].
Step 2. The case ϕ ∈ C0,1

b (H).
We consider a sequence of functions (ϕn)n∈N ⊂ C1

b(H) converging uniformly to
ϕ and such that ‖ϕn‖1 ≤ ‖ϕ‖0,1 (this is always possible using inf-sup convolutions,
see Definition D.24 and Proposition D.26). We then associate to ϕn the unique mild
solution un ∈ C0,1

b ([0, T ] × H) of Eq. (4.169) with initial datum ϕn so that

un(t, x) = RT−t [ϕn](x)+
∫ T

t
Rs−t [F2(s, ·, Dun(s, ·))+ g(s, ·)](x)ds.

It follows from Step 1 that

‖un‖C0,1
b ([0,T ]×H) ≤ eCT

[
‖ϕ‖0,1 + T ‖g‖C0,1

b ([0,T ]×H)

]
=: K (T ).

Subtracting we then get

un(t, x)− um(t, x) = RT−t [ϕn − ϕm](x)

+
∫ T

t
Rs−t [F2(s, ·, Dun(s, ·))− F2(s, ·, Dum(s, ·))](x)ds

(4.275)
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so that

‖(Dun − Dum)(t, ·)‖0 ≤ γ(T − t)‖ϕn − ϕm‖0
+ C1,F0 (K (T ))

∫ T

t
γ(s − t)‖(Dun − Dum)(s, ·)‖0ds.

Using γ(t) ≤ Ct−α and the second Gronwall’s inequality of Proposition D.30 we

get, for some constant C4 := C4

(
T, ‖ϕ‖0,1, ‖g‖C0,1

b ([0,T ]×H)

)
,

‖(Dun − Dum)(t, ·)‖0 ≤ C4(T − t)−α‖ϕn − ϕm‖0.

Using this estimate in (4.275) we get, for a suitable C5,

‖un − um‖C0,1
b,α([0,T ]×H)

≤ C5‖ϕn − ϕm‖0,

which implies that un converges in C
0,1
b,α([0, T ] × H) to a function u satisfying the

integral equation (4.177).

To prove uniqueness, if u1 is another mild solution inC
0,1
b,α([0, T ] × H), similarly

to (4.275), defining R1 = ‖Du‖0 ∨ ‖Du1‖0, we get

u(t, x)− u1(t, x) =
∫ T

t
Rs−t [F2(s, ·, Du(s, ·))− F2(s, ·, Du1(s, ·))](x)ds

(4.276)
and so

‖(Du − Du1)(t, ·)‖0 ≤ C1,F0(R1)

∫ T

t
γ(s − t)‖(Du − Du1)(s, ·)‖0ds.

Using Gronwall’s inequality of Proposition D.29 we then get Du1 = Du2 and so the
claim follows by (4.276). �

The analogue of Theorem 4.150 also holds in this case.

Theorem 4.176 Let T > 0. Assume that Hypothesis 4.145 is satisfied with U = H,
G = I and ‖�(t)‖ ≤ C̄t−α, t ∈ (0, T ], for some C̄ > 0 and α ∈ (0, 1). Let also

Hypotheses 4.169 and 4.172 be satisfied with ϕ ∈ C0,1(H). Let u ∈ C
0,1
b,α([0, T ] ×

H) be the mild solution of Eq. (4.169). Then the function u is the unique K-strong

solution of the Cauchy problem (4.169) in C
0,1
b,α([0, T ] × H). Moreover, the approx-

imating sequence un to u can be chosen so that the convergence is uniform on
[0, T − ε] × H0 for every ε ∈ (0, T ) and every bounded subset H0 of H.

Proof The proof is completely similar to that of Theorem 4.150 as the different
assumptions on F0 do not affect the approximation procedure. �
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4.8 Stochastic Control: Verification Theorems and Optimal
Feedbacks

In this section we study a class of stochastic optimal control problems to which we
apply the results of the previous sections. The aim is to replicate, as much as possible,
the results on optimal synthesis presented in Sect. 2.5.1. More precisely, we want to
prove the following.

• The value function of a control problem coincides with the unique mild/strong
solution of the associated HJB equation.

• A verification theorem, i.e. a sufficient (and in some cases necessary) condition
for optimality.

• Existence, and in some cases uniqueness, of optimal feedback controls, where the
feedback formula is written in terms of the space derivative of the value function.

We present separately the finite horizon case (leading to a parabolic HJB equation
like (4.109)) and the infinite horizon case (leading to an elliptic HJB equation like
(4.125)).

4.8.1 The Finite Horizon Case

The plan of this section is the following. We first collect results about HJB equations
associated with our optimal control problems. Then we discuss the optimal control
problems and finally prove verification theorems and existence of optimal feedback
controls. We choose, differently from what seems more intuitive, to start with the
results on HJB equations, to have a more linear presentation of the material, and to
avoid confusion with various choices of the needed generalized reference probability
spaces.

4.8.1.1 The HJB Equation

Let T > 0 and H be a real separable Hilbert space. We consider HJB equations of
the form (4.1) (which are special cases of (2.42))

⎧
⎪⎨

⎪⎩

vt + 1

2
Tr [�(t, x)D2v] + 〈Ax + b(t, x), Dv〉 + F(t, x, Dv) = 0

t ∈ [0, T ), x ∈ H,

v(T, x) = g(x), x ∈ H,

(4.277)

where �(t, x) = σ(t, x)σ∗(t, x) and the Hamiltonian F is given by
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F(t, x, p) = inf
a∈	

FCV (t, x, p, a) = inf
a∈	

{〈G(t, x)R(t, x, a), p〉H + l(t, x, a)
}
.

(4.278)
The connections of these equations to specific control problems are discussed in
Sect. 4.8.1.4. Note that, differently from the definition of Hamiltonians (2.43) and
(2.44) in Sect. 2.5.1, here we drop the term 〈b(t, x), Dv〉 from FCV since it does not
depend on the control variable. However, sometimes in the next subsections it will
be included in the Hamiltonian, see e.g. (4.292) and (4.293).

To be able to study more general cases where G(t, x)R(t, x, a) may not be well
defined, as was done in Sect. 4.4.1, we introduce the modified Hamiltonian F0 as
follows

F0(t, x, q) = inf
a∈	

F0,CV (t, x, q, a) = inf
a∈	

{〈R(t, x, a), q〉U + l(t, x, a)
}

(4.279)

and observe that, for p ∈ D(G(t, x)∗),

F(t, x, p) = F0(t, x,G(t, x)∗ p),

so the term F(t, x, Dv) in (4.277) can be formally rewritten (see Sect. 4.2.1) as
F0(t, x, DGv).

We consider two different sets of assumptions. The first is the following.

Hypothesis 4.177

(i) A, b,σ satisfy Hypotheses 1.149 and 4.127-(iii).
(ii) For a given real separableHilbert spaceU ,G is a family of (possibly unbounded

with dense domains) closed linear operators G(t, x) : D(G(t, x))⊂U → H ,
(t, x) ∈ [0, T ] × H , such that for every t ∈ [0, T ], G(t, ·) satisfies
Hypothesis 4.11.

(iii) For every (s, t, x) ∈ (0, T ] × [0, T ] × H , esAG(t, x) extends to an operator in
L(U, H), which we still denote by esAG(t, x), the function

(0, T ] × [0, T ] × H → L(U, H), (s, t, x)→esAG(t, x)

is strongly measurable and, for all s ∈ (0, T ], (t, x) ∈ [0, T ] × H ,

‖esAG(t, x)‖L(U,H) ≤ fG(s)(1+ |x |),

where fG(s) = Ls−β for some L > 0 and β ∈ [0, 1). Moreover, there exists
an r ∈ R ∩ �(A) such that for every (t, x) ∈ [0, T ] × H , (r I − A)−1G(t, x)
extends to an operator inL(U, H), whichwe still denote by (r I − A)−1G(t, x),
and the function

[0, T ] × H → L(U, H), (t, x)→(r I − A)−1G(t, x)

is strongly measurable and there exists a C > 0 such that
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‖(r I − A)−1G(t, x)‖L(U,H) ≤ C(1+ |x |), ∀(t, x) ∈ [0, T ] × H.

(iv) 	 is a Polish space.
(v) R ∈ Cb([0, T ] × H ×	,U ). Moreover, for all (s, t) ∈ (0, T ] × [0, T ], a ∈ 	

and x1, x2 ∈ H ,

|esAG(t, x1)R(t, x1, a)− esAG(t, x2)R(t, x2, a)| ≤ fG(s)|x1 − x2|,

where fG is as in (iii) above.

Here is the second set of assumptions.

Hypothesis 4.178

(i) A,σ satisfy Hypothesis 1.143 with Q = I . Moreover, b satisfies Hypothesis
1.145 in the case when b0 is independent of a1, and a2(·) = 0.

(ii) For a given real separable Hilbert space U , G(t, x) ≡ G, where G :
D(G)⊂U → H is a closed linear operator (possibly unbounded with dense
domain).

(iii) For every s ∈ (0, T ], esAG extends to an operator in L(U, H), which we still
denote by esAG, and we have

‖esAG‖L(U,H) ≤ Ls−β

for some L > 0 and β ∈ [0, 1). Moreover, there exists an r ∈ R ∩ �(A) such
that (r I − A)−1G extends to an operator in L(U, H).

(iv) 	 is a subset of a real separable Banach space E .
(v) The function R is independent of x , it belongs to C([0, T ] ×	,U ) and is

bounded on bounded sets.

Observe that (r I − A)−1G extends to an operator inL(U, H) if D(A∗) ⊂ D(G∗).
We remark that the results about the HJB equation (4.277) in Sect. 4.8.1.3 will

be stated without the need to refer to conditions (iii), (iv) and (v) of the above
hypotheses. These conditions will be used later, in Sect. 4.8.1.4, to have the well-
posedness of the state equation (4.294), and in Sect. 4.8.1.5, to prove the verification
theorem (Theorem 4.197). The assumptions about l and g will be specified later in
Sect. 4.8.1.3 since they involve growth conditions related to the properties of the
transition semigroups Pt,s there.

Remark 4.179 Recall that 	 is a control set. The space U , where the map R has
its values, is introduced to give more flexibility to the class of problems we study.
In most cases U will be either equal to the state space H , or to the control space 	

(or, more generally, 	 will be a subset ofU ). The choice ofU depends on a specific
problem. For example, in the distributed control case of Sect. 2.6.1 it is natural to
take U = H , while in the problems of Sect. 2.6.8 it is natural to take U = 	. �
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Remark 4.180 If we consider HJB equations for optimal control of the heat equation
(Sects. 2.6.1, 2.6.2), we see that the above assumptions include both the case of
distributed control and the case of boundary control (or the one with both distributed
and boundary controls).

A typical case where Hypothesis 4.177 is true is the distributed control case of
(2.84), where we can takeU = E = H , R(t, x, a) = a and G(t, x) = I and assume
that 	 is a bounded subset of H . In the boundary control case (see (2.93) and (2.94)
for the Dirichlet case and (2.96) and (2.97) for the Neumann case) we can take
U = H , R(t, x, a) = Ba with B ∈ L(E, H) and G = (−A)β (β ∈ (3/4, 1) in the
Dirichlet case and β ∈ (1/4, 1/2) in the Neumann case). Again we have to assume
that 	 is a bounded subset of H .

Hypothesis 4.178 is introduced since in some examples it is interesting to treat
cases where R is unbounded on [0, T ] ×	. For example, for the distributed con-
trol case (see (2.84)) we can take U = E = 	 = H , R(t, a) = a and G = I . In the
boundary control case (see (2.93) and (2.94) for the Dirichlet case and (2.96) and
(2.97) for the Neumann case) we can takeU = H , R(t, a) = Ba with B ∈ L(E, H)

and G = (−A)β (β ∈ (3/4, 1) in the Dirichlet case and β ∈ (1/4, 1/2) in the
Neumann case).

HJB equations for distributed control problems have been studied e.g. in [89, 90,
105, 306, 307], while, for the case of boundary control, see [189, 310].

We also note that one may assume something different about b, G and R (e.g.
dissipativity with respect to the variable x). We avoid generalizations here, referring
the reader to Sect. 4.9, where some special cases are discussed. �

4.8.1.2 Properties of the Hamiltonian F0

We prove three results about the properties of F0.

Proposition 4.181 Let m ≥ 0. Let 	 be a Polish space and R ∈ Cb([0, T ] × H ×
	,U ). Let l ∈ C([0, T ] × H ×	) be such that

|l(t, x, a)| ≤ C(1+ |x |m) ∀(t, x, a) ∈ [0, T ] × H ×	. (4.280)

Then Hypothesis 4.72-(i)-(ii)-(iii) is satisfied. If R and l are continuous in (t, x),
uniformly with respect to a ∈ 	, then F0 is continuous.

Proof In this case, for (t, x) ∈ [0, T ] × H and q, q1, q2 ∈ U ,

|F0(t, x, q1)− F0(t, x, q2)| ≤ sup
a∈	

{〈R(t, x, a), q1 − q2〉U } ≤ ‖R‖0|q1 − q2|

and
|F0(t, x, q)| ≤ ‖R‖0|q| + C(1+ |x |m).
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Hence Hypothesis 4.72-(i)-(ii) holds with L = ‖R‖0 and L ′ = C ∨ ‖R‖0. Measur-
ability of F0 is immediate from the separability of 	. Concerning the continuity of
F0 we simply observe that, if (tn, xn, qn)→ (t, x, q), we have

|F0(tn, xn,qn)− F0(t, x, q)| ≤ ‖R‖0|qn − q|
+ sup

a∈	

| 〈R(tn, xn, a), q〉U + l(tn, xn, a)− 〈R(t, x, a), q〉U + l(t, x, a)|

and the claim immediately follows since R and l are continuous in (t, x), uniformly
with respect to a ∈ 	. �

Proposition 4.182 Let m ≥ 0. Let E be a real separable Hilbert space and let	⊂E
be closed and unbounded. Let R(t, x, a) = Ba, where B ∈ L(E,U ).

(i) Let l ∈ C([0, T ] × H ×	) and let C : R+ → R
+ be an increasing function

such that

|l(t, x, a)| ≤ C(|a|E )(1+ |x |m), ∀(t, x, a) ∈ [0, T ] × H ×	 (4.281)

and
l(t, x, a)

|a|E →+∞ as |a|E →+∞, a ∈ 	, (4.282)

uniformly for (t, x) ∈ [0, T ] × H. Then there exists aC1 > 0 and an increasing
function C2 : R+ → R

+ such that

C1(1+ |x |m + |q|) ≥ F0(t, x, q) ≥ −C2(|q|U )
[
1+ |x |m]

and

|F0(t, x, q1)− F0(t, x, q2)| ≤ C2(|q1|U ∨ |q2|U )‖B‖|q1 − q2|. (4.283)

If l is continuous in (t, x)uniformlywith respect to a ∈ 	, then F0 is continuous.
(ii) Let 	 = E and l(t, x, a) = l0(t, x)+ l1(a), where l0 ∈ Cm([0, T ] × H) and

l1 : 	→ R is continuous and such that

l1(a)

|a|E →+∞ as |a|E →+∞. (4.284)

Then F0 is finite and we have

F0(t, x, q) = l0(t, x)+ l1(B
∗q),

where for z ∈ E,

l1(z) := inf
a∈E
{〈a, z〉E + l1(a)} = −l∗1 (−z). (4.285)
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(l∗1 (w) := supa∈E {〈a, w〉E − l1(a)} is the Légendre transform of l1.)
(iii) Let the assumptions of (ii) be satisfied and let l1 be also strictly convex. Then l1 is

Gâteaux differentiable and ∇l1 is bounded on bounded sets. If also l1 ∈ C1(E)

with Dl1 invertible and (Dl1)−1 Lipschitz continuous on bounded sets, then Dl1
is Lipschitz continuous on bounded sets.

Proof
Proof of (i). Let a0 ∈ 	 be fixed. We notice first that if (t, x, q) ∈ [0, T ] × H ×U
then

F0(t, x, q) ≤ 〈Ba0, q〉U + l(t, x, a0) ≤ |Ba0||q| + l(t, x, a0). (4.286)

On the other hand, (4.282) implies that for every M > 0 there exists a C̄2(M) > 0
such that, for |q| ≤ M ,

F0(t, x, q) = inf
a∈	,|a|E≤C̄2(M)

{〈Ba, q〉 + l(t, x, a)} , ∀(t, x) ∈ [0, T ] × H.

Hence
F0(t, x, q) ≥ −C̄2(|q|U )‖B‖|q|U + inf

a∈	,|a|E≤C̄2(|q|U )

l(t, x, a),

which, together with (4.281) and (4.286), gives (4.283). Moreover,

|F0(t, x, q1)− F0(t, x, q2)| ≤ sup
|a|E≤C̄(|q1|U )∨C̄(|q2|U )

| 〈Ba, q1 − q2〉U |,

which yields (4.283) after redefining the function C2. Concerning the continuity of
F0 we observe that, for (tn, xn, qn)→ (t, x, q), we have, using (4.283),

|F0(tn, xn, qn)− F0(t, x, q)| ≤ C2(|q|U )|qn − q| + sup
a∈	

|l(tn, xn, a)− l(t, x, a)|.

Hence, if l is continuous in (t, x), uniformly with respect to a ∈ 	, then F0 is
continuous.

Proofs of (ii) and (iii). The claims are straightforward consequences of the prop-
erties of the Légendre transform in Hilbert spaces. In particular Gâteaux differen-
tiability follows from Corollary 18.12 of [43]. Moreover, since l1 is continuous and
strictly convex, there exists a unique minimum point ā(z) in (4.285) and, thanks to
(4.284), ā(z) is bounded on bounded sets. Since we have ā(z) = ∇l1(z) (see e.g.
Proposition 16.9 of [43]), then ∇l1 is also bounded on bounded sets.

Finally, let l1 ∈ C1(E) with Dl1 invertible and (Dl1)−1 Lipschitz continuous on
bounded sets. Then from (4.285) we have, at the minimum point ā := ā(z),

z + Dl1(ā) = 0 ⇐⇒ ā = (Dl1)
−1(−z),

and the claim follows. �
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Proposition 4.183 Let m ≥ 0. Let E be a real separable Hilbert space and let	⊂E
be closed, convex and bounded. Let R(t, x, a) = Ba, where B ∈ L(E,U ). Assume
also that l(t, x, a) = l0(t, x)+ l1(a), where l0 ∈ Cm([0, T ] × H) and l1 : 	→ R

is continuous, strictly convex with always non-empty subdifferential D−l1. Then we
have

F0(t, x, q) = l0(t, x)+ l1(B
∗q),

where l1 : E → R is given by (4.285). Moreover, l1(p) is concave and Gâteaux
differentiable with bounded derivative.

If the unique minimum point ā(p) in (4.285) is a Lipschitz continuous function of
p ∈ E, then l1 is Fréchet differentiable and Dl1 is Lipschitz continuous.

Proof Since l1 : E → R is clearly concave as an infimum of linear functions, and
Lipschitz continuous since 	 is bounded, we only have to prove that it is Gâteaux
differentiable. The proof follows from a standard adaptation of Corollary 18.12 of
[43] but we provide it here for the reader’s convenience. Since 	 is closed, convex
and bounded, and l1 is continuous and strictly convex, there exists, for each p ∈ E ,
a unique minimum point ā(p) of the map

	→ R, a→〈a, p〉E + l1(a).

We conclude the result in two steps. Define, for a ∈ 	,

l1(a) := sup
p∈H
{− 〈a, p〉 + l1(p)}.

Step 1. We have l1(a) = l1(a) for all a ∈ 	.

It is clear that l1 is convex. Since, for all a ∈ 	, l1(p) ≤ 〈a, p〉 + l1(a), we have

l1(a) ≤ sup
p∈H
{− 〈a, p〉 + 〈a, p〉 + l1(a)} = l1(a).

To prove the opposite inequality we take any â ∈ 	 and p̂ ∈ −D−l1(â) (it always
exists since D−l1(â) is non-empty). Then, taking a0 := ā( p̂), we have

l1( p̂) =
〈
a0, p̂

〉+ l1(a0) (4.287)

and, by convexity of l1 and (4.287),

l1(â) ≤ l1(a0)+
〈
a0 − â, p̂

〉 = l1( p̂)−
〈
â, p̂

〉 ≤ l1(â).

Step 2. Conclusion.
Let p̄ ∈ H and a ∈ D+l1( p̄). We recall that, since l1 is concave and Lipschitz

continuous, D+l1( p̄) is always non-empty, see e.g. (D.7). Then, by the previous step
and the concavity of l1, we have
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l1(a) = l1(a) = sup
p∈H
{− 〈a, p〉 + l1(p)} = − 〈a, p̄〉 + l1( p̄),

i.e. l1( p̄) = l1(a)+ 〈a, p̄〉 which, by the uniqueness of the minimum point, implies
a = ā( p̄). This means that D+l1( p̄) is a singleton for each p̄ ∈ H . The claim now
follows by the properties of the superdifferential (see e.g. [43], Proposition 17.26).

To prove the last statement we simply observe that, if the minimum point ā(p) is a
Lipschitz continuous function of p ∈ E , then the Gâteaux derivative∇l1 is Lipschitz
continuous and so is the Fréchet derivative. �

Remark 4.184 (i) When R is bounded on	 (Proposition 4.181 and 4.183),Hypoth-
esis 4.72-(i)-(ii)-(iii), and also the continuity of F0 are true under quite general
assumptions about l. Hence in this case the theory of Sects. 4.4 and 4.5 can
be applied if the transition semigroup associated to the linear part of the HJB
equation satisfies the required properties.

(ii) In the case considered in Proposition 4.182, when R is linear and 	 (and hence
R) is unbounded it is very unlikely that Hypothesis 4.72-(i)-(ii) is satisfied.
Indeed, only local Lipschitz continuity estimates can be proved and superlin-
earity in |q|U also arises in simple cases: for example, when 	 = E = U and
B = I , we have

l∗1 (p)/|p| −→ −∞ as |p| → +∞ (4.288)

(see e.g. [43], Proposition 16.17). Hence in this case the theory of Sects. 4.4
and 4.5 does not apply (see Remark 4.73-(ii)). One can apply the results of
Sect. 4.7, adding suitable regularity assumptions about the data. For example,
if one assumes that l = l0 + l1, where l1 is as in point (iii) of Proposition 4.182
and l0 ∈ C0,1

b ([0, T ] × H)with Dl0 Lipschitz continuous on bounded sets, then
Hypothesis 4.169 (i)–(ii) and Hypothesis 4.172 are satisfied.

�

Remark 4.185 Cost functions l(t, x, a) = l0(t, x)+ l1(a) frequently occur in appli-
cations, see for example Eq. (2.99) in Sect. 2.6.2, Eqs. (2.146) and (2.150) in
Sect. 2.6.8. These cases are studied e.g. in [89, 90, 306, 307].

A typical example when Proposition 4.182-(iii) applies is when l1(a) = |a|θ/θ,
θ ∈ (1, 2], and 	 = E so, denoting by θ′ := θ/(θ − 1) the conjugate exponent of θ,

l1(p) = −|p|
θ′

θ′

with the minimum point ā(p) = −|p| 2−θ
θ−1 p. Hence

F0(t, x, q) = l0(t, x)− |B
∗q|θ′
θ′

.
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On the other hand, Proposition 4.183 applies, for example, when 	 = BH (0, M),
l1(a) = |a|θ/θ (θ ∈ (1, 2]), so we have

l1(p) =

⎧
⎪⎨

⎪⎩

−|p|
θ′

θ′
if |p| ≤ Mθ−1

−|p|M + Mθ

θ
if |p| > Mθ−1

with the minimum point ā(p) = −|p| 2−θ
θ−1 p when |p| ≤ Mθ−1 and ā(p) = − M

|p| p
when |p| > Mθ−1. Hence

F0(t, x, q) = l0(t, x)+

⎧
⎪⎨

⎪⎩

|B∗q|θ′
θ′

if |B∗q| ≤ Mθ−1,

−|B∗q|M + Mθ

θ
if |B∗q| > Mθ−1.

(4.289)

�

4.8.1.3 Results for the HJB Equation

We present three results where we apply the theory of Sects. 4.4–4.7 to our HJB
equations. The first uses the general assumptions of Sect. 4.4.1.2 while the other two
refer to the more specific cases treated in Sects. 4.6 and 4.7. Variations of such results
and/or applications to specific models are possible: some specific cases are presented
in Sects. 4.9 and 4.10, while some other cases are the subject of current research (see,
for example, the recent work [316]).

In this subsection we fix a generalized reference probability space μ0 :=(
�,F , {Fs}s∈[0,T ],P,W

)
, where W is a cylindrical Wiener process in a real sepa-

rable Hilbert space �. It is used to introduce a two-parameter transition semigroup
Pt,s and thus define a mild solution of the HJB equation.

For the first result we will use the SDE
{
dX (s) = [AX (s)+ b(s, X (s))] ds + σ(s, X (s))dW (s),
X (t) = x .

(4.290)

It is clear that under the assumptions of either Hypothesis 4.177 or 4.178 there exists a
unique (within a certain class) mild solution X0(·; t, x) of the state equation (4.290).
Indeed, Hypothesis 4.177 allows us to apply Theorem 1.152 while Hypothesis 4.178
allows us to apply Proposition 1.147.Moreover, Pt,s[φ](x) = E[φ(X0(s; t, x))], 0 ≤
t ≤ s ≤ T , defines a two-parameter transition semigroup on Bm(H) for all m ≥ 0.
Uniqueness in law for (4.290) guarantees that the semigroup is independent of the
choice of the generalized reference probability space μ0.
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To apply the results of Sects. 4.4 and 4.5 we need assumptions about the data F0

and g and the transition semigroup Pt,s . We provide here two sets of assumptions,
the first for the Bm space case, the second for the Cm space case.

Hypothesis 4.186 Fix m ≥ 0 and assume that, for this m, the following hold.

(i) Hypothesis 4.72 is satisfied with F0 defined by (4.279)39 and ϕ = g.
(ii) The two-parameter transition semigroup Pt,s satisfies Hypotheses 4.74, 4.76,

4.77.

Hypothesis 4.187 Fix m ≥ 0 and assume that, for this m, the following hold.

(i) Hypothesis 4.87 is satisfied with F0 defined by (4.279) and ϕ = g.
(ii) The two-parameter transition semigroup Pt,s satisfies Hypothesis 4.89.

Remark 4.188 The results for the associated optimal control problems proved in
Sects. 4.8.1.5 and 4.8.1.6 will only use Hypothesis 4.187, which is concerned with
the Cm space case. To obtain results for the Bm space case one would need a result
about strong solutions in this case, whichmight be proved along the lines suggested in
Remark 4.136-(iv). In Corollaries 4.189–4.191 we keep for completeness the results
about existence and uniqueness of mild solutions in Bm spaces, as they may be useful
for extensions of the present theory. �

We have the following corollary.

Corollary 4.189 (i) Assume that Hypothesis 4.186 is satisfied. Then theHJB equa-

tion (4.277) admits a unique mild solution v in B
0,1,G
m,γG

([0, T ] × H).
(ii) Assume that Hypothesis 4.187 is satisfied. Then the HJB equation (4.277) admits

a unique mild solution v in C
0,1,G
m,γG

([0, T ] × H).
(iii) Let Hypothesis 4.177 or Hypothesis 4.178 hold. Let Hypotheses 4.187 and

4.133 for K-convergence be satisfied with the same U and G as in Hypothesis
4.177 or 4.178. Then the mild solution v is also the unique K-strong solution

in C
0,1,G
m,γG

([0, T ] × H).

Proof Part (i) is an immediate consequence of Theorem 4.80.
Part (ii) follows from Theorem 4.90.
Part (iii) follows from Theorem 4.135 and Remark 4.136-(vi) once we observe

that Hypothesis 4.127 is implied by both 4.177-(i) or 4.178-(i). �

In the second and third cases the process X0(s; t, x) is of Ornstein–Uhlenbeck
type, i.e. it is the solution of the SDE

{
dX (s) = AX (s)ds + σdW (s),
X (t) = x .

(4.291)

39Note that Proposition 4.181 gives sufficient conditions on R and l for this. Similarly forHypothesis
4.187-(i).
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Wenowhave Pt,s = Rs−t , where Rs is theOrnstein–Uhlenbeck semigroup associated
to A and σ. We assume the following.

In the Hypothesis 4.190 and Corollaries 4.191 and 4.193, the weight function
γG comes from an Ornstein–Uhlenbeck case and is given in Proposition 4.147, i.e.
γG(s) ≥ c‖�G(s)‖ for some constant c > 0.

Hypothesis 4.190 (i) Hypothesis 4.145 is satisfied for A, � = σσ∗ given in
Eq. (4.291) and for a given operator G. Moreover, the map t→γG(t) belongs
to I2.

(ii) The function b in (4.277) satisfies Hypothesis 1.145 in the case when b0 is inde-
pendent of a1, and a2(·) = 0.40 Moreover, b is such that 〈b, p〉H =

〈
b̄,G∗ p

〉

U

for some b̄ ∈ Cb([0, T ] × H,U ).
(iii) Either G is bounded or D(A∗) ⊂ D(G∗) and, for some c > 0, |G∗z| ≤ c|A∗z|

for all z ∈ D(A∗).

The Hamiltonian F0 now becomes

F̃0(t, x, q) := F0(t, x, q)+ 〈b̄(t, x), q〉U (4.292)

and the current value Hamiltonian is

F̃0,CV (t, x, q, a) := F0,CV (t, x, q, a)+ 〈b̄(t, x), q〉
U

. (4.293)

The second result is also for a Lipschitz continuous (in the gradient variable)
Hamiltonian F0. It is an immediate consequence of Theorems 4.149 and 4.150.

Corollary 4.191 Let Hypothesis 4.190 hold. Assume moreover that, for a given
m ≥ 0, we have g ∈ Bm(H) and the function F0 satisfies Hypothesis 4.72-(i)-(ii)-
(iii) for such m. Then we have the following.

(i) The HJB equation (4.277) has a unique mild solution v in B
0,1,G
m,γG

([0, T ] × H).
If g ∈ Cm(H) and F0 is also continuous in x, then v is continuous in x.

(ii) If g ∈ Cm(H), F0 is continuous and Hypothesis 4.145-(iv) also holds with U =
H and G = I , then v ∈ C

0,1,G
m,γG

([0, T ] × H) and v is also the unique K-strong

solution of (4.277) in C
0,1,G
m,γG

([0, T ] × H). Assume moreover that Hypothesis
4.145 also holds with U = H and G = I in point (iv). Then the solutions of the
approximating problems can be chosen to converge uniformly on [0, T − ε] ×
H0 for all ε ∈ (0, T ) and all bounded subsets H0 of H.

Proof The mild form of the HJB equation is now written with Pt,s = Rs−t . Since
b̄ ∈ Cb([0, T ] × H,U ) and thanks to the assumptions on F0, the newHamiltonian F̃0

given by (4.292) satisfies Hypothesis 4.72-(i)-(ii)-(iii). Hence point (i) follows from

40This first part of (ii) is not needed to prove Corollaries 4.191 and 4.193 but we keep it here since
it is needed in further results on optimal control problems.
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Theorem 4.149-(i). The mild solution v ∈ C
0,1,G
m,γG

([0, T ] × H) by Theorem 4.149-
(iii). The claims of (ii) about the strong solution follows from Theorem 4.150 thanks
to Hypothesis 4.190. �

The third result is concerned with the case of a locally Lipschitz Hamiltonian. We
add the following assumption.

Hypothesis 4.192

(i) The operator A satisfies Hypothesis 4.172-(i).
(ii) The function F0 introduced in (4.279) satisfies Hypotheses 4.169-(i)-(ii) and

4.172-(ii).
(iii) g ∈ C0,1(H).

The corollary below follows from Theorems 4.175 and 4.176.

Corollary 4.193 Let m = 0 and let Hypothesis 4.190 hold with U = H, G = I ,
γ(s) := γI (s) ≤ C̄s−α for some C̄ > 0 and α ∈ (0, 1), and b differentiable in x and
such that Db ∈ Cs

b([0, T ] × H,L(H)). Assume that Hypothesis 4.192 is satisfied.

Then the HJB equation (4.277) admits a unique mild solution v in C
0,1
b,α([0, T ] × H)

which is also the unique K-strong solution in C
0,1
b,α([0, T ] × H). If g ∈ C1

b(H) then

v ∈ C
0,2,s
b,α ([0, T ] × H).

Proof As in Corollary 4.191 we write the mild form of the HJB equation using
Pt,s = Rs−t . The assumptions about b imply that the required assumptions about the
newHamiltonian F̃0 defined by (4.292) (notice that now F̃0(t, x, q) := F0(t, x, q)+
〈b(t, x), q〉H ) are satisfied so that we can apply Theorems 4.175 and 4.176. �

Note that parts (ii) and (iii) of Proposition 4.182 provide reasonable conditions
under which Hypothesis 4.169-(i) holds. Checking the validity of Hypotheses 4.169-
(ii) and 4.172 depends on specific cases.

4.8.1.4 Optimal Control Problems

We use the setting of the strong formulation of a stochastic optimal control problem
(see Sect. 2.1.1).

Let � be a real separable Hilbert space from Sect. 4.8.1.3 and 	 be a Polish space
(the control space). For every t ∈ [0, T ) we fix a generalized reference probability
space μ := (�,F , {F t

s }s∈[t,T ],P,W
)
(possibly different from μ0), where W is a

cylindrical Wiener process in � on [t, T ].
For an initial time t ∈ [0, T ) and an initial state x ∈ H , the state equation is the

controlled SDE (where s ∈ (t, T ])
⎧
⎨

⎩

dX (s) = [AX (s)+ b(s, X (s))+ G(s, X (s))R(s, X (s), a(s))] ds
+σ(s, X (s))dW (s),

X (t) = x .
(4.294)
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The set 	 and, consequently, the set of admissible controls, will be one of two
types. The first type, which will be used together with Hypothesis 4.177, i.e. when
R is bounded, is when 	 is a Polish space. In this case the set of admissible controls
is, as in (2.1),

Uμ
t :=

{
a(·) : [t, T ] ×�→ 	 : a(·) isF t

s − progressively measurable
}
.

The second type will be used together with Hypothesis 4.178, i.e. when R is
unbounded and	 is a closed but not bounded subset of a given real separable Banach
space E (if 	 is bounded we are back to the previous case). In this case the set of
admissible controls is

U∞,μ
t := {a(·) ∈ M∞

μ (t, T ; E) : a(s) ∈ 	,P -a.s.,∀s ∈ [0, T ]} , (4.295)

whereM∞
μ (t, T ; E) is the space of boundedF t

s -progressivelymeasurable processes.
We observe that if either Hypothesis 4.177 is satisfied and a(·) ∈ Uμ

t or if
Hypothesis 4.178 is satisfied and a(·) ∈ U∞,μ

t , there exists a unique mild solution
X (·; t, x, a(·)) inHμ

p(t, T ; H), for every p ≥ 2, of the state equation (4.294). Indeed,
Hypothesis 4.177 allows us to apply Theorem 1.152 while Hypothesis 4.178 allows
us to apply Proposition 1.147. We remark that the term G(s, X (s))R(s, X (s), a(s))
may not be well defined and the term e(s−r)AG(r, X (r))R(r, X (r), a(r)) in the def-
inition of a mild solution is interpreted using the extensions of e(s−r)AG(r, X (r)),
which exist by Hypotheses 4.177 and 4.178. Note that for the moment we do not
require continuity of the trajectories of the solution.

Remark 4.194 In many problems where the control set	 is unbounded it may often
be more desirable to consider larger sets of admissible controls which may include
unbounded controls. A typical choice is

U p,μ
t := {a(·) ∈ Mp

μ (t, T ; E) : a(s) ∈ 	,P -a.s.,∀s ∈ [0, T ]} (4.296)

for some p ≥ 1. For instance, if R in Hypothesis 4.178 satisfies

|R(t, a)|U ≤ CR[1+ |a|E ]

we could take U p,μ
t with p > 1/(1− β) (see Proposition 1.147). However, if a(·) ∈

U p,μ
t , defining an(s) := a(s)1{(s,ω):|a(s,ω)|≤n}(s,ω) for n ∈ N, we have an(·) ∈ U∞,μ

t ,
|a(·)− an(·)|Mp

μ (t,T ;E) → 0 and it is easy to see from the proof of Proposition 1.147
that |X (·; t, x, a(·))− X (·; t, x, a(·))|Hμ

p(t,T ;H) → 0 as n→+∞. Thus, under rea-
sonable assumptions about l and g, the control problems using U p,μ

t and U∞,μ
t as

the sets of admissible controls would be equivalent. This is indeed the case in many
concrete examples. Since the choice p < +∞ increases the number of technical
details we decided for the sake of presentation to work with bounded controls.
This also allowed us to make Hypothesis 4.178-(iv) more general. However, the
results presented in this section can be reproduced in the U p,μ

t set-up without much
effort. �
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The cost functional to minimize is

Jμ(t, x; a(·)) = E

{∫ T

t
l(s, X (s; t, x, a(·)), a(s))ds + g(X (T ; t, x, a(·)))

}

(4.297)

over all controls a(·) in Uμ
t or U∞,μ

t . Here X (·; t, x, a(·)) is the mild solution of
(4.294) at time s, which will also be denoted by X (·) when the context is clear. The
assumptions about l and g will be given later.

The value function for this problem, in the strong formulation, is defined as in
(2.4) by

V μ
t (x) = inf

a(·)∈Uμ
t

Jμ(t, x; a(·)) or V μ
t (x) = inf

a(·)∈U∞,μ
t

Jμ(t, x; a(·)) (4.298)

and optimal pairs are defined as in Definition 2.3.
We also consider the weak formulation from Sect. 2.1.2. In this case the general-

ized reference probability space μ varies with the controls. Then, as in (2.6), the set
of admissible controls is either

U t :=
⋃

μ

Uμ
t or U∞t :=

⋃

μ

U∞,μ
t .

The value function is

V (t, x) = inf
a(·)∈U t

Jμ(t, x; a(·)) or V (t, x) = inf
a(·)∈U∞t

Jμ(t, x; a(·)). (4.299)

To study more general cases when, given an admissible control strategy a(·), the
existence and uniqueness of mild solutions of (4.294) are not guaranteed, we may
use what we called the “extended weak formulation” introduced in Remark 2.6. This
would allow us, for example, to treat the case when G = σ and R is only Borel
measurable and bounded (without assuming the Lipschitz continuity in Hypothesis
4.177-(iv)). In principle, the results of the present section can also be proved in this
setting, but we do not study it here (see Sect. 6.5 for results in this case).

4.8.1.5 The Verification Theorem

We prove a verification theorem, i.e. a version of Theorem 2.36. Since the starting
point of a verification theorem is a strong solution of the HJB equation, we rely on
the three results from Sect. 4.8.1.3: Corollaries 4.189-(iii), 4.191-(ii) and 4.193. For
each of these three cases the proof of our verification theorem is slightly different.
We give the complete proof only for the “more general” result corresponding to
Corollary 4.189-(iii). For the other two results, which correspond to cases when the
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transition semigroup Pt,s is of Ornstein–Uhlenbeck type, we only explain the main
changes which must be done in the proof.

We begin with the so-called fundamental identity (see (2.56)).

Hypothesis 4.195 The function l ∈ C([0, T ] × H ×	) and for a given m ≥ 0, we
have the following: either, when Hypothesis 4.177 holds, there exists a C > 0 such
that

|l(t, x, a)| ≤ C(1+ |x |m), ∀(t, x, a) ∈ [0, T ] × H ×	 (4.300)

or, when Hypothesis 4.178 holds, there exist constants Kc for all c > 0 such that

|l(t, x, a)| ≤ Kc(1+ |x |m), ∀(t, x, a) ∈ [0, T ] × H ×	, |a|E ≤ c. (4.301)

Lemma 4.196 Let Hypothesis 4.177 hold41 and let m ≥ 0 be fixed. Let l satisfy for
this m Hypothesis 4.195, formula (4.300). Let the other assumptions of Corollary
4.189-(iii) be satisfied for the same m, namely Hypotheses 4.187 and 4.133 for K-

convergence (for the sameU and G as in Hypothesis 4.177). Let v ∈ C
0,1,G
m,γG

([0, T ] ×
H) be the mild and strong solution of (4.277). Let t ∈ [0, T ], x ∈ H. Suppose that
a(·) ∈ Uμ

t . Then we have the identity

v(t, x) = Jμ(t, x; a(·))

− E

∫ T

t

[
F0,CV

(
s, X (s), DGv(s, X (s), a(s))

)− F0
(
s, X (s), DGv(s, X (s))

)]
ds,

(4.302)

where X (·) := X (·; t, x, a(·)) is the mild solution of (4.294).
The same statement holds if we take the following sets of assumptions:

• Hypothesis 4.178 holds, a(·) ∈ U∞,μ
t and l satisfies Hypothesis 4.195, formula

(4.301) for a given m ≥ 0 (respectively, for m = 0).
• The other assumptions of Corollary 4.191-(ii) (respectively, Corollary 4.193) are
satisfied for the same m (respectively, for m = 0).

Proof We know from Definition 4.132 and Theorem 4.135 that there exist three
sequences (gn) ⊂ D(A1), (hn) ⊂ Bm,γG ([0, T )× H) and (vn) ⊂ Cb([0, T ] × H),
such that for every n ∈ N, vn is a classical solution (see Definition 4.129) of the
Cauchy problem

{
wt (t, x)+A1(t)[w](t, x)+ F0(t, x, DGw) = hn(t, x)
w(0, x) = gn(x)

(4.303)

and moreover, as n→+∞ (using the notation of Definition B.56)

41Here we are in the framework of Corollary 4.189-(iii), hence we could also take Hypothesis 4.178.
We avoid this here for simplicity.
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{K− lim
n→+∞ gn = g in Bm(H)

K− lim
n→+∞ vn = v in Bm([0, T ] × H)

(4.304)

and (using the notation of Definition 4.131)

⎧
⎨

⎩

K− lim
n→+∞ hn = 0 in Bm,γG ([0, T )× H,U )

K− lim
n→+∞ DGvn = DGv in Bm,γG ([0, T )× H,U ).

(4.305)

We now show that (4.302) holds for vn applying Dynkin’s formula of Proposi-
tion1.16842 to the process vn(s, X (s)), s ∈ [t, T ], where X (s) = X (s; t, x, a(·)),
obtaining

E[vn(T, X (T ))− vn(t, x)]

= E

∫ T

t

[

(vn)t (s, X (s))+ 1

2
Tr
[
�(s, X (s))D2vn(s, X (s))

]
+ 〈X (s), A∗Dvn(s, X (s))

〉
]

ds

+ E

∫ T

t

[〈
(r I − A)−1b(s, X (s)), (r I − A∗)Dvn(s, X (s))

〉

+
〈
(r I − A)−1G(s, X (s))R(s, X (s), a(s)), (r I − A∗)Dvn(s, X (s))

〉]
ds.

Since vn is a classical solution of (4.303) and since Dvn and DGvn are both well
defined, we have (see Notation 4.3)

〈
(r I − A)−1G(s, X (s))R(s, X (s), a(s)), (r I − A∗)Dvn(s, X (s))

〉

= 〈R(s, X (s), a(s)), [(r I − A)−1G(s, X (s))]∗(r I − A∗)Dvn(s, X (s))
〉

= 〈R(s, X (s), a(s)), DGvn(s, X (s))
〉
,

where in the last equality we used (see e.g. [521], Theorem 13.2) [(r I − A)−1G
(s, X (s))]∗ = G(s, X (s))∗[(r I − A)−1]∗. We then get

E[gn(X (T ))] − vn(t, x) = E

∫ T

t

[
−F0

(
s, X (s), DGvn(s, X (s))

)
− hn(s, X (s))

]
ds

+ E

∫ T

t

〈
R(s, X (s), a(s)), DGvn(s, X (s))

〉
ds.

Hence, adding and subtracting E
∫ T
t l(s, X (s), a(s))ds + E[g(X (T )] (such terms

are well defined thanks to the assumptions on l and g) and rearranging the terms, we
obtain

42This is similar to the proof of Theorem 2.36 but using a different Dynkin’s formula since here we
are dealing with the case Q = I and σ possibly not belonging to L2(�, H).
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vn(t, x) = Jμ(t, x; a(·))+ E[gn(X (T ))− g(X (T )] + E

∫ T

t
hn(s, X (s))ds

− E

∫ T

t

[
F0,CV

(
s, X (s), DGvn(s, X (s)), a(s)

)
− F0

(
s, X (s), DGvn(s, X (s))

)]
ds.

(4.306)

We now pass to the limit as n→+∞ in (4.306) using the dominated convergence
theorem and the convergences (4.304) and (4.305) to get the claim.

Now let Hypothesis 4.178 hold, a(·) ∈ U∞,μ
t , let l satisfy Hypothesis 4.195, for-

mula (4.301) and also let the assumptions of Corollary 4.191-(ii) (or Corollary 4.193)
be satisfied. We then have (4.303) with F0 replaced by F̃0 from (4.292) and A1(t)
without the b term. However, since vn is a classical solution, the new (4.303) can be
rewritten in the old form too. We then apply Dynkin’s formula of Proposition 1.169
where we set a2(s) = GR(s, a(s)). Once this is done the rest of the proof is exactly
the same, and even easier, since G is constant and R does not depend on x . The
term 〈b(s, X (s)), Dvn(s, X (s))〉 is now converted into

〈
b̄(s, X (s)), DGvn(s, X (s))

〉
.

Finally, note that, in this case, the term F0,CV − F0 in (4.302) and (4.306) is equal
to F̃0,CV − F̃0, where F̃0,CV is from (4.293). We keep F0,CV − F0, here and in the
next statements, to make them simpler. �

We can now prove our verification theorem.

Theorem 4.197 (Verification Theorem, Sufficient Condition) Let Hypothesis 4.177
hold43 and let m ≥ 0 be fixed. Let l satisfy for this m Hypothesis 4.195, formula
(4.300). Let the other assumptions of Corollary 4.189-(iii) be satisfied for the same
m, namely Hypotheses 4.187 and 4.133 for K-convergence (for the same U and G

as in Hypothesis 4.177). Let v ∈ C
0,1,G
m,γG

([0, T ] × H) be the mild and strong solution
of (4.277). Let t ∈ [0, T ], x ∈ H and let the set of admissible controls be Uμ

t . Then:

(i) For every generalized reference probability space μ on [t, T ] we have

v(t, x) ≤ V (t, x) ≤ V μ
t (x). (4.307)

(ii) For a fixed generalized reference probability space μ̂ on [t, T ], let a∗(·) ∈ U μ̂
t

be such that, with X∗(s) = X∗(s; t, x, a∗(·)), we have

a∗(s) ∈ argmin
a∈	

F0,CV (s, X∗(s), DGv(s, X∗(s)), a), (4.308)

for almost every s ∈ [t, T ] and P-a.s. Then the pair (X∗(·), a∗(·)) is μ̂-optimal
at (t, x) (and thus is also optimal for the weak formulation) and v(t, x) =
V (t, x) = V μ̂

t (x).

The same statements hold if we take the following assumptions:

43Here we are in the framework of Corollary 4.189-(iii), hence we could also take Hypothesis 4.178.
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• Hypothesis 4.178 holds and l satisfies Hypothesis 4.195, formula (4.301) for a
given m ≥ 0 (respectively, for m = 0).

• The other assumptions of Corollary 4.191-(ii) (respectively, Corollary 4.193) are
satisfied for the same m (respectively, for m = 0).

• The set of admissible controls is U∞,μ
t and a∗(·) ∈ U∞,μ̂

t in (ii).

Proof By the definition, F0,CV − F0 ≥ 0 everywhere, so, using Lemma 4.196 we
get v(t, x) ≤ Jμ(t, x; a(·)) for all generalized reference probability spaces μ and for
all a(·) ∈ Uμ

t . By taking the infimum over a(·) ∈ U t in the right-hand side of (4.302)
we obtain (i).

Regarding (ii), let (X∗(·), a∗(·)) be an admissible pair at (t, x) (for a given fixed
μ̂) satisfying (4.308) for almost every s ∈ [t, T ] and P-a.s. We then have

E

∫ T

t

[
F0,CV

(
r, X∗(r), DGv(r, X∗(r)), a∗(r)

)

− F0
(
r, X∗(r), DGv(r, X∗(r))

) ]
dr = 0.

Thus, by (4.302), we get
v(t, x) = J μ̂(t, x; a∗(·)) (4.309)

which, togetherwith (i), implies that (X∗(·), a∗(·)) is μ̂-optimal at (t, x) andv(t, x) =
V (t, x) = V μ̂

t (x).
The proofs under the other sets of assumptions are the same. �

4.8.1.6 Optimal Feedbacks

To obtain the existence of optimal feedback controls we need to solve the Closed
Loop Equation as was explained in Corollary 2.38. In our case, defining as in (2.61)
the multivalued function

{
� : (0, T )× H → P(	)

� : (t, x)→ argmina∈	 F0,CV (t, x, DGv(t, x), a),
(4.310)

the Closed Loop Equation associated with our problem and the mild solution v of
the HJB equation (4.277) is

{
dX (s) ∈ AX (s)ds + G(s, X (s))R(s, X (s),�(s, X (s)))ds + σ(s, X (s))dW (s)
X (t) = x .

(4.311)
Similarly to Corollary 2.38 we have here the following result.
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Corollary 4.198 Let Hypothesis 4.177 hold44 and let m ≥ 0 be fixed. Let l sat-
isfy for this m Hypothesis 4.195, formula (4.300). Let the other assumptions of
Corollary 4.189-(iii) be satisfied for the same m, namely Hypotheses 4.187 and
4.133 for K-convergence (for the same U and G as in Hypothesis 4.177).45 Let

v ∈ C
0,1,G
m,γG

([0, T ] × H) be the mild and strong solution of (4.277). Fix (t, x) ∈
[0, T )× H. Assume moreover that, on [t, T )× H, the feedback map � defined
in (4.310) admits a measurable selection φt : [t, T )× H → 	 such that the Closed
Loop Equation

⎧
⎨

⎩

dX (s) = [AX (s)+ b(s, X (s))+ G(s, X (s))R(s, X (s),φt (s, X (s)))] ds
+σ(s, X (s))dW (s)

X (t) = x,
(4.312)

has a weak mild solution (see Definition 1.121) Xφ(·; t, x) in some generalized refer-
ence probability spaceμ on [t, T ]. Define, for s ∈ [t, T ], aφt (s) = φt (s, Xφt (s; t, x)).
Then the pair (aφt (·), Xφt (·; t, x)), if it is admissible46 is μ-strongly optimal at (t, x)
and v(t, x) = V (t, x) = V μ

t (x). If, finally,�(t, x) is always a singleton and theweak
mild solution of (4.312) is unique in the generalized reference probability space μ,
then aφt (·) is the unique μ-optimal control.

Proof The optimality of (aφt (·), Xφt (·; t, x)) immediately follows from Theorem
4.197-(ii). We only need to discuss the part about the uniqueness of μ-optimal con-
trols. To see this we observe that if (â(·), X̂(·)) is another μ-optimal pair at (t, x),
we immediately have, by (4.302) and using v(t, x) = V (t, x) = V μ

t (x), that, on
s ∈ [t, T ],

E

∫ T

t

[
F0,CV

(
s, X̂(s), DGv(s, X̂(s)), â(s)

)
− F0

(
s, X̂(s), DGv(s, X̂(s))

)]
ds = 0.

This implies that, for a.e. s ∈ [t, T ] and P-a.s., we have â(s) = φt (s, X̂(s)). The
uniqueness of mild solutions of (4.312) in μ thus gives the claim. �

Providing conditions for the data that allow us to apply the above corollary is a
difficult problem which has not yet been solved in many interesting cases. Here we

44Here we are in the framework of Corollary 4.189-(iii), hence we could also take Hypothesis 4.178.
45All assumptions up to this point can be substituted, as in Lemma 4.196, by the following:
• Hypothesis 4.178 holds and l satisfies Hypothesis 4.195, formula (4.301) for a given m ≥ 0

(respectively, for m = 0).
• The other assumptions of Corollary 4.191-(ii) (respectively, Corollary 4.193) are satisfied for the

same m (respectively, for m = 0).
• The set of admissible controls is U∞,μ

t .

The proof is exactly the same.
46This is always guaranteed when Hypothesis 4.177 holds. When Hypothesis 4.178 holds (see
the previous footnote) we need to have aφt (·) ∈ U∞,μ

t . Similarly, if we use more general sets of
admissible controls, likeU p,μ

t with finite p, or like in caseswith state constraints (see e.g. Sect. 4.10.2
for an example) then the admissibility is not guaranteed and must be checked.
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state three results which can be applied to some of our examples of Sect. 2.6. The
reader should be aware of the fact that these results are far from being sharp and
there is a lot of room for possible improvements.

We start with a quite general result whenHypotheses 4.177 is satisfied andG = σ,
similarly to the setting used in Chap. 6.

Proposition 4.199 Let Hypothesis 4.177 hold and let m ≥ 0 be fixed. Let l satisfy
for this m Hypothesis 4.195, formula (4.300). Let the other assumptions of Corollary
4.189-(iii) be satisfied for the same m, namely Hypotheses 4.187 and 4.133 for K-

convergence (for the sameU and G as in Hypothesis 4.177). Let v ∈ C
0,1,G
m,γG

([0, T ] ×
H) be the mild and strong solution of (4.277). Assume that G = σ. Let (t, x) ∈
[0, T ] × H and assume that, on [t, T )× H, the feedback map � defined in (4.310)
admits a measurable selection φt : [t, T )× H → 	.

Then Eq. (4.312) admits a weak mild solution Xφt (·; t, x) in some generalized
reference probability space μ on [t, T ]. Moreover, defining, for s ∈ [t, T ], aφt (s) =
φt (s, Xφt (s; t, x)), the pair (aφt (·), Xφt (·; t, x)) is μ-optimal at (t, x) and v(t, x) =
V (t, x) = V μ

t (x).

Proof It is proved in the proof of Theorem 6.36 that, under our assumptions, there
exists aweakmild solution of (4.312). Obviously aφt (·) ∈ Uμ

t . Thus the claim follows
from Corollary 4.198. �

Wenowdiscuss two special cases arising inmanyapplications, see e.g. Sects. 2.6.1,
2.6.2, 2.6.8. First we consider a special case of Corollary 4.191, where the
Hamiltonian is as in Proposition 4.183. We assume the following.

Hypothesis 4.200 We assume that U = H and Hypotheses 4.190 and 4.178 hold.
Moreover, we assume the following.

(i) Hypothesis 4.145-(iv) also holds with U = H and G = I .
(ii) E is a real separable Hilbert space and 	 is a closed, convex and bounded sub-

set of E . Moreover, R(t, x, a) = Ba for some B ∈ L(E, H) and l(t, x, a) =
l0(t, x)+ l1(a)with l0 ∈ Cm([0, T ] × H) for somem ≥ 0 and l1 : 	→ R con-
tinuous, strictly convex and with always non-empty subdifferential.

(iii) Defining

F2,CV (z, a) := 〈a, z〉E + l1(a) and F2(z) := inf
a∈	
{〈a, z〉E + l1(a)},

the unique minimum point ā(z) of the map

	→ R, a→F2,CV (z, a)

is a Lipschitz continuous function of z ∈ E .
(iv) g ∈ Cm(H) for the same m as in (ii).

Here is the result.
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Theorem 4.201 Let Hypothesis 4.200 hold. Let v ∈ C
0,1,G
m,γG

([0, T ] × H) be the mild
and strong solution of (4.277) and assume that

|DGv(t, x1)− DGv(t, x2)| ≤ f̄G(t)|x1 − x2|, (4.313)

where f̄G : [0, T )→ R
+ is bounded on [0, T − ε] for all ε ∈ (0, T ). Then, for every

fixed t ∈ [0, T ] and every generalized reference probability space μ on [t, T ], we
have the following.

(i) For every x ∈ H, v(t, x) = V μ
t (x). Hence also v(t, x) = V (t, x).

(ii) For every x ∈ H, there exists a unique μ-optimal control a∗(·) ∈ U∞,μ
t which is

related to the corresponding optimal state X∗(·) by the feedback formula

a∗(s) = argmin
a∈	

F2,CV (B∗DGv(s, X∗(s)), a) = DF2
(
B∗DGv(s, X∗(s))

)
,

for almost every s ∈ [t, T ] and P-a.s.

Proof We first observe that, by Hypothesis 4.200-(iii) and Proposition 4.183, the
function F2 is concave, belongs toC1,1(E) and DF2 is bounded. Also, by Hypothesis
4.190-(i), we have b = Gb̄.

The Hamiltonian in this case, F̃0, is defined by (4.292):

F̃0(t, x, q) = 〈b̄(t, x), q〉+ F0(t, x, q) = 〈b̄(t, x), q〉+ l0(t, x)+ F2(B
∗q)

and, again from the proof of Proposition 4.183, the minimum point of the function
a → F̃0,CV (t, x, q, a) from (4.293) is ā(B∗q) = DF2(B∗q).47

It thus follows that (4.308) in this case rewrites as

a∗(s) = DF2(B
∗DGv(s, X∗(s))), for a.e. s ∈ [t, T ],P− a.s.,

where X∗(·) is the state associated to a∗(·), i.e. X∗(·) is the solution of the closed
loop equation

⎧
⎨

⎩

dX (s) = [AX (s)+ b(s, X (s))+ GBDF2(B∗DGv(s, X (s)))
]
ds

+σdW (s), s ∈ (t, T ],
X (t) = x, x ∈ H,

(4.314)

which can be written in the mild form as

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)A[b(r, X (r))+ GBDF2(B

∗DGv(r, X (r)))]ds
+W A(t, s), t ≤ s ≤ T,

47Note that in this proof we may use equivalently the Hamiltonians F0,CV or F̃0,CV as they have
the same minimum points. We use F̃0,CV since F̃0 is the actual Hamiltonian in the associated HJB
equation in this case.
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where W A(t, s) = ∫ s
t e(s−r)AdW (s) (as defined after Proposition 1.144). It remains

to show that (4.314) has a unique mild solution.
Since G satisfies Hypothesis 4.178, Hypothesis 1.145 (where a2(·) ≡ 0 and the

b0 there does not depend on a1 and is equal to b + GBDF2(B∗DGv)) is satisfied on
every interval [t, T − ε] for all ε ∈ (0, T − t). Hence, by Proposition 1.147, there
exists a unique mild solution X∗(·) of (4.314) in Hμ

p(t, T − ε; H) for every p ≥ 1.
By the arbitrariness of ε we can then define a process X∗(·) : [t, T )×�→ H such
that, for every ε ∈ (0, T − t), X∗(·)|[t,T−ε] is the unique mild solution of (4.314) in
Hμ

p(t, T − ε; H) for every p ≥ 1. Moreover, exploiting the assumptions on b from
Hypothesis 1.145-(i) and the boundedness of DF2 we have, for some C > 0,

sup
s∈[t,T )

E|X∗(s)|p ≤ C < +∞

which implies that X∗(·) ∈ Hμ
p(t, T ; H) for every p ≥ 1. So X∗(·) is the uniquemild

solution of (4.314) in Hμ
p(t, T ; H). The claim then easily follows from Corollary

4.198. �
Remark 4.202 A typical example where Hypothesis 4.200-(iii) holds is described
in Remark 4.185. Indeed, in this case 	 = BH (0, M), which is closed, convex and
bounded, and l1(a) = |a|θ/θ with θ ∈ (1, 2]. We see from Remark 4.185 that the
minimum point of the Hamiltonian F0 is

ā(q) = −|B∗q| 2−θ
θ−1 B∗q if |B∗q| ≤ Mθ−1

and

ā(q) = −M
B∗q
|B∗q| if |B∗q| > Mθ−1.

Hence it follows from Proposition 4.183 and its proof that Hypothesis 4.200-(iii) is
satisfied.

To obtain (4.313) we need to assume more about the data. In particular, if the
data are such that Theorem 4.155 can be applied, then v would have bounded second
derivatives on [0, T − ε] × H for all ε ∈ (0, T ) and hence (4.313)would be satisfied.
Other ways to get such a regularity depends on specific cases, see e.g. Sect. 7 of [316]
for an example in this direction. �

We now consider a special case of Corollary 4.193, where the Hamiltonian is as
in Proposition 4.182-(iii). We need a new hypothesis.

Hypothesis 4.203 Weassume thatU = H ,G = I , γ(s) := γI (s) ≤ C̄s−α for some
C̄ > 0 andα ∈ (0, 1), andHypotheses 4.190 and 4.17848 hold.Moreover, we assume
the following.

(i) A generates a C0-semigroup of pseudo-contractions, i.e. Hypothesis 4.172-(i)
is satisfied.

48It is understood that in this case β = 0 there.
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(ii) In Hypothesis 4.190, b is differentiable in x and Db ∈ Cs
b([0, T ] × H,L(H)).

(iii) 	 = E is a real separable Hilbert space and R(t, x, a) ≡ Ba for some B ∈
L(E, H).Moreover, l(t, x, a) = l0(t, x)+ l1(a)with l0 ∈ Cb([0, T ] × H) and
l1 ∈ C(H) strictly convex and such that

lim|a|E→+∞
l1(a)

|a|E = +∞.

In addition, l1 ∈ C1(E) and Dl1 is invertible with (Dl1)−1 Lipschitz continuous
on bounded sets.

(iv) l0 ∈ C0,1
b ([0, T ] × H) and g ∈ C1

b(H).

Theorem 4.204 Assume that Hypothesis 4.203 holds. Then (4.277) has a mild solu-

tion v ∈ C
0,2,s
b,α ([0, T ] × H), which is unique in C

0,1
b,α([0, T ] × H). The mild solution

v is also a unique strong solution of (4.277) in C
0,1
b,α([0, T ] × H). Let49

F2,CV (z, a) := 〈a, z〉E + l1(a) and F2(z) := inf
a∈	
{〈a, z〉E + l1(a)}.

Then, for every fixed t ∈ [0, T ] and every generalized reference probability space μ
on [t, T ], we have the following.
(i) For every x ∈ H, v(t, x) = V μ

t (x). Hence also v(t, x) = V (t, x).
(ii) For every x ∈ H there exists a unique optimal control a∗(·) ∈ U∞,μ

t which is
related to the corresponding optimal state X∗(·) by the feedback formula

a∗(s) = argmin
a∈E F2,CV (B∗Dv(s, X∗(s)), a) = DF2

(
B∗Dv(s, X∗(s))

)
,

for almost every s ∈ [t, T ] and P-a.s.

Proof We observe that in this case the Hamiltonian is given by the function F̃0

introduced in (4.292). Since U = H and G = I , we have

F̃0(t, x, q) = 〈b(t, x), q〉 + l0(t, x)+ F2(B
∗q)

and it satisfies Hypotheses 4.169-(i)-(ii) and 4.172-(ii) (in particular, the function
F2 is concave, and DF2 is bounded and Lipschitz continuous on bounded sets).
Indeed, this follows from Proposition 4.182 and from the assumptions on b and l0
in Hypothesis 4.203. Thus we can apply Corollary 4.193 which gives the existence
and uniqueness of a mild and strong solution of (4.277) with the required regularity.

The Current Value Hamiltonian is

F̃0,CV (t, x, q, a) = 〈b(t, x), q〉 + l0(t, x)+ 〈Ba, q〉 + l1(a)

= 〈b(t, x), q〉 + l0(t, x)+ F2,CV (B∗q, a).

49See point (iii) of Hypothesis 4.200.
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From Proposition 4.182-(iii) and its proof we know that the minimum point of a →
F̃0,CV (t, x, q, a) is ā(B∗q) = DF2(B∗q).

It follows that (4.308) holds when for a.e. s ∈ [t, T ], P-a.s., we have

a∗(s) = DF2(B
∗Dv(s, X∗(s))),

where X∗(·) is the state associated to a∗(·), which should solve the closed loop
equation

⎧
⎨

⎩

dX (s) = [AX (s)+ b(s, X (s))+ GBDF2(B∗Dv(s, X (s)))] ds
+σdW (s), s ∈ (t, T ],

X (t) = x, x ∈ H.

(4.315)
Equation (4.315) can be solved similarly as in the proof of Theorem 4.201 if we take
into account that Dv is bounded on [0, T ] × H and Dv(s, ·) are Lipschitz continuous
on H , uniformly for s ∈ [0, T − ε] for every ε > 0. The claim then easily follows
from Corollary 4.198. �

Remark 4.205 A typical example where the function F2 satisfies the assumptions of
Theorem 4.204 is (as in Remark 4.185) when 	 = E and l1(a) = |a|θ/θ for some
θ ∈ (1, 2]. Indeed, from Remark 4.185 we see that

F2(q) = −|B
∗q|θ′
θ′

and the minimum point of the Current Value Hamiltonian is

ā(q) = −|B∗q| 2−θ
θ−1 B∗q.

�

4.8.2 The Infinite Horizon Case

Similarly to the finite horizon case we mainly use the setting of the strong formu-
lation of stochastic optimal control problems (see Sect. 2.1.1, Hypothesis 2.1 and
the discussion after Definition 2.3). Let H , � be real separable Hilbert spaces (the
state space and the noise space) and 	 be a Polish space (the control space). The
initial time is now t = 0 and the horizon is T = +∞. Since most of the results are
completely similar to the finite horizon case we will present them without going into
full details. However, for the reader’s convenience, we will repeat the setting of the
problem and the main assumptions, pointing out the differences with respect to the
finite horizon case.
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4.8.2.1 The State Equation

Let μ := (�,F , {Fs}s≥0,P,W
)
, where W is a cylindrical Wiener process in �,

be a generalized reference probability space. For any initial state x ∈ H the state
equation is the controlled SDE (where s ∈ (0,+∞))

{
dX (s) = [AX (s)+ b(X (s))+ G(X (s))R(X (s), a(s))] ds + σ(X (s))dW (s),
X (0) = x .

(4.316)
Differently from the finite horizon case we only consider one set of assumptions,

which is similar toHypothesis 4.177. For infinite horizon caseswhere unboundedness
of R may arise (as in Hypothesis 4.178), see Remark 4.221.

Hypothesis 4.206

(i) A, b,σ satisfy Hypothesis 1.149 for s ∈ (0, 1]with b and σ independent of t, a
andwith f1(s) = Ls−γ1 and f2(s) = Ls−γ2 for some γ1 ∈ (0, 1), γ2 ∈ (0, 1/2),
and constant L ≥ 0. Moreover, they also satisfy Hypothesis 4.138-(iii).

(ii) For a given real separable Hilbert space U , G is a family of closed linear
operators (possibly unboundedwith dense domain)G(x) : D(G(x))⊂U → H ,
x ∈ H , satisfying Hypothesis 4.11.

(iii) For every (s, x) ∈ (0, 1] × H , esAG(x) extends to an operator in L(U, H),
which we still denote by esAG(x), the function

(0, T ] × H → L(U, H), (s, x)→esAG(x)

is strongly measurable and, for every (s, x) ∈ (0, 1] × H ,

‖esAG(x)‖L(U,H) ≤ fG(s)(1+ |x |),

where fG(s) = L1s−β for some L1 > 0 and β ∈ [0, 1). Moreover, there exists
an r ∈ R ∩ �(A) such that for every x ∈ H , (r I − A)−1G(x) extends to an
operator in L(U, H), which we still denote by (r I − A)−1G(x), and the func-
tion

H → L(U, H), x→(r I − A)−1G(x)

is strongly measurable and there exists a C > 0 such that

‖(r I − A)−1G(x)‖L(U,H) ≤ C(1+ |x |), ∀x ∈ H.

(iv) 	 is a Polish space.
(v) R ∈ Cb(H ×	,U ).Moreover, for every (s, x1, x2, a) ∈ (0, 1] × H × H ×	,

|esAG(x1)R(x1, a)− esAG(x2)R(x2, a)| ≤ fG(s)|x1 − x2|,

where fG is as in (iii) above.
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Remark 4.207 Notice that if Hypothesis 4.206 is satisfied then, by the semigroup
property of et A, Hypotheses 1.149 and 4.206 hold for all s ∈ (0,+∞), substituting
the functions f1, f2 and fG by f̄1(s) := L2(s−γ1 ∨ 1)eωs, f̄2(s) := L2(s−γ2 ∨ 1)eωs

and f̄G(s) := L2(s−β ∨ 1)eωs for some L2 ≥ 0, where ω ∈ R is such that ‖esA‖ ≤
Meωs, s ≥ 0. �

The set	 in Part (iii) ofHypothesis 4.206 is the control space. Precise assumptions
about admissible controls are given in the next subsection.

4.8.2.2 Optimal Control Problems and the HJB Equation

The set of admissible controls is of the same type as in the finite horizon case when
Hypothesis 4.177 holds: indeed it is

Uμ
0 := {a : [0,+∞)→ 	 : a(·) isFs-progressively measurable} .

If Hypothesis 4.206 holds and a(·) ∈ Uμ
0 , the existence of a unique mild solution

X (·; x, a(·)) of (4.316) follows from Theorem 1.152. The existence and uniqueness
is in the spaces provided by this theorem. We will often write X (s) for X (s; x, a(·)),
s ∈ [t, T ], when its meaning is clear from the context.

Proposition 4.208 Let the assumptions of Hypothesis 4.206 be satisfied. Then
for every m ≥ 0 there exist constants C1(m),λ1(m) ≥ 0 such that for every x ∈
H, a(·) ∈ Uμ

0 , the mild solution X (·; x, a(·)) of (4.316) satisfies

E[|X (s; x, a(·))|m] ≤ C1(m)eλ1(m)s(1+ |x |m), for all s ≥ 0.

Proof The proof repeats the strategy outlined in Remark 4.107. We first notice that,
denoting by X (·; t, ξ, a(·)) the solution of (4.316) with initial condition X (t) = ξ,
we have, by the uniqueness of the mild solution proved in Theorem 1.15250

(notice that here R is bounded), the equality X (s; x, a(·)) = X (s; 0, x, a(·)) =
X (s; t, X (t; x, a(·)), a(·)), s ≥ t ≥ 0. Then for every n ∈ N, applying Theorem
1.152 with the initial time t = n, we get

sup
s∈[n,n+1]

E[|X (s; x, a(·))|m] ≤ C0(m)(1+ E[|X (n; x, a(·))|m]).

Therefore, iterating, we obtain that for s ∈ [n, n + 1],

E[|X (s; x, a(·))|m] ≤ (C0(m)+ ...+ C0(m)n+1)+ C0(m)n+1(1+ |x |m)

and we conclude as in Remark 4.107. �

50Theorem 1.152 is stated with the initial time t = 0 but all claims there are valid for any initial
time t ≥ 0.
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The cost functional to minimize is, for a given λ > 0,

Jμ(x; a(·)) = E

{∫ +∞

0
e−λsl(X (s; x, a(·)), a(s))ds

}

(4.317)

over all controls a(·) in Uμ
t . The assumptions about l and g will be given later.

The value function for this problem is defined as in (2.4)

V μ(x) = inf
a(·)∈Uμ

0

Jμ(x; a(·)) (4.318)

and optimal pairs are defined as in Definition 2.3.
Wewill also consider theweak formulation of the control problem fromSect. 2.1.2

for which the generalized reference probability space μ varies with the controls.
Following (2.6) the set of admissible controls is then

U0 :=
⋃

μ

Uμ
0 .

The value function is
V (x) = inf

a(·)∈U0

Jμ(x; a(·)). (4.319)

To study more general cases we can also consider the so-called “extended weak
formulation” introduced in Remark 2.6, see the paragraph after (4.299) for more
remarks about this.

The HJB equation associated with this problem is (see Sect. 2.5.2)

λv − 1

2
Tr[�(x)D2v] − 〈Ax + b(x), Dv〉 − F(x, Dv) = 0, x ∈ H, (4.320)

where �(x) = σ(x)σ∗(x) and the Hamiltonian F is given by

F(x, p) = inf
a∈	

FCV (x, p, a) = inf
a∈	

{〈G(x)R(x, a), p〉H + l(x, a)
}
. (4.321)

Note that, in contrast to the definition ofHamiltonians (2.64) and (2.65) in Sect. 2.5.2,
here we drop the term 〈b(x), Dv〉 from FCV since it does not depend on the control
variable. However, sometimes it will be included in the Hamiltonian, see e.g. (4.325)
and (4.326).

Exactly as in the parabolic case we introduce the modified Hamiltonian F0

F0(x, q) = inf
a∈	

F0,CV (x, q, a) = inf
a∈	

{〈R(x, a), q〉U + l(x, a)
}

(4.322)

and observe that, for p ∈ D(G(x)∗),
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F(x, p) = F0(x,G(x)∗ p),

so the term F(x, Dv) in (4.320) can be formally rewritten (see Sect. 4.2.1) as
F0(x, DGv). It is clear that the results of Sect. 4.8.1.2, namely Propositions 4.181,
4.182 and 4.183, apply to this case.

We remark that similar observations as those in Remarks 4.179 and 4.180 are also
valid here.

4.8.2.3 Results for the HJB Equation

We present two results where we apply the theory of Sects. 4.4.2, 4.5.2 and 4.6.2 to
our HJB equation (4.320). The first uses general assumptions of Sect. 4.4.1.2 while
the second refers to the more specific Ornstein–Uhlenbeck case of Sect. 4.6.2. We
point out, as we already mentioned discussing the parabolic case, that variations
of such results and/or applications to specific models are possible. Some cases are
discussed in Sects. 4.9 and 4.10.

For our first result the transition semigroup is defined using the SDE

{
dX (s) = [AX (s)+ b(X (s))]ds + σ(X (s))dW (s),
X (0) = x .

(4.323)

We recall that, if Hypothesis 4.206 holds, this equation has a unique mild solu-
tion, which we denote by X0(·; x), and Ps[φ](x) = E[φ(X0(s; x))], s ≥ 0, is a one-
parameter transition semigroup on Bm(H) for everym ≥ 0. Ps is independent of the
choice of a generalized reference probability space μ.

To apply the results of Sects. 4.4 and 4.5 we need assumptions about the datum
F0 and the transition semigroup Ps . We provide here two sets of assumptions, the
first for the Bm space case, the second for the Cm space case.

Hypothesis 4.209 Let m ≥ 0 and assume that, for this m, the following hold.

(i) The function F0 introduced in (4.322) satisfies Hypothesis 4.104.51

(ii) The one-parameter transition semigroup Ps defined above satisfies Hypotheses
4.106, 4.108, 4.110.

Hypothesis 4.210 Let m ≥ 0 and assume that, for this m, the following hold.

(i) The function F0 introduced in (4.322) satisfies Hypothesis 4.117.
(ii) The one-parameter transition semigroup Ps defined above satisfies Hypothesis

4.119.

Similar observations as those in Remark 4.188 also apply here. We have the
following corollary.

51Note that Proposition 4.181 provides sufficient conditions on R and l for this. Similarly for
Hypothesis 4.210-(i).
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Corollary 4.211

(i) Assume that Hypothesis 4.209 is satisfied. Let λ0 be from Theorem 4.112.
Then for all λ > λ0 the HJB equation (4.320) has a unique mild solution v

in B1,G
m (H).

(ii) Assume that Hypothesis 4.210 is satisfied. Let λ0 be from Theorem 4.112.
Then for all λ > λ0 the HJB equation (4.320) has a unique mild solution v

in C1,G
m (H).

(iii) Let Hypothesis 4.206 hold. Let Hypotheses 4.210 and 4.141 forK-convergence
be satisfied with the same U and G as in Hypothesis 4.206. Let λ > λ0 ∨ a1,
where λ0 is from Theorem 4.112 and a1 from (4.163). Then the mild solution v

is also the unique K-strong solution in C1,G
m (H).

Proof Part (i) is an immediate consequence of Theorem 4.112.
Part (ii) follows from Theorem 4.120.
Part (iii) follows from Theorem 4.143 and Remark 4.144-(iii) once we observe

that Hypothesis 4.138 is implied by Hypothesis 4.206-(i) and Hypothesis 4.210. �
For the second result the process X0(·; x) defining the transition semigroup is of

Ornstein–Uhlenbeck type, i.e. it is the solution of the SDE

{
dX (s) = AX (s)ds + σdW (s),
X (0) = x .

(4.324)

We now have Ps = Rs , where Rs is the Ornstein–Uhlenbeck semigroup associated
to A and σ. We assume the following.

Hypothesis 4.212

(i) Let Hypothesis 4.145 be satisfied for A, G and � = σσ∗ given in Eq. (4.316).
Moreover, (4.47) holds.52

(ii) The function b in (4.316) satisfies what is required for it in Hypothesis 4.206.
Moreover, b is such that 〈b, p〉H =

〈
b̄,G∗ p

〉

U , for some b̄ ∈ Cb(H,U ).
(iii) Either G is bounded or D(A∗) ⊂ D(G∗) and, for some c > 0, |G∗z| ≤ c|A∗z|

for all z ∈ D(A∗).
The Hamiltonian F0 now becomes

F̃0(x, q) := F0(x, q)+ 〈b̄(x), q〉U , (4.325)

and the corresponding current value Hamiltonian is

F̃0,CV (x, q, a) := F0,CV (x, q, a)+ 〈b̄(x), q〉
U

. (4.326)

The second result is also for a Lipschitz continuous (in the gradient variable) Hamil-
tonian F0. It is an immediate consequence of Theorems 4.157 and 4.158.

52This is not needed in the proof of Corollary 4.213, however we included it so that this case is
covered by Hypothesis 4.206.
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Corollary 4.213 Let Hypothesis 4.212-(i)-(ii) hold. Assume, moreover, that for a
given m ≥ 0, F0 satisfies Hypothesis 4.104. Let λ0 be from Theorem 4.112 for this
case. Then we have the following.

(i) For all λ > λ0 the HJB equation (4.320) has a unique mild solution v in
B1,G
m (H).

(ii) If F0 is continuous then, for allλ > λ0, v ∈ C1,G
m (H). Letλ > λ0 ∨ a1, whereλ0

is from Theorem 4.112 and a1 from (4.163). Assume moreover that Hypothesis
4.145 also holds with U = H and G = I in point (iv). Then v is also the unique
K-strong solution in C1,G

m (H). The solutions of the approximating problems can
be chosen to converge uniformly on bounded subsets of H.

Proof The mild form of the HJB equation is now written with Ps = Rs . Since b̄ ∈
Cb(H,U ) and thanks to the assumptions about F0, the newHamiltonian F̃0, given by
(4.325), satisfies Hypothesis 4.104. Hence point (i) follows from Theorem 4.157-(i).
The fact that themild solution v ∈ C1,G

m (H) in point (ii) follows fromTheorem4.157-
(ii). The claims of point (ii) concerning the strong solution follow from Theorem
4.158 thanks to Hypothesis 4.212. �

Note that Proposition 4.183 gives reasonable conditions under which Hypotheses
4.209-(i) and 4.210-(i) hold.

4.8.2.4 The Verification Theorem

In this section we prove a verification theorem. We first prove the infinite horizon
version of the so-called fundamental identity (see (2.73)). The proof is a little different
from the one for the finite horizon case, hence we provide it.

Hypothesis 4.214 The function l ∈ C(H ×	) and there exists a C > 0 such that

|l(x, a)| ≤ C(1+ |x |m), ∀(x, a) ∈ H ×	. (4.327)

Lemma 4.215 LetHypothesis 4.206 hold and letm ≥ 0 be fixed. Let l satisfy, for this
m, Hypothesis 4.214. Let the other assumptions of Corollary 4.211-(iii) be satisfied
for the same m, namely Hypotheses 4.210 and 4.141 for K-convergence (for the
same U and G as in Hypothesis 4.206). Let λ > λ0 ∨ a1 ∨ λ1(m), where λ0 is from
Theorem 4.112, a1 is from (4.163), and λ1(m) is from Proposition 4.208.

Let v ∈ C1,G
m (H) be the mild and strong solution of (4.320) and x ∈ H. Suppose

that a(·) ∈ Uμ
0 . Then we have the identity

v(x) = Jμ(x; a(·))
− E

∫ +∞

0
e−λs

[
F0,CV

(
X (s), DGv(X (s), a(s))

)− F0
(
X (s), DGv(X (s))

)]
ds,

(4.328)



4.8 Stochastic Control: Verification Theorems and Optimal Feedbacks 559

where X (·) = X (·; x, a(·)) is the mild solution of (4.316).
The same statement holds if we take the following assumptions, for a givenm ≥ 0:

• Hypothesis 4.206 holds, a(·) ∈ Uμ
0 , l satisfies Hypothesis 4.214 for this m and

λ > λ0 ∨ a1 ∨ λ1(m) as above.
• The other assumptions of Corollary 4.213, including those from part (ii), are
satisfied for this m.

Proof We know from Definition 4.140 and Theorem 4.143 that there exist two
sequences (hn) ⊂ Bm(H) and (vn) ⊂ D(A1) such that for every n ∈ N, vn is a clas-
sical solution (see 4.139) of the Cauchy problem

λw(x)− (A1w)(x)− F0(x, D
Gw(x)) = hn(x) (4.329)

and moreover, as n→+∞, (using the notation of Definition B.56)

⎧
⎪⎪⎨

⎪⎪⎩

K− lim
n→+∞ hn = 0 in Bm(H),

K− lim
n→+∞ vn = v in Bm(H),

K− lim
n→+∞ DGvn = DGv in Bm(H,U ).

(4.330)

We first prove that (4.328) holds for vn . We apply Dynkin’s formula of Proposi-
tion 1.16853 to the process e−λsvn(s, X (s)), s ∈ [t, T ], where X (s) = X (s; x, a(·)),
obtaining for all T > 0,

e−λT
E[vn(X (T ))] − vn(x)

= E

∫ T

0
e−λs

[

−λvn(X (s))+ 1

2
Tr
[
�(X (s))D2vn(X (s))

]
+ 〈X (s), A∗Dvn(X (s))

〉
]

ds

+ E

∫ T

0
e−λs

[〈
(r I − A)−1b(X (s)), (r I − A∗)Dvn(X (s))

〉

+
〈
(r I − A)−1G(X (s))R(X (s), a(s)), (r I − A∗)Dvn(X (s))

〉]
ds.

Since vn is a classical solution of (4.329) and since Dvn and DGvn are both well
defined, we have, for s ≥ t (see Notation 4.3),

〈
(r I − A)−1G(X (s))R(X (s), a(s)), (r I − A∗)Dvn(X (s))

〉

= 〈R(X (s), a(s)), [(r I − A)−1G(X (s))]∗(r I − A∗)Dvn(X (s))
〉

= 〈R(X (s), a(s)), DGvn(X (s))
〉
,

where in the last equality we used that [(r I − A)−1G(X (s))]∗ = G(X (s))∗[(r I −
A)−1]∗ (see e.g. [521], Theorem 13.2). We thus get

53This is similar to the proof of Theorem 2.42 but using a different Dynkin’s formula since here we
are dealing with the case when Q = I and σ may not belong to L2(�, H).



560 4 Mild Solutions in Spaces of Continuous Functions

e−λT
E[vn(X (T ))] − vn(x) = E

∫ T

0
e−λs

[
−F0

(
X (s), DGvn(X (s))

)
− hn(X (s))

]
ds

+ E

∫ T

t
e−λs

〈
R(X (s), a(s)), DGvn(X (s))

〉
ds.

Hence, adding and subtracting E
∫ T
0 e−λsl(X (s), a(s))ds and rearranging the terms,

we obtain

vn(x) = Jμ(x; a(·))+ e−λT
E[vn(X (T ))] − E

∫ +∞

T
e−λsl(X (s), a(s))ds

+ E

∫ T

0
e−λshn(X (s))ds

− E

∫ T

0
e−λs

[

F0,CV
(
X (s), DGvn(X (s)), a(s)

)− F0
(
X (s), DGvn(X (s))

)
]

ds.

(4.331)

Since λ > λ1(m) from Proposition 4.208, all terms in (4.331) are well-defined and
we can pass to the limit as T →+∞, getting

vn(x) = Jμ(x; a(·))+ E

∫ +∞

0
e−λshn(X (s))ds

− E

∫ +∞

0
e−λs

[
F0,CV

(
X (s), DGvn(X (s)), a(s)

)− F0
(
X (s), DGvn(X (s))

)]
ds.

(4.332)

Finally, we let n→+∞ in (4.332) using the dominated convergence theorem and
(4.330) to obtain the claim.

The proof when the assumptions of Corollary 4.213-(ii) hold is similar. �

The verification theorem in this case is proved as in the finite horizon case, so we
omit the proof.

Theorem 4.216 (Verification Theorem, Sufficient Condition) Let Hypothesis 4.206
hold and let m ≥ 0 be fixed. Let l satisfy, for this m, Hypothesis 4.214. Let the other
assumptions of Corollary 4.211-(iii) be satisfied for the same m, namely Hypotheses
4.210 and 4.141 for K-convergence (for the same U and G as in Hypothesis 4.206).
Let λ > λ0 ∨ a1 ∨ λ1(m), where λ0 is from Theorem 4.112, a1 is from (4.163), and
λ1(m) is from Proposition 4.208.

Let v ∈ C1,G
m (H) be the mild and strong solution of (4.320). Then:

(i) For every generalized reference probability space μ we have

v(x) ≤ V (x) ≤ V μ(x) for all x ∈ H. (4.333)
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(ii) Let x ∈ H. For a fixed generalized reference probability space μ̂, let a∗(·) ∈ U μ̂
0

be such that, with X∗(s) = X (s; x, a∗(·)), s ≥ 0, we have

a∗(s) ∈ argmin
a∈	

F0,CV (X∗(s), DGv(s, X∗(s)), a), (4.334)

for almost every s ∈ [0,+∞) and P-almost surely. Then the pair (X∗(·), a∗(·))
is μ̂-optimal at x (and thus it is also optimal for the weak formulation) and
v(x) = V (x) = V μ̂(x).

The same statements hold if we take the following assumptions, for a given m ≥ 0:

• Hypothesis 4.206 holds, l satisfies Hypothesis 4.214 for this m, λ > λ0 ∨ a1 ∨
λ1(m) as above and a∗(·) ∈ Uμ

0 in (ii).
• The other assumptions of Corollary 4.213, including those from part (ii), are
satisfied for this m.

4.8.2.5 Optimal Feedbacks

Define, as in (2.61), the multivalued function

{
� : H → P(	)

� : x→ argmina∈	 F0,CV (x, DGv(t, x), a).
(4.335)

The Closed Loop Equation associated with our problem and to the mild solution v

of the HJB equation (4.320) is

{
dX (s) ∈ AX (s)ds + G(X (s))R(X (s),�(X (s)))ds + σ(X (s))dW (s)
X (0) = x .

(4.336)
Similarly to Corollary 2.44 we have here the following result, whose proof is omitted
as it is completely similar to that of Corollary 4.198.

Corollary 4.217 Let the assumptions of Theorem 4.216 hold for a given m ≥ 0.
Let v ∈ C1,G

m (H) be the mild and strong solution of (4.320) and let x ∈ H be fixed.
Assume, moreover, that the feedback map � defined in (4.335) admits a measurable
selection φ : H → 	 such that the Closed Loop Equation

{
dX (s) = [AX (s)+ G(X (s))R(X (s),φ(X (s)))] ds + σ(X (s))dW (s)
X (t) = x

(4.337)

has a weak mild solution (see Definition 1.121) Xφ(·; x) in some generalized ref-
erence probability space μ. Define, for s ≥ 0, aφ(s) = φ(Xφ(s; x)). Then the pair
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(aφ(·), Xφ(·; x)),54 is μ-strongly optimal at x and v(x) = V (x) = V μ(x). If, finally,
�(x) is always a singleton and the weak mild solution of (4.337) is unique in μ,
then the optimal control is unique in μ.

Providing conditions on the data that allow us to apply the above corollary is a
difficult problem which has not yet been solved in many interesting cases.

Similarly to the parabolic case, we discuss two results which can be used for some
of the examples of Sect. 2.6. These results are far from optimal and leave a lot of
room for improvement.

We start with a result, completely analogous to Proposition 4.199 (hence we omit
the proof, which is similar), where G = σ, similarly to the setting used in Chap. 6.

Proposition 4.218 Let the same assumptions of Theorem 4.216 hold for a given
m ≥ 0. Let v ∈ C1,G

m (H) be the mild and strong solution of (4.320) and let x ∈ H
be fixed. Furthermore, assume that G = σ and the feedbackmap� defined in (4.335)
admits a measurable selection φ : H → 	.

Then Eq. (4.337) admits a weak mild solution Xφ(·; x) in some generalized refer-
ence probability space μ. Moreover, defining for s ∈ [0,+∞), aφ(s) = φ(Xφ(s; x)),
the pair (aφ(·), Xφ(·; x)) is μ-strongly optimal at x and v(x) = V (x) = V μ(x).

We now consider a case which covers some infinite horizon problems like the
ones in Sects. 2.6.1, 2.6.2, 2.6.8. It is a special case of Corollary 4.213, where the
Hamiltonian is as in Proposition 4.183. In contrast to the finite horizon case, we
do not consider the case when the control set may be unbounded. The assumptions
below are similar to Hypothesis 4.200.

Hypothesis 4.219 Let U = H and let Hypothesis 4.212 hold. Moreover, assume
the following.

(i) 	 is a closed, convex and bounded subset of a real separable Hilbert space E .
Moreover, R(t, x, a) ≡ Ba for given B ∈ L(E, H) and l(x, a) = l0(x)+ l1(a)

with l0 ∈ Cm(H) for somem ≥ 0, and l1 : 	→ R is continuous, strictly convex
and with always non-empty subdifferential.

(ii) Defining

F2,CV (z, a) := 〈a, z〉E + l1(a) and F2(z) := inf
a∈	
{〈a, z〉E + l1(a)},

the unique minimum point ā(z) of the map

	→ R, a → F2,CV (z, a),

is a Lipschitz continuous function of z ∈ E .

54Notice that here the pair (aφ(·), Xφ(·; x)) is always admissible. In other cases, when the set of
admissible controls allows for unbounded controls and/or state constraints, the admissibility of the
pair would have to be checked.
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The theorem below is similar to Theorem 4.201.

Theorem 4.220 Let Hypothesis 4.219 hold. Let λ > λ0 ∨ a1 ∨ λ1(m) be from
Lemma 4.215. Let v ∈ C1,G

m (H) be the mild and strong solution of (4.320) and
assume that, for some C > 0,

|DGv(x1)− DGv(x2)| ≤ C |x1 − x2| for all x1, x2 ∈ H. (4.338)

Then, for every generalized reference probability space μ, we have the following.

(i) For all x ∈ H, v(x) = V μ(x). Hence also v(x) = V (x).
(ii) For every x ∈ H there exists a unique μ-optimal control a∗(·) ∈ Uμ

0 which is
related to the corresponding optimal state X∗(·) by the feedback formula

a∗(s) = argmin
a∈	

F2,CV (B∗DGv(X∗(s)), a) = DF2
(
B∗DGv(X∗(s))

)
,

for almost every s ≥ 0 and P-almost surely.

The same observations as those of Remark 4.202 apply here. Differently from
the parabolic case, we do not consider here the case when the Hamiltonian is locally
Lipschitz continuous (see Theorem 4.204) since results about HJB equations in this
case are not available yet, except for a special case discussed in Sect. 4.9.2.

Remark 4.221 In many infinite horizon optimal control problems (e.g. the special
case treated in Sect. 4.10.2) it is natural to require that the function R be unbounded
and 	 be an unbounded subset of a real separable Hilbert space E . Moreover, in
these cases, differently from what usually happens for finite horizon problems (see
Remark 4.194), it is common that the optimal controls are unbounded on [0,+∞)

(even if they are, usually, locally bounded, see again the case of Sect. 4.10.2). Hence
in these cases a natural choice for the set of admissible controls may be

Û p,μ
0 := {a(·) ∈ Uμ

0 : a(·) ∈ Mp
μ (0, T ; E) ∀T > 0

}
,

where p ≥ 1 is chosen depending on the specific problem. The results proved in
Sects. 4.8.2.4 and 4.8.2.5 for the bounded case may be extended, using similar ideas,
to cases with unboundedness once suitable growth and integrability conditions are
satisfied.Notice that usually in such cases theHamiltonian F0 is only locallyLipschitz
continuous in the last variable (see e.g. Remark 4.185). Hence, to treat cases like these
satisfactorily, one should extend the results proved in this chapter. Up to now the only
result in this direction can be found in [107] which is presented in Sect. 4.9.2.2. �

4.8.3 Examples

In this subsection we present some examples of optimal control problems where
the theory of this chapter can be applied, possibly at different stages (e.g.existence/
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uniqueness of mild/strong solutions of the associated HJB equation, verification
theorem, existence/uniqueness of optimal feedback controls). The construction of
optimal feedback controls is clearly the ultimate goal, but this is possible only in a
few cases and often requires an ad hoc study of the specific case.We discuss examples
with diagonal operators and problems with invertible diffusion coefficients. The
theory used in this chapter is still developing so the reader should be aware that the
examples presentedhere are only a sample ofwhat could bedone in such a framework.
Other examples can be found in the recent literature, such as, for example, control of
the stochastic wave equation [432], Sect. 6.1, control of stochastic delay equations
[316], and boundary control of Dirichlet type [315]. We only present finite horizon
examples, but analogous infinite horizon cases can be treated similarly.

4.8.3.1 Diagonal Cases

We consider here the case when the underlying (two-parameter) transition semigroup
Pt,s is the (one-parameter) Ornstein–Uhlenbeck semigroup Rt and the operators A,
σ and G are diagonal with respect to the same orthonormal basis, as in Sect. 4.3.1.5.

Example 4.222 We consider the setting of Example 4.46. We start with a problem
with distributed controls as in Sect. 2.6.1. The state space is H := L2((0,π)d) for
d ∈ N and the noise space is � = H . The control space is the closed ball 	M :=
{a ∈ L2((0,π)d) : |a|L2 ≤ M } for some M > 0. Fixing the initial time t ∈ [0, T ]
and a generalized reference probability space μ, the control strategies belong to Uμ

t .
The state equation is basically the same as (2.84), i.e.

{
dX (s) = [AX (s)+ b(X (s))+ a(s)]ds + σdW (s), s ∈ (t, T ],
X (t) = x ∈ H.

(4.339)

Differently from (2.84), here W is a cylindrical Wiener process in H , hence Q = I
and the role of Q in (2.84) is played by � := σσ∗. The operator A is the Laplace
operatorwithDirichlet or Neumann boundary conditions (i.e. AD or AN ). Let {ek}k∈N
be an orthonormal basis of H such that Aek = αkek, k = 1, 2, .... We assume that
� ∈ L+(H) is diagonal with respect to {ek} and b : H → H is a Nemytskii type
operator as in Sect. 2.6.1.2. We consider the problem of minimizing, as in (2.85), the
functional

J2(t, x; a(·)) := E

[∫ T

t
l(X (s), a(s))ds + g(x(T ))

]

(4.340)

over all controls a(·) ∈ Uμ
t . Here l and g are the same functions as those in

Sect. 2.6.1.2.
In this case G = I and, as in point (i) in Example 4.46, we choose, for a suitable

β̄ ∈ [0, 1), �ek = α
−β̄
k ek . As was explained in Example 4.46, Hypothesis 4.145

holds if we choose β̄ such that d < 2(1+ β̄). Moreover, for such values of β̄ (4.47)
also holds, see Corollary 4.45-(i). Hence we can take β̄ = 0 when d = 1, β̄ ∈ (0, 1)
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when d = 2, β̄ ∈ (1/2, 1) for d = 3. When d = 4 there is no value of β̄ for which
Hypothesis 4.145 can be satisfied. Note also that in these cases we have ‖�G(t)‖ ≤
Ct1/2+β̄/2, hence in the following we will choose γG(t) = Ct1/2+β̄/2. �

Regarding b, l and g we assume the following.

Hypothesis 4.223

(a) For all x ∈ H and ξ ∈ (0,π)d , b(x(ξ)) = f (x(ξ)), where f : R→ R is
Lipschitz continuous and bounded.

(b) For all x ∈ H and a ∈ 	,

l(x, a) = l0(x)+ l1(a) =
∫

(0,π)d
β0(x(ξ))dξ +

∫

(0,π)d
β1(a(ξ))dξ,

where β0 ∈ C2(R) and β1(r1) := r21/2.
(c) For all x ∈ H , g(x) = ∫

(0,π)d
γ0(x(ξ))dξ, where γ0 ∈ C2(R).

Under all these assumptions the hypotheses of Corollary 4.191-(ii) (mild solution
of the associatedHJB equation), Theorem 4.197 (verification theorem) andCorollary
4.19855 (optimal feedback when the closed loop equation has a solution) are satisfied
with m = 2.

To perform optimal synthesis, we need to show that the corresponding closed loop
equation (4.311) has a solution, at least, as required in Corollary 4.198, in a weak
mild sense. To see what the map � in (4.310) is here, we look at the current value
Hamiltonian which is (see (4.293))

F̃0,CV (t, x, q, a) = 〈b(x)+ a, q〉 + l(x, a) = 〈b(x), q〉 + l0(x)+ 〈a, q〉 + l1(a).

In this case there is always a unique minimum point of the function a → F̃0,CV

(t, x, q, a) (see Remark 4.185 with θ = 2 there). Hence the map � is single-
valued and, denoting by φ : H → 	 the corresponding (selection) function, we have
φ(q) = −q for |q| ≤ M and φ(q) = −Mq/|q| for |q| > M . The map φ is Lipschitz
continuous. The closed loop equation is then (4.339)with a(s), s ∈ [t, T ], substituted
by φ(Dv(s, X (s))).

Now, since we are in a case of a bounded control set and a globally Lipschitz
Hamiltonian, we see if and when we can apply Proposition 4.199 or Theorem 4.201.

(i) To apply Proposition 4.199, since here σ = G = I , we need to take d = 1.
In this case the assumptions of Proposition 4.199 are all satisfied (note, in
particular, that Hypothesis 4.177 applies here since (4.47) holds). Hence in this
case we can find optimal feedbacks as in the claim of Proposition 4.199.

(ii) Theorem 4.201 can also be applied in the case d = 2 or 3. However, apart
from the other assumptions, which are all easily verified, we need the Lipschitz
continuity of DGv, i.e. Dv, in (4.313) for the mild solution v of the associated

55See the footnote there concerning the fact that the assumptions are satisfied.
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HJB equation. One way to prove this is to use the regularity result of Theorem
4.155. However, in this case, to guarantee that Hypothesis 4.151 is satisfied
we would need to add much stronger assumptions on the data, namely that
f = const.,56 β0 ∈ C1

b(R) and γ0 ∈ Cb(R).

Remark 4.224 The above point (ii) exposes the major weakness of the theory based
on the use of Fréchet derivatives. Even if the function f in Hypothesis 4.223 is
smooth, the Nemytskii operator b : L2((0,π)d)→ L2((0,π)d) is not Fréchet dif-
ferentiable unless f is an affine function. Thus we cannot treat more general and
realistic reaction terms f . To do this a theory using the framework of Gâteaux dif-
ferentiable functions would have to be developed more, starting from the results of
Sects. 4.4.1.5 and 4.4.1.8. In some cases other approaches are possible. For instance,
approximations of Nemytskii operators in a Banach space of continuous functions
were used in [105–107] (see the discussion of the results there in Sect. 4.9.2). Also
the boundedness of β0, γ, etc. required in (ii) above is a limitation of the theory.
However, this restriction seems easier to overcome if the regularity results can be
extended to the case of mild solutions and data with polynomial growth. �

It is also possible to consider an unbounded control set, taking e.g. 	 = H in
the above control problem. In this case, to obtain existence of regular mild solutions
of the HJB equations (Corollary 4.193) we also have to require strong assumptions
about the data, similar to and even stronger than these in point (ii) above. Under
such conditions one can apply Theorem 4.204. The comments of Remark 4.224 also
apply here. However, in the case when the Hamiltonian is exactly − 1

2 |�Dv(t, x)|2,
(like in the one-dimensional case, when σ = I ), one can use a change of variable
to reduce the HJB equation to a linear one (see on this Sect. 4.10.1 and also [178],
Chap. 13 in [179] and Sect. 6 in [307]). In this case, see Theorem 4.262, one gets

the existence of a unique mild solution in C
0,1
b,1/2+β̄/2([0, T ] × H) when Hypothesis

4.223 holds with β0 and γ0 bounded. We finally note that by adapting the techniques
used in Sect. 4.4, it is not difficult to extend the result of Theorem 4.262 to the case
of data g and l with polynomial growth, hence removing the boundedness condition
for β0 and γ0. �
Example 4.225 Wenow look at the problemwith boundary control ofNeumann type
as in Sect. 2.6.2. The state and the noise space are H = L2((0,π)d) and the control
space is 	M := {a ∈ L2(∂(0,π)d) : |a|L2 ≤ M }, as before. The state equation is a
slight variation of (2.96)–(2.97), i.e.

{
dX (s) = [AX (s)+ b(X (s))+ (λI − A)1/4+εBλa(s)]ds + σdW (s), s ∈ (t, T ]
X (t) = x ∈ H,

(4.341)
where b, σ and W are as in (4.339), while λ > 0, A = AN , ε ∈ (0, 1/4)) and Bλ

is as in (2.97). We minimize the functional J2(t, x; a(·)) given in (4.340) over all
a(·) ∈ Uμ

t , for a given generalized reference probability space μ.

56Indeed, we need b to be Fréchet differentiable and this is satisfied, for Nemytskii operators in L2

with bounded f , only if f is constant.
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In such a case G = (−A)1/4+ε for ε ∈ (0, 1/4)). As in point (i) at the end of

Example 4.46, we choose, for some β̄ ∈ [0, 1), �ek = α
−β̄
k ek , where (αk) is the

increasing sequence of eigenvalues of A. Aswas explained in Example 4.46, Hypoth-
esis 4.145 holds ifwe choose β̄ such thatd < 2(1+ β̄) and β̄ + 1/2+ 2ε < 1.Hence
we can take β̄ = 0 when d = 1 and β̄ ∈ (0, 1/2− 2ε)when d = 2.When d = 3 this
is not possible since β̄ must be greater than 1/2 to guarantee that the operator Qt is
nuclear.

We assume that Hypothesis 4.223 holds with the following change:

• in point (b) we assume that l(x, a) = ∫
(0,π)d

β0(x(ξ))dξ + ∫∂(0,π)d
β1(a(ξ))dξ,

where β0 ∈ C2(R) and β1(r1) = r21/2.

Similarly to the distributed control case, under all these assumptions the hypothe-
ses of Corollary 4.191-(ii) (mild solution of the associated HJB equation),
Theorem 4.197 (verification theorem) andCorollary 4.19857 (optimal feedbackwhen
the closed loop equation has a solution) are satisfied with m = 2.

Also here, to perform optimal synthesis, we need to show that the corresponding
closed loop equation (4.311) has a solution, at least, as required in Corollary 4.198,
in a weak mild sense. Here

F̃0,CV (t, x, q, a) = 〈(λI − A)−1/4−εb(x), q
〉+ l0(x)+ 〈Bλa, q〉 + l1(a).

Hence the map φ : H → 	 is again Lipschitz continuous and is given by φ(q) =
−B∗λq for |B∗λq| ≤ M and φ(q) = −MB∗λq/|B∗λq| for |B∗λq| > M . The closed loop
equation is given by (4.339) where we substitute a(s), s ∈ [t, T ], by
φ(DGv(s, X (s))).

In contrast to the distributed control case, we cannot apply Proposition 4.199 or
Theorem 4.201. We briefly explain why.

(i) Proposition 4.199 cannot be applied since we do not have G = σ. This may be
possible, in principle, if the noise operator σ is unbounded and equal to G (e.g.
in the case of boundary noise, see Sect. 2.6.3).

(ii) To apply Theorem 4.201, as in previous point (ii), we need the Lipschitz conti-
nuity of DGv in (4.313) for the mild solution v of the associated HJB equation.
However, we do not know if v satisfies (4.313), even if we add additional
assumptions about β0, f, γ0 as in the distributed control case, since Theorem
4.155 was only proved for the case G = I . Generalizations to other cases,
including unbounded operators G, seem possible but they have not been stud-
ied yet.

Some results about optimal feedbacks can be proved adapting the techniques
of this chapter to specific cases (see e.g. [316]) or using different approximation
techniques (see e.g. [240, 316]).

57See the footnote there concerning the fact that the assumptions are satisfied.
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We finally observe that the case of an unbounded control set, e.g. 	 = H , would
need variants of Theorems 4.175 and 4.176, when G is unbounded. Such results are
not known at the present time. �

Remark 4.226 Some of the results mentioned in the previous two examples about
distributed control or Neumann boundary control may possibly be adapted to the
interesting case (briefly presented in Sect. 2.6.2, Remark 2.46), where in the state
equation we have an additional boundary condition containing a term depending on
the state. Some ideas in this direction are given in the paper [315]. �

Example 4.227 Consider the same distributed control problem of Example 4.222,
where the state space is H = L2((0,π)d). The only difference is that the operator
A is now the iterated Laplace operator with Dirichlet conditions at the boundary
defined as

D(Ai ) =
{
x ∈ H 2i ((0,π)d), x, �x, ...,�i−1x = 0 on ∂(0,π)d

}

Ai x = (−1)i−1(�)mx, for x ∈ D(Ai ).

The operator Ai (which occurs in elasticity theory when i = 2) generates an analytic
semigroup of compact operators of negative type. Moreover, Ai satisfies Hypothesis
4.43 as in the case i = 1 and we have

αk ≈ k
2i
d as k →+∞. (4.342)

So, if we take� = (−A)−β̄ , β̄ ≥ 0, then, arguing as in point (i) at the end of Example
4.46, and using point (i) of Corollary 4.45, Hypothesis 4.145 is satisfied provided

d < 2i(1+ β̄) and β̄ < 1, (4.343)

which is possible for d < 4i . If d < 2i then we can take β̄ = 0 (see [89]). All the
resultsmentioned inExample 4.222 hold in this case for values of β̄, d and i satisfying
(4.343). �

4.8.3.2 Invertible Diffusion Coefficients

Consider the state equation (4.294) under the assumptions of Hypothesis 4.177 with
U = H ,G = I (i.e. β = 0 there) andwhere	 is a bounded subset of a real separable
Hilbert space E . Assume moreover that the functions b and σ satisfy Hypotheses
4.60 and 4.64.

In this case, see Sect. 4.3.3, the transition semigroup Pt,s associated to the SDE
(4.294) without the term GR satisfies Hypotheses 4.74, 4.76 and 4.77 and, similarly,
when b and σ are time-independent, Hypotheses 4.106, 4.108 and 4.110. More-
over, Pt,s also satisfies Hypothesis 4.84 and, when b and σ are time-independent,
Hypothesis 4.115.
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Consider the problem of minimizing the functional

J (t, x; a(·)) := E

[∫ T

t
l(X (s), a(s))ds + g(x(T ))

]

(4.344)

over all controls a(·) ∈ Uμ
t for a given generalized reference probability space μ.

Let g ∈ C2(H), l ∈ C(H ×	) and |l(x, a)| ≤ C(1+ |x |2) for all (x, a) ∈ H ×	.
Then, byProposition4.181, theHamiltonian F0 satisfiesHypothesis 4.72withm = 2.

If the above conditions are satisfied we can thus apply Theorem 4.96-(ii)58 to

obtain the existence and uniqueness of a mild solution v in G0,1
2,1/2([0, T ] × H) of the

associated HJB equation.
Let us examine when all the above assumptions are satisfied for the example of

Sect. 2.6.1 (Eq. (2.79) and cost function (2.81)). Recall that in this example H =
L2(O) for a given bounded regular domain O ⊂ R

N , and 	 is a closed bounded
subset of H . Moreover, the assumptions about the state equation are satisfied if:

• f ∈ C1(R) and has bounded derivative;
• Q = I ;
• the additive noise term dW (s)(ξ) is substituted by σ0(y(s, ξ))dW (s)(ξ), where

σ0 ∈ C1(R) has bounded derivative, and 0 < M1 ≤ σ0 ≤ M2 for some positive
constants M1, M2 (see on this e.g. [283], pp. 460–463).

Finally, the assumptions about the cost function are satisfied, for example, if

• β(y,α) = β0(y)+ β1(α) with β0 ∈ C2(R) and β1 ∈ C2(R);
• γ ∈ C2(R).

Unfortunately we cannot say more. It may be possible to prove that the mild
solution is a strong solution using Theorem 4.135, under suitable regularity assump-
tions about the coefficients b and σ of (4.294). A result of this kind, as explained in
the discussion before Theorem 4.135, could possibly be done by approximating the
semigroup, a procedure used, for example, in [105] in the special case presented in
Sect. 4.9.2.

4.9 Mild Solutions of HJB for Two Special Problems

In this section we collect results obtained with the approach used in the previous
sections in two special cases, where the theory does not apply as it is (a common
feature of infinite-dimensional problems) but needs some nontrivial adaptations.
Section4.9.1 is devoted to the presentation of results for HJB equations associated
with optimal control problems driven by stochastic Burgers andNavier–Stokes equa-
tions, recalling a series of results from [155–158]. Section4.9.2 is concerned with

58This can be done avoiding Hypothesis 4.82-(ii) as, since in this case G = I , the strong Feller
property holds, hence Theorem 4.96-(ii) applies.
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HJB equations associated to optimal control problems driven by reaction-diffusion
equations. The results we present there were obtained in [103, 105–107].

In both cases we will discuss existence and uniqueness results about the solutions
of the HJB equations and, when available, the characterization of optimal feedbacks
for the corresponding optimal control problems in terms of the solutions of the HJB
equations. We omit the proofs giving precise references for all results.

4.9.1 Control of Stochastic Burgers and Navier–Stokes
Equations

In this subsectionwe discuss some results on regular/mild solutions of HJB equations
related to optimal control of stochastic Burgers and Navier–Stokes equations. Below
we give a short description of each of the papers from which these results are taken.

• In [155] the authors proved a smoothing property (similar to (4.6) but with an
exponential weight) for the one-dimensional Burgers equation case. They also
considered the HJB equation associated to a corresponding control problem and
proved the existence of a mild solution using a contraction mapping principle as in
Sect. 4.4. Due to the presence of the exponential weight in the smoothing property,
the fixed point argument used in [155] can only be applied to a very special class
of Hamiltonians. No specific applications to the control problem are developed.

• In [156] the authors obtained the existence of a regular (C1 in time andC2 in space)
solution v to an HJB equation with a quadratic Hamiltonian which is associated
to an optimal control problem for the one-dimensional Burgers equation with an
unbounded cost functional, see Sect. 2.6.4. The proof is done first showing (as in
[178], see Sect. 4.10.1) that the equation for the Hopf transform u = e−v is linear
and then proving, through a Galerkin approximating procedure, that such a linear
equation has a regular (C1 in time andC2 in space) solution. This strong regularity
allows us to find optimal feedback controls.

• In [157] the authors considered a control problemsimilar to that of [155] butwith an
unbounded cost functional and a more general Lipschitz continuous Hamiltonian.
A fixed point argument is not applicable here due to the exponential weight used in
the smoothing property proved in [155]. Hence the authors find the mild solution
by combining the smoothing property and a Galerkin approximating procedure.

• In [158] the approach of [157] is generalized, adapting the same ideas, to the
case of the HJB equation for the optimal control problem for two-dimensional
stochastic Navier–Stokes equations. The authors proved an appropriate smoothing
property. They considered derivatives in a weaker sense (similarly to what is done
here in Sects. 4.4 and 4.6 with G-derivatives) and used a change of variable (u =
e−K |x |2v for a suitable K > 0). Similar techniques are used in [424] to study three-
dimensional controlled stochastic Navier–Stokes equations.

We also recall that many of the results described above are related to results about
Kolmogorov equations for the Burgers and Navier–Stokes equations (see e.g. [162,
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425, 510, 511] for the Burgers equation case, [33, 34, 255, 512, 567] for the 2-D
Navier–Stokes case, and [161] for the 3-D Navier–Stokes case).

We divide the presentation into two subsections, one for the Burgers equation and
the other for the two-dimensional stochastic Navier–Stokes equations.

4.9.1.1 The Case of the Stochastic Burgers Equation

We present here the results from [155–157].

The state equation.
Let μ be a generalized reference probability space

(
�,F , {Fs}s∈[0,T ] ,P,WQ

)
,

where Q ∈ L+1 (H) and is strictly positive, where H := L2(0, 1). The state equa-
tion is the same as the one we introduced in Sect. 2.6.4:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy(s, ξ) =
[

∂2y(s, ξ)

∂ξ2
+ 1

2

∂

∂ξ
y2(s, ξ)+ Gα(s, ·)(ξ)

]

ds + dWQ(s)(ξ),

s ∈ (0, T ], ξ ∈ (0, 1),

y(0, ξ) = x(ξ), ξ ∈ [0, 1],

y(s, 0) = y(s, 1) = 0, s ∈ [0, T ],
(4.345)

where α : [0, T ] ×�→ 	 is a control process. We assume for simplicity that	 is a
closed subset of H andG ∈ L(H). In [155, 156]G = √Q while in [157]G = I , but
the results also cover more general cases. We consider an optimal control problem
in the strong formulation for μ.

We refer the reader to the discussion after (2.107) for a description of the physical
meaning of the variables and of the terms appearing in the equation and for related
references.

As described in Sect. 2.6.4, (4.345) can be rewritten as an evolution equation in
the Hilbert space H . Once we have defined A and B as in (2.109) and (2.110), the
state equation can be reformulated as follows:

{
dX (s) = (AX (s)+ B (X (s))+ Ga(s)) ds + dWQ(s)
X (0) = x,

(4.346)

where X (·) and a(·) are respectively the state and the control variable in the L2(0, 1)
setting. We use the notation

W A(s) :=
∫ s

0
e(s−r)AdWQ(s).

Since Q is nuclear, W A(·) is a continuous process (see Proposition 1.112).
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Definition 4.228 Let x ∈ H and a(·) ∈ M2
μ(0, T ; H). We say that an H -valued

process X is a solution of (4.346) if X (·) = Z(·)+W A(·), where Z(·) is a mild
solution of the equation

{
dZ(s) = (AZ(s)+ B

(
Z(s)+W A(s)

)+ Ga(s)
)
ds,

Z(0) = x .
(4.347)

Theorem 4.229 For any x ∈ H andany a(·) ∈ M2
μ(0, T ; H), there exists a solution,

X (·) = X (·; x, a(·)) of Eq. (4.346), in the sense of Definition 4.228, which is unique
among those with trajectories P-a.s. in

L∞(0, T ; H) ∩ L2(0, T ; H 1
0 (0, 1)).

Proof See [156], Sect. 5, [157], p. 148 and Theorem 14.2.4, p. 260 of [177] (see also
[163]). �

The optimal control problem and the HJB equation.
We consider the following functional to minimize:

J (x; a(·)) = E

{∫ T

0

(

g(X (s))+ 1

2
|a(s)|2H

)

ds + ϕ(X (T ))

}

, (4.348)

where ϕ : H → R is continuous while g is possibly unbounded and only defined
on D((−A)1/2). The set of admissible controls is M2

μ(0, T ;	) and, as in (2.4), we
denote by V μ(x) the value function.

The HJB equation associated with the optimal control problem (4.346)–(4.348)
is

⎧
⎪⎨

⎪⎩

vt (t, x)+ 1

2
Tr
[
QD2v(t, x)

]+ 〈Dv(t, x), Ax + B(x)〉
+F1(G

∗Dv(t, x))+ g(x) = 0,
v(T, x) = ϕ(x),

(4.349)
where for p ∈ H we set

F1(p) := inf
a∈	

{

〈a, p〉 + 1

2
|a|2

}

.

The quadratic case through a Hopf change of variable.
We start with the special case treated in [156], where G = √Q, 	 = H , g(x) =
∣
∣(−A)1/2x

∣
∣2, ϕ(x) = 1

2 |x |2. In this case, the HJB equation is
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt (t, x)+ 1

2
Tr
[
QD2v(t, x)

]+ 〈Dv(t, x), Ax + B(x)〉
−1

2

∣
∣
∣
√
QDv(t, x)

∣
∣
∣
2 + ∣∣(−A)1/2x

∣
∣2 = 0,

v(T, x) = 1

2
|x |2.

(4.350)

Definition 4.230 A continuous function v : [0, T ] × H → R is a strict solution of
(4.350) if:

(i) v is a C2 function with respect to x .
(ii) For any x ∈ D(A), t→v(t, x) is a C1 function.
(iii) (4.350) holds for any (t, x) ∈ D(A)× [0, T ].

The main result proved in [156] using the Hopf transform is the following.

Theorem 4.231 Consider the function w : [0, T ] × H → R defined by

w(t, x) := E

[

exp

(

−1

2
|Y (t)|2 −

∫ t

0
|(−A)1/2Y (r)|2dr

)]

,

where Y is the unique solution (in the sense of Definition 4.228) having trajectories
P-a.s. in L∞(0, T ; H) ∩ L2(0, T ; H 1

0 (0, 1)) of the following uncontrolled Burgers
equation {

dY (t) = [AY (t)+ B(Y (t))] dt + dWQ(t),
Y (0) = x .

Then the function v(t, x) := − ln(w(T − t, x)) is a strict solution of (4.350). More-
over, v(0, x) = V μ(x).

Finally, there exists a solution X∗(s), in the sense of Definition 4.228, of the closed
loop equation

{
dX∗(s) = [AX∗(s)+ B(X∗(s))] ds − QDv(s, X∗(s))+ dWQ(s),
X∗(0) = x,

which is unique among those with trajectories P-a.s. in L∞(0, T ;
H) ∩ L2(0, T ; H 1

0 (0, 1)), the process

a∗(s) := −Q1/2Dv(s, X∗(s))

belongs to M2
μ(0, T ; H)and it is aμ-optimal control for the problem (4.346)–(4.348).

Proof See Theorem 2.4 and Sect. 5 of [156]. �

The general terminal cost case through smoothing.
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Fix again a generalized reference probability space μ = (�,F , {Fs}s∈[0,T ] ,
P,WQ

)
and consider the optimal control problem in the strong formulation char-

acterized by the state equation (4.346), the functional (4.348) and the control space
	 = B(0, R) in H for some R > 0. Hence the set of admissible controls is

Uμ,R := {a : [0, T ] ×�→ B(0, R), progressively measurable} . (4.351)

TheHJB equation associated to the problem is (4.349) with the Hamiltonian F1 given
by

F1(p) :=
{− 1

2 |p|2 if |p| ≤ R
−(R|p| − R2/2) if |p| ≥ R.

(4.352)

In [155] the authors prove the following smoothing property.We denote by X (·; x)
the solution of (4.346) when a(·) ≡ 0.

Theorem 4.232 Assume that D
(
(−A)β/2

)⊂D
(
Q−1/2

)
and

|Q−1/2x | ≤ C |(−A)β/2x |, ∀x ∈ D
(
(−A)β/2

)
(4.353)

for some C > 0 and β ∈ (1/2, 1). Then, for every s > 0, x→X (s; x) is P-a.s.
Gâteaux differentiable. Moreover, for every s > 0, h ∈ H and φ ∈ Cb(H), the func-
tion x→Ps[φ](x) := E[φ(X (s; x)] is twice Gâteaux differentiable and

〈∇Ps[φ](x), h〉 = 1

s
E

[

φ(X (s; x))
∫ s

0

〈
Q−1/2∇x X (r; x)h, dW (r)

〉
]

.

Finally, for any T > 0 and ε > 0, there exists a Cε,T > 0 such that

|∇Ps[φ](x)| ≤ Cε,T s
−(1+β)/2‖φ‖0eε|x |2 , s ∈ (0, T ],

and
|∇2Ps[φ](x)| ≤ Cε,T s

−1−β‖φ‖0eε|x |2 , s ∈ (0, T ].

Proof See Proposition 4.1. in [155]. �

Definition 4.233 (Ck
γ(H)) Let γ ∈ R

+. We define C0
γ(H) to be the space of all

functions φ of C(H) such that the quantity

|φ|C0
γ (H) := sup

r>0
e−γr2

(

sup
|x |≤r

|φ(x)|
)

< +∞.

For k ∈ N, we denote by Ck
γ(H) the space of all functions φ in Ck(H) which are in

C0
γ(H) together with all their Fréchet derivatives up to the order k.
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We set

γ̃ := π2

2‖Q‖L(H)

.

Theorem 4.234 Suppose that (4.353) and the following set of hypotheses are
satisfied:

(i) G = I .
(ii) ϕ ∈ C0

γ(H) for some γ < γ̃ and it is bounded from below.
(iii) g is bounded below and it is of the form g = g1 + g2 where g1 ∈ C1

γ(H) for
some γ < γ̃ and g2 ∈ C2

(
D((−A)1/2)

)
. Moreover, there exists a cg ∈ R

+ such
that g2 satisfies the following estimates for any x, h ∈ D((−A)1/2):

|g2(x)| ≤ cg

(
1+ |x |D((−A)1/2)

)
,

|〈Dg2(x), h〉| ≤ cg

(
1+ |x |D(−A)1/2

) |h|D((−A)1/2),

|〈D2g2(x)h, h〉| ≤ cg|h|2D((−A)1/2)
.

Then there exists amild solution v of (4.349) in the following sense: v ∈ C([0, T ] ×
H) with v(t, ·) ∈ C1

γ̃(H) for any t ∈ [0, T ) and, for every t ∈ [0, T ], x ∈ H,

v(t, x) = PT−t [g](x)+
∫ T

t
Ps−t [F1(Dv(s; ·))+ g](x) ds,

where Ps is defined in Theorem 4.232.

Proof See Theorem 2.2, p. 149 of [157]. �

Theorem 4.235 Let the assumptions of Theorem 4.234 be satisfied and v be a mild
solution of (4.349). Let x ∈ H. The following closed loop equation

{
dX∗(s) = (AX∗(s)+ B (X∗(s))+ DF1(Dv(t, X∗(t)))) ds + dWQ(s)
X (0) = x

(4.354)
has a solution X∗(s) in the sense of Definition 4.228 which is unique among those
with trajectories P-a.s. in L∞(0, T ; H) ∩ L2(0, T ; H 1

0 (0, 1)). The process

a∗(s) := DF1(Dv(s, X∗(s)))

belongs to Uμ,R and it is a μ-optimal control at x.

Proof See Theorem 2.3, p. 149 of [157]. �
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4.9.1.2 Two-Dimensional Stochastic Navier–Stokes Equations

In this section we discuss some results from [158] related to optimal control of
two-dimensional Navier–Stokes equations.

The infinite-dimensional problem.
The problem is described in Sect. 2.6.5. The two-dimensional stochastic Navier–
Stokes (state) equations and the functional to minimize are described respectively by
(2.114) and (2.116). After rewriting the problem in the infinite-dimensional frame-
work the state equation has the form

{
dX (s) = (AX (s)+ B (X (s))+ a(s)) ds + PdWQ(s)

X (0) = x
(4.355)

in the state space H , where A, B, P , Q,WQ are given in Sect. 2.6.5.2. We recall (see
[557], Sect. 2I.2.1, in particular p. 107 or [555], Sect. 2.2) that there exists a sequence
0 > λ1 ≥ λ2 ≥ ... with λn

n→∞−−−→ −∞ of eigenvalues of A and an orthonormal basis
{en}n∈N of H composed of eigenvectors of A, i.e. elements of D(A) such that Aen =
λnen , for all n. Partly following [253] we assume the following hypothesis.

Hypothesis 4.236 Q ∈ L+1 (H) and is strictly positive. Moreover, Qen = θnen for
some θn > 0, for all n = 1, 2, ....

Lemma 4.237 If Hypothesis 4.236 is satisfied then the trajectories of the stochas-
tic convolution W A(s) = ∫ s

0 e(s−r)AdWQ(s) are P-a.s. in C([0, T ], H) ∩ L2(0, T ;
D((−A)1/2)).

Proof The continuity of the trajectories in H follows from Proposition 1.112. To
conclude, observe that (A, Q and esA commute thanks to Hypothesis 4.236)

E

∫ T

0

∣
∣
∣
∣(−A)1/2

∫ s

0
e(s−r)AdWQ(s)

∣
∣
∣
∣

2

ds =
∫ T

0

∞∑

n=1

∫ s

0

〈
Ae2r AQen, en

〉
drds

=
∫ T

0

∞∑

n=1

∫ s

0
θnλne

2λnr drds =
∫ T

0

∞∑

n=1
θn

(
e2λns − 1

2

)

ds

=
∞∑

n=1
θn

(
e2λnT − 1− 2λnT

4λn

)

,

which is finite because
(
e2λn T−1−2λnT

4λn

)
is uniformly bounded in n and Q is trace

class, so that
∑

n θn < +∞. �
We consider the functional (2.122) with ȳ = 0 so that

J (x; a(·)) = E

[∫ T

0

∣
∣(−A)−1/2X (s)

∣
∣2
H +

1

2
|a(s)|2Hds + |X (T )|2H

]

. (4.356)
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Wefix a generalized reference probability spaceμ = (�,F , {Fs}s∈[0,T ] ,P,WQ
)

and we consider the problem in the strong formulation. We take the control space
	 = B(0, R) in H for some R > 0. Hence the set of admissible controls is

Uμ,R := {a : [0, T ] ×�→ B(0, R), progressively measurable} . (4.357)

Definition 4.238 Let x ∈ H and a(·) ∈ Uμ,R . We say that an H -valued process X
is a solution of (4.355) if X (·) = Z(·)+W A(·), where W A(s) = ∫ s

0 e(s−r)AdWQ(s)
and Z(·) is a mild solution of the equation

{
dZ(s) = (AZ(s)+ B

(
Z(s)+W A(s)

)+ a(s)
)
ds,

Z(0) = x .

Theorem 4.239 Let Hypothesis 4.236 be satisfied, let x ∈ H and a(·) ∈ Uμ,R. Then
(4.355) has a unique solution X in the sense of Definition 4.238 among those having
trajectories P-a.s. in L∞(0, T ; H) ∩ L2(0, T ; D((−A)1/2)).

Proof Denote by L-4 the closure of V defined in (2.118) in L4(O;R2). Theorem
15.3.1, p. 291 of [177] guarantees that there exists a unique solution X in the sense
of Definition 4.238 among those having trajectories P-a.s. in L4(0, T ;L-4) while
Proposition 15.1.1, p. 283 of [177] shows that L4(0, T ;L-4) contains L∞(0, T ; H) ∩
L2(0, T ; D((−A)1/2)). Thus to prove the statement we only have to know that
the trajectories of X belong P-a.s. to L∞(0, T ; H) ∩ L2(0, T ; D((−A)1/2)). This
fact is true because P-a.s. the trajectories of X −W A belong to L∞(0, T ; H) ∩
L2(0, T ; D((−A)1/2)) (see the proof of Lemma 15.2.4, p. 289, in [177]) and the tra-
jectories of W A belong P-a.s. to L∞(0, T ; H) ∩ L2(0, T ; D((−A)1/2)) by Lemma
4.237. �

The Hamiltonian for the problem is given by

F1(p) := inf
a∈	

{

〈a, p〉 + 1

2
|a|2

}

=
{− 1

2 |p|2 if |p| ≤ R
−|p|R + 1

2 R
2 if |p| > R,

and the HJB equation is

⎧
⎪⎨

⎪⎩

vt + 1

2
Tr
[
PQP∗D2v

]+ 〈Dv, Ax + B(x)〉 + F1(Dv)+ l(x) = 0

v(T, x) = |x |2,
(4.358)

where l(x) = |(−A)−1/2x |2.
Following [158] we introduce the change of variables

u(t, x) = e−K |x |2v(t, x).

Then, denoting for simplicity Q̄ := PQP∗, (4.358) transforms into
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⎧
⎪⎨

⎪⎩

ut + 1

2
Tr
[
Q̄D2u

]+ 〈Du, Ax + B(x)− 2K |x |2u〉+ F̃(x, u, Du)+ l̃(x) = 0

u(T, x) = g̃(x),
(4.359)

where

F̃(x, u, Du) = 2K
〈
Q̄x, Du

〉+ (2K 2|Q̄1/2x |2 + 2KTr(Q̄))u

− e−K |x |2F1(e
K |x |2(Du + 2Kxu))

and
l̃(x) = e−K |x |2l(x), g̃(x) = e−K |x |2 |x |2.

If the hypotheses of Theorem 4.239 are satisfied, for every g ∈ Bb(H) we can
define Rt (g) as follows

Rt (g)(x) = E

(
e−2K

∫ t
0 |X (s;x)|2dsg(X (t; x))

)
, (4.360)

where X (·; x) is the solution of (4.355) starting at x and with a(·) ≡ 0. We use it to
introduce the mild form of (4.359):

u(t, x) = RT−t (g̃)(x)+
∫ T

t
Rs−t

[
F̃(·, u(s, ·), Du(s, ·))+ l̃

]
(x) ds. (4.361)

The smoothing property.
For γ > 0, k, l ∈ N and α ∈ [0, 1] we introduce the following function spaces:

C0,k,l+α = {ψ : H → R : ψ is l times differentiable and |ψ|0,k,l+α < +∞} ,

where

|ψ|0,k,l+α = sup
x∈H

(1+ |x |)−k |ψ(x)| + sup
r>0

(1+ r)−k sup
|x |≤r,|y|≤r

‖Dlψ(x)− Dlψ(y)‖L(Hl )

|x − y|α

and
Cγ,k,l+α = {ψ : D((−A)γ)→ R : ψ((−A)−γ ·) ∈ C0,k,l+α

}

endowed with the norm

|ψ|γ,k,l+α = |ψ((−A)−γ ·)|0,k,l+α.

Proposition 4.240 Let Hypothesis 4.236 be satisfied. For any γ2 > γ1, l ∈ {0, 1, 2},
α ∈ [0, 1] such that l + α ≤ 2 and k ≥ 0, there exist c0(γ1, γ2, k) and c1(γ1, γ2, k)
such that, if K ≥ c0(γ1, γ2, k) then, for any ϕ ∈ Cγ,k,α and any t ∈ [0, T ],
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|Rtϕ|γ2,k+2l,l+α ≤ c1(γ1, γ2, k)t
−α(1+γ2−γ1)|ϕ|γ2,k,α.

Proof See Proposition 3.3 and Remark 1, p. 469 of [158]. �

Solution of the HJB equation and optimal feedback.

Theorem 4.241 Let Hypothesis 4.236 be satisfied. Assume that Q̄ = PQP∗ is trace
class and that there exist cQ̄ and η ∈ (0, 1

2

)
such that

|Q̄−1/2x | ≤ cQ̄ |(−A)
1
2+ηx |, for all x ∈ D((−A)

1
2+η.

Then, if K is big enough, for some γ ∈ (0, 1
2

)
and k ≥ 0, we have the following.

(i) If we denote by V μ(x) the value function of the problem (4.355)–(4.356)–
(4.357) and we introduce u(0, x) := V μ(x)eK |x |2 then u belongs to C([0, T ],
Cγ,d,2) and it is a mild solution of Eq. (4.359).

(ii) The following closed loop equation

{
dX∗(s) = (AX∗(s)+ B (X∗(s))− DF(DV μ

s (X∗(s)))
)
ds + PdWQ(s)

X∗(0) = x

has a unique mild solution X∗. If we define, for s ∈ [0, T ], a∗(s) = −DF
(DV μ

s (X∗(s))) then a∗(·) belongs to Uμ,R and it is a μ-optimal control at x for
the problem (4.355)–(4.356)–(4.357).

Proof Part (i) is contained in [158], p. 473 and Theorem 2.1 of the same paper. Part
(ii) is proved in Theorem 2.2 of [158]. �
Remark 4.242 To prove the statements described in Theorem 4.241 the authors of
[158] use a Galerkin approximation technique which improves the one used in [157].
More precisely, they first consider the orthogonal projection Pm in H onto the linear
span of the first m elements of the orthonormal basis {en} composed of eigenvectors
of A and, for x ∈ H , introduce Bm(x) := PmB(Pmx), Qm := Pm Q̄Pm and

F̃m(x, um, Dum) = 2K
〈
Qmx, Dum

〉

+ (2K 2|Q1/2
m x |2 + 2KTr(Qm))u − e−K |x |2F(eK |x |

2
(Dum + 2Kxum)).

They define, for bounded Borel measurable functions g : PmH → R and x ∈ PmH ,

Rm
t (g)(x) = E

(
e−2K

∫ t
0 |Ym (s)|2dsg(Ym(t))

)
,

where Ym is the solution of

{
dYm(t) = (AYm(t)+ Bm(Ym(t))dt + dWQm (t)

Ym(0) = x .
(4.362)
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They prove that the approximating equations

um(t)(·) = Rm
T−t (g̃)(·)+

∫ T

t
Rm
s−t
[
F̃m(·, um(s, ·), Dum(s, ·))+ l̃

]
ds (4.363)

have unique (mild) solutions um belonging toC([0, T ],Cγ,d,2) and converging (up to
a subsequence) to some u which is then identified with the required transformation
of the valued function. �

Remark 4.243 A Kolmogorov equation associated to three-dimensional stochastic
Navier–Stokes equations has been studied in [161] where the existence of special
strict and mild solutions was obtained. Results for optimal control problems driven
by the controlled three-dimensional stochastic Navier–Stokes equations are obtained
in [424]. The approach is similar to the one used in [158] for the two-dimensional
case presented above. Indeed, the main ingredient used in [424] is again a Galerkin
finite-dimensional approximation. The limit of the approximating problems can be
used again to characterize an optimal feedback (see Theorem 4.7 of [424]) for the
problem in the weak formulation. However, more restrictive conditions, notably on
the cost functional, are needed. In particular, the choice of a running cost including a
term of the form |curl x |2, (which corresponds to the term |A−1/2x |2 appearing in the
infinite-dimensional formulation for the two-dimensional problem), is not possible
under the assumptions of [424]. �

4.9.2 Control of Reaction-Diffusion Equations

In this section we present a special case of results on the optimal control of stochastic
reaction-diffusion systems contained in [103, 105, 107] and in Chaps. 9 and 10 of
[106]. We begin by briefly recalling the content of these works:

• In [103] a smoothing property of the transition semigroup associated with the
studied reaction-diffusion equation is proved (see also [104]) and then, as an appli-
cation, an existence and uniqueness result (in a suitable function space) for mild
solutions of a family of parabolic HJB equations is obtained. A contraction map-
ping argument similar to that used in Sect. 4.4 is used. The optimal synthesis is
not studied.

• In [105] a wider family of parabolic HJB equations associated with the control
of reaction-diffusion equations is investigated, allowing also for locally Lipschitz
Hamiltonians. The equations are studied using amethod similar to that of Sect. 4.7.
The solutions of the HJB equations are characterized as the value functions of the
corresponding optimal control problems and the optimal synthesis in the case of
spatial dimension 1 is obtained.

• In [107] the infinite horizon analogue of [105] is studied. Again, using the smooth-
ing properties of the transition semigroup, an existence and uniqueness result for
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mild solutions of a family of elliptic HJB equations is proved. The results are
obtained in the cases of Lipschitz and locally Lipschitz Hamiltonians.

While the above mentioned papers deal with problems involving more general
second-order uniformly elliptic differential operators, here we limit our attention to
the case of a Laplacian with zero Dirichlet boundary conditions.

4.9.2.1 The Finite Horizon Problem

We consider a bounded domain O⊂RN for N ≤ 3 whose boundary ∂O is regular
and denote by H the Hilbert space L2(O) and by E the Banach space C(O).

Let T > 0 and t ∈ [0, T ). We introduce the following controlled stochastic
reaction-diffusion equation on [t, T ],

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂y(s, ξ) = [�y(s, ξ)+ f (ξ, y(s, ξ))+ α(s, ξ)] ds + dWQ(s)(ξ),

y(t, ξ) = x(ξ), ξ ∈ O,

y(s, ξ) = 0, ξ ∈ ∂O.

(4.364)

The function f : O × R→ R and the process α are, respectively, the reaction
term and the control. Specific assumptions about f are given below (see Hypotheses
4.245 and 4.246). As always WQ is an H -valued Q-Wiener process defined on a
filtered probability space

(
�,F , {Fs}s∈[0,T ] ,P

)
, where Q ∈ L+(H). We denote by

μ the generalized reference probability space
(
�,F , {Fs}s∈[0,T ] ,P,WQ

)
.

Remark 4.244 Equation (4.364) is a particular case of a system considered in
Sect. 4.1.1, p. 107 of [106]. Using the notation of [106] our case is characterized
by A = � and B = I . �

Hypothesis 4.245 We assume that there exist two continuous functions g : O ×
R→ R and h : O × R→ R such that, for any ξ ∈ O and σ ∈ R, we have

f (ξ,σ) = g(ξ,σ)+ h(ξ,σ).

The functions g and h, together with a natural number l ≥ 2, have the following
properties:

(1) For any ξ ∈ O the functionh(ξ, ·)belongs toCl(R) andhas boundedderivatives
up to the l-th order, uniformly with respect to ξ ∈ O. Moreover, the mapping
D j

σh : O × R→ L j (R) is continuous, for j = 1, .., l.
(2) For any ξ ∈ O, the function g(ξ, ·) belongs to Cl(R) and there exists anm ≥ 0

such that, for any j = 1, .., l,
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sup
ξ∈O

sup
t∈R

|D j
t g(ξ, t)|

1+ |t |2m+1− j
<∞.

Moreover, the mapping D j
t g : O × R→ R is continuous for j = 1, .., l.

(3) If the constant m from (2) satisfies m ≥ 1 then there exists a c1 ∈ R such that

sup
t∈R

sup
ξ∈O

Dtg(ξ, t) ≤ c1.

Hypothesis 4.246 Suppose that Hypothesis 4.245 is satisfied. If the constantm from
Hypothesis 4.245-(2) satisfies m ≥ 1 then there exist a, γ > 0 and c2 ∈ R such that

sup
ξ∈O

(
g(ξ, t + s)− g(ξ, t)

)
s ≤ −as2m+2 + c2(1+ |t |γ)|s|

for all s, t ∈ R.

The infinite-dimensional formulation.
To rewrite the state equation as a stochastic evolution equation in H we introduce,
following [106] Sect. 4.1, the unbounded linear operator A on H as follows:

{
D(A) = H 2(O) ∩ H 1

0 (O)

Ax = �x − x .

It generates (see e.g. [479] Theorem 3.6, p. 215) an analytic semigroup on H and

∥
∥et A

∥
∥ ≤ e−t for all t ≥ 0.

Remark 4.247 Observe that (see again [479], Theorem 3.6, p. 215) the constant ρ
introduced on p. 109 of [106] can be chosen here to be 0 so our A corresponds to the
operator A defined on p. 109 of [106]. Observe also that, in the case of a Laplacian
with zero Dirichlet boundary condition, the operator G defined on p. 174 of [106] is
trivial and then the operator C defined there equals �− I so that its realization C is
exactly the operator A defined above. �

We need the following assumptions about the operators A and Q.

Hypothesis 4.248

(1) There exists an orthonormal basis {ek} of H composed of elements of E which
diagonalizes A and such that supk∈N |ek |E <∞. If (−θk) are the corresponding
eigenvalues then, for any δ > N

2 , we have

∑

k∈N
θ−δ
k < +∞. (4.365)
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(2) Q ∈ L+(H) is diagonal with respect to the orthonormal basis {ek} described in
point (1) so that Qek = λkek for some set of eigenvalues (λk). We suppose that

∞∑

k=1

λ2
k

θ
1−γ
k

< +∞

for some γ ∈ (0, 1).
(3) There exists an ε < 1 such that

R((−A)−ε/2) ⊂ R(Q1/2).

It can be shown (see Remark 6.1.1 of [106]) that (4.365) is satisfied if the domain
O satisfies suitable regularity conditions.

We introduce theNemytskii operator b associated to the function (ξ,σ)→ f (ξ,σ).
It is defined as

b(x)(ξ) := f (ξ, x(ξ))+ x(ξ), ξ ∈ O. (4.366)

We assume that the control processes α = (α1, . . . ,αr ) belong to M2
μ(t, T ; H).

We define a(t) := α(t, ·).
Using the above notation, the controlled equation (4.364) can be rewritten as the

following infinite-dimensional SDE

{
dX (s) = (Ax(s)+ b(X (s))+ a(s)) ds + dWQ(s),
X (t) = x,

(4.367)

for 0 ≤ t < s ≤ T .
The next theorem is an existence and uniqueness result for (4.367) which is fol-

lowed by a result about the differentiability of the solutions of (4.367) with respect
to the initial condition when there is no control.

Theorem 4.249 Let Hypotheses 4.245 and 4.248 be satisfied. Then

(i) For any Fs -progressively measurable a(·) ∈ L2(�, L p(t, T ; H)), with p >

4/(4− N ), and x ∈ E,Eq. (4.367) admits auniquemild solution X (·; t, x, a(·))
∈ L2(�,Cb((t, T ], E))) such that, on s ∈ [t, T ],

|X (s; t, x, a(·))|E ≤ cT

(

|x |E + |a(·)|2m+1L p(t,s;H)
+ sup

r∈ [t,s]
|W A(t, r)|2m+1E

)

P -a.s. ,

(4.368)
where W A(t, r) = ∫ r

t e(r−θ)AdWQ(θ) (see Proposition 1.144).
(ii) For any x ∈ H and any a(·) ∈ M2

μ(t, T ; H), Eq. (4.367) admits a unique gener-
alized solution X (·, t; x, a(·)) ∈ L2(�,C([t, T ], H)) such that, for s ∈ [t, T ],

|X (s; t, x, a(·))|H ≤ cT

(

|x |H + |a(·)|2m+1
L2(t,s;H)

+ sup
r∈ [t,s]

|W A(t, r)|2m+1E

)

P -a.s.
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in the following sense: for any sequence (xn) ⊂ E converging to x in H and
(an(·)) ⊂ L2(�, L2(t, T ; E)), Fs -progressively measurable, converging to a(·) in
L2(�, L2(t, T ; H)), the corresponding sequenceofmild solutions (X (·; t, xn, an(·)))
converges to X (·; t, x, a(·)) in C([t, T ], H), P-a.s.

Proof See Theorem 9.1.2, p. 240 of [106]. The result was originally stated, in a
slightly different form, in Theorem 3.2 of [105]. �

Theorem 4.250 Let Hypotheses 4.245, 4.246 and 4.248 be satisfied. Denote by
X (·; t, x) the generalized solution of Eq. (4.367) starting from x at time t and with
control a(·) ≡ 0. Then:

(i) For any p ≥ 1 the function

{
E → Hμ

p(t, T ; E)

x→X (·; t, x)

is l times Gâteaux differentiable.
(ii) Let x, h ∈ H and let xn and hn be any two sequences in E converging respec-

tively to x and h in H. Then the sequence (∇x X (·; t, xn)hn)n∈N converges in
C([t, T ], H) P-a.s. to a process which we denote by v(·; t, x, h).

Proof See Theorem 6.3.3, p. 194 and Proposition 7.2.1, p. 211 of [106]. �

A smoothing result.
Given ϕ ∈ Bb(H) we introduce the transition semigroup Pt associated to the uncon-
trolled equation (4.367) by setting, for any x ∈ H and s ≥ 0,

Ps[ϕ](x) = E [ϕ(X (s; 0, x))], s ≥ 0,

where X (·; 0, x) is the solution of (4.367) starting from x at time t = 0 if we take
the control a(·) ≡ 0.

Theorem 4.251 Suppose that Hypotheses 4.245, 4.246 and 4.248 are satisfied. Then
Ps is a (not always strongly continuous) semigroup of contractions in Cb(H) and, for
any s > 0, it maps Bb(H) into C1

b(H). If ε is the constant fromHypothesis 4.248-(3),
Ps satisfies the following smoothing property: there exists a c ≥ 0 such that

‖Ps[ϕ]‖1 ≤ c(1 ∧ s)−
1+ε
2 ‖ϕ‖0, for every ϕ ∈ Cb(H), s > 0.

Moreover, for every ϕ ∈ Cb(H) and x, h ∈ H, the following Bismut–Elworthy type
formula (see also Section 4.3.3) holds,

〈∇Ps[ϕ](x), h〉 = 1

s
E[ϕ(X (s; 0, x)]

∫ s

0

〈
Q−1v(τ ; 0, x, h)dWQ(τ )

〉
, s > 0,
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where the process v(·; 0, x, h) is defined in Theorem 4.250-(ii).

Proof See Theorem 7.3.1, p. 217 of [106]. Given the structure of the Bismut–
Elworthy type formula, we need in particular, for s > 0, v(τ ; 0, x, h) ∈ D(Q−1),
P-a.s., which is proved, for instance, in Proposition 6.4.1, p. 197 of [106]. �

The HJB equation and its solution.
The smoothing result of Theorem 4.251 can be used to show, via a fixed point argu-
ment similar to the one used in Sect. 4.4, the existence and uniqueness of mild solu-
tions for a class of HJB equations associated to the optimal control of the stochastic
reaction-diffusion equation (4.364).

Consider the following infinite-dimensional Cauchy problem

{ ∂v

∂t
+ 1

2
Tr [QD2v] + 〈Ax + b(x), Dv〉 + F0(Dv)+ l1(x) = 0,

v(T, x) = g(x).
(4.369)

Hypothesis 4.252 The Hamiltonian F0 : H → R is Fréchet differentiable and
locally Lipschitz continuous, together with its derivative. Moreover, F0(0) = 0.

We define V1
T to be the space of all bounded and continuous functions u : [0, T ] ×

H → R such that u(t, ·) ∈ C1
b(H) for all t ∈ [0, T ) and the mapping

{ [0, T )× H → H,

(t, x)→Du(t, x)

is bounded and measurable. It is easy to check that V1
T , endowed with the norm

‖u‖V1
T
= sup

t∈ [0,T ]
‖u(t, ·)‖0 + sup

t∈ [0,T )

‖Du(t, ·)‖0,

is a Banach space. Note that the spaceV1
T , which is the spacewhere themild solutions

exist here, is a bit different from the spaces used in Sect. 4.4 (see Remark 4.91).
Indeed, we have

C0,1
b ([0, T ] × H) ⊂ V1

T ⊂ B0,1
b ([0, T ] × H).

The mild form of (4.369) is given, as in Sect. 4.4, by

v(t, x) = PT−t [g](x)+
∫ T

t
Ps−t [F0(Dv(s, ·))+ l1] (x) ds. (4.370)

The definition of a mild solution is the same as in Definition 4.70. The following
result is proved using the same techniques as those employed to prove Theorem
4.175.
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Theorem 4.253 Let Hypotheses 4.245, 4.246, 4.248, and 4.252 hold. Assume that
g, l1 : H → R are bounded and Lipschitz continuous functions. Then (4.369) admits
a unique mild solution u in V1

T .

Proof See Theorem 9.4.2, p. 255 of [106]. A previous version of the result, with
some minor differences, is given in Theorem 6.3 of [105]. �

Application to optimal control problems.
As in the previous paragraphs we work with a fixed generalized reference proba-
bility space μ = (�,F , {Fs}s∈[0,T ] ,P,WQ

)
. Consider an optimal control problem

in the μ-strong formulation characterized by the state equation (4.367) and the cost
functional

Jμ(x; a(·)) = E

∫ T

0
(l1(X (s))+ l2(a(s))) ds + E g(X (T )), (4.371)

where X (·) = X (·; 0, x, a(·)) is the unique solution of (4.367). Our set of admissible
controls will be M2

μ(0, T ; H) so the value function of the problem is, as in (2.5),

V μ
0 (x) = inf

{
Jμ(x; a(·)) : a(·) ∈ M2

μ(0, T ; H)
}
.

We define the Hamiltonian F0 by

F0(p) = inf
a∈ H

{〈a, p〉 + l2(a)} , p ∈ H. (4.372)

Hypothesis 4.254 The function l2 : H → R is such that F0 defined by (4.372) is
well defined and satisfies Hypothesis 4.252.

Proposition 4.182-(iii) provides conditions under which Hypothesis 4.254 is sat-
isfied.

The HJB equation associated with the above optimal control problem is then
given by (4.369), where F0 is defined by (4.372). If Hypotheses 4.245, 4.248 and
4.254 are satisfied, then the existence and uniqueness of a mild solution of (4.369)
is guaranteed by Theorem 4.253. The connection between the mild solution and the
value function of the control problem is provided by the following result.

Theorem 4.255 Consider the HJB equation (4.369), where F0 is defined by (4.372).
Let Hypotheses 4.245, 4.246, 4.248, and 4.254 hold. Assume that g, l1 : H → R are
bounded and Lipschitz continuous. Then V μ

0 (x) = u(0, x) for every x ∈ H, where u
is the unique mild solution of (4.369).

Proof See Theorem 10.1.2, p. 286 of [106]. An earlier version of the result is in
Theorem 7.2 of [105]. �

We conclude with an optimal synthesis result in the one-dimensional case.
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Theorem 4.256 Let the hypotheses of Theorem 4.255 hold with N = 1 (one-
dimensional reaction-diffusion state equation) and let the constant m in Hypothesis
4.245 be strictly smaller than 2. Suppose that, for j = 0, 1, 2,

sup
ξ∈O

sup
σ∈Rr

D j
σ f (ξ,σ)

|σ|3− j
< +∞.

Then for every bounded and Lipschitz continuous functions g and l1 and for every
x ∈ H there exists a unique μ-optimal control for the problem (4.367)–(4.371).

Moreover, if u is the unique mild solution of (4.369), the closed loop equation

{
dX (s) = (Ax(s)+ b(X (s))+ DF0(Du(s, X (s)))) ds + dWQ(s),
X (0) = x

(4.373)

has a unique solution X∗(·),

a∗(s) = DF0(Du(s, X∗(s))), s ∈ [0, T ],

is the unique μ-optimal control at x and X∗(·) is the corresponding optimal state
trajectory.

Proof See Theorem 10.3.1, p. 297 of [106]. An earlier version of the result can be
found in Theorem 7.3 of [105]. �

4.9.2.2 The Infinite Horizon Problem

We now consider a stationary version of the HJB equation studied in the previous
subsection.

The state equation starting at time 0 is

{
dX (s) = (AX (s)+ b(X (s))+ a(s)) ds + dWQ(s),
X (0) = x,

(4.374)

for s ≥ 0. The spaces H and E as well as A, b, Q are as in Sect. 4.9.2.1. As before, the
generalized reference probability space μ=

(
�,F , {Fs}s≥0 ,P,WQ

)
is fixed and the

optimization problem is considered in the strong formulation. The control processes
a(·) belong to M2

μ(0,∞; H).

The HJB equation and its solution.
We consider a family of HJB equations

λv − 1

2
Tr

[
QD2v

]− 〈Ax + b(x), Dv〉 − F0(Dv)− l1(x) = 0. (4.375)
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The mild form of (4.375) is

v(x) =
∫ +∞

0
e−λ t Pt [l1(·)− F0(Dv(·)))] (x) dt, x ∈ H (4.376)

and a mild solution is defined in Definition 4.102.
We state two existence and uniqueness results for the mild solutions of (4.376)

for the cases of Lipschitz and locally Lipschitz Hamiltonians.

Theorem 4.257 Let Hypotheses 4.245, 4.246, 4.248 be satisfied. Suppose that
Hypothesis 4.252 is satisfied and in addition F0 and its derivative are Lipschitz
continuous. Then, for any λ > 0 and l1 ∈ Cb(H), there exists a unique mild solution
u ∈ C1

b(H) of (4.376).

Proof See Theorem 9.5.9, p. 274 of [106]. An earlier version of the result can be
found in [107], Theorem 4.9. �

Theorem 4.258 Let Hypotheses 4.245, 4.246, 4.248 and 4.252 be satisfied. Then
there exists a λ0 > 0 such that, for any λ > λ0 and for any l1 ∈ C1

b(H), there exists
a unique mild solution in u ∈ C1

b(H) of (4.376).

Proof See Theorem 9.5.13, p. 279 of [106]. An earlier version of the result can be
found in [107], Theorem 4.13. �

Remark 4.259 In [106] the existence and uniqueness results recalled in Theorems
4.257 and 4.258 are stated in a certain operator domain D(L) rather than in C1

b(H),
where, thanks to Lemma 9.5.1 of [106], D(L)⊂C1

b(H). The operator L is defined,
similarly towhat is done in [101] for theOrnstein–Uhlenbeck semigroup (seeRemark
B.72), through the family of resolvent operators

R(λ)[φ](x) :=
∫ +∞

0
e−λ t Pt [φ] (x) dt, φ ∈ Cb(H), x ∈ H. (4.377)

Hence, by construction, R(λ)[φ] = (λI − L)−1[φ]. Now any solution u ∈ C1
b(H)

of (4.376) can be written as u = (λI − L)−1 [l1 − F0(Du)]. Since l1 − F0(Du) ∈
Cb(H) it follows that u ∈ D(L), hence uniqueness in D(L) implies uniqueness in
C1
b(H). �

Application to optimal control problems.
We fix a generalized reference probability space μ=

(
�,F , {Fs}s≥0 ,P,WQ

)
and

we consider the problem of minimizing the following functional

Jμ(x, a(·)) = E

∫ +∞

0
e−λt [l1(X (t; x, a(·)))+ l2(a(t))] dt, (4.378)

where X (·; x, a(·)) is the solution of (4.374), over all controls a(·) in M2
μ(0,∞; H).

The value function of the problem is given by
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V μ(x) = inf
{
Jμ(x; a(·)) : a(·) ∈ M2

μ(0,∞; H)
}
. (4.379)

The Hamiltonian F0 associated to this optimal control problem is defined by
(4.372).

Theorem 4.260 Let Hypotheses 4.245, 4.246 and 4.248 be satisfied. Suppose that
Hypothesis 4.254 is satisfied and in addition F0 and its derivative are Lipschitz
continuous. Then, for any λ > 0 and any bounded Lipschitz continuous l1 : H → R,
the unique mild solution u of the HJB equation (4.376) coincides with the value
function V μ defined in (4.379).

Proof See Theorem 10.2.3, p. 295 of [106]. An earlier version of the result is in
[107], Theorem 5.3. �

Theorem 4.261 Let Hypotheses 4.245, 4.246, 4.248 and 4.254 be satisfied. Then
there exists a λ0 > 0 such that, for any λ > λ0 and for any l1 ∈ C1

b(H), the unique
mild solution u of the HJB equation (4.376) coincides with the value function V μ

defined in (4.379).

Proof See Theorem 10.2.2, p. 292 of [106]. An earlier version of the result is in
[107], Theorem 5.2. �

4.10 Regular Solutions Through “Explicit”
Representations

In this section we collect some results about explicit representations of the solutions
ofHJB equations. Such representations are seldompossible, however they are always
coveted and are of interest in applications.

We devote Sect. 4.10.1 to the case of HJB equations with quadratic Hamiltonians
that can be turned into linear equations by a Hopf change of variable. Section4.10.2
presents a specific control problem in a form often arising in economic applications,
where explicit solutions can be found.

4.10.1 Quadratic Hamiltonians

When the Hamiltonian F in Eq. (4.1) is a special quadratic function of Dv we can
reduce the HJB equation to a linear equation for which an explicit representation for-
mula is known. This well-known technique has been used in the infinite-dimensional
context, for instance, in [178, 307] and, in the case of the control of the stochastic
Burgers equation, in [156] (see Sect. 4.9.1). For linear equations in Hilbert spaces
we refer to [179].
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We first explain the heuristic argument. Consider the following parabolic HJB
equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

vt + 1

2
Tr [�(t, x)D2v] + 〈Ax + b(t, x), Dv(t, x)〉

−1

2
|√�(t, x)Dv(t, x)|2 + l(t, x) = 0 t ∈ [0, T ), x ∈ D(A),

v(T, x) = g(x), x ∈ H.

(4.380)
We set, formally

w(t, x) := e−v(t,x),

so that v(t, x) = − logw(t, x). If v is smooth, by straightforward computations we
have

wt = −wvt , Dw = −wDv, D2w = wDv ⊗ Dv − wD2v.

Defining

A1w(t, x) := 1

2
Tr [�(t, x)D2w(t, x)] + 〈Ax + b(t, x), Dw(t, x)〉 ,

we have

A1w(t, x) = −w(t, x)

(

A1v(t, x)− 1

2
|√�(t, x)Dv(t, x)|2

)

.

If v is a solution of (4.380), we thus obtain

A1w(t, x) = −w(t, x)(−vt (t, x)− l(t, x)) = −wt (t, x)+ w(t, x)l(t, x).

Thus w satisfies the linear equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

wt + 1

2
Tr [�(t, x)D2w] + 〈Ax + b(t, x), Dw(t, x)〉 − w(t, x)l(t, x) = 0,

t ∈ [0, T ), x ∈ H,

w(T, x) = e−g(x), x ∈ H.

(4.381)
A good candidate for a solution of (4.381) is given by the Feynman–Kac formula

w(t, x) = E

(
e−g(Y (T ;t,x))−∫ T

t l(s,Y (s;t,x))ds
)

, (4.382)

where Y (s, x) is the mild solution of the problem
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{
dY (s) = [AY (s)+ b(s, Y (s))] ds +√�(s, Y (s))dW (s), t ≤ s ≤ T,

Y (t) = x ∈ H,

and W is a cylindrical Wiener process in H .
In many cases it can be proved that the functionw in (4.382) is a classical solution

of the Kolmogorov equation (4.381). Then v := − ln(w) is a classical solution of
(4.380) and it can then be used to solve the associated control problem. This was
done, for example, in [156] for a special case of an optimal control problem for the
one-dimensional stochastic Burgers equation (see Theorem 4.231).

Another possibility is to prove that the function w in (4.382) is a mild solution of
(4.381). This was done, under certain assumptions, in [178] and [307]. We mention
here two results when the operators A and Q satisfy Hypothesis 4.145 used in the
Ornstein–Uhlenbeck case.

Theorem 4.262 Assume that Hypothesis 4.145 with U = H and G = I holds. Sup-
pose also that the function �(t) := �I (t) defined in Hypothesis 4.145-(v) satisfies
the estimate ‖�(t)‖ ≤ Ct−θ for some C > 0 and θ ∈ (0, 1).

Let g ∈ UCb(H), l ∈ UCb(H) and b ∈ UCb(H, H). Then Eq. (4.381) has a
unique mild solution w ∈ C0,1

b,θ ([0, T ] × H).

Proof See [307], Theorem 6.1, p. 441. �

Theorem 4.263 Let the hypotheses of Theorem 4.262 be satisfied and suppose that
b is Lipschitz continuous. Then the mild solutionw of (4.381) is given by (4.382) and

w(t, x) ≥ e−‖g‖0−t‖l‖0 ∀(t, x) ∈ [0, T ] × H.

Moreover, (4.380) has auniquemild solutionv ∈ C0,1
b,θ ([0, T ] × H)andv = − logw

so that
|v(t, x)| ≤ ‖g‖0 + t‖l‖0 ∀(t, x) ∈ [0, T ] × H.

Proof See [307], Theorems 6.1 and 6.2, p. 442. �

4.10.2 Explicit Solutions in a Homogeneous Case

In a certain number of examples, when the state equation is linear and the cost
functional is homogeneous in the state and the control, the value function can be
proved to be a homogeneous function of the state and its expression can be explicitly
found. We present here an example arising from an optimal delayed portfolio model
studied in [57].59 In this model an agent chooses her consumption and her portfolio
strategies in order tomaximize a certain inter-temporal expected utility (i.e. minimize

59In the same spirit, another example of an explicit solution is given, for instance, in a model driven
by a stochastic neutral differential equation in [224].
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the opposite of such a quantity in the formulation of this subsection). The problem
is studied in its strong formulation.

We fix an n-dimensional Brownian motion w defined on a filtered probability
space

(
�,F , {Ft }t≥0 ,P

)
and we denote by μ the generalized reference probability

space
(
�,F , {Ft }t≥0 ,P, w

)
. Let α,σy ∈ R

n , αy ∈ R, r > 0 and σ be an n × n
matrix such that σσ! is positive definite. We study the dynamics of the variables z
and y (the wealth and the labor income in [57]) given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dz(t) = [
z(t)r + θ!(t)(α− r1)+ y(t)− c(t)

)]
dt + θ!(t)σdw(t),

dy(t) =
[
y(t)αy +

∫ 0
−d φ(s)y(t + s)ds

]
dt + y(t)σ!y dw(t),

z(0) = z0,
y(0) = x00 , y(s) = x01 (s) for s ∈ [−d, 0).

(4.383)

In the system above, d > 0, 1 = (1, . . . , 1)! is the unitary vector inRn , c(·) and θ(·)
are two progressively measurable controls, respectively real and R

n-valued (they
represent, in [57], the consumption and the portfolio strategies, further constraints
will be introduced below), φ is a certain fixed element of L2(−d, 0)while z0, x00 ∈ R

and x01 ∈ L2(−d, 0) are the initial data.

Remark 4.264 Since we are not interested here in the economic implications of the
model and we use it as an example, we consider a simplified version of the problem
studied in [57]. More precisely, using their notation, we take δ = 0 in the problem
investigated in [57]. �

The infinite-dimensional formulation.
We denote by H the Hilbert space R× R× L2(−d, 0) and by 〈·, ·〉L2 the inner
product in L2(−d, 0). Similarly to what we have seen in Sect. 2.6.8, Theorem 3.1 of
[118] ensures that the pair

(
y(t), y(t + s)|s∈[−d,0)

)
, where y(·) is the solution of the

second equation in (4.383), can be identified with the R× L2(−d, 0)-valued unique
solution X = (X0, X1) of the evolution equation

⎧
⎨

⎩

dX (t) = AX (t)dt + (BX (t))!dw(t),
X0(0) = x00 ,
X1(0)(s) = x01 (s) for s ∈ (−d, 0),

(4.384)

where the operators A and B are defined as follows,

⎧
⎨

⎩

D(A) := {(x0, x1) ∈ R× L2(−d, 0) : x1(·) ∈ W 1,2(−d, 0), x0 = x1(0)}
A : D(A)→ R× L2(−d, 0)
A(x0, x1) :=

(
αy x0 + 〈φ, x1〉L2 , x ′1

)
,

and {
B : R× L2(−d, 0)→ R

n × L2(−d, 0)
B(x0, x1) := (x0σy, 0).
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The optimization problem and the HJB equation.
The evolution of the whole system is thus described by the following system of
equations:

⎧
⎪⎪⎨

⎪⎪⎩

dz(t) = [
r z(t)+ θ!(t)(α− r1)+ X0(t)− c(t)

]
dt + θ!(t)σdw(t),

dX (t) = AX (t)dt + (BX (t)
)!
dw(t),

z(0) = z0,
X (0) = x0,

(4.385)

whoseunique solution (seeTheorem1.127) is denotedby
(
z(·; z0, x0, c, θ), X (·; x0))

or simply by (z(·), X (·)).
We fix γ ∈ (0, 1) ∪ (1,+∞). Given an initial datum (z0, x0) ∈ H , the agent

chooses the nonnegative (consumption) process c(·) and the (portfolio) process θ(·)
in order to minimize the following functional

Jμ
(
z0, x0; c(·), θ(·)) := E

(∫ +∞

0
−e−λt

(
c(t)

)1−γ

1− γ
dt

)

, (4.386)

being constrained by the following no-borrowing-without-repayment condition60

z(t)+ g∞X0(t)+ 〈h∞, X1(t)〉L2 ≥ 0 for all t , (4.387)

where (g∞, h∞) are defined as

g∞ := 1

β − β∞
,

h∞(s) := 1

β − β∞

∫ s

−d
e−r(s−τ )φ(τ )dτ , (4.388)

and β and β∞ are given by
β := r − αy + σ!y κ (4.389)

with
κ := (σ!)−1(μ− r1) (4.390)

and

β∞ :=
∫ 0

−d
erτφ(τ )dτ . (4.391)

Defining for (z, x) ∈ H

�∞ = �∞(z, x) := z + g∞x0 + 〈h∞, x1〉L2 , (4.392)

60This condition has a precise economic interpretation which is explained in [57], Sect. 4.
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the constraint (4.387) rewrites as

�∞(z(t), X (t)) ≥ 0.

The set of admissible controls depends on the initial state (z0, x0) and is

Uμ
0 (z0, x0) :=

{

(c(·), θ(·)) ∈ M2
μ(0,+∞;R× R

n) : c(t) ≥ 0 and

�∞
(
z(t; z0, x0, c, θ), X0(t; x0)

) ≥ 0 ∀t ∈ [0,+∞), P -a.s.

}

.

(4.393)

The value function for the problem is given by

V μ(z0, x0) : = inf(
c(·),θ(·)

)
∈Uμ

0 (z0,x0)

Jμ
(
z0, x0; c(·), θ(·)). (4.394)

The problem is studied under the following assumptions.

Hypothesis 4.265 z0, x00 > 0, and x01 (s) > 0 for every s ∈ (−d, 0).

Hypothesis 4.266 φ(s) > 0 for every s ∈ (−d, 0), and β − β∞ > 0.

Hypothesis 4.267 λ− (1− γ)(r + κ!κ
2γ ) > 0.

The HJB equation and its solution.
For this problem we can identify explicitly a classical solution of the associated
HJB equation. We are only interested in positive initial data (see Hypothesis 4.265),
however the HJB equation is studied in a larger set H0 which is identified by the
no-borrowing-without-repayment condition (4.387) and is an open half space of the
whole Hilbert space H . More precisely

H0 := {(z, x) ∈ H : z + g∞x0 + 〈h∞, x1〉L2 > 0} . (4.395)

We denote by
p = (p1, p2) = (p1, p20, p21) (4.396)

any element of H , by S(2) the set of all real symmetric 2× 2 matrices, and by

P =
(
P11 P12
P21 P22

)

(4.397)

a matrix in S(2). Given (z, x) ∈ H0 p ∈ H and P ∈ S(2), the Hamiltonian F asso-
ciated to the described optimization problem can be written as follows
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F(z, x, p, P) := F1(z, x, p, P)+ Fmin(z, x, p, P), (4.398)

where

F1(z, x, p, P) := r zp1 + x0 p1 + 〈Ax, p2〉R×L2 + 1

2
σ!y σyx

2
0 P22, (4.399)

and
Fmin(z, x, p, P) := inf

(c,θ)∈[0,+∞)×Rn
Fcv(z, x, p, P; c, θ), (4.400)

where

Fcv(z, x, p, P; c, θ) := −
(
c1−γ

)

1− γ
+ [θ!(α− r1)− c]p1 + 1

2
θ!σσ!θP11 + θ!σσy x0P12.

It is clear that Fmin > −∞ when p1 < 0 and P11 > 0.
The HJB equation associated to the optimization problem (4.385)–(4.386) can

then be expressed as

λv = F

(

z, x, (vz, vx0 , vx1),

(
vzz vzx0
vx0z vx0x0

))

, (z, x) ∈ H0. (4.401)

Definition 4.268 A function v : H0 → R is said to be a classical solution of the
HJB equation (4.401) in H0 if:

• v admits, on H0, continuous first Fréchet derivatives with respect to (z, x) =
(z, x0, x1) and continuous second Fréchet derivatives with respect to (z, x0).

• On H0, vx0 < 0 and vx0x0 > 0.
• (vx0 , vx1) ∈ C(H0, D(A∗)).
• v satisfies the HJB equation (4.401) at every point (z, x) ∈ H0 in the following
sense:

λv(z, x) = r zvz(z, x)+ x0vz(z, x)+
〈
x, A∗

(
(vx0 , vx1)(z, x)

)〉

R×L2

+ 1

2
σ!y σyx

2
0vx0x0(z, x)+ Fmin

(

z, x, (vz, vx0 , vx1)(z, x),

(
vzz vzx0
vx0z vx0x0

)

(z, x)

)

.

Proposition 4.269 Let Hypotheses 4.266 and 4.267 be satisfied. Then the function

v̄(z, x) := − f γ∞
(
z + g∞x0 + 〈h∞, x1〉L2

)1−γ

1− γ
, (4.402)

where f∞ ∈ R is given by

f∞ := γ

λ− (1− γ)(r + κ!κ
2γ )

> 0 (4.403)
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and g∞ and h∞ are defined in (4.388), is a classical solution of (4.401) in H0.

Proof See Proposition 4.5 of [57]. �

Properties of the value function and solution of the optimization problem.

Definition 4.270 Fix (z0, x0) ∈ H0 and let X (·) := X (·; x0) be the unique mild
solution of dX (t) = AX (t)dt + (BX (t)

)!
dw(t) with the initial condition X (0) =

x0.We say that a Borel measurable function (c, θ) : H0 → R
+ × R

n is an admissible
closed loop strategy at (z0, x0) if

⎧
⎨

⎩

dz(t) = [z(t)r + θ!(z(t), X (t))(α− r1)+ X0(t)− c(z(t), X (t))
]
dt

+θ!(z(t), X (t))σdw(t) ∀t > 0,
z(0) = z0,

has a unique strong (in probabilistic sense) solution61 zc,θ(·) and
(
c
(
zc,θ(·), X (·)),

θ
(
zc,θ(·), X (·))

)
belongs to Uμ

0 (z0, x0).

Definition 4.271 Fix (z0, x0) ∈ H0. We say that an admissible closed loop strategy
at (z0, x0), (c, θ) : H0 → R

+ × R
n , is an optimal closed loop strategy at (z0, x0) if

V μ(z0, x0) = E

⎧
⎪⎨

⎪⎩

∫ +∞

0
e−λt

⎛

⎜
⎝

(
c
(
zc,θ(t), X (t)

))1−γ

1− γ

⎞

⎟
⎠ dt

⎫
⎪⎬

⎪⎭
,

where zc,θ(·) and X (·) are as in Definition 4.270.
Theorem 4.272 Let Hypotheses 4.266 and 4.267 be satisfied. Then, for any (z0, x0)
∈ H0 satisfying Hypothesis 4.265,

v̄(z0, x0) = V μ(z0, x0),

where v̄ and V μ are defined, respectively, in (4.402) and (4.394).

Proof See Proposition 4.12 of [57]. �

Theorem 4.273 Fix (z0, x0) ∈ H0. Let Hypotheses 4.266 and 4.267 be satisfied.
Then the following pair is an optimal closed loop strategy at (z0, x0):

ĉ(z, x) := f −1∞ �∞(z, x),

θ̂(z, x) := (σσ!)−1(α− r1)
�∞(z, x)

γ
− σ−1σyg∞x0. (4.404)

61As a one-dimensional stochastic differential equation. See e.g. [356] Sect. 4.1.
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Proof See Proposition 4.12 of [57]. �
Finally, one can explicitly find optimal control processes.

Proposition 4.274 Fix (z0, x0) ∈ H0. Let Hypotheses 4.266 and 4.267 be satisfied.
If we denote by �∗∞(t) the solution of

{
d�∗∞(t) = �∗∞(t)

(
r + κ!κ

γ
− f −1∞

)
dt + �∗∞(t)

γ
κ!dw(t),

�∗∞(0) = �∞(z0, x0),

then optimal controls are given by

{
c∗(t) := f −1∞ �∗∞(t),
θ∗(t) := (σσ!)−1(α− r1)�∗∞(t)

γ
− σ−1σyg∞x0.

Proof See Theorem 5.1 of [57]. �

4.11 Bibliographical Notes

The theory of mild solutions of infinite-dimensional second-order HJB equations in
spaces of continuous functions presented in this chapter exploits smoothing prop-
erties of related transition semigroups to apply the Contraction Mapping Principle
to the integral form of the equations to produce mild solutions. Once this is done,
using suitable approximations it is possible to solve the associated stochastic optimal
control problems by finding optimal feedback controls. This method (which we call
“the smoothing method” in the remainder of this section) was first introduced in the
papers of Da Prato [147] and Havarneanu [340], then developed by Cannarsa and Da
Prato in [89, 90] and later studied by many authors. Such a method has been used
before to treat semilinear parabolic equations in finite dimension. An account of the
theory in this case can be found, for example, in Chap.7 of [416].

4.11.1 The First Papers

Before analyzing the literature in detail it must be pointed out that some existence and
uniqueness results for regular solutions of similar semilinear parabolic HJB equa-
tions have been obtained in [28, 30] (see also the book [29], Chap.5). These results
are proved using a different technique. First the nonlinear term F , which is simply
equal to 1

2 |Dv|2, is approximated using convex regularization techniques: indeed,
1
ε
(v − vε) (where vε is the inf-convolution of v, see Definition D.22) converges to

F(Dv) in a suitable space of functions with polynomial growth. Then the approx-
imated equation is written in an integral form and is solved through successive
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approximations finding a regular solution vε. Finally, it is proved that vε converges
with its derivatives to a limit v which is the solution of the HJB equation.

To obtain such results, which were only proved for parabolic HJB equations, a
strong regularity of the data needs to be assumed (e.g. the initial condition func-
tion must be taken convex and twice continuously differentiable), however one has
the advantage of not requiring any smoothing property of the transition semigroup
associated with the corresponding linear problem.

This method is a generalization of results that were obtained for first-order equa-
tions (associated to deterministic control problems), see e.g. [27, 35] and the book
[29], Chaps. 1–4. It has not been developed further for second-order HJB equations
in later years62 even though it might be useful to treat specific equations when the
data are regular and convex.

Coming back to the literature directly related to the material of this chapter, the
paper [147] was the first where semilinear HJB equations like (4.1) and (4.2) were
solved by studying the associated linear problemand the regularizing properties of the
related transition semigroup. In contrast to what has been done in subsequent papers,
in [147] the properties of the transition semigroup were not fully exploited as a full
understanding of such properties was achieved only later (see e.g. [173]). Moreover,
the existence/uniqueness of the solution was proved in [147] using the theory of
m-dissipative operators, similarly to what we do here for the infinite horizon case
in Sect. 4.6.2.2. Finally, most of the proofs, including the solution of the associated
control problem, were achieved passing through finite-dimensional approximations,
which calls for stronger assumptions. We also mention the paper [340], where a
similar HJB equation, where the term 〈Ax, Du〉 was substituted by 〈F(x), Du〉 for
a bounded, nonlinear, smooth function F , was solved using a smoothing property of
the semigroup associated with the operator φ→ Tr(BD2φ).

The papers [89, 90] were the first to develop, one for parabolic equations and
the other for elliptic equations, the smoothing method as it is presented in this
chapter. However, they considered a very special case (the linear part is of Ornstein–
Uhlenbeck type, A is diagonal, Q = G = I and the Hamiltonian is the simplest
possible: quadratic in a ball and linear outside of it). They also solved the associated
control problems. Since then, many papers have been devoted to various generaliza-
tions of this method and to applications to various types of stochastic optimal control
problems.

4.11.2 Development of the Method

The next papers in the development of the smoothing method, and its applications
in construction of optimal feedback maps for the associated control problems, were
[306, 317] which treated (respectively, parabolic and elliptic) HJB equations whose

62Some extensions have been done for first-order equations, see e.g. [91, 186, 187, 231, 233, 234,
304, 305].
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linear parts were of a general Ornstein–Uhlenbeck type and G = I . In these papers
the authors assumed, on A and Q, conditions (4.53) and (4.65) and exploited the
smoothing property given here in Theorem 4.37 (proved in [173]).

These papers were the first to employ the concept of K-strong solutions (intro-
duced first, together with the notion of K-convergence and K-semigroup, in [101,
108]) and to use systematically such an approximation scheme to prove the veri-
fication theorem and solve the associated control problem (see Sects.B.5–B.7 for
more on this concept and its use). The related concepts of π-convergence,63 π-
semigroup and π-strong solutions were introduced and studied in [492, 493, 496]
and, recently, in [500], but only in the context of linear Kolmogorov equations in infi-
nite dimension.Results about the topology associated toπ-convergence (respectively,
K-convergence) were obtained in [492, 493] (respectively, [300]). See Sect.B.5 for
more on this.

After these two papers many other manuscripts were published, generalizing in
various forms the smoothing method to other classes of problems. In [310] a first
attempt was made, indeed incomplete, to study HJB equations for boundary control
problems, while [301] generalized results of [317] to cover HJB equations associated
with ergodic control problems.

The Hamiltonians in all the papers listed up to here were Lipschitz continuous.
The first generalizations to locally Lipschitz Hamiltonians were done in [178] (see
also [179], Sect. 13.3 and Sect. 4.10.1 of this chapter), for a quadratic Hamiltonian
by a Hopf-type change of variable (later exploited also to solve the optimal control
of the one-dimensional stochastic Burgers equation in a special case in [156] see
Sect. 4.9.1.1), and in [307] for a more general case assuming C1 regularity of the
data to perform the needed a priori estimates. The results of [307], with some adjust-
ments and slight generalizations to cover more general Hamiltonians, are presented
in Sect. 4.7.

4.11.3 Beyond the Ornstein–Uhlenbeck Semigroup

In the literature discussed up to this point, the transition semigroup Pt used to define
the mild form of the equations was always the Ornstein–Uhlenbeck semigroup with
G = I and the key smoothing property needed to perform a fixed point argument was
that of Theorem 4.37. As soon as smoothing properties of other transition semigroups
were obtained, the smoothing method was applied to other HJB equations.

TheHJBequations associated to optimal control of stochasticBurgers andNavier–
Stokes equations, in addition to the already mentioned paper [156], were studied
by the smoothing method in [155, 157, 158, 424]. The results of these papers are
summarized in Sect. 4.9.1. The presence of the unbounded nonlinear operator in these
equations makes it more difficult to apply the standard version of the smoothing
method. Indeed, the smoothing properties of the associated transition semigroups

63This concept had already been used before, see e.g. [219] (p. 11 and pp. 495–496), but without a
connection to π-semigroups and π-strong solutions.
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are weaker in these cases and include exponential terms. The contraction mapping
principle is hard to use and hence the mild solutions are found through Galerkin
approximations and a priori estimates.

The papers [105, 107], discussed in Sect. 4.9.2, studied optimal control of a family
of stochastic reaction-diffusion equations and their HJB equations. The smoothing
property of the transition semigroup used there was proved by Cerrai in [103, 104]
exploiting the dissipativity of the reaction term (see on this also her book [106],
Chap.9). These two papers study both the cases of Lipschitz and locally Lipschitz
Hamiltonians. Moreover, to handle the nonlinear term, the state equation is first con-
sidered in a Banach space of continuous functions and then, by a density argument,
in a Hilbert space of square-integrable functions.

The Ph.D. thesis of Masiero [431] and her subsequent papers [432, 433] used an
abstract approach to study mild solutions, where, as in this chapter, the transition
semigroup was not directly related to an explicit SDE. These works were the first to
use G-derivatives in the context of HJB equations, also with non-constant G. The
paper [433] (which dealt with the elliptic case) was also the first to investigate mild
solutions in Cm spaces with m possibly strictly positive. However, G was bounded
and equal to the diffusion coefficient σ, hence preventing the use of the results in
caseswhere they are different or one of them is unbounded (like boundary control, see
Sect. 2.6.2, boundary noise, see Sect. 2.6.3, or delay in the control, see Sect. 2.6.8). In
[431–433] the results for mild solutions are also applied to a class of optimal control
problems but using a method different from the method of strong solutions used in
Sect. 4.5. Instead the author exploited the fact that G = σ to apply the verification
method through BSDEs (see Chap.6, Sects. 6.5 and 6.10) which requires stronger
regularity assumptions on the data but does not need the additional Hypothesis 4.133
(or 4.141) about the semigroup.

The abstract approach of Masiero was also used in other papers [434, 438, 440,
442]. In [434] the setting is generalized, without application to a control problem, to
a Banach space case where the state equation is set up in a Banach space E which is
continuously and densely embedded in a Hilbert space H . In [438] Eq. (4.109) with
a locally Lipschitz Hamiltonian was studied. There the operators A and� commute,
b = 0 and F0 only depends on the last variable ∇Gu. The a priori estimates for the
gradient were obtained using the BSDE representation of Theorem 6.32. In [442] the
results of [438] were generalized using the BSDE approach, relying on an existence
result for BSDE given in [441]. Moreover, the smoothing method was used to show
that the results obtained with the BSDE approach (which needs differentiability of
the data F0 and ϕ) can be extended to cases where the data are less regular (Lipschitz
continuous). Finally, the paper [440] used the same ideas as [442] to solve HJB
equations associated to control problems with control and noise in a subdomain.
This means that the function γG here is usually not integrable. Again the BSDE
approach was used to deal with the case of regular data and then the smoothing
method was employed to extend the results to Lipschitz continuous data.

The smoothing method was further improved in [316] where, for the first time,
G was not equal to � (on the other hand G was constant there). In this paper The-
orem4.41 was proved in the case when G is possibly unbounded and the datum φ
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is bounded, hence m = 0. Then [316] focused on an application to control prob-
lems with delay in the control, which needed a generalization of Theorem4.41 and
a delicate application of the contraction mapping principle. Indeed, the condition
et AG(K )⊂Q1/2

t (H) in (4.54), which is not satisfied in the delay in the control case,
was substituted by Pet AG(K )⊂Q1/2

t (H), where P ∈ L(H). This condition, when
P is suitably chosen, is true for a larger class of cases and still allows us to prove a
smoothing property for a suitable class of data φ. It holds in the case with delay in
the control when P is the projection on the first component of the state space and
allows us to solve the control problem for a reasonable class of data. Similar ideas
are also used in the recent paper [315] which focuses on boundary control problems
and generalizes Theorem 4.41 in a different direction. Results of [315, 316] are not
discussed in this book.

Finally, papers [189, 241] contain the approach to the HJB equations (4.109)
and (4.125) developed in Sect. 4.4. They introduced G derivatives for the case when
G is non-constant (fixing some delicate gaps in the previous theory) and possibly
unbounded, and proved existence and uniqueness theorems in the spaces Gm andCm ,
the most suitable for applications to optimal control (Theorems 4.85, 4.90, 4.116,
4.120). The proofs in these papers are substantially the ones provided here. Regarding
applications to the Ornstein–Uhlenbeck semigroup case in these papers, Theorem
4.41 is proved there exactly in the form given here.

We also mention that smoothing results have recently been proved (see [502],
Sect. 4.4) for transition semigroups of Ornstein–Uhlenbeck type associated to Levy
processes. Other properties of semigroups of this kind were studied in [500]. In
principle, such results allow us to apply the theory presented in this chapter, but
this has not been done yet. Paper [500] also studies a Kolmogorov equation with
a non-local Ornstein–Uhlenbeck operator. We refer to the bibliographical notes in
Sect. 3.14 for more about non-local equations in Hilbert spaces.

Other smoothing results have been proved for the case of the perturbed Ornstein–
Uhlenbeck semigroup, as explained in Sect. 4.3.2 (see [64, 271, 272]), but they have
not yet been applied to study HJB equations.

There exists an extensive literature about infinite-dimensional Kolmogorov equa-
tions, i.e. linear HJB equations of the type discussed in this chapter. Such equations
have been widely studied, in particular due to their connections with the solutions of
the associated SDE. A full account of their theory can be found in the book of Da
Prato and Zabczyk [179] and also, partly, in their book [180, Chap. 9]. More recent
results for various types of solutions of such equations which have some regularity
can be found, for example, in [106, 133–136, 255, 257, 493, 496, 510–512, 516,
517].

In particular, we mention papers on infinite-dimensional Kolmogorov equations
in domains, which may serve as a basis for the development of a theory for mild
solutions of HJB equation in domains. See on this [179] (Chap. 8) and, e.g. [166–
168, 497–499, 546].

Smoothing properties of transition semigroups are also useful for other purposes,
for instance to study invariant measures associated with SDEs. A good reference for
the theory in infinite dimension is the book of Da Prato and Zabczyk [177]. Other
references on the subject can be found in the bibliographical notes of Chap.5.
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4.11.4 Explicit Solutions of HJB Equations

Explicit solutions ofHJBequations,when available, canbeveryuseful in applications
to solve the associated control problem and to derive various properties of the optimal
strategies. For this reason they have been extensively studied in the finite-dimensional
case. In the infinite-dimensional case the only available results for nonlinear HJB
equations we are aware of are those discussed in Sect. 4.10.

4.11.5 The Results and the Proofs of This Chapter
Compared with the Literature

The results of Sect. 4.2.1 generalize and fix some gaps in the approach of [431–
433]. The proofs of the main results, Propositions 4.13, 4.16 and Corollary 4.14, are
mainly taken from the recent papers [189, 241], even if here the arguments are also
generalized to the Bm spaces.

The definitions of the weights in (4.29), (4.30) and Proposition 4.21 in Sect. 4.2.2
are taken from [189] and are introduced to extend the theory to cover parabolic
equations when the function γG in Hypothesis 4.76 is not necessarily of power type.

The results of Sect. 4.3 contain the key tools which are needed to apply the general
abstract theory of Sects. 4.4 and 4.5 to specific classes of transition semigroups.Most
of Sect. 4.3 is devoted to the case of the Ornstein–Uhlenbeck semigroup, where the
smoothing is obtained through some controllability assumptions which generalize
the conditions introduced and developed in [193, 195, 578] (see also [584], Chapter
IV-2). Here all details are given, see in particular Theorem 4.41 (including the lem-
mas before it) and Propositions 4.50 and B.92, whose proofs are generalizations (to
include the Bm spaces) of the proofs in [189, 241]. In Sect. 4.3 we also provide the
proof (taken from [189]) of the monotonicity of the map t → ‖�G(t)‖ (see Lemma
4.35) which generalizes a well known result in the case G = I , see e.g. [312].

The results of Sect. 4.3.2 are stated without proofs as the smoothing method for
HJB equations in this case has not yet been developed. The reader can find more in
[64, 271, 272, 311, 431] on the material discussed there.

The material of Sect. 4.3.3 is an example of the smoothing results that can be
obtained through the Bismut–Elworthy–Li formula. We only present the case of an
invertible diffusion operator for which we supplement the results of [283] (proving
Proposition 4.67) in order to apply the theory of Sect. 4.4.

The existence and uniqueness results of Sect. 4.4 follow [189] in the parabolic case
and [241] in the elliptic case. The difference is that here we generalize the results to
the case of measurable data F0 andϕ and we also show how to obtain solutions in the
UCm spaces. The parabolic case is more complicated and the contraction mapping
principle is used by employing norms with exponential terms, as it was done in [431,
432].
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The results about strong solutions in Sect. 4.5 connect the mild solutions with
the original HJB partial differential equations, through approximations using π- (or
K-) convergence. This idea (employing K-convergence) was first used in the paper
[306] and then exploited in many subsequent papers, see e.g. [307, 317]. However,
up to now, it was applied only when the underlying transition semigroup Pt,s is of
the Ornstein–Uhlenbeck type.

Proving that a mild solution is a strong solution is also a crucial step towards a
proof of the verification theorem in applications to optimal control. To accomplish
this step other approaches were used in the literature in the case where Pt,s is not
of the Ornstein–Uhlenbeck type. In [431–433, 438, 440, 442] the verification the-
orem is proved through BSDE techniques when the data are Gâteaux differentiable
and then when the data are continuous, approximating them by Gâteaux differen-
tiable functions in the uniform norm with the help of the inf-sup convolutions (see
Sect.D.3).

We alsomention [105–107] (see Sect. 4.9.2),where the author develops an approx-
imation scheme for the mild solutions of the HJB equations which is similar to the
one used in Sect. 4.5. This scheme is used to obtain results for the optimal control
problem, but the concept of a strong solution is not used there.

Other papers concerning strong solutions are [188, 228]. There, extending some
finite-dimensional results proved in [319, 320], the authors present a general proce-
dure to prove verification theorems for stochastic optimal control problems once a
strong solution v of the associated HJB equation is known. In these papers two types
of strong solutions are used. The first is exactly the one used in Sect. 4.5, Definition
4.132, while the second is similar but it does not require the convergence of the
derivatives of the approximating classical solutions.

The results of Sect. 4.6 are substantially generalizations of the results of [306,
317]. Here we use the same techniques of proofs with some improvements. In partic-
ular, in Sect. 4.6.2.2, the operator Â0 is used in place ofA0 (which was used in both
[306] and [317], to fix problems related to the unboundedness of the term 〈x, A∗Dv〉
in the definition of D(A0), see Sect.B.7.1, and Remark B.97. Similarly the material
of Sect. 4.7 slightly generalizes the results of [307].

The framework of Sect. 4.8 is designed to show how the results in the “regular
case” of Sect. 2.5 can be partly replicated here. The setting includes that of [306,
307, 317] and also covers some more general cases, such as the case of unbounded
control operators (e.g. boundary control of Neumann type, see Example 4.225), and
is partly borrowed from the recent paper [240] where also an alternative approach
is introduced. Since the results for optimal control problems strongly depend on the
properties of the Hamiltonian F0, we included in Sect. 4.8.1.2 three results which are
only partially available in the literature, where useful properties of F0 are obtained
from the assumptions about the data of control problems.

Sections4.9 and 4.10 present without proofs a few special interesting cases. Pre-
cise references to the related literature are given there.



Chapter 5
Mild Solutions in L2 Spaces

This chapter is devoted to the presentation of the L2 theory for the existence and
uniqueness of mild solutions for a class of second-order infinite-dimensional HJB
equations in Hilbert spaces through a perturbation approach. As in the previous
chapter, the concept of mild solution concerns the HJB equation in an integral form
that uses the transition semigroup associated to the linear part of the equation.

In the previous chapter the perturbation approach was used in Banach spaces
of regular (at least differentiable in the x variable, in a suitable sense) real-valued
functions defined on a Hilbert space H . The space where we seek the solutions here
is a space of functions which are square-integrable (with their x derivative defined
in a suitable sense) with respect to a suitable reference measure m on H .

One of the main reasons for the development of the L2 theory is the need to
study HJB equations without the smoothing Hypothesis 4.76 about the behavior of
the transition semigroup, which was used in the previous chapter (see Sect. 4.1 for
a discussion). Indeed, once the existence of the reference measure is postulated, the
estimates that allow us to ensure, in the L2 framework, the applicability of a fixed
point argument, can be proved under weaker assumptions (see Sect. 5.1 for details).

As for the mild solutions in spaces of continuous functions, the L2 theory can
be applied to obtain optimal synthesis. The class of applicable infinite-dimensional
stochastic optimal control problems includes cases which cannot be treated in the
context presented in Chap.4, like the stochastic delay differential equations and first-
order SPDEs. On the other hand, specific hypotheses ensuring the existence of the
reference measure m and the compatibility of the Hamiltonian with it, need to be
satisfied. Moreover, the synthesis provided by the L2 theory is less regular.

The approach we describe was mostly developed in [3, 4, 125, 298]. We will
mainly follow [298].

The chapter is organized as follows:

• In Sect. 5.1 we describe the main ideas of the L2 method.

© Springer International Publishing AG 2017
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• In Sect. 5.2 we recall some classical results about invariant measures and other
preliminary facts.

• Sections5.3 and 5.4 are devoted to parabolic HJB equations. Section5.3 contains
existence and uniqueness results, while in Sect. 5.4 a result on approximation of
mild solutions by classical solutions is provided.

• In Sect. 5.5 we apply the results of Sects. 5.3 and 5.4 to perform the optimal synthe-
sis for stochastic optimal control problems, while in Sect. 5.6 we provide specific
examples related to those of Chap.2.

• In Sect. 5.7 we describe complementary results, mainly from [3, 4], which cover
an additional class of problems. This section also contains existence and unique-
ness results for a family of elliptic HJB equations without applications to control
problems.

• Section5.8 contains bibliographical notes.

5.1 Introduction to the Methods

We briefly sketch the main ideas of the method developed in the next sections. We
consider a class of second-order infinite-dimensional HJB equations of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt + 1

2
Tr
[
QD2v

]+ 〈Ax + b(x), Dv〉 + F (t, x, Dv) + l(t, x) = 0,

t ∈ [0, T ), x ∈ D(A)

v(T, x) = g(x), x ∈ H,

(5.1)

and

λv − 1

2
Tr [QD2v] − 〈Ax, Dv〉 − F(x, Dv) = g, x ∈ H, (5.2)

where T > 0 is fixed, A is the generator of a C0-semigroup on a real separable
Hilbert space H , Q ∈ L+(H), and b : H → R, l : [0, T ] × H → R, g : H → R,
F : [0, T ] × H × H → R (or F : H × H → R) are measurable functions. Further
hypotheses on b, l, g and F will be introduced later.

Since the results available in the literature up to now are mainly oriented towards
the evolutionary HJB equation (5.1), we devote most of the chapter to the theory in
this case, limiting the treatment of the stationary equation (5.2) to Sect. 5.7.3.

Given a reference measure on H , the basic idea is to introduce mild and strong
solutions of (5.1) and (5.2) in the space of real square-integrable functions on [0, T ] ×
H (or on H ). If H were a finite-dimensional space, the Lebesgue measure would be
the natural choice for the reference measure but in infinite dimension the situation is
more delicate. We consider the following stochastic evolution equation
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⎧
⎨

⎩

dX (s) = (AX (s) + b(X (s))) ds + dWQ(s), s ≥ 0,

X (0) = x ∈ H,

(5.3)

we suppose it admits a mild solution and an invariant measure m and we work in
the space L2(H,B,m) where B is the completion of the Borel σ-field B(H) with
respect to m.

Under suitable assumptions on the operators A and Q and on the function b (see,
e.g., [180] Chap.9), the solution w of the following Kolmogorov equation

⎧
⎪⎨

⎪⎩

wt = 1

2
Tr [QD2w] + 〈Ax + b(x), Dw〉 ,

w(0, x) = φ(x)

(5.4)

can be associated to the transition semigroup Pt of the solution X (·; x) of (5.3) as
follows:

w(t, x) = Pt [φ](x) = Eφ(X (t, x)) (5.5)

for any bounded continuous φ.
The semigroup Pt extends to a strongly continuous semigroup of contractions on

L2(H,B,m) with generator A, whose explicit expression on regular functions is

Aφ(x) = 1

2
Tr [QD2φ] + 〈Ax + b(x), Dφ〉 ; (5.6)

this fact is recalled in Lemma5.37.
The original HJB equation (5.1) can be seen as a perturbation of (5.4) and, by for-

mally applying the variation of parameters formula, it can be written in the following
integral (mild) form

u(t, x) = PT−t [g](·) +
∫ T

t
Ps−t [l(s, ·) + F (s, ·, Du(s, ·))] (x)ds. (5.7)

To prove the existence and uniqueness of mild solutions in spaces of continuous
functions we needed, as a key assumption, a smoothing property for the transition
semigroup Pt of the following form1: there exist C > 0 and θ ∈ (0, 1) such that for
every ϕ ∈ Bb(X), s > t , x ∈ H ,

|DPt−s[ϕ](x)| ≤ C(1 ∨ (s − t)−θ)‖ϕ‖0
(or a similar hypothesis which uses an operator G and an integrable function γ,
see Sect. 4.1.1 for details). This assumption was needed to prove the existence and

1See Hypothesis4.76.
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uniqueness of the solutionusing afixedpoint theorem in aBanach spaceof continuous
and differentiable functions (see e.g. Theorem 4.80).

In the L2 setting, an important role is played by the space W 1,2
Q (H,m) which

is, formally, the Sobolev space of functions which admit a weak derivative in
L2
(
H,B,m

)
, endowed with the norm

|φ|2
W 1,2

Q
=
∫

H
|φ|2dm +

∫

H

∣
∣Q1/2Dφ

∣
∣2 dm.

In fact, the definition of such a space is more complicated (see Definition5.11) due
to the fact that the operator Q1/2D is not assumed to be closable in L2

(
H,B,m

)
.

We work in this framework because Q1/2D is not closable in some relevant cases,
such as, for example, in the case of delay equations (see Sect. 5.6). The existence
and uniqueness result is found by applying a fixed point argument in the space

L2
(
0, T ;W 1,2

Q (H,m)
)
(see Theorem5.35). In this new context a milder smooth-

ing property is required (see estimate (5.36) in Proposition5.20) and, thanks to the
properties of the invariant measure m, it can be verified without strong requirements
on the data A, b and Q. This is the main reason why the L2 theory developed in the
present chapter allows us to deal with equations and control problems which cannot
be treated by the techniques of Chap. 4.

More precisely:

(i) We do not need any smoothing properties of the Ornstein–Uhlenbeck semi-
group associated with (A, Q) (see Remark5.21). Therefore we do not impose
any restrictions on Q: it is possible, for example, to take Q a one-dimensional
projection.

(ii) g, l ∈ L2(H,B,m): they are not necessarily continuous, bounded or with poly-
nomial growth.

This generality comes at a price. Similarly toChap. 6 and differently fromChap.4,we
can only dealwith a class ofHamiltonians of the form F (t, x, p) = F0

(
t, x, Q1/2 p

)
.

If we look at this restriction in terms of the optimal control problems we can study,
it means that we are only able to deal with problems where the control appears in the
state equation via a term of the form Q1/2R(t, x, a(t)) (see (5.78)). This assumption
may seem restrictive, but in fact it is quite natural in many control problems when
the operator Q is degenerate. It implies that the system should be controlled by
feedback taking values in the same space in which the noise disturbing the system
is concentrated. Let us note that if Q1/2 = 0 then both the control and the noise
disappear. A natural interpretation of this fact is that the uncontrolled system is in
fact deterministic and the noise is brought into the system only by the control.

Another drawback is the fact that mild solutions found in the setting of this chapter
possess weaker regularity properties due to the choice of the spaces. In particular, if
Q is very degenerate (e.g. a finite-dimensional projection) the measure substantially
ignores most of the space H . However, despite this weak regularity, when (5.7) is the
HJB equation related to a stochastic optimal control problem, one can characterize
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its solution as the value function of the problem and use it to perform the optimal
synthesis.

5.2 Preliminaries and the Linear Problem

5.2.1 Notation

As usual we denote by H a real separable Hilbert space with the norm | · | and the
inner product 〈·, ·〉 and by Q an element of L+(H). B(H) is the Borel σ-field of H .
The function spaces C(H),UC(H), Cb(H),UCb(H), Cb(H, H), Ck

b (H), Ck
0 (Rn),

… are defined in Appendix A.

5.2.2 The Reference Measure m and the Main Assumptions
on the Linear Part

We will work under the following set of assumptions.

Hypothesis 5.1 (A) A is the generator of a strongly continuous semigroup{
et A, t ≥ 0

}
on a real separable Hilbert space H . M ≥ 1 and ω ∈ R are two

real constants such that

∥
∥et A

∥
∥ ≤ Meωt , ∀t ≥ 0.

(B) Q ∈ L+(H), and μ0 = (
�,F , {Ft }t≥0,P,WQ

)
is every generalized reference

probability space (see Definition1.100).
(C) esAQesA

∗ ∈ L1(H) for all s > 0. Moreover, for every t ≥ 0,

∫ t

0
Tr
[
esAQesA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAQesA

∗
ds,

is of trace class for every t ≥ 0.
(D) The function b : H → H is continuous and Gâteaux differentiable, its Gâteaux

differential ∇b is strongly continuous and

‖∇b‖0 = sup
x∈H

‖∇b(x)‖ ≤ K < +∞.
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Proposition 5.2 Let Hypothesis 5.1 be satisfied. Then:

(i) The equation

⎧
⎨

⎩

dX (s) = (AX (s) + b(X (s))) ds + dWQ(s), s ∈ [0, T ],

X (0) = x ∈ H
(5.8)

has a unique mild solution X (·; x) ∈ Hμ0
p (0, T ; H) (see Definition1.126) for all

p ≥ 1. We also have
lim
s→0

E |X (s, x) − x |2 = 0. (5.9)

(ii) There exists a B([0, T ]) ⊗ B(H) ⊗ F/B(H)-measurable function

{ [0, T ] × H × � → H
(s, x,ω)→X̃(s; x)(ω)

such that, for every x ∈ H, X̃(·; x) is a version of the solution X (·; x). Thus in
the future we will not make a distinction between X (·; x) and X̃(·; x).

Proof Part (i), except (5.9), is proved in Theorem 1.147 (observe that b is globally
Lipschitz continuous thanks to Hypothesis 5.1-(D) and Theorem D.18). To prove
(5.9) we can observe that, using Hypotheses 5.1-(A) and (D),

E |X (s, x) − x |2 ≤ 3
∣
∣
∣esAx − x

∣
∣
∣
2 + 3C

∫ s

0
E

(
1 + |X (r)|2

)
dr

+ 3E
∣
∣
∣W A(s)

∣
∣
∣
2
, s ∈ [0, T ],

where C is a constant depending only on b. The first term converges to zero when
s → 0, the second goes to zero because X (·; x) ∈ Hμ0

2 (0, T ; H) while the term
concerning the stochastic convolution converges to zero thanks to its mean square
continuity ensured by Proposition1.144.

Part (ii) is proved in Proposition5.44 for a more general controlled version of the
equation (even though Proposition5.44 is in a later section, its proof is independent).

�

The transition semigroup Ps, s ≥ 0, associated to (5.8) is defined for every φ ∈
Cb(H) as2 {

Ps[φ] : H → R

Ps[φ] : x→Eφ(X (s; x)), (5.10)

2In Sect. 1.6 we define the semigroup directly on all the functions of Bb(H). The arguments of the
present chapter are more transparent if we start by defining the semigroup only on Cb(H). Since it
will be extended (Proposition5.9) to L p(H,B,m), and (Lemma5.10), for any φ ∈ L p(H,B,m),
Pt [φ](x) = Eφ(X (t; x)), the two approaches are equivalent.
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where X (s; x) is the solution of (5.8) at time s. It follows from Proposition1.147
that Ps(Cb(H)) ⊂ Cb(H) (see Theorem1.162) and Ps has the semigroup property
in Cb(H) as was remarked in Corollary1.158. Moreover, Ps does not depend on μ0

so the theory developed in this chapter is independent of the choice of μ0.
In the setting described by Hypothesis 5.1, we can introduce the notion of an

invariant measure.

Definition 5.3 (Invariant measure) Let Pt be the transition semigroup introduced
in (5.10). A probability measure m on (H,B(H)) is said to be an invariant measure
for (5.8) if, for any φ ∈ Cb(H) and t ≥ 0,

∫

H
Pt [φ](x)dm(x) =

∫

H
φ(x)dm(x). (5.11)

If Hypothesis5.1 holds, we formulate the following assumption.

Hypothesis 5.4 There exists an invariant measure m for Eq. (5.8). Moreover,

∫

H
|x |2 dm(x) < ∞. (5.12)

We denote by B the completion (see Sect. 1.1.1) of the Borel σ-field B(H) with
respect to the measure m.

Notation 5.5 L p spaces have been introduced in Sect. 1.1.3. In order to distinguish
the norms in L p(H,B,m) and L p(H,B,m; H) (i.e., the L p norms computed using
the measurem) from other L p-norms that appear in this chapter, we will denote them
by | · |L p

m
and by | · |L p

m,H
.

We first recall some density results that we will use frequently.

Lemma 5.6 Suppose that A satisfies Hypothesis 5.1 (A). Denote by EA(H) the lin-
ear subspace of UCb(H) given by the linear span of the set of all real parts of
the functions ei〈x,h〉 for some h ∈ D(A∗). Then, for any f ∈ UCb(H) there exists a
multi-sequence

(
fn1,n2,n3

)

n1,n2,n3∈N in EA(H) such that

‖ fn1,n2,n3‖0 ≤ ‖ f ‖0, for any n1, n2, n3 ∈ N

and
lim

n1→+∞ lim
n2→+∞ lim

n3→+∞ fn1,n2,n3(x) = f (x), for any x ∈ H.

Proof See Lemma 6.2.3, p. 112 in [179]. �

Lemma 5.7 Given any bounded measure m̄ defined on the Borel σ-field B(H) of
H, denoting by Bm̄ the completion of B(H) with respect to m̄, we have the following
density results:
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(i) UCb(H) and UCk
b (H), for any integer k > 0, are dense in L2(H,Bm̄, m̄).

(ii) Let A be the generator of a C0-semigroup on H and let A∗ be its adjoint. Then
FCk,A∗

0 (H), defined in (A.4), is dense in L2(H,Bm̄, m̄) for any integer k ≥ 0.
(iii) For every ψ ∈ L2(0, T ; L2(H,Bm̄, m̄)) there exists a sequence ψn : [0, T ] →

FC2,A∗
0 (H) such that

⎧
⎨

⎩

ψn ∈ C ([0, T ],UCb(H)) ,

Dψn, A∗Dψn ∈ C ([0, T ],UCb(H, H)) ,

D2ψn ∈ C ([0, T ],UCb(H,L1(H))) ,

and
ψn

n→+∞−→ ψ in L2
(
0, T ; L2

(
H,Bm̄, m̄

))
.

Proof Part (i): UCb(H) is dense in L2(H,Bm̄, m̄) thanks to Theorem1.34. The
density of UCk

b (H) in L2(H,Bm̄, m̄) for k > 0 will be proved below.
Part (ii):Given f ∈ L2(H,Bm̄, m̄) and anyn ∈ Nweneed tofind f̃n ∈ FCk,A∗

0 (H)

with | f − f̃n|L2(H,Bm̄ ,m̄) ≤ 1
n . Thanks to the already recalled density of UCb(H)

in L2(H,Bm̄, m̄) we can suppose that f ∈ UCb(H) and we can then consider an
approximating multi-sequence fn1,n2,n3 ∈ EA(H) from Lemma5.6. We define, for
any x ∈ H , for n1 ∈ N, fn1(x) := limn2→+∞ limn3→+∞ fn1,n2,n3(x) and, for n1, n2 ∈
N, fn1,n2(x) := limn3→+∞ fn1,n2,n3(x) so that, pointwise, f = limn1→+∞ fn1 . Using
Egoroff’s Theorem (Lemma1.50-(iv))we canfind n1 such that | f − fn1 |L2(H,Bm̄ ,m̄) ≤
1
6n , then n2 such that | fn1 − fn1,n2 |L2(H,Bm̄ ,m̄) ≤ 1

6n and n3 such that
| fn1,n2 − fn1,n2,n3 |L2(H,Bm̄ ,m̄) ≤ 1

6n . We denote such an fn1,n2,n3 by fn and we have
| f − fn|L2(H,Bm̄ ,m̄) ≤ 1

2n . The function fn is a linear combination of real parts of func-

tions ei〈x,hi 〉 for some hi ∈ D(A∗), i = 1, . . . , kn , so it does not belong toFCk,A∗
0 (H)

and we need to modify it.
Let λ : R → [0, 1] be a C∞ function compactly supported in (−2, 2) and identi-

cally equal to 1 in the interval [−1, 1]. We choose δ > 0 and we replace the real part
of each term ei〈x,hi 〉 in the linear combination by the real part of ei〈x,hi 〉λ (δ 〈x, hi 〉).
We call the new function f̃n . It belongs toFCk,A∗

0 (H) and ifwe choose δ small enough
we have | fn − f̃n|L2(H,Bm̄ ,m̄) ≤ 1

2n . It then follows that | f − f̃n|L2(H,Bm̄ ,m̄) ≤ 1
n .

The density of UCk
b (H) claimed in Part (i) now follows from Part (ii).

The proof of Part (iii) follows by applying the results of Part (ii) to the Hilbert

space H̃ := R × H , with the operator Ã :=
(
1 0
0 A

)

(having domain R × D(A))

and the measure m̃ := 1[0,T ]dt ⊗ m̄, where dt is the Lebesgue measure on R. �

Lemma 5.8 The following results hold:

(i) If b satisfies Hypothesis 5.1-(D), there exists a sequence (bn) ⊂C2(H, H) such
that

sup
n

‖Dbn‖0 ≤ K < +∞, (5.13)
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and for all h, x ∈ H and for any sequence xn of elements of H converging to x,

lim
n→∞ bn(xn) = b(x), lim

n→∞ Dbn(xn)(h) = ∇b(x)(h).

(ii) If b satisfies Hypothesis 5.1-(D) and ‖b‖0 < +∞, then the sequence in Part (i)
can be chosen such that

sup
n

‖bn‖0 ≤ l < +∞. (5.14)

(iii) Given φ ∈ C1
b(H), there exists a sequence (φn) ⊂ UC2

b (H) such that

sup
n

‖φn‖0 ≤ l < +∞, sup
n

‖Dφn‖0 ≤ l < +∞, (5.15)

and, for all x ∈ H,

lim
n→∞ φn(x) = φ(x), lim

n→∞ Dφn(x) = Dφ(x).

Proof We only prove (i) since the proofs of (ii) and (iii) use the same arguments.
The proof is based on a standard procedure of mollification over finite-dimensional
subspaces (see e.g. the proof of Lemma 1.2, p. 164 of [486]). Take an orthonormal
basis {en} of H and, for z ∈ H , let z = ∑∞

i=1 zi ei . For every n ∈ N let Pn be the
orthogonal projection onto the n-dimensional subspace of H spanned by {e1, . . . en}.
Define

�n : H → R
n, �nz = (z1, . . . , zn),

Qn : Rn → H, Qn(z1, . . . , zn) = z1e1 + · · · + znen,

and recall that Pn = Qn ◦ �n . Given a family of C∞ mollifiers ηn : Rn → R with
support in B(0, 1/n), we define

bn(z) =
∫

Rn

b(Qny)ηn(�nz − y)dy =
∫

Rn

b(Pnz − Qny)ηn(y)dy.

From the first equality above, we easily conclude that bn ∈ C∞(H, H). We have, in
particular,

bn(xn) =
∫

Rn

b(Pnxn − Qny)ηn(y)dy.

From this equation, the fact that Pnxn → x and the continuity of b we can conclude
that

lim
n→∞ bn(xn) = b(x).

Fix z ∈ H . For any h ∈ H with |h| = 1 and τ > 0 we have
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bn(z + τh) − bn(z)

τ
= 1

τ

∫

Rn

[b(Pn(z + τh) − Qny) − b(Pnz − Qny)] ηn(y)dy

=
∫

Rn

[∫ 1

0
∇b(Pn(z + rτh) − Qny)(h)dr

]

ηn(y)dy,

(5.16)

where in last equality we used Theorem D.18. In particular,

bn(xn + τh) − bn(xn)

τ
=
∫

Rn

[∫ 1

0
∇b(Pn(xn + rτh) − Qny)(h)dr

]

ηn(y)dy.

(5.17)
Since bn ∈ C∞(H, H) the left-hand side of the previous equality converges, when

τ → 0, to Dbn(xn)(h) while, thanks to the strong continuity of ∇b, the right-hand
side converges to

∫

Rn ∇b(Pnxn − Qny)(h)ηn(y)dy. Taking the limits of the two
expressions when n → ∞ we get (again thanks to the strong continuity of ∇b)

lim
n→∞ Dbn(xn)(h) = ∇b(x)(h).

Thanks to the last equality in (5.16), for any z ∈ H , we also have
∣
∣
∣
bn(z+τh)−bn(z)

τ

∣
∣
∣ ≤

‖∇b‖0 and then, letting τ → 0, we obtain

sup
n

‖Dbn‖0 ≤ ‖∇b‖0.
�

Proposition 5.9 Let p ∈ [1,+∞). Assume that Hypotheses 5.1 and 5.4 hold. Then
Pt , defined on Cb(H) by (5.10), extends to a strongly continuous semigroup of con-
tractions on L p(H,B,m). Moreover, for any φ ∈ L p(H,B,m) and t ≥ 0, the rela-
tion (5.11) holds.

Proof We follow the proof of Theorem 10.1.5, p. 209 of [179], where the statement is
proved for theOrnstein–Uhlenbeck case. Givenφ ∈ Cb(H), for any x ∈ H , thanks to
Jensen’s inequality we have |Pt [φ](x)|p ≤ |Pt [|φ|p] (x)|. Thus, sincem is invariant,

∫

H
|Pt [φ](x)|pdm(x) ≤

∫

H
|Pt

[|φ|p] (x)|dm(x) =
∫

H
|φ|p(x)dm(x),

where the last expression is finite since φ is bounded and m is a finite measure.
Thanks to the density of Cb(H) in L p(H,B,m) (Theorem1.34), Pt extends to a
contraction on L p(H,B,m) for any t ≥ 0.

To prove the strong continuity we observe first that it follows easily from the
Lebesgue dominated convergence theorem and (5.9) that for every φ ∈ Cb(H) and
x ∈ H , we have limt→0+ Pt [φ](x) = φ(x). Moreover, since ‖Pt [φ]‖0 ≤ ‖φ‖0, we
then obtain, again using the Lebesgue dominated convergence theorem,

lim
t→0+

Pt [φ] = φ in L p(H,B,m).
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Since Pt is a semigroup of contractions on L p(H,B,m) this implies strong continuity
for every φ ∈ L p(H,B,m).

To show the last claim, let φ ∈ L p(H,B,m) and let φn ∈ Cb(H) be a sequence
such that φn → φ in L p(H,B,m). We have, in particular,

∫

H φn(x) dm(x) →
∫

H φ(x) dm(x). Moreover, since for any t ≥ 0, Pt ∈ L(L p(H,B,m)), Pt [φn] →
Pt [φ] in L p(H,B,m) and, in particular,

∫

H Pt [φn](x) dm(x) → ∫

H Pt [φ](x) dm(x),
so (5.11) follows letting n → ∞ because it holds for the elements of Cb(H). �

In the previous proposition we extended, for any t ≥ 0, the operator Pt to the
whole space L p(H,B,m) by continuity. In other words, given φ ∈ L p(H,B,m),
Pt [φ] is defined as the limit in L p(H,B,m) of Pt [φn], where φn is a (any) sequence
of elements of Cb(H) converging to φ in L p(H,B,m). In the following lemma we
show that this limit is indeed equal to Eφ(X (t; x)) (which will be proved to be a
well-defined expression) even for non-bounded and non-Borel measurable elements
of L p(H,B,m).

Lemma 5.10 Let p ∈ [1,+∞). Assume thatHypotheses 5.1 and 5.4 hold. Consider
φ ∈ L p(H,B,m) and t ∈ [0, T ]. Then the function

{
H × � → R

(x,ω)→φ(X (t; x)(ω))

is B(H) ⊗ F/B(R)-measurable, where B(H) ⊗ F is the completion of the σ-field
B(H) ⊗ F w.r.t. the measure m ⊗ P. Moreover, x→Eφ(X (t; x)) is a B/B(R)-
measurable function and

Pt [φ](x) = Eφ(X (t; x)) for m-a.e. x ∈ H. (5.18)

Proof Suppose first that φ is Borel-measurable and φ ≥ 0. By Proposition5.44
we can assume that (t, x,ω)→φ(X (t; x)(ω)) is a B[0, T ] ⊗ B(H) ⊗ F/B(H)-
measurable function and then (see Lemma1.8(iv)), for any t ∈ [0, T ], (x,ω)→
φ(X (t; x)(ω)) is B(H) ⊗ F/B(H)-measurable so that the function (x,ω)→φ
(X (t; x)(ω)), being the composition of a B(H) ⊗ F/B(H)-measurable function
and a B(H)/B(R)-measurable function, is B(H) ⊗ F/B(R)-measurable. The
(Borel) measurability of x→Eφ(X (t; x)) then follows (see e.g. Lemma 1.26, p. 14 of
[370]). Moreover, if we consider φn := φ ∧ n, thanks to the monotone convergence
theorem, we have

Eφ(X (t; x)) = lim
n→∞Eφn(X (t; x)) = lim

n→∞ Pt [φn](x), x ∈ H

(the limit can also be +∞ for certain x). Since (again by monotone convergence)
we have limn→∞ φn := φ in L p(H,B,m), we also have

lim
n→∞ Pt [φn] = Pt [φ]
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in L p(H,B,m) and then, extracting if necessary a subsequence, m-a.e. Thus we
obtain (5.18).

As a second step we consider a positive φ ∈ L p(H,B,m). By Lemma1.16 we
can find φ̃ ∈ L p(H,B(H),m) and V ∈ B(H),m(V ) = 0 such that φ(x) = φ̃(x) for
any x ∈ H \ V . Denoting by 1V the characteristic function of V we have

∫

H
P {X (t; x)(ω) ∈ V } dm(x) =

∫

H
E [1V (X (t; x))] dm(x)

=
∫

H
Pt [1V ](x)dm(x) =

∫

H
1V (x)dm(x) = 0. (5.19)

So the functions (x,ω)→φ(X (t; x)(ω) and (x,ω)→φ̃(X (t; x)(ω) disagree only
on a subset of H × � which has m ⊗ P-measure 0 and thus, since we have already
observed that (x,ω)→φ̃(X (t; x)(ω) is F ⊗ B/B(R)-measurable, (x,ω)→φ
(X (t; x)(ω) isF ⊗ B/B(R)-measurable.

Therefore (see e.g.Theorem 2.39, p. 68of [267])E [φ(X (t; x))] = E

[
φ̃(X (t; x))

]

is well defined for m-a.e. x ∈ H and the function x→E

[
φ̃(X (t; x))

]
is B/B(R)-

measurable. However, for m-a.e. x ∈ H , Pt [φ](x) = Pt [φ̃](x) = E

[
φ̃(X (t; x))

]
=

E [φ(X (t; x))], which establishes (5.18).
The proof for a non-positive function follows by the previous arguments after

decomposing the function into the sum of its positive and negative parts. �

5.2.3 The OperatorA

From now on we fix the constant p of Proposition5.9 and Lemma5.10 equal to 2
and work in the space L2(H,B,m).

Let Hypotheses5.1 and 5.4 be satisfied and let Pt be defined as in (5.10). We
denote byA the generator of Pt as a strongly continuous semigroup on L2(H,B,m)

(see Proposition5.9). Its domain is denoted by D(A)⊂L2(H,B,m).
Wewill often use the elements of the spaceFC2,A∗

0 (H) to approximate less regular
functions and it will be useful to know how to calculate explicitly the operator A
on them. Indeed, as proved in Lemma5.37, FC2,A∗

0 (H)⊂D (A) and for any φ ∈
FC2,A∗

0 (H) we have

Aφ(x) = 1

2
Tr
[
QD2φ(x)

]+ 〈
x, A∗Dφ(x)

〉+ 〈b(x), Dφ(x)〉 . (5.20)
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5.2.4 The Gradient Operator DQ and the Space W1,2
Q (H,m)

Let Q be an operator satisfying Hypothesis5.1-(B). We then introduce the following
operator DQ .

Definition 5.11 (The operator DQ and the space W 1,2
Q (H,m)) We define the oper-

ator
DQφ := Q1/2Dφ, φ ∈ C1

b(H), (5.21)

where Dφ denotes the Fréchet derivative of φ.
For φ ∈ C1

b(H) we define the norm

|φ|2
W 1,2

Q
= |φ|2L2

m
+ ∣
∣DQφ

∣
∣2
L2
m,H

.

The completion of C1
b(H) with respect to the norm |·|W 1,2

Q
will be denoted by

W 1,2
Q (H,m).

The space W 1,2
Q (H,m) may be identified with the subspace of L2(H,B,m) ×

L2(H,B,m; H) which consists of all pairs

(ψ, �) ∈ L2(H,B,m) × L2(H,B,m; H)

such that there exists a sequence (φn) ⊂ C1
b(H) with the property

φn → ψ, in L2(H,B,m)

and
DQφn → �, in L2(H,B,m; H).

In the cases where the operator DQ is closable (as an unbounded operator
from its domain C1

b(H) ⊂ L2(H,B,m) to L2(H,B,m; H)), for any two pairs
(ψ1, �1), (ψ2, �2) ∈ W 1,2

Q (H,m) such that ψ1 = ψ2 in L2(H,B,m) we also have

�1 = �2, so that W
1,2
Q (H,m) is naturally embedded in L2(H,B,m).

If DQ is not closable then we can find a sequence (φn) ⊂ C1
b(H) such that

φn → 0 in L2(H,B,m) and DQφn → � �= 0, in L2(H,B,m; H).

Therefore, elements of W 1,2
Q (H,m) cannot be identified, in general, with functions

of L2(H,B,m) (e.g., the above element (0,�)).3 This means that the structure of

3For this reason, since we are interested in a definition that also works when the operator DQ is
non-closable, we do not work in the space W 1,2(H,m) defined (see e.g. Chap.9, p. 196 of [179])
as the linear space of all functions φ ∈ L2(H,B,m) such that Dφ ∈ L2(H,B,m; H).
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the Sobolev space changes significantly when we want to take into account the case
of non-closable DQ .

Observe that, in any case, even when DQ is not closable, it can be extended
to a well-defined continuous operator from W 1,2

Q (H,m) (endowed with the norm

described in Definition5.11) to L2(H,B,m; H). Indeed, if |φn|2W 1,2
Q

→ 0 then
∣
∣DQφn

∣
∣2
L2
m,H

→ 0. We denote the continuous extension of DQ from W 1,2
Q (H,m) to

L2(H,B,m; H) again by DQ . When DQ is not closable, considering the charac-
terization of W 1,2

Q (H,m) as a subspace of L2(H,B,m) × L2(H,B,m; H) and the
notation described above, we have DQ(ψ, �) = �.

The notation we use here is a little different from the one used in Chap. 4. Indeed,
to be consistent with the notation of Chap.4, we should write DQ1/2

instead of DQ .
We choose to use this notation for two reasons: it is simpler and, even if not very
intuitive, it is fairly standard in the literature.

Sometimes in the literature the notation DQ is used for different operators. We
want to underline in particular the difference with respect to Chap.9 of [179] where
DQ is used for the Malliavin derivative, which is again an operator of the form
Q

1
2 D for some Q ∈ L+

1 (H). The difference is that, in our case Q is the covariance
operator of the Wiener process, while in [179] it is the covariance operator of the
(Gaussian) reference measure. When b = 0 and ω < 0, the operator used in [179] is
Q∞ = ∫ +∞

0 esAQesA
∗
ds.

Remark 5.12 When (5.8) is linear (if b = 0) and ω < 0, the problem of closability
of DQ can be approached using some characterizations that can be found in the liter-
ature. A negative result ensuring the non-closability of the operator is, for example,
Theorem 3.5 of [299], which allows us to prove that DQ is not closable, for example,
in the two cases recalled in Sect. 5.6.

When the operator Q is injective, a characterization of closability is given by The-
orem 6.1 of [299], which shows that the closability of the operator DQ is equivalent
to the closability of the operator Z : D(Z)⊂H → H given by

{
D(Z) = Q1/2

∞ (H)

Z
(
Q1/2

∞ x
)

= Q
1
2 x .

In the particular case considered, for example, in [3, 4, 125] (see also Exam-
ple 4.46 and Sect. 4.8.3.1) the generator of the semigroup is

Ax =
+∞∑

n=1

−αn 〈en, x〉 en, x ∈ D(A),

for some orthonormal basis {en} and 0 < α1 ≤ α2 ≤ α3 . . . . Moreover Q is given
by
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Qx =
+∞∑

i=n

qn 〈en, x〉 en, x ∈ H,

for a sequence of positive eigenvalues qn . The expression for Z is given, for any
y = Q1/2

∞ x , by

Zy = Q
1
2 Q−1/2

∞ y =
+∞∑

n=1

√
qn

√
2αn

qn
〈en, y〉 en

=
+∞∑

n=1

−√2αn 〈en, y〉 en = √
2(−A)1/2y.

Thus, since Q1/2
∞ (H)⊂D

(
(−A)1/2

)
and since (−A)1/2 is closed (see Theorem B.53-

(i)), Z admits a closed extension and so (see Theorem 5.4(a), p. 91 of [569])
it is closable. Therefore, thanks to Theorem 6.1 of [299], the operator DQ is
closable. �

5.2.5 The OperatorR

Let Q be an operator satisfying Hypothesis5.1-(B) and let DQ be defined as in
Definition5.11.We introduce and study here the properties of the operatorR defined
below (Definition5.19).

We begin by studying the regularity of the solution X (·; x) of (5.8) with respect
to the initial datum. We use Proposition6.7. The following lemma specifies it in the
particular case we are interested in.

Lemma 5.13 LetHμ0
2 (0, T ; H)be the spacedefined inDefinition 1.126. LetK : H ×

Hμ0
2 (0, T ; H) → Hμ0

2 (0, T ; H) be a continuous mapping satisfying, for some α ∈
[0, 1),

|K(x, X) − K(x, Y )|Hμ0
2 (0,T ;H) ≤ α |K(x, X) − K(x, Y )|Hμ0

2 (0,T ;H) (5.22)

for all x ∈ H and X, Y ∈ Hμ0
2 (0, T ; H). Then:

(i) There exists a unique mapping ϕ : H → Hμ0
2 (0, T ; H) such that

ϕ(x) = K(x,ϕ(x)), for every x ∈ H,

and it is continuous.
(ii) Suppose that, for any (x, X) ∈ H × Hμ0

2 (0, T ; H) and for any h ∈ H there
exists the directional derivative of K with respect to x in the direction h and
that, for any fixed h, the mapping
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{
H × Hμ0

2 (0, T ; H) → Hμ0
2 (0, T ; H)

(x, X)→∇xK(x, X; h)

is continuous. Assume that, for any (x, X), h→∇xK(x, X; h) is continuous from
H toHμ0

2 (0, T ; H). Suppose also that for any (x, X) ∈ H × Hμ0
2 (0, T ; H) and

for anyY ∈ Hμ0
2 (0, T ; H) there exists the directional derivative ofKwith respect

to X in the direction Y and that, for any fixed Y , the mapping

{
H × Hμ0

2 (0, T ; H) → Hμ0
2 (0, T ; H)

(x, X)→∇XK(x, X; Y )

is continuous. Assume that, for any (x, X), Y→∇XK(x, X; Y ) is continuous
from Hμ0

2 (0, T ; H) to Hμ0
2 (0, T ; H). Then, for any x ∈ H, there exists the

Gâteaux derivative ∇ϕ(x). Moreover, (x, h)→∇ϕ(x)(h) is continuous as a
mapping from H × H toHμ0

2 (0, T ; H) and it satisfies the equation

∇ϕ(x)(h) = ∇xK(x,ϕ(x); h) + ∇XK(x,ϕ(x); ∇ϕ(x)(h)), x, h ∈ H.

Proof This is a particular case of Proposition6.7. In the claim of part (ii) we also
made use of Lemma6.4 (in a two-variable version) to verify the hypothesis “F ∈
G1,1(X × Y ; X)” of Proposition6.7 for our spaces and of Lemma6.3 to derive the
continuity properties of ∇ϕ. �

Lemma 5.14 Let Hypothesis 5.1 be satisfied and let x, h ∈ H. Denote by X (·; x)
the solution of (5.8). Then:

(i) X (·; x) is Gâteaux differentiable as a mapping from H to Hμ0
2 (0, T ; H) and

x→∇X (·; x) is strongly continuous. For any h ∈ H the (directional derivative)
process ζ x,h(·) := ∇X (·; x)h is the unique mild solution inHμ0

2 (0, T ; H) of the
following equation

{
dζx,h(s)

ds = (A + ∇b(X (s; x)) ζ x,h(s)
ζx,h(0) = h

(5.23)

on [0, T ]. The process ζ x,h(·) has P-a.s. continuous trajectories.
(ii) There exist universal constants α, a > 0, α also depends on K , such that

∣
∣ζx,h(s)

∣
∣ ≤ aeαs |h|

for any s ≥ 0. Therefore the solution to (5.23) defines, for any x ∈ H, ω ∈ �

and s ≥ 0, a bounded operator ζx (s) : H → H, ζx (s)h = ζx,h(s).
(iii) For any h ∈ H there exists a B([0, T ]) ⊗ B(H) ⊗ F/B(H)-measurable func-

tion { [0, T ] × H × � → H
(s, x,ω)→ζ̃x,h(s)(ω)

(5.24)
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such that, for every x ∈ H, ζ̃x,h(·) is a version of ζx,h(·). Thus in the future we
will not make a distinction between ζ̃x,h(·), ζx,h(·), and ∇X (·; x)h.

Proof Since other similar results appearing in the book are proved for slightly dif-
ferent sets of hypotheses,4 we provide the proofs.

To prove part (i), except for the P-a.s. continuity of the trajectories of ζx,h(·), we
use Proposition6.7 in the particular case stated in Lemma5.13. The mapping K is
defined as

K(x, X)(s) = esAx +
∫ s

0
e(s−r)Ab(X (r))dr + W A(s), s ∈ [0, T ],

whereW A is defined in (1.64). It is shown in the proof of Proposition1.147 that if T
is small enough then (5.22) is satisfied. The joint continuity of K is straightforward.

To verify the hypotheses of part (ii) of Lemma5.13, we follow the arguments used
in Sect. 9.1.1 of [180] (we repeat them because our hypotheses are a little different).
The directional derivatives with respect to x are not a problem since one can easily
see that ∇xK(x, X; h) = e·Ah which is jointly continuous in all three variables.

As regards the directional derivative ∇XK(x, X; Y ), we begin by showing that
for any X, Y ∈ Hμ0

2 (0, T ; H) and any x ∈ H ,

∇XK(x, X; Y )(s) =
∫ s

0
e(s−r)A∇b(X (r))Y (r)dr, s ∈ [0, T ].

Indeed, we have

sup
s∈[0,T ]

E

∣
∣
∣
∣
1

ε
(K(x, X + εY ) − K(x, X)) (s) −

∫ s

0
e(s−r)A∇b(X (r))Y (r)dr

∣
∣
∣
∣

2

= sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A

[
1

ε
(b(X (r) + εY (r)) − b(X (r)) − ∇b(X (r))Y (r))

]

dr

∣
∣
∣
∣

2

.

Using Theorem D.18 the last expression above becomes

sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A

[∫ 1

0
∇b(X (r) + θεY (r))Y (r) − ∇b(X (r))Y (r)dθ

]

dr

∣
∣
∣
∣

2

≤ T
(
M max{eωT , 1}

)2
E

∫ T

0

[∫ 1

0
|∇b(X (r) + θεY (r))Y (r) − ∇b(X (r))Y (r)|2 dθ

]

dr

which, thanks to the boundedness of ∇b and its strong continuity, converges to 0
when ε → 0 by the Lebesgue dominated convergence theorem. We now prove the
continuity properties of ∇XK(x, X; Y ). We first fix (x, X) and we consider Yn → Y

4In particular, in Propositions4.61 and 6.10 we work in L p
P (�;C([0, T ], H)), while here we use

Hμ0
2 (0, T ; H). Indeed, in the mentioned propositions it is assumed that Tr

[
esAQesA

∗] ≤ Cβs−2β

for some β ∈ [0, 1/2) and Cβ > 0.
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inHμ0
2 (0, T ; H). We have, using Hypothesis5.1 and Hölder’s inequality,

|∇XK(x, X; Yn) − ∇XK(x, X; Y )|2Hμ0
2 (0,T ;H)

= sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A∇b(X (r))(Yn(r) − Y (r))dr

∣
∣
∣
∣

2

≤ K 2
(
M max{eωT , 1}

)2
sup

s∈[0,T ]
sE
∫ s

0
|Yn(r) − Y (r)|2dr ≤ C |Yn − Y |2Hμ0

2 (0,T ;H)
→ 0

as n → +∞. To prove the strong continuity property we fix Y and suppose, to
the contrary, that there are δ > 0 and a sequence (xn, Xn) such that xn → x in H ,
Xn → X inHμ0

2 (0, T ; H) but |∇XK(xn, Xn; Y ) − ∇XK(x, X; Y )|2Hμ0
2 (0,T ;H)

≥ δ for
any n ∈ N. We have

|∇XK(xn, Xn; Y ) − ∇XK(x, X; Y )|2Hμ0
2 (0,T ;H)

= sup
s∈[0,T ]

E

∣
∣
∣
∣

∫ s

0
e(s−r)A [∇b(Xn(r)) − ∇b(X (r))] Y (r)dr

∣
∣
∣
∣

2

≤ CE

∫ T

0
|[∇b(Xn(r)) − ∇b(X (r))] Y (r)|2 dr,

where C is a constant depending only on M , ω, T and K . For every n ∈ N the inte-
grand in the last line above is dominated by 4K 2|Y (r)|2, moreover, since Xn → X
in Hμ0

2 (0, T ; H) we can extract a subsequence Xnk which converges to X , dr ⊗ P-
a.e., and we can conclude using the Lebesgue dominated convergence theorem
that

∣
∣∇XK(xnk , Xnk ; Y ) − ∇XK(x, X; Y )

∣
∣2
Hμ0

2 (0,T ;H)
→ 0 as k → +∞, which con-

tradicts our hypothesis.
Thus part (i) follows fromLemma5.13. The continuity of the trajectories of ζx,h(·)

is a consequence of Lemma1.115.
To prove part (ii) we observe that, thanks to Hypothesis 5.1 (A) and (D), we have,

for all s ∈ [0, T ],
∣
∣ζ x,h(s)

∣
∣ ≤ ∣

∣M max{eωT , 1}∣∣ |h| + M max{eωT , 1}
∫ s

0
K |ζx,h(r)|dr

and hence the conclusion follows from Gronwall’s lemma (Proposition D.29).
To prove the claim of part (iii), we use the result of Proposition5.44 (even though

Proposition5.44 is in a later section, its proof is independent). Let (s, x,ω)→X̃(s; x)
(ω) be the B([t, T ]) ⊗ B(H) ⊗ F/B(H)-measurable function found in Proposi-
tion5.44 (we consider here the case when t = 0 and R = 0). Observe that, by con-
struction, X̃ satisfies (1.70) for any s ∈ [0, T ], any x, y ∈ H and any ω ∈ � and in
particular it is continuous in the variable x for any choice of (s,ω) ∈ [0, T ] × �.

We denote by ζ̃x,h(·) the unique solution of
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ζ̃x,h(s) = eAsh +
∫ s

0
e(s−r)A∇b(X̃(r; x))ζ̃x,h(r) dr, s ∈ [0, T ].

We remark that ζ̃ x,h(s) is defined for every (s,ω) ∈ [0, T ] × �. Since X̃(·; x) is a
version of X (·; x), ζ̃x,h(·) is a version of ζx,h(·). Moreover, we claim that, for any
choice of (s,ω) ∈ [0, T ] × �, ζ̃x,h(s) is continuous in the variable x . To prove this
we fix ω ∈ � and consider x ∈ H and any sequence xn in H converging to x . We
have
∣
∣
∣ζ̃x,h(s)(ω) − ζ̃xn ,h(s)(ω)

∣
∣
∣ ≤ I n1 (s) + I n2 (s)

:=
∣
∣
∣
∣

∫ s

0
e(s−r)A

(
∇b(X̃(r; x))(ω) − ∇b(X̃(r; xn))(ω)

)
ζ̃x,h(r)(ω) dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s

0
e(s−r)A∇b(X̃(r; xn))(ω)

(
ζ̃x,h(r)(ω) − ζ̃xn ,h(r)(ω)

)
dr

∣
∣
∣
∣ , s ∈ [0, T ].

I n1 (s) converges to zero, uniformly for s ∈ [0, T ], thanks to the Lebesgue domi-
nated convergence theorem as Hypothesis 5.1 (A) and (D) and part (ii) give the uni-
form bound and the continuity of x→X̃(r; x)(ω) gives the pointwise convergence.
Thus the convergence (which is indeed uniform in s and thus even stronger than

what we need) of
∣
∣
∣ζ̃x,h(s)(ω) − ζ̃xn ,h(s)(ω)

∣
∣
∣ → 0 follows from Gronwall’s Lemma

(using again Hypothesis5.1 (A) and (D) which gives |e(s−r)A∇b(X̃(r; xn))(ω)| ≤
K
(
M ∨ MeωT

)
independently of s, r, n,ω).

Since ζ̃x,h(·) has continuous trajectories and is a version of ζx,h(·) ∈Hμ0
2 (0, T ; H),

it itself belongs toHμ0
2 (0, T ; H). In particular, for every x ∈ H , ζ̃x,h(·) isB([0, T ]) ⊗

F/B(H)-measurable as function of the variables s and ω. Moreover, we proved
that, for any fixed (s,ω) ∈ [0, T ] × �, ζ̃ x,h(s)(ω) is a continuous function of the
variable x . It then follows from Lemma1.18, that ζ̃x,h(s)(ω) is B([t, T ]) ⊗ B(H) ⊗
F/B(H)-measurable. �

Lemma 5.15 Assume that Hypotheses 5.1 and 5.4 hold. Fix t ∈ [0, T ]. Given φ ∈
C1
b(H), Pt [φ] ∈ Cb(H), Pt [φ] is Gâteaux differentiable at any x ∈ H and

〈∇Pt [φ](x), h〉 = E
(〈(

ζx (t)
)∗

Dφ(X (t; x)), h〉) , h ∈ H. (5.25)

Moreover, ∇Pt [φ] is strongly continuous and

sup
x∈H

|∇Pt [φ](x)| < +∞. (5.26)

Proof The continuity of Pt [φ] follows from Theorem1.162. Differentiating Pt [φ]
and using its definition we obtain

〈∇Pt [φ](x), h〉 = E 〈Dφ(X (t; x)),∇(X (t; x))h〉
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so (5.25) follows from Lemma5.14. The strong continuity of the differential can be
proved as follows. Given h ∈ H and t > 0, consider a sequence xn of elements of
H converging to x ∈ H . We have

〈∇Pt [φ](x), h〉 − 〈∇Pt [φ](xn), h〉
= E

(〈
Dφ(X (t; x)), ζx,h(t)

〉)− E
(〈
Dφ(X (t; xn)), ζxn ,h(t)

〉)

≤ E
∣
∣
〈
Dφ(X (t; x)) − Dφ(X (t; xn)), ζx,h(t)

〉∣
∣

+E
∣
∣
〈
Dφ(X (t; xn)), ζxn ,h(t) − ζx,h(t)

〉∣
∣

≤ I1(n) + I2(n) := aeαt |h|E |Dφ(X (t; x)) − Dφ(X (t; xn))|
+‖Dφ‖0 E

∣
∣ζxn ,h(t) − ζx,h(t)

∣
∣ ,

where aeαt |h| is introduced in Lemma5.14.
I1(n) converges to 0 when n → +∞ thanks to the dominated convergence the-

orem, the boundedness and the continuity of Dφ and (1.70). Observe that, since
{xn}n∈N is countable, we can find a subset of � of measure 1 where (1.70) holds for
any n (with xn and x as ξ1 and ξ2, respectively, moreover f (r) appearing in (1.70)
is, in our case, just a positive constant independent of r ).

For I2(n) observe that

E
∣
∣ζxn ,h(t) − ζx,h(t)

∣
∣

= E

∣
∣
∣
∣

∫ t

0
e(t−s)A

(∇b(X (s, xn))ζ
xn ,h(s) − ∇b(X (s, x))ζ x,h(s)

)
ds

∣
∣
∣
∣

≤ E

[

C
∫ t

0

∣
∣(∇b(X (s, x) − ∇b(X (s, xn))) ζx,h(s)

∣
∣ ds

+C
∫ t

0

∣
∣∇b(X (s, xn))

(
ζx,h(s) − ζxn ,h(s)

)∣
∣ ds

]

≤ E

[

C
∫ t

0

∣
∣(∇b(X (s, x) − ∇b(X (s, xn))) ζx,h(s)

∣
∣ ds

]

+CK
∫ t

0
E
∣
∣
(
ζxn ,h(s)

)− (
ζx,h(s)

)∣
∣ ds (5.27)

for some positive constant C coming from Hypothesis5.1-(A) and with K from
Hypothesis5.1-(D). Thanks to the strong continuity of∇b, the boundedness of ‖∇b‖0
and of |ζx,h(s)| (Hypothesis5.1-(D) and Lemma5.14), (1.70) (recall again that we
can find a subset of � of measure 1 where (1.70) holds for any n) and the dominated
convergence theorem, the term

E

[

C
∫ t

0

∣
∣(∇b(X (s, x) − ∇b(X (s, xn))) ζx,h(s)

∣
∣ ds

]
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converges to 0 when n → ∞. Thus we can apply Gronwall’s Lemma to (5.27) and
conclude that I2(n) converges to 0 when n → +∞. This concludes the proof of the
strong continuity of DPt [φ].

The bound (5.26) follows from the bound for the Gâteaux differential of X proved
in Lemma5.14 and the hypotheses on φ. �

Corollary 5.16 Assume that Hypotheses5.1 and 5.4 hold. For any φ ∈ C1
b(H),

Pt [φ] ∈ W 1,2
Q (H,m). In particular, DQ Pt [φ] is well defined and it equals

Q1/2∇Pt [φ].
Proof Thanks to Lemma5.15, Pt [φ] satisfiesHypothesis 5.1-(D) and it is bounded so
we can apply to it Lemma5.8-(i)(ii). The conclusion follows by the characterization
of W 1,2

Q (H,m) given after Definition5.11. �

Lemma 5.17 Let Hypothesis 5.1 be satisfied, let bn be as in Part (i) of Lemma5.8,
let x ∈ H and X (·) = X (·; x) be the solution of (5.8). The following hold:

(i) If, for some sequence xn converging to x in H, we denote by Xn(·) = Xn(·; xn)
the unique solution of the equation

{
dXn(s) = (AXn(s) + bn (Xn(s))) dt + dWQ(s),
X (0) = xn,

(5.28)

then, for any p > 1,

lim
n→∞ sup

t∈[0,T ]
E |Xn(t; xn) − X (t; x)|p = 0. (5.29)

(ii) Let Xn(·), xn be as in Part (i) above. Denote by ζxn ,h
n (·) the solution of (5.23),

where X (·) is replaced by Xn(·), b by bn and x by xn. Then, for any p > 1,

lim
n→∞ sup

t∈[0,T ]
E

(

sup
|h|≤1

∣
∣ζx,h(t) − ζxn ,h

n (t)
∣
∣

)p

= 0. (5.30)

Proof For Part (i) we observe that for any t ∈ [0, T ]

Xn(t; xn) − X (t; x) = et A(xn − x) +
∫ t

0
e(t−s)A(bn(Xn(s; xn)) − b(X (s; x)))ds

= et A(xn − x) +
∫ t

0
e(t−s)A

([bn(Xn(s; xn)) − bn(X (s; x))]
+[bn(X (s; x)) − b(X (s; x))])ds

and thus
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E|Xn(t; xn) − X (t; x)|p

≤ CT |xn − x |p + CT

∫ t

0
l pE|Xn(s; xn) − X (s; x)|pds

+CT

∫ T

0
E|bn(X (s; x)) − b(X (s; x))|pds

for a constantCT depending on T . For any s ∈ [0, T ] the expressionE|bn(X (s; x)) −
b(X (s; x))|p converges to 0 thanks to Lemma1.51 if we use Lemma5.8 and the
uniformmoment estimates of (1.69). The claim thus follows by applying Gronwall’s
Lemma.

The argument for Part (ii) is similar. Indeed, for any t ∈ [0, T ],

(ζ
xn ,h
n (t) − ζx,h(t)) =

∫ t

0
e(t−s)A[Dbn(Xn(s; xn))ζxn ,hn (s) − ∇b(X (s; x))ζx,h(s)]ds

=
∫ t

0
e(t−s)A[Dbn(Xn(s; xn)(ζxn,hn (s) − ζx,h(s))

+(Dbn(Xn(s; xn)) − ∇b(X (s; x)))ζx,h(s)]ds.

So,

sup
|h|≤1

∣
∣ζxn ,h

n (t) − ζx,h(t)
∣
∣ ≤ CT

∫ t

0

[

‖Dbn(Xn(s; xn)‖ sup
|h|≤1

∣
∣ζxn ,h

n (s) − ζx,h(s)
∣
∣

+|(Dbn(Xn(s; xn)) − ∇b(X (s; x)))ζ x,h(s)|ds.

By taking the p-th powers and the expectations of the two sides and then using (5.13)
we obtain, for a different constant CT ,

E

(

sup
|h|≤1

∣
∣ζxn ,h
n (t) − ζx,h(t)

∣
∣

)p

≤ CT

∫ t

0
K p

E

(

sup
|h|≤1

∣
∣ζxn ,h

n (s) − ζx,h(s)
∣
∣

)p

ds + In,

where

In := CT

∫ T

0
E

[

|(Dbn(Xn(s; xn)) − ∇b(X (s; x)))ζ x,h(s)|p
]

ds.

All we need to do now is to prove that In converges to 0. Then the claim will be a
direct consequence of Gronwall’s Lemma. To show this it is enough to show that for
any subsequence Ink there exists a sub-subsequence converging to 0.

Let us then consider a subsequence of Xn (denoted again by Xn). Thanks to (5.29),

∫ T

0
E
[|Xn(s, xn) − X (s, x)|p] ds n→∞−−−→ 0



5.2 Preliminaries and the Linear Problem 627

and then we can extract a subsequence (denoted again by Xn) such that Xn(·, xn)(·)
converges (ds ⊗ P)-a.e. to X (·, x)(·) (ds denotes the Lebesgue measure on R).
So, using Lemma5.8-(i), |(Dbn(Xn(·; xn)) − ∇b(X (·; x)))ζ x,h(·)|p converges to 0,
(ds ⊗ P)-a.e. Since, by (5.13) and the bound on |ζx,h | given by Lemma5.14, these
functions are bounded uniformly in n, we can thus conclude using the dominated
convergence theorem that In → 0. �

Lemma 5.18 Assume that Hypotheses 5.1 and 5.4 hold and φ ∈ C1
b(H). Then, for

any t ∈ [0, T ],

φ (X (t; x)) = Pt [φ](x) +
∫ t

0

〈∇Pt−s[φ](X (s; x)), dWQ(s)
〉

P a.e. (5.31)

Proof Step 1. The claim is proved for b ∈ UC2
b (H, H) and φ ∈ UC2

b (H) in [582],
Lemma 6.11, p. 181.

To extend the result to the general case, in the next step we will consider φ ∈
UC2

b (H) and b which satisfies Hypothesis5.1-(D), and in the third step we will
prove the result in full generality.

Step 2. Consider φ ∈ UC2
b (H) and b satisfying Hypothesis5.1-(D). Let bn be

the sequence found in Part (i) of Lemma5.8, Xn(t; x) be the solution of (5.28)
with xn = x , and Pn

t [φ](x) = Eφ (Xn(t; x)), t ≥ 0, be the corresponding transition
semigroup.

Thanks to (5.29) (with xn = x), up to extracting a subsequence,

lim
n→+∞ Xn(s; x) = X (s; x) for ds ⊗ P-almost any (s,ω) ∈ [0, T ] × �. (5.32)

Observe now that, for any x ∈ H ,

lim
n→∞ Pn

t [φ](x) = Pt [φ](x). (5.33)

Indeed, we have

∣
∣Pn

t [φ](x) − Pt [φ](x)∣∣ = E |φ(Xn(t; x)) − φ(X (t; x))| ≤ CE |Xn(t; x) − X (t; x)|2

so the claim follows from (5.29). Observe also that by Lemma5.15 we have

∇Pt [φ](x) = E
((

ζx (t)
)∗

Dφ(X (t; x))) , ∇Pn
t [φ](x) = E

((
ζxn (t)

)∗
Dφ(Xn(t; x))

)
.

Thus, using (5.29), (5.30), and a universal bound on ‖ζx
n (t)‖ given by Lemma5.14,

we easily obtain that

sup
n,x,t

(|∇Pn
t [φ](x)| + |∇Pt [φ](x)|) ≤ C (5.34)
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for some constant C . We can then conclude using the dominated convergence the-
orem if we can show that for almost every s ∈ [0, t], limn→∞ ∇Pn

t−s[φ](Xn(s; x)
(ω)) = ∇Pt−s[φ](X (s; x)(ω)) for P-a.e. ω. In fact, we prove this convergence for
any (s,ω) where (5.32) holds.

Given (s,ω) ∈ [0, t] × � where the convergence (5.32) holds, we rewrite it as
yn := Xn(s, x)(ω), yn

n→∞−−−→ y := X (s, x)(ω) in H . By Lemma5.15,

∣
∣∇Pn

t−s[φ](yn) − ∇Pt−s[φ](y)∣∣
= sup

h∈H, |h|≤1

∣
∣
〈∇Pn

t−s[φ](yn) − ∇Pt−s[φ](y), h〉∣∣

≤ I n1 + I n2 := sup
h∈H, |h|≤1

∣
∣E
〈
Dφ(yn), ζ

yn ,h
n (t − s) − ζ y,h(t − s)

〉∣
∣

+ sup
h∈H, |h|≤1

∣
∣E
〈
Dφ(yn) − Dφ(y), ζ y,h(t − s)

〉∣
∣ .

We have

I n1 ≤ ‖Dφ‖0
(

E sup
h∈H, |h|≤1

∣
∣ζ yn ,h

n (t − s) − ζ y,h(t − s)
∣
∣

)

,

which converges to 0 by (5.30). Moreover, I n2 → 0 thanks to the boundedness of
ζ y(t − s) given by Lemma5.14 and the continuity of Dφ.

The result is thus true for any φ ∈ UC2
b (H) and b satisfying Hypothesis5.1-(D).

Step 3. Assume now that b satisfies Hypothesis5.1-(D) and φ ∈ C1
b(H). Let φn

be the approximating sequence described in Part (iii) of Lemma5.8. We have, for
any x ∈ H ,

lim
n→∞ Pt [φn](x) = Pt [φ](x). (5.35)

Indeed,
|Pt [φn](x) − Pt [φ](x)| = E |φn(X (t; x)) − φ(X (t; x))| ,

which converges to 0 thanks to Lemma5.8-(iii) and the dominated convergence
theorem. Moreover, for any x ∈ H , by Lemma5.15,

|∇Pt−s[φn](x) − ∇Pt−s[φ](x)|
= sup

h∈H, |h|≤1
|〈∇Pt−s[φn](x) − ∇Pt−s[φ](x), h〉|

= sup
h∈H, |h|≤1

∣
∣E
〈
Dφn(x) − Dφ(x), ζ x,h(t − s)

〉∣
∣

≤ |Dφn(x) − Dφ(x)| sup
h∈H, |h|≤1

E
∣
∣ζ y,h(t − s)

∣
∣ ,

which converges to 0 thanks to Lemmas5.8-(iii) and 5.14. �

We define the operator R as follows.
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Definition 5.19 (The operator R) Given φ ∈ C1
b(H), we define for any t ∈ [0, T ],

(Rφ)(t) := DQPt [φ].

The operator R is well defined thanks to Corollary5.16.
The next proposition provides an identity which allows us to extend the operator

R to the whole space L2(H,B,m).

Proposition 5.20 Assume that Hypotheses 5.1 and 5.4 hold. For every φ ∈ C1
b(H)

∫ T

0

∣
∣DQPt [φ]∣∣2L2

m
dt = |φ|2L2

m
− |PT [φ]|2L2

m
. (5.36)

Moreover, the operator R has a unique extension to a bounded operator

R : L2(H,B,m) → L2
(
0, T ; L2(H,B,m)

)
,

with

|(Rφ)|2
L2(0,T ;L2(H,B,m))

=
∫ T

0
|(Rφ)(t)|2L2

m
dt = |φ|2L2

m
− |PT [φ]|2L2

m
(5.37)

for any φ ∈ L2(H,B,m).

Proof Let φ ∈ C1
b(H). Then (5.31) yields

E[φ2(X (T, x))] = (PT [φ](x))2 +
∫ T

0
E
∣
∣Q1/2∇PT−t [φ](X (t, x))

∣
∣2 dt.

Recall that, by Corollary5.16, since φ ∈ C1
b(H), we have DQPt [φ] = Q1/2∇Pt [φ].

Thus, integrating the previous identity with respect to m and rearranging the terms
we get

∫ T

0

∫

H
E
∣
∣DQPt [φ](X (t, x))

∣
∣2 dm(x)dt

=
∫ T

0

∫

H
E[φ2(X (T, x))dm(x)]−

∫ T

0

∫

H
(PT [φ](x))2 dm(x),

so, by using the invariant measure property (5.11), we obtain (5.36) for all φ ∈
C1
b(H). The result follows thanks to the density of C1

b(H) in L2(H,B,m)

(Lemma5.7-(i)). �

Remark 5.21 In the particular case where b = 0, the operator A reduces to the
Ornstein–Uhlenbeckoperator and the semigroup Pt is called theOrnstein–Uhlenbeck
semigroup. In particular, if ‖eAt‖ ≤ Me−ωt with M ∈ R and ω > 0 (the condition
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assumed in the whole remark), the invariant measure for Pt is the Gaussian measure
N (0, Q∞), where

Q∞ :=
∫ +∞

0
esAQesA

∗
ds.

In this case there are links between the closability of the operator DQ , the smooth-
ing properties of the semigroup Pt and the characteristics of certain controllability
problems:

(1) If we consider the following linear controlled system,

dX (t)

dt
= AX (t) + Q1/2a(t), X (0) = 0, (5.38)

the set of points of H that can be reached by the system in an infinite time using
a control in the set L2(0,+∞; H) is equal to Q1/2

∞ (H) (see [584], Theorem 2.3,
page 210) and it can be proved (see [299], Theorem 6.1) that the closability of
the operator DQ is equivalent to the density of the set

{
x ∈ H : Q1/2x ∈ Q1/2

∞ (H)
}

in H .
(2) Fix t > 0. The null-controllability in time t of the system

dX (t)

dt
= AX (t) + Q1/2a(t), X (0) = x,

is defined as the capability, by choosing a suitable control in L2(0, t; H), of
reaching at time t the point 0, given any initial condition x ∈ H . The null-
controllability of the described system (see [584], Theorem 2.3, p. 210) is equiv-
alent to the condition

et A (H)⊂Q1/2
t (H) .

This condition is equivalent (see Theorem 2.23, p. 53 of [180]) to the fact that all
the transition probabilities are mutually absolutely continuous and (see Theorem
9.26, p. 260 and Remark 9.29, p. 265 of [180]) to the fact that the semigroup Pt
is strong Feller (see Definition1.159).
By the results of Sect. 4.3.1, given φ ∈ L2(H,B,m), it can be seen that ∇Pt [φ]
is well defined for t > 0 if and only if (5.39) is satisfied (see Hypothesis 4.29,
Remark 4.30 and Theorem 4.37). In this case (see Proposition 10.3.1, page
218 of [179]) the singularity of |∇Pt [φ]|L2

m,H
at t = 0+, similarly to the one

of |∇Pt [φ]|0, is estimated from above by ‖� (t) ‖, where as in (4.59), � (t) :=
Q−1/2

t et A. Similarly, DQPt [φ] is well defined for φ ∈ L2(H,B,m) and t > 0 if
and only if

et AQ1/2 (H) ⊂Q1/2
t (H) , (5.39)
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i.e. if and only if every point of Q1/2 (H) is null controllable in time t (see again
Hypothesis4.29, Remark4.30 and Theorem4.41 when G = Q1/2). In this case
the singularity of

∣
∣DQPt [φ]∣∣L2

m,H
at 0+ has the same behavior as the norm of the

operator
�Q1/2(t) := Q−1/2

t et AQ1/2.

More on this subject can be found in [120], Sect. 10.3 of [179], Sect. 5.3 of [431,
432].

The observations of part (2) are useful to provide examples where the approach
of the previous chapter cannot be applied while the theory of this chapter works.
This is the case when the hypotheses of this chapter hold but (5.39) does not hold or
when it holds but ‖�Q1/2(t)‖ is not integrable at 0+. Such examples are, for instance,
delay equations (see Sect. 5.6.1), where the semigroup can never be strong Feller for
t smaller than the delay appearing in the equation (r in Sect. 5.6.1) or certain classes
of second-order SPDEs in the whole space, see Sect. 5.6.3. �
Remark 5.22 If DQ is closable in L2(H,B,m) then R(φ)(t) = DQPt [φ](t) for all
t > 0 and φ ∈ L2(H,B,m). In this case (5.36) is easier to obtain and the whole study
of the HJB equation (5.1) is simpler. This is true, in particular, when Q is boundedly
invertible. �

5.2.6 Two Key Lemmas

Here we use Proposition5.20 to provide two estimates that will be essential in the
following. We begin with an estimate regarding the convolution of Pt .

Lemma 5.23 Assume that Hypotheses 5.1 and 5.4 hold and let Pt be defined as in
(5.10). Given f ∈ L2

(
0, T ; L2(H,B,m)

)
we define

G1 f (t) :=
∫ T

t
Ps−t [ f (s)] ds, t ∈ [0, T ],

and

G2 f (t) :=
∫ T

t
R ( f (s)) (s − t) ds, t ∈ [0, T ].

Then ∫ T

0
|G1 f (t)|2L2

m
dt ≤ T 2

∫ T

0
| f (t)|2L2

m
dt, (5.40)

G2 f (t) ∈ L2(H,B,m; H) for almost every t ∈ [0, T ] and
∫ T

0
|G2 f (t)|2L2

m,H
dt ≤ T

∫ T

0
| f (t)|2L2

m
dt. (5.41)
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Proof For the first estimate, observe that

∫ T

0
|G1 f (t)|2L2

m
dt =

∫ T

0

∣
∣
∣
∣

∫ T

t
Ps−t [ f (s)]ds

∣
∣
∣
∣

2

L2
m

dt

≤
∫ T

0

(∫ T

t
|Ps−t [ f (s)]|L2

m
ds

)2

dt ≤
∫ T

0

(∫ T

0
| f (s)|L2

m
ds

)2

dt

≤
∫ T

0
T
∫ T

0
| f (s)|2L2

m
dsdt = T 2

∫ T

0
| f (s)|2L2

m
ds.

We prove the second inequality. Assume first that f ∈ C1
b([0, T ] × H) and f (t) ∈

FC1
0(H) (defined in Sect. A.2) for all t ≥ 0. Then DQPs−t [ f (s)] is well defined for

s ≥ t and so is DQG1(t) for t > 0. Moreover,

∫ T

0
|G2 f (t)|2L2

m,H
dt ≤

∫ T

0

(∫ T

t

∣
∣DQPs−t [ f (s)]

∣
∣
L2
m,H

ds

)2

dt

≤
∫ T

0
T
∫ T

t

∣
∣DQPs−t [ f (s)]

∣
∣2
L2
m,H

dsdt = T
∫ T

0

∫ s

0

∣
∣DQPr [ f (s)]

∣
∣2
L2
m,H

drds

≤
∫ T

0
T
∫ T

0

∣
∣DQPr [ f (s)]

∣
∣2
L2
m,H

drdt.

Hence by (5.36),
∫ T

0
|G2(t)|2L2

m,H
dt ≤ T

∫ T

0
| f (t)|2L2

m
dt.

If f ∈ L2
(
0, T ; L2(H,B,m)

)
is arbitrary, then, thanks to Lemma5.7 applied to

the space [0, T ] × H , there exists a sequence fn ∈ C1
b([0, T ] × H), with fn(t) ∈

FC1
0(H) for any t ∈ [0, T ], which converges to f in L2

(
0, T ; L2(H,B,m)

)
.

Repeating the above arguments for

Gn
1(t) =

∫ T

t
Ps−t [ fn(s)]ds

we find that

∫ T

0

∣
∣DQ

(
Gn

1(t) − Gm
1 (t)

)∣
∣2
L2
m,H

dt ≤ T
∫ T

0
| fn(t) − fm(t)|2L2

m
dt.

Hence the sequence DQGn
1 is convergent in L2

(
0, T ; L2(H,B,m; H)

)
. Moreover,

by the Fubini Theorem,
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∫ T

0

∣
∣DQG

n
1(t) − G2(t)

∣
∣2
L2
m,H

dt

=
∫ T

0

∣
∣
∣
∣

∫ T

t

[
DQPs−t [ fn(s)]ds − R ( f (s)) (s − t)

]
ds

∣
∣
∣
∣

2

L2
m,H

dt

≤ T
∫ T

0
ds
∫ T

0

∣
∣DQPt [ fn(s)] − R ( f (s)) (t)

∣
∣2
L2
m,H

dt

= T
∫ T

0
ds
∫ T

0
|R ( fn(s) − f (s)) (t)|2L2

m,H
dt,

which gives, by Proposition5.20,

∫ T

0

∣
∣DQG

n
1(t) − G2(t)

∣
∣2
L2
m,H

dt

≤ T
∫ T

0

[
| fn(s) − f (s)|2L2

m
− |PT [ fn(s) − f (s)]|2L2

m

]
ds

≤ T
∫ T

0
| fn(s) − f (s)|2L2

m
ds, (5.42)

so that DQGn
1 is convergent in L2

(
0, T ; L2(H,B,m; H)

)
to G2 and (5.41) holds.

�

The following corollary can be deduced from the proof of Lemma5.23.

Corollary 5.24 Assume that Hypotheses5.1 and 5.4 hold. Let fn → f be in
L2
(
0, T ; L2(H,B,m)

)
. Then, by (5.42), there exists a subsequence fnk such that

for a.e. (s, t) ∈ [0, T ] × [0, T ] and s ≤ t ,

DQ Pt−s[ fnk (s)] → R ( f (s)) (t − s) in L2(H,B,m; H).

This fact will be useful in Sect.5.5.

Wenowextend the operator DQ to all functions u that aremild solutions to suitable
Cauchy problems.

Consider g ∈ L2
(
H,B,m

)
and f ∈ L2

(
0, T ; L2

(
H,B,m

))
. Consider the

Cauchy problem:

⎧
⎨

⎩

ut (t) + Au(t) + f (t) = 0 t ∈ [0, T ),

u(T, x) = g(x)
(5.43)
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and define the mild solution of (5.43) as

u(t) = PT−t [g] +
∫ T

t
Ps−t [ f (s)]ds, t ∈ [0, T ]. (5.44)

We denote by ϒA(0, T ) the set of all the functions in L2
(
0, T ; L2

(
H,B,m

))
that

can be written in the form (5.44) for some f, g as above. The functions in ϒA(0, T )

belong to C
(
[0, T ] , L2

(
H,B,m

))
.

For the functions in ϒA(0, T ) we define the operator D̃Q by

(D̃Qu)(t) := R(g)(T − t) +
∫ T

t
R ( f (s)) (s − t) ds, t ∈ [0, T ]. (5.45)

Observe that D̃Q is well defined on ϒA(0, T ). Indeed, if we have PT−t [g1] +
∫ T
t Ps−t [ f1(s)]ds = PT−t [g2] + ∫ T

t Ps−t [ f2(s)]ds then, taking t = T we obtain

g1 = g2 and then,
∫ T
t Ps−t [ f1(s)]ds = ∫ T

t Ps−t [ f2(s)]ds so that
∫ T
t R ( f1 (s)) (s − t)

ds = ∫ T
t R ( f2 (s)) (s − t) ds.

The following proposition gives a continuity result for D̃Q .

Proposition 5.25 Suppose thatHypotheses 5.1 and5.4hold.Consider two sequences
gn⊂L2 (H,m) and fn⊂L2

(
0, T ; L2

(
H,B,m

))
such that

gn −→ g in L2
(
H,B,m

)
,

fn −→ f in L2
(
0, T ; L2

(
H,B,m

))
.

Then, setting

un(t) = PT−t [gn] +
∫ T

t
Ps−t [ fn(s)]ds, t ∈ [0, T ], (5.46)

and

D̃Qun(t) = R(gn)(T − t) +
∫ T

t
R ( fn (s)) (s − t) ds, t ∈ [0, T ],

we have
un −→ u in C

(
[0, T ] , L2

(
H,B,m

))
, (5.47)

D̃Qun −→ D̃Qu in L2
(
0, T ; L2

(
H,B,m; H)) . (5.48)

Proof We start with the first claim. Subtracting (5.44) from (5.46) we get

un (t) − u (t) = PT−t [gn − g] +
∫ T

t
Ps−t [ fn(s) − f (s)] ds
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so that, by the strong continuity of Pt ,

|un (t) − u (t)|2L2
m

≤ CT

[

|gn − g|2L2
m

+
∫ T

t
| fn(s) − f (s)|2L2

m
ds

]

,

which gives (5.47) by taking the supremum over [0, T ]. To prove (5.48) we observe
that we have

D̃Q (un (t) − u (t)) = R (gn − g) (T − t) +
∫ T

t
R ( fn(s) − f (s)) (s − t) ds

so that, by (5.37) and (5.41),

∫ T

0

∣
∣
∣D̃Qun (t) − D̃Qu (t)

∣
∣
∣
2

L2
m,H

≤ |gn − g|2L2
m

+ T
∫ T

0
| fn(s) − f (s)|2L2

m
ds,

which shows (5.48). �

Remark 5.26 If g and f are differentiable functions, the operator DQ is well
defined on the functions u of the form (5.44). In (5.45) we define the oper-
ator D̃Q on all the functions of the form (5.44), where g ∈ L2

(
H,B,m

)
and

f ∈ L2
(
0, T ; L2

(
H,B,m

))
. Thus Proposition5.25 asserts that the operator D̃Q

extends DQ on ϒA(0, T ) “without closability problems” if the functions in the
approximating sequence have the form (5.46). �

5.3 The HJB Equation

In this sectionwe study the existence anduniqueness of solutions to theHJBequation5

{
ut + Au + F0

(
t, x, DQu

)+ l(t, x) = 0,
u(T, x) = g(x)

(5.49)

with g ∈ L2(H,B,m). Observe that this corresponds to F in (5.1) having the form
F (t, x, p) = F0

(
t, x, Q1/2 p

)
.We assume that the following conditions are satisfied.

Hypothesis 5.27 (A) F0 : [0, T ] × H × H → R is Leb ⊗ B ⊗ B/B(R)-
measurable (where Leb is the σ-field of Lebesgue measurable sets in R) and
there exists an L ∈ R such that

5Following the notation we use for HJB equations throughout the book, in the first line of (5.49)
we only explicitly mention the dependence on t and x of the functions F0 and l while we do not do
so for ut , DQu and Au.
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|F0(t, x, p) − F0(t, x, q)| ≤ L|p − q| and |F0(t, x, p)| ≤ L(1 + |p|)
(5.50)

for all t ∈ [0, T ] and x, p, q ∈ H .
(B) l ∈ L2

(
0, T ; L2(H,B,m)

)
and g ∈ L2(H,B,m).

Using the semigroup Pt defined in (5.10) and the variation of constants formula,
as was done in Chap.4, we can formally rewrite Eq. (5.49) in the following mild
form:

u(t) = PT−t [g] +
∫ T

t
Ps−t

[
F0
(
s, ·, DQu(s)

)]
ds +

∫ T

t
Ps−t [l(s)] ds, 0 ≤ t ≤ T,

(5.51)
where for simplicity we have written DQu(s), l(s) for DQu(s, ·), l(s, ·) and a similar
convention is used later for other functions. We use this integral form to define a
solution.

We will prove the existence of the solution of the HJB equation using a fixed

point argument in the space L2
(
0, T ;W 1,2

Q (H,m)
)
. We can identify any element

of L2
(
0, T ;W 1,2

Q (H,m)
)

with an element (v, V ) in L2
(
0, T ; L2(H,B,m)

)×
L2
(
0, T ; L2(H,B,m; H)

)
. Ifv(t) ∈ C1

b(H) for almost every t , thenV (t) = DQv(t)

for almost every t and the norm of (v, V ) = (v, DQv) in L2
(
0, T ;W 1,2

Q (H,m)
)
can

be written explicitly as follows

|(v, DQv)|2
L2
(
0,T ;W 1,2

Q

) =
∫ T

0

(
|v(t)|2L2

m
+ ∣
∣DQv(t)

∣
∣2
L2
m,H

)
dt.

To avoid any confusion in the notation we will always denote the elements of

L2
(
0, T ;W 1,2

Q (H,m)
)
as pairs.

Definition 5.28 By a solution of Eq. (5.51) (ormild solution of Eq. (5.49)), wemean
a pair of functions

(u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)

⊂ L2 (0, T ; L2(H,B,m)
)× L2 (0, T ; L2(H,B,m; H)

)

such that, for a.e. t ∈ [0, T ] and m-a.e.

u(t) = PT−t [g] +
∫ T

t
Ps−t [F0 (s, ·,U (s))] ds +

∫ T

t
Ps−t [l(s)] ds, (5.52)

and

U (t) = R(g)(T − t) +
∫ T

t
R (F0(s, ·,U (s))) (s − t)ds +

∫ T

t
R (l(s)) (s − t)ds.

(5.53)
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Remark 5.29 By the definition of D̃Qu in (5.45) andDefinition5.28 we immediately
get U = D̃Qu. �
Remark 5.30 If DQ were closable, then it would be natural to define the solution of

Eq. (5.51) as an element of L2
(
0, T ;W 1,2

Q (H,m)
)
such that (5.51) is satisfied for

a.e. t ∈ [0, T ] and m-a.e. But DQ may not be closable, so elements of W 1,2
Q (H,m)

are not functions in general, but pairs of functions belonging to the product space
L2(H,B,m) × L2(H,B,m; H).

Note that the second equation (5.53) is an obvious consequence of (5.52) if the
operator DQ is closable and, in this case, U = DQu. �

We will introduce a suitable nonlinear operator M which will allow us to use
the fixed point argument. It will be defined in terms of a certain operator M1 and
its derivative. Both of these operators will be initially defined on a subspace of

L2
(
0, T ; L2(H,B,m)

)
and then extended to L2

(
0, T ;W 1,2

Q (H,m)
)
. To make the

distinction we will denote the extensions using the “overline”: M1 and DQM1. As

emphasized before, since the elements of L2
(
0, T ;W 1,2

Q (H,m)
)
can be identified

with a subspace of L2
(
0, T ; L2(H,B,m)

)× L2
(
0, T ; L2(H,B,m; H)

)
, we will

use a one-argument notation for the non-extended operators (e.g. M1(u)) and a
two-argument notation for the extended ones (e.g. M1(u,U )).

Given g, l and F0 satisfying Hypothesis5.27, we define the operator M1 as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(M1) =
{

v ∈ L2
(
0, T ; L2(H,B,m)

)

: v(t) ∈ C1
b (H) for a.e. t and |(v, DQv)|

L2
(
0,T ;W 1,2

Q

) < ∞
}

,

M1v(t) = PT−t [g] +
∫ T

t
Ps−t

[
F0
(
s, ·, DQv(s)

)]
ds +

∫ T

t
Ps−t [l(s)] ds, t ≤ T .

Remark 5.31 If g, l and F0 are regular enough, then we can directly define DQM1.
If g ∈ L2(H,B,m), l ∈ L2(0, T ; L2(H,B,m)) and F0

(
s, x, DQv(s)

) ∈
L2(0, T ; L2(H,B,m)) we can use Lemma5.23 to define D̃QM1v ∈
L2
(
0, T ; L2

(
H,B,m; H)

))
and it can be written as follows:

D̃QM1v(t) = R(g)(T − t) +
∫ T

t
R (

F0(s, ·, DQv(s))
)
(s − t)ds +

∫ T

t
R (l(s)) (s − t)ds

on [0, T ]. In the following lemma we extend by continuity the operator DQM1

to L2
(
0, T ;W 1,2

Q (H,m)
)

obtaining DQM1. Since the definitions of D̃QM1v

and DQM1 coincide on D(M1), they coincide once DQM1 is extended to L2
(
0, T ;W 1,2

Q (H,m)
)
. �
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Lemma 5.32 Assume that Hypotheses 5.1, 5.4 and 5.27 hold. ThenM1 extends to
a Lipschitz mapping

M1 : L2
(
0, T ;W 1,2

Q (H,m)
)

→ L2 (0, T ; L2(H,B,m)
)

with Lipschitz constant LT . The mapping DQM1 : D(M1) → L2
(
0, T ; L2

(
H,B,m; H)

))
extends to a Lipschitz mapping

DQM1 : L2
(
0, T ;W 1,2

Q (H,m)
)

→ L2 (0, T ; L2 (H,B,m; H))

with Lipschitz constant LT 1/2.

Proof Since |F0(t, x, p)| ≤ L(1 + |p|) for all t ∈ [0, T ] and x, p ∈ H , it follows
from Lemma5.23 that M1v ∈ L2

(
0, T ; L2(H,B,m)

)
and DQM1v ∈ L2 (0, T ;

L2 (H,B,m)
)
for every v ∈ D(M1).

Given v1 and v2 in D(M1), we have

M1 (v1 − v2) (t) =
∫ T

t
Ps−t

[
F0
(
s, ·, DQv1(s)

)− F0
(
s, ·, DQv2(s)

)]
ds, t ∈ [0, T ],

and therefore, since ‖Pt‖ ≤ 1 and by Hypothesis5.27-(A),

|M1 (v1 − v2) (t)|L2
m

≤ L
∫ T

t

∣
∣DQv1(s) − DQv2(s)

∣
∣
L2
m,H

ds, t ∈ [0, T ].

Hence,

∫ T

0
|M1 (v1 − v2) (t)|2L2

m
dt ≤ L2T 2

∫ T

0

∣
∣DQv1(t) − DQv2(t)

∣
∣2
L2
m,H

dt.

It follows that M1 may be extended to the whole space L2
(
0, T ;W 1,2

Q (H,m)
)

by continuity and the resulting mapping is Lipschitz continuous with constant LT .
Similarly, for v1 and v2 in D(M1) and t ∈ [0, T ],

DQM1 (v1 − v2) (t) =
∫ T

t
DQ Ps−t

[
F0
(
s, ·, DQv1(s)

)− F0
(
s, ·, DQv2(s)

)]
ds.

Using the notation introduced in Lemma5.23 we obtain

∫ T

0

∣
∣DQM1 (v1 − v2) (t)

∣
∣2
L2
m,H

dt

=
∫ T

0

∣
∣G2

(
F0
(
t, ·, DQv1(t)

)− F0
(
t, ·, DQv2(t)

))∣
∣2
L2
m,H

dt
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≤ T
∫ T

0

∣
∣F0

(
t, ·, DQv1(t)

)− F0
(
t, ·, DQv2(t)

)∣
∣2
L2
m
dt

≤ L2T
∫ T

0

∣
∣DQ (v1(t) − v2(t))

∣
∣2
L2
m,H

dt,

and therefore DQM1 extends to a Lipschitz continuous mapping on

L2
(
0, T ;W 1,2

Q (H,m)
)
with constant LT 1/2. �

Remark 5.33 The operatorsM1 and DQM1 depend only on the second component

of the elements of L2
(
0, T ;W 1,2

Q (H,m)
)
but it is convenient for us to define them

on L2
(
0, T ;W 1,2

Q (H,m)
)
to apply the fixed point argument below. �

Taking into account the extensions of the operatorsM1 and DQM1 provided by
Lemma5.32 we can define the operator

{
M : L2

(
0, T ;W 1,2

Q (H,m)
)

→ L2
(
0, T ;W 1,2

Q (H,m)
)

M(u,U ) = (M1(u,U ), DQM1(u,U )).

Remark 5.34 UsingProposition5.20 andLemma5.23wefind that for a.e. t ∈ [0, T ],

M1(u,U )(t) = PT−t [g] +
∫ T

t
Ps−t [F0(s, ·,U (s))] ds +

∫ T

t
Ps−t [l(s)]ds

(5.54)
and

DQM1(u,U )(t)

= R(g)(T − t) +
∫ T

t
R (F0(s, ·,U (s))) (s − t)ds +

∫ T

t
R (l(s)) (s − t)ds.

(5.55)

�

Theorem 5.35 Assume that Hypotheses 5.1, 5.4 and 5.27 hold. Then for every g ∈
L2(H,B,m) there exists a unique mild solution (u,U ) to Eq. (5.49) in the sense of
Definition5.28. Moreover, u ∈ C

([0, T ], L2(H,B,m)
)
and U = D̃Qu.

Proof We apply the Banach Fixed Point Theorem to the mapping M in the space

L2
(
0, T ;W 1,2

Q (H,m)
)
endowedwith the norm | · |

L2
(
0,T ;W 1,2

Q

)when T is sufficiently

small. By Lemma5.32, for any (v1, V1), (v2, V2) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
,
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∫ T

0

∣
∣M1(v1(t), V1(t)) − M1(v2(t), V2(t))

∣
∣2
L2
m
dt

≤ L2T 2|(v1, V1) − (v2, V2)|2
L2
(
0,T ;W 1,2

Q

) (5.56)

and

∫ T

0

∣
∣DQM1(v1(t), V1(t)) − DQM1(v2(t), V2(t))

∣
∣2
L2
m,H

dt

≤ L2T |(v1, V1) − (v2, V2)|2
L2
(
0,T ;W 1,2

Q

). (5.57)

From (5.56) and (5.57) we have

|M(v1, V1) − M(v2, V2)|L2
(
0,T ;W 1,2

Q

)

≤ L
√
T (T + 1)|(v1, V1) − (v2, V2)|L2

(
0,T ;W 1,2

Q

),

(5.58)

thus M is a strict contraction for T sufficiently small. Thus we obtain a unique
solution on a small time interval. The rest follows by standard iteration. Finally,
denoting the solution by (u,U ), since F0 (s, ·,U (s)) ∈ L2

(
0, T ; L2(H,B,m)

)
and

Pt is a C0-semigroup, we find that u ∈ C
([0, T ], L2(H,B,m)

)
thanks to (5.54).

The last statement is an immediate consequence of the definitions (see
Remark5.29). �

Remark 5.36 Observe that the uniqueness of the solution stated in Theorem 5.35
has to be understood with respect to the reference measure m whose support can
also be very thin. This is one of the drawbacks of the method. For results about
existence of non-degenerate invariant measures, see Sect. 5.6 and the comments in
the bibliographical notes. �

5.4 Approximation of Mild Solutions

We now show, following the approach of Chap. 4, that the mild solution of the HJB
equation can be obtained as a limit of classical solutions. Thus we need to introduce
the concept of a classical solution.

We introduce the operator A1 which is defined similarly to the operator A1 in
(4.141):
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⎧
⎪⎪⎨

⎪⎪⎩

D(A1) =
{

φ ∈ UC2
b (H) : A∗Dφ ∈ UCb(H, H) and D2φ ∈ UCb(H,L1(H))

}

A1φ = 1
2 Tr[QD2φ] + 〈x, A∗Dφ〉 + 〈b(x), Dφ〉 .

(5.59)
It is easy to see that D(A1) endowed with the norm

‖φ‖D(A1) := ‖φ‖0 + ‖Dφ‖0 + ‖A∗Dφ‖0 + sup
x∈H

‖D2φ(x)‖L1(H) (5.60)

is a Banach space.
In Sect. 5.2.3 we introduced the operatorA as the generator of the C0-semigroup

Pt on L2(H,B,m) (see Proposition5.9). In the following lemma we study its rela-
tions with the operator A1.

Lemma 5.37 Let Hypotheses 5.1 and 5.4 hold. Then:

(i) FC2,A∗
0 (H) ⊂ D(A1).

(ii) D(A1) is embedded in D(A). Moreover, for any φ ∈ D(A1),

Aφ(x) = 1

2
Tr
[
QD2φ(x)

]+ 〈
x, A∗Dφ(x)

〉+ 〈b(x), Dφ(x)〉 . (5.61)

(iii) If we consider the Banach space structure on D(A1) described above and the
graph norm on D(A), the embedding D(A1) ⊂ D(A) is continuous.

Proof Part (i) follows straightforwardly from the definitions of FC2,A∗
0 (H) and

D(A1).
Part (ii): We choose φ ∈ D(A1) and we start by showing that, for any x ∈ H ,

lim
t→0

Pt [φ](x) − φ(x)

t
= 1

2
Tr
[
QD2φ(x)

]+ 〈
x, A∗Dφ(x)

〉+ 〈b(x), Dφ(x)〉 .

(5.62)
Indeed, applying Dynkin’s formula (Proposition1.169), we have

Pt [φ](x) − φ(x)

t
= Eφ(X (t; x)) − φ(x)

t

= 1

t
E

∫ t

0

[
1

2
Tr
[
QD2φ(X (s; x))]+ 〈

X (s; x), A∗Dφ(X (s; x))〉

+〈b(X (s; x)), Dφ(X (s; x))〉
]

ds.

(5.63)

We need to show that every term in the right-hand side of (5.63) converges to the
corresponding one in (5.62). Let us look at the middle term. We define

I 1t (x) := 1

t

∫ t

0

[〈
X (s; x), A∗Dφ(X (s; x))〉− 〈

x, A∗Dφ(x)
〉]
ds.
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Let σ be a modulus of continuity of A∗Dφ which we can assume to be concave. We
have

∣
∣I 1t (x)

∣
∣ ≤ 1

t

∫ t

0
E
[ ∣
∣
〈
X (s; x) − x, A∗Dφ(X (s; x))〉∣∣

+ ∣∣〈x, A∗Dφ(X (s; x)) − A∗Dφ(x)
〉∣
∣
]
ds

≤ 1

t

∫ t

0

(‖A∗Dφ‖0E |X (s; x) − x | + |x |Eσ (|X (s; x) − x |)) ds

≤ 1

t

∫ t

0

(‖A∗Dφ‖0E |X (s; x) − x | + |x |σ (E |X (s; x) − x |)) ds,

where we used Jensen’s inequality to obtain the last inequality. The last line above
converges to 0 as t → 0 by (5.9). The convergence of other terms in (5.62) is proved
similarly.

We now need to show that the convergence takes place in L2(H,B,m). We see
that, thanks to (1.69) and since ‖A∗Dφ‖0 is finite, we have supt∈(0,1]

(
E[I 1t (x)])2 ≤

g(x) = C1 + C2|x |2 for some positive constants C1,C2. Since g ∈ L1(H,B,m)

by (5.12), we can thus use the dominated convergence theorem to conclude that
limt→0 E[I 1t (·)] = 0 in L2(H,B,m). We argue similarly to get the convergence of
the other terms. Therefore φ ∈ D(A) and (5.61) holds.

Part (iii): Given φ ∈ D(A1) we have

|φ|2D(A) = |φ|2L2
m

+ |Aφ|2L2
m

≤ |φ|2L2
m

+ 3

∣
∣
∣
∣
1

2
Tr
[
QD2φ

]
∣
∣
∣
∣

2

L2
m

+ 3
∣
∣
〈·, A∗Dφ(·)〉∣∣2L2

m
+ 3 |〈b(·), Dφ(·)〉|2L2

m

≤ ‖φ‖20 + 3

4
‖Q‖2L(H) sup

x∈H
‖D2φ(x)‖2L1(H)

+3‖A∗Dφ‖20
∫

H
|x |2 dm(x) + 3‖Dφ‖20

∫

H
(|b(0)| + K |x |)2 dm(x).

Thanks to (5.12) there exists a constant C , depending only on m, b and Q such that
the last expression is smaller than C‖φ‖2D(A1)

. This concludes the proof. �

The concept of a classical solution of (5.49) is also similar to the one introduced
in Definition4.129, however here we limit our interest to functions belonging to
ϒA(0, T ) to be able to define D̃Q .

Definition 5.38 A function u ∈ ϒA(0, T ) is a classical solution of (5.49) if u has
the following regularity properties



5.4 Approximation of Mild Solutions 643

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(·, x) ∈ C1([0, T ]), ∀x ∈ H and ut ∈ Cb([0, T ] × H),

u(t, ·) ∈ D(A1), ∀t ∈ [0, T ] and supt∈[0,T ] ‖u(t, ·)‖D(A1) < +∞,

u,A1u ∈ Cb([0, T ] × H),

Du, A∗Du, D̃Qu ∈ Cb([0, T ] × H, H),

D2u ∈ Cb([0, T ] × H,L1(H)),

(where D̃Q is defined in (5.45)) and satisfies

{
ut + A1u + F0

(
t, x, D̃Qu

)
+ l(t, x) = 0, t ∈ [0, T ), f or m − a.e. x ∈ H,

u(T, x) = g(x), f or m − a.e. x ∈ H.

(5.64)

Definition 5.39 A function u ∈ ϒA(0, T ) is a strong solution of Eq. (5.49) if

(u, D̃Qu) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)

and there exist sequences (un), (ln) ⊂
L2
(
0, T ;W 1,2

Q (H,m)
)
and gn ⊂ FC2,A∗

0 (H) such that for every n ∈ N, un is the

classical solution of the Cauchy problem

⎧
⎨

⎩

wt + Aw + F0(t, x, DQw) + ln(t, x) = 0,

w(T, x) = gn(x),
(5.65)

and the following limits hold as n → +∞:

gn −→ g in L2
(
H,B,m

)

ln −→ l in L2
(
0, T ; L2

(
H,B,m

))

un −→ u in C
(
[0, T ] , L2

(
H,B,m

))

D̃Qun −→ D̃Qu in L2
(
0, T ; L2

(
H,B,m; H)) .

In principle we can have several strong solutions of Eq. (5.49), depending on the
choice of the approximating sequences. Nevertheless we will see that in our case,
if a strong solution exists, it is unique. See the discussion that follows the proof of
Theorem5.41 for more on this.

Theorem 5.40 Assume that Hypotheses 5.1, 5.4 and 5.27 hold. If u is a strong
solution of (5.49) then the pair (u,U ) := (u, D̃Qu) is a mild solution of Eq. (5.49).

Proof Let un, ln, gn be its approximating sequences as in Definition5.39. Recalling
that Pt is a strongly continuous semigroup on L2(H,B,m) (see Proposition5.9),
using Lemma5.37 and the properties of classical solutions demanded in Defini-
tion5.38, we can compute, for a fixed t ∈ [0, T ], the derivative in the variable s of
Ps−t [un(s)] (as a mapping from [t, T ] to L2(H,B,m)). We get
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d

ds
Ps−t [un(s)] = Ps−t [Aun(s)] + Ps−t

[
d

ds
un(s)

]

= Ps−t [Aun(s)] + Ps−t

[(
−A1un(s) − F0

(
s, ·, D̃Qun(s)

)
− ln(s)

)]

= Ps−t

[(
−F0

(
s, ·, D̃Qun(s)

)
− ln(s)

)]
, s ∈ [t, T ].

Integrating both sides of this expression over [t, T ], using that un(T ) = gn and
reordering the terms we obtain for every n

un(t) = PT−t [gn] +
∫ T

t
Ps−t

[
F0(s, ·, D̃Qun(s)) + ln(s)

]
ds.

Setting ψn(s) = F0(s, ·, D̃Qun(s)) + ln(s), the last expression becomes

un(t) = PT−t [gn] +
∫ T

t
Ps−t [ψn(s)] ds,

where gn ∈ FC2,A∗
0 (H), ψn ∈ L2

(
0, T ; L2

(
H,B,m

))
,

gn
n→+∞−→ g in L2(H,B,m),

and, thanks to Hypothesis5.27-(A),

ψn
n→+∞−→ F0(·, ·, D̃Qu) + l in L2

(
0, T ; L2

(
H,B,m

))
.

We can now apply Proposition5.25 and pass to the limit as n → +∞ to get the claim.
�

Theorem 5.41 Assume that Hypotheses 5.1, 5.4 and 5.27 hold and suppose b = 0.

If the pair (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
is a mild solution of Eq. (5.49) then

U = D̃Qu and u is a strong solution of (5.49).

Proof In the particular case b = 0 the semigroup Pt simplifies to the Ornstein–
Uhlenbeck semigroup studied in Sect.B.7.2. The notation used in other parts of the
book in this case is Rt but here, to be consistent with the general notation used in
the chapter, we continue to denote the semigroup by Pt . Hypotheses5.1-(A)-(B)-
(C) imply HypothesisB.79, needed in all the results of Sect.B.7 used in this proof.
Observe that, if b = 0, the operator A1 defined in (5.59) reduces to the operator A0

defined in (B.36).
As argued in Remark5.29 we immediately get U = D̃Qu. Let gn , ψn be two

sequences such that
gn ∈ FC2,A∗

0 (H) , (5.66)
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ψn : [0, T ] → FC2,A∗
0 (H) , (5.67)

ψn and A1ψn belong to C ([0, T ],UCb(H)) , (5.68)

gn
n→+∞−→ g in L2(H,B,m) (5.69)

and
ψn

n→+∞−→ F0(·, ·, D̃Qu) + l in L2
(
0, T ; L2

(
H,B,m

))
. (5.70)

These sequences exist thanks to Lemma5.7.
Since (u,U ) = (u, D̃Qu) is a mild solution of (5.49) we have

u(t) = PT−t [g] +
∫ T

t
Ps−t

[
F0(s, ·, D̃Qu(s)) + l (s)

]
ds.

If we set

un(t, x) = PT−t [gn] +
∫ T

t
Ps−t [ψn(s)] ds, (5.71)

by Proposition5.25 we obtain that

un
n→+∞−→ u in C

(
[0, T ] , L2

(
H,B,m

))
, (5.72)

D̃Qun
n→+∞−→ D̃Qu in L2

(
0, T ; L2

(
H,B,m; H)) . (5.73)

The latter, thanks to Hypotheses5.27-(A), implies in particular that

F0(·, ·, D̃Qun)
n→+∞−→ F0(·, ·, D̃Qu) in L2

(
0, T ; L2

(
H,B,m

))
.

So, thanks to (5.70), if we set

ln = ψn − [F0(·, ·, D̃Qun)], (5.74)

we get

ln
n→+∞−→ l in L2

(
0, T ; L2

(
H,B,m

))
. (5.75)

We can now apply Proposition B.91-(ii). Observe that the existence of the function
g0 demanded in the hypotheses of this proposition can be easily found thanks to (5.68)
and the constant C in (B.33) and (B.35) is here equal to zero. The time is reversed
(t in Proposition B.91 corresponds to our T − t for any t ∈ [0, T ]). It thus follows
that un satisfies in the classical sense the approximating HJB equation
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⎧
⎨

⎩

(un)t + Aun + F0(t, x, DQun) + ln(t, x) = 0

u(T, x) = gn(x).
(5.76)

Given the regularity of un , gn and ψn , D̃Qun = DQun and then the fact that D̃Qun ∈
Cb([0, T ] × H, H), not directly stated in Proposition B.91, follows from Dun ∈
Cb([0, T ] × H, H) and the continuity of Q.

This, together with the convergences (5.69), (5.72), (5.73) and (5.75), shows that
u is a strong solution in the sense of Definition5.39. �

Theorem5.35 shows that, under Hypotheses5.1, 5.4 and 5.27, there exists a
unique mild solution (u,U ) of Eq. (5.49). Theorem5.40 ensures that, under the same
hypotheses, any strong solution is also a mild solution so, in particular there exists at
most one strong solution of (5.49) and, whenever it exists, it can be identified with
the mild solution. Theorem5.41 proves, under the additional assumption b = 0, the
reverse implication, ensuring in particular the existence of a (unique) strong solution
in this case. This result was stated in [298] (see in particular Proposition 4.3) without
the assumption b = 0 but the proof of the regularity of the un in the general case was
not complete.

In Sect. 5.5,wework again underHypotheses5.1, 5.4 and 5.27 butwe also suppose
that a strong solution exists or, equivalently, that the mild solution of the equation is
also strong. This is always the case if b = 0.

5.5 Application to Stochastic Optimal Control

We apply the results on abstract HJB equations from previous sections to study a
family of optimal control problems.

5.5.1 The State Equation

We work, as usual, in a real separable Hilbert space H which will be both the state
space and the noise space (see Sect. 1.2.4), that is we have� = H . The control space
	 is a closed ball in a real separable Banach space E :

	 = B�(0). (5.77)

The linear operators A, Q and the function b satisfy Hypothesis5.1. As in Chap.2,

the notation μ :=
(
�μ,F μ,

{
F t

μ,s

}

s∈[t,T ] ,P
μ,W μ

Q

)
(or without the index μ if the

context is clear) will be used to denote a generalized reference probability space (see
Definition1.100). We limit our attention here to the case where the σ-fields of the
filtration F t

μ,s are countably generated up to sets of measure zero. This holds, for
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example, for filtrations generated by Wiener processes, see Lemma1.94. We recall
that the generalized reference probability spaces μ used in Sect. 5.5 may be different
from μ0 in Hypothesis5.1.

We consider a stochastic controlled system governed by the state equation

{
dX (s)=

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s), a(s))

)
ds+dWQ(s),

X (t) = x, x ∈ H,
(5.78)

where R and a satisfy the following hypothesis.

Hypothesis 5.42 We assume that:

(i) R : [0, T ] × H × 	 → H is Borel measurable and there exists an MR > 0 such
that

sup
(s,x,a)∈[0,T ]×H×	

|R(s, x, a)| ≤ MR < +∞,

and, for all s ∈ [0, T ], a ∈ 	, x, y ∈ H ,

|R(s, x, a) − R(s, y, a)| ≤ MR|x − y|.

(ii) For every t ∈ [0, T ] and a generalized reference probability space μ on [t, T ],
the σ-fields of the filtration {F t

μ,s}s∈[t,T ] are countably generated up to sets of
measure zero. 	 is as in (5.77) and the control processes a(·) : [t, T ] × � → 	

belong to the set

Uμ
t := {

a(·) : [t, T ] × � → 	 : a(·) is F t
s − progressively measurable

}
.

(5.79)

We recall that the control processes in Uμ
t depend on the choice of the general-

ized reference probability space (Definition1.100) μ because they are progressively
measurable with respect to the filtration {F s

t }s∈[t,T ] that depends on the choice of μ.
See Sect. 2.1.1 for more on this.

Remark 5.43 The boundedness of R is imposed to be able to solve later, in
Theorem 5.55, the closed loop equationusingGirsanov’s theorem.Asimilar approach
is also used in Sect. 6.5. �

Proposition 5.44 LetHypotheses 5.1 and 5.42 be satisfied. Then, for any t ∈ [0, T ],
x ∈ H, a(·) ∈ Uμ

t , the state equation (5.78) has a unique solution X (·; t, x, a(·)) ∈
Hμ

p(t, T ; H) (see Definition1.126) for all p ≥ 1. In particular, X (·; t, x, a(·)) ∈
Mp

μ (t, T ; H) (defined in (1.29)) for all p ≥ 1.
Moreover, there exists a B([t, T ]) ⊗ B(H) ⊗ F/B(H)-measurable function

{ [t, T ] × H × � → H
(s, x,ω)→X̃(s; t, x, a(·))(ω)

(5.80)
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such that, for every x ∈ H, X̃(·; t, x, a(·)) is a version of the solution X (·; t, x, a(·)).
Thus in the future we will not make a distinction between X (·; t, x, a(·)) and
X̃(·; t, x, a(·)).
Proof The result, except for the last claim, follows from Proposition1.147. The
whole term

[
Q1/2b(X (s)) + Q1/2R(s, X (s), a(s))

]
corresponds to the term b0 in

Hypothesis1.145, a(·) plays the role of a1(·) and we have no a2(·).
To prove the last claim, we consider a countable dense subset S := {xn}n∈N of

H . Thanks to (1.70) we can find �2⊂� with P(�2) = 1 such that (1.70) holds with
ξ1 = x1 and ξ2 = x2 for any s ∈ [t, T ] and ω ∈ �2. Similarly, for every N > 2 we
can find a subset �N⊂� with P(�N ) = 1 such that (1.70) is satisfied for any choice
ξ1 = xi , ξ2 = x j , i, j = 1, . . . , N , for all s ∈ [t, T ] and ω ∈ �N . If we define�∞ =⋂

n≥1 �n we have again P(�∞) = 1. Given s ∈ [t, T ] and ω ∈ �∞, we define, for
any x ∈ H ,

X̃(s; t, x, a(·))(ω) := lim
n→∞ X (s; t, yn, a(·))(ω), (5.81)

where yn is a sequence of elements of S such that yn → x (the limit exists and it
does not depend on the chosen sequence yn , again thanks to (1.70) and the choice
of �∞). We define X̃(s; t, x, a(·))(ω) = 0 for (s, x,ω) ∈ [t, T ] × H × (� \ �∞).
The pointwise convergence (5.81) and the progressive measurability (and thus the
B([t, T ]) ⊗ F/B(H)-measurability) of X ensures that (see Lemma1.8(iii)), for
any x ∈ H , the restriction of X̃(·; t, x, a(·))(·) to [t, T ] × �∞ is B([t, T ]) ⊗ (F ∩
�∞)/B(H)-measurable. This fact, the completeness ofF and the fact that X̃ is con-
stant on [t, T ] × H × (� \ �∞) give easily theB([t, T ]) ⊗ F/B(H)-measurability
of X̃(·; t, x, a(·))(·) on [t, T ] × �. Moreover, by construction, for any s ∈ [t, T ] and
ω ∈ �, x→X̃(s; t, x, a(·))(ω) is continuous so that (see Lemma1.18) the function
defined in (5.80) is B([t, T ]) ⊗ B(H) ⊗ F/B(H)-measurable. �

5.5.2 The Optimal Control Problem and the HJB Equation

Let Hypotheses5.1, 5.4 and 5.42 be satisfied. We study an optimal control problem
in its strong formulation (see Sect. 2.1.1 for details) so that the generalized reference
probability space μ is fixed. We consider the following cost functional

Jμ(t, x; a(·)) = E

{∫ T

t
l(s, X (s; t, x, a(·))) + h2(a(s))ds + g(X (T ; t, x, a(·)))

}

(5.82)
whichwewant tominimize over the control setUμ

t . In this expression X (s; t, x, a(·))
represents the mild solution of (5.78) at time s which, as always, we will often denote
by X (s). The functions l, h2 and g satisfy the following hypothesis.

Hypothesis 5.45 l : [0, T ] × H → R and g : H → R satisfy Hypothesis5.27-(B)
while h2 : 	 → R is Borel measurable and bounded.
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The value function of the problem depends on μ and it is defined as in (2.4):

V μ
t (x) = inf

a(·)∈Uμ
t

Jμ(t, x; a(·)). (5.83)

The HJB equation corresponding to the described optimal control problem is

⎧
⎨

⎩

vt + Av + F0(t, x, DQv) + l(t, x) = 0

v(T, x) = g(x),
(5.84)

where the operator A is defined in Sect. 5.2.3 and the Hamiltonian F0 is given by

F0(t, x, p) = inf
a∈	

{〈R(t, x, a), p〉 + h2(a)} =: inf
a∈	

F0,CV (t, x, p, a). (5.85)

Wewill suppose that F0 satisfies Hypothesis 5.27-(A). Indeed, thanks to Hypothe-
ses5.42 and 5.45, the Lipschitz continuity and growth conditions (5.50) are always
satisfied but the Leb ⊗ B ⊗ B/B(R)measurabilitymay not always be ensured.How-
ever, when R does not depend on t and x , the Hamiltonian F0 is just a function
from H to R and Lemma1.21 then guarantees that it is B/B(R)-measurable, so that
Hypothesis5.27-(A) is satisfied. Hypothesis 5.27-(A) is also always true if R(t, x, ·)
is continuous for every t and x due to the separability of 	.

5.5.3 The Verification Theorem

We now show how to obtain a verification theorem and an explicit expression for
optimal controls in feedback form.

Lemma 5.46 Let t ∈ [0, T ], x ∈ H, μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a gen-

eralized reference probability space on [t, T ] and let a(·) ∈ Uμ
t . Assume that

Hypotheses 5.1, 5.4, 5.42 and 5.45 hold. Define

ρa(·) = exp

(

−
∫ T

t

〈
R(r, X (r; t, x, a(·)), a(r)), dWQ(r)

〉

−1

2

∫ T

t
|R(r, X (r; t, x, a(·)), a(r))|2 dr

)

.

Then:

(i) The measure P̃ on (�,F ) defined by setting dP̃(A) := ρa(·)(T )dP(ω), that is,
for any A ∈ F ,

P̃(A) :=
∫

A
ρa(·)(ω) dP(ω),
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is a probability measure on �, in particular E[ρa(·)] = 1.
(ii) There exists a positive constant c̃ < +∞ such that

E

[(
ρa(·)

)−1
]

≤ c̃, for any x ∈ H (5.86)

and we have
dP(A) := (

ρa(·)
)−1

dP̃(ω). (5.87)

(iii) Denote by X (·; t, x) the solution of
⎧
⎨

⎩

dX (s) = (AX (s) + b(X (s))) ds + dWQ(s), s ∈ [0, T ],

X (t) = x ∈ H.

(5.88)

For any s ∈ [t, T ], LP(X (s; t, x)) = L
P̃
(X (s; t, x, a(·))).

(iv) For any nonnegative w ∈ L2(H,B(H),m), for any s ∈ [t, T ],
∫

H
Ew(X (s; t, x, a(·)))dm(x) ≤ √

c̃

(∫

H
Ew2(X (s; t, x))dm(x)

)1/2
= √

c̃|w|L2
m
,

(5.89)
where c̃ is the constant introduced in (5.86).

Proof Most of the statements of the lemma are corollaries of the Girsanov Theorem.
Part (i): Given the boundedness of R the claim follows from Proposition 10.17

and Theorem 10.14 of [180].
Part (ii): Observe first that if we replace R(s, X (s; t, x, a(·)), a(s)) by −R(s, X

(s; t, x, a(·)), a(s)) we have again a bounded function so that the results of Part (i)
hold: we get

E exp

(∫ T

t

〈
R(s, X (s; t, x, a(·)), a(s)), Q−1/2dWQ(s)

〉

−1

2

∫ T

t
|R(s, X (s; t, x, a(·)), a(s))|2 ds

)

= 1.

(5.90)

Since by Hypothesis5.42 there exists an MR ∈ R such that |R(s, X (s; t, x, a(·)),
a(s))| ≤ MR for any choice of s ∈ [t, T ], x ∈ H and any a(·),

E

[(
ρa(·)

)−1
]

= E exp

(∫ T

t

〈
R(r, X (r; t, x, a(·)), a(r)), dWQ(r)

〉

+1

2

∫ T

t
|R(r, X (r; t, x, a(·)), a(r))|2 dr

)

≤

e(T−t)M2
RE exp

(∫ T

t

〈
R(r, X (r; t, x, a(·)), a(r)), dWQ(r)

〉
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−1

2

∫ T

t
|R(r, X (r; t, x, a(·)), a(r))|2 dr

)

= e(T−t)M2 =: c̃,

where in the last step we used (5.90).
The second claim follows by the strict positivity of ρa(·) as a corollary of the

Radon–Nikodym Theorem (see [18], p. 64).
Part (iii): Thanks to Theorem 10.14 of [180] we know that the process defined by

W̃Q(s) = WQ(s) − WQ(t) +
∫ s

t
Q

1
2 R(r, X (r; t, x, a(·)), a(r))dr, s ∈ [t, T ],

is a Q-Wiener process in H with respect to {F t
s }s≥t and the probability measure P̃.

We have

X (s; t, x, a(·)) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r; t, x, a(·)))dr

+
∫ s

t
e(s−r)AQ

1
2 R(r, X (r; t, x, a(·)), a(r))dr +

∫ s

t
e(s−r)AdWQ(r)

= e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r; t, x, a(·)))dr +

∫ s

t
e(s−r)AQ

1
2 R(r, X (r; t, x, a(·)), a(r))dr

+
∫ s

t
e(s−r)AdW̃Q(r) −

∫ s

t
e(s−r)AQ

1
2 R(r, X (r; t, x, a(·)), a(r))dr

= e(s−t)Ax +
∫ s

t
e(s−r)Ab(X (r; t, x, a(·)))dr +

∫ s

t
e(s−r)AdW̃Q(r), s ∈ [t, T ],

so X (·; t, x, a(·)) solves the same equation as X (·; t, x). The claim thus follows
thanks to Proposition1.148-(ii).

Part (iv): For any s ∈ [t, T ], the joint measurability of the function (x,ω)→
w(X (s; t, x, a(·))(ω)) follows by the Borel measurability of w and by the measura-
bility of X stated in Proposition5.44.

Usingfirst (5.87) and then theCauchy–Schwarz inequalitywehave, for s ∈ [t, T ],
∫

H
Ew(X (s; t, x, a(·)))dm(x) =

∫

H

∫

�

w(X (s; t, x, a(·))(ω))dP(ω)dm(x)

=
∫

�

w(X (s; t, x, a(·))(ω))
(
ρa(·)(ω)

)−1
dP̃(ω)dm(x)

≤
(∫

H

∫

�

(
ρa(·)(ω)

)−2
dP̃(ω)dm(x)

)1/2 (∫

H

∫

�

w2(X (s; t, x, a(·))(ω))dP̃(ω)dm(x)

)1/2

=
(∫

H

∫

�

(
ρa(·)(ω)

)−1
dP(ω)dm(x)

)1/2 (∫

H

∫

�

w2(X (s; t, x)(ω))dP(ω)dm(x)

)1/2

,

where in the last step we used, in the two terms, respectively Part (i) and Part (iii).
Therefore, by (5.86) and then using the definition of the transition semigroup, the
fact that it does not depend on a generalized reference probability space, and the
property of the invariant measure (observe that w2 belongs to L1(H,B(H),m) so
we refer to Proposition5.9 for p = 1), we obtain
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∫

H
Ew(X (s; t, x, a(·)))dm(x) ≤ √

c̃

(∫

H
Ew2(X (s; t, x))dm(x)

)1/2

= √
c̃

(∫

H
Ps−t

[|w(·)|2] (x)dm(x)

)1/2

= √
c̃

(∫

H
|w(x)|2dm(x)

)1/2

= √
c̃|w|L2

m
,

which gives the claim. �

The result of Part (iv) of Lemma5.46 will be extended to a general w ∈
L2(H,B,m) in Corollary5.48.

Lemma 5.47 Let t ∈ [0, T ], μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a generalized

reference probability space on [t, T ] and a(·) ∈ Uμ
t . Assume that Hypotheses 5.1,

5.4, 5.42 and 5.45 hold.
Consider a B/B(R)-measurable function φ : H → R (respectively, a B/B(H)-

measurable function φ : H → H) and s ∈ [t, T ]. Then the function

{
H × � → R

(x,ω)→φ(X (s; t, x, a(·))(ω)

is B(H) ⊗ F/B(R)-measurable (respectively, B(H) ⊗ F/B(H)-measurable),
where B(H) ⊗ F is the completion of the σ-field B(H) ⊗ F w.r.t. the measure
m ⊗ P.

Similarly, given aB([t, T ]) ⊗ B/B(R)-measurable functionφ : [t, T ] × H → R,
the function { [t, T ] × H × � → R

(s, x,ω)→φ(s, X (s; t, x, a(·))(ω)

is B([t, T ]) ⊗ B(H) ⊗ F/B(R)-measurable, where B([t, T ]) ⊗ B(H) ⊗ F is the
completion of the σ-field B([t, T ]) ⊗ B(H) ⊗ F w.r.t. the measure ds ⊗ m ⊗ P.

Proof The proof follows the same arguments as those used in the proof of
Lemma5.10. We give it for completeness.

If φ : H → R is Borel-measurable the statement follows from the measurabil-
ity of the solutions of (5.78) stated in Proposition5.44. If φ : H → R is B/B(R)-
measurable, let φ̃ : H → R be a B/B(R)-measurable function and V ∈ B(H),

m(V ) = 0 be such that φ(x) = φ̃(x) for all x ∈ H \ V . Then

0 ≤
∫

H
P {X (s; t, x, a(·))(ω) ∈ V } dm(x)

=
∫

H
E [1V (X (s; t, x, a(·)))] dm(x) ≤ √

c̃

(∫

H
E
[
12V (X (s; t, x))] dm(x)

)1/2

= √
c̃

(∫

H
|1V (x)|2 dm(x)

)1/2

= √
c̃ (m(V ))1/2 = 0, (5.91)
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where we used (5.89) and then the property of the invariant measure. This fact shows
that the functions (x,ω)→φ(X (t, x)(ω) and (x,ω)→φ̃(X (t, x)(ω) are m ⊗ P-e.e.
equal on H × �. Thus, since (x,ω)→φ̃(X (t, x)(ω) is F ⊗ B/B(R)-measurable,
(x,ω)→φ(X (t, x)(ω) isF ⊗ B/B(R)-measurable.

The same proof applies if φ : H → H is a B/B(H)-measurable function.
Similarly, if φ : [t, T ] × H → R is B([t, T ]) ⊗ B/B(R)-measurable we can find

(again by Lemma1.16, recalling that B([t, T ]) ⊗ B⊂B([t, T ]) ⊗ B)) a B([t, T ]) ⊗
B/B(R)-measurable function φ̃ : [t, T ] × H → R and V ∈ B([t, T ]) ⊗ B(H) such
that (ds ⊗ m)(V ) = 0 and φ(s, x) = φ̃(s, x) for all (s, x) ∈ [t, T ] × H \ V . If we
define Vs := {x ∈ H : (s, x) ∈ V } then Vs ∈ B(H) andm(Vs) = 0 for almost every
s ∈ [0, T ]. Instead of (5.91) we now have

0 ≤
∫ T

t

∫

H
P {(s, X (s; t, x, a(·))(ω)) ∈ V } dm(x)ds

=
∫ T

t

∫

H
P {X (s; t, x, a(·))(ω) ∈ Vs} dm(x)ds

=
∫ T

t

∫

H
E
[
1Vs (X (s; t, x, a(·)))] dm(x)

≤ √
c̃
∫ T

t

(∫

H

∣
∣1Vs (x)

∣
∣2 dm(x)

)1/2

ds = 0

and the proof ends as before. �

Corollary 5.48 Let t ∈ [0, T ], x ∈ H, μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a gen-

eralized reference probability space on [t, T ] and let a(·) ∈ Uμ
t . Assume that

Hypotheses 5.1, 5.4, 5.42 and 5.45 hold. Then, for any w ∈ L2(H,B,m), the map
x→Ew (X (s; t, x, a(·))) belongs to L1

(
H,B,m

)
and for almost every s ∈ [t, T ],

∫

H
Ew(X (s; t, x, a(·)))dm(x) ≤ √

c̃

(∫

H
Ew2(X (s; t, x))dm(x)

)1/2

= √
c̃|w|L2

m
,

where c̃ is the constant introduced in (5.86).

Proof The statements about the joint measurability proved in Lemma5.47 allow us,
in particular, to ensure the measurability in s and x of integrals with respect to ω and
then to extend Lemma5.46-(iv) to any w ∈ L2

(
H,B,m

)
. �

Lemma 5.49 Assume that Hypotheses 5.1, 5.4, 5.42, 5.45 hold and let a(·) ∈ Uμ
t .

Then, for every s ∈ [t, T ] and w ∈ L2
(
H,B,m

)
(respectively, L2

(
H,B,m; H)), the map x→Ew (X (s; t, x, a(·))) belongs to L1

(
H,B,m

)
(respec-

tively, L1
(
H,B,m; H)). Moreover, given a sequence wn converging to w in

L2
(
H,B,m

)
(respectively in L2

(
H,B,m; H)), the sequenceEwn (X (s; t, x, a(·)))

converges to Ew (X (s; t, x, a(·))) in L1
(
H,B,m

)
(respectively, L1

(
H,B,m; H)).
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Similarly, given w ∈ L2
(
t, T ; L2

(
H,B,m

))
(respectively, L2

(
t, T ; L2

(
H,B,

m; H))), the map (s, x) →Ew (s, X (s; t, x, a(·))) belongs to L1
(

(t, T )×
H,B([t, T ]) ⊗ B, ds ⊗ m

)
(respectively, L1

(
(t, T ) ×H,B([t, T ])⊗B, ds⊗m; H

)
),

where ds is the Lebesguemeasure on [t, T ] andB([t, T ]) ⊗ B is the completion of the
σ-field B([t, T ]) ⊗ B w.r.t. ds ⊗ m. Moreover, given a sequence wn converging to w

in L2
(
t, T ; L2

(
H,B,m

))
(respectively, L2

(
t, T ; L2

(
H,B,m; H))), the sequence

Ewn (s, X (s; t, x, a(·))) converges to Ew (s, X (s; t, x, a(·))) in L1
(

(t, T ) × H,

B([t, T ]) ⊗ B, ds ⊗ m
)

(respectively, L1
(
(t, T ) × H,B([t, T ]) ⊗ B, ds

⊗m; H
)
).

Proof The statements about joint measurability of the various functions involved fol-
low from Lemma5.47, Corollary5.48 or can be proved by similar arguments. Recall,
for the case whenw ∈ L2

(
t, T ; L2

(
H,B,m

))
, that there exists (see Theorem 11.47,

p. 427 of [8]) a w̃ ∈ L2
([t, T ] × H,B([t, T ]) ⊗ B, ds ⊗ m

)
, uniquely determined

up to a ds ⊗ m-null set, such that, for a.e. s ∈ [t, T ], w̃(s, ·) = w(s)(·) m-a.e.
We only prove the remaining statements related to w ∈ L2

(
t, T ; L2

(
H,B,m

))
,

the others being similar. Invoking Corollary5.48 and Hölder’s inequality, we obtain

∫ T

t

∫

H
E |w (s, X (s; t, x, a(·)))| dm(x) ds

≤ CT

(∫ T

t

∫

H
E |w (s, X (s; t, x))|2 dm(x) ds

)1/2

= CT

(∫ T

t

∫

H
|w (s, ·)|2 (x) dm(x) ds

)1/2

< +∞

and the first claim follows. The statements about the convergence follow using the
same arguments as indeed we have

∫ T

t

∫

H
|Ewn (s, X (s; t, x, a(·))) − Ew (s, X (s; t, x, a(·)))| dm(x) ds

≤ CT

(∫ T

t

∫

H
|wn (s, ·) − w (s, ·)|2 (x) dm(x) ds

)1/2
n→∞−−−→ 0.

Similar estimates give the other claims. �

We are now ready to prove the fundamental identity.

Lemma 5.50 Let t ∈ [0, T ], μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a generalized

reference probability space on [t, T ] and let a(·) ∈ Uμ
t . Assume that Hypotheses 5.1,

5.4, 5.27, 5.42, 5.45 hold. Suppose that the mild solution (u,U ) ∈
L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong solution. Then the following identity

holds for m-a.e. x ∈ H:
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u(t, x) + E

∫ T

t
F0,CV

(
s, X (s), D̃Qu(s, X (s)), a(s)

)
− F0

(
s, X (s), D̃Qu(s, X (s))

)
ds

= E

{∫ T

t
[l(s, X (s)) + h2(a(s))]ds + g(X (T ))

}

= Jμ(t, x; a(·)), (5.92)

where X (·) := X (·; t, x, a(·)) denotes the mild solution of (5.78).
Proof We denote by gn and ψn the approximating sequences of g and F0 + l char-
acterized in (5.66), (5.67), (5.68), (5.69) and (5.70). We set

un(t, x) = PT−t [gn] +
∫ T

t
Ps−t [ψn(s)]ds.

We know that un satisfies in the classical sense the approximating HJB equation

⎧
⎨

⎩

(un)t + Aun + F0(t, x, D̃Qun) + ln(t, x) = 0

un(T, x) = gn(x), x ∈ H,

(5.93)

where

ln(t, x) := ψn(t, x) − F0(t, x, D̃Qun)
n→+∞−→ l in L2 (0, T ; L2(H,B,m; H)

)
.

By Dynkin’s formula (see Proposition1.169) and (5.78) we obtain

Eun(T, X (T )) − un(t, x)

= E

∫ T

t

[

(un)s(s, X (s)) + 〈X (s), A∗Dun(s, X (s))〉 + 1

2
Tr
[
QD2un(s, X (s))

]
]

ds

+E

∫ T

t

[〈
Dun(s, X (s)), b(X (s)) + Q

1
2 R(s, X (s), a(s))

〉]
ds. (5.94)

Then, using (5.93) and the notation F0,CV introduced in (5.85), we get

Egn(X (T )) − un(t, x) = E

∫ T

t

[

F0,CV

(
s, X (s), D̃Qun(s, X (s)), a(s)

)

−F0(s, X (s), D̃Qun(s, X (s))) − ln(s, X (s)) − h2(a(s))

]

ds.

(5.95)

We now pass to the limit as n → +∞ in (5.95). We use (5.69), (5.70) and the
convergences of the sequences un and D̃Qun prescribed by Definition 5.39 (indeed
they are proved explicitly in our context in (5.72) and (5.73)). Thanks to Lemma5.49
it thus follows that, for m-a.e. x ∈ H ,
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Eg(X (T )) − u(t, x) = E

∫ T

t

[

F0,CV (s, X (s), D̃Qu(s, X (s)), a(s))

−F0(s, X (s), D̃Qu(s, X (s))) − l(s, X (s)) − h2(a(s))

]

ds,

which gives (5.92) after rearranging the terms. �

Lemma 5.51 Let t ∈ [0, T ], μ =
(
�,F ,

{
F t

s

}

s∈[t,T ] ,P,WQ

)
be a generalized

reference probability space on [t, T ] satisfying Hypothesis5.42 and let 	 be as
in (5.77). For any p ≥ 1 there exists a countable subset NUμ

t of Uμ
t dense in Uμ

t

endowed with the M p
μ (t, T ; E) norm.

Proof A possible choice for NUμ
t is a set of elementary processes (see Defini-

tion1.96). Indeed, in the construction of Lemma1.98 we can clearly limit the choice
of the times ti appearing in Definition1.96 to those of a dense and countable subset
of [t, T ] and the choice of theF t

ti -random variables to those of a dense and countable
subset {ξtij } j∈N of L p(�,F t

ti ,P; E) (this subset exists thanks to Lemma1.25). Since

we look for processes belonging to Uμ
t (and thus having images in B�(0)), instead of

{ξtij } j∈N we consider the random variables ξ̃tij :=
(

max
{ |ξtij |

�
, 1
})−1

ξtij . They create

a required dense set of B�(0)-valued processes. This can be seen by observing that

if x, y ∈ E , |x |E ≤ � and |y|E > �, if ỹ :=
(
max

{ |y|
�

, 1
})−1

y, we have

|x − ỹ|E ≤ |x − y|E + |y − ỹ|E ≤ 2|x − y|E ,

where the last inequality follows from the fact that ỹ is among the elements of B�(0)
nearest to y, so |x − y|E ≥ |y − ỹ|E . �

In the following lemma we give a sufficient condition to ensure that the functional
Jμ(t, x; ·) is continuous with respect to the Mp

μ (t, T ; E) norm.

Lemma 5.52 Suppose that Hypotheses5.42-(i) and 5.45 hold and that R, l, g and
h2 satisfy the following additional conditions:

(i) There exists an MR > 0 such that

|R(s, x, a1) − R(s, y, a2)| ≤ MR(|x − y| + |a1 − a2|)∀ s ∈ [0, T ], x, y ∈ H, a1, a2 ∈ 	.

(ii) For some C, q > 0,

|l(t, x)| ≤ C(1 + |x |q), for all t ∈ [0, T ], x ∈ H,

|g(x)| ≤ C(1 + |x |q), for all x ∈ H.

(iii) h2 : 	 → R is continuous.
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Then for every t ∈ [0, T ], x ∈ H and every generalized reference probability space
μ on [t, T ], the functional Jμ(t, x; ·) is continuous with respect to the M p

μ (t, T ; E)

norm, for any p > q. In other words, for any sequence of controls an(·) in Uμ
t

converging to a(·) ∈ Uμ
t such that

lim
n→∞ |an(·) − a(·)|p

M p
μ

= lim
n→∞E

∫ T

t
|an(s) − a(s)|pEds = 0, (5.96)

we have
lim
n→∞ J (t, x; an(·)) = J (t, x; a(·)). (5.97)

Moreover,

lim
n→∞ sup

s∈[t,T ]

[
E|X (s; t, x, an(·)) − X (s; t, x, a(·))|p] = 0. (5.98)

Proof We denote, for s ∈ [t, T ], X (s; t, x, an(·)) by Xn(s) and X (s; t, x, a(·)) by
X (s) and also denote by N a positive constant such that ‖et A‖ ≤ N for any t ∈ [0, T ]
and supx∈H |∇b(x)| ≤ N . We have, for any s ∈ [t, T ],

|Xn(s) − X (s)| ≤
∣
∣
∣
∣

∫ s

t
e(t−r)A(b(Xn(r)) − b(X (r)))dr

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s

t
e(t−r)A(R(r, Xn(r), an(r)) − R(r, X (r), a(r)))dr

∣
∣
∣
∣

≤ N 2
∫ s

t
|Xn(r) − X (r)|dr + NMR

∫ s

t
(|an(r) − a(r)| + |Xn(r) − X (r)|)dr

and then, for s ∈ [t, T ],

E
[|Xn(s) − X (s)|p]

≤ 3p−1(N 2p + N pM p
R)T 1/p

∫ s

t
E|Xn(τ ) − X (τ )|pdr + 3p−1T 1/p|an(·) − a(·)|p

M p
μ

and we obtain (5.98) using (5.96) and Gronwall’s Lemma (Proposition D.29).
It follows from (5.96) and an easy application of the Lebesgue dominated con-

vergence theorem that E
∫ T
t h2(an(s))ds converges to E

∫ T
t h2(a(s))ds.

So to show (5.97) it remains to prove the convergence of the term

E

{∫ T
t l(s, Xn(s))ds + g(Xn(T ))

}
. We define the following linear operators:

{
Sn : L2(H,B,m) × L2(t, T ; L2(H,B,m)) → R

Sn(g, l) := E

{∫ T
t l(s, Xn(s))ds + g(Xn(T ))

}
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and {
S : L2(H,B,m) × L2(t, T ; L2(H,B,m)) → R

S(g, l) := E

{∫ T
t l(s, X (s))ds + g(X (T ))

}
.

Since the constant c̃ appearing in (5.89) only depends on MR (introduced in Hypoth-
esis 5.42(i)) we know from (5.89) that the family {Sn} is equi-continuous. Using
the Lebesgue dominated convergence theorem and (5.98) it is easy to see that,
for any (g, l) ∈ Cb(H) × Cb([t, T ] × H), we have Sn(g, l)

n→∞−−−→ S(g, l). Since
Cb(H) × Cb([t, T ] × H) is dense in L2(H,B,m) × L2(t, T ; L2(H,B,m)) and
{Sn} is equi-continuous, we can conclude that S(g, l) = limn→∞ Sn(g, l) for any
(g, l) ∈ L2(H,B,m) × L2(t, T ; L2(H,B,m)), which completes the proof of (5.97).

�

Theorem 5.53 (Verification Theorem, Sufficient Condition) Let p ≥ 1 and let
Hypotheses 5.1, 5.4, 5.27, 5.42, 5.45 hold. Suppose that the mild solution (u,U ) ∈
L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong solution. Then the following are

true:

(i) For any t ∈ [0, T ] and any generalized reference probability space μ =(
�μ,F μ,

{
F μ,s

t

}

s∈[t,T ] ,P
μ
)
satisfying Hypothesis 5.42, if Jμ(t, x; ·) is con-

tinuous with respect to the M p
μ (t, T ; E) norm, then there exists a set Zμ

t with
m(Zμ

t ) = 1 such that, for all x ∈ Zμ
t and all a(·) ∈ Uμ

t we have

u(t, x) ≤ V μ
t (x) ≤ Jμ(t, x; a(·)). (5.99)

(ii) Choose t ∈ [0, T ]. Let μ̂ be a generalized reference probability space satis-
fying Hypothesis 5.42 such that J μ̂(t, x; ·) is continuous with respect to the
M p

μ̂ (t, T ; E) norm. Let x be in Z μ̂
t . Let a

∗(·) ∈ U μ̂
t be such that, denoting by

X∗(·) the corresponding state, we have

a∗(s) ∈ argmin
a∈	

F0,CV (s, X∗(s), D̃Qu(s, X∗(s)), a), (5.100)

for almost every s ∈ [t, T ] and P-almost surely. Then, the pair (a∗(·), X∗(·)) is
μ̂-optimal at (t, x) and u(t, x) = V μ̂

t (x) = J μ̂(t, x; a∗(·)).
Proof Part (i): We fix t ∈ [0, T ]. By definition, for every a ∈ 	, F0,CV (·, a) −
F0(·) ≥ 0 everywhere so for any a(·) ∈ Uμ

t , by (5.92), v(t, x) ≤ Jμ(t, x; a(·)) form-
a.e. x ∈ H . Thanks to Lemma5.51we can then choose a countable subset NUμ

t dense
in Uμ

t in the Mp
μ norm containing minimizing sequences for any x ∈ H (observe that

the set of the controls depends on t but it does not depend on the initial datum x). By
taking the infimum over a(·) in NUμ

t in the right-hand side of (5.92) we obtain (i).
Part (ii): Since
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E

∫ T

t

[
F0,CV

(
s, X∗(s), D̃Qu(s, X∗(s)), a∗(s)

)

−F0

(
s, X∗(s), D̃Qu(s, X∗(s))

) ]
ds = 0,

by (5.92) we thus get
u(t, x) = J μ̂(t, x; a∗(·)). (5.101)

Since (5.99) is satisfied at (t, x) because x ∈ Z μ̂
t , it follows that (a∗(·), X∗(·)) is

μ̂-optimal at (t, x) and u(t, x) = V μ̂
t (x). �

5.5.4 Optimal Feedbacks

Similarly to what we observed in Sect. 2.5.1 for the regular case and in Sect. 4.8 for
mild solutions in spaces of continuous functions, we use the fundamental identity
and the verification theorem to characterize optimal feedbacks in the L2 framework.

We consider the hypotheses of Theorem5.53 and we look at the, possibly multi-
valued (and not always defined), function

{
� : (0, T ) × H → P(	)

� : (s, x)→ argmina∈	 F0,CV (s, x, D̃Qu(s, x), a),
(5.102)

where (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
is the mild solution of (5.84). The corre-

sponding Closed Loop Equation is

{
dX (s) ∈

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s),�(s, X (s)))

)
ds+dWQ(s),

X (t) = x, x ∈ H.

(5.103)
Similarly to Sect. 4.8 we have the following corollary of Theorem5.53.

Corollary 5.54 Let p ≥ 1 and let Hypotheses 5.1, 5.4, 5.27, 5.42, 5.45 hold. Sup-

pose that themild solution (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong

solution.
Choose t ∈ [0, T ] and x ∈ H. Assume that, on [t, T ) × H, the feedback map �

defined in (5.103) admits a measurable selection φt : [t, T ) × H → 	. Then:

(i) The Closed Loop Equation

{
dX (s)=

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s),φt (s, X (s)))

)
ds+dWQ(s),

X (t) = x,
(5.104)
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has a weak mild solution (see Definition1.121) Xφt (·; t, x) in a suitable gener-
alized reference probability space μ (and unique in such a space); the elements
of the filtration F t

μ̄,s are countably generated up to sets of measure zero.
(ii) Suppose that the generalized reference probability space μ̄ from part (i) is

such that J μ̄(t, x; ·) is continuous with respect to the M p
μ̄ (t, T ; E) norm and

that x in Z μ̄
t . Define, for s ∈ [t, T ), aφt (s) = φt (s, Xφt (s; t, x)). Then the

pair (aφt (·), Xφt (·; t, x)) is μ-optimal at (t, x) and u(t, x) = V μ
t (x). If, finally,

�(s, x) is a singleton for any (s, x) ∈ (t, T ) × H, then aφt (·) is the unique μ̄-
optimal control.

Proof Part (i) follows from Theorem6.36. We can always take the filtration to be the
one generated by the Wiener process to ensure that the elements of the filtration are
countably generated up to sets of measure zero.

All the statements of part (ii) follow immediately from Theorem5.53-(ii) except
for the uniqueness of optimal controls. If (â(·), X̂(·)) is another optimal pair at (t, x)
with generalized reference probability spaceμ, we immediately have, byLemma5.50
and the fact that u(t, x) = V μ

t (x),

E

∫ T

t

[
F0,CV

(
s, X̂(s), D̃Qu(s, X̂(s)), â(s)

)
− F0

(
s, X̂(s), D̃Qu(s, X̂(s))

)]
ds = 0.

This implies that, for a.e. s ∈ [t, T ] and P-a.s., we have â(s) = φt (s, X̂(s)). Unique-
ness of solutions of (5.104) in μ gives the claim. �

We conclude with a result in a specific case.

Theorem 5.55 Let p ≥ 1and letHypotheses 5.1, 5.4, 5.27, 5.42, 5.45 hold. Suppose

that the mild solution (u,U ) ∈ L2
(
0, T ;W 1,2

Q (H,m)
)
of (5.84) is also a strong

solution. Suppose also that:

(i) E = H and R(t, x, a) ≡ a, hence F0,CV does not depend on t and x and it is
given by

F0,CV (p, a) = 〈a, p〉 + h2(a).

(ii) h2 : 	 → R is strictly convex and lower semicontinuous.
(iii) F0(p) := infa∈	 (〈a, p〉 + h2(a)) is differentiable.

Then, for any t ∈ [0, T ] and x ∈ H, there exists a generalized reference prob-
ability space μ (where the elements of the filtration F t

μ,s are countably generated
up to sets of measure zero) and a control a∗(·) ∈ Uμ

t which satisfies, together with
the corresponding trajectory X∗(·) := X (·; t, x, a∗(·)), the relation

a∗(s) = DpF0(D̃Qu(s, X∗(s))), s ∈ [t, T ]. (5.105)

If x ∈ Zμ
t and Jμ(t, x; ·) is continuous with respect to the M p

μ (t, T ; H) norm, then
the control a∗(·) is μ-optimal.



5.5 Application to Stochastic Optimal Control 661

Proof We extend the function h2 : 	 → R to a function h̃2 : H → R ∪ {+∞} by
defining h̃2(a) = +∞ for any a /∈ B�(0). One can easily see that a→h̃2(a) is strictly
convex and lower semicontinuous on H . Moreover (see e.g. Proposition 2.19, p. 77
of [39]), the function

h̃∗
2 : H → R, h̃∗

2(p) := sup
a∈H

(
〈a, p〉 − h̃2(a)

)

is convex and lower semicontinuous on H . Thanks to the way we extended h2, we
necessarily have supa∈H

( 〈a,−p〉 − h̃2(a)
) = supa∈	

( 〈a,−p〉 − h2(a)
)
and thus

h̃∗
2(−p) = −F0(p) for any p ∈ H .
Let now p ∈ H . It follows from the lower semi-continuity of h̃2, its convexity

and the fact that its value is +∞ on H \ B�(0), that argmina∈H
(
〈a, p〉 + h̃2(a)

)
is

non-empty (Theorem 2.11 page 72 of [39]). Since h̃2 is strictly convex it is single-
valued (see p. 84 of [39]). Thanks to the way we extended h2, this unique point a∗
where the minimum is attained belongs to 	 so it is also the unique minimizer of the
problem

inf
a∈	

(〈a, p〉 + h2(a)) .

Moreover (see [39], Proposition 2.33, p. 84), a∗ must be in the sub-differential
(Definition 2.30, p. 82 of [39]) of h̃∗

2(·) at −p which is equal to the super-differential
of F0(·) at p. Since by hypothesis F0 is differentiable, we must have a∗ = DpF0(p)
(see Proposition 2.40, p. 87 of [39]).

We now define the feedback control by

a(t) = DpF0(D̃Qu(t, X (t))). (5.106)

Consider, for s ∈ [t, T ], the closed loop equation in the mild form

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)A

[
b(X (r)) + Q

1
2 DpF0(D̃Qu(s, X (s)))

]
dr

+
∫ s

t
e(r−s)AdWQ(r).

(5.107)

There exists (Theorem6.36, where the selection is given by (5.106)) a generalized
reference probability space μwhere this equation has a mild solution X∗(·). We then
take

a∗(s) = DpF0(D̃Qu(s, X∗(s))), s ∈ [t, T ],

and we conclude thanks to Theorem5.53. �
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5.5.5 Continuity of the Value Function and Non-degeneracy
of the Invariant Measure

The results we have described so far show one of the intrinsic limitations of the L2

approach. Indeed, they can only describe the behavior of the value function in the
support of the invariant measure. Such a support can be, in principle, very small.
Also the verification theorem and construction of optimal feedbacks hold only on
sets of full measure which may change with the generalized reference probability
space. To remedy this we are going to introduce a non-degeneracy hypothesis. The
non-degeneracy hypothesis, coupled with some continuity assumptions, will help
us refine previous results and prove a number of propositions concerning the weak
formulation of the optimal control problem (see Sect. 2.1.2).

Hypothesis 5.56 The invariant measure in Hypothesis5.4 is non-degenerate. In
other words, for any non-void open set O⊂H , m(O) > 0.

Recall that in the weak formulation of the optimal control problem the generalized
reference probability space μ varies with the controls so that the set of admissible
controls becomes

U t :=
⋃

μ

Uμ
t ,

where Uμ
t is the set of admissible controls for a given generalized reference proba-

bility space μ defined in (5.79). The value function for the optimal control problem
in the weak formulation is then

V (t, x) = inf
a(·)∈U t

Jμ(t, x; a(·)).

Corollary 5.57 Let the hypotheses of Lemma5.50 and Hypothesis5.56 be satisfied.
Suppose moreover that, for any choice of t,μ and a(·), the functions u(t, x) and
Jμ(t, x, a(·)) are continuous in the x variable. Then, for every (t, x) ∈ [0, T ] × H
and any generalized reference probability space μ on [t, T ], we have

u(t, x) ≤ V (t, x) ≤ V μ
t (x).

Proof Lemma5.50 ensures that, for any choice of t,μ and a(·), u(t, x) ≤ Jμ(t, x,
a(·)) for m-almost every x ∈ H . For any y ∈ H we consider the sequence of balls
B1/n(y), where n ∈ N. Given the non-degeneracy of m, m

(
B1/n(y)

)
> 0 and then

u(t, ·) cannot be strictly bigger than Jμ(t, ·, a(·)) on B1/n(y). We can thus obtain a
sequence yn converging to y such that u(t, yn) ≤ Jμ(t, yn, a(·)). By continuity we
get u(t, y) ≤ Jμ(t, y, a(·)). Taking the infimum over a(·) and μ we have the claim.

�

More precise results can be obtained under stronger continuity assumptions.
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Corollary 5.58 Let the assumptions of Corollary5.57 be satisfied. Suppose that,
for any choice of t , μ and a ∈ 	, the functions D̃Qu(t, ·), R(t, ·, a), l(t, ·) and
F0(t, ·, ·) are continuous. Suppose that there exist C > 0 and N ∈ N such that, for
all (t, x), |D̃Qu(t, x)|, |l(t, x)| ≤ C(1 + |x |N ). Then the fundamental identity (5.92)
holds for any (t, x) ∈ [0, T ] × H, any generalized reference probability space μ and
any a(·) ∈ Uμ

t .

Proof Lemma5.50 ensures that, for any choice of t,μ and a(·), we have, for m-a.e.
x ∈ H ,

u(t, x) + E

∫ T

t
F0,CV

(
s, X (s), D̃Qu(s, X (s)), a(s)

)

−F0

(
s, X (s), D̃Qu(s, X (s))

)
ds = Jμ(t, x; a(·)),

(5.108)

where X (s) := X (s; t, x, a(·)), for s ∈ [t, T ], is the mild solution of (5.78). Thus,
as we did in the proof of Lemma5.57, thanks to the non-degeneracy of m, for every
x ∈ H we can find a sequence yn converging to x in H such that

u(t, yn) + E

∫ T

t
F0,CV

(
s, X (s; t, yn, a(·)), D̃Qu(s, X (s; t, yn, a(·))), a(s)

)

−F0

(
s, X (s; t, yn, a(·)), D̃Qu(s, X (s; t, yn, a(·)))

)
ds = Jμ(t, yn; a(·)).

(5.109)

We need to show that, taking the limit n → ∞, every term of (5.109) converges to the
respective term in (5.108). The convergence of Jμ(t, yn; a(·)) and u(t, yn) follows
from their continuity in the x variable.

The terms inside the integral converge pointwise to the respective terms in (5.108)
P-a.s. and for almost any s thanks to (1.70) and the various continuity hypotheses.
The convergence of the integral thus follows from Lemma1.51, the uniformmoment
bounds from (1.69), the polynomial growth of |D̃Qu(t, ·)| and l(t, ·), the boundedness
of R and the bounds on the growth of b and F0. �

Using this result we find the counterparts of Theorem5.53, Corollary5.54 and
Theorem5.55 as follows.

Theorem 5.59 (Verification Theorem, Sufficient Condition) Let the assumptions of
Corollary5.58 be satisfied. Choose (t, x) ∈ [0, T ] × H and denote by μ̂ a general-
ized reference probability space. Let a∗(·) ∈ U μ̂

t be such that, denoting by X∗(·) the
corresponding state, we have

a∗(s) ∈ argmin
a∈	

F0,CV (s, X∗(s), D̃Qu(s, X∗(s)), a) (5.110)

for almost every s ∈ [t, T ] and P-almost surely. Then the pair (a∗(·), X∗(·)) is opti-
mal at (t, x) for the weak formulation (and so in the μ̂-strong formulation) and
u(t, x) = V (t, x) = V μ̂

t (x) = J μ̂(t, x; a∗(·)).
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Proof The proof is identical to the proof of Theorem 4.197 if we use Corollary5.58.
�

Corollary 5.60 Let the assumptions of Corollary5.58 be satisfied. Choose (t, x) ∈
[0, T ] × H. Assume, moreover, that on [t, T ) × H the feedback map � defined in
(5.102) admits a measurable selection φt : [t, T ) × H → 	. Then:

(i) The Closed Loop Equation

{
dX (s)=

(
AX (s) + b(X (s)) + Q

1
2 R(s, X (s),φt (s, X (s)))

)
ds+dWQ(s),

X (t) = x,
(5.111)

has a weak mild solution (see Definition1.121) Xφt (·; t, x) in a suitable gener-
alized reference probability space μ and it is unique in this space if (5.111) is
considered as an equation with the control process aφt (s) := φ(s, Xφt (s; t, x)),
s ∈ [t, T ).

(ii) The pair (aφt (·), Xφt (·; t, x)) is optimal for the weak formulation (and a for-
tiori μ-optimal) at (t, x) and u(t, x) = V (t, x) = V μ

t (x) = J μ̄(t, x; aφt (·)). If,
finally, �(s, x) a singleton for any (s, x) ∈ (t, T ) × H, then aφt is the unique
μ-optimal control.

Proof The proof is the same as that of Corollary5.54 but we have to use Corol-
lary5.58 instead of Lemma5.50. �

Observe that, in the above corollary, if the uniqueness of solutions of (5.111) is
not guaranteed, the optimality of the pair (aφt (·), Xφt (·; t, x)) needs to be understood
in terms of the extended weak formulation introduced in Remark2.6.

Theorem 5.61 Let the assumptions of Corollary5.58 be satisfied.
Suppose also that:

(i) E = H and R(t, x, a) ≡ a, hence F0,CV does not depend on t and x and it is
given by

F0,CV (p, a) = 〈a, p〉 + h2(a).

(ii) h2 : 	 → R is strictly convex and lower semicontinuous.
(iii) F0(p) := infa∈	 (〈a, p〉 + h2(a)) is differentiable.

Then, for any t ∈ [0, T ] and x ∈ H, there exists a generalized reference prob-
ability space μ (where the elements of the filtration F t

μ,s are countably generated
up to sets of measure zero) and a control a∗(·) ∈ Uμ

t which satisfies, together with
the corresponding trajectory X∗(·) := X (·; t, x, a∗(·)), the relation

a∗(s) = DpF0(D̃Qu(s, X∗(s))), s ∈ [t, T ].

a∗(·) is an optimal control for the weak formulation at (t, x) and the unique μ-
optimal control at (t, x). For any t ∈ [0, T ] and x ∈ H, u(t, x) equals the value
function V (t, x).
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Proof The proof follows the same arguments as these used in the proof of Theo-
rem5.55. In the very last step we use Corollary5.60 instead of Theorem5.53. �

5.6 Examples

We show how the L2-theory we have developed so far can be used to treat some
specific optimal control problems.

5.6.1 Optimal Control of Delay Equations

Let us consider a simple controlled one-dimensional linear stochastic differential
equation with a delay r > 0:

⎧
⎨

⎩

dy(s) = (β0y(s) + β1y(s − r) + α(s)) ds + σdW0(s),
y(t) = x0,
y(t + θ) = x1(θ), θ ∈ [−r, 0),

(5.112)

where σ > 0, β0,β1 ∈ R are given constants; W0 is a one-dimensional standard
Brownianmotiondefinedona complete probability space (�,F ,P); and

{
F t

s

}

s∈[t,T ]
is the augmented filtration generated byW0. The control α(·) is anF t

s -progressively
measurable process with values in the interval 	 = [0, R] for some R > 0. We
assume that x1(·) ∈ L2(−r, 0).

As recalled in Sect. 2.6.8, Eq. (5.112) can be rewritten as a linear evolution equa-
tion in the Hilbert space H = R × L2 (−r, 0) of the following form:

⎧
⎨

⎩

dX (s) = (A1X (s) + B1a(s)) dt + GdW0(s),

X (t) =
(
x0
x1

)

:=
(
y0
y1

)

∈ H,
(5.113)

where a(·) = α(·), A1 is a suitable generator of a C0-semigroup on H ; B1 : R → H

and G : R → H are continuous operators B1w0 =
(

w0

0

)

and Gw0 =
(

σw0

0

)

(further details can be found in Sect. 2.6.8). Finally, considering Q ∈ L+(H) =
L+(R × L2(−τ , 0)) defined as Q :=

(
σ2 0
0 0

)

, we can rewrite the equation once

more obtaining

⎧
⎨

⎩

dX (s) = (
A1X (s) + Q1/2 1

σ
B1a(s)

)
ds + dWQ(s),

X (t) =
(
x0
x1

)

:=
(
y0
y1

)

∈ H,
(5.114)

which is the form required by (5.78).
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Proposition 5.62 Assume that σ �= 0, that β0 < 1 and denote by γ a real number
in (0,π) such that γ coth γ = β0. Assume that

β0 < −β1 <

√

γ2 + β2
0 . (5.115)

Then Eq. (5.113) and (5.114) have a unique invariant measure m which is non-
degenerate.

Proof See Remark 10.2.6(i), Chap.10 of [177]. �

Proposition 5.63 Consider the operator DQ := Q1/2D defined on C1
b(H)⊂L2

(H,B,m). Then:

(i) DQ is not closable in L2(H,B,m).
(ii) Hypothesis5.1 holds.

Proof Part (i) is proved in [299], Sect. 7.2, pp. 15–16. The second statement can
easily be verified. �

Thanks to Part (ii) of Proposition 5.63, the whole theory developed so far in this
chapter can be applied even if the operator DQ is not closable in the classical sense.

Remark 5.64 We considered a simple one-dimensional case of controlled stochas-
tic delay equations for simplicity of presentation. In fact, this framework can be
applied to more general cases like semilinear d-dimensional equations presented in
Sect. 2.6.8. Conditions to guarantee the existence of a nontrivial invariant measure
for the multidimensional case can be found in Sect. 10.3 of [177] (see, in particular,
Theorem 10.2.5(i)). Using the same methodology, problems with cost functions f0
and g0 depending also on the history of the state y can be treated as well. �

5.6.2 Control of Stochastic PDEs of First Order

The second example is an optimal control problem driven by a first-order stochastic
PDE similar to the one considered in Sect. 2.6.7. This kind of equation is important
in financial modeling since it provides a description of the time evolution of forward
rates under the non-arbitrage assumption; we refer the reader to Sect. 2.6.7 and [303].

Fix κ > 0. The state space H we consider here is given by the followingweighted
L2 space of real-valued functions defined on [0,+∞):

H :=
{

f : [0,+∞) → R measurable :
∫ +∞

0
f 2(ξ)e−κξdξ < +∞

}

.

In particular, if κ = 0, H = L2 (R). The inner product on H is given by
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〈 f, g〉H :=
∫ +∞

0
f (ξ)g(ξ)e−κξdξ

and the induced norm will be denoted by | · |H .
The following result can be easily proved.

Proposition 5.65 The semigroup S(t) defined as

S(t) f (ξ) := f (t + ξ), ξ ≥ 0

is a C0-semigroup on H. Its generator is given by

{
D(A) = H 1

κ (0,∞) :=
{
f ∈ L2

ρ : d f
dξ

∈ L2
ρ

}

A = d
dξ

(where d f
dξ

denotes the distribution derivative of f here). Moreover,

‖S(t)‖L(H) ≤ e−κt .

We consider the following equation, studied for instance in [303],

dX (t) = (AX (t) + b(X (t)) + Bh1(a(t))) dt + τdW0(t), (5.116)

where W0 is a one-dimensional Brownian motion; τ ∈ H ∩ Bb([0,+∞),R); B ∈
L(H) and h1 : 	 → R; a(t) = a(t, ·) ∈ H is a control process and b is an operator
defined on H as follows

b(x)(ξ) = −τ (x(ξ))
∫ ξ

0

1

1 + ex(r)
τ (r)dr − 1

2
|τ (ξ)|2 1

1 + ex(ξ)
τ (ξ)

∫ ξ

0
τ (r)dr.

In order to apply the L2 theory we need to ensure the existence of an invariant
measure for the uncontrolled version of (5.116). This is the content of the following
lemma.

Lemma 5.66 If
‖τ‖0 + |τ |H |τeκ·|H ≤ κ,

then there exists a non-degenerate invariant measure m for

dX (t) = (AX (t) + b(X (t))) dt + τdW0(t).

Proof See Proposition 3.2 in [303]. �

Observe that τdW0(t) is of the form dWQ(t) prescribed by Hypothesis5.1-(B)
if we consider, for instance, the operator Qx = τ 〈τ , x〉. In this case one can easily
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see that Hypothesis 5.1-(C) is satisfied as well. To verify Hypothesis5.42 we need
Bh1(a(t)) to be of the form Q1/2R for some R satisfying Hypothesis5.42-(i). This
is the case if we take B = Q

1
2 and h1 : 	 → H some bounded Borel measurable

function. 	 needs to be specified, as in (5.77), as a closed ball of a real separable
Banach space.

Remark 5.67 The operator
(
DQ,C1

b(H)
)
is not always closable in L2(H,B,m) (see,

e.g., Paragraph 7.1, pp. 13–14 of [299]). �

5.6.3 Second-Order SPDEs in the Whole Space

The third example regards a stochastic controlled parabolic equation in the whole
space (see Sects. 2.6.1 and 2.6.2 for stochastic controlled parabolic equations in
bounded domains).We consider the problem using a weighted L2 space as the under-
lying Hilbert space. For simplicity we limit our observations to the one-dimensional
case.

We denote by H the weighted L2(R) space L2 (R, ρκ(ξ)dz), where the weight
ρκ(ξ) = e−κ|ξ| with κ > 0.

The inner product and the norm in H are denoted by 〈·, ·〉H and | · |H , respectively.
Fix λ > 0 and define A(0) = 
 − λI , where 
 : D(
)⊂L2 (R) → L2 (R) is the
Laplacian with domain D(
), which is the Sobolev space H 2(R). Let S(0)(t) denote
the C0-semigroup on L2 (R) generated by A(0). The semigroup S(0)(t) is self-adjoint
on L2 (R) and ∥

∥S(0)(t)
∥
∥ ≤ e−λt . (5.117)

Proposition 5.68
{
S(0)(t), t ≥ 0

}
can be uniquely extended to a C0-semigroup{

S(κ)(t), t ≥ 0
}
on H. Moreover,

∥
∥S(κ)(t)

∥
∥
L(H)

≤ e(
1
2 κ2−λ)t , t ≥ 0. (5.118)

Proof See Proposition 9.4.1, p. 187 of [177]. �
We denote by A(κ) the generator of

{
S(κ)(t), t ≥ 0

}
.

Consider the controlled equation

dX (t) = (
AX (κ)(t) + J R(X (t)) − Ja(t)

)
dt + JdW (t), (5.119)

where W is a standard cylindrical Wiener process on L2 (R); J is the embedding
L2 (R) ↪→ H and a(·) is a control process taking values in L2 (R). Assume that the
Lipschitz continuous map R : L2 (R) → L2 (R) extends to a map H → H which
satisfies Hypothesis 5.42-(i).

The following equation is the uncontrolled counterpart of (5.119)

dX (t) = A(κ)X (t)dt + JdW (t). (5.120)
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Proposition 5.69 For any κ > 0 and λ > 0 the solution of (5.120) is well defined
in H and it admits a non-degenerate invariant measure m.

Proof For the existence of the invariant measure, see Proposition 9.4.6, page 191 of
[177]. In [119], Sect. 4.3, it is proved that the invariant measure can be chosen to be
non-degenerate. �

It can be shown that the transition semigroup for this process is not strongly Feller,
hence it violates the smoothing property required, for example, in Hypothesis 4.76.
Thus the theory of the HJB equations developed in Chap. 4 does not apply in this
case. Nevertheless, we can study the problem using the results of this chapter.

Remark 5.70 We observe that the family of optimal controls described by the state
equation (5.78) needs to satisfy the structural condition described in Chap. 2: the
image of the drift is always contained in the image of Q1/2. The same kind of
structure is also present in the state equation of the parabolic problem studied in
[225] and described in (2.104). In that case the same operator B acts on the drift and
on the diffusion but it is unbounded, so the theory described in this chapter cannot be
used. Still, such a similarity in the structure suggests that some further development
of the theory will probably be able to treat such a case. �

5.7 Results in Special Cases

In this section we present further results about existence and uniqueness of solutions
of HJB equations when a certain “commutative assumption” for the operators A and
Q is satisfied. We will indeed suppose (see Hypothesis 5.71-(D) for a more precise
statement) that there exists an orthonormal basis of H made of eigenvectors of both
A and Q.

The problem was studied in [3, 4, 123, 125] in this case. In this section we recall
some results, mainly from [4, 123]. We omit the proofs. An element of interest of
the approaches developed in [4, 125] is the use of variational solutions of the HJB
equations. In this kind of approach the solution is defined via the duality pairing
of the candidate solution with regular functions. Since the duality is obtained by
extending an L2 inner product on H , the use of this scheme is strictly linked to the
identification of a reference measure on H .

5.7.1 Parabolic HJB Equations

We consider the following set of assumptions (similar to Hypothesis5.1).

Hypothesis 5.71 (A) A is the generator of a strongly continuous semigroup{
et A, t ≥ 0

}
on a real separable Hilbert space H and there exist constants

M ≥ 1 and ω > 0 such that
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∥
∥et A

∥
∥ ≤ Me−ωt , ∀t ≥ 0.

(B) Q ∈ L+(H), T > 0 and μ :=
(
�μ,F μ,

{
Fμ,s

}

s∈[0,T ] ,P
μ,W μ

Q

)
is a general-

ized reference probability space.
(C) esAQesA

∗ ∈ L1(H) for all s > 0. Moreover, for all t ≥ 0,

∫ t

0
Tr
[
esAQesA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAQesA

∗
ds,

is of trace class for every t ≥ 0.
(D) There exists an orthonormal basis {e1, e2, . . .} of H made of elements of D(A)

such that

Ax =
+∞∑

n=1

−αn 〈en, x〉 en, x ∈ D(A),

for some eigenvalues 0 < α1 ≤ α2 ≤ α3 . . . and

Qx =
+∞∑

i=n

qn 〈en, x〉 en, x ∈ H,

for a sequence of nonnegative eigenvalues qn .

If Hypothesis5.71 holds, the existence of an invariant measure m associated with
the following Ornstein–Uhlenbeck process

⎧
⎨

⎩

dX (s) = AX (s)ds + dWQ(s), 0 ≤ s ≤ T,

X (0) = x ∈ H
(5.121)

is proved, for example, in [180], Theorem 11.30, page 325. Observe that, differently
from what we did in previous sections, here the reference measure is the invariant
measure of the homogeneous Cauchy problem (which coincides with that of previous
sections if b = 0 in (5.3)). For any φ ∈ Cb(H), the notation6 Pt [φ](x) will be used

6In Chap.4 and in Appendix B, when the transition semigroup reduces to the Ornstein–Uhlenbeck
case, the notation Rt is used. In this section, and in the proof of Theorem5.41, we keep the notation
Pt even for the Ornstein–Uhlenbeck case because the semigroup plays exactly the same role, from
the perspective of the L2 approach to the HJB equation, as the semigroup Pt in Sect. 5.3 and,
differently from Chap.4 and Appendix B, the two semigroups never appear at the same time, so
there is no possibility of confusion.
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to denote the transition semigroup Pt for (5.121):

Pt [φ](x) = Eφ(X (t, x)).

Denoting by B the completion of the Borel σ-field B(H) with respect to m, Pt
extends to a strongly continuous semigroup of contractions on L2(H,B,m)with the
generator ⎧

⎨

⎩

A : D(A)⊂L2(H,B,m) → L2(H,B,m)

A : φ→Aφ,

whose explicit expression on regular functions is

Aφ(x) = 1

2
Tr [QD2φ] + 〈Ax, Dφ〉 . (5.122)

When Hypothesis 5.71, and in particular its part (D), is satisfied, Remark5.12
ensures that the operator DQ introduced in Definition5.11 is closable so that the
closability problem we mentioned in Sect. 5.2.4 is no longer an issue. Therefore we
work here with more conventional Sobolev spaces. We introduce them now together
with some notations that will be useful in the variational approach to the solution
of the HJB equation described below. Denote by H the space L2(H,B,m), by V
the Sobolev space W 1,2(H,m) made of all functions f of L2(H,B,m) such that
Df ∈ L2(H,B,m), and by V∗ its dual. Identifying H with its dual, one gets the
following Gelfand triple

V ⊂ H ⊂ V∗.

Given T > 0 we introduce

WT :=
{

f : f ∈ L2(0, T ;V),
d

dt
f ∈ L2(0, T ;V∗)

}

.

It follows, for instance, from Theorem 1.2.15 of [5] that WT⊂C([0, T ],H). In
particular, given f ∈ WT , f (T ) is a well-defined element of H and thus an m-a.e.
defined function from H to R. We will use this fact in the following, in particular in
the statements of Theorems5.78 and 5.79.

Lemma 5.72 Let Hypothesis5.71 be satisfied. The operator A : D(A)⊂H → H
extends uniquely to a linear operator Ã ∈ L(V,V∗) such that, for any φ,ψ ∈ V ,

〈
Ãφ,ψ

〉

〈V∗,V〉
=
〈
φ, Ãψ

〉

〈V,V∗〉
= 1

2

∫

H

〈√
QDφ,

√
QDψ

〉

H
dm(x).

Finally, Ã satisfies the following coercivity estimate: there exist α,β > 0 such that,
for any φ ∈ V ,
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−
〈
Ãφ,φ

〉

〈V∗,V〉
≥ α|φ|2V − β|φ|2H (5.123)

and (5.123) holds in particular if one considers α = 1/2 and β = 1/2.

Proof See [3], Lemma 4.2, p. 111. For the last statement, see [4], p. 503. �

Given a measurable map G : V → V∗, a function f ∈ L2(0, T ;V∗) and g ∈ H
we consider the equation

{
ut + Au + G (u) + f (t, x) = 0,
u(T, x) = g(x).

(5.124)

Definition 5.73 A function u ∈ WT is a solution of (5.124) in the variational sense,
if for any ψ ∈ V and any t ∈ [0, T ],

〈u(t),ψ〉 = 〈g,ψ〉 +
∫ T

t

〈
Ãu(s),ψ

〉

〈V∗,V〉
ds +

∫ T

t
〈Gu(s),ψ〉〈V∗,V〉 ds

+
∫ T

t
〈 f (s),ψ〉〈V∗,V〉 ds. (5.125)

Theorem 5.74 Assume that Hypothesis5.71 is satisfied. Assume that G : V → V∗
and there exists a positive constant K < α (where α is the constant from (5.123))
such that:

(G1) |G(ξ)|V∗ ≤ K (1 + |ξ|V) for all ξ ∈ V ,
(G2) |G(ξ) − G(η)|V∗ ≤ K |ξ − η|V for all ξ, η ∈ V .
Then, for every g ∈ H and f ∈ L2(0, T ;V∗) the evolution equation (5.124) has a
unique solution in WT in the sense of Definition 5.73.

Proof See Theorem 5.2 in [3]. �

One can remove the restriction K < α assuming a stronger regularity of the func-
tion G.

Theorem 5.75 Assume that Hypothesis5.71 is satisfied. Assume that G : V → H
and there exists a positive constant K such that:

(G1) |G(ξ)|H ≤ K (1 + |ξ|V) for all ξ ∈ V ,
(G2) |G(ξ) − G(η)|H ≤ K |ξ − η|V for all ξ, η ∈ V .
Then, for every g ∈ H and f ∈ L2(0, T ;V∗) the evolution equation (5.124) has a
unique solution in WT in the sense of Definition 5.73.

Proof See Theorem 5.3 in [3]. �
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5.7.2 Applications to Finite Horizon Optimal Control
Problems

Let Hypothesis 5.71 be satisfied. We denote by 	 the closed ball B�(0) of radius �
in H . Given some generalized reference probability space μ := (�μ,F μ,
{
Fμ,s

}

s∈[0,T ] ,P
μ,W μ

Q

)
we consider the class of admissible controls given by

Uμ
0 = {

a(·) : [0, T ] → 	 : a(·) is Fμ,s − progressively measurable
}
. (5.126)

We consider the optimal control problem, in the weak formulation, characterized
by the state equation

{
dX (s) = (AX (s) + b(X (s)) + B(X (s))a(s)) ds + dW μ

Q(s), 0 ≤ s ≤ T
X (0) = x, x ∈ H,

(5.127)
and the target functional

Jμ(x; a(·)) = E
μ

{∫ T

0
[ f (s, X (s; 0, x, a(·))) + h(a(s))]ds + g(X (T ; 0, x, a(·)))

}

.

(5.128)
The hypotheses on the functions b : H → H , B : H → L(H), f , h and g are spec-
ified below.

Since we are interested in the weak formulation of the problem, we let the gener-
alized reference probability space μ vary and we consider the set of controls given by

U0 :=
⋃

μ

Uμ
0 , (5.129)

where Uμ
0 is defined in (5.126). The value function of the problem is

V 0(x) = inf
a(·)∈U0

Jμ(x; a(·)). (5.130)

The corresponding HJB equation is

⎧
⎨

⎩

vt + Av + 〈b(x), Dv〉 + F(x, Dv) + f (t, x) = 0,

v(T, x) = g(x), x ∈ H,

(5.131)

where the Hamiltonian F is given by

F(x, p) = inf
a∈	

{〈B(x)a, p〉 + h(a)} . (5.132)

If we introduce
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G(v)(x) := 〈b(x), Dv(x)〉 + F(x, Dv(x)),

equation (5.131) can be rewritten in the form (5.124),

{
vt + Av + G (v) + f (t, x) = 0,
v(T, x) = g(x)

(5.133)

and Theorems5.74 and 5.75 can be applied. One gets the following propositions, as
corollaries.

Proposition 5.76 Assume that Hypothesis5.71 is satisfied. Suppose that b and
x→B(x)a, for any a ∈ 	, are Borel measurable maps from H to H, have images
in

√
Q(H) and there exist two positive constants k1 and k2 such that

|Q−1/2b(x)| ≤ k1(1 + |x |) for all x ∈ H (5.134)

and
‖B∗(x)Q−1/2‖L(H) ≤ k2(1 + |x |) for all x ∈ H, (5.135)

where Q−1/2 denotes the pseudoinverse of Q1/2. Moreover, assume that h : 	 → R

is measurable and bounded. Then, for any g ∈ H and f ∈ L2(0, T ;V∗), (5.133) has
a unique solution v ∈ WT , provided that k1 and k2 are sufficiently small.

Proof See Corollary 4.3 in [4]. �

One can remove the restrictions on k1 and k2 if the regularity of b and B is stronger.

Proposition 5.77 Assume that Hypothesis5.71 is satisfied. Suppose that b and
x→B(x)a, for any a ∈ 	, are Borel measurable maps from H to H, have images
in

√
Q(H), and that

sup
x∈H

|Q−1/2b(x)| < +∞ (5.136)

and
sup
x∈H

‖B∗(x)Q−1/2‖L(H) < +∞, (5.137)

where Q−1/2 denotes the pseudoinverse of Q1/2. Moreover, assume that h : 	 → R

is measurable and bounded. Then, for any g ∈ H and f ∈ L2(0, T ;V∗), (5.133) has
a unique solution v ∈ WT .

Proof See Corollary 4.4 in [4]. �

We now state two results that ensure the existence of an optimal control and
characterize the value function as the unique variational solution of theHJB equation.

Theorem 5.78 Assume that the hypotheses of Proposition 5.76 are satisfied. More-
over, assume that:
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(i) f ∈ L2(0, T ;V∗).
(ii) b : H → H and B : H → L(H) are Lipschitz-continuous.
(iii) h : 	 → R is lower semicontinuous.

Then, for each initial datum x ∈ H, there exists an optimal control for the optimal
control problem (5.127)–(5.129). Moreover, if v ∈ WT⊂C([0, T ],H) is the unique
solution of (5.133) and V 0 is the value function defined in (5.130), we have v(0, x) =
V 0(x) for m-a.e. x ∈ H.

Proof See Theorem 5.4 in [4]. �

Theorem 5.79 Assume that the hypotheses of Proposition 5.77 are satisfied. More-
over, assume that:

(i) f ∈ L2(0, T ;H).
(ii) b : H → H and B : H → L(H) are Lipschitz-continuous.
(iii) h : 	 → R is lower semicontinuous.

Then, for each initial datum x ∈ H, there exists an optimal control for the optimal
control problem (5.127)–(5.129) and the unique solution of (5.133) is given by the
value function defined in (5.130). Moreover, if v ∈ WT⊂C([0, T ],H) is the unique
solution of (5.133) and V 0 the value function defined in (5.130), we have v(0, x) =
V 0(x) for m-a.e. x ∈ H.

Proof See Theorem 5.2 in [4]. �

Remark 5.80 We can compare the results and the assumptions of this last section
with those obtained in the previous parts of the chapter. We observe that:

(i) In this section, differently from Sects. 5.2–5.4, the “commutative” Hypothe-
sis 5.71-(D) is needed.

(ii) The Gâteaux differentiability of b, which was demanded in part (D) of Hypoth-
esis 5.1 and then required in Sects. 5.2–5.4, is not needed here.

(iii) In the formulation of the state equation (5.78) we find Q1/2 in front of the
coefficient B. Even if in this respect the state equation (5.127) seems more
general, the situation is not much different since Hypotheses (5.134)–(5.135)
or (5.136)–(5.137) are needed.

(iv) While in Sect. 5.2 we consider the invariant measure m related to the non-
homogeneous Cauchy problem (5.3) (see Hypothesis 5.4), here m represents
the invariant measure associated with the homogeneous stochastic equation
(5.121). Still, as discussed after Theorem5.41, in Sect. 5.4 the mild solution of
the HJB equation can be characterized as a strong solution only if b = 0 and the
properties of strong solutions are needed (see Sect. 5.5) to identify the solution
of the HJB equation and the value function of the optimal control problem.

(v) The results in Sects. 5.2–5.4 refer to the case where the operator DQ can be non-
closable. Conversely, as observed inRemark5.12,Hypothesis5.71, in particular
Hypothesis5.71-(D), implies the closability of the operator DQ .

�
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5.7.3 Elliptic HJB Equations

In this section we present some results regarding the use of L2 theory for the elliptic
equation (5.2). They aremainly taken from [125]which, to the best of our knowledge,
is the only article where an L2-approach for HJB equations arising from optimal
control problemswith infinite horizon is developed. A variational solution of theHJB
equation, different from the one given in Definition5.73, is used. The identification
of the solution with the value function is not provided.

We introduce the following set of assumptions.

Hypothesis 5.81 (A) A is the generator of a strongly continuous semigroup{
et A, t ≥ 0

}
on a real separable Hilbert space H and there exist constants

M ≥ 1 and ω > 0 such that

∥
∥et A

∥
∥ ≤ Me−ωt , ∀t ≥ 0.

Moreover, A is self-adjoint and A−1 ∈ L(H).
(B) Q ∈ L+(H) and Tr[A−1Q] < +∞.
(C) There exists a reflexiveBanach spaceV with D(A)⊂V⊂H having the following

property: A extends to a continuous operator A : V → V ∗ (where V ∗ is the dual
of V ).

(D) μ := (
�,F , {Fs}s∈[0,+∞) ,P,WQ

)
is a generalized reference probability

space.
(E) There exists an orthonormal basis {e1, e2, . . .} of H made of elements of D(A)

such that

Ax =
+∞∑

n=1

−αn 〈en, x〉 en, x ∈ D(A)

for some eigenvalues 0 < α1 < α2 < α3 . . . and

Qx =
+∞∑

i=n

qn 〈en, x〉 en, x ∈ H,

for a sequence of nonnegative eigenvalues qn .

We consider the following SDE

⎧
⎨

⎩

dX (s) = AX (s)ds + dWQ(s), s > 0,

X (0) = x ∈ H
(5.138)

and denote by X (·; x) its mild solution at time t (the existence and the uniqueness
of the solution are provided, for instance, by Theorem1.147).
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Proposition 5.82 Suppose that Hypothesis5.81 is satisfied. Then there exists a
unique invariant measure m for (5.138). The measure m is a centered Gaussian
measure supported in V with covariance operator � := − 1

2 A
−1Q.

Proof See Theorem 6.2.1, p. 97 of [177]. �

We denote by B the completion of the Borel σ-field B(H) with respect to m
and byH the Hilbert space L2(H,B,m). We also denote by Pt , t ≥ 0, the transition
semigroup (indeed the Ornstein–Uhlenbeck semigroup) associated to (5.138). For
any φ ∈ Cb(H) it is given by

Pt [φ](x) = Eφ(X (t, x)).

Proposition 5.83 Suppose that Hypothesis5.81 is satisfied. Then Pt extends to
a strongly continuous semigroup of contractions on L2(H,B,m). Its generator
A : D(A)⊂L2(H,B,m) → L2(H,B,m) is self-adjoint.

Proof The first part of the proposition is a particular case of Proposition5.9. The last
claim is part of Lemma 2.4 of [125]. �

Notation 5.84 Denote by I the set of all sequences � = (�1, �2, . . .) ∈ N
N such that

�i = 0, except for a finite number of indices. �

Definition 5.85 Let {en} be the orthonormal basis of H introduced in Hypothe-
sis 5.81-(E). For j = 0, 1, 2 . . ., denote by h j the standard j-th one-dimensional
Hermite polynomials

h j (ξ) := (−1) j√
n! e

ξ2

2

d j
(
e

−ξ2

2

)

dξ j
, ξ ∈ R.

Given � ∈ I we define

K�(x) :=
∏

i∈N
h�i

(〈
x, �−1/2ei

〉

H

)
, x ∈ H,

the Hermite polynomial on H of index �.

Proposition 5.86 Suppose that Hypothesis5.81 is satisfied. The set of the Hermite
polynomials K� is an orthonormal basis in L2(H,B,m). Moreover, for any � ∈ I,
K� ∈ D(A) and

A(K�) = 	�K�,

where 	� := −∑i �iαi (it is a finite sum), and the αi are from Hypothesis5.81-(E).

Proof See Theorem 9.1.5, p. 191 of [179] and Lemma 2.2 of [125]. �
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Definition 5.87 We define the following function spaces:

(i) The Gauss–Sobolev space of order k, for k = 1, 2, . . ., is the spaceHk defined
by

Hk :=
⎧
⎨

⎩
φ ∈ H :

(
∑

�∈I
(1 − 	�)

k 〈φ, K�〉2H
)1/2

= |(I − A)k/2φ|H < +∞
⎫
⎬

⎭

(observe that the expression is well defined since all αi and �i are nonnegative
and then 	� ≤ 0).

(ii) We denote by H∗
k the dual of Hk .

(iii) Given the weight ρn(x) := (
1 + |x |2)n for x ∈ H , we denote byH0,n the space

H0,n :=
{

f ∈ H :
∫

H
f 2(x)ρn(x)dm(x)

}

endowed with the usual L2-weighted Hilbert space structure.
(iv) Given k = 1, 2, . . . and n = 0, 1, . . ., we denote byHk,n the space

Hk,n := Hk ∩ H0,n,

and byH∗
k,n its dual.

Observe that, for any φ ∈ D(A), we have

∑

�∈I
|	�|2 〈φ, K�〉2H =

∑

�∈I
〈Aφ, K�〉2H = |Aφ|2H < +∞

so one can easily see that D(A) ⊂ H1.A can be extended to the whole spaceH1 as
is shown in the next lemma.

Lemma 5.88 Suppose that Hypothesis5.81 is satisfied. ThenA extends to a contin-
uous linear operator from H1 toH∗

1.

Proof See Lemma 2.4 of [125]. �

Hypothesis 5.89 (i) 	 is a Polish space.
(ii) R̃ : V × 	 → H is Borel measurable and such that, for some n ≥ 0 and R0 >

0,
|R̃(x, a)| ≤ R0(1 + |x |2)n/2 for all (x, a) ∈ V × 	.

We denote by R : V × 	 → Q1/2(H) the function R := Q
1
2 R̃.

(iii) λ : H → R
+ is Borel measurable and there exist two real constants λ0,λ1 > 0

such that

λ0(1 + |x |2)n ≤ λ(x) ≤ λ1(1 + |x |2)n for all x ∈ H.
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(iv) l : V × 	 → R is Borel measurable and there exists a c0 > 0 such that

|l(x, a)| ≤ c0(1 + |x |2)n/2 for all (x, a) ∈ V × 	.

We are interested in studying the HJB equation

(λ(x)I − A) v − F(v) = 0, (5.139)

where
F(v)(x) := inf

a∈	
{〈R(x, a), Dv(x)〉 + l(x, a)} .

Remark 5.90 The HJB equation (5.139) is associated with the optimal control prob-
lem characterized by:

(i) The state equation

{
dX (s) = (AX (s) + R(X (s), a(s))) ds + dWQ(s), s > 0,
X (0) = x, x ∈ H.

(ii) The cost functional

∫ +∞

0
e
∫ t
0 −λ(X (s))dsl(X (t), a(t))dt.

(iii) The set of admissible controls

U0 = {a(·) : [0,+∞) → 	 : a(·) is Fs-progressively measurable} .

�

In order to define and study the solution of (5.139) we introduce the nonlinear
operator

M (v) := (λ(x)I − A) v − F(v)

which, thanks to Lemma5.88, can be defined for any v ∈ H1,n .We have the following
regularity result for M .

Lemma 5.91 Under Hypotheses5.81 and 5.89 the operator M is locally bounded
and Lipschitz continuous fromH1,n toH∗

1,n.Moreover, ifλ0 > R2
0/2, then there exists

a δ > 0 such that, for any f, g ∈ H1,n,

〈M ( f ) − M (g), f − g〉〈H∗
1,n ,H1,n〉 ≥ δ| f − g|2H1,n

.

Proof See Lemmas 4.1 and 4.2 of [125].



680 5 Mild Solutions in L2 Spaces

Definition 5.92 The function v ∈ H1,n is a solution of (5.139) if

〈M (v), f 〉〈H∗
1,n ,H1,n〉 = 0

for any f ∈ H1,n .

Theorem 5.93 If Hypotheses5.81 and 5.89 are satisfied and λ0 > R2
0/2 then

Eq. (5.139) has a unique solution v in the sense of the Definition 5.92. Moreover,
v ∈ H2,n.

Proof See Theorem 4.3 of [125]. �

5.8 Bibliographical Notes

In this chapter we focused our attention on HJB equations in L2 spaces with respect
to the invariant measure of an SDE with addictive noise and globally Lipschitz
continuous drift independent of time. A number of existence results for various
abstract classes of SDEs of this form can be found in the literature, for instance:
for linear systems in [164, 354, 355], Sect. 6.2 of [177] and Sect. 11.5 of [180]; for
the dissipative case in [164, 174, 426, 427, 533], Sects. 6.3 and 6.4 of [177] and
Sect. 11.6 of [180]; for the case of a compact semigroup in [56, 164] and Sect. 11.7
of [180]; for equations with additive noise and weakly continuous drift in [120].7

Some approximation lemmas are presented in Sect. 5.2.2. Lemma5.6 is a standard
approximation result for uniformly continuous functions. Observe that in fact we do
no need the approximating sequence to be in EA(H), a weaker regularity would
be enough for our purposes. The technique of mollification over finite-dimensional
subspaces used to prove the pointwise convergences of Lemma 5.8 is well known
(see e.g. Lemma 1.2, page 164 of [486] or [410]); we also use this kind of approach
in the proof of LemmaB.78. The approximation result of Lemma5.7 (especially its
part (iii)) is ad hoc for the approximation of HJB equations in L2 spaces. Even if we
are not able to quote directly a specific published result, the proof uses completely
standard arguments. Observe that the claim holds for any L2 space on H w.r.t. any
bounded measure, so the fact that we are working with an invariant measure of
(5.8) plays no role. Obviously this specific measure is essential in Proposition5.9.
The claim of Proposition5.9 is proved for the Ornstein–Uhlenbeck case (the proof is
exactly the same), together with some characterization of the domain of the generator
(the operator A defined at the beginning of Sect. 5.2.3), in [148, 149, 176], see also
[121, 122, 152, 153, 184, 270, 297], Chap.7 of [294] and Chap.10 of [179]. We
alsomention, respectively, [417, 446] and [19] for the finite-dimensional and Banach
space cases.

Lemma5.37 provides a way to approximate elements of D(A) even when its
explicit characterization is missing. The space FC2,A∗

0 (H) is used because we can

7For uniqueness results the reader is referred to the review [443] and the references there.
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explicitly compute the operatorA in it (as well as other operators that will be defined
later) and it is dense in L2(H,B,m). Other possible choices can be found in the
literature, for example in Chap.9 of [179] or in Chap. 8 of [153], the authors use, for
the Gaussian case, a space of exponential functions. Using FC2,A∗

0 (H) is consistent
with other similar approximations employed in the book, in particular in Chap. 4, see
e.g. Hypotheses4.133 and 4.141.

In Definition5.11 we introduce a notion of Sobolev space for the case when the
derivative operator Q1/2D is non-closable. Sobolev spaces in infinite dimension with
respect to Gaussian measures are studied, for example, in [153, 484], Chap. 10 and
[179], Chaps. 9 and 10. Sobolev spaces with respect to Gibbs measures are studied
in [150, 151, 171, 172], Chap. 11 of [153] and Chap.12 of [179]. In all of these
cases the derivative operator is closable. Regarding the non-closable case needed
here (see, in particular, Sect. 5.2.4) there is much less in the literature, the readers
may consult [298, 299]. The closability of DQ is related to the closability of the
associated Dirichlet form, see [270, 509] for more on this and [422] for a general
introduction to Dirichlet forms.

For somecomments about the results ofLemma5.14 and adiscussionof the related
literature, the readers may check the proof of Proposition4.61 and Remark4.62.
The proofs of Lemmas5.15 and 5.17 are standard but we could not find precise
references. Results similar to Lemma5.18 are often used in the literature as a step to
prove Bismut–Elworthy–Li formulae, see for instance [486, 582] or [180], Sect. 9.4
(original results for the finite-dimensional case are, for example, in [60, 216]). In its
proof, which expands the ideas contained in Step 1 of the proof of Proposition 2.4 of
[298], the claim of Lemma 6.11 of [582], originally proved there for b ∈ UC2

b (H, H)

and ϕ ∈ UC2
b (H), is extended. Results similar to Proposition 5.20 are given in [179]

(they follow as corollaries of the proofs of Propositions 10.5.2 and 11.2.17) or in
[184] (see p. 241);we followhere the arguments of [298].More details and references
about the claims of Remarks5.21 are given in Sect. 4.3.1.3 and in the bibliographical
notes of Chap.4.

Sections5.3 and 5.4 contain the main results of the chapter. We generalize the
theorems contained in [298] to take into account Hamiltonians dependent on x ∈ H
and t ∈ [0, T ]. In [298] only Hamiltonians of the form F0(DQu)were studied. Apart
from this the setting is the same, beginning with Definition5.28 of a mild solution.
The main arguments used to prove the key result of Sect. 5.3, i.e. Theorem5.35, are
the same as those used in the proof of Theorem 3.7 of [298]. The proofs of Theorems
5.40 and 5.41 follow the lines of the proof of Proposition 4.3 of [298]. The literature
on solutions of HJB equations in L2 spaces is not very extensive and this chapter
contains most of the published results (in Sects. 5.3, 5.4 and then in Sect. 5.7), so we
cannot present a long genealogy of the results. However, many ideas and techniques
have been used before to studyHJB equations in spaces of regular functions discussed
in Chap.4. Thus we refer the reader to Sects. 4.4 and 4.5 and to the bibliographical
notes of Chap.4 for more.

The structure of Sect. 5.5 follows the structure of Sect. 4.8, starting from the proof
of the fundamental identity (Lemma5.50) and its use to obtain a verification the-
orem and optimal feedbacks (Theorem 5.53, Corollary5.54, Theorem 5.55); the
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counterparts in Sect. 4.8 are Lemma4.196, Theorem4.197, Corollary4.198 and The-
orem4.201. We refer the reader to the bibliographical notes of Chap.4 for references
on the subject. Compared to [298], the generalization of the Hamiltonian studied in
Sects. 5.3 and 5.4 allows us to consider in Sect. 5.5 a more general optimal control
problem, where the function R appearing in (5.78) also depends on s and X (s) in
addition to a(s). Lemmas5.46 and 5.49 are similar to results in [298], other proofs
of the section are new. Proposition5.44 is a standard existence and uniqueness result
for solutions of stochastic evolution equations in Hilbert spaces, see the references
mentioned in Chap.1. Lemma5.46 is a corollary of Girsanov’s Theorem, the reader
is referred, for example, to [44, 180, 382, 383, 448, 483, 580] for more on its
Hilbert space formulations and various consequences. Because of the L2 context,
the result of Lemma5.50 holds only m-almost everywhere. This is the main rea-
son for introducing additional hypotheses (namely the boundedness of 	 used in
Lemma5.51 and the continuity of Jμ(t, x; ·)) that we need in the proofs of Theo-
rems5.53 and 5.55. The formulations of the results of Sect. 5.5.5 are new even if the
use of the non-degeneracy hypothesis, together with some continuity assumptions,
was already suggested in Remark 3.10 of [298].

In Sect. 5.6 we show how some of the examples from Sect. 2.6 can be treated using
the approach introduced in this chapter. We focus in particular on the existence of
a (possibly non-degenerate) invariant measure, which is the key assumption needed
here. For material on invariant measures for stochastic delay differential equations,
besides Chap. 10 of [177, 299] which were already mentioned in Sect. 5.6.1, we
refer the reader to [56, 338, 562]; for first-order stochastic equations, especially
those connected to financial problems, results can be found in [299, 303, 430, 522,
553, 565] and Chap.20 of [487].

The material of Sect. 5.7 essentially comes from [3, 4, 125]. More precisely, the
results described in Sect. 5.7.1 (in particular Theorems5.74 and 5.75) are proved in
[3] (the two mentioned theorems correspond to Theorems 5.2 and 5.3 of [3]) while
the content of Sect. 5.7.2 comes from [4]. Theorems5.78 and 5.79 are Theorems 5.4
and 5.2, respectively, in [4]. Section5.7.3 is based on the results obtained in [125] and
the main theorem (Theorem 5.93) is Theorem 4.3 of [125]. In [123] the author uses
a similar technique to deal with the Kolmogorov equation while in [125], Sect. 3, the
authors study the related unbounded case. Even if we use in various parts of the book
the variational solution of the state equation, this is the only section where we use the
notion of a variational solution of the HJB equation (see Definitions5.73 and 5.92).
Indeed, it naturally needs some reference measure on the Hilbert state space and it
is then linked to the study of HJB equations in the L2 space. As far as we know, the
above mentioned papers are the only ones that use this kind of notion of solution in
the context of optimal control but, in the same spirit, a characterization of the value
function for optimal stopping time problems, in terms of variational inequalities, is
given in [38, 116], see also [125, 581, 583].

We also mention the recent paper [574] where the L2 theory for HJB equations in
Hilbert spaces, employing the ideas discussed in Sects. 5.1–5.5, is used to study an
infinite horizon optimal control problem with boundary noise and boundary control.
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The key prerequisite for the approach developed in this chapter is clearly the the-
ory of invariant measures for infinite-dimensional PDEs. The results we use in this
chapter concern invariant measures for SDEs with addictive noise, but the existing
generalizations can be employed to develop applications to optimal control theory
for other classes of stochastic partial differential equations in the spirit of the the-
ory described here. In particular, the existence results for invariant measures for
SPDEs with multiplicative noise (see, e.g., [218], Chap.6 and Sect. 11.2 of [177] and
Sect. 11.4 of [180]) and extensions to stochastic Burgers, Euler and Navier–Stokes
equations (e.g. [7, 59, 81, 82, 159, 161, 253, 256, 336, 337, 389, 390, 515, 570,
571] and Chaps. 14 and 15 of [177]), stochastic reaction-diffusion equations (see
for instance [109, 110]), stochastic porous media equations (as in [32, 169]) and
stochastic nonlinear damped wave equations [31] can be a starting point in the study
of optimal control problems driven by such state equations.

Results about invariantmeasures for transition semigroups for stochastic evolution
equations in Banach spaces (such as those contained in [83, 292]) can be exploited to
extend the techniques presented in this chapter to the Banach space case. Similarly
the studies of SPDEs in domains/half-spaces and related invariant measures (see,
e.g., [19, 165, 166, 494, 495, 497, 498, 546]) can be used as a first step to try to
apply the methods to problems with state constraints. Another possible extension of
the results presented here is the case of locally Lipschitz continuous Hamiltonians,
following the results and the techniques introduced in [105, 307, 438].



Chapter 6
HJB Equations Through Backward
Stochastic Differential Equations

Marco Fuhrman and Gianmario Tessitore

This last chapter of the book completes the picture of the main methods used to study
second-order HJB equations in Hilbert spaces and related optimal control problems
by presenting a survey of results that can be achievedwith the techniques ofBackward
SDEs in infinite dimension.

The chapter has been written independently and autonomously. In order to main-
tain some coherence with the notation used in the Backward SDE literature, the
notation used in this chapter is not always identical to that in the rest of the book.
This is explained in Sects. 6.1.1 and 6.1.2.

The chapter has the following structure.

• Section6.1 explains the basic notation and collects some useful results about gen-
eralized gradients and SDEs which are needed in the rest of the chapter.

• Section6.2 provides results about regular dependence of solutions of SDEs on the
data.

• Section6.3 presents results about well-posedness and regular dependence on the
data for Backward SDEs (BSDEs from now on) and Forward–Backward systems
(FBSDEs) in Hilbert spaces.

• In Sect. 6.4 existence and uniqueness of mild solutions of HJB equations through
FBSDEs are discussed.

• Section6.5 gives applications of the results of Sect. 6.4 to optimal control problems.
An example of a control problem with delay is studied in Sect. 6.6.
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• Sections6.7–6.10 develop the same program for elliptic HJB equations and infinite
horizon control problems. An application to an infinite horizon optimal control
problem driven by a heat equation with additive noise is discussed in Sect. 6.11.

• Results for elliptic HJB equations with non-constant second-order coefficients and
some applications are collected in Sect. 6.12.

6.1 Complements on Forward Equations
with Multiplicative Noise

6.1.1 Notation on Vector Spaces and Stochastic Processes

The notation for Banach spaces and linear operators between them is the same as
that used in the other parts of the book, see, for instance, Appendix A.1.

In this chapter the letters �, H , K will always denote Hilbert spaces. The scalar
product is denoted, as usual, by 〈·, ·〉, with a subscript to specify the space, if neces-
sary. All Hilbert spaces are assumed to be real and separable.

We only consider stochastic differential equations driven by cylindrical Wiener
processes W . By a cylindrical Wiener process with values in a Hilbert space �,
defined on a complete probability space (�,F ,P), we mean a family W (t), t ≥ 0,
of linear mappings � → L2(�) such that

(i) for every u ∈ �, {W (t)u}t≥0 is a real Wiener process (admitting a continuous
modification);

(ii) for every u, v ∈ � and t, s ≥ 0, E (W (t)u · W (s)v) = min(t, s) 〈u, v〉�.
Recall that, in this case, when the noise space � has finite dimension d the Wiener
process can be naturally identified with a d-dimensional standard Wiener process
(β1, . . . ,βd), where βi (t) = W (t)ei and (e1, . . . , ed) denotes an orthonormal basis
of �. In other parts of the book Q-Wiener processes and in particular cylindrical
Wiener processes are introduced in a slightly different (but equivalent) way, see
Sect. 1.2.4 and in particular Remark 1.89.

Unless stated otherwise, {Ft }t≥0 will denote the natural filtration ofW , augmented
by the family N of P-null sets of F :

Ft = σ(W (s)u : s ∈ [0, t], u ∈ �) ∨ N .

The filtrationFt satisfies the usual conditions. All the concepts of measurability for
stochastic processes (e.g. adaptedness, predictability etc.) refer to this filtration. By
P we denote the predictable σ-field on� × [0,∞) or (by abuse of notation) its trace
on � × [0, T ].

For [a, b] ⊂ [0, T ] we use the notation

F[a,b] = σ(W (s)u − W (a)u : s ∈ [a, b], u ∈ �) ∨ N .
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To denote the value of a process X at time s, sometimes instead of X (s) the shortened
notation Xs will be used, especially in proofs. The short-hand “a.a. (a.e.)” means
“almost all (almost everywhere) with respect to the Lebesgue measure”.

Next we define several classes of stochastic processes with values in a Hilbert
space K .

• L2
P(� × [0, T ]; K ) denotes the space of equivalence classes of processes Y ∈

L2(� × [0, T ]; K ), admitting a predictable version. L2
P(� × [0, T ]; K ) is

endowed with the norm

|Y |2 = E

∫ T

0
|Y (s)|2ds.

• L p
P(�; L2([0, T ]; K )) denotes the space of equivalence classes of processes Y

such that the norm

|Y |p = E

(∫ T

0
|Y (s)|2ds

)p/2

is finite, and Y admits a predictable version.
• CP([0, T ], L2(�; K )) denotes the space of K -valued processes Y such that Y :

[0, T ] → L2(�; K ) is continuous and Y has a predictable modification, endowed
with the norm

|Y |2 = sup
s∈[0,T ]

E |Y (s)|2.

Elements of CP([0, T ], L2(�; K )) are identified up to modification.
• L p

P(�;C([0, T ], K )) denotes the space of predictable processes Y with continu-
ous paths in K , such that the norm

|Y |p = E sup
s∈[0,T ]

|Y (s)|p

is finite. Elements of L p
P(�;C([0, T ], K )) are identified up to indistinguishability.

Recall that, for a given element � of L2
P(� × [0, T ];L2(�, K )), the Itô sto-

chastic integral
∫ t
0 �(s) dW (s), t ∈ [0, T ], is a K -valued martingale belonging to

L2
P(�;C([0, T ], K )).
If � belongs to L2

P(� × [0, T ];�), the real-valued Itô stochastic integral
∫ t
0

〈�(s), dW (s)〉� is by definition the integral
∫ t
0 �(s)∗ dW (s), where �(ω, s)∗ ∈

�∗ denotes the element corresponding to �(ω, s) ∈ � by the Riesz isometry (i.e.,
�(ω, s)∗h = 〈�(ω, s), h〉�, h ∈ �).

The previous definitions have obvious extensions to processes defined on subin-
tervals of [0, T ].
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6.1.2 The Class G

In this section we introduce a class of maps acting among Banach spaces, possessing
suitable continuity and differentiability properties. Many assumptions in the follow-
ing sections will be stated in terms of membership in this class.

The class we are going to introduce has several useful properties. First, member-
ship in this class is often easy to verify: see Lemmas 6.4 and 6.6 below. Next, it is a
well-behaved class as far as chain rules are concerned. Finally, it is sufficiently large
to include operators commonly arising in applications to stochastic partial differen-
tial equations, such as Nemytskii (evaluation) operators; it is well known that the
Nemytskii operators are not Fréchet differentiable except in trivial cases.

In this subsection, X , Y , Z , V denote Banach spaces. We recall that for a mapping
F : X → V the directional derivative at a point x ∈ X in the direction h ∈ X is
defined as

∇F(x; h) = lim
s→0

F(x + sh) − F(x)

s
,

whenever the limit exists in the topology of V . F is called Gâteaux differentiable
at the point x if it has directional derivative in every direction at x and there exists
an element of L(X, V ), denoted ∇F(x) and called Gâteaux derivative, such that
∇F(x; h) = ∇F(x)h for every h ∈ X .

Remark 6.1 When V = R the Gâteaux derivative∇F(x) belongs toL(X,R) = X∗,
the dual space of X . If, in addition, X is a Hilbert space then it can be identified
canonically with X∗ and the Gâteaux derivative of F at x can be thought of as an
element of X that we denote by DF(x). Thus, DF(x) is the unique element of X such
that ∇F(x; h) = ∇F(x)h = 〈DF(x), h〉X for every h ∈ X . Similarly, in the same
circumstances, the second Gâteaux derivative will be identified with a (symmetric)
element of L(X), denoted by D2F(x). This convention is a little different from the
rest of the book, where the notation DF(x) is employed for the Fréchet derivative
of F at x . �

Definition 6.2 We say that a mapping F : X → V belongs to the class G1(X, V ) if
it is continuous, Gâteaux differentiable on X , and ∇F : X → L(X, V ) is strongly
continuous.

The last requirement of the definitionmeans that for every h ∈ X themap∇F(·)h :
X → V is continuous. Note that ∇F : X → L(X, V ) is not continuous in general if
L(X, V ) is endowed with the norm operator topology; clearly, if this happens then
F is Fréchet differentiable on X . Some features of the class G1(X, V ) are collected
below.

Lemma 6.3 Suppose F ∈ G1(X, V ). Then

(i) (x, h)→∇F(x)h is continuous from X × X to V ;
(ii) if G ∈ G1(V, Z) thenG(F) ∈ G1(X, Z) and∇(G(F))(x) = ∇G(F(x))∇F(x).



6 HJB Equations Through Backward Stochastic … 689

Proof (i) Let xn → x and hn → h in X . By the Banach–Steinhaus theorem we have
|∇F(xn)|L(X,V ) < L for every n and for a suitable constant L . Therefore

|∇F(xn)hn − ∇F(x)h| ≤ L|h − hn| + |∇F(xn)h − ∇F(x)h|

and the claim follows immediately.

(i i) First we notice that for all x, y ∈ H :

F(x + y) = F(x) +
∫ 1

0
∇F(x + r y)y dr. (6.1)

Therefore, given x , h ∈ X , s ∈ (0, 1], repeated application of (6.1) yields

G(F(x + sh)) − G(F(x))

=
∫ 1

0

[
∇G

(
F(x) + σ

∫ 1

0
∇F(x + srh)shdr

)∫ 1

0
∇F(x + srh)shdr

]
dσ.

Let g(s) = ∫ 1
0 ∇F(x + srh)hdr , K = {∇F(x + rh)h : r ∈ [0, 1]} and K̂ be the

closed convex hull of K . Clearly K , and hence K̂ , are compact subsets of V and
g(s) ∈ K̂ for all s ∈ [0, 1]. Moreover,

{F(x) + σs
∫ 1

0
∇F(x + srh)dr : σ ∈ [0, 1], s ∈ [0, 1]}

⊂ K̂1 := {F(x) + σk : σ ∈ [0, 1], k ∈ K̂ },

which is itself compact. By the dominated convergence theorem lims→0+ g(s) =
∇F(x)h and since, by the continuity of∇G, supz∈K̂1,k∈K̂ |∇G(z)k| < +∞, applying
again the dominated convergence theorem we can conclude that

lim
s→0+

G(F(x + sh)) − G(F(x))

s

=
∫ 1

0
lim
s→0+

[∇G(F(x) + σsg(s))g(s)] dσ = ∇G(F(x))∇F(x)h.

The proof that the map x→∇G(F(x))∇F(x) is strongly continuous is identical to
the proof of point (i). �

In addition to the ordinary chain rule in point (i i) above, a chain rule for theMalli-
avin derivative operator holds: see Sect. 6.2.2. Membership of a map in G1(X, V )

may be conveniently checked as shown in the following lemma.

Lemma 6.4 A map F : X → V belongs to G1(X, V ) provided the following condi-
tions hold:
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(i) the directional derivatives ∇F(x; h) exist at every point x ∈ X and in every
direction h ∈ X;

(ii) for every h, the mapping ∇F(·; h) : X → V is continuous;
(iii) for every x, the mapping h→∇F(x; h) is continuous from X to V .

Proof We have to show that F is continuous and the map h→∇F(x; h), where
∇F(x; h)denotes the directional derivative of F at afixedpoint x ∈ X in the direction
h ∈ X , is linear. To start, we notice that a version of formula (6.1) still holds under
the present assumptions, namely: F(x + y) = F(x) + ∫ 1

0 ∇F(x + r y; y) dr for all
x, y ∈ X .

First we show linearity. By definition of the directional derivative it is obvious that
for all ρ ≥ 0 and all x, h ∈ X : ∇F(x, ρh) = ρ∇F(x, h). Since, for fixed h, k ∈ X ,

F(x + s(h + k)) − F(x)

s
= F(x + s(h + k)) − F(x + sh)

s
+ F(x + sh) − F(x)

s
,

we have, by (6.1),

∇F(x; h + k) = lim
s→0+

∫ 1

0
∇F(x + sh + rsk; k) dr + ∇F(x; h),

provided the limit exists. The continuity of ∇F(·; k) implies that we can pass to the
limit under the integral, by a dominated convergence argument, obtaining∇F(x; h +
k) = ∇F(x; k) + ∇F(x; h). It follows, in particular, that∇F(x;−h) = −∇F(x; h)

and so ∇F(x, ρh) = ρ∇F(x, h) for all ρ ∈ R and all x, h ∈ X . Linearity is proved.
From now on, we denote the directional derivative ∇F(x; k) by ∇F(x)k.

Now we come to the continuity of F . Let yn → 0 in X and fix x ∈ X . By (6.1) we
have: F(x + yn) − F(x) = ∫ 1

0 ∇F(x + r yn)yn dr . We see that the set {x + r yn :
r ∈ [0, 1], n ∈ N} is a compact subset of X . Therefore (using again the Banach–
Steinhaus theorem) supr∈[0,1],n∈N |∇F(x + r yn)|L(X,V ) < +∞ and we can apply the
dominated convergence theorem to conclude that F(x + yn) − F(x) → 0. �

We need to generalize these definitions to functions depending on several vari-
ables. For a function F : X × Y → V the partial directional and Gâteaux derivatives
with respect to the first argument, at point (x, y) and in the direction h ∈ X , are
denoted ∇x F(x, y; h) and ∇x F(x, y), respectively, their definitions being obvious.

Definition 6.5 Wesay that amapping F : X × Y → V belongs to the classG1,0(X ×
Y, V ) if it is continuous, Gâteaux differentiable with respect to x on X × Y , and
∇x F : X × Y → L(X, V ) is strongly continuous.

As in Lemma 6.3 one can prove that for F ∈ G1,0(X × Y, V ) the mapping
(x, y, h)→∇x F(x, y)h is continuous from X × Y × X to V , and analogues of the
previously stated chain rules hold. The following result is proved in the same way
as Lemma 6.4 (but note that continuity is explicitly required).

Lemma 6.6 A continuous map F : X × Y → V belongs to G1,0(X × Y, V ) pro-
vided the following conditions hold:
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(i) the directional derivatives ∇x F(x, y; h) exist at every point (x, y) ∈ X × Y
and in every direction h ∈ X;

(ii) for every h, the mapping ∇F(·, ·; h) : X × Y → V is continuous;
(iii) for every (x, y), the mapping h→∇x F(x, y; h) is continuous from X to V .

The previous definitions and properties have obvious generalizations to slightly
different situations, provided obvious changes are made. For instance, the space Y
might be replaced by an interval [0, T ] or [0,∞). Another situation occurs when
F depends on additional arguments: for instance, we say that F : X × Y × Z → V
belongs to G1,1,0(X × Y × Z , V ) if it is continuous, Gâteaux differentiable with
respect to x and y on X × Y × Z , and ∇x F : X × Y × Z → L(X, V ) and ∇y F :
X × Y × Z → L(Y, V ) are strongly continuous.

We will make systematic use of a parameter-dependent contraction principle,
stated below as Proposition 6.7. It will be used to study regular dependence of solu-
tions to stochastic equations on their initial data, which is crucial to the investigation
of regularity properties of the nonlinear Kolmogorov equation which is the object of
this Chapter. The first part of the following proposition is proved in [582], Theorems
10.1, 10.2 (see also [106] Appendix C). The second part is an immediate corollary.

Proposition 6.7 (Parameter-dependent contraction principle) Let F : X × Y → X
be a continuous mapping satisfying

|F(x1, y) − F(x2, y)| ≤ α|x1 − x2|,

for some α ∈ [0, 1) and every x1, x2 ∈ X, y ∈ Y . Let φ(y) denote the unique fixed
point of the mapping F(·, y) : X → X. Then φ : Y → X is continuous. If, in addi-
tion, F ∈ G1,1(X × Y, X), then φ ∈ G1(Y, X) and

∇φ(y) = ∇x F(φ(y), y)∇φ(y) + ∇y F(φ(y), y), y ∈ Y.

More generally, let F : X × Y × Z → X be a continuous mapping satisfying

|F(x1, y, z) − F(x2, y, z)| ≤ α|x1 − x2|,

for someα ∈ [0, 1)and every x1, x2 ∈ X, y ∈ Y , z ∈ Z. Letφ(y, z)denote the unique
fixed point of the mapping F(·, y, z) : X → X. Then φ : Y × Z → X is continuous.
If, in addition, F ∈ G1,1,0(X × Y × Z , X), then φ ∈ G1,0(Y × Z , X) and

∇yφ(y, z) = ∇x F(φ(y, z), y, z)∇yφ(y, z) + ∇y F(φ(y, z), y, z), y ∈ Y, z ∈ Z .

(6.2)
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6.1.3 The Forward Equation: Existence, Uniqueness
and Regularity

Let W (t), t ∈ [0, T ], be a cylindrical Wiener process with values in a Hilbert space
�, defined on a probability space (�,F ,P). We fix an interval [t, T ] ⊂ [0, T ] and
we consider the Itô stochastic differential equation for an unknown process X (s),
s ∈ [t, T ], with values in a Hilbert space H :

{
dX (s) = AX (s) ds + b(s, X (s)) ds + σ(s, X (s)) dW (s), s ∈ [t, T ],
X (t) = x ∈ H.

(6.3)

The precise notion of solution will be given next. For the moment we emphasize the
fact thatW will only denote a cylindricalWiener process. Other cases can be reduced
to this one by standard reformulations; for instance, the case of a finite-dimensional
driving Brownian motion corresponds to the case where � has finite dimension.

We assume the following:

Hypothesis 6.8 (i) The operator A is the generator of a strongly continuous semi-
group et A, t ≥ 0, in the Hilbert space H .

(ii) The mapping b : [0, T ] × H → H is measurable and satisfies, for some con-
stant L > 0,

|b(t, x) − b(t, y)| ≤ L |x − y|, t ∈ [0, T ], x, y ∈ H.

(iii) σ is a mapping [0, T ] × H → L(�, H) such that for every v ∈ � the map
σv : [0, T ] × H → H is measurable, esAσ(t, x) ∈ L2(�, H) for every s > 0,
t ∈ [0, T ] and x ∈ H . Moreover, for every s > 0, t ∈ [0, T ], x, y ∈ H ,

|esAσ(t, x)|L2(�,H) ≤ L s−γ(1 + |x |),
|esAσ(t, x) − esAσ(t, y)|L2(�,H) ≤ L s−γ |x − y| (6.4)

and
|σ(t, x)|L(�,H) ≤ L (1 + |x |), (6.5)

for some constants L > 0 and γ ∈ [0, 1/2).
(iv) For every s > 0 and t ∈ [0, T ],

b(t, ·) ∈ G1(H, H), esAσ(t, ·) ∈ G1(H,L2(�, H)).

By a solution to Eq. (6.3) we mean anFt -adapted process X (s), s ∈ [t, T ], with
continuous paths in H , such that, P-a.s.

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X (r)) dr +

∫ s

t
e(s−r)Aσ(r, X (r)) dW (r), s ∈ [t, T ].

(6.6)
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To shorten the notation slightly, we will often write Xs and Ws instead of X (s),
W (s). We note that X is clearly a predictable process in H and that the measurability
assumption in Hypothesis 6.8-(iii) is needed to ensure that the integrand process
e(s−r)AG(r, X (r)), r ∈ [s, t], is a predictable process with values in L2(�, H)

(endowed with the Borel σ-field). To stress dependence on the initial data we denote
the solution by X (s; t, x). Note that X (s; t, x) isF[t,T ]-measurable, hence indepen-
dent ofFt .

The inequality (6.5) and Hypothesis 6.8-(iv) are needed to have additional reg-
ularity for the process X , but they are not used in Proposition 6.9 below. It is a
consequence of our assumptions that for every s > 0, t ∈ [0, T ], x, h ∈ H ,

|∇xb(t, x)h| ≤ L |h|, |∇x (e
sAσ(t, x))h|L2(�,H) ≤ L s−γ |h|. (6.7)

Proposition 6.9 Under the assumptions of Hypothesis 6.8-(i)-(i i)-(i i i), for every
p ∈ [2,∞) there exists a unique process X ∈ L p

P(�;C([t, T ], H)) which is a solu-
tion to (6.6). Moreover,

E sup
s∈[t,T ]

|X (s; t, x)|p ≤ C(1 + |x |)p, (6.8)

for some constant C depending only on p, γ, T, L and M := sups∈[0,T ] |esA|.
Proof The result is well known, see e.g. [177], Theorem 5.3.1. We include the proof
for completeness and because it will be useful in the following.We often write Xs for
X (s) and similar conventions are used for other stochastic processes. The argument
is as follows: we define a mapping � from L p

P(�;C([t, T ], H)) to itself by the
formula

�(X)s = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, Xr ) dr +

∫ s

t
e(s−r)Aσ(r, Xr ) dWr , s ∈ [t, T ],

and show that it is a contraction, under an equivalent norm. The unique fixed point
is the required solution.

For simplicity,we set t = 0 andwe treat only the caseb = 0, the general case being
handled in a similar way. Let us introduce the norm ‖X‖p = E sups∈[0,T ] e−βsp|Xs |p,
where β > 0 will be chosen later. In the space L p(�;C([0, T ], H)) this norm is
equivalent to the original one. We will use the so-called factorization method, see
[177], Theorem 5.2.5. Let us take p > 2 and α ∈ (0, 1) such that

1

p
< α <

1

2
− γ, and let c−1

α =
∫ s

r
(s − u)α−1(u − r)−αdu.

Then, by the stochastic Fubini theorem,
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�(X)s = esAx + cα

∫ s

0

∫ s

r
(s − u)α−1(u − r)−αe(s−u)Ae(u−r)A du σ(r, Xr ) dWr

= esAx + cα

∫ s

0
(s − u)α−1e(s−u)AYu du,

where

Yu =
∫ u

0
(u − r)−αe(u−r)Aσ(r, Xr ) dWr .

By the Hölder inequality, setting M = sups∈[0,T ] |esA|, p′ = p/(p − 1),

e−βs

∣∣∣∣
∫ s

0
(s − u)α−1e(s−u)AYu du

∣∣∣∣ ≤
(∫ s

0
e−p′β(s−u)(s − u)(α−1)p′

ds

) 1
p′ ·

·
(∫ s

0
e−pβu |e(s−u)AYu |p du

) 1
p

≤ M

(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (∫ T

0
e−pβu |Yu |p du

) 1
p

, (6.9)

and we obtain

‖�(X)‖ ≤ M |x | + Mcα

(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (

E

∫ T

0
e−pβu |Yu |p du

) 1
p

.

By the Burkholder–Davis–Gundy inequalities, taking into account the assumption
(6.4), we have, for some constant cp depending only on p,

E |Yu |p ≤ cpE

(∫ u

0
(u − r)−2α|e(u−r)Aσ(r, Xr )|2L2(�,H) dr

) p
2

≤ L pcpE

(∫ u

0
(u − r)−2α−2γ(1 + |Xr |)2 dr

) p
2

≤ L pcpE sup
r∈[0,u]

[(1 + |Xr |)pe−pβr ]
(∫ u

0
(u − r)−2α−2γe2βr dr

) p
2

,

which implies

e−pβu
E |Yu |p ≤ L pcp(1 + ‖X‖p)

(∫ u

0
(u − r)−2α−2γe−2β(u−r) dr

) p
2

≤ L pcp(1 + ‖X‖p)

(∫ T

0
r−2α−2γe−2βr dr

) p
2

.

We conclude that
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‖�(X)‖ ≤ M |x | + MLcα

(
T cp(1 + ‖X‖p)

) 1
p ·

·
(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (∫ T

0
r−2α−2γe−2βr dr

) 1
2

.

This shows that � is a well defined mapping on L p(�;C([0, T ], H)). If X , X1 are
processes belonging to this space, similar passages show that

‖�(X) − �(X1)‖ ≤ MLcα

(
T cp

) 1
p ‖X − X1‖·

·
(∫ T

0
e−p′βuu(α−1)p′

du

) 1
p′ (∫ T

0
r−2α−2γe−2βr dr

) 1
2

,

so that, for β sufficiently large, the mapping � is a contraction.
In particular, we obtain ‖X‖ ≤ C(1 + |x |), which proves the estimate (6.8). �

6.2 Regular Dependence on Data

6.2.1 Differentiability

For further developments we need to investigate the dependence of the solution
X (s; t, x) on the initial data x and t . We first reformulate Eq. (6.6) as an equation on
[0, T ]. We set

S(s) = esA for s ≥ 0, S(s) = I for s < 0, (6.10)

and we consider the equation

X (s) = S(s − t)x +
∫ s

0
1[t,T ](r)S(s − r)b(r, X (r)) dr

+
∫ s

0
1[t,T ](r)S(s − r)σ(r, X (r)) dW (r), (6.11)

for the unknown process X (s), s ∈ [0, T ]. Under the assumptions of Hypothesis 6.8,
Eq. (6.11) has a unique solution X ∈ L p

P(�;C([0, T ], H)) for every p ∈ [2,∞). It
clearly satisfies X (s) = x for s ∈ [0, t), and its restriction to the time interval [t, T ]
is the unique solution to (6.6).

From now on we denote by X (s; t, x), s ∈ [0, T ], the solution to (6.11).
Proposition 6.10 AssumeHypothesis 6.8. Then, for every p ∈ [2,∞), the following
hold.

(i) Themap (t, x)→X (·; t, x)belongs toG0,1
(
[0, T ] × H, L p

P(�;C([0, T ], H))
)
.
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(ii) Denoting by ∇x X the partial Gâteaux derivative, for every direction h ∈ H
the directional derivative process ∇x X (s; t, x)h, s ∈ [0, T ], solves, P-a.s., the
equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇x X (s; t, x)h = e(s−t)Ah +
∫ s

t
e(s−r)A∇xb(r, X (r; t, x))∇x X (r; t, x)h dr

+
∫ s

t
∇x (e

(s−r)Aσ(r, X (r; t, x)))∇x X (r; t, x)h dW (r), s ∈ [t, T ],
∇x X (s; t, x)h = h, s ∈ [0, t).

(6.12)
(iii) Finally, |∇x X (·; t, x)h|L p

P (�;C([0,T ],H)) ≤ c |h| for some constant c.
Proof Let us consider again the map� defined in the proof of Proposition 6.9. In our
present notation,� can be seen as a mapping from L p

P(�;C([0, T ], H)) × [0, T ] ×
H to L p

P(�;C([0, T ], H)):

�(X, t, x)s = S(s − t)x +
∫ s

0
1[t,T ](r)S(s − r)b(r, Xr ) dr

+
∫ s

0
1[t,T ](r)S(s − r)σ(r, Xr ) dWr ,

for s ∈ [0, T ]. By the arguments of the proof of Proposition 6.9, �(·, t, x) is a con-
traction in L p

P(�;C([0, T ], H)), under an equivalent norm, uniformly with respect
to t, x . The process X (·; t, x) is the unique fixed point of �(·, t, x). So, by the
parameter-dependent contraction principle (Proposition 6.7), it suffices to show that

� ∈ G1,0,1
(
L p
P(�;C([0, T ], H)) × [0, T ] × H, L p

P(�;C([0, T ], H))
)
.

By an obvious extension of Lemma 6.6, the proof is concluded by the following
steps.

Step 1. � is continuous. We have already noticed that �(·, t, x) is a contraction,
uniformly with respect to x ∈ H and t ∈ [0, T ], and so �(·, t, x) is continuous,
uniformly in t, x .Moreover, for fixed X it is easy to verify that�(X, ·, ·) is continuous
from [0, T ] × H to L p

P(�;C([0, T ], H)).
Step 2. The directional derivative ∇X�(X, t, x; N ) in the direction N ∈ L p

P(�;
C([0, T ], H)) is the process given by

∇X�(X, t, x; N )s =
∫ s

t
e(s−r)A∇xb(r, Xr )Nr dr

+
∫ s

t
∇x (e

(s−r)Aσ(r, Xr ))Nr dWr , s ∈ [t, T ],
∇X�(X, t, x; N )s = 0, s ∈ [0, t);

moreover, the mappings (X, t, x)→∇X�(X, t, x; N ) and N→∇X�(X, t, x; N ) are
continuous.



6 HJB Equations Through Backward Stochastic … 697

We limit ourselves to proving this claim in the special case b = 0, the general case
being a straightforward extension. For fixed t ∈ [0, T ] and x ∈ H , for all s ∈ [t, T ]:

I ε
s := 1

ε
�(X + εN , t, x)s − 1

ε
�(X, t, x)s −

∫ s

t
∇x (e

(s−r)Aσ(r, Xr ))NrdWr

=
∫ s

t

(∫ 1

0

(∇x (e
(s−r)Aσ(r, Xr + ζεNr ))Nr − ∇x (e

(s−r)Aσ(r, Xr ))Nr
)
dζ

)
dWr.

Proceeding as in the proof of Proposition 6.9 (with β = 0) we get for 1/p < α <

1/2 − γ and for a suitable constant cp:

|I ε|p
L p
P (�;C([0,T ],H))

≤ cpE
∫ T

t
|Y ε

u |pdu,

where

Y ε
u =

∫ u

t
(u − r)−α

(∫ 1

0

(
∇x (e

(u−r)Aσ(r, Xr + ζεNr ))Nr

− ∇x (e
(u−r)Aσ(r, Xr ))Nr

)
dζ

)
dWr .

Therefore

E|Y ε
u |p ≤ cE

(∫ u

t
(u − r)−2α

∣∣∣∣
∫ 1

0

(
∇x (e

(u−r)Aσ(r, Xr + ζεNr ))Nr

− ∇x (e
(u−r)Aσ(r, Xr ))Nr

)
dζ

∣∣∣∣
2

L2(�,H)

dr

)p/2

for a suitable constant c. Since for all ε

∣∣∣∣
∫ 1

0
∇x (e

(u−r)Aσ(r, Xr + ζεNr ))Nrdζ

∣∣∣∣
L2(�,H)

≤ L(u − r)−γ |N |C([0,T ],H)

and ∇x (esAσ(t, x)v) is continuous in x then, by dominated convergence, we get
E
∫ T
t |Y ε

u |pdu → 0 and the claim follows.
Continuity of the mappings (X, t, x)→∇X�(X, t, x; N ) and N→∇X�(X, t,

x; N ) can be proved in a similar way.
Step 3. Finally, it is clear that the directional derivative ∇x�(X, t, x; h) in the

direction h ∈ H is the process given by

∇x�(X, t, x; h)s = e(s−t)Ah, s ∈ [t, T ],
∇x�(X, t, x; h)s = h, s ∈ [0, t),
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and that the mappings (X, t, x)→∇x�(X, t, x; h) and h→∇x�(X, t, x; h) are con-
tinuous.

To complete the proof we observe that the Eq. (6.12) is just a re-writing of (6.2)
and that the estimate in (i i i) is a trivial consequence of Eq. (6.12) and the fact
that |∇X�| is uniformly bounded by a constant <1, by the contraction property
of �. �

6.2.2 Differentiability in the Sense of Malliavin

In order to proceed further in the study of the properties of the solution to the forward
equation we need to introduce basic notions and tools of the Malliavin calculus. We
refer the reader to the book [468] for a detailed exposition; the paper [328] treats the
extensions to Hilbert space-valued random variables and processes. We will report
without proofs only the results that will be used in the sequel. This digression on
the Malliavin calculus ends after Lemma 6.12, when we come back to the forward
equation.

We also inform the reader that the aim of this entire section is just to prove
Proposition 6.17, whose statement can be understood after reading a few introductory
lines preceding it, and that no reference to the Malliavin calculus will be made in the
sections that follow.

Our starting point will be a cylindrical Wiener process {Wt }t≥0 on a real separable
Hilbert space �. For every (deterministic) function h ∈ L2([0, T ];�) the integral∫ T
0 h(t)∗ dWt will be denotedbyW (h),whereh(t)∗ ∈ �∗ denotes the imageofh(t) ∈

� under the Riesz isometry. We will also use the notationW (h) = ∫ T
0 〈h(t), dWt 〉�.

Given a Hilbert space K , let SK be the set of K -valued random variables F of the
form

F =
m∑
j=1

f j (W (h1), . . . ,W (hn))e j ,

where h1, . . . , hn ∈ L2([0, T ];�), (e j ) is a basis of K and f1, . . . fm are infinitely
differentiable functions R

n → R bounded together with all their derivatives. The
Malliavin derivative DMF of F ∈ SK is defined as the process DM

η F , η ∈ [0, T ],

DM
η F =

m∑
j=1

n∑
k=1

∂k f j (W (h1), . . . ,W (hn))e j ⊗ hk(η),

with values in L2(�, K ); by ∂k we denote the partial derivatives with respect to
the k-th variable and by e j ⊗ hk(η) the operator u→e j 〈hk(η), u〉�. It is known that
the operator DM : SK ⊂ L2(�; K ) → L2(� × [0, T ];L2(�, K )) is closable. We
denote by D

1,2(K ) the domain of its closure, and use the same letter to denote DM

and its closure:
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DM : D1,2(K ) ⊂ L2(�; K ) → L2(� × [0, T ];L2(�, K )).

The adjoint operator of DM,

δ : dom (δ) ⊂ L2(� × [0, T ];L2(�, K )) → L2(�; K ),

is called the Skorohod integral. Thus, δ acts on a certain subset of square-integrable
stochastic processes uη, η ∈ [0, T ], with values in L2(�, K ) (more precisely, on
equivalence classes up to the product measure P ⊗ dη) and its value at u is a square-
integrable random variable with values in K (more precisely, a P-equivalence class),
that will be denoted δ(u) or

∫ T
0 uη d̂Wη, because of its close connections with the Itô

integral (see, for instance, Proposition 6.11 below). We also need to introduce the
space L

1,2(L2(�, K )) of processes u ∈ L2(� × [0, T ];L2(�, K )) such that ur ∈
D

1,2(L2(�, K )) for a.e. r ∈ [0, T ], and there exists a measurable version of DM
η ur

satisfying

‖u‖2
L1,2(L2(�,K ))

= ‖u‖2L2(�×[0,T ];L2(�,K ))
+ E

∫ T

0

∫ T

0
‖DM

η ur‖2L2(�,L2(�,K )) dr dη < ∞.

The definition of L1,2(K ) for an arbitrary Hilbert space K (instead of L2(�, K )) is
entirely analogous.

In the following proposition we summarize all the properties that we need in the
sequel concerning the objects introduced above. We omit the proofs, which can be
found in [328] or, after appropriate reformulation, in [468] or [469]. In particular,
point 4 is proved in [328], Proposition 3.4. Point 5 can be found in [469], Theorem
3.2, or [328], Proposition 2.11.

Proposition 6.11 With the previous notation, the following holds.

(1) If F ∈ D
1,2(K ) isFt -adapted then DMF = 0 a.s. on � × (t, T ].

(2) If u is an (adapted) process belonging to L2
P(� × [0, T ];L2(�, K )) then u ∈

dom(δ) and the Skorohod integral δ(u) coincides with the Itô integral, i.e.,

∫ T

0
uη d̂Wη =

∫ T

0
uη dWη.

(3) If u ∈ L
1,2(L2(�, K )) then u ∈ dom(δ) and ‖δ(u)‖2L2(�;K )

≤ ‖u‖2
L1,2(L2(�,K ))

.
In particular, the Skorohod integral δ is a continuous linear operator from
L
1,2(L2(�, K )) to L2(�; K ).

(4) If u ∈ L
1,2(L2(�, K )), and for a.a. η the process {DM

η ur }r∈[0,T ] belongs to
dom(δ), and the map η→δ(DM

η u) belongs to L2(� × [0, T ];L2(�, K )), then
δ(u) ∈ D

1,2(K ) and DM
η δ(u) = uη + δ(DM

η u), i.e.,

DM
η

∫ T

0
ur d̂Wr = uη +

∫ T

0
DM

η ur d̂Wr .
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(5) If F ∈ D
1,2(R), u ∈ L2(� × [0, T ];L2(�,R)) � L2(� × [0, T ];�∗) belongs

to dom(δ) and Fu ∈ L2(� × [0, T ];�∗), then Fu ∈ dom(δ) and
δ(Fu) = Fδ(u) − 〈

DMF, u
〉
, which means

∫ T

0
Fuη d̂Wη = F

∫ T

0
uη d̂Wη −

∫ T

0

〈
DM

η F, uη

〉
L2(�,K )

dη,

provided the right-hand side belongs to L2(�;R).

In particular, if 0 ≤ a ≤ b ≤ T , ξ ∈ �, and upon taking uη = ξ∗1[a,b](η), we
have Fξ∗1[a,b] ∈ dom(δ) and

∫ b

a
F ξ∗d̂Wη = F

∫ b

a
ξ∗d̂Wη −

∫ b

a
DM

η Fξ dη = F(Wbξ − Waξ) −
∫ b

a
DM

η Fξ dη,

(6.13)
provided F ∈ D

1,2(R) and the right-hand side of (6.13) belongs to L2(�;R).

Finally, we need to define the space D
1,2
loc(K ). If F ∈ D

1,2(K ) and F = 0 on a
measurable subset A ⊂ � then 1ADMF = 0; this follows immediately from the
corresponding result for K = R

d ([469], Lemma 2.6). Therefore the following def-
inition is meaningful: we say that a random variable F : � → K belongs to the
space D1,2

loc(K ) if there exists an increasing sequence of measurable subsets �k ⊂ �

and elements Fk ∈ D
1,2(K ) such that ∪k�k = � P-a.s. and 1�k F = 1�k Fk . DMF :

� × [0, T ] → L2(�, K ) is then defined by requiring 1�k D
MF = 1�k D

MFk . The
following chain rule holds; the proof consists in standard approximation arguments
and is left to the reader.

Lemma 6.12 Suppose K , H are Hilbert spaces, ψ ∈ G1(K , H) and

sup
|x |≤n

|∇ψ(x)|L(K ,H) < ∞, n = 1, 2, . . . . (6.14)

(i) If F ∈ D
1,2
loc(K ) then ψ(F) ∈ D

1,2
loc(H).

(ii) If F ∈ D
1,2(K ) and supx∈K |∇ψ(x)|L(K ,H) < ∞ then ψ(F) ∈ D

1,2(H).
(iii) More generally, if F ∈ D

1,2(K ), (6.14) holds and

E |ψ(F)|2H < ∞, E

∫ T

0
|∇ψ(F)DM

η F |2L2(K ,H)dη < ∞,

then ψ(F) ∈ D
1,2(H).

In any of the cases (i)–(iii) we have DMψ(F) = ∇ψ(F)DMF.

After this digression on generalMalliavin calculus we come back to the properties
of the forward equation and consider again the solution X = {X (s; t, x)}s∈[t,T ] to
(6.6) with (t, x) fixed, denoted simply by (Xs). We set as before Xs = x , s ∈ [0, t).
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We will soon prove that X belongs to L
1,2(H). Then it is clear that the equality

DM
η Xs = 0 P-a.s. holds for a.a. η, t, s if s < t or η > s.

Proposition 6.13 Assume Hypothesis 6.8. Then the following properties hold.

(i) X ∈ L
1,2(H).

(ii) There exists a version of DMX such that for every η ∈ [0, T ), {DM
η Xs}s∈(s,T ]

is a predictable process inL2(�, H)with continuous paths satisfying, for every
p ∈ [2,∞),

sup
η∈[0,T ]

E

(
sup

s∈(η,T ]
(s − η)pγ |DM

η Xs |pL2(�,H)

)
≤ c, (6.15)

where c > 0 depends only on p, L , T, γ and M = sups∈[0,T ] |esA|; moreover,
P-a.s.

DM
η Xs = e(s−η)Aσ(η, Xη) +

∫ s

η

e(s−r)A∇xb(r, Xr )D
M
η Xr dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, Xr ))D

M
η Xr dWr , s ∈ (η, T ].

(6.16)

Moreover, Xs ∈ D
1,2(H) for every s ∈ [0, T ].

(iii) Given any element v of �, the process Qηs = DM
η Xsv is a solution to the

equation:

Qηs = e(s−η)Aσ(η, Xη)v +
∫ s

η

e(s−r)A∇xb(r, Xr )Qηr dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, Xr ))Qηr dWr , P-a.s.

(6.17)

for a.a. η, s with t ≤ η ≤ s ≤ T . It is unique in the sense that if {Qηs, t ≤ η ≤
s ≤ T } is another process with values in H such that {Qηs}s∈[η,T ] is predictable
for every η ∈ [t, T ] and E ∫ T

t

∫ T
η |Qηs |2dsdη < ∞ then, for a.a. η, s, we have

Qηs = DM
η Xsv P-a.s.

In order to prove this proposition we need some preparation. We start with the
following lemma.

Lemma 6.14 If X ∈ L
1,2(H) then the random processes

∫ s

0
e(s−r)Ab(r, Xr ) dr,

∫ s

0
e(s−r)Aσ(r, Xr ) dWr , s ∈ [0, T ],

belong to L1,2(H) and for a.a. η and s with η < s
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DM
η

∫ s

0
e(s−r)Ab(r, Xr ) dr =

∫ s

η

e(s−r)A∇xb(r, Xr )D
M
η Xr dr,

DM
η

∫ s

0
e(s−r)Aσ(r, Xr ) dWr = e(s−η)Aσ(s, Xs) +

∫ s

η
∇x (e

(s−r)Aσ(r, Xr ))D
M
η Xr dWr .

(6.18)

Proof We will prove only (6.18). Recall that, by Proposition 6.11-4, if u ∈ L
1,2

(L2(�, H)), and for a.a. η the process {DM
η ur }r∈[0,T ] belongs to dom(δ), and the

map η→δ(DM
η u) belongs to L2(� × [0, T ];L2(�, H)), then δ(u) ∈ D

1,2(H) and
DM

η δ(u) = uη + δ(DM
η u).

We fix s and we apply this result to the process ur = e(s−r)Aσ(r, Xr ) (we set
ur = 0 for r > s). First notice that

E

∫ T

0
|ur |2 dr = E

∫ s

0
|e(s−r)Aσ(r, Xr )|2L2(�,H) dr

≤ L2
E

∫ s

0
(s − r)−2γ(1 + |Xr |)2 dr.

The right-hand side is finite for a.a. s; indeed, by exchanging the integrals we verify
that ∫ T

0

(
E

∫ s

0
(s − r)−2γ(1 + |Xr |)2 dr

)
ds

≤
∫ T

0
r−2γ dr

∫ T

0
E (1 + |Xr |)2 dr < ∞,

since X ∈ L
1,2(H) ⊂ L2(� × [0, T ]; H). Next, for every r , by the chain rule for

the Malliavin derivative (Lemma 6.12-(i i)), DM
η ur = ∇x (e(s−r)Aσ(r, Xr ))DM

η Xr

for a.a. η < r , whereas DM
η ur = 0 for a.a. η > r , by adaptedness. Next, recalling

(6.7),

E

∫ T

0
|DM

η ur |2 dr = E

∫ s

η

|∇x (e
(s−r)Aσ(r, Xr ))D

M
η Xr |2L2(�,L2(�,H)) dr

≤ L2
E

∫ s

η

(s − r)−2γ |DM
η Xr |2L2(�,H) dr,

so that

E

∫ T

0

∫ T

0
|DM

η ur |2 dr dη ≤ L2
E

∫ s

0

∫ s

η

(s − r)−2γ |DM
η Xr |2L2(�,H) dr dη

= L2
∫ s

0
(s − r)−2γ

∫ r

0
E |DM

η Xr |2L2(�,H) dη dr.

The right-hand side is finite for a.a. s; indeed, by exchanging the integrals we verify
that
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∫ T

0

(∫ s

0
(s − r)−2γ

∫ r

0
E |DM

η Xr |2L2(�,H) dη dr

)
ds

≤
∫ T

0
r−2γ dr

∫ T

0

∫ r

0
E |DM

η Xr |2L2(�,H) dη dr

=
∫ T

0
r−2γ dr |DMX |2L2(�×[0,T ]×[0,T ];L2(�,H)) < ∞,

since X ∈ L
1,2(H). Now we recall that the Skorohod and the Itô integral coincide

for adapted integrands, so that

∫ T

0
E|δ(DM

η u)|2 dη =
∫ T

0
E

∣∣∣∣
∫ T

0
DM

η ur dWr

∣∣∣∣
2

dη = E

∫ T

0

∫ T

0
|DM

η ur |2 dr dη < ∞.

So for a.a. s we can apply the result mentioned above and since

δ(u) =
∫ s

0
e(s−r)Aσ(r, Xr ) dWr , δ(DM

η u) =
∫ s

η
∇x (e

(s−r)Aσ(r, Xr ))D
M
η Xr dWr ,

formula (6.18) is proved. The estimate

∫ T

0

∫ s

0
E

∣∣∣∣DM
η

∫ s

0
e(s−r)Aσ(r, Xr ) dWr

∣∣∣∣
2

dη ds

≤ 2
∫ T

0

∫ s

0
E|e(s−η)Aσ(η, Xη)|2L2(�,H) dη ds

+2
∫ T

0

∫ s

0
E

∫ s

η

|∇x (e
(s−r)Aσ(r, Xr ))D

M
η Xr |2L2(�,L2(�,H)) dr dη ds

≤ 2L2
∫ T

0
r−2γ dr

∫ T

0
E (1 + |Xr |)2 dr

+2L2
∫ T

0
r−2γ dr |DMX |2L2(�×[0,T ]×[0,T ];L2(�,H)) < ∞,

is a consequence of the previous passages, and shows that the process
∫ s
0 e(s−r)A

σ(r, Xr ) dWr , s ∈ [0, T ], belongs to L1,2(H). �

For η ∈ [0, T ) and for arbitrary predictable processes Xs , Qs , s ∈ [η, T ], with
values in H and L2(�, H) respectively, we define, for s ∈ [η, T ],

�1(X, Q)ηs =
∫ s

η

e(s−r)A∇xb(r, Xr )Qr dr,

�2(X, Q)ηs =
∫ s

η

∇x (e
(s−r)Aσ(r, Xr ))Qr dWr .

The same notation will be used when Qs , s ∈ [η, T ], is a process with values in H .
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Proof of Proposition 6.13. We fix t ∈ [0, T ). Let us consider the sequence Xn

defined as follows: X0 = 0,

Xn+1
s = e(s−t)Ax +

∫ s

t
e(s−r)Ab(r, Xn

r ) dr +
∫ s

t
e(s−r)Aσ(r, Xn

r ) dWr , s ∈ [t, T ],

and Xn
s = x for s < t . It follows from the proof of Proposition 6.9 that Xn converges

to the solution X of Eq. (6.6) in the space L p
P(�;C([0, T ], H)) hence, in particular,

in the space L2(� × [0, T ]; H). By Lemma 6.14, Xn ∈ L
1,2(H) and, for a.a. η and

s with η < s,

DM
η Xn+1

s = e(s−η)Aσ(η, Xn
η ) +

∫ s

η

e(s−r)A∇xb(r, X
n
r )D

M
η Xn

r dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, Xn

r ))D
M
η Xn

r dWr .

(6.19)

Setting I (Xn)ηs = e(s−η)Aσ(η, Xn
η ) for s > η and I (Xn)ηs = 0 for s < η, and

recalling the operators introduced above, we may write equality (6.19) as

DMXn+1 = I (Xn) + �1(X
n, DMXn) + �2(X

n, DMXn).

We note that I (Xn) is a bounded sequence in L2(� × [0, T ] × [0, T ];L2(�, H)),
since

E

∫ T

0

∫ s

0
|e(s−η)Aσ(η, Xn

η )|2L2(�,H) dη ds

≤ L2
E

∫ T

0

∫ s

0
(s − η)−2γ(1 + |Xn

η |)2 dη ds

≤ L2
∫ T

0
s−2γ ds

∫ T

0
E (1 + |Xn

η |)2 dη,

and Xn is a bounded sequence in L2(� × [0, T ]; H). Next we show that there exists
an equivalent norm ‖ · ‖ in L2(� × [0, T ] × [0, T ];L2(�, H)) such that

‖�1(X
n, DMXn)‖ + ‖�2(X

n, DMXn)‖ ≤ α‖DMXn‖, (6.20)

for someα ∈ [0, 1) independent ofn. For simplicityweonly consider the operator�2.
For a process (Zηs) ∈ L2(� × [0, T ] × [0, T ];L2(�, H)) we introduce the norm

‖Z‖2 =
∫ T

0

∫ T

0
E |Zηs |2L2(�,H)e

−β(s−η)ds dη,

where β > 0 will be chosen later. We have
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∫ T

η

E|�2(X
n, DMXn)ηs |2L2(�,H)e

−β(s−η) ds

=
∫ T

η

∫ s

η

E |∇x (e
(s−r)Aσ(r, Xn

r ))D
M
η Xn

r |2L2(�,L2(�,H)) dr e−β(s−η) ds

≤ L2
∫ T

η

∫ s

η

(s − r)−2γ
E |DM

η Xn
r |2L2(�,H) dr e−β(s−η) ds

= L2
∫ T

η

e−β(r−η)
E |DM

η Xn
r |2L2(�,H)

∫ T

r
(s − r)−2γ e−β(s−r) ds dr

≤ L2
∫ T

η

e−β(r−η)
E |DM

η Xn
r |2L2(�,H) dr

(
sup

r∈[η,T ]

∫ T

r
(s − r)−2γ e−β(s−r) ds

)
.

The supremum on the right-hand side can be estimated by
∫ T
0 r−2γ e−βr dr ; so we

obtain

‖�2(X
n, DMXn)‖2 ≤ L2

∫ T

0
r−2γ e−βr dr‖DMXn‖2.

Now to prove (6.20) it suffices to take β sufficiently large.
From (6.20) and from the fact that I (Xn) is bounded in L2(� × [0, T ] ×

[0, T ];L2(�, H)), it follows easily that the sequence DMXn is also bounded in
this space. Since, as mentioned before, Xn converges to X in L2(� × [0, T ]; H), it
follows from the closedness of the operator DM that X belongs to L

1,2(H). Point
(i) of Proposition 6.13 is now proved.

By Lemma 6.14, we can compute the Malliavin derivative of both sides of (6.6)
and we obtain, for a.a. η and s with η < s,

DM
η Xs = I (X)ηs + �1(X, DMX)ηs + �2(X, DMX)ηs, P-a.s., (6.21)

where
I (X)ηs = e(s−η)Aσ(η, Xη). (6.22)

Let us introduce the space K of processes Qηs , 0 ≤ η < s ≤ T , such that for every
η ∈ [t, T ), {Qηs}s∈(η,T ] is a predictable process in L2(�, H) with continuous paths,
and such that

sup
η∈[0,T ]

E

(
sup

s∈(η,T ]
e−β p(s−η)(s − η)pγ |Qηs |pL2(�,H)

)
< ∞. (6.23)

Here p ∈ [2,∞) is fixed and β > 0 is a parameter, to be chosen later. Let us consider
the equation: for every η ∈ [0, T ), P-a.s.,

Qηs = I (X)ηs + �1(X, Q)ηs + �2(X, Q)ηs, s ∈ (η, T ]. (6.24)
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We are going to prove that there exists a unique solution Q ∈ K of this equation.
Assume this for a moment. Then, subtracting (6.24) from (6.21), we obtain for a.a.
η and s with η < s

DM
η Xs − Qηs = �1(X, DMX − Q)ηs + �2(X, DMX − Q)ηs, P-a.s.

Repeating the passages that led to (6.20) we obtain

‖�1(X, DMX − Q)‖ + ‖�2(X, DMX − Q)‖ ≤ α‖DMX − Q‖,

for some α ∈ [0, 1). This proves that Q is a version of DMX . Then equality (6.24)
coincides with (6.16), and this proves point (i i) of the Proposition, except for the
last assertion.

Now we prove unique solvability of (6.24) in the spaceK. It suffices to show that
I (X) ∈ K and that �1(X, ·) + �2(X, ·) is a contraction in K. Since, for s > η,

|e(s−η)Aσ(η, Xη)|L2(�,H) ≤ L(s − η)−γ(1 + |Xη|),

we have

sup
η∈[0,T ]

E sup
s∈(η,T ]

(s − η)pγ |e(s−η)Aσ(η, Xη)|pL2(�,H) ≤ L p sup
η∈[0,T ]

E (1 + |Xη|)p,

which is finite, since X ∈ L p
P(�;C([0, T ], H)). This shows that I (X) ∈ K; the

contraction property for �1(X, ·) + �2(X, ·) requires a longer argument, and it is
postponed to Lemma 6.15 below.

The last assertion of point (i i) is clear for s ∈ [0, t], since Xs = x . For s ∈ (t, T ]
we take a sequence sn ↑ s such that Xsn ∈ D

1,2(H) and we note that by (6.15)
the sequence E

∫ T
0 |DM

η Xsn |2dη is bounded by a constant independent of n; since
Xsn → Xs in L2(�; H), it follows from the closedness of the operator DM that
Xs ∈ D

1,2(H).
Now we proceed to proving point (i i i) of the Proposition. Let us fix v ∈ � and

define the space S of processes {Qηs, t ≤ η ≤ s ≤ T }, with values in H , such that
{Qηs}s∈[η,T ] is predictable for every η ∈ [t, T ] and the norm

‖Q‖2 =
∫ T

t

∫ T

η

E |Qηs |2He−β(s−η)ds dη

is finite, where β > 0 is a parameter to be chosen later. Since I (X) (defined in (6.22))
belongs to the spaceK introduced above, I (X)v belongs to S and the equality (6.17)
is equivalent to the equality in the space S:

Q = I (X)v + �1(X, Q) + �2(X, Q). (6.25)
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It turns out that this equation has a unique solution in S: indeed, �1(X, ·) + �2(X, ·)
is a contraction in the space S if β is chosen sufficiently large, as it can be proved
by passages almost identical to those leading to (6.20). Finally, DMXv belongs
to S since DMX ∈ L2(� × [0, T ] × [0, T ];L2(�, H)), and applying both sides
of (6.16) to v we check that DMXv = I (X)v + �1(X, DMXv) + �2(X, DMXv).
Point (i i i) of the proposition is now proved. �

To complete the previous proof, it remains to state and prove the following lemma.

Lemma 6.15 For η ∈ [0, T ), let Xs, s ∈ [η, T ], be a predictable process in H and
let Qs, s ∈ (η, T ], be an L2(�, H)-valued continuous adapted process.

For p ∈ [2,∞) sufficiently large and for every β > 0, the following estimate
holds:

E

(
sup

s∈[η,T ]
(s − η)γ pe−β p(s−η)

(
|�1(X, Q)ηs |pL2(�,H) + |�2(X, Q)ηs |pL2(�,H)

))

≤ C(β)E

(
sup

s∈[η,T ]
(s − η)γ pe−β p(s−η)|Qs |pL2(�,H)

)
,

where C(β) depends on β, p, L, γ, T and M = sups∈[0,T ] |esA|, and is such that
C(β) → 0 as β → 0.

Proof For simplicity, we only consider the operator �2. Fixing η ∈ [0, T ) we intro-
duce the space of L2(�, H)-valued continuous adapted processes Qs , s ∈ (η, T ]
such that the norm

‖Q‖p
η := E sup

s∈[η,T ]
(s − η)γ pe−β p(s−η)|Qs |pL2(�,H)

is finite. We use the factorization method, see [177], Theorem 5.2.5. Let us take
p > 2 and α ∈ (0, 1) such that

1

p
< α <

1

2
− γ, and let c−1

α =
∫ s

r
(s − u)α−1(u − r)−αdu.

Then, by the stochastic Fubini theorem,

�2(X, Q)ηs = cα

∫ s

η

∫ s

r
(s − u)α−1(u − r)−α e(s−u)A∇x (e

(u−r)Aσ(r, Xr ))Qr du dWr

= cα

∫ s

η
(s − u)α−1e(s−u)AVu du,

where

Vu =
∫ u

η

(u − r)−α∇x (e
(u−r)Aσ(r, Xr ))Qr dWr .

By the Hölder inequality, setting M = sups∈[0,T ] |esA|, p′ = p/(p − 1),
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∣∣�2(X, Q)ηs
∣∣ ≤ cαM

∫ s

η

(s − u)α−1|Vu | du

≤ cαM

(∫ s

η

e−pβ(u−η)(u − η)γ p|Vu |p du
) 1

p

·
(∫ s

η

ep
′β(u−η)(u − η)−γ p′

(s − u)(α−1)p′
du

) 1
p′

.

‖�2(X, Q)‖p
η ≤ cpαM

p
∫ T

η

e−pβ(u−η)(u − η)γ pE |Vu |p du

· sup
s∈(η,T ]

(s − η)γ pe−β p(s−η)

(∫ s

η

ep
′β(u−η)(u − η)−γ p′

(s − u)(α−1)p′
du

) p
p′

.

Changing u into (u − η)/(s − η), it is easily seen that the supremum on the right-
hand side equals

sup
s∈(η,T ]

(s − η)pα−1e−β p(s−η)

(∫ 1

0
ep

′βu(s−η)u−γ p′
(1 − u)(α−1)p′

du

) p
p′

≤ a(β)p,

where we set

a(β) := sup
λ∈(0,T ]

λα− 1
p e−βλ

(∫ 1

0
ep

′βuλu−γ p′
(1 − u)(α−1)p′

du

) 1
p′

.

So we arrive at

‖�2(X, Q)‖η ≤ cαMa(β)

(∫ T

η

e−pβ(u−η)(u − η)γ pE |Vu |p du
) 1

p

.

By the Burkholder–Davis–Gundy inequalities, for some constant cp depending
only on p, we have

E |Vu |p ≤ cpE

(∫ u

η

(u − r)−2α|∇x (e
(u−r)Aσ(r, Xr ))Qr |2L2(�,L2(�,H)) dr

) p
2

≤ L pcpE

(∫ u

η

(u − r)−2α−2γ |Qr |2L2(�,H) dr

) p
2

≤ L pcp‖Q‖p
s

(∫ u

η

(u − r)−2α−2γ(r − η)−2γe2β(r−η) dr

) p
2

.

Changing r into (r − η)/(u − η) and taking into account thatβ > 0 andα + γ < 1/2
we obtain
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(u − η)γ pe−pβ(u−η)
E |Vu |p ≤ L pcp‖Q‖pη (u − η)p(−α−γ+1/2)

·
(∫ 1

0
(1 − r)−2α−2γr−2γe−2β(1−r)(r−η) dr

) p
2

≤ L pcp‖Q‖pη T p( 12−α−γ)

(∫ 1

0
(1 − r)−2α−2γr−2γ dr

) p
2

.

We conclude that

‖�2(X, Q)‖η ≤ cαMLc
1
p
p a(β)T

1
2 −α−γ+ 1

p

(∫ 1

0
(1 − r)−2α−2γr−2γ dr

) 1
2

‖Q‖η.

This inequality proves the lemma, since the property that a(β) → 0 as β → +∞
follows easily from the definition of a(β). �

The following result relates the Malliavin derivative of the process X with
∇x X (s; t, x), the partial Gâteaux derivative with respect to x (compare Proposition
6.10).

Proposition 6.16 Assume Hypothesis 6.8. Then for a.a. η, s such that t ≤ η ≤ s ≤
T we have

DM
η X (s; t, x) = ∇x X (s; η, X (η; t, x))σ(η, X (η; t, x)), P-a.s. (6.26)

Moreover, DM
η X (T ; t, x) = ∇x X (T ; η, X (η; t, x))σ(η, X (η; t, x)), P-a.s. for

a.a. η.

Proof Proposition 6.10 states that for every η ∈ [0, T ] and every direction h ∈ H the
directional derivative process ∇x X (s; η, x)h, s ∈ [η, T ], solves the equation: P-a.s.,

∇x X (s; η, x)h = e(s−η)Ah +
∫ s

η

e(s−r)A∇xb(r, X (r; η, x))∇x X (r; η, x)h dr

+
∫ s

η

∇x (e
(s−r)Aσ(r, X (r; η, x))∇x X (r; η, x)h dWr , s ∈ [η, T ].

Given v ∈ � and t ∈ [0, η], we can replace x by X (η; t, x) and h byσ(η, X (η; t, x))v
in this equation, since X (η; t, x) isFη-measurable. Next we note the equality:P-a.s.,

X (r; η, X (η; t, x)) = X (r; t, x), r ∈ [η, T ],
which is a consequence of the uniqueness of the solution to (6.6), and we obtain:
P-a.s.,
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∇x X (s; η, X (η; t, x))σ(η, X (η; t, x))v = e(s−η)Aσ(η, X (η; t, x))v
+
∫ s

η
e(s−r)A∇xb(r, X (r; t, x))∇x X (r; η, X (η; t, x))σ(η, X (η; t, x))v dr

+
∫ s

η
∇x (e

(s−r)Aσ(r, X (r; t, x))∇x X (r; η, X (η; t, x))σ(η, X (η; t, x))v dWr , s ∈ [η, T ].

This shows that the process {∇x X (s; t, X (η; t, x))σ(η, X (η; t, x))v : t ≤ η ≤ s ≤
T } is a solution to Eq. (6.17). Then (6.26) follows from the uniqueness property.

To prove the last assertion, it suffices to take a sequence sn ↑ T such that (6.26)
holds for sn and let n → ∞. The conclusion follows from the regularity properties
of DMX and ∇x X stated above, as well as the closedness of the operator DM. �

Now, for ξ ∈ �, recall that Wξ = {W (τ )ξ}τ≥0 is a real Wiener process. Also
fix t ∈ [0, T ] and x ∈ H and set Xτ = X (τ ; t, x), τ ∈ [t, T ], for simplicity. Given
a function u : [0, T ] × H → R, we investigate the existence of the joint quadratic
variation of the process {u(τ , Xτ )}τ∈[t,T ] withWξ. As usual, this is defined for every
τ ∈ [t, T ] as the limit in probability of

n∑
i=1

(u(τi , Xτi ) − u(τi−1, Xτi−1))(W (τi )ξ − W (τi−1)ξ),

where {τi }, t = τ0 < τ1 < · · · < τn = τ , is an arbitrary subdivision of [t, τ ] whose
mesh tends to 0. The existence of the joint quadratic variation is not trivial. Indeed,
due to the occurrence of convolution type integrals in the definition of amild solution,
it is not obvious that the process X is a semimartingale. Moreover, even in this case,
the process u(·, X ·) might fail to be a semimartingale if u is not regular enough.
Nevertheless, the following result holds true. Its proof could be deduced from the
generalization of some results obtained in [469] to the infinite-dimensional case, but
we prefer to give a simpler direct proof.

Proposition 6.17 AssumeHypothesis 6.8, let u be a function in G0,1([0, T ] × H,R)

having polynomial growth together with its derivative ∇xu. Then the process
{u(τ , Xτ )}τ∈[t,T ] admits a joint quadratic variation process V with Wξ, given by

Vτ =
∫ τ

t
∇xu(s, Xs)σ(s, Xs)ξ ds, τ ∈ [t, T ].

Proof Let us write ūτ = u(τ , Xτ ), τ ∈ [t, T ], for simplicity. By Proposition 6.13
and the assumptions on u we can apply the chain rule for the Malliavin derivative
operator presented in Lemma 6.12 and conclude that, for every τ ∈ [t, T ], we have
ūτ ∈ D

1,2(R) and DMūτ = ∇xu(τ , Xτ )DMXτ . Taking into account (6.26), for a.e.
s ∈ [0, τ ] we obtain

DM
s ūτ ξ = ∇xu(τ , Xτ ) ∇x X (τ ; s, Xs) σ(s, Xs) ξ, P-a.s. (6.27)
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whereas DM
s ūτ ξ = 0 P-a.s., for a.e. s ∈ (τ , T ].

Let us now compute the joint quadratic variation of ū andWξ. Let t = τ0 < τ1 <

· · · < τn = τ be a subdivisionof [t, τ ] ⊂ [0, T ].Weuse formula (6.13) inProposition
6.11 with [a, b] = [τi−1, τi ] and F = ūτi − ūτi−1 and obtain

(ūτi − ūτi−1)(W (τi )ξ − W (τi−1)ξ) =
∫ τi

τi−1

(ūτi − ūτi−1)ξ
∗ d̂Ws

+
∫ τi

τi−1

DM
s (ūτi − ūτi−1)ξ ds,

where as usual we use the symbol d̂W to denote the Skorohod integral. We note
that DM

s ūτi−1 = 0 for s > τi−1, so recalling (6.27) and setting Un(s) = ∑n
i=1(ūτi −

ūτi−1) 1(τi−1,τi ](s) we obtain

n∑
i=1

(ūτi − ūτi−1)(W
ξ
τi

− W ξ
τi−1

)

=
∫ τ

t
Un(s) ξ∗ d̂Ws +

n∑
i=1

∫ τi

τi−1

∇xu(τi , Xτi ) ∇x X (τi ; s, Xs)σ(s, Xs)ξ ds.

By (6.27) and the continuity properties asserted in Proposition 6.10, it is easily ver-
ified that the maps τ→ūτ and τ→DMūτ ξ are continuous on [0, T ] with values in
L2(�;R) and L2(� × [0, T ];R), respectively. In particular, Un → 0 in L

1,2(R),
which implies that the Skorohod integral in the last equation tends to zero in
L2(�;R). Letting the mesh of the subdivision tend to 0 and using the continuity
properties of ∇xu, X , ∇x X , we obtain

n∑
i=1

(ūτi − ūτi−1)(W (τi )ξ − W (τi−1)ξ) → Vτ ,

in probability, which finishes the proof of the proposition. �

6.3 Backward Stochastic Differential Equations (BSDEs)

6.3.1 Well-Posedness

Some of the basic results on backward equations rely on the following well-known
representation theorem (see e.g. [350]). Recall that (Ft ) is the filtration generated by
the cylindrical Wiener process W , augmented in the usual way. We denote by E

Fs

the conditional expectation with respect toFs .
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Proposition 6.18 Let K beaHilbert spaceand T > 0. For arbitraryFT -measurable
ξ ∈ L2(�; K ) there exists a V ∈ L2

P(� × [0, T ];L2(�, K )) such that ξ = E ξ +∫ T
0 V (r) dW (r), P-a.s. Equivalently, for every s ∈ [0, T ],

E
Fsξ = ξ −

∫ T

s
V (r) dW (r), P-a.s.

Lemma 6.19 Assumeη ∈ L2(�; K ) isFT -measurable and f ∈ L2
P(�× [0, T ]; K ).

Then there exists a unique pair of processes Y (s), Z(s), s ∈ [0, T ], such that

(i) Y ∈ L2
P(� × [0, T ]; K ), Z ∈ L2

P(� × [0, T ];L2(�, K ));
(ii) for a.a. s ∈ [0, T ], P-a.s.,

Y (s) +
∫ T

s
Z(r) dW (r) =

∫ T

s
f (r) dr + η. (6.28)

Moreover, Y has a continuous version and for every β �= 0,

E

∫ T

0
e2βr |Z(r)|2dr ≤ 4

β
E

∫ T

0
e2βr | f (r)|2dr + 8 e2βTE |η|2,

E sup
s∈[0,T ]

e2βs |Y (s)|2 ≤ 4

β
E

∫ T

0
e2βr | f (r)|2dr + 8 e2βTE |η|2.

(6.29)

In particular, Y ∈ CP([0, T ], L2(�; K )).
If, in addition, there exists a p ∈ [2,∞) such that

E

(∫ T

0
| f (r)|2dr

)p/2

< ∞, E |η|p < ∞,

then for every δ such that 0 ≤ T − δ < T we have

E sup
s∈[T−δ,T ]

|Y (s)|p + E

(∫ T

T−δ
|Z(r)|2dr

)p/2

≤ cpδ
p/2

E

(∫ T

T−δ
| f (r)|2dr

)p/2

+ cpE |η|p,
(6.30)

where cp is a positive constant, depending only on p.

Proof We modify the argument in [350]. We write Ys instead of Y (s) etc. to shorten
notation.

Uniqueness. Assume that (6.28) holds. Then, taking conditional expectation with
respect toFs we obtain, for a.e. s,

Ys = E
Fsη +

∫ T

s
E
Fs fr dr. (6.31)
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If η = 0 and f = 0 this equality implies that Y = 0; from (6.28) it follows that∫ T
s Zr dWr = 0, which implies Z = 0 as well.

Existence. Define ξ = η + ∫ T
0 fr dr . Since ξ ∈ L2(�; K ) isFT -measurable, by

Proposition 6.18 there exists a Z ∈ L2
P(� × [0, T ];L2(�, K )) such that

E
Fsξ = ξ −

∫ T

s
Zr dWr ,

for every s ∈ [0, T ]. Now it suffices to define Ys = E
Fsξ − ∫ s

0 fr dr and Eq. (6.28)
is satisfied. The existence of a continuous version is immediate, since (6.28) implies

Ys − Y0 =
∫ s

0
Zr dWr −

∫ s

0
fr dr.

Estimates (6.29). Since η ∈ L2(�; K ) is FT -measurable, by Proposition 6.18
there exists an L ∈ L2

P(� × [0, T ];L2(�, K )) such that

E
Fsη = η −

∫ T

s
Lθ dWθ, (6.32)

for every s ∈ [0, T ]. Similarly, for a.a. r there exists a predictable process
{K (θ, r)}θ∈[0,r ] in L2

P(� × [0, r ];L2(�, K )) such that

E
Fs fr = fr −

∫ r

s
K (θ, r) dWθ, (6.33)

for s ∈ [0, r ]. We set K (θ, r) = 0 for θ ∈ (r, T ] and we can verify that the map
K : � × [0, T ] × [0, T ]→L2(�, K ) can be taken to beP × B([0, T ])-measurable,
where P is the predictable σ-field on � × [0, T ] and B([0, T ]) denotes the Borel
subsets of [0, T ]; the existence of such a version of K can be proved by approximating
f by simple processes and by a monotone class argument (or one can argue as in
[350], proof of Lemma 2.1). Substituting into (6.31) and applying the stochastic
Fubini theorem gives

Ys = η −
∫ T

s
Lθ dWθ +

∫ T

s

(
fr −

∫ r

s
K (θ, r) dWθ

)
dr

= η +
∫ T

s
fr dr −

∫ T

s
Lθ dWθ −

∫ T

s

(∫ T

θ

K (θ, r) dr

)
dWθ.

Comparing with the backward equation, we conclude by uniqueness that for a.a. θ,

Zθ = Lθ +
∫ T

θ

K (θ, r) dr.
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Now let β �= 0.
From (6.32) we deduce that

E

∫ T

0
e2βθ|Lθ|2 dθ ≤ e2βTE

∣∣∣∣
∫ T

0
Lθ dWθ

∣∣∣∣
2

= e2βTE
∣∣η − E

F0η
∣∣2

≤ 2e2βTE |η|2 + 2e2βTE |EF0η|2 ≤ 4e2βTE |η|2.

Next note that

∣∣∣∣
∫ T

θ
K (θ, r) dr

∣∣∣∣
2

≤
∫ T

θ
e−2βr dr

∫ T

θ
e2βr |K (θ, r)|2 dr ≤ e−2βθ

2β

∫ T

θ
e2βr |K (θ, r)|2 dr,

so that

E

∫ T

0
e2βθ

∣∣∣∣
∫ T

θ

K (θ, r) dr

∣∣∣∣
2

dθ ≤ 1

2β
E

∫ T

0

∫ T

θ

e2βr |K (θ, r)|2 dr dθ

= 1

2β

∫ T

0
e2βrE

∫ r

0
|K (θ, r)|2 dθ dr.

Since (6.33) yields

E

∫ r

0
|K (θ, r)|2 dθ = E

∣∣∣∣
∫ r

0
K (θ, r) dWθ

∣∣∣∣
2

= E
∣∣ fr − E

F0 fr
∣∣2

≤ 2E| fr |2 + 2E
∣∣EFs fr

∣∣2 ≤ 4E| fr |2,

the proof of the first inequality in (6.29) is finished. Now we prove the second one,
estimating separately the two terms on the right-hand side of (6.31). By the Doob
inequality for martingales,

E sup
s∈[0,T ]

e2βs |EFsη|2 ≤ e2βT 4E |η|2.

Next, since

(∫ T

s
| fr | dr

)2

≤
∫ T

s
e−2βr dr

∫ T

s
e2βr | fr |2 dr ≤ e−2βs

2β

∫ T

s
e2βr | fr |2 dr,

we obtain

eβs

∣∣∣∣
∫ T

s
E
Fs fr dr

∣∣∣∣ ≤ E
Fs

(
eβs
∫ T

s
| fr | dr

)
≤ 1√

2β
E
Fs

(∫ T

s
e2βr | fr |2 dr

)1/2

and by the Doob inequality,
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E sup
s∈[0,T ]

e2βs
∣∣∣∣
∫ T

s
E
Fs fr dr

∣∣∣∣
2

≤ 4

2β
E

∫ T

0
e2βr | fr |2 dr.

Estimates (6.30). Since, for s ∈ [T − δ, T ],
∫ T

s
| fr | dr ≤

(∫ T

s
| fr |2 dr

)1/2

(T − s)1/2 ≤
(∫ T

s
fr dr

)1/2

δ1/2,

it follows from (6.31) that

E sup
s∈[T−δ,T ]

|Ys |p ≤ cpE sup
s∈[T−δ,T ]

|EFsη|p

+ cpδ
p/2

E sup
s∈[T−δ,T ]

∣∣∣∣∣EFs

(∫ T

s
| fr |2 dr

)1/2
∣∣∣∣∣
p

≤ cpE |η|p + cpδ
p/2

E

(∫ T

T−δ

| fr |2 dr
)p/2

,

which proves the desired inequality on the process Y . To obtain a similar estimate
on Z we first set Z1

θ = ∫ T
θ K (θ, r) dr , so that Zθ = Lθ + Z1

θ .
From (6.32) it follows that E

Fsη − E
FT−δ η = ∫ s

T−δ Lθ dWθ, so by the
Burkholder–Davis–Gundy and the Doob inequalities,

E

(∫ T

T−δ

|Lθ|2dθ

) p
2

≤ cp E sup
s∈[T−δ,T ]

∣∣∣∣
∫ s

T−δ

Lθ dWθ

∣∣∣∣
p

= cp E sup
s∈[T−δ,T ]

|EFsη − E
FT−δ η|p ≤ cp E |η|p.

In order to prove a similar estimate for Z1 we first note that, setting Y 1
s = ∫ T

s E
Fs

fr dr , the pair (Y 1, Z1) is the solution corresponding to η = 0. Therefore

Y 1
s − Y 1

T−δ =
∫ s

T−δ

Z1
r dWr −

∫ s

T−δ

fr dr.

So we obtain

E

(∫ T

T−δ

|Z1
r |2dr

) p
2

≤ cp E sup
s∈[T−δ,T ]

∣∣∣∣
∫ s

T−δ

Z1
r dWr

∣∣∣∣
p

≤ cp E sup
s∈[T−δ,T ]

|Y 1
s |p + cp E

(∫ T

T−δ

| fr | dr
)p

.

For Y 1 we can use the estimate proved above with η = 0:
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E sup
s∈[T−δ,T ]

|EFs Y 1
s |p ≤ cpδ

p/2
E

(∫ T

T−δ

| fr |2 dr
)p/2

.

Finally, the required estimate follows from

∫ T

T−δ

| fr | dr ≤
(∫ T

T−δ

| fr |2 dr
)1/2

δ1/2.

�

Now we are concerned with the equation

Ys +
∫ T

s
Zr dWr =

∫ T

s
f (r, Yr , Zr ) dr + η. (6.34)

In the following Proposition K is a Hilbert space, the mapping f : � × [0, T ] ×
K × L2(�, K ) → K is assumed to be measurable with respect to P × B([0, T ] ×
K × L2(�, K )) and B(K ), respectively (we recall that by P we denote the pre-
dictable σ-field on � × [0, T ] and by B(�) the Borel σ-field of any topological
space �). η : � → K is assumed to beFT -measurable.

Proposition 6.20 Assume that

(i) there exists an L > 0 such that

| f (t, y1, z1) − f (t, y2, z2)| ≤ L(|y1 − y2| + |z1 − z2|),

P-a.s. for every t ∈ [0, T ], y1, y2 ∈ K , z1, z2 ∈ L2(�, K );
(ii) E

∫ T

0
| f (r, 0, 0)|2dr < ∞, E |η|2 < ∞.

Then there exists a unique pair of processes Y (s), Z(s), s ∈ [0, T ], such that

Y ∈ CP([0, T ], L2(�; K )), Z ∈ L2
P(� × [0, T ];L2(�, K ))

and (6.34) holds for s ∈ [0, T ].Moreover, Y has a continuous versionandE sups∈[0,T ]
|Y (s)|2 < ∞.

If, in addition, there exists a p ∈ [2,∞) such that

E

(∫ T

0
| f (r, 0, 0)|2dr

)p/2

< ∞, E |η|p < ∞, (6.35)

then we have Y ∈ L p
P(�;C([0, T ], K )), Z ∈ L p

P(� × [0, T ];L2(�, K )) and
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E sup
s∈[0,T ]

|Y (s)|p + E

(∫ T

0
|Z(r)|2dr

)p/2

≤ cE

(∫ T

0
| f (r, 0, 0)|2dr

)p/2

+ cE |η|p,
(6.36)

for some constant c > 0 depending only on p, L , T .
Finally assume that, for all λ in a metric space�, a function fλ is given satisfying

(6.35) and assumption i) with L independent of λ. Also assume that, as λ → λ0,

E

(∫ T

0
| fλ(r, Y, Z) − fλ0(r, Y, Z)|2dr

)p/2

→ 0 (6.37)

for all Y ∈ L p
P(�;C([0, T ], K )), Z ∈ L p

P(�; L2([0, T ];L2(�, K ))).
If we denote by (Y (λ, η), Z(λ, η)) the solution to (6.34) corresponding to f = fλ

and to the final data η ∈ L p(�,R) then the map (λ, η) → (Y (λ, η), Z(λ, η))

is continuous from � × L p(�;R) to L p
P(�;C([0, T ], K )) × L p

P(�; L2([0, T ];
L2(�, K ))).

Proof We let K = CP([0, T ], L2(�; K )) × L2
P(� × [0, T ];L2(�, K )) and we

define a mapping � : K → K by setting (Y, Z) = �(U, V ) if (Y, Z) is the pair sat-
isfying

Ys +
∫ T

s
Zr dWr =

∫ T

s
f (r,Ur , Vr ) dr + η, (6.38)

compare Lemma 6.19. The estimates (6.29) show that � is well defined, and it is a
contraction if K is endowed with the norm

|(Y, Z)|2K = E

∫ T

0
e2βr

(|Yr |2 + |Zr |2
)
dr,

provided β is sufficiently large. For simplicity, we only verify the contraction prop-
erty: if (U 1, V 1) ∈ K, (Y 1, Z1) = �(U 1, V 1) and we let Y = Y − Y 1, Z = Z − Z1,
U = U −U 1, V = V − V 1, f r = f (r,Ur , Vr ) − f (r,U 1

r , V 1
r ), we have

Y s +
∫ T

s
Zr dWr =

∫ T

s
f r dWr , (6.39)

so that by (6.29),

|(Y , Z)|2K ≤ T E sup
s∈[0,T ]

e2βs |Y s |2 + E

∫ T

0
e2βr |Zr |2 dr ≤ 8(1 + T )

β
E

∫ T

0
e2βr | f r |2dr

≤ 8(1 + T )L2

β
E

∫ T

0
e2βr (|Ur | + |Vr |)2dr ≤ 16(1 + T )L2

β
|(U , V )|2K.

Now we prove the estimate (6.36). We let Kp,δ = L p(�;C([T − δ, T ],R)) ×
L p(�; L2([T − δ, T ];L2(�,R))) and define � : Kp,δ → Kp,δ , setting (Y, Z) =
�(U, V ) if (Y, Z) is the pair satisfying Eq. (6.38) for s ∈ [T − δ, T ]. It is easily
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verified that � is well defined and it is a contraction in Kp,δ , provided δ > 0 is cho-
sen sufficiently small; indeed, arguing as before, we deduce from (6.39) and from
(6.30) the inequalities

|(Y , Z)|pK = E sup
s∈[T−δ,T ]

|Y s |p + E

(∫ T

T−δ

|Zr |2 dr
) p

2

≤ cpδ
p/2L p

E

(∫ T

T−δ

(|Ur | + |V r |)2dr
) p

2

≤ cp2
p/2δ pL pδ E sup

s∈[T−δ,T ]
|Us |p + cp(2δ)

p/2L p
E

(∫ T

T−δ

|V r |2dr
) p

2

≤ cp(2δ)
p/2L p(1 + δ p/2) |(U , V )|pK,

and the contraction property holds provided cp(2δ)p/2L p(1 + δ p/2) < 1. Repeating
this argument on intervals [T − δ, T − 2δ], [T − 2δ, T − 3δ] etc. shows that Y ∈
L p(�;C([0, T ],R)) and Z ∈ L p(�; L2([0, T ];L2(�,R))).

Next note that it follows from our assumptions that

| f (r, x, y)| ≤ | f (r, 0, 0)| + L(|x | + |y|).

Applying the estimate (6.30) to Eq. (6.34) we obtain

E sup
s∈[T−δ,T ]

|Ys |p + E

(∫ T

T−δ

|Zr |2dr
)p/2

≤ cpδ
p/2

E

(∫ T

T−δ

| f (r, Yr , Zr )|2dr
)p/2

+ cpE |η|p

≤ cpE |η|p + cp3
p−1δ p/2

E

(∫ T

T−δ

| f (r, 0, 0)|2dr
)p/2

+ cp3
p−1L pδ p/2

E

(∫ T

T−δ

|Yr |2dr
)p/2

+ cp3
p−1L pδ p/2

E

(∫ T

T−δ

|Zr |2dr
)p/2

≤ cpE |η|p + cp3
p−1δ p/2

E

(∫ T

T−δ

| f (r, 0, 0)|2dr
)p/2

+ cp3
p−1L pδ p

E sup
s∈[T−δ,T ]

|Ys |p + cp3
p−1L pδ p/2

E

(∫ T

T−δ

|Zr |2dr
)p/2

.

(6.40)

Choosing δ > 0 so small that α := cp3p−1L p(δ p + δ p/2) < 1 we obtain
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E sup
s∈[T−δ,T ]

|Ys |p + E

(∫ T

T−δ

|Zr |2dr
)p/2

≤ cpE |η|p + cp3
p−1δ p/2

E

(∫ T

T−δ

| f (r, 0, 0)|2dr
)p/2

+ α

[
E sup

s∈[T−δ,T ]
|Ys |p + E

(∫ T

T−δ

|Zr |2dr
)p/2

]
,

(6.41)

and it follows that

E sup
s∈[T−δ,T ]

|Ys |p + E

(∫ T

T−δ
|Zr |2dr

)p/2

≤ cE |η|p + cE

(∫ T

T−δ
| f (r, 0, 0)|2dr

)p/2

,

with c depending only on p and L . Next we note that for s ≤ T − δ,

Ys +
∫ T−δ

s
Zr dWr =

∫ T−δ

s
f (r, Yr , Zr ) dr + YT−δ,

and proceeding as before we obtain

E sup
s∈[T−2δ,T−δ]

|Ys |p + E

(∫ T−δ

T−2δ
|Zr |2dr

)p/2

≤ cE |YT−δ |p + cE

(∫ T−δ

T−2δ
| f (r, 0, 0)|2dr

)p/2

,

with the same choice of δ and the same value of c. After a finite number of steps we
arrive at (6.36).

Finally, the proof of the last assertion can be done in a straightforward way,
repeating the above argument. �

Remark 6.21 The mapping � defined in the previous proof was shown to be a con-
traction in the space K = CP([0, T ], L2(�; K )) × L2

P(� × [0, T ];L2(�, K )). In
a similar way, the estimates (6.29) allow us to show that � is well defined and it
is a contraction in the space L2

P(�;C([0, T ], K )) × L2
P(� × [0, T ];L2(�, K )) as

well as in the space L2
P(� × [0, T ]; K ) × L2

P(� × [0, T ];L2(�, K )). In particular,
uniqueness holds for Eq. (6.34) in the latter space, too. �

6.3.2 Regular Dependence on Data

Now we are dealing with the backward equation

Y (s) +
∫ T

s
Z(r) dW (r) =

∫ T

s
F(r, X (r), Y (r), Z(r)) dr + η, (6.42)
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on the time interval [0, T ], where η is a given FT -measurable real random variable
and X (s), s ∈ [0, T ], is a given predictable process. The mapping F : [0, T ] × H ×
K × L2(�, K ) → K is assumed to beBorelmeasurable. The solutionwe are looking
for is a pair of predictable processes Y (s), Z(s), s ∈ [0, T ], with values in K and
L2(�, K ), respectively.

We fix the following assumptions on F .

Hypothesis 6.22 (i) There exists an L > 0 such that

|F(t, x, y1, z1) − F(t, x, y2, z2)| ≤ L(|y1 − y2| + |z1 − z2|),

for every t ∈ [0, T ], x ∈ H , y1, y2 ∈ K , z1, z2 ∈ L2(�, K ).
(ii) For every t ∈ [0, T ], F(t, ·, ·, ·) ∈ G1,1,1(H × K × L2(�, K ), K ).
(iii) There exist L > 0 and m ≥ 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|(1 + |z|)(1 + |x | + |y|)m,

for every t ∈ [0, T ], x, h ∈ H , y ∈ K , z ∈ L2(�, K ).
(iv) There exists an L > 0 such that |F(t, 0, 0, 0)| ≤ L for every t ∈ [0, T ].

Conditions (i) and (i i) imply that the Gâteaux derivatives of F with respect to
y and z are uniformly bounded: for every point (x, y, z) and all directions k ∈ K ,
v ∈ L2(�, K ),

|∇y F(t, x, y, z)k| ≤ L |k|, |∇z F(t, x, y, z)v| ≤ L |v|.

Moreover, conditions (i)–(iv) imply that

|F(t, x, y, z)| ≤ L(1 + |x |m+1 + |z| + |y|). (6.43)

Finally, conditions (i) (i i) and (i i i) imply

|F(t, x1, y, z) − F(t, x2, y, z)| ≤ L(1 + |z|)(1 + |x1|m + |x2|m + |y|m)|x2 − x1|.
(6.44)

Remark 6.23 Instead of condition (i i i), in some of the statements below we will
assume that the stronger condition holds: there exists L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, t ∈ [0, T ], x, h ∈ H, y ∈ K , z ∈ L2(�, K ).

(6.45)
Whenever (6.45) is assumed to hold, this will be explicitly mentioned. �

To start we need the following general lemma that generalizes the classical result
on continuity of evaluation operators, see e.g. [10].
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Lemma 6.24 Let K1, K2 and K3 be Banach spaces and � : [0, T ] × K1 × K2 →
K3 be a measurable map such that, for all t ∈ [0, T ], �(t, ·) : K1 × K2 → K3 is
continuous

(i) Suppose that for some c > 0 and μ ≥ 1,

|�(t, v1, v2)|K3 ≤ c(1 + |v1|μK1
)(1 + |v2|K2), t ∈ [0, T ], v1 ∈ K1, v2 ∈ K2.

For all U ∈ Lr1
P(�;C([0, T ], K1)), V ∈ Lr2

P(�; L2([0, T ]; K2)) with r1, r2 ≥
1, let us define in the natural way the evaluation operator �(U, V )(t,ω) =
�(t,U (t,ω), V (t,ω)).
If μ/r1 + 1/r2 = 1/r3 and r1 ≥ μ then the evaluation operator is continu-
ous from Lr1

P(�;C([0, T ], K1)) × Lr2
P(�; L2([0, T ]; K2)) to L

r3
P(�; L2([0, T ];

K3)).
(ii) Similarly, if

|�(t, v1, v2)|K3 ≤ c(1 + |v1|μK1
+ |v2|K2), t ∈ [0, T ], v1 ∈ K1, v2 ∈ K2,

and r2 = μr1 then the evaluation operator is continuous from Lr1
P(�; L2([0, T ];

K2)) × Lr2
P(�;C([0, T ], K1)) to Lr1

P(�; L2([0, T ]; K3)).

Proof We prove only (i), the proof of (i i) being identical.
Step 1. Firstly we consider only dependence on t . Define the evaluation oper-

ator (denoted again by � by abuse of language): �(U,V)(t) = �(t,U(t),V(t))
with U ∈ C([0, T ], K1), V ∈ L2([0, T ]; K2). We claim that � is continuous from
C([0, T ], K1) × L2([0, T ]; K2) to L2([0, T ]; K3). It is enough to prove that

∫ T

0
|�(t,Un(t),Vn(t)) − �(t,U(t),V(t))|2 dt → 0

for each pair of sequences Un , Vn with Un → U in C([0, T ], K1) and Vn → V in
L2([0, T ]; K2). Extracting a subsequence, if necessary, we can always assume that
∞∑
n=1

|Vn − V|L2([0,T ];K2) < +∞ and Vn(t) → V(t) for a.a. t ∈ [0, T ]. Let V∗(t) =
∞∑
n=1

|Vn(t) − V(t)|K2 . By construction V∗ ∈ L2([0, T ];R) and |Vn(t)|K2 ≤ |V(t)|K2

+ V∗(t). Therefore

|�(t,Un(t),Vn(t)) − �(t,U(t),V(t))|2

≤ L

(
1 + sup

n
|Un|μC([0,T ],K1)

)2 (
1 + |V(t)|K2 + V∗(t)

)2
,

for a suitable constant L . Since the right-hand term is a fixed summable function of
t ∈ [0, T ] the claim follows from the dominated convergence theorem. Finally, we
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observe that

|�(U ,V)|L2([0,T ];K3) ≤ L
(
1 + |U |μC([0,T ],K1)

) (
1 + |V|L2([0,T ];K2)

)

for a suitable constant L .
Step 2. Nowwe consider dependence onω. Let �̂ be a continuousmap K̂1 × K̂2 →

K̂3, with K̂i Banach spaces, i = 1, 2, 3, and |�̂(u, v)|K̂3
≤ L(1 + |u|μ

K̂1
)(1 + |v|K̂2

).

ForU ∈ Lr1(�; K̂1), V ∈ Lr2(�; K̂2) with μ/r1 + 1/r2 = 1/r3, we define the eval-
uation operator �̂(U, V )(ω) = �̂(U (ω), V (ω)) and claim that it is continuous from
Lr1(�; K̂1) × Lr2(�; K̂2) to Lr3(�; K̂3). Before proving the claim we notice that
it completes the proof of Lemma 6.24: indeed, it suffices to apply it to K̂1 =
C([0, T ], K1), K̂2 = L2([0, T ]; K2), K̂3 = L2([0, T ]; K3) and to the evaluation
operator introduced in Step 1.

The proof of the claim is similar to that of Step 1. It is enough to show that:

E

(∣∣∣�̂(Un, Vn) − �̂(U, V )

∣∣∣r3
K̂3

)
→ 0

for each pair of sequences Un in Lr1(�; K̂1) and Vn in Lr2(�; K̂2) with Un → U in
Lr1(�; K̂1) and Vn → V in Lr2(�; K̂2). Extracting a subsequence, if necessary, we
can assume that Un → U and Vn → V P-a.s., and

∞∑
n=1

|Un −U |Lr1 (�;K̂1)
< +∞,

∞∑
n=1

|Vn − V |Lr2 (�;K̂2)
< +∞.

Let:

U ∗ =
∞∑
n=1

|Un −U |K̂1
, V ∗ =

∞∑
n=1

|Vn − V |K̂2
.

By construction U ∗ ∈ Lr1(�;R) and V ∗ ∈ Lr2(�;R). Moreover:

|Un(ω)|K̂1
≤ |U (ω)|K̂1

+U ∗(ω), |Vn(ω)|K̂2
≤ |V (ω)|K̂2

+ V ∗(ω), P-a.s.

Therefore
∣∣∣�̂(Un(ω), Vn(ω)) − �̂(U (ω), V (ω))

∣∣∣r3
K̂3

≤ L
(
1 + |U (ω)|μr3

K̂1
+ (U ∗(ω))μr3

)

·
(
1 + |V (ω)|r3

K̂2
+ (V ∗(ω))r3

)
, P-a.s.,

for a suitable constant L . Since (μr3)/r1 + r3/r2 = 1 the left-hand term has finite
mean and the claim follows from the dominated convergence theorem. �

We are now in a position to show the existence and uniqueness and regular depen-
dence on data of the solution to Eq. (6.42). For p ≥ 2 we define:
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Kp = L p
P(�;C([0, T ], K )) × L p

P(�; L2([0, T ];L2(�, K ))),

endowed with the natural norm.

Proposition 6.25 Assume Hypotheses 6.8 and 6.22.

(i) If X ∈ Lρ
P(�;C([0, T ], H)), η ∈ Lr (�; K ) with ρ = r(m + 1), r ≥ 2 then

there exists a unique solution in Kr of Eq. (6.42), which we will denote by
(Y (·, X, η), Z(·, X, η)).

(ii) The following estimate holds:

E sup
s∈[0,T ]

|Y (s, X, η)|r +
(
E

∫ T

0
|Z(s, X, η)|2ds

)r/2

≤ c
(
1 + |X |ρ

Lρ
P (�;C([0,T ],H))

)
+ cE|η|r

(6.46)

for a suitable constant c depending only on ρ, r and F.
(iii) The map (X, η) → (Y (·, X, η), Z(·, X, η)) is continuous from Lρ

P(�;C
([0, T ], H)) × Lr (�; K ) to Kr .

(iv) The map (X, η) → (Y (·, X, η), Z(·, X, η)) is in G1,1(Lρ
P(�;C([0, T ], H)) ×

Lr (�;R),Kp) with r = (m + 2)p, p ≥ 2 (consequently ρ = p(m + 1)(m +
2)).
Moreover, for all X ∈ Lρ

P(�;C([0, T ], H)), η ∈ Lr (�; K ) the directional
derivative in the direction (N , ζ) with N ∈ Lρ

P(�;C([0, T ], H)) and ζ ∈
Lr (�; K ), which we will denote by (∇X,ηY (·, X, η)(N , ζ),∇X,ηZ(·, X, η)

(N , ζ)), is the unique solution in Kp of:

∇X,ηY (s, X, η)(N , ζ) +
∫ T

s
∇X,ηZ(r, X, η)(N , ζ)dWr

=
∫ T

s
∇x F(r, Xr , Yr (X, η), Zr (X, η))Nrdr

+
∫ T

s
∇y F(r, Xr , Yr (X, η), Zr (X, η))∇X,ηY (r, X, η)(N , ζ)dr

+
∫ T

s
∇z F(r, Xr , Yr (X, η), Zr (X, η))∇X,ηZ(r, X, η)(N , ζ)dr + ζ.

(v) Finally, the following estimate holds:

E sup
s∈[0,T ]

|∇X,ηY (s, X, η)(N , ζ)|p + E

(∫ T

0
|∇X,ηZ(s, X, η)(N , ζ)|2ds

)p/2

≤ c|N |pLr
P (�;C([0,T ],H))

(
1 + |X |(m+1)2

Lρ
P (�;C([0,T ],H))

+ |η|m+1
Lr (�;K )

)p + c|ζ|pL p(�;K ).

(6.47)



724 M. Fuhman and G. Tessitore

(vi) If, in addition, there exists an L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, t ∈ [0, T ], x, h ∈ H, y ∈ K , z ∈ L2(�, K ),

then the following estimate (stronger than (6.47)) holds:

E sup
s∈[0,T ]

|∇X,ηY (s, X, η)(N , ζ)|p + E

(∫ T

0
|∇X,ηZ(s, X, η)(N , ζ)|2ds

)p/2

≤ c|N |p
L p
P (�;C([0,T ],H))

+ c|ζ|pL p(�;K ).

(6.48)

Proof Let � = Lρ
P(�;C([0, T ], H)) and, for every X ∈ �,

fX (s, y, z) = F(s, Xs, y, z).

By (6.43) and Lemma 6.24-(i i) applied with K1 = H , K2 = K × L2(�, K ), U =
X , V = (Y, Z) we obtain that for all (Y, Z) ∈ Kr the map X → fX (Y, Z) is contin-
uous from � to Lr

P(�; L2([0, T ]; K )) and

E

(∫ T

0
| fX (s, 0, 0)|2ds

)r/2

≤ c

(
1 + E( sup

s∈[0,T ]
|Xs |r(m+1))

)
.

Therefore points (i)–(i i i) of the claim follow immediately from Proposition 6.20.
To deal with point (iv) it is convenient now to introduce another backward sto-

chastic equation; we will eventually show that it is satisfied by the derivatives of
(Y, Z)with respect to X and η. For all ζ ∈ L p(�; K ), X, N ∈ Lr

P(�;C([0, T ], H)),
(Y, Z) ∈ Kr we look for (Ŷ (X, N , Y, Z , ζ), Ẑ(X, N , Y, Z , ζ)) ∈ Kp solving:

Ŷs +
∫ T

s
Ẑr dWr =

∫ T

s
∇x F(r, Xr , Yr , Zr )Nrdr∫ T

s
∇y F(r, Xr , Yr , Zr )Ŷr dr +

∫ T

s
∇z F(r, Xr , Yr , Zr )Ẑr dr + ζ.

(6.49)

By Hypothesis 6.22-(i i i) we have

E

(∫ T

0
|∇x F(r, Xr , Yr , Zr )Nr |2dr

)p/2

≤ L|N |pLr
P (�;C([0,T ],H))

(
1 + |Z |Lr

P (�;L2([0,T ];L2(�,K )))

)p

·
(
1 + |X |mLr

P (�;C([0,T ],H)) + |Y |mLr
P (�;C([0,T ],H))

)p
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for a suitable constant L . Since ∇y F and ∇z F are bounded, by Proposition 6.20 the
Eq. (6.49) admits a unique solution in Kp. Moreover, by Lemma 6.24-(i), the map
(X, N , Y, Z) → ∇x F(·, X(·), Y(·), Z(·))N(·) is continuous from the space

K # := Lr
P(�;C([0, T ], H)) × Lr

P(�;C([0, T ], H)) × Kr

to L p
P(�; L2([0, T ]; K )). Therefore, taking into account oncemore the boundedness

of ∇y F and ∇z F , we can apply the final statement of Proposition 6.20 with � = K #

and conclude that the map (X, N , Y, Z , ζ) → (Ŷ (X, N , Y, Z , ζ), Ẑ(X, N , Y, Z , ζ))

is continuous from K # × L p(�; K ) to Kp and the estimate

E( sup
s∈[0,T ]

|Ŷs |p) + E

(∫ T

0
|Ẑr |2dr

)p/2

≤ c|N |pLr
P (�;C([0,T ],H))

(
1 + |Z |Lr

P (�;L2([0,T ];L2(�,K )))

)p

·
(
1 + |X |mLr

P (�;C([0,T ],H)) + |Y |mLr
P (�;C([0,T ],H))

)p + cE|ζ|p
(6.50)

holds for some constant c > 0.
It remains to prove that if X, N ∈ Lρ

P(�;C([0, T ], H)) and η, ζ ∈ Lr (�; K )

then the directional derivative of (Y (X, η), Z(X, η)) in the direction (N , ζ) is given
by

(Ŷ (X, N , Y (X, η), Z(X, η), ζ), Ẑ (X, N , Y (X, η), Z(X, η), ζ)).

Let us define

Y
ε := 1

ε
[Y (X + εN , η + εζ) − Y (X, η)] − Ŷ (X, N , Y (X, η), Z(X, η), ζ),

Z
ε := 1

ε
[Z(X + εN , η + εζ) − Z(X, η)] − Ẑ(X, N , Y (X, η), Z(X, η), ζ).

For ε → 0 we show that Y
ε → 0 in L p

P(�;C([0, T ], K )) and Z
ε → 0 in L p

P(�;
L2([0, T ];L2(�, K ))). For short we let Y = Y (X, η), Z = Z(X, η), Y ε = Y (X +
εN , η + εζ), Z ε = Z(X + εN , η + εζ), Ŷ = Ŷ (X, N , Y (X, η), Z(X, η), ζ), and
Ẑ = Ẑ(X, N , Y (X, η), Z(X, η), ζ).

The proof will be done by induction, dividing the interval [0, T ] into subintervals
[T − δ, T ], [T − 2δ, T − δ] and so on, for a suitable δ depending only on F and p.
All the subintervals are treated in the same way (the proof for [T − δ, T ] being even
easier), so we concentrate on the second one, namely [T − 2δ, T − δ]. On such an
interval we have:

Y
ε

s +
∫ T−δ

s
Z

ε

r dr =
∫ T−δ

s
νε(r)dr + Y

ε

T−δ,
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where νε = νε
1 + νε

2 and:

νε
1(r) = 1

ε

[
F(r, Xr + εNr , Y

ε
r , Z ε

r ) − F(r, Xr , Y
ε
r , Z ε

r )
]− ∇x F(r, Xr , Yr , Zr )Nr ,

νε
2(r) = 1

ε

[
F(r, Xr , Y

ε
r , Z ε

r ) − F(r, Xr , Yr , Zr )
]

− ∇y F(r, Xr , Yr , Zr )Ŷr − ∇z F(r, Xr , Yr , Zr )Ẑr .

By Proposition 6.20 we have:

E sup
s∈[T−2δ,T−δ]

|Y ε

s |p + E

(∫ T−δ

T−2δ
|Z ε

r |2dr
)p/2

≤ cpδ
p/2

2∑
i=1

E

(∫ T−δ

T−2δ
|νε

i (r)|2dr
)p/2

+ cpE|Y ε

T−δ|p

and by the inductive assumption E|Y ε

T−δ|p → 0.
We start to evaluate the integral terms on the right. We can write

νε
1(r) =

∫ 1

0
∇x F(r, Xr + ετNr , Y

ε
r , Z ε

r )Nrdτ −
∫ 1

0
∇x F(r, Xr , Yr , Zr )Nrdτ .

For all x, g, n ∈ H , y ∈ K , z ∈ L2(�, K ) let χ(x, g, n, y, z) = ∫ 1
0 ∇x F(x + τ

g, y, z)ndτ , so that νε
1(r) = χ(Xr , εNr , Nr , Y ε

r , Z ε
r ) − χ(Xr , 0, Nr , Yr , Zr ). More-

over, |χ(x, g, n, y, z)| ≤ L|n|(1 + |z|)(1 + |x |m + |g|m + |y|m) and χ is a contin-
uous map. Applying Lemma 6.24-(i) with K1 = H×3 × K K2 = L2(�, K ), r1 =
r2 = r , μ = m + 1 and taking into account that (X, εN , N , Y ε) → (X, 0, N , Y ) in
Lr
P(�,C([T − 2δ, T − δ], K1)) and Z ε → Z in Lr

P(�, L2([T − 2δ, T − δ], K2))

we immediately obtain E
(∫ T−δ

T−2δ |νε
1(r)|2dr

)p/2 → 0.

Dealing now with νε
2 we can rewrite νε

2 = νε
2.1 + νε

2.2 where:

νε
2.1(r) =

∫ 1

0

(
∇y F(r, Xr , Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Ŷr

− ∇y F(r, Xr , Yr , Zr )Ŷr

)
dτ

+
∫ 1

0

(
∇z F(r, Xr , Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Ẑr

− ∇z F(r, Xr , Yr , Zr )Ẑr

)
dτ ,
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νε
2.2(r) =

∫ 1

0
∇y F(r, Xr , Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Y

ε

r dτ

+
∫ 1

0
∇z F(r, Xr , Yr + τ (Y ε

r − Yr ), Zr + τ (Z ε
r − Zr ))Z

ε

r dτ .

Since∇y F and∇z F are bounded, by the dominated convergence theorem we imme-

diately obtain E

(∫ T−δ

T−2δ |νε
2.1(r)|2dr

)p/2 → 0. Moreover,

E

(∫ T−δ

T−2δ
|νε

2.2(r)|2dr
)p/2

≤ c

(
E sup

τ∈[T−2δ,T−δ]
|Y ε

τ |p + E

(∫ T−δ

T−2δ
|Z ε

r |2dr
)p/2

)

for a suitable constant c depending only on F , p T . Choosing δ such that cpcδ p/2 < 1
the claim follows immediately.

Finally, (6.47) follows plugging (6.46) into (6.50), and (6.48) is proved in the
same way, taking into account the additional assumption. �

6.3.3 Forward–Backward Systems

In this subsection we consider the system of stochastic differential equations

⎧⎪⎪⎨
⎪⎪⎩

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X (r)) dr +

∫ s

t
e(s−r)Aσ(r, X (r)) dW (r),

Y (s) +
∫ T

s
Z(r)dW (r) =

∫ T

s
F(r, X (r), Y (r), Z(r))dr + g(X (T )),

(6.51)
for s varying on the time interval [t, T ] ⊂ [0, T ]. As in Sect. 6.2 we extend the
domain of the solution setting X (s) = x for s ∈ [0, t). We assume that F : [0, T ] ×
H × R × L2(�,R) → R satisfies Hypothesis 6.22 with K = R. On the function
g : H → R we make the following assumptions:

Hypothesis 6.26 (i) g ∈ G1(H,R);
(ii) There exist L > 0 and m ≥ 0 such that, for every x, h ∈ H ,

|∇g(x)h| ≤ L |h| (1 + |x |)m .

For simplicity, and without any real loss of generality, we suppose that m is the
same as in Hypothesis 6.22. Notice that Hypothesis 6.26 implies that

|g(x)| ≤ c(1 + |x |m+1).
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In some of the statements below we will assume the stronger condition: |∇g(x)h| ≤
L|h|, for every x, h ∈ H .Whenever this is the case, this requirementwill be explicitly
mentioned.

We note that the system (6.51) is decoupled, i.e., the first equation does not contain
the solution (Y, Z) of the second one. Therefore, under the assumptions of Hypothe-
ses 6.8, 6.22 and 6.26 by Propositions 6.9 and 6.25 there exists a unique solution to
(6.51). We remark that the process X is F[t,T ]-measurable, so that Yt is measurable
both with respect toF[t,T ] andFt ; it follows that Yt is indeed deterministic (see also
[207]).

We denote the solution by (X (s; t, x), Y (s; t, x), Z(s; t, x)), s ∈ [t, T ], in order
to stress dependence on the parameters t ∈ [0, T ] and x ∈ H .

For later use we notice two useful identities: for t ≤ r ≤ T the equality: P-a.s.,

X (s; r, X (r; t, x)) = X (s; t, x), s ∈ [r, T ], (6.52)

is a consequence of the uniqueness of the solution to (6.6). Since the solution to the
backward equation is uniquely determined on an interval [r, T ] by the values of the
process X on the same interval, for t ≤ r ≤ T we have, P-a.s.,

Y (s; r, X (r; t, x)) = Y (s; t, x), for s ∈ [r, T ],
Z(s; r, X (r; t, x)) = Z(s; t, x) for a.a. s ∈ [r, T ]. (6.53)

Next we proceed to investigate regularity properties of the dependence on t and
x . To this end we first notice that with the notation of Propositions 6.10 and 6.25:

Y (s; t, x) = Y (s; X (·; t, x), g(X (T ; t, x))),

Z(s; t, x) = Z(s; X (·; t, x), g(X (T ; t, x))).

Moreover, as a consequence of Hypothesis 6.26, it can be easily proved that the map
η→g(η) belongs to the space G1(L p(�; H), Lq(�;R)), for every p ∈ [2,∞) and
for all q sufficiently large (depending on p andm). The following Proposition is then
an immediate consequence of Propositions 6.9, 6.10 and 6.25, and the chain rule for
the class G, stated in Lemma 6.3.

Proposition 6.27 Assume Hypotheses 6.8, 6.22 and 6.26. Recall the notation:

Kp = L p
P(�;C([0, T ],R)) × L p

P(�; L2([0, T ];L2(�,R))).

Then the map (t, x)→(Y (·, t, x), Z(·, t, x)) belongs to G0,1([0, T ] × H , Kp) for
all p ∈ [2,∞).

Denoting by ∇xY , ∇x Z the partial Gâteaux derivatives with respect to x, the
directional derivative process in the direction h ∈ H, {(∇xY (s; t, x)h,∇x Z(s; t,
x)h)}s∈[0,T ], solves the equation: P-a.s.,
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∇xY (s; t, x)h +
∫ T

s
∇x Z(r; t, x)h dWr

=
∫ T

s
∇x F(r, X (r; t, x), Y (r; t, x), Z(r; t, x))∇x X (r; t, x)h dr∫ T

s
∇y F(r, X (r; t, x), Y (r; t, x), Z(r; t, x))∇xY (r; t, x)h dr∫ T

s
∇z F(r, X (r; t, x), Y (r; t, x), Z(r; t, x))∇x Z(r; t, x)h dr

+∇g(X (T ; t, x))∇x X (T ; t, x)h, s ∈ [0, T ].

(6.54)

Finally, the following estimate holds:

[
E sup

s∈[0,T ]
|∇xY (s; t, x)h|p

] 1
p

+
⎡
⎣E

(∫ T

0
|∇x Z(r; t, x)h|2dr

) p
2

⎤
⎦

1
p

≤ c|h|(1 + |x |(m+1)2 ).

(6.55)

If, in addition, there exists an L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, |∇g(x)h| ≤ L|h|,

for every t ∈ [0, T ], x, h ∈ H, y ∈ R, z ∈ L2(�,R), then the following stronger
estimate holds:

[
E sup

s∈[0,T ]
|∇xY (s; t, x)h|p

]1/p

+
[
E

(∫ T

0
|∇x Z(r; t, x)h|2dr

)p/2
]1/p

≤ c|h|.
(6.56)

Proof We have already commented on the first two statements. The estimate (6.55)
follows from (6.47) applied with

X = X (·; t, x), N = ∇x X (·; t, x)h, η = g(X (T ; t, x)), ζ = ∇g(X (T ; t, x))∇x X (T ; t, x)h,

taking into account that by Propositions 6.9 and 6.10 we have

|N |Lρ
P (�;C([0,T ],H)) ≤ c|h|, |X |Lρ

P (�;C([0,T ],H)) ≤ c(1 + |x |),

and, by Hypothesis 6.26, we also obtain |η|Lr (�) ≤ c(1 + |x |)m+1, |ζ|L p(�) ≤ c|h|
(1 + |x |)m for a suitable constant c.

The estimate (6.56) is proved in a similar way, applying (6.48) instead of (6.47)
and taking into account that under the additional assumption we have |η|Lr (�) ≤
c(1 + |x |), |ζ|L p(�) ≤ c|h| for a suitable constant c. �

Proposition 6.28 AssumeHypotheses 6.8, 6.22and6.26. Then the functionu(t, x) =
Y (t, t, x) has the following properties:
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(i) u ∈ G0,1([0, T ] × H,R);
(ii) there exists a C > 0 such that |∇xu(t, x)h| ≤ C |h|(1 + |x |(m+1)2) for all t ∈

[0, T ], x ∈ H, h ∈ H;
(iii) if, in addition,

sup
t∈[0,T ],x∈H

|F(t, x, 0, 0)| < ∞, sup
x∈H

|g(x)| < ∞,

then supt∈[0,T ],x∈H |u(t, x)| < ∞;
(iv) similarly, if there exists an L > 0 such that

|∇x F(t, x, y, z)h| ≤ L|h|, |∇g(x)h| ≤ L|h|,

for every t ∈ [0, T ], x, h ∈ H, y ∈ R, z ∈ L2(�,R), then

|∇xu(t, x)h| ≤ c|h|

for a suitable constant c and all x, h ∈ H.

Proof (i) Since Y (t; t, x) is deterministic, we have u(t, x) = E Y (t; t, x). So the
map (t, x) → u(t, x) can be written as a composition, letting u(t, x) = �3(�2(t, �1

(t, x))) with:

�1 : [0, T ] × H → L p
P(�;C([0, T ],R)), �1(t, x) = Y (·; t, x),

�2 : [0, T ] × L p
P(�;C([0, T ],R)) → L p(�;R), �2(t,U ) = U (t),

�3 : L p(�;R) → R, �3ζ = Eζ.

By Proposition 6.27, �1 ∈ G0,1. The inequality

|U (t) − V (s)|L p(�;R) ≤ |U (t) −U (s)|L p(�;R) + |U − V |L p
P (�;C([0,T ],R))

shows that �2 is continuous; moreover �2 is clearly linear in the second variable.
Finally, �3 is a bounded linear operator. Then the assertion follows from the chain
rule.

(i i) is an immediate consequence of the estimate in Proposition 6.27-(i i i): indeed,

|u(t, x)|2 = |Y (t; t, x)|2 = E |Y (t; t, x)|2 ≤ sup
s∈[t,T ]

E |Y (s; t, x)|2.

(i i i) Since (Y, Z) is a solution to the backward equation, the estimate in Propo-
sition 6.20 yields

sup
s∈[t,T ]

E |Y (s; t, x)|2 ≤ cE
∫ T

0
|F(r, X (r; t, x), 0, 0)|2dr + cE |g(X (T ; t, x))|2 ≤ c.
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(iv) follows immediately from (6.56). �

Corollary 6.29 For every t ∈ [0, T ], x ∈ H we have

Y (s; t, x) = u(s, X (s; t, x)), for s ∈ [u, T ], (6.57)

Z(s; t, x) = ∇xu(s, X (s; t, x))σ(s, X (s; t, x)), for a.a. s ∈ [u, T ]. (6.58)

Proof Setting s = r in the first equality of (6.53) we obtain (6.57).
To prove (6.58) we first write the backward equation in system (6.51) as

Ys = Yt +
∫ s

t
Zr dWr −

∫ s

t
F(r, Xr , Yr , Zr ) dr, s ∈ [t, T ]

and by (6.57) this can be written

u(s, X (s; t, x)) = u(t, x) +
∫ s

t
Zr dWr −

∫ s

t
F(r, Xr , Yr , Zr ) dr, s ∈ [t, T ].

(6.59)

Now we fix an arbitrary ξ ∈ � and take the joint quadratic variation of both sides
of (6.59) with the Wiener process Wξ. The joint quadratic variation of the left-hand
side is ∫ s

t
∇xu(r, X (r; t, x))σ(r, X (r; t, x))ξ dr, s ∈ [t, T ], (6.60)

by Proposition 6.17. Since the ordinary integral in (6.59) is a finite variation process,
the joint quadratic variation of Wξ and the right-hand side of (6.59) is

∫ s

t
Zrξ dr, s ∈ [t, T ]. (6.61)

Equating (6.60) and (6.61) we obtain (6.58). �

6.4 BSDEs and Mild Solutions to HJB

We denote by Bp(H) the set of measurable functions φ : H → R with polynomial
growth, i.e., such that supx∈H |φ(x)|(1 + |x |a)−1 < ∞ for some a > 0.

Let X (s; t, x), s ∈ [t, T ], denote the solution to the stochastic equation

X (s) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X (r)) dr +

∫ s

t
e(s−r)Aσ(r, X (r)) dW (r),

where A, b, σ, satisfy the assumptions in Hypothesis 6.8. The transition semigroup
Pt,s is defined for arbitrary φ ∈ Bp(H) and for 0 ≤ t ≤ s ≤ T by the formula
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Pt,s[φ](x) = Eφ(X (s; t, x)), x ∈ H.

The estimate E sups∈[t,T ] |X (s; t, x)|p ≤ C(1 + |x |)p, see (6.8), shows that Pt,s
is well defined as a linear operator Bp(H) → Bp(H); the semigroup property
Pt,u Pu,s = Pt,s , t ≤ u ≤ s, is well known.

Let us denote by A(t) the (formal) generator of Pt,s :

A(t)[φ](x) = 1

2
Tr
(
σ(t, x)σ(t, x)∗D2φ(x)

)+ 〈Ax + b(t, x), Dφ(x)〉 ,

where Dφ and D2φ are first and secondGâteaux derivatives ofφ (here identifiedwith
elements of H and L(H), respectively). This definition is formal, since the domain
ofA(t) is not specified; however, if g : H → R is a sufficiently regular function, the
function v(t, x) = Pt,T [g](x) is a classical solution to the backward Kolmogorov
equation:

{ ∂v(t, x)

∂t
+ A(t)[v(t, ·)](x) = 0, t ∈ [0, T ], x ∈ H,

v(T, x) = g(x).

We refer to [179, 180, 582] for a detailed exposition. When g is not regular, the
function v(t, x) = Pt,T [g](x) can be considered as a generalized solution to the
backward Kolmogorov equation.

Here we are interested in a generalization of this equation, written formally as

⎧⎨
⎩

∂u(t, x)

∂t
+ A(t)[u(t, ·)](x) + F(t, x, u(t, x),∇x u(t, x)σ(t, x)) = 0, t ∈ [0, T ], x ∈ H,

u(T, x) = g(x).

(6.62)

We will refer to this equation as the nonlinear Kolmogorov equation. In the sequel
we will be mostly concerned with the case when F is a Hamiltonian function related
to an optimal control problem and in this case Eq. (6.62) is the Hamilton–Jacobi–
Bellman equation for the corresponding value function. However, the results given
in this section are more general, they do not rely on a control-theoretic interpretation
and may be of independent interest.

In (6.62) F : [0, T ] × H × R × �∗ → R is a given function satisfying Hypoth-
esis 6.22. Note that ∇xu(t, x), the Gâteaux derivative of u(t, x) with respect
to x , is an element of H∗, so that the composition ∇xu(t, x)σ(t, x) belongs to
�∗ = L(�,R) = L2(�,R). Thus, we are in the framework of Hypothesis 6.22 with
K = R.

Remark 6.30 A different formulation of Eq. (6.62) is possible, which differs only
notationally. We could start with a real-valued function F defined on [0, T ] × H ×
R × � and write the first equality in (6.62) as
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∂u(t, x)

∂t
+ A(t)[u(t, ·)](x) + F(t, x, u(t, x),σ(t, x)∗Dxu(t, x)) = 0,

where σ(t, x)∗ ∈ L(H, �) denotes the Hilbert space adjoint of σ(t, x) ∈ L(�, H).
We recall that Dx denotes the Gâteaux derivative identified with an element of H ,
so that ∇xu(t, x)h = 〈Dxu(t, x), h〉H for every h ∈ H . Of course, identifying �

with �∗ by the Riesz isometry, one checks immediately the equivalence of the two
formulations. �

Now we define the notion of solution to the nonlinear Kolmogorov equation. We
consider the variation of constants formula for (6.62):

u(t, x) =
∫ T

t
Pt,s[F(s, ·, u(s, ·),∇xu(s, ·)σ(s, ·))](x) ds + Pt,T [g](x), (6.63)

for t ∈ [0, T ] and x ∈ H , and we see that formula (6.63) is meaningful, provided
F(t, ·, ·, ·), u(t, ·) and ∇xu(t, ·) have polynomial growth (and, of course, provided
they satisfy appropriate measurability assumptions). We use this formula as a defin-
ition for the solution to (6.62):

Definition 6.31 We say that a function u : [0, T ] × H → R is a mild solution to
the nonlinear Kolmogorov equation (6.62) if the following conditions hold:

(i) u ∈ G0,1([0, T ] × H,R);
(ii) there exist C > 0 and d ∈ N such that |∇xu(t, x)h| ≤ C |h|(1 + |x |d) for all

t ∈ [0, T ], x ∈ H , h ∈ H ;
(iii) equality (6.63) holds.

Note that the specific form of the operator A(t) plays no role in this definition.
We are now ready to state the main result of this section.

Theorem 6.32 Assume thatHypothesis 6.8 holds, and let F, g be functions satisfying
the assumptions in Hypotheses 6.22 (with K = R) and 6.26. Then there exists a
unique mild solution to the nonlinear Kolmogorov equation (6.62).

The solution u is given by the formula

u(t, x) = Y (t; t, x),

where (X, Y, Z) is the solution to the forward–backward system (6.51).
If, in addition, supt∈[0,T ],x∈H |F(t, x, 0, 0)| < ∞ and g is bounded then u is also

bounded.
Similarly, if |∇x F | is uniformly bounded then |∇xu| is also uniformly bounded.

Proof Existence. By Proposition 6.28, the proposed solution u has the regularity
properties stated in Definition 6.31 and the last two statements of the claim hold. It
remains to verify that equality (6.63) holds. To this purpose we first fix t ∈ [0, T ]
and x ∈ H and write the backward equation of system (6.51) for s = t :
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Y (t; t, x) +
∫ T

t
Z(s; t, x) dWs

=
∫ T

t
F
(
s, X (s; t, x), Y (s; t, x), Z(s; t, x)

)
ds + g(X (T ; t, x)).

Taking the expectation we obtain

u(t, x) = E

∫ T

t
F
(
s, X (s; t, x), Y (s; t, x), Z(s; t, x)

)
ds + Pt,T [g](x).

By (6.57), (6.58) we have

u(t, x) = E

∫ T

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇x u(s, X (s; t, x)) σ(s, X (s; t, x))

)
ds

+ Pt,T [g](x)

and equality (6.63) follows.

Uniqueness. Let u be a mild solution. We look for a convenient expression for
the process u(r, X (r; t, x)), r ∈ [t, T ]. By (6.63) and the definition of Pr,s , for every
r ∈ [t, T ] and x ∈ H ,

u(r, x) = E [g(X (T ; r, x))]
+E

[∫ T

r
F
(
s, X (s; r, x), u(s, X (s; r, x)),∇xu(s, X (s; r, x))σ(s, X (s; r, x))

)
ds

]
.

Since X (s; r, x) isFr -independent, we can replace the expectation by the conditional
expectation given Fr :

u(r, x) = E
Fr [g(X (T ; r, x))]

+E
Fr

[∫ T

r
F
(
s, X (s; r, x), u(s, X (s; r, x)),∇xu(s, X (s; r, x))σ(s, X (s; r, x))

)
ds

]
.

For the same reason, we can replace x by X (r; t, x) and use the equality: P-a.s.

X (s; r, X (r; t, x)) = X (s; t, x), for s ∈ [r, T ].
We arrive at

u(r, X (r; t, x)) = E
Fr [g(X (T ; t, x))]

+E
Fr

[∫ T

r
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x)σ(s, X (s; t, x))

)
ds

]

= E
Fr [ξ]

−
∫ r

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds,
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where we have defined

ξ = g(X (T ; t, x))

+
∫ T

t
F
(
s, X (s; t, x), u(s, X (s; t, x))∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds.

We note that E
Ft [ξ] = u(t, x). Since ξ ∈ L2(�;R) is FT -measurable, by the

representation theorem recalled in Proposition 6.18, there exists a Z̃ ∈ L2
P(� ×

[t, T ];L2(�,R)) such that EFr [ξ] = ∫ r
t Z̃s dWs + u(t, x). We conclude that the

process u(r, X (r; t, x)), r ∈ [t, T ], is a (real) continuous semimartingalewith canon-
ical decomposition

u(r, X (r; t, x)) =
∫ r

t
Z̃s dWs

+u(t, x) −
∫ r

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds

(6.64)
into its continuous martingale part and continuous finite variation part. Let ξ ∈ �. By
Proposition 6.17, the joint quadratic variation process of u(r, X (r; t, x)) andW (r)ξ,
r ∈ [t, T ], is

∫ r

t
∇xu(s, X (s; t, x))σ(s, X (s; t, x))ξ ds, r ∈ [t, T ]. (6.65)

Taking into account the canonical decomposition (6.64), we note that the process
(6.65) can also be obtained as the joint quadratic variation process between W (r)ξ,
r ∈ [t, T ], and the process

∫ r
t Z̃s dWs . This yields the identity

∫ r

t
∇xu(s, X (s; t, x))σ(s, X (s; t, x))ξ ds =

∫ s

t
Z̃s ξ ds. r ∈ [t, T ].

Therefore, for a.a. s ∈ [t, T ], we have P-a.s.

∇xu(s, X (s; t, x))σ(s, X (s; t, x)) = Z̃s .

Substituting into (6.64) we obtain

u(r, X (r; t, x)) =
∫ r

t
∇xu(s, X (s; t, x))σ(s, X (s; t, x)) dWs + u(t, x)

+
∫ r

t
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds,

for r ∈ [t, T ]. Since u(T, X (T ; t, x)) = g(X (T ; t, x)), we also have
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u(r, X (r; t, x)) +
∫ T

r
∇xu(s, X (s; t, x)) σ(s, X (s; t, x)) dWs = g(X (T ; t, x))

+
∫ T

r
F
(
s, X (s; t, x), u(s, X (s; t, x)),∇xu(s, X (s; t, x))σ(s, X (s; t, x))

)
ds,

for r ∈ [t, T ]. Comparing with the backward equation in (6.51) we note that the
pairs

(
Y (r; t, x), Z(r; t, x)

)
and

(
u(r, X (r; t, x)),∇xu(r, X (r; t, x)) σ(r, X (r; t, x))

)
,

for r ∈ [t, T ], solve the same equation. By uniqueness, we have in particular
Y (r; t, x) = u(r, X (r; t, x)), r ∈ [t, T ]. Setting r = t we obtain Y (t; t, x) =
u(t, x). �

6.5 Applications to Optimal Control Problems

We wish to apply the above results to perform the synthesis of the optimal control
for a general nonlinear control system. We will see that this approach allows great
generality, particularly with respect to degeneracy of the noise. To be able to use
non-smooth feedbacks we settle the problem in the framework of optimal control
problems formulated in the extended weak formulation, but we will present results
on the extended strong formulation as well.

Let again H ,�, denote real separable Hilbert spaces (the state space and the noise
space, respectively) and let � be a Polish space (the control space). For t ∈ [0, T ] a
generalized reference probability space is given by μ = (�,F ,F t

s ,P,W ), where

• (�,F ,P) is a complete probability space;
• {F t

s

}
s≥t is a filtration in it, satisfying the usual conditions;

• (W (s))s≥t is a cylindrical P-Wiener process in�, with respect to the filtrationF t
s ,

starting from W (t) = 0.

Given such μ, for every starting point x ∈ H we will consider the following
controlled state equation

⎧⎪⎨
⎪⎩
dX (s) =

(
AX (s) + b(s, X (s)) + σ(s, X (s))R(s, X (s), a(s))

)
ds

+ σ(s, X (s)) dW (s), s ∈ [t, T ],
X (t) = x ∈ H.

(6.66)
In (6.66), and below in this section, the equation is understood in the mild sense.
a(·) : � × [t, T ] → � is the control process, which is always assumed to be pro-
gressivelymeasurablewith respect to

{
F t

s

}
s≥t . On the coefficients A, b,σ, R precise

assumptionswill be formulated inHypothesis 6.33 below. In particular, to allowmore
generality, on the coefficient R we will only impose measurability and boundedness
assumptions, so that, in particular, we cannot guarantee the existence or uniqueness
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of the solution to the state equation for an arbitrary control process a(·). Therefore
the formulations of the control problems require some slight changes with respect to
the previous sections and is given as follows (the word extended is used to distinguish
such formulations, see Remark 2.6). We call (a(·), X (·)) an admissible control pair
if a(·) is an F t

s -progressively measurable process with values in � and X (·) is a
mild solution to (6.66) corresponding to a(·). To every admissible control pair we
associate the cost:

Jμ(t, x; a(·), X (·)) = E

∫ T

t
l(s, X (s), a(s)) ds + E g(X (T )),

where l, g are suitable real functions. The optimal control problem in the extended
strong formulation consists in minimizing the functional Jμ(t, x; a(·), X (·)) over all
admissible control pairs (a(·), X (·)), and characterizing the value function

V μ
t (x) = inf

(a(·),X (·))
Jμ(t, x; a(·), X (·)).

We will also address the optimal control problem in the extended weak formula-
tion, which consists in further minimizing with respect to all generalized reference
probability spaces, i.e., in characterizing the value function

V (t, x) = inf
μ

V μ
t (x).

Notice the occurrence of the operator σ in the control term of (6.66): this special
structure of the state equation is imposed by our techniques and seems to be essential
in different contexts as well (see [298]). The corresponding Hamiltonian function is
defined for all t ∈ [0, T ], x ∈ H , z ∈ �∗ setting

F0(t, x, z) = inf
a∈�

{l(t, x, a) + z R(t, x, a)}. (6.67)

Note that this differs from the Hamiltonian as introduced in the previous chapters.
In particular, the third argument z ranges over �∗ instead of H .

We make the following assumptions:

Hypothesis 6.33 The following holds:

(1) A, b and σ satisfy Hypothesis 6.8.
(2) R : [0, T ] × H × � → � is Borel measurable and |R(t, x, a)|� ≤ L for a suit-

able constant L > 0 and all t ∈ [0, T ], x ∈ H , a ∈ �.
(3) l : [0, T ] × H × � → R is continuous and |l(t, x, a)| ≤ L(1 + |x |m) for suit-

able constants L > 0, m ≥ 0 and all t ∈ [0, T ], x ∈ H , a ∈ �.
(4) g satisfies Hypothesis 6.26.
(5) Taking K = R (and noting thatL2(�,R) = �∗) the function F0 : [0, T ] × H ×

�∗ → R satisfies Hypothesis 6.22.
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(6) For all t ∈ [0, T ], x ∈ H and z ∈ �∗ we denote by �(t, x, z) ⊂ � the set of
elements a ∈ � such that the infimum in (6.67) is attained and we assume that
�(t, x, z) is non-empty. We will denote by γ a measurable selection of �, i.e., a
measurable function γ : [0, T ] × H × �∗ → � such that γ(t, x, z) ∈ �(t, x, z)
for every t ∈ [0, T ], x ∈ Hand z ∈ �∗. γ is not always assumed to exist.

The Hamilton–Jacobi–Bellman equation relative to the above stated problem is
written formally:

⎧⎨
⎩

∂v(t, x)

∂t
+ A(t)[v(t, ·)](x) + F0(t, x, ∇xv(t, x)σ(t, x)) = 0, t ∈ [0, T ], x ∈ H,

v(T, x) = g(x).
(6.68)

Notice the special form of this equation where the nonlinear term depends on ∇xv

only via the composition ∇xv σ: this is consistent with the definition of F0 given
above.

The Hamilton–Jacobi–Bellman equation takes the form of a nonlinear Kol-
mogorov equation as considered in the previous sections. In particular, under our
assumptions, it admits a unique mild solution in the sense specified by Theorem
6.32.

In the proof of our main results, Theorems 6.35 and 6.36 below, we will make use
of a classical tool in stochastic analysis, namely the Girsanov Theorem. We recall
its statement, in a form suitable for our purposes. Its infinite-dimensional version,
which we are about to state, can be found, for example, in [180].

Theorem 6.34 Let μ = (�,F ,F t
s ,P,W ) be a generalized reference probability

space, let R(r), r ∈ [t, T ], be an F t
s -progressively measurable process with values

in � such that
∫ T
t |R(r)|2�dr < ∞ P-a.s., and define

ρt (s) = exp

(
−
∫ s

t
〈R(r), dW (r)〉� − 1

2

∫ s

t
|R(r)|2� dr

)
, s ∈ [t, T ].

Then the following holds:

(1) ρt (·) is a P-supermartingale;
(2) if

E [ρt (T )] = 1 (6.69)

then ρt (·) is a P-martingale and we can define a probability P̃ setting P̃(A) =
E [1Aρ

t (T )], A ∈ F ;
(3) the process W̃ defined by

W̃ (s) = W (s) − W (t) +
∫ s

t
R(r) dr, s ∈ [t, T ], (6.70)

is a cylindrical Wiener process in � with respect toF t
s and P̃;
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(4) finally, if R is bounded in � then (6.69) holds and for every p ∈ [1,∞) we have

E [(ρt (T ))p] < ∞, Ẽ [(ρt (T ))−p] < ∞, (6.71)

where Ẽ denotes expectation with respect to P̃.

Note that (6.70) does not make sense as it is written since W , being a cylindrical
Wiener process, is not a genuine stochastic process taking values in�. (6.70) should
be understood as the equality W̃ (s)h = W (s)h − W (t)h + ∫ s

t 〈R(r), h〉� dr for any
h ∈ �. Nevertheless, in the following we will use a shortened notation as in (6.70).

We are in a position to prove the main results of this section:

Theorem 6.35 Assume Hypothesis 6.33 and let t ∈ [0, T ], x ∈ H.

(1) For all generalized reference probability spaces μ and all admissible control
pairs (a, X) we have Jμ(t, x; a(·), X (·)) ≥ v(t, x).
It follows that V μ

t (x) ≥ v(t, x) for every μ, and so V (t, x) ≥ v(t, x).
(2) For all μ and all admissible control pairs (a, X), the equality Jμ(t, x; a(·),

X (·)) = v(t, x) holds if and only if the following feedback law is satisfied:

a(s) ∈ �(s, X (s),∇xv(s, X (s))σ(s, X (s))), P-a.s. for a.a. s ∈ [t, T ].
(6.72)

Therefore, (6.72) implies the optimality of an admissible control pair in the
extended strong formulation with respect to a given generalized reference prob-
ability space μ. If such a control pair exists then V μ

t (x) = v(t, x).

Proof For allμ = (�,F ,F t
s ,P,W ) and admissible control pairs (a(·), X (·)), using

the boundedness of R, the Girsanov theorem ensures that there exists a probability
measure P̃ on � such that

W̃s := Ws − Wt +
∫ s

t
R(r, Xr , a(r)) dr, s ∈ [t, T ],

is a P̃-Wiener process (note that P̃ and W̃ depend on (a, X), but we neglect this
dependence in the notation). Equation (6.66) can be rewritten as:

{
dXs = AXs ds + b(s, Xs) ds + σ(s, Xs) dW̃s, s ∈ [t, T ],
Xt = x ∈ H,

(6.73)

which, as usual, is to be understood in the mild sense. The process X turns out to be
adapted to the filtration, denoted (F̃ t

s )s∈[t,T ], generated by W̃ and completed in the
usual way by means of null sets. In the filtered probability space (�,F, F̃ t

s , P̃) we
can consider the system of forward–backward equations on [t, T ]:
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⎧⎪⎪⎨
⎪⎪⎩

X̃(s; t, x) = e(s−t)Ax +
∫ s

t
e(s−r)Ab(r, X̃(r; t, x)) dr +

∫ s

t
e(s−r)Aσ(r, X̃(r; t, x)) dW̃r ,

Ỹ (s; t, x) +
∫ T

s
Z̃(r; t, x)dW̃r =

∫ T

s
F0(r, X̃(r; t, x), Z̃(r; t, x))dr + g(X̃(T ; t, x)).

(6.74)
We notice that X̃(s; t, x) = Xs . Writing the backward equation in (6.74) for s = t
and with respect to the original process W we get:

Ỹ (t; t, x) +
∫ T

t
Z̃(r; t, x) dWr

=
∫ T

t

[
F0(r, Xr , Z̃(r; t, x)) − Z̃(r; t, x)R(r, Xr , a(r))

]
dr + g(XT ).

(6.75)

We note that

E

⎡
⎣
(∫ T

t
|Z̃(r; t, x)|2 dr

)1/2⎤
⎦ = Ẽ

⎡
⎣(ρt (T ))−1

(∫ T

t
|Z̃(r; t, x)|2 dr

)1/2⎤
⎦

≤
(
Ẽ [(ρt (T ))−2]

)1/2 (
Ẽ

∫ T

t
|Z̃(r; t, x)|2 dr

)1/2
< ∞

by (6.71). Therefore, by the Burkholder–Davis–Gundy inequalities, the stochastic
integral

∫ T
t Z̃(r; t, x) dWr has finite P-expectation, equal to zero. Now we recall the

equalities (6.57) and (6.58) which imply in the present notation that Ỹ (t; t, x) =
v(t, x) and

Z̃(s; t, x) = ∇xv(s, X̃(s; t, x))σ(s, X̃(s; t, x)) = ∇xv(s, Xs)σ(s, Xs).

Taking expectation with respect to the original probability P in (6.75) we obtain:

E g(XT ) − v(t, x) = −E

∫ T

t
F0(r, Xr ,∇xv(r, Xr )σ(r, Xr )) dr

+E

∫ T

t
∇xv(r, Xr )σ(r, Xr )R(r, Xr , a(r)) dr.

Adding and subtracting E

∫ T

t
l(r, Xr , a(r)) dr we conclude that:

Jμ(t, x; a(·), X (·)) = v(t, x) + E

∫ T

t

[
− F0(r, Xr , ∇xv(r, Xr )σ(r, Xr ))

+∇xv(r, Xr )σ(r, Xr )R(r, Xr , a(r)) + l(r, Xr , a(r))

]
dr.

(6.76)
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The above equality is known as the fundamental identity. By the definition of F0 and
� it implies immediately that v(t, x) ≤ Jμ(t, x; a(·), X (·)) and that equality holds
if and only if (6.72) holds. This proves all the conclusions of the theorem. �

Theorem 6.36 AssumeHypothesis 6.33, assume in addition that� admits ameasur-
able selection γ, and let t ∈ [0, T ], x ∈ H. Then there exists at least one generalized
reference probability space μ = (�,F ,F

t
s,P,W ) and an admissible control pair

(a(·), X(·)) for which the analogue of (6.72) holds. In particular, it follows that
V μ
t (x) = v(t, x) and so V (t, x) = v(t, x). In the space μ the process X is a mild

solution to the closed loop equation:

⎧⎪⎨
⎪⎩
dX(s) = AX(s) ds + σ(s, X(s)) R

(
s, X(s), γ(s, X(s),∇xv(s, X(s))σ(s, X(s)))

)
ds

+ b(s, X(s)) ds + σ(s, X(s)) dW (s), s ∈ [t, T ],
X(t) = x ∈ H,

(6.77)
the feedback law takes the form

a(s) = γ(s, X(s),∇xv(s, X(s))σ(s, X(s))), P-a.s. for a.a. s ∈ [t, T ],

and the pair (a(·), X(·)) is optimal for the control problem in the extended weak
formulation.

Proof We start by showing the existence of a extended weak solution to Eq. (6.77),
again by an application of the Girsanov theorem. We take an arbitrary generalized
reference probability space (�,F ,F

t
s,P,W ) and denote by X the mild solution on

[t, T ] of the (uncontrolled) equation
{
dXs = AXsdt + b(s, Xs)ds + σ(s, Xs)dWs,

Xt = x .

Recalling the boundedness assumption on R, we see that the Girsanov Theorem
provides a probability P on � under which the process

Ws := −
∫ s

t
R(r, Xr , γ(r, Xr , ∇xv(r, Xr )σ(r, Xr ))) dr + Ws − Wt , s ∈ [t, T ],

is a Wiener process. Then X is the mild solution to Eq. (6.77) relative to the
generalized reference probability space μ := (�,F ,F

t
s,P,W ). Setting a(s) :=

γ(s, Xs,∇xv(s, Xs)σ(s, Xs)), the feedback inclusion (6.72) holds by definition of
γ and all the required conclusions follow from Theorem 6.35. �

Remark 6.37 Slight changes in the arguments of Theorem 6.35 allow us to prove an
existence result for the control problem in the extended strong formulation, under
additional assumptions. More precisely, assume Hypothesis 6.33 and, in addition,
that the following holds:
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(i) |∇x F0(t, x, z)h| ≤ L|h| for a suitable constant L and all t ∈ [0, T ], x, h ∈ H
and z ∈ �∗.

(ii) supt∈[0,T ],x∈H |σ(t, x)|L(�,H) < ∞.
(iii) � admits a measurable selection γ; in addition the functions R(t, ·, a) : H →

�,γ(t, ·, ·) : H × �∗ → � and∇xv(t, ·) : H → H are globallyLipschitz, uni-
formlywith respect to t ∈ [0, T ], a ∈ � (Lipschitzianity of γ is understoodwith
respect to the metric defined in �).

Notice that, by the last statement in Theorem 6.32, (i) implies that |∇xv| is uniformly
bounded.

Now, given t ∈ [0, T ] and x ∈ H , fix an arbitrary generalized reference prob-
ability space μ = (�,F ,F

t
s,P,W ). Then Eq. (6.77) admits a unique mild solu-

tion X , since it has globally Lipschitz coefficients. If we define the control process
a(s) = γ(s, X(s),∇xv(s, X(s))σ(s, X(s))) we see that the pair (a(·), X(·)) is opti-
mal for the control problem in the extended strong formulation corresponding to μ,
namely

Jμ(t, x; a(·), X(·)) = V μ
t (x).

Also note that under the additional assumptions the state equation admits a unique
mild solution for an arbitrary control process, so the optimal control problem could
also be formulated in a more standard way as in the previous chapters, i.e., as a
minimization problem over a class of control processes. �

6.6 Application: Controlled Stochastic Equation with Delay

In this section we show how the previous results can be applied to perform the
synthesis of an optimal control for a stochastic differential equation in R

n with unit
delay:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx(s) =
[∫ 0

−1
x(s + θ) α(dθ) + f (s, x(s)) + r(s, x(s), a(s))

]
ds

+ σ0(s, x(s))dW (s), s ∈ [t, T ],

x(t) = y, x(t + θ) = β(θ), for θ ∈ (−1, 0),
(6.78)

and a cost functional of the form

Jμ(t, y,β; a(·), x(·)) = E

∫ T

t
h(s, x(s), a(s)) ds + E k(x(T )).

Here μ = (�,F ,F t
s ,P,W ) denotes a generalized reference probability space as

defined at the beginning of Sect. 6.5 and (a(·), x(·)) is an admissible control pair,
i.e., the control process a(·) is {F t

s

}
s≥t progressive with values in � ⊂ R

N and x(·)
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is a corresponding solution to Eq. (6.78). We will address the optimal control prob-
lem in the extended weak formulation, which consists in minimizing the functional
Jμ(t, y,β; a(·), x(·)) over all triples (μ, a(·), X (·)), and characterizing the value
function

V (t, y,β) = inf
(μ,a(·),x(·))

Jμ(t, y,β; a(·), x(·)).

We assume the following (other assumptions are needed andwill be stated below):

• y ∈ R
n , β ∈ L2((−1, 0);Rn);

• � is a Borel subset of RN ;
• α is an L(Rn,Rn)-valued finite measure on [−1, 0];
• f : [0, T ] × R

n → R
n is measurable, f (s, ·) ∈ C1(Rn) and there exists a constant

C > 0 such that

| f (s, 0)| ≤ C, |∇x f (s, x)| ≤ C, s ∈ [0, T ], x ∈ R
n;

• σ0 : [0, T ] × R
n → L(Rn,Rn) is measurable and, for t ∈ [0, T ], x ∈ R

n , σ0(s, x)
is invertible, we have σ0(s, ·) ∈ C1(Rn) and

|σ0(s, 0)| ≤ C, |∇xσ0(s, x)| ≤ C, |σ−1
0 (s, x)| ≤ C;

• r : [0, T ] × R
n × � → R

n is measurable, r(s, ·, a) ∈ C1(Rn) and, for some con-
stant m ≥ 0 and every s ∈ [0, T ], a ∈ �, x ∈ R

n ,

|r(s, x, a)| ≤ C, |∇xr(s, x, a)| ≤ C(1 + |x |)m .

• h : [0, T ] × R
n × � → R is continuous, h(s, ·, a) ∈ C1(Rn) and, for every s ∈

[0, T ], a ∈ �, x ∈ R
n ,

|h(s, x, a)| + |∇xh(s, x, a)| ≤ C(1 + |x |)m .

• k : Rn → R belongs to C1(Rn) and satisfies

|∇xk(x)| ≤ C(1 + |x |)m, x ∈ R
n.

We set H = R
n × L2((−1, 0);Rn), � = R

n ,

D(A) =
{(

y
β

)
∈ H : β ∈ W 1,2((−1, 0);Rn) and β(0) = y

}
,

A

(
y
β

)
=
(∫ 0

−1 β(θ)a(dθ)
dβ
dθ

)
.
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Then A generates a strongly continuous semigroup in H . Moreover, if we set, for
t ∈ [0, T ], y ∈ R

n , β ∈ L2((−1, 0);Rn), a ∈ �,

x =
(
y
β

)
, b

(
t,

(
y
β

))
=
(

f (t, y)
0

)
, σ

(
t,

(
y
β

))
=
(

σ0(t, y)
0

)
,

R

(
t,

(
y
β

)
, a

)
= σ−1

0 (t, y)r(t, y, a),

l

(
t,

(
y
β

)
, a

)
= h(t, y, a), g

(
y
β

)
= k(y),

then Eq. (6.78) is reformulated as

⎧⎪⎨
⎪⎩
dX (s) =

(
AX (s) + b(s, X (s)) + σ(s, X (s))R(s, X (s), a(s))

)
ds

+ σ(s, X (s)) dW (s), s ∈ [t, T ],
X (t) = x .

Noting the product form of the state space H , we will write X (s) = (x(s),
x(s + ·)) when we need to distinguish the two components of the solution process.
The functional to be minimized can be rewritten as

E

∫ T

t
l(s, X (s), a(s)) ds + E g(X (T )).

Remark 6.38 We see that the special form of the infinite-dimensional controlled
equation (6.66) arises naturally from thefinite-dimensional equation (6.78) of general
form. �

Taking into account that� is finite-dimensional, it is easy to check that the assump-
tions of Hypothesis 6.8 are satisfied. In particular, we may take γ = 0 in Hypothesis
6.8-(iii).

Nextwedefine, for s ∈ [0, T ], y ∈ R
n ,β ∈ L2((−1, 0);Rn), z ∈ (Rn)∗ (this nota-

tion means that z is considered as a row vector),

F0

(
s,

(
y
β

)
, z

)
= F00 (s, y, z) := inf

a∈�

{
h(s, y, a) + zσ−1

0 (s, y)r(s, y, a)
}
,

(6.79)

�

(
s,

(
y
β

)
, z

)
= �0 (s, y, z)

:= {a ∈ � : F00(s, y, a) = h(s, y, a) + zσ−1
0 (s, y)r(s, y, a)}.

(6.80)

We notice that F0 and � only depend on the finite-dimensional coordinate in H .
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The (linear) function z→zσ−1
0 (s, y)r(s, y, a) has a Lipschitz constant that only

depends on the uniform bounds imposed on r and σ−1
0 . It follows that F00(s, ·, a) is

Lipschitz on Rn with a Lipschitz constant that does not depend on (s, a).
Moreover, taking into account the growth conditions on the gradients of h, σ, r ,

it is easy to prove an estimate of the form

|∇y

[
h(s, y, a) + zσ−1

0 (s, y)r(s, y, a)
]
)| ≤ C(1 + |z|)(1 + |y|)m,

which implies a local Lipschitz estimate on the function in square parentheses and
hence on F00:

|F00(s, y, z) − F00(s, y
′, z)| ≤ C(1 + |z|)(1 + |y| + |y′|)m |y − y′|, (6.81)

for s ∈ [0, T ], z ∈ (Rn)∗ and y, y′ ∈ R
n .

To proceed further we also need the following assumptions.

• F00 is Borel measurable and, for every s ∈ [0, T ], F00(s, ·, ·) is of class C1.
• We assume that �0(s, y, z) �= ∅ and that there exists a measurable selection

γ0 of �0, i.e., a measurable function γ0 : [0, T ] × R
n × (Rn)∗ → � such that

γ0(s, y, z) ∈ �0(s, y, z) for every s ∈ [0, T ], y ∈ R
n and z ∈ (Rn)∗. It follows

that γ(s, (y,β), z) := γ0(s, y, z), defined on [0, T ] × H × (Rn)∗, is a measurable
selection of �.

We note that the local Lipschitz estimate (6.81) implies

|∇y F00(s, y, z)| ≤ C(1 + |z|)(1 + |y|)m

for s ∈ [0, T ], z ∈ (Rn)∗ and y ∈ R
n . Now it is easy to see that the conditions required

in Hypothesis 6.22 (in the case K = R) are all satisfied by F0 and that Hypothesis
6.33 holds.

As a consequence of Theorem 6.36 we have the following result.

Theorem 6.39 Under the previous assumptions there exists at least one generalized
reference probability space μ = (�,F ,F

t
s,P,W ) and an admissible control pair

(a(·), x(·)) for which

V (t, y,β) = Jμ(t, y,β; a(·), x(·)), t ∈ [0, T ], y ∈ R
n,β ∈ L2((−1, 0);Rn).

In particular, the triple (μ, a(·), x(·)) is optimal.
The value function V (t, y,β) = V (t, x) coincides with the function v(t, x)which

is the unique mild solution to the Hamilton–Jacobi–Bellman equation (6.68) in the
sense specified by Theorem 6.32.

In the space μ the process X given by X(s) = (x(s), x(s + ·)) is a mild solution
to the closed loop equation (6.77) and the optimal pair (a(·), X(·)) satisfies the
feedback law equality
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a(s) = γ(s, X(s),∇xv(s, X(s))σ(s, X(s)))
= γ0(s, x(s),∇μV (s, x(s), x(s + ·))σ0(s, x(s))) P-a.s. for a.a. s ∈ [t, T ].

6.7 Elliptic HJB Equation with Arbitrarily Growing
Hamiltonian

In this section we address the solvability of the nonlinear stationary Kolmogorov
equation:

Au(x) − λ u(x) + F(x, u(x), Du(x)σ) = 0, x ∈ H. (6.82)

We recall that, formally, the generator A of (Pt ) is the operator

Aφ(x) = 1

2
Tr
(
σσ∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

Our purpose is to extend the probabilistic techniques and BSDE representation to
cover elliptic equations such as (6.82).We consider a general nonlinearity F that will
only be assumed to be locally Lipschitz (with arbitrary growth) and no limitations
are made on the size of λ. On the other hand, we assume that F is bounded with
respect to x and that the noise is additive (that is, σ is independent of x).

We add the following standard piece of notation. If K is a Hilbert space, by
L p
P,loc(�; L2([0,∞); K )) we denote the space of processes Y : � × [0,∞) → K

such that Y restricted to [0, T ] is in L p
P(�; L2([0, T ]; K )), T > 0.

An analogous definition is given for L p
P,loc(�,C([0,+∞), H)).

The standing assumptions will be (as far as the linear part of the HJB equation,
or, equivalently the forward equation, is concerned):

Hypothesis 6.40 (i) The operator A is the generator of a strongly continuous
semigroup et A, t ≥ 0, in the Hilbert space H .

(ii) σ does not depend on x (that is, σ ∈ L(�, H)). Moreover, |et Aσ|L2(�,H) ≤
Lt−γeat , for a suitable γ ∈ [0, 1/2)).

(iii) b(·) ∈ G1(H, H) and |∇b(x)|L(H) ≤ L .
(iv) The operators A + ∇b(x) are dissipative (that is, 〈Ay, y〉 + 〈∇b(x)y, y〉 ≤ 0

for all x ∈ H and y ∈ D(A)).
(v) λ > 0,

and as far as the nonlinear part is concerned:

Hypothesis 6.41 (i) F is locally Lipschitz in z and y, that is, for all R > 0 there
exists a KR such that |F(x, y, z) − F(x, y′, z′)| ≤ KR(|z − z′| + |y − y′|),
∀x ∈ H , ∀y, y′ ∈ H , ∀z, z′ ∈ �∗ with |z| ≤ R, |z′| ≤ R, |y| ≤ R, |y′| ≤ R.

(ii) The map x → F(x, y, z) is continuous for all z ∈ �∗, y ∈ R.
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(iii) supx∈H |F(x, 0, 0)| := M < +∞.
(iv) F(·, ·, ·) ∈ G1(H × R × �∗,R) and |∇x F(x, y, z)|H∗ ≤ c, for a suitable con-

stant c > 0 and all x ∈ H , y ∈ R, z ∈ �∗.
(v) F is dissipative with respect to y, that is, ∇y F(x, y, z) ≤ 0 for all x ∈ H ,

y ∈ R, z ∈ �∗

Wewill also need to add the following Lipschitzianity assumption, which we will
eventually remove

Hypothesis 6.42 F is Lipschitz in z and y with constant κ:

|F(x, y, z) − F(x, y′, z′)| ≤ κ(|z − z′| + |y − y′|),∀x ∈ H, ∀y, y′ ∈ H,∀z, z′ ∈ �∗.

6.8 The Associated Forward–Backward System

We start from a known result on bounded solutions of Lipschitz BSDEs on an infinite
horizon, i.e., the following type of BSDE:

Y (τ ) = Y (T ) +
∫ T

τ
( f (ζ, Y (ζ), Z(ζ)) − λY (ζ))dζ −

∫ T

τ
Z(ζ)dW (ζ), 0 ≤ τ ≤ T < ∞,

(6.83)
where f : � × [0,∞) × R × �∗ → R is such that the process ( f (t, z))t≥0 is pro-
gressively measurable for all z ∈ �∗. We suppose the following:

Hypothesis 6.43 (i) f is uniformly Lipschitz in z with Lipschitz constant K :

∀t ≥ 0,∀y ∈ R,∀z, z′ ∈ �∗, | f (t, y, z) − f (t, y, z′)| ≤ K |z − z′|, P-a.s.

(ii) f is uniformly Lipschitz in y with Lipschitz constant k:

∀t ≥ 0,∀y, y′ ∈ R,∀z ∈ �∗, | f (t, y, z) − f (t, y′, z)| ≤ k|y − y′|, P-a.s.

(iii) f is dissipative with respect to y that is

∀t ≥ 0, ∀y, y′ ∈ R, ∀z, z′ ∈ �∗, ( f (t, y, z) − f (t, y′, z))(y − y′) ≤ 0, P-a.s.

(iv) There exists a constant M such that ∀t ≥ 0, | f (t, 0, 0)| ≤ M, P-a.s.
We denote supt≥0 | f (t, 0, 0)| by M .

Wenow turn to the existence anduniqueness of solution to (6.83) underHypothesis
6.43.

Lemma 6.44 Let us suppose that Hypothesis 6.43 holds. Then we have:

(i) There exists a solution (Y, Z) to the BSDE (6.83) such that Y is a continu-
ous process bounded by M

λ
, and Z ∈ L2

P,loc(�; L2([0,∞);�)) with E
∫∞
0 e−2εs
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|Zs |2ds < ∞ for all ε > 0. Moreover, the solution is unique in the class of
processes (Y, Z) such that Y is continuous and uniformly bounded, and Z
belongs to L2

P,loc(�; L2([0,∞);�)).
(ii) Denoting by (Y n, Zn) the unique solution to the following finite horizon BSDE:

Yn(τ ) =
∫ n

τ
( f (ζ, Yn(ζ), Zn(ζ)) − λYn(ζ))dζ −

∫ n

τ
Zn(ζ)dW (ζ), t ∈ [0, T ],

(6.84)
we have |Y n(τ )| ≤ M

λ
and the following convergence rate holds:

|Y n(τ ) − Y (τ )| ≤ M

λ
exp (−λ(n − τ )) . (6.85)

Moreover, ∀ε > 0

E

∫ +∞

0
e−2εζ |Zn(ζ) − Z(ζ)|2dζ → 0. (6.86)

Proof The result is contained in [79] and, under more general assumptions, in [518].
For the reader’s convenience we report the proof here.

We start from a priori estimates. Fixing T , suppose that (Y, Z) with Y ∈
L2
P(�;C([0, T ], K )) and Z ∈ L2

P,(�; L2([0, T ];�)) satisfy

Y (τ ) = Y (T ) +
∫ T

τ
( f (ζ, Y (ζ), Z(ζ)) − λY (ζ))dζ −

∫ T

τ
Z(ζ)dW (ζ), 0 ≤ τ ≤ T .

(6.87)
Applying Itô’s rule to e−λ(s−t)Ys , s ≥ t , we get

−ds
(
e−λ(s−t)Ys

) = e−λ(s−t) f (s, Ys, 0)ds − e−λ(s−t)Zs(−θsds + dW (s)),

where
θs = [ f (s, Ys, Zs) − f (s, Ys, 0)] |Zs |−2Z∗

s

is a bounded process. Thus byGirsanov’s Theorem there exists a probability P̃ (mean
value Ẽ) under which W̃ (t) = − ∫ s

t θr dr + W (s) is an �-valued Wiener process.
With respect to (W̃ (t)) the above equation reads:

−ds
(
e−λ(s−t)Ys

) = e−λ(s−t) f (s, Ys, 0)ds − e−λ(s−t)ZsdW̃ (s).

So applying Itô’s rule to
(
ε + e−2λ(s−t)|Ys |s

)1/2 := Ys , s ≥ t , we obtain

dsYs = Yse
−2λ(s−t) [−〈Ys, f (s, 0, 0)〉 − 〈Ys, f (s, Ys, 0) − f (s, 0, 0)〉] ds

+ Yse
−2λ(s−t) 〈Ys, Zs〉 dW̃ (s)

+ 1

2
Yse

−2λ(s−t)
[|Zs |2 − Y−2

s e−2λ(s−t) 〈Ys, Zs〉2
]
. (6.88)
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Taking into account the dissipativity of f with respect to Y and the fact that, by
construction,Y−1

s e−λ(s−t)|Ys | ≤ 1weobtain, integrating in [t, T ] and then computing
the conditional expectation with respect to P̃:

√
|Yt |2 + ε ≤ Ẽ

(√
e−2λ(T−t)|YT |2 + ε

∣∣∣Ft

)
+ Ẽ

(∫ T

t
e−λ(s−t)| f (s, 0, 0)|ds

∣∣∣Ft

)

and by dominated convergence, recalling that | f (s, 0, 0)| ≤ M :

|Yt | ≤ e−λ(T−t)
Ẽ

(
|YT |

∣∣∣Ft

)
+ M/λ.

In particular, if (Y n, Zn) is a solution to (6.84) then |Y n
t | ≤ M/λ for all t ≤ n.

Moreover, if (Y, Z) is a solution in the whole [0,∞) with Z ∈ L2
P,loc(�; L2([0,

∞);�)) and Y bounded then, letting T → ∞, we get again: |Yt | ≤ M/λ.

If now (Y (i), Z (i)), i = 1, 2, with Y (i) ∈ L2
P(�;C([0, T ], K )) and Z (i) ∈ L2

P,(�;
L2([0, T ];�)) are both solutions to Eq. (6.87) then, by the above computations,
applied this time to (Y (2)

t − Y (1)
t , Z (2) − Z (1)) we get

|Y (2)
T − Y (1)

T | ≤ e−λ(T−t)
Ẽ

(
|Y (2)

T − Y (1)
T |

∣∣∣Ft

)
, ∀t ∈ [0, T ].

Consequently, if m > n and (Y n, Zn) and (Ym, Zm) satisfy Eq. (6.84) then

|Y n
t − Ym

t | ≤ e−λ(n−t)
Ẽ

(
|Ym

n |
∣∣∣Ft

)
≤ e−λ(n−t)M/λ ∀t ∈ [0, T ]. (6.89)

In the same way, if (Y, Z) is a solution of (6.83) on the whole [0,∞) with Z ∈
L2
P,loc(�; L2([0,∞);�)) and we know that (Ys) is bounded, we get

|Yt − Y n
t | ≤ e−λ(n−t)M/λ.

We notice that the above relation immediately yields that if (Y (i), Z (i)), i = 1, 2,
are both solutions to Eq. (6.83) on the whole [0,∞) and we a priori know that both
(Y (1)

t ) and (Y (2)
t ) are bounded, then Y (1)

t = Y (2)
t , P-a.s., for all t ∈ [0, T ).

Concerning the estimate of the Z term we again fix T . If (Y, Z) with Y ∈
L2
P(�;C([0, T ], K )) and Z ∈ L2

P,(�; L2([0, T ];�)) satisfy (6.87) then, applying
Itô’s rule to e−2ε|Ys |2, (with 0 < ε < λ) and integrating between 0 and T , we get:
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∫ T

0
e−2εs |Zs |2ds + |Y0|2 = 2e−2εT |YT |2

+ 2
∫ T

0
e−2εs

[〈 f (s, Ys, Zs), Ys〉 − (λ − ε)|Ys |2
]
ds

−
∫ T

0
e−2εs 〈Ys, ZsdW (s)〉 .

Since E

(∫ T
0 e−2εs 〈Ys, Zs〉2 ds

)1/2 ≤ E

[
(supt∈[0,T ] |Yt |)

(∫ T
0 |Zs |2ds

)1/2]
< ∞,

the stochastic integral in the above formula is a martingale. Thus, computing the
expectation, taking into account the Lipschitzianity of f with respect to Z and its
dissipativity with respect to Y , we get

E

∫ T

0
e−2εs |Zs |2ds ≤ ce−2εT

E|YT |2 + cE
∫ T

0
e−2εs |Ys |2ds + cE

∫ T

0
e−2εs | f (s, 0, 0)|2ds,

where c is a constant depending only on f and ε.
In particular, if (Y, Z) is a solution on thewhole [0,∞)with Z ∈ L2

P,loc(�; L2([0,
∞);�)) and Y is bounded, then:

E

∫ ∞

0
e−2εs |Zs |2ds < +∞.

Similarly, if (Y (i), Z (i)), i = 1, 2, with Y (i) ∈ L2
P(�;C([0, T ], K )) and Z (i) ∈ L2

P,

(�; L2([0, T ];�)) are solutions to Eq. (6.87), then:

∫ T

0
e−2εs |Z (2)

s − Z (1)
s |2ds ≤ ce−2εT

E|Y (2)
T − Y (1)

T |2 + cE
∫ T

0
e−2εs |Y (2)

s − Y (1)
s |2ds.

In particular, ifm > n and (Y n, Zn) and (Ym, Zm) satisfy Eq. (6.84) then, exploiting
the estimates on Y n and Ym , we get, for all T < n

E

∫ T

0
e−2εt |Zn

t − Zm
t | ≤ ce−λ(n−T ),

and if (Y, Z) is a solution on the whole [0,∞) with Y bounded, then

E

∫ T

0
e−2εt |Zn

t − Zt | ≤ ce−λ(n−T ). (6.90)

Thus we have proved that, if a solution of Eq. (6.83) with (Y ) bounded on the whole
[0,+∞) exists, then it is unique and it satisfies estimates (6.85) and (6.86).

We now need to prove the existence of a bounded solution. By (6.89), fixing an
arbitrary T > 0, the sequence of continuous functions [0, T ] � t → Y n

t is, P almost
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surely, a Cauchy sequence in C([0, T ]). Thus there exists an adapted process with
continuous trajectories such that, for any T > 0:

sup
t∈[0,T ]

|Y n
t − Yt | → 0, P-a.s.

Notice that |Yt | ≤ M/λ.

Moreover, by (6.90), for any T > 0, the sequence (Zn) is Cauchy in L2
P(�; L2

([0, T ];�)), so there exists a Z ∈ L2
P,loc(�; L2([0,∞);�)) such that

E

∫ T

0
|Zt − Zn

t |2dt → 0.

To prove that (Y, Z) is the desired solution to Eq. (6.83) it is enough to observe that,
for any fixed 0 < t < T < n, we have

Y n(τ ) = Y n(T ) +
∫ T

τ

( f (ζ, Y n(ζ), Zn(ζ)) − λY n(ζ))dζ −
∫ T

τ

Zn(ζ)dWζ .

The claim then follows just by letting n → ∞ in the above formula. �

Now we come to the actual (Markovian) forward backward system. As far as the
forward equation is concerned we consider the following special case of (6.6):

X (s; x) = esAx +
∫ s

0
e(s−ζ)Ab(X (ζ; x))dζ +

∫ s

0
e(s−ζ)AσdW (ζ), s ≥ 0. (6.91)

We know that for every p ∈ [2,∞) and T > 0 there exists a unique process
X (·; x) ∈ L p

P(�;C([0, T ], H))which is a solution to (6.91). Moreover, for all fixed
T > 0, the map x → X (·; x) is continuous from H to L p

P(�;C([0, T ], H)).

E sup
τ∈[0,T ]

|X (τ ; x)|p ≤ C(1 + |x |)p, (6.92)

for some constant C depending only on T and pm.
We then consider the infinite horizon BSDE under the extra assumption (which

will be removed later) that F is Lipschitz with respect to z. Namely, we deal with
the equation (for 0 ≤ τ ≤ T < ∞)

Y (τ ; x) = Y (T ; x) +
∫ T

τ

(F(X (ζ; x), Y (ζ; x), Z(ζ; x)) − λY (ζ; x))dζ

−
∫ T

τ

Z(ζ; x)dW (ζ). (6.93)

Here X (·; x) is the unique mild solution to (6.91) starting with X (0; x) = x .
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Applying Lemma 6.44, we obtain:

Proposition 6.45 Let us suppose that Hypotheses 6.40–6.42 hold. Then we have:

(i) For any x ∈ H, there exists a solution (Y (·; x), Z(·; x)) to the BSDE (6.93) such
that Y (·; x) is a continuous process bounded by M/λ, and Z ∈ L2

P,loc(�; L2

([0,∞);�)) with E
∫∞
0 e−2λs |Z(s; x)|2ds < ∞. The solution is unique in the

class of processes (Y, Z) such that Y is continuous and bounded, and Z belongs
to L2

P,loc(�; L2([0,∞);�)).
(ii) Denoting by (Y n(·; x), Zn(·; x)) the unique solution of the following BSDE

(with finite horizon):

Y n(τ ; x) =
∫ n

τ

(F(X (ζ; x), Y n(ζ; x), Zn(ζ; x)) − λY n(ζ; x))dζ

−
∫ n

τ

Zn(ζ; x)dW (ζ), (6.94)

we have |Y n(ζ; x)| ≤ M
λ
and the following convergence rate holds:

|Y n(τ ; x) − Y (τ ; x)| ≤ M

λ
exp (−λ(n − τ )) . (6.95)

Moreover,

E

∫ +∞

0
e−2λζ |Zn(ζ; x) − Z(ζ; x)|2dζ → 0. (6.96)

(iii) For all T > 0 and p ≥ 1, the map x → (Y (·; x)∣∣[0,T ], Z(·; x)∣∣[0,T ]) is continu-
ous from H to the space L p

P(�;C([0, T ],R)) × L p
P(�; L2([0, T ];�)).

Proof Statements (i) and (ii) are immediate consequences of Lemma 6.44. Let us
prove (iii). If x ′

m → x as m → +∞ then

|Y (T ; x ′
m) − Y (T ; x)| ≤ |Y (T ; x ′

m) − Y n(T ; x ′
m)| + |Y n(T ; x ′

m) − Y n(T ; x)|
+|Y n(T ; x) − Y (T ; x)|

≤ 2
M

λ
exp (−λ(n − T )) + |Y n(T ; x ′

m) − Y n(T ; x)|.

Moreover, for fixed n, Y n(·; x ′
m) → Y n(·; x) in L p(�,FT ,P;R) (see Proposi-

tion 6.27) and notice that we are now dealing with a finite horizon BSDE. Thus
Y (T ; x ′

m) → Y (T ; x) in L p(�,FT ,P;R).
Now we can see that (Y (·; x)∣∣[0,T ], Z(·; x)∣∣[0,T ]) is the unique solution of the

following BSDE (with finite horizon):
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Y (τ ; x) = Y (T ; x) +
∫ T

τ

(F(X (ζ; x), Y (ζ; x), Z(ζ; x)) − λY (ζ; x))dζ

−
∫ T

τ

Z(ζ; x)dW (ζ),

and the same holds for (Y (·; x ′
m)
∣∣[0,T ], Z(·; x ′

m)
∣∣[0,T ]). So it is enough to apply again

the continuity result in Proposition 6.27 to conclude that (Y (·; x ′
m)
∣∣[0,T ], Z(·; x ′

m)∣∣[0,T ]) converges to (Y (·; x)∣∣[0,T ], Z(·; x)∣∣[0,T ]) in L p
P(�;C([0, T ],R)) × L p

P(�;
L2([0, T ];�)). �

Remark 6.46 We stress the fact that the uniform bound of Y does not depend on the
Lipschitz constant κ of F with respect to y and z (provided that F is dissipative with
respect to y). �

6.8.1 Differentiability of the BSDE and a Priori Estimate on
the Gradient

We need to study the regularity of Y (·, x). More precisely, we would like to show
that Y (0, x) belongs to G1(H,R). Moreover, we will obtain a crucial a priori bound
on the derivative ∇Y (0; x) independent of the Lipschitz constant of F with respect
to z.

Lemma 6.47 UnderHypothesis 6.40 themap x → X (·, x) isGâteaux differentiable
(that is, it belongs to G(H, L p

P(�,C([0, T ], H))). Moreover, denoting by ∇X (·, x)
the partial Gâteaux derivative, for every direction h ∈ H, the directional derivative
process ∇X (·, x)h, τ ∈ R, solves, P-a.s., the equation

∇X (τ ; x)h = eτ Ah +
∫ τ

0
eζA∇b(X (ζ; x))∇X (ζ; x)h dζ, τ ∈ R

+. (6.97)

Finally, P-a.s., |∇X (τ ; x)h| ≤ |h|, for all τ > 0.

Proof The first assertion and relation (6.97) is a special case of Proposition 6.10. To
prove the last assertion we proceed by a classical approximation argument (notice
that the equation for ∇X has no stochastic integral term). Let Jn := n(nI − A)−1 be
the Yosida approximation for n large enough. As is well known (see also Appendix
B.4.2) Jn ∈ L(H, D(A)), Jnx → x for all x ∈ H . Let Ln

t = Jn∇X (t; x)h, then, for
all T > 0, Ln ∈ L p

P(�;C([0, T ], D(A))) and satisfies

(Ln
t )

′ = ALn
t + Jn∇b(X (t; x))∇X (t; x)h.
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Computing d
dt |Ln

t |2, by Hypothesis 6.40 (iv) we get:

d

dt
|Ln

t |2 ≤ 2〈Ln
t ,
(
Jn∇b(Xx

t )∇X (t; x)h − ∇b(X (t; x))Jn∇x X (t; x)h)〉
and

|Ln
t |2 ≤ |Jnh|2+

+2
∫ t

0
〈Ln

s , (Jn∇b(X (s; x))∇X (s; x)h − ∇b(X (s; x))Jn∇x X (s; x)h)〉ds

and the claim follows by passing to the limit as n → ∞. �

The following is the main technical result of this section.

Theorem 6.48 UnderHypotheses6.40–6.42 themap x → Y (0; x)belongs toG1(H,R).
Moreover, |Y (0; x)| + |∇Y (0; x)| ≤ c, for a suitable constant c. We notice that the
constant c does not depend on the Lipschitz constant κ of F with respect to y and z

Proof The uniform bound on |Y (0; x)| is an immediate consequence of Proposition
6.45.

Coming now to differentiability, fix n ≥ 1, and let us consider the solution
(Y n(·; x), Zn(·; x)) of (6.94). Then, see Proposition 6.27, the map x → (Y n(·; x),
Zn(·; x)) is Gâteaux differentiable from H to L p

P(�; C([0, T ],R)) × L p
P(�;

L2([0, T ];�∗)), ∀p ∈ [2,∞). Denoting by ∇Y n(·; x)h,∇Zn(·; x)h the partial
Gâteaux derivatives with respect to x in the direction h ∈ H , the processes

{∇Y n(τ ; x)h}τ∈[0,n], {∇Zn(τ ; x)h}τ∈[0,n]

solve the following equation, P-a.s.,

∇Y n(τ ; x)h =
∫ n

τ

∇x F(X (ζ; x), Y n(ζ; x), Zn(ζ; x))∇X (ζ; x)h dζ

+
∫ n

τ

(−λ + ∇y F(X (ζ; x), Y n(ζ; x), Zn(ζ; x)))∇Y n(ζ; x)h dζ

+
∫ n

τ

∇z F(X (ζ; x), Y n(ζ; x), Zn(ζ; x)∇Zn(ζ; x)h dζ (6.98)

−
∫ n

τ

∇Zn(ζ; x)h dW (ζ).

We see that in the above formula, we are considering that Zn(·; x), ∇Z(·; x) have
values in �∗ and ∇z F has values in �∗∗. So if we identify �∗∗ and � we can assume
that ∇z F has values in � and Eq. (6.98) can be rewritten as:
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∇Yn(τ ; x)h =
∫ n

τ
∇x F(X (ζ; x),Yn(ζ; x), Zn(ζ; x))∇X (ζ; x)h dζ

+
∫ n

τ
(−λ + ∇y F(X (ζ; x), Yn(ζ; x), Zn(ζ; x)))∇Yn(ζ; x)h dζ

+
∫ n

τ
(∇Zn(ζ; x)h)

(∇z F(X (ζ; x), Yn(ζ; x), Zn(ζ; x)) dζ − dW (ζ)
)
.

By Hypotheses 6.41 and Lemma 6.47, we have that for all x, h ∈ H the following
holds P-a.s. for all n ∈ N and all ζ ∈ [0, n]:

∣∣∣∇x F(X (ζ; x),Yn(ζ; x), Zn(ζ; x))∇x X (ζ; x)h
∣∣∣ ≤ c|h|,

∇y F(X (ζ; x), Yn(ζ; x), Zn(ζ; x)) ≤ 0,
∣∣∣∇z F(X (ζ; x), Yn(ζ; x), Zn(ζ; x))

∣∣∣
�

≤ ĉ.

Therefore, by Lemma 6.44, we obtain:

sup
τ∈[0,n]

|∇Y n(τ ; x)| ≤ C |h|, P-a.s., (6.99)

where C does not depend on ĉ. Applying Itô’s formula to e−2λt |∇Y n(·; x)t h|2, we
get:

E

∫ ∞

0
e−2λt (|∇Y n(t; x)h|2 + |∇x Z

n(t; x)h|2)dt ≤ C |h|2. (6.100)

Let nowM2,−2λ be the Hilbert space of all pairs of {Ft }t≥0-adapted and measurable
processes (y, z), where y has values in R and z in �∗, such that

|(y, z)|2M2,−2λ := E

∫ ∞

0
e−2λt (|yt |2 + |zt |2)dt < +∞.

Fix x, h ∈ H , then there exists a subsequence of
(
∇Y n(·; x)h,∇Zn(·; x)h,∇Y n

(0; x)h
)
n∈N

which we still denote by itself, such that (∇xY n(·; x)h,∇Zn(·; x)h)

convergesweakly to (U 1(·; x, h), V 1(·; x, h)) inM2,−2λ and∇xY n(0; x)h converges
to ξ(x, h) ∈ R.

We define now

U 2(τ ; x, h) = ξ(x, h) −
∫ τ

0
∇x F(X (ζ; x), Y (ζ; x), Z(ζ; x))∇X (ζ; x) hdζ

−
∫ τ

0
(−λ + ∇y F(X (ζ; x), Y (ζ; x), Z(ζ; x))U 1(ζ; x, h)dζ

−
∫ τ

0
∇z F(X (ζ; x), Y (ζ; x), Z(ζ; x))V 1(ζ; x, h)dζ (6.101)

+
∫ τ

0
V 1(ζ; x, h)dW (ζ),
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where (Y (·; x), Z(·; x)) is the unique bounded solution to the backward equation
(6.93), see Proposition 6.45. Moreover, we rewrite (6.98) as follows:

∇Y n(τ ; x)h = ∇Y n(0; x)h −
∫ τ

0
∇x F(X (ζ; x), Y n(ζ; x), Zn(ζ; x))∇X (ζ; x)hdζ

+
∫ τ

0
(λ − ∇y F(X (ζ; x), Y n(ζ; x), Zn(ζ; x)))∇Y n(ζ; x)hdζ

−
∫ τ

0
∇z F(X (ζ; x), Y n(ζ; x), Zn(ζ; x))∇Zn(ζ; x)hdζ (6.102)

+
∫ τ

0
∇Zn(ζ; x)hdW (ζ).

Since, in particular, (Y n(·; x), Zn(·; x)) → (Y (·; x), Z(·; x)) in measure P × dt ;
∇x F , ∇y F , ∇z F are bounded and finally (∇Y n(·; x)h,∇Zn(·; x)h) ⇀ (Y (·; x),
Z(·; x))weakly inM2,−2λ, it is easy to show that∇Y n(·; x)h converges toU 2(·; x, h)

weakly in L2
P(� × [0, T ];R) for all T > 0. Thus U 2(t; x, h) = U 1(t; x, h), P-a.s.

for a.e. t ∈ R
+ and |U 2(t; x, h)| ≤ c|h|, P-a.s. for all t ∈ R

+ (this last assertion
follows from continuity of the trajectories of U 2(·; x, h) and from the fact that
|U 1(t; x, h)| ≤ c|h| P-a.s. for almost every t ∈ R

+). Therefore, coming back to
Eq. (6.101), we have that (U 2(·; x, h), V 1(·; x, h)) is the unique bounded solution in
R

+ of the equation

U (τ , x, h)=U (0, x, h) −
∫ τ

0
∇x F(X (ζ; x), Y (ζ; x), Z(ζ; x))∇X (ζ; x)hdζ

−
∫ τ

0
(−λ + ∇y F(X (ζ; x), Y (ζ; x), Z(ζ; x)))U (τ , x, h)dζ

−
∫ τ

0
∇z F(X (ζ; x), Y (ζ; x), Z(ζ; x))V (ζ, x, h)dζ (6.103)

+
∫ τ

0
V (ζ, x, h)dW (ζ).

Notice that in particular U (0, x, h) = ξ(x, h) is the limit of ∇Y n(·; x)0h (along
the chosen subsequence). The uniqueness of the solution to (6.103) (see Lemma
6.44) implies that in reality U (0, x, h) = limn→∞ ∇Y n(·; x)0h along the original
sequence.

Now let x ′
m → x . By (6.85), proceeding as in the proof of point (i i i) in Proposition

6.45,

|U (0, x, h) −U (0, x ′
m, h)| ≤ 2c

λ
e−λn|h| + |Un(0, x, h) −Un(0, x

′
m, h)|, (6.104)

where (Un(·, x, h), Vn(·, x, h)) ∈ L p
P(�;C([0, T ],R)) × L p

P(�; L2
P([0, T ];�)) is

the unique solution of the finite horizon BSDE:
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Un(τ , x, h)=
∫ n

τ

∇x F(X (ζ; x), Y (ζ; x), Z(ζ; x))∇X (ζ; x)hdζ

+
∫ n

τ

(−λ + ∇y F(X (ζ; x), Y (ζ; x), Z(ζ; x)))Un(τ , x, h)dζ

+
∫ n

τ

∇z F(X (ζ; x), Y (ζ; x), Z(ζ; x))Vn(ζ, x, h)dζ (6.105)

−
∫ n

τ

Vn(ζ, x, h)dW (ζ),

and similarly for (Un(·, x ′
m, h), Vn(·, x ′

m, h)). We now see that ∇x F , ∇y F , ∇z F are,
by assumptions, continuous and bounded. Moreover, the following statements on
continuous dependence on x hold:

the maps x → Xx , x → ∇Xxh are continuous from H to L p
P(�;C([0, T ], H))

(see Proposition 6.10);
the map x → Y x

∣∣[0,T ] is continuous from H to L p
P(�;C([0, T ],R)) (see Propo-

sition 6.45);
the map x → Zx

∣∣[0,T ] is continuous from H to L p
P(�; L2([0, T ];�)) (see Propo-

sition 6.45).
We can therefore apply to (6.105) the continuous dependence on data result

for finite horizon BSDEs (see Proposition 6.20) to obtain in particular that Un(0,
x ′
m, h) → Un(0, x, h) for all fixed n as m → ∞. And by (6.104) we can conclude
that U (0, x ′

m, h) → U (0, x, h) as m → ∞.
Summarizing, U (0, x, h) = limn→∞ ∇Y n(·; x)0h exists, moreover it is clearly

linear in h and satisfies |U (0, x, h)| ≤ C |h|. Finally, it is continuous in x for every
fixed h.

Lastly, for t > 0,

lim
t↘0

1

t
[Y (0; x + th) − Y (0; x)] = lim

t↘0

1

t
lim

n→+∞[Y n(0; x + th) − Y n(0; x)]

= lim
t↘0

lim
n→+∞

∫ 1

0
∇Y n(0; x + th)hdθ

= lim
t↘0

∫ 1

0
U (0, x + θth)hdθ = U (0, x)h

and the claim is proved. �

6.9 Mild Solution of the Elliptic PDE

Assuming that Hypothesis 6.40 holds, we define in the usual way the transition
semigroup (Pt )t≥0 associated to the process X :

Pt [φ](x) = E φ(X (t; 0, x), x ∈ H, (6.106)
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for every bounded measurable function g : H → R. Formally, the generator A of
(Pt ) is the operator

Aφ(x) = 1

2
Tr
(
σσ∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

In this section we address the solvability of the nonlinear stationary Kolmogorov
equation:

Au(x) − λ u(x) + F(x, u(x),∇u(x)σ) = 0, x ∈ H. (6.107)

Definition 6.49 Wesay that a function u : H → R is amild solution of the nonlinear
stationary Kolmogorov equation (6.107) if the following conditions hold:

(i) u ∈ G1(H,R) and ∃C > 0 such that |u(x)| ≤ C , |∇u(x)h| ≤ C |h|, for all
x, h ∈ H ;

(ii) the following equality holds, for every x ∈ H and T ≥ 0:

u(x) = e−λT PT [u](x) +
∫ T

0
e−λτ Pτ

[
F
(
·, u(·),∇u(·) σ

)]
(x) dτ . (6.108)

Remark 6.50 In order to motivate this definition one may consider the equation
Au − λu = −F , where u, F are elements of a Banach space and A is a generator
of a strongly continuous semigroup of bounded linear operators (Pt )t≥0: if λ is
sufficiently large, then

u =
∫ ∞

0
e−λτ Pτ F dτ ,

and, for arbitrary T ≥ 0, by a change of variable,

e−λT PT u =
∫ ∞

T
e−λτ Pτ F dτ = u −

∫ T

0
e−λτ Pτ F dτ .

�

Theorem 6.51 Assume that Hypothesis 6.40 and 6.41 hold, then Eq. (6.107) has a
unique mild solution given by the formula

u(x) = Y (0; x). (6.109)

Moreover, the following holds:

Y (τ ; x) = u(X (τ ; x)), Z(τ ; x) = ∇u(X (τ ; x))σ. (6.110)

Proof We initially assume that in addition F is Lipschitz with respect to z, uniformly
in x and y.
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We introduce the following equation, slightly more general than (6.91) since we
consider a general initial time t ≥ 0:

X (τ ) = e(τ−t)Ax +
∫ τ

t
e(τ−ζ)Ab(X (ζ)) dζ,+

∫ τ

t
e(τ−ζ)Aσ dW (ζ), (6.111)

for τ varying on an arbitrary time interval [t,∞) ⊂ [0,∞). We set X (τ ) = x for
τ ∈ [0, t) and we denote by {X (τ ; t, x)}τ≥0 the solution, to indicate dependence on
x and t . By an obvious extension of the results in the previous sections, we can solve
the backward equation (6.93) with X given by (6.111); we denote the corresponding
solution (Y, Z) by {(Y (τ ; t, x), Z(τ ; t, x))}τ≥0.

Thus, {(X (τ ; 0, x), Y (τ ; 0, x), Z(τ ; 0, x))}τ≥0 coincides with the process
{X (τ ; x), Y (τ ; x), Z(τ ; x), τ ≥ 0} occurring in relations (6.91) and (6.93). Note
that, for bounded measurable φ : H → R, we have

Pτ−t [φ](x) = E φ(X (τ ; t, x)), x ∈ H, 0 ≤ t ≤ τ ,

since the coefficients of Eq. (6.111) do not depend on time.
We first prove that u, given by (6.109), is a solution. The solutions of (6.111)

satisfy the well-known property: for 0 ≤ t ≤ s, P-a.s.,

X (τ ; s, X (s; t, x)) = X (τ ; t, x), for τ ∈ [s,∞).

Since the solution of the backward equation is uniquely determined on an interval
[s,∞) by the values of the process X on the same interval, for 0 ≤ t ≤ s we have,
P-a.s.,

Y (τ ; s, X (s; t, x)) = Y (τ ; t, x), for τ ∈ [s,∞),

Z(τ ; s, X (s; t, x)) = Z(τ ; t, x) for a.a. τ ∈ [s,∞).
(6.112)

In particular, for every τ ≥ 0,

Y (τ ; τ , X (τ ; 0, x)) = Y (τ ; 0, x), P-a.s. (6.113)

Since the coefficients of Eq. (6.111) do not depend on time, we have

X (·; 0, x) (d)= X (· + t; t, x), t ≥ 0,

where
(d)= denotes equality in distribution (both sides of the equality are viewed as

random elements with values in the space C(R+, H)). As a consequence we obtain

(Y (·; 0, x), Z(·; 0, x)) (d)= (Y (· + t; t, x), Z(· + t; t, x)), t ≥ 0,
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where both sides of the equality are viewed as random elements with values in the

space C(R+,R) × L2
loc(R

+;�∗). In particular, Y (0; 0, x) (d)= Y (t; t, x), and since
they are both deterministic we have

u(x) = Y (0; 0, x) = Y (t; t, x), x ∈ H, t ≥ 0.

Denoting for simplicity

(X (τ ), Y (τ ), Z(τ )) = (X (τ , 0, x), Y (τ , 0, x), Z(τ , 0, x)), τ ≥ 0,

it follows from (6.113) and path continuity that, P-a.s.,

u(X (τ )) = Y (τ ), τ ≥ 0.

It follows that, for all 0 < t < T ,

Y (t) = u(X (T )) −
∫ T

t
Z(ζ) dW (ζ) + λ

∫ T

t
Y (ζ) dζ +

∫ T

t
F(X (ζ),Y (ζ), Z(ζ)) dζ.

(6.114)
Thus by Corollary 6.29, considering the above equation as a BSDE on the finite
horizon [0, T ] with final condition, it follows that, P-a.s. for a.a. τ ≥ 0,

Z(τ ) = ∇u(X (τ ))σ.

We see that by Theorem 6.48 ∇u and consequently Z is bounded by a constant that
does not depend on the Lipschitz constant of F with respect to z.

Applying the Itô formula to the equation solved by (Y, Z) we get

e−λτY (τ ) − e−λT Y (T ) +
∫ T

τ

e−λζ Z(ζ) dW (ζ)

=
∫ T

τ

e−λζF(X (ζ), Y (ζ), Z(ζ)) dζ, 0 ≤ τ ≤ T < ∞,

and it follows that

∫ T

0
e−λτ Pτ

[
F
(
·, u(·),∇u(·)

)]
(x) dτ

= E

∫ T

0
e−λτ F(X (τ ), u(X (τ )),∇u(X (τ ))σ) dτ

= E

∫ T

0
e−λτ F(X (τ ), Y (τ ), Z(τ )) dτ

= E

[
Y (0) − e−λT Y (T ) +

∫ T

0
e−λτ Z(τ ) dW (τ )

]
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= u(x) − e−λT
E [u(XT )] = u(x) − e−λT PT [u](x).

This completes the proof of the existence part.
Now we prove the uniqueness of the solution. Assume that u is a solution. For

any y ∈ H , 0 ≤ τ ≤ T we have

u(y) = e−λ(T−τ ) PT−τ [u](y) +
∫ T−τ

0
e−λt Pt

[
F
(
·, u(·),∇u(·) σ

)]
(y) dt.

Set y = X (τ , 0, x), whichwe denote by X (τ ) for simplicity. By theMarkov property
of X , denoting by EFτ the conditional expectation with respect toFτ , we obtain

u(X (τ )) = e−λ(T−τ )
E
Fτ u(XT )

+
∫ T−τ

0
e−λt

E
Fτ F

(
X (t + τ ), u(X (t + τ )),∇u(X (t + τ ))σ

)
dt

and, by a change of variable,

e−λτ u(X (τ )) = e−λT
E
Fτ u(XT ) +

∫ T

τ
e−λζ

E
Fτ F

(
X (ζ), u(X (ζ)),∇u(X (ζ))σ

)
dζ.

Now let T > 0 be fixed and let us define

Fζ = F(X (ζ), u(X (ζ)),∇u(X (ζ))σ), ζ ∈ [0, T ],

ξ = e−λT u(XT ) +
∫ T

0
e−λζFζ dζ.

Then we obtain

e−λτu(X (τ )) = E
Fτ ξ + E

Fτ

∫ τ

0
e−λζFζ dζ = E

Fτ ξ +
∫ τ

0
e−λζFζ dζ,

where the last equality holds since
∫ τ

0 e−λζFζ dζ is Fτ -adapted. Notice that ξ is
square-integrable. Since Ft is generated by the Wiener process W , it follows that
there exists a square-integrable,Ft -predictable process Z̃(τ ), τ ∈ [0, T ], with values
in �∗, such that, P-a.s.,

E
Fτ ξ = E ξ +

∫ τ

0
Z̃(ζ) dW (ζ), τ ∈ [0, T ].

An application of the Itô formula gives
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u(X (τ )) = E ξ +
∫ τ

0
eλζ Z̃(ζ) dW (ζ) + λ

∫ τ

0
u(X (ζ)) dζ +

∫ τ

0
F(ζ) dζ.

(6.115)
This shows that u(X (τ )), τ ∈ [0, T ], is a semimartingale. For ξ ∈ �, we denote again
byW ξ the real Wiener processW ξ(τ ) := 〈ξ,W (τ )〉, τ ≥ 0. Let us consider the joint
quadratic variation process of W ξ with both sides of (6.115). Applying Proposition
6.17 (recall that u is by definition differentiable) we obtain, P-a.s.,

∫ τ

0
∇u(X (ζ))σξ dζ =

∫ τ

0
eλζ Z̃(ζ)ξ dζ, τ ∈ [0, T ], ξ ∈ �,

and we deduce that ∇u(X (τ )) ζ = eλτ Z̃(τ ), P-a.s. for almost all τ ∈ [0, T ]. Now
setting

Y ′(τ ) = u(X (τ )), Z ′(τ ) = eλτ∇u(X (τ ))σ, τ ≥ 0,

it follows from (6.115) that, P-a.s.,

Y (0) = Y ′(τ ) +
∫ τ

0
Z ′(ζ) dW (ζ) + λ

∫ τ

0
Y ′(ζ) dζ +

∫ τ

0
F(X (ζ),Y ′(ζ), Z ′(ζ)) dζ,

for τ ∈ [0, T ]. Since T is arbitrary, we conclude that the process (Y ′, Z ′) is a solution
of the backward equation, so that, by uniqueness, it must coincide with (Y, Z). In
particular,

u(x) = u(X0) = Y ′(0) = Y (0).

This concludes the proof of the theorem. �

6.10 Application to Optimal Control in an Infinite Horizon

We wish to apply the above results to perform the synthesis of the optimal control
for a general nonlinear control system on an infinite time horizon. To be able to
use non-smooth feedbacks we settle the problem in the framework of weak control
problems.

As above, by H , � we denote separable real Hilbert spaces.
Moreover, a generalized reference probability space is given by μ = (�,F ,

Fs,P,W ), where

• (�,F ,P) is a complete probability space;
• {Fs}s≥0 is a filtration in it, satisfying the usual conditions;
• (W (s))s≥0 is a cylindrical P-Wiener process in �, with respect to the filtrationFs

(notice that, since our problem is homogeneous in time, we always choose the initial
time t = 0).
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Given such μ, we call an admissible control pair the pair (a(·), X (·)) of pro-
gressively measurable processes with respect to {Fs}s≥0 such that: a is defined on
� × [0,∞) and takes its values in a fixed closed subset (not necessarily bounded)
� of a Banach space E. Moreover, a is uniformly bounded, that is belongs to
L∞(� × [0,∞),P ⊗ dt; E). Finally, X is the mild solution (on the whole [0,∞))
of the following state equation:

{
dX (τ ) = (AX (τ ) + b(X (τ ) + σR(a(τ ))) dτ + σ dW (τ ), τ ≥ 0,
Xa(0) = x ∈ H.

(6.116)
Notice that in the present case the assumptions on R will guarantee the existence and
uniqueness of the mild solution X given and control a satisfying the above, so we
work in the framework of the weak and strong formulations in the sense of Sect. 2.1.

To each admissible control pair we associate the cost:

Jμ(x; a(·), X (·)) = E

∫ +∞

0
e−λζ [l(X (ζ)) + |a(ζ)|2E ] dζ, (6.117)

where l : H × � → R. As in the finite horizon case we minimize the functional
Jμ(x; a(·)) over all admissible controls a(·) and characterize the value function

V μ(x) = inf
a

Jμ(x; a(·), X (·)).

We will also address the optimal control problem in the weak formulation, which
consists in further minimizing with respect to all generalized reference probability
spaces, i.e., in characterizing the value function

V (x) = inf
μ

V μ(x).

Notice the occurrence of the operator σ in the control term: this special structure of
the state equation is imposed by our techniques. Also notice that in contrast to what
happens in the previous sections of this Chapter we now restrict ourselves to R that
does not depend on x . This also ensures that for all a(·) ∈ Uμ

and x ∈ H Eq. (6.116)
admits a unique mild solution

We define in a classical way the Hamiltonian function relative to the above prob-
lem: for all x ∈ H , z ∈ �∗,

F0(x, z) = l(x) + inf{|a|2E + zR(a) : a ∈ �}
�(z) = {a ∈ � : |a|2E + zR(a) = inf

a∈�
{|a|2E + zR(a)}}. (6.118)

We will work in the following general setting:

Hypothesis 6.52 The following holds:

(1) A, b, σ and satisfy Hypothesis 6.40.
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(2) R : � → � is Lipschitz.
(3) l : H → R is uniformly Lipschitz, bounded and of class G1(H,R).
(4) F0 is of class G1(�∗,R).

Remark 6.53 Since R is Lipschitz inf{|a|2E + zR(a) : a ∈ �} is always a real num-
ber. Moreover, there exists a constant cR such that

inf{|a|2E + zR(a) : a ∈ �} = inf{|a|2E + zR(a) : a ∈ � ∩ BE (0, c|z|)}.
This immediately implies that �(z) ⊂ B(0, cR|z|) and that

∣∣∣ inf{|a|2E + zR(a) : a ∈ �} − inf{|a|2E + z′R(a) : a ∈ �}∣∣ ≤ c1,R(|z| + |z′|)|z − z′|.

So Hypothesis 6.41 holds true. �

Wesee that for allλ > 0 the cost functional iswell defined and Jμ(x; a(·), X (·)) <

∞ for all x ∈ H , all admissible control systems μ and all admissible control pairs
(a, X).

ByTheorem6.51, for allλ > 0 the stationaryHamilton–Jacobi–Bellman equation
relative to the above stated problem, namely:

Av(x) = λv(x) − F0(x,∇v(x)σ), x ∈ H, (6.119)

admits a unique mild solution, in the sense of Definition 6.49.
We are in a position to prove the main result of this section:

Theorem 6.54 AssumeHypothesis 6.52 and suppose that λ > 0. Then the following
holds

(1) For all generalized reference probability spaces and admissible pairs (a, X) we
have Jμ(x; a(·), X (·)) ≥ v(x). Therefore V μ(x) ≤ v(x).

(2) The equality Jμ(x; a(·), X (·)) = v(x) holds if and only if the following feedback
law is satisfied:

a(τ ) ∈ �(∇v(X (τ ))σ), P-a.s. for a.e. τ ≥ 0. (6.120)

Notice that since ∇v is bounded, if (6.120) holds then the control a is uniformly
bounded.

Proof Choose any generalized reference probability space μ and denote by ρ(T ) the
Girsanov density

ρ(T ) = exp

(
−
∫ T

0
〈R(a(ζ)), dW (ζ)〉� − 1

2

∫ T

0
|R(a(ζ))|2� dζ

)
, (6.121)
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Let P̃T be the probability measure onFT defined by P̃T = ρ(T ) P

∣∣∣
FT

and let ẼT be

the corresponding expectation. By Girsanov’s Theorem (see Theorem 6.34) under
P̃T the process

W̃τ :=
∫ τ

0
R(a(ζ)) dζ + Wτ , 0 ≤ τ ≤ T, (6.122)

is a cylindrical Wiener process. Equation (6.116) can be written:

{
dX (τ ) = AX (τ ) dτ + b(X (τ )) dτ + σ dW̃τ , τ ≥ 0,
X0 = x .

(6.123)

Let v be the uniquemild solution of Eq. (6.119). Consider the following finite horizon
Markovian forward–backward system (with respect to probability P̃T and to the
filtration generated by {W̃τ }τ∈[0,T ]).
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X̃(τ ; x) = eτ Ax +
∫ τ

0
e(τ−ζ)Ab(X̃(ζ; x)) dζ +

∫ τ

0
e(τ−ζ)Aσ dW̃ζ , τ ≥ 0,

Ỹ (τ ; x) − v(X̃(T ; x)) +
∫ T

τ
Z̃(ζ; x) dW̃ζ + λ

∫ T

τ
Ỹ (ζ; x) dζ

=
∫ T

τ
F0(X̃(ζ; x), Z̃(ζ; x)) dζ, 0 ≤ τ ≤ T,

(6.124)
and let (X̃(x), Ỹ (x), Z̃(x)) be its unique solutionwith the three processes predictable
relative to the filtration generated by {W̃τ }τ∈[0,T ] and: ẼT supt∈[0,T ] |X̃(t; x)|2 < +∞,

Ỹ (x) bounded and continuous, ẼT
∫ T
0 |Z̃(t; x)|2dt < +∞.

Moreover, Theorem6.51 and uniqueness of the solution of system (6.124) together
with Theorem 6.32 yields

Ỹ (τ ; x) = v(X̃(τ ; x)), Z̃(τ ; x) = ∇v(X̃(τ ; x))σ. (6.125)

Comparing the forward equation in (6.124) with the state equation, rewritten
as (6.123), we get X̃(t; x) = Xt , t ∈ [0, T ], P-a.s. Applying the Itô formula to
e−λτ Ỹ (τ ; x), and restoring the original noise W , we get

Ỹ (0; x) +
∫ T

0
e−λζ Z̃(ζ; x) dWζ

=
∫ T

0
e−λζ

[
F0(X (ζ), Z̃(ζ; x)) − Z̃(ζ; x)R(a(ζ))

]
dζ + e−λT v(X (T )).

(6.126)
Using the identification in (6.125) and taking expectation with respect to P, (6.126)
yields
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e−λT
Ev(X̃(T ; x)) − v(x) = −E

∫ T

0
e−λζF0(X (ζ),∇v(X (ζ))σ) dζ

+E

∫ T

0
e−λζ∇v(X (ζ))ζR(a(ζ)) dζ.

Recalling that v is bounded, letting T → ∞, we conclude that

Jμ(x; a(·), X (·)) = v(x) − E

∫ ∞

0
e−λζF0(X (ζ),∇v(X (ζ))σ)dζ

−E

∫ ∞

0
e−λζ

[
∇xv(X (ζ))σR(a(ζ)) − l(X (ζ), a(ζ))

]
dζ.

The above equality is known as the fundamental relation and immediately implies
that v(x) ≤ Jμ(x; a(·)) and that equality holds if and only if (6.120) holds. �

Theorem 6.55 Assume Hypothesis 6.52 and that λ > 0. If �(x, z) is non-empty for
all x ∈ H and z ∈ �∗ and γ : �∗ → � is a measurable selection of � (which exists,
see Theorem 8.2.10, in [20]) then there exists a generalized reference probability
space μ̄ in which the closed loop equation

{
dX(τ ) = AX(τ ) dτ + σR(γ(∇v(X(τ ))σ) dτ + b(X(τ )) dτ + σ dW (τ ), τ ≥ 0,

X0 = x0 ∈ H,

(6.127)
admits a solution. Moreover, setting a(τ ) = γ(∇v(X(τ ))σ), the pair (a(·), X(·)) is
admissible and optimal for the control problem in the sense that

J μ̄(x; ā(·), X̄(·)) = v(x).

Consequently, we have v(x) = V̄ (x).

Proof The point here is to prove the existence of a weak (in the probabilistic sense)
solution to Eq. (6.127) in the whole [0,+∞), see also Sect. 4 in [274]. In order to do
this we realize a “canonical”-�-valued Wiener process. We choose a larger Hilbert
space�

′ ⊃ � in such a way that� is continuously and densely embedded in�
′
with

Hilbert–Schmidt inclusion operator J . By � we denote the space C([0,∞),�
′
) of

continuous functions ω : [0,∞) → �
′
endowed with the standard locally convex

topology and by B its Borel σ-field. Since JJ ∗ is nuclear on �
′
we know (see

[180]) that there exists a probability P on B such that W
′
t (ω) := ω(t) is a JJ ∗-

Wiener process in �
′
(that is, t → 〈

W
′
t , ξ

′ 〉
�

′ is a real-valued Wiener process for all
ξ

′ ∈ �
′
and E[〈W ′

t , ξ
′ 〉

�
′
〈
W

′
s, η

′ 〉
�

′ ] = 〈JJ ∗ξ ′
, η

′ 〉
�

′ (t ∧ s) for all ξ
′
, η

′ ∈ �
′
, t, s ∈

[0,∞)). We denote by E the P-completion of B and byFt , t ≥ 0, the P-completion
of Bt = σ

(
W

′
s : s ∈ [0, t]).

The�-valued cylindricalWiener process {W ξ
t : t ≥ 0, ξ ∈ �} can now be defined

as follows. For ξ in the image of J ∗J we take η such that ξ = J ∗J η and define
W ξ

s = 〈
W

′
s,J η

〉
�

′ . Thenwe observe thatE|W ξ
t |2 = t |J η|2

�
′ = t |ξ|2� and thatJ ∗J�
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is dense in � to deduce that the linear continuous mapping ξ → W ξ
s (with values

in L2(�,F ,P;R)) can be extended by continuity to the whole �. An appropriate
modification of {W ξ

t : t ≥ 0, ξ ∈ �} gives the required cylindrical Wiener process.
Now let X ∈ L p

P,loc(�,C([0,+∞), H)) be the mild solution of

{
dX (τ ) = AX (τ ) dτ + b(X (τ )) dτ + σ dW (τ )

X (0) = x
(6.128)

and let, ∀T > 0

ρ(T ) = exp

(
−
∫ T

0
〈R(γ(∇v(X (ζ))σ), dW (ζ)〉� − 1

2

∫ T

0
|R(γ(∇v(X (ζ))σ)|2� dζ

)
.

(6.129)

Recall that ∇v is bounded. Thus let P̂T be the probability onFT admitting ρ(T ) as
a density with respect to P. Since �

′
is a Polish space and P̂T+h coincides with P̂T

on BT , T, h ≥ 0, by known results (see [508], Chap.VIII, Sect. 1, Proposition 1.13)
there exists a probability P̂ on B such that the restriction on BT of P̂T and that of
P̂ coincide, T ≥ 0. Let Ê be the P̂-completion of B and F̂T be the P̂-completion of
BT . Moreover, let

Ŵ (t) := −
∫ t

0
R(γ(∇v(X (ζ))σ) dζ + W (t).

Since, for all T > 0, {Ŵt }t∈[0,T ] is a �-valued cylindrical Wiener process under
P̂T (see again Theorem 6.34) and the restriction of P̂T and of P̂ coincide on BT ,
modifying {Ŵt }t≥0 in a suitable way on a P̂-null probability set we can conclude that
μ̄ = (�, Ê, {F̂t }t≥0, P̂, {Ŵt }t≥0) is a generalized reference probability space and that
if we set ā(τ ) = γ(∇v(X (τ ))σ) then (ā(·), X (·)) is an admissible pair and (6.127)
is satisfied. Indeed, if we rewrite (6.128) in terms of {Ŵt }t≥0 we get

{
dX (τ ) = AX (τ ) dτ + b(X (τ )) dτ + G [R(γ(∇v(X (τ ))σ)) + dŴ (τ )],
X0 = x

and this concludes the proof. �

6.11 Application: The Heat Equation with Additive Noise

We show here how the previous results can be applied to a stochastic heat equation
with additive white noise in dimension 1. Let, for t ≥ 0, ξ ∈ [0, 1]:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t
x(t, ξ) = ∂2

∂ξ2
x(t, ξ) + f0(ξ, x(t, ξ)) + σ0(ξ)r(ξ) a(t, ξ) + σ0(ξ)

∂

∂t
W(t, ξ),

x(t, 0) = x(t, 1) = 0,

x(0, ξ) = x0(ξ),
(6.130)

where ∂
∂tW is a space-time white noise on R+ × [0, 1]. Moreover, we introduce the

cost functional:

J (x0, a(·), x(·)) = E

∫ ∞

0

∫ 1

0
e−λt

[
�0(ξ, x(t, ξ)) + |a(t, ξ)|2] dξ dt (6.131)

which we minimize over all progressive controls a : [0,∞) × [0, 1] → R bounded
in L2([0, 1]). By this we mean that there exists a suitable constant ca (depending on
the control a) such that:

∫ 1

0
a2(t, ξ)dξ ≤ ca, P ⊗ dt-a.s.

To fit the assumptions of our abstract results we will suppose that the functions f0,
σ0, r , �0 are all measurable and real-valued and moreover:

(1) f0 is defined on [0, 1] × R and
∫ 1
0 f 20 (ξ, 0)dξ < +∞.

Moreover, for a.a. ξ ∈ [0, 1], we require that f0(ξ, ·) ∈ C1(R) and

−L f ≤ ∂

∂η
f (ξ, η) ≤ 0

for a suitable constant L f > 0, almost all ξ ∈ [0, 1], and all η ∈ R.

(2) σ0 and r are bounded measurable functions from [0, 1] to R.
(3) �0 is defined on [0, 1] × R and, for a.a. ξ ∈ [0, 1], themap �0(ξ, ·) is inC1(R,R).

Moreover:

|�0(ξ, η)| ≤ c0(ξ),

∣∣∣∣ ∂

∂η
�0(ξ, η)

∣∣∣∣ ≤ c1(ξ), with
∫ 1

0

(
c0(ξ) + c21(ξ)

)
dξ < +∞.

(6.132)
(4) x0 ∈ L2([0, 1]).

To rewrite the above problem in the abstract way we set (with the notation of
Sect. 6.10): H = � = � = L2([0, 1]). By {W (t)}t≥0 we denote a cylindricalWiener
process in L2([0, 1]). Moreover, we define the operator A with domain D(A) by:

D(A) = W 2,2([0, 1]) ∩ W 1,2
0 ([0, 1]), (Ay)(ξ) = ∂2

∂ξ2
y(ξ), ∀y ∈ D(A),

where W 2,2([0, 1]) and W 1,2
0 ([0, 1]) are the usual Sobolev spaces, and we set
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b(x)(ξ) = f0(ξ, x(ξ)), (σz)(ξ) = σ0(ξ)z(ξ), R(a)(ξ) = (Ra)(ξ) = r(ξ)a(ξ),

l(x, a) =
∫ 1

0

[|a(ξ)|2 + �0(ξ, x(ξ))
]
dξ

for all x, z ∈ L2([0, 1]) a ∈ L∞([0, 1]) and a.a. ξ ∈ [0, 1].
Under the previous assumptions we know, see [177] Sect. 11.2.1, that A, b and σ

satisfy Hypothesis 6.40. Moreover, R is a bounded linear operator on L2([0, 1]) and

∇x l(x, a)h =
∫ 1

0

∂

∂η
�0(ξ, x(ξ))h(ξ)dξ.

Hence points 2 and 3 in Hypothesis 6.52 are satisfied.
We also notice that

inf
a∈H(|a|2H + z(Ra)) = inf

a∈H(|a|2H + (R∗z)a) = −1

4
|R∗z|2H∗ = −1

4

∫ 1

0
r2(ξ)z2(ξ)dξ.

So F0(x, z) = l(x) − 1
4 |R∗z|2 and, taking into account the regularity of �0, it

is immediate to see that point 4 in Hypothesis 6.40 is satisfied. In addition,
infa∈L2([0,1])(|a|2H + z(Ra)) is a minimum achieved for a = − 1

2r z.

As a consequence of Theorems 6.54 and 6.55 we have the following result.

Theorem 6.56 Under the previous assumptions, fixing λ > 0, there exists at least
one generalized reference probability space μ = (�,F ,F s,P,W ) and an admis-
sible control pair (a(·), x(·)) for which

V (x0) = Jμ(x0; a(·), x(·)), x0 ∈ L2([0, 1]).

In particular, the triple (μ, a(·), x(·)) is optimal.
The value function V (x0) coincides with the function v(x0), which is the unique

mild solution to theHamilton–Jacobi–Bellman equation (6.119) in the sense specified
by Definition 6.49 (see Theorem 6.51) where (with the standard identifications)

F0(x,∇v(x)σ) = l(x) − 1

4
|R∗∇v(x)σ|2H∗

=
∫ 1

0
�0(ξ, x(ξ))dξ − 1

4

∫ 1

0
r2(ξ)σ20(ξ)(∇v(x)(ξ))2dξ.

In the spaceμ the process (x(s, ·))s≥0 is amild solution to the closed loop equation

⎧⎪⎪⎨
⎪⎪⎩

∂

∂t
x̄(t, ξ) = ∂2

∂ξ2
x̄(t, ξ) + f0(ξ, x̄(t, ξ)) − 1

2
σ20(ξ)r2(ξ)∇xv(t, x̄(t, ·))(ξ) + σ0(ξ)

∂

∂t
W(t, ξ),

x̄(t, 0) = x̄(t, 1) = 0,
x̄(0, ξ) = x0(ξ),

and the optimal pair (a(t, ·), x(t, ·)) satisfies the feedback law equality
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a(s, ξ) = −1

2
σ0(ξ)r(ξ)∇xv(t, x(t, ·))(ξ).

6.12 Elliptic HJB Equations with Non-constant Diffusion

In this section we wish to briefly expose the results on the probabilistic represen-
tation of the solution to an elliptic HJB equation when the second-order operator
Tr
(
σ(x)σ(x)∗D2φ(x)

)
depends on x . Namely, we will address the resolvability of

the following equation:

Au(x) − λ u(x) = F(x, u(x),∇u(x)σ(x)), x ∈ H,

where

Aφ(x) = 1

2
Tr
(
σ(x)σ(x)∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

The price to pay to allow σ to depend on x is that we will have to assume λ to be
large enough.

The detailed proofs of the results reported below can be founded in [285].
Our analysis here will be done on the weighted (in time) spaces that we introduce

below.

• L p
P(�; Lq

β(K )), defined for β ∈ R and p, q ∈ [1,∞), denotes the space of equiv-
alence classes of processes {Y (t)}t≥0, with values in K , such that the norm

|Y |p
L p
P (�;Lq

β(K ))
= E

(∫ ∞

0
eqβs |Y (s)|qK ds

)p/q

is finite, and Y admits a predictable version.
• Kp

β denotes the space L p
P(�; L2

β(K )) × L p
P(�; L2

β(L2(�, K ))). The norm of an
element (Y, Z) ∈ Kp

β is |(Y, Z)|Kp
β

= |Y |L p
P (�;L2

β(K )) + |Z |L p
P (�;L2

β(L2(�,K ))).

• Lq
P(�;Cη(K )), defined forη ∈ R andq ∈ [1,∞), denotes the space of predictable

processes {Y (t)}t≥0 with continuous paths in K , such that the norm

|Y |q
Lq
P (�;Cη(K ))

= E sup
τ≥0

eηqτ |Y (τ )|qK

is finite. Elements of Lq
P(�;Cη(K )) are identified up to indistinguishability.

• Finally, for η ∈ R and q ∈ [1,∞), we define Hq
η as the space Lq

P(�; Lq
η(K )) ∩

Lq
P(�;Cη(K )), endowed with the norm

|Y |Hq
η
= |Y |Lq

P (�;Lq
η (K )) + |Y |Lq

P (�;Cη(K )).
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Clearly, similar definitions and notations also apply to processes with values in
other Hilbert spaces, different from K .

As in the previous sections, we denote by {W (τ )}τ≥0 a cylindrical Wiener process
with values in a Hilbert space�, defined on a complete probability space (�,F ,P).
Now we consider the Itô stochastic differential equation for an unknown process
{X (τ ; x)}τ≥0 with values in a Hilbert space H :

X (τ ; x) = eτ Ax +
∫ τ

0
e(τ−s)Ab(X (s; x)) ds +

∫ τ

0
e(τ−s)Aσ(X (s; x)) dW (s), τ ≥ 0.

(6.133)

Hypothesis 6.57 (i) The operator A is the generator of a strongly continuous
semigroup et A, t ≥ 0, in the Hilbert space H . We denote by M and a two
constants such that |et A| ≤ Meat for t ≥ 0.

(ii) The mapping b : H → H satisfies, for some constant L > 0,

|b(x) − b(y)| ≤ L |x − y|, x, y ∈ H.

(iii) σ is a mapping from H to L(�, H) such that for every ξ ∈ � the map σ(·)ξ :
H → H is measurable, et Aσ(x) ∈ L2(�, H) for every t > 0 and x ∈ H , and

|et Aσ(x)|L2(�,H) ≤ L t−γeat (1 + |x |),
|et Aσ(x) − et Aσ(y)|L2(�,H) ≤ L t−γeat |x − y|, t > 0, x, y ∈ H,

(6.134)
|σ(x)|L(�,H) ≤ L (1 + |x |), x ∈ H, (6.135)

for some constants L > 0 and γ ∈ [0, 1/2).
(iv) For every t > 0, we have b(·) ∈ G1(H, H) and et Aσ(·) ∈ G1(H,L2(�, H)).

Proposition 6.58 Assume that Hypothesis 6.57 holds. Then for all q ∈ [1,∞) there
exists a constant η(q), depending also on γ, L , a, M, with the following properties:

(i) For all x ∈ H the process X (·; x), a solution of (6.133), is in Hq
η(q) (here

K = H).
(ii) For a suitable constant C > 0 we have

E sup
τ≥0

eη(q)qτ |X (τ ; x)|q + E

∫ ∞

0
eη(q)qs |X (s; x)|q ds ≤ C(1 + |x |)q .

(6.136)
(iii) The map x→X (·; x) belongs to G1(H,Hq

η(q)) and its derivative is uniformly
bounded:

|∇X (·; x)h|Hq
η(q)

≤ C |h|, x, h ∈ H, (6.137)

for a suitable constant C.
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Let us now denote by Fτ the natural filtration of {W (τ )}τ≥0 augmented in the
usual way. We again consider the system of stochastic differential equations: P-a.s.,
for 0 ≤ τ ≤ T < ∞
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X (τ ; x) = eτ Ax +
∫ τ

0
e(τ−s)Ab(X (s; x)) ds +

∫ τ

0
e(τ−s)Aσ(X (s; x)) dW (s),

Y (τ ; x) +
∫ T

τ

Z(s; x) dW (s) + λ

∫ T

τ

Y (s; x) ds

=
∫ T

τ

F(X (s; x), Y (s; x), Z(s; x)) ds.
(6.138)

Y is real-valued and Z takes values in �∗, F : H × R × �∗ → R is a given measur-
able function, x is in H and λ is a real number.

For any q ∈ [1,∞) we choose η(q) as in Proposition 6.58. Then, we know that
for every x ∈ H , there exists a unique solution {X (τ ; x)}τ≥0 inHq

η(q) of the forward
equation and the map x→X (·; x) belongs to G1(H,Hq

η(q)).
Then we fix p > 2 and choose q and β satisfying

q ≥ p(m + 1)(m + 2), β < η(q)(m + 1)(m + 2), β < 0. (6.139)

On F we shall ask the following

Hypothesis 6.59 (i) There exist μ ∈ R and nonnegative constants Ly, Lz such
that

|F(x, y1, z1) − F(x, y2, z2)| ≤ Ly|y1 − y2| + Lz|z1 − z2|,
〈F(x, y1, z) − F(x, y2, z), y1 − y2〉K ≤ −μ|y1 − y2|2,

for every x ∈ H , y1, y2 ∈ R, z, z1, z2 ∈ �∗.
(ii) F ∈ G1(H × R × �∗, K ).
(iii) There exist L > 0 and m ≥ 0 such that

|∇x F(x, y, z)h| ≤ Lx |h|(1 + |z|)(1 + |x | + |y|)m,

for every x, h ∈ H , y ∈ R, z ∈ �∗.

We have the following existence and uniqueness result (in the weighted spaces
introduced above).

Proposition 6.60 Assume that Hypothesis 6.57 holds and that F satisfies the con-
ditions in Hypothesis 6.59. For p > 2, β and q satisfying (6.139), and for every
λ > λ̂ = −(β + μ − L2

z/2), the following holds.

(i) For every x ∈ H there exists a unique solution (X (·; x), Y (·; x), Z(·; x)) of
the forward–backward system (6.138) such that X (·; x) ∈ Hq

η(q) and (Y (·; x),
Z(·; x)) ∈ Kp

β (here K = R and consequently L2(�, K ) is �∗). Moreover,
Y (·; x) ∈ L p

P(�;Cβ(R)).
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(ii) The maps x → X (·; x), x → (Y (·; x), Z(·; x)), x → Y (·; x) belong to the
spaces G1(H,Hq

η(q)), G1(H,Kp
β ) and G1(H, L p

P(�;Cβ(R))), respectively.
(iii) Setting u(x) = Y (0; x), we have u ∈ G1(H,R), and u and∇u have polynomial

growth. More precisely, there exists a constant C > 0 such that

|u(x)| ≤ C (1 + |x |)m+1, |∇u(x)h| ≤ C |h|(1 + |x |)[(m+1)2], x, h ∈ H.

Remark 6.61 Notice that we have shown that the system (6.138) admits a unique
solution (in suitable spacesHq

η(q),Kp
β with parameters satisfying p > 2 and condition

(6.139)) for all λ > λ̂ where

λ̂ = −μ + L2
z/2 − sup{η(q)(m + 1)(m + 2) ∧ 0 : q > 2(m + 1)(m + 2)}.

(6.140)
�

Remark 6.62 If, in addition to Hypothesis 6.59, we suppose that F(·, 0, 0) is
bounded and satisfies Hypothesis 6.59 with m = 0, then the above results can be
improved in the following way. Instead of asking (6.139) it is enough to require:
q > p > 2 and β < η(q) ∧ 0. Then the conclusions of Proposition 6.60 still hold
for λ > −(β + μ − L2

z/2). Thus instead of (6.140) we have

λ̂ = −μ + L2
z/2 − sup{η(q) ∧ 0 : q > 2}. (6.141)

Moreover, we have |u(x)| ≤ C and |∇xu(x)h| ≤ C |h| for all x, h ∈ H . �
Assuming that Hypothesis 6.57 holds and denoting by (X (τ ; x))τ≥0 the solution

of Eq. (6.133), we define in the usual way the transition semigroup (Pt )t≥0, associated
to the process X :

Pt [φ](x) = E φ(X (t; x)), x ∈ H, (6.142)

for every bounded measurable function φ : H → R. By Proposition 6.57, φ can be
taken unbounded, with polynomial growth. Formally, the generator A of (Pt ) is the
operator

Aφ(x) = 1

2
Tr
(
σ(x)σ(x)∗D2φ(x)

)+ 〈Ax + b(x), Dφ(x)〉 .

We consider now the solvability of the nonlinear stationary Kolmogorov equation:

Au(x) − λ u(x) = F(x, u(x),∇u(x)σ(x)), x ∈ H, (6.143)

where the function F : H × R × �∗ → R satisfies the conditions inHypothesis 6.59
(with K = R) and λ is a given number (that will eventually be assumed to be large
enough). Note that, for x ∈ H , ∇u(x) belongs to H∗, so that ∇u(x)σ(x) is in �∗.

The definition of a mild solution has to be slightly modified in order to take into
account the polynomial growth:
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Definition 6.63 Wesay that a function u : H → R is amild solution of the nonlinear
stationary Kolmogorov equation (6.143) if the following conditions hold:

(i) u ∈ G1(H,R);
(ii) for all x ∈ H , h ∈ H , we have

|u(x)| ≤ C (1 + |x |)C , |∇xu(x)h| ≤ C |h| (1 + |x |)C ,

for some constant C > 0;
(iii) the following equality holds, for every x ∈ H and T ≥ 0:

u(x) = e−λT PT [u](x) −
∫ T

0
e−λτ Pτ

[
F
(
·, u(·),∇u(·) σ(·)

)]
(x) dτ .

(6.144)

Together with Eq. (6.133) we again consider the backward equation for 0 ≤ τ ≤
T < ∞

Y (τ ; x) − Y (T ; x) +
∫ T

τ

Z(s; x)) dW (s) + λ

∫ T

τ

Y (s; x) ds

= −
∫ T

τ

F(X (s; x), Y (s; x), Z(s; x)) ds,
(6.145)

where F : H × R × �∗ → R and λ are the same occurring in the nonlinear station-
ary Kolmogorov equation. Under the stated assumptions, Proposition 6.60 gives a
unique solution {(X (τ ; x), Y (τ ; x), Z(τ ; x))}τ≥0 of the forward–backward system
(6.138).

We can now state one of our main results.

Theorem 6.64 Assume thatHypothesis 6.57 holds and that F satisfies the conditions
in Hypothesis 6.59.

Then there exists a λ̂ ∈ R such that, for every λ > λ̂, the nonlinear stationary
Kolmogorov equation (6.143) has a unique mild solution. The solution u is given by
the formula

u(x) = Y (0; x), (6.146)

where {(X (τ ; x), Y (τ ; x), Z(τ ; x))}τ≥0 is the solution of the backward-forward sys-
tem 6.138), and it satisfies

|u(x)| ≤ C (1 + |x |)m+1, |∇u(x)h| ≤ C |h|(1 + |x |)[(m+1)2],

for some constant C and every x, h ∈ H.

Remark 6.65 The constant λ̂ in the statement of the theorem can be chosen equal to
(6.140). �
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Remark 6.66 From Remark 6.62 it follows immediately that if, in addition to
Hypothesis 6.57 and 6.59, we assume that F(·, 0, 0) is bounded and F satisfies
Hypothesis 6.59withm = 0, then λ̂ can be chosen equal to (6.141) instead of (6.140).
Moreover, in this case, we have |u(x)| ≤ C , |∇u(x)h| ≤ C |h| for some constant C
and every x, h ∈ H . �

Finally, we again apply the above results to a control problem. We mainly wish
to show here what frameworks can be covered.

Let again H and � denote real separable Hilbert spaces (the state space and
the noise space, respectively) and let � be a Polish space (the control space). For
t ∈ [0,+∞) a generalized reference probability space is given by μ = (�,F ,Fs,

P,W ), where

• (�,F ,P) is a complete probability space;
• (Fs)s≥0 is a filtration in it, satisfying the usual conditions;
• (W (s))s≥0 is a cylindrical P-Wiener process in�, with respect to the filtrationFs .

Given such μ, for every starting point x ∈ H we will consider the following
controlled state equation

⎧⎪⎨
⎪⎩
dX (s; x) = (AX (s; x) + b(X (s; x)) + σ(X (s; x))R(X (s; x), a(s))) ds

+ σ(X (s; x)) dW (s), s ∈ [0,∞),

X (0) = x ∈ H.

(6.147)
In (6.147) and below the equation is understood in the mild sense. a(·) : � ×

[0,+∞) → � is the control process, which is always assumed to be progressively
measurable with respect to {Fs}s≥0. On the coefficients A, b,σ, R precise assump-
tions will be formulated in Hypothesis 6.67 below. As in Sect. 6.5 we will impose
on R only measurability and boundedness assumptions. As mentioned, this requires
some care in the formulation of the control problem. We again call (a(·), X (·)) an
admissible control pair if a(·) is anFs-progressivelymeasurable process with values
in� and X (·) is a mild solution to (6.147) corresponding to a(·). To every admissible
control pair we associate the cost:

Jμ(x; a(·), X (·)) = E

∫ ∞

0
e−λsl(X (s; x), a(s)) ds,

where l is a suitable real function. As in the parabolic case, see Sect. 6.5, the optimal
control problem in the extended strong formulation consists in minimizing the func-
tional Jμ(x; a(·), X (·)) over all admissible control pairs (a, X), and characterizing
the value function

V μ(x) = inf
(a(·),X (·))

Jμ(x; a(·), X (·; x)).
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We will also address the optimal control problem in the extended weak formula-
tion, which consists in further minimizing with respect to all generalized reference
probability spaces, i.e., in characterizing the value function

V (x) = inf
μ

V μ(x).

The corresponding Hamiltonian function is defined for all x ∈ H , z ∈ �∗ setting

F0(x, z) = inf
a∈�

(l(x, a) + z R(x, a)) . (6.148)

We also define as usual

�(x, z) = {a ∈ � : F0(x, z) = l(x, a) + z R(x, a)}.

We make the following assumption.

Hypothesis 6.67 The following holds:

(1) A, b and σ satisfy Hypothesis 6.57.
(2) R : H × � → � is Borel measurable and |R(x, a)|� ≤ LR for a suitable con-

stant LR > 0 and all x ∈ H , a ∈ �.
(3) l : H × � → R is continuous and satisfies |l(x, u)| ≤ Kl(1 + |x |ml ) for suitable

constants Kl > 0, ml ≥ 0 and all x ∈ H , u ∈ �.
(4) F0 belongs to G1(H × �∗,R) and satisfies Hypothesis 6.59 (to avoid confusion

we denote by mF the constant m introduced in Hypothesis 6.59) We also notice
that by its definition F0 is Lipschitz with respect to z with Lipschitz constant
LR .

(5) Finally, we fix here p > 2, q and β satisfying (6.139) with m = mF , and such
that q > mF .

In the following η(q) is the constant introduced in Proposition 6.58.

Lemma 6.68 Assume that λ > 0 satisfies

λ >
LRml

2(q − ml)
− η(q)ml . (6.149)

Then the cost functional is well defined and J (x0; a(·), X (·)) < ∞ for all x0 ∈ H
and all generalized reference probability spaces.

By Theorem 6.64, for all λ > λ̂ (the constant λ̂ can be chosen equal to (6.140)
with Lz = LR) the stationary Hamilton–Jacobi–Bellman equation relative to the
above stated problem, written formally as

Av(x) = λv(x) + F0(x,∇v(x)σ(x)), x ∈ H, (6.150)
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admits a unique mild solution, in the sense of Definition 6.63, which we will denote
by v.

We are in a position to solve the control problem:

Theorem 6.69 Assume Hypothesis 6.67 and suppose that λ satisfies:

λ >

(
−β + L2

R

2

)
∨
(

−β + LR

2(p − 1)

)
∨
(

LRml

2(q − ml)
− η(q)ml

)
. (6.151)

Then the following holds

(1) For all generalized reference probability spaceμ and all admissible control pairs
(a(·), X (·)) we have Jμ(x; a(·), X (·)) ≥ v(x).
It follows that V μ(x) ≥ v(x) for every μ, and so V (x) ≥ v(x).

(2) For allμandall admissible control pairs (a, X), the equality Jμ(x; a(·), X (·)) =
v(x) holds if and only if the following feedback law is satisfied:

a(s) ∈ �(X (s),∇xv(X (s))σ(X (s))), P-a.s. for a.a. s ∈ [t, T ]. (6.152)

We again have existence of the optimal control in the extended weak formulation.

Theorem 6.70 If in addition to the assumptions of the above theorem we suppose
that �(x, z) is non-empty for all x ∈ H and z ∈ �∗. Let γ : H × �∗ → � be a
measurable selection of � (which exists, see Theorem 8.2.10, in [20]). Then there
exists at least one generalized reference probability spaceμandanadmissible control
pair (a(·), X(·)) for which (6.152) holds. In particular, it follows that V μ

t (x) =
v(t, x) and so V (t, x) = v(t, x). In the space μ the process X is a mild solution to
the closed loop equation:

⎧⎪⎨
⎪⎩
dX(s) = AX(s) ds + σ(X(s)) R

(
X(s), γ(s, X(s),∇xv(X(s))σ(X(s)))

)
ds

+b(X(s)) ds + σ(X(s)) dW (s), s ∈ [t, T ],
X(0) = x ∈ H,

(6.153)
the feedback law takes the form

a(s) = γ(X(s),∇xv(X(s))σ(X(s))), P-a.s. for a.e. s ∈ [0, T ],

and the pair (a(·), X(·)) is optimal for the control problem in the extended weak
formulation.

Remark 6.71 If, in addition to points 1–4 of Hypothesis 6.67, we also assume that
l is bounded and Lipschitz in x uniformly in u ∈ U , then it is easily verified that
F0(·, 0) is bounded and F0 satisfies Hypothesis 6.59 with m = 0. Thus by Remark
6.62 the results of Theorem 6.69 can be improved in the following way.



778 M. Fuhman and G. Tessitore

Instead of Hypothesis 6.67 point 5 it is enough to take q > p > 2 and β < η(q) ∧
0. Moreover, instead of (6.151) it is enough to assume

λ > −β +
(
L2
R

2
∨ LR

2(p − 1)

)
.

�

6.12.1 The Heat Equation with Multiplicative Noise

Finally, we show how the assumptions on the controlled heat equation in Sect. 6.11
have to be adapted to fit this last framework. We again consider a stochastic heat
equation with additive white noise in dimension 1 (for t ≥ 0, ξ ∈ [0, 1]):
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂t
x(t, ξ) = ∂2

∂ξ2
x(t, ξ) + f0(ξ, x(t, ξ))

+σ0(ξ, x(t, ξ))r(ξ) a(t, ξ) + σ0(ξ)
∂
∂tW(t, ξ),

x(t, 0) = x(t, 1) = 0,
x(0, ξ) = x0(ξ),

(6.154)
and the cost functional:

J (x0; a(·), x(·)) = E

∫ ∞

0

∫ 1

0
e−λt

[
�0(ξ, x(t, ξ)) + |a(t, ξ)|2] dξ dt. (6.155)

The assumptions and notations are the same as in Sect. 6.11 except that:

• σ0 depends on x as well. We assume that it is bounded, differentiable with respect
to x and Lipschitz with respect to x , uniformly in ξ.

• We relax the assumptions on �0. Namely, we assume that �0 is defined on [0, 1] ×
R. Moreover, for a.a. ξ ∈ [0, 1], the map �0(ξ, ·) is in C1(R,R) and

|�0(ξ, 0)| ≤ c0(ξ),

∣∣∣∣ ∂

∂η
�0(ξ, η)

∣∣∣∣ ≤ c1(ξ), with
∫ 1

0

(
c0(ξ) + c21(ξ)

)
dξ < +∞.

(6.156)
• We restrict our analysis to controls taking values in a ball of L2([0, 1]). Namely,
we assume: ∫ 1

0
a2(t, ξ)dξ ≤ 1, P ⊗ dt-a.s.

The problem can be rewritten in the abstract way exactly as in Sect. 6.11 with the
difference that now:

inf
a∈H :|a|≤1

(|a|2H + z(Ra)) = inf
a∈H :|a|≤1

(|a|2H + (R∗z)a) = �(R∗z),
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where (with the standard identifications):

�(p) =
{−(1/4)|p|2L2([0,1]) if |p|L2([0,1]) ≤ 2

−|p| + 1 if |p|L2([0,1]) > 2
, R∗z = r z.

In addition, infa∈H (|a|2H + z(Ra)) is a minimum achieved for a = ψ(R∗z) where

ψ(p) =
{−(1/2)p if |p|L2([0,1]) ≤ 2,

−p/|p| if |p|L2([0,1]) > 2.

So F0(x, z) = l(x) + �(R∗z) belongs toG1(H × H ∗,R). As a consequence of The-
orems 6.69 and 6.70 we have the following result.

Theorem 6.72 Under the previous assumptionwe can find λ̂ such that, for allλ > λ̂,
there exists at least one generalized reference probability space μ = (�,F ,F s,

P,W ) and an admissible control pair (a(·), x(·)) for which

V (x0) = Jμ(x0; a(·), x(·)), x0 ∈ L2([0, 1]).

In particular, the triple (μ, a(·), x(·)) is optimal.
The value function V (x0) coincides with the function v(x0), which is the unique

mild solution to theHamilton–Jacobi–Bellman equation (6.150) in the sense specified
by Definition 6.63 (see Theorem 6.64) where (with the standard identifications)

F0(x, ∇vσ) = l(x) + �(R∗∇v(x)σ(x)) = �0(·, x(·)) + �(r(·)σ0(·, x(·))∇v(x)(·)).

In the spaceμ the process (x(s, ·))s≥0 is amild solution to the closed loop equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂

∂t
x̄(t, ξ) = ∂2

∂ξ2
x̄(t, ξ) + f0(ξ, x̄(t, ξ)) + σ0(ξ, x̄(ξ))

∂

∂t
W(t, ξ)

+σ0(ξ, x̄(ξ))r(ξ)ψ (r(·)σ0(·, x̄(t, ·))∇v(x̄(t, ·))(·)) (ξ)dt,
x̄(t, 0) = x̄(t, 1) = 0,
x̄(0, ξ) = x0(ξ),

and the optimal pair (a(t, ·), x(t, ·)) satisfies the feedback law equality

a(t, ·) = ψ (r(·)σ0(·, x̄(t, ·))∇v(x̄(t, ·))(·)) .

6.13 Bibliographical Notes

The paper [475] by É. Pardoux and S. Peng is generally recognized as the starting
point of the theory of Backward Stochastic Differential Equations (BSDEs): there
the authors solved a general nonlinear BSDE under Lipschitz assumptions on the
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coefficients. Earlier results on the linear case were proved by several authors, in
particular by J-.M. Bismut and A. Bensoussan, in connection with the so-called Sto-
chastic Maximum Principle (in the sense of Pontryagin). Since the appearance of
[475], the theory began to develop quickly, motivated by applications to stochas-
tic optimal control, partial differential equations and mathematical finance. Some
standard references are [211, 420, 477, 575].

Here we limit ourselves to a bibliographical account of the main achievements
related to BSDEs driven by a Brownian motion in an infinite-dimensional context,
i.e., when at least one of the unknown processes (Y, Z) takes values in an infinite-
dimensional space or when the BSDE is coupled with another (forward) stochastic
differential equation with infinite-dimensional solution process.

To our knowledge, the first result on BSDEs when the process Y evolves in an
infinite-dimensional space is that of Bensoussan [45] concerning the linear case. A
highly non-trivial extension of the nonlinear case originally addressed by Pardoux
and Peng in the infinite-dimensional context is in [350], followed by [558] and by
some results in [284, 285]. The case of dissipative coefficients is considered in [129,
130]. A special class of backward equations, called of Volterra type, are studied in
the Hilbert space case in [11, 12].

The Stochastic Maximum Principle, which is not treated in this chapter, remains
one of the main sources of interest for studying BSDEs with infinite-dimensional
process Y . Although the equation is linear in this case, the occurrence of unbounded
coefficients often makes the study technically challenging. After the reference [45]
already mentioned, the papers [196, 349] treat the maximum principle for a general
controlled evolution equation in a Hilbert space. Applications to concrete controlled
stochastic PDEs can be found in [598] for equations linear in the state, and in [280].
The case of a controlled stochastic PDE with additive noise and dissipative drift is
treated in [282]. The treatise [414] is entirely devoted to the Stochastic Maximum
Principle in infinite dimension.

A special mention is deserved for the study of the stochastic backward Hamilton–
Jacobi–Bellman equation, introduced in [481] and further studied in [85]. Represen-
tation formulae for equations of similar type are proved in [549].

Many other cases of concrete stochastic PDEs of backward type have been studied,
as objects of intrinsic interest and not necessarily related to stochastic optimal control
problems, see for instance [197–199, 348, 419, 421, 504, 505, 552], and the subject
is developing quickly.

Very often a scalar BSDE (i.e., where the process Y is real-valued) is introduced,
coupled with a forward equation representing the dynamics of a controlled process
evolving in an infinite-dimensional case, driven by a finite- or infinite-dimensional
Brownian motion. This is the situation addressed in this chapter. As seen above,
the process Y is then related to the value function of the optimal control problem
and, in the Markovian case, it is used to represent or to construct a solution (in an
appropriate sense) to the corresponding Hamilton–Jacobi–Bellman (HJB) equation.
The first systematic study of this type for controlled stochastic equations in Hilbert
space is in [284–286]. More general coefficients (for instance, of dissipative type), or
more general growth conditions, were studied in [75–77, 351], see also [593–595].
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Often, better results are obtained by a combination of probabilistic arguments
on the BSDE and an analytic study of the HJB equation, as in [432, 433]. In [435,
438, 442] very general Hamiltonians are addressed. Smoothing effects of the HJB
equation, due to a nondegenerate diffusion coefficient of the controlled equation,
were studied in [283, 440].

The case of linear controlled evolution equations and quadratic cost also lead to
stochastic backward equations of Riccati type, when the coefficients are perturbed
by noise. In the infinite-dimensional framework we cite [333–335, 414, 415].

Applications to models with delay or memory effects can be found in several of
the previous references. Memory effects are explicitly studied by BSDE techniques
for the heat equation in [131] and for controlled stochastic Volterra equations in [63,
132]. Related results can be found in [600].

A special branch of the literature is devoted to the case when the controlled
equation is a stochastic PDEwith Brownian noise acting on the boundary conditions,
often in combination with a control process on the boundary as well. We mention
[181, 332, 437, 591, 592].Wealso cite [331] for a versionof theStochasticMaximum
Principle in this framework and [62] for the related case of dynamical boundary
conditions.

Although in the large majority of the mentioned papers the state space is a Hilbert
space, there are a few papers related to extensions to Banach space-valued processes:
see [281, 436, 596].

BSDEs can be used to address other stochastic optimization problems, even when
the controlled systems evolves in an infinite-dimensional space. In [182, 278] ergodic
optimal control problems are studied, whereas applications of BSDEs to the theory
of stochastic differential games are given in [274, 275], where games with an infinite
number of players are considered.

More specific topics are treated in [273] (connections with conditioned processes
in Hilbert spaces) and [330] (strongly coupled infinite-dimensional forward–
backward systems, i.e., when the forward equations depends on the unknown pair
(Y, Z) solution to the backward equation).



Appendix A
Notation and Function Spaces

In this appendix, we list the main notation and the definitions of the basic function
spaces used throughout the book. Definitions of functions spaces that are introduced
and used only in specific chapters are not included here.

A.1 Basic Notation

If X is a Banach space we denote its norm by | · |X . If this space is also Hilbert, we
denote its inner product by 〈·, ·〉X . Given R > 0, BX (x̄, R) denotes the closed ball in
X centered at x̄ of radius R. We will omit the subscript X if the context is clear. The
dual space of X , i.e. the space of all continuous linear functionals, will be denoted
by X∗. The (operator) norm in X∗ will be denoted by | · |X∗ , and the duality will be
denoted by 〈·, ·〉〈X∗,X〉.

If a sequence (xn)n∈N ⊂ X converges to x ∈ X in the norm topology we write
xn → x . If it converges weakly we write xn ⇀ x .

If X is a Hilbert space and {ek}k∈N is an orthonormal basis of X we use, for x ∈ X ,
the notation xk := 〈x, ek〉. Unless stated explicitly, we will always identify its dual
X∗ with X through the standard Riesz identification.

Given a second Banach space Y with norm | · |Y (and inner product 〈·, ·〉Y if it
is also Hilbert) we denote by L(X, Y ) the set of all bounded (continuous) linear
operators T : X → Y with norm ‖T ‖L(X,Y ) := supx∈X,x 	=0

|T x |Y
|x |X (or simply ‖T ‖),

using for simplicity the notation L(X) when X = Y . L(X) is a Banach algebra with
identity element IX (simply I if unambiguous).

Given a linear (possibly unbounded) operator T : D(T ) ⊂ X → Y such that
D(T ) is dense in X we will denote its adjoint operator by T ∗ : D(T ∗) ⊂ Y ∗ → X∗.
If X is a Hilbert space we will denote by S(X) ⊂ L(X) the space of all bounded
self-adjoint operators on X .

For k = 1, 2, ... we denote by Xk the product space X × X × · · · × X (k times)
endowed with the norm |(x1, ..., xk)|Xk := (|x1|2 + ... + |xk |2

)1/2
and by Lk(X, Y )
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the set of all bounded multilinear operators T : Xk → Y with norm ‖T ‖Lk (X,Y ) :=
supx∈Xk ,x 	=0

|T (x1,...,xk )|Y
|(x1,...,xk )|Xk using for simplicity the notation Lk(X) when X = Y . It

is known (see e.g. [266] p. 318, Theorem A.2.6) that Lk(X, Y ) is isometrically
isomorphic to the space L(X,L(X, . . . ,L(X, Y ))).

Given a complex number λ ∈ C we denote by Reλ and Imλ, respectively, its real
and imaginary parts.

For a real number a we write a+ = max(a, 0) and a− = −min(a, 0) to denote
the positive and negative parts of a. The same notation is also used for functions.

A.2 Function Spaces

Let Y and Z be two Banach spaces and let X ⊂ Z be endowed with the induced
topology. We denote by B(X, Y ), Bb(X, Y ), C(X, Y ), UC(X, Y ), Cb(X, Y ) and
UCb(X, Y ) the sets of all functions φ : X → Y which are, respectively, Borel mea-
surable, Borel measurable and bounded, continuous, uniformly continuous, contin-
uous and bounded, uniformly continuous and bounded on X . The spaces Bb(X, Y ),
Cb(X, Y ) and UCb(X, Y ) are Banach spaces with the usual norm

‖φ‖0 = sup
x∈X

|φ(x)|Y .

We denote by USC(X, Y ) (respectively, LSC(X, Y )) the space of all upper semi-
continuous (respectively, lower semicontinuous) functions f : X → Y .

If Y = R, we will simply write Bb(X), C(X), UC(X), Cb(X), UCb(X),
USC(X) and LSC(X) for Bb(X,R), C(X,R), UC(X,R), Cb(X,R), UCb(X,R),
USC(X,R) and LSC(X,R).

For a givenm > 0we define Bm(X, Y ), (respectively,Cm(X, Y ) andUCm(X, Y ))
to be the set of all functions φ ∈ B(X, Y ) such that the function

ψ(x) := φ(x)

1 + |x |m (A.1)

belongs to Bb(X, Y ) (respectively,Cb(X, Y ) andUCb(X, Y )). These spaces of func-
tions that have at most polynomial growth of order m are Banach spaces when they
are endowed with the norm

N (φ) := sup
x∈X

|φ(x)|
1 + |x |m .

We will write ‖φ‖Bm (X,Y ), ‖φ‖Cm (X,Y ), ‖φ‖UCm (X,Y ) to denote these norms, or simply
‖φ‖Bm , ‖φ‖Cm , ‖φ‖UCm when the spaces are clear from the context. The above defini-
tion is alsomeaningful whenm = 0 and in such case the spaces Bm(X, Y ),Cm(X, Y )

and UCm(X, Y ) reduce to Bb(X, Y ), Cb(X, Y ) and UCb(X, Y ). We do not use the
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notation B0(X, Y ), C0(X, Y ) and UC0(X, Y ) to avoid confusion with respect to the
standard notation in the literature. However, we often consider the spaces Bm(X, Y ),
Cm(X, Y ) andUCm(X, Y ) form ≥ 0, meaning that the case of the spaces Bb(X, Y ),
Cb(X, Y ) and UCb(X, Y ) is also included.

Let Y be a Banach space and X be an open subset of a Banach space Z . For k ∈ N,

we denote by Ck(X, Y ) (respectively, Ck
b (X, Y )) the set of all functions φ : X → Y

which are continuous (respectively, continuous and bounded) on X , together with all
their Fréchet derivatives (see Sect.D.2) up to the order k. If φ ∈ Ck

b (X, Y ) the l-th
Fréchet derivative of φ is denoted by Dlφ, (or simply Dφ when l = 1). We set

‖φ‖k = ‖φ‖0 +
k∑

l=1

sup
x∈X

∥
∥Dlφ(x)

∥
∥
Ll (Z ,Y )

.

Similarly, we define the space UCk(X, Y ) (respectively, UCk
b (X, Y )), to be the set

of all functions φ : X → Y which are uniformly continuous (respectively, uniformly
continuous and bounded) on X together with all their Fréchet derivatives up to the
order k.

For k ∈ N and m > 0 we denote by Ck
m(X, Y )) (respectively, UCk

m(X, Y ))) the
set of all functions φ ∈ Cm(X, Y ) ∩ Ck(X, Y ) (respectively, φ ∈ UCm(X, Y ) ∩
Ck(X, Y )) such that, for all l = 1, . . . , k,

sup
x∈X

‖Dlφ(x)‖Ll (Z ,Y )

1 + |x |m < +∞, (A.2)

requiring also for φ ∈ UCk
m(X, Y ) that themaps x→ Dlφ(x)

1+|x |m are uniformly continuous
for l = 1, ..., k. We set

‖φ‖Ck
m (X,Y ) = ‖φ‖Cm (X,Y ) +

k∑

l=1

sup
x∈X

‖Dlφ(x)‖Ll (Z ,Y )

1 + |x |m . (A.3)

Equipped with this norm Ck
m(X, Y ) and UCk

m(X, Y ) are both Banach spaces. If
φ ∈ UCk

m(X, Y ) we will denote its norm by ‖φ‖UCk
m (X,Y ).

If Y = R, we write Bk
b (X), Bk

m(X), Ck(X), Ck
b (X), Ck

m(X), UCk(X), UCk
b (X),

UCk
m(X) instead of Bk

b (X,R), Bk
m(X,R), Ck(X,R), Ck

b (X,R), Ck
m(X,R), UCk

(X,R), UCk
b (X,R), UCk

m(X,R), respectively.

Remark A.1 Our definition of spaces of polynomially growing functions is the one
used, for example, in [179] (p. 251), [300].

In some papers (see e.g. [431, 433]) in the definition of spaces of functions with
polynomial growth, the weight (1+|x |2)m/2 is used instead of 1+|x |m . This weight
is always Fréchet differentiable when the norm in X is differentiable, whereas the
weight 1 + |x |m is not Fréchet differentiable at x = 0 when m ∈ (0, 1]. This may
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create problems when one has to deal with differentials of such weight so it is often
more convenient to choose (1 + |x |2)m/2.

If the norm in X is Fréchet differentiable, often the function spaces Ck
m(X, Y )

and UCk
m(X, Y ) are defined in a different way. For example, in [102] Sect. 2.1 the

spaceUC1
m(X, Y ) (there for Y = R) is defined as the space of functions φ : X → Y

such that the functions ψ(x) := φ(x)(1 + |x |m)−1 belong to UC1
b(X, Y ). A similar

definition can be used forC1
m(X, Y ). With this definition the function φ(x) = 1+|x |

belongs to UC1
1(X) even if it is not Fréchet differentiable at x = 0. On the other

hand, if one uses the weight (1 + |x |2)m/2 this problem disappears. Indeed, for
each m > 0, a function φ is Fréchet differentiable in X if and only if the function
ψ(x) = φ(x)(1 + |x |2)−m/2 is Fréchet differentiable in X .

It is easy to see that if the norm in X is Fréchet differentiable then our space
C1
m(X, Y ) is equal to the space C̃1

m(X, Y ) defined as the space of all functions φ :
X → Y such that the functions ψ(x) = φ(x)(1 + |x |2)−m/2 belong to C1

b(X, Y ). To
simplify the presentation, suppose that X = H is a Hilbert space and Y = R.

Let φ ∈ C̃1
m(H,R). Then obviously φ ∈ Cm(H,R) and moreover

Dφ(x) = Dψ(x)(1 + |x |2)m/2 + ψ(x)m(1 + |x |2)m/2−1x .

Since, for all x ∈ X , (1 + |x |2)−1m|x | ≤ m, we obtain Dφ ∈ Cm(H, H). Thus
φ ∈ C1

m(H,R).
On the other hand, if φ ∈ C1

m(H,R) then clearly ψ ∈ Cb(H,R), it is Fréchet
differentiable and

Dψ(x) = Dφ(x)(1 + |x |2)−m/2 − φ(x)m(1 + |x |2)−m/2−1x .

Since (1+|x |2)−1m|x | ≤ mwe clearly have Dψ ∈ Cb(H, H), i.e.φ ∈ C̃1
m(H,R). �

For α ∈ (0, 1] we denote by C0,α(X, Y ) the space of all Hölder continuous
functions from X to Y endowed with the semi-norm

[ϕ]0,α = sup

{ |ϕ(x) − ϕ(y)|Y
|x − y|αZ

; x, y ∈ X; x 	= y

}
.

The space C0,α
b (X, Y ) := Cb(X, Y ) ∩ C0,α(X, Y ) is a Banach space with the norm

‖ϕ‖0,α = ‖ϕ‖0 + [ϕ]0,α
and is contained in UCb(X, Y ). If α = 1 the space C0,1(X, Y ) is the space of all
Lipschitz continuous functions from X toY . If X is open, convex andϕ ∈ C0,1(X, Y )

is Fréchet differentiable in X then the derivative Dϕ is bounded and

[ϕ]0,1 = sup
x∈X

‖Dϕ(x)‖L(Z ,Y ).

We set, for α ∈ (0, 1],
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C1,α(X, Y ) := {
ϕ ∈ C1(X, Y ) : [Dϕ]0,α < ∞}

.

The space C1,α
b (X, Y ) := C1

b(X, Y ) ∩ C1,α(X, Y ) is a Banach space with the norm

‖ϕ‖1,α = ‖ϕ‖1 + [Dϕ]0,α.

Similarly,
C2,α(X, Y ) := {

ϕ ∈ C2(X, Y ) : [D2ϕ]0,α < ∞}
.

The space C2,α
b (X, Y ) := C2

b (X, Y ) ∩ C2,α(X, Y ) is also a Banach space with the
norm

‖ϕ‖2,α = ‖ϕ‖2 + [D2ϕ]0,α.

If Y = R the above spaces are denoted by C0,α(X), C0,α
b (X), C1,α(X), C1,α

b (X),
C2,α(X), C2,α

b (X).
Ifα ∈ (0, 1], we say thatϕ : X → Y isHölder (Lipschitzwhenα = 1) continuous

on bounded subsets of X , if ϕ ∈ C0,α(B(0, R) ∩ X, Y ) for every R > 0, i.e. if the
semi-norm

[ϕ]0,α,R := sup

{ |ϕ(x) − ϕ(y)|Y
|x − y|αZ

; x, y ∈ B(0, R) ∩ X; x 	= y

}

is finite for every R > 0. The space of such functions is denoted by C0,α
loc (X, Y ).

Similarly we define the spaces C1,α
loc (X, Y ) and C2,α

loc (X, Y ).
If Y = R we write Ck,α(X) instead of Ck,α(X,R) and Ck,α

loc (X) instead of
Ck,α
loc (X,R), for k = 0, 1, 2, α ∈ (0, 1].
Let now X be a real separable Hilbert space and Y be a real Banach space. As

usual we set, for an open subset O of Rn , and k ∈ N ∪ {∞},

Ck
0 (O, Y ) := {

f ∈ Ck(O, Y ) : f has compact support inO}
.

Following [120] Sect. 0 and [300] Sect. 2 we define various spaces of cylindrical
functions. We set, for k ∈ N ∪ {∞},

FCk
0 (X, Y ) := {ϕ : X → Y : ∃n ∈ N, x1, ..., xn ∈ X, f ∈ Ck

0 (R
n, Y )

such that ϕ(x) = f (〈x, x1〉, ..., 〈x, xn〉), ∀x ∈ X} .

We denote FCk
0 (X,R) simply by FCk

0 (X).
Given k ∈ N ∪ {∞} and a linear closed operator with dense domain B :

D(B)⊂X → X , we define
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FCk,B
0 (X) = {ϕ : X →R : ∃n ∈ N, x1, ..., xn ∈ D(B), f ∈ Ck

0 (R
n,R)

such that ϕ(x) = f (〈x, x1〉, ..., 〈x, xn〉), ∀x ∈ X}
(A.4)

and

FCk,B
b (X) := {ϕ : X → R : ∃n ∈ N, x1, ..., xn ∈ D(B), f ∈ Ck

b (R
n,R)

such that ϕ(x) = f (〈x, x1〉, ..., 〈x, xn〉), ∀x ∈ H} .

Let O be an open subset of Rn and p ∈ [1,+∞). We denote by L p(O) the
set of all real-valued measurable functions1 f : O → R with

∫
O | f (ξ)|pdξ <

+∞ (classical Lebesgue integral); L p(O) is a Banach space with the usual norm
| f |L p(O) := [∫

O | f (ξ)|pdξ
]1/p

. We denote by L p
loc(O) the set of all measurable

functions f : O → R such that
∫
K | f (ξ)|pdξ < +∞ for every compact subset K

of O. The space L∞(O) is the quotient space of Bb(O) with respect to the relation
of being equal a.e. and is a Banach space with the usual ess sup norm. (Obviously
the above spaces can be defined for more general sets O.)

We denote by Wk,p(O) (k ∈ N, p ∈ [1,+∞]) the usual Sobolev space of
real-valued functions whose distributional derivatives, up to the order k, are p-th
power integrable (or essentially bounded if p = +∞). Moreover, Wk,p

0 (O) is the
closure of C∞

0 (O) in Wk,p(O). Following the standard convention, sometimes we
will write Hk(O) for Wk,2(O) and Hk

0 (O) for Wk,2
0 (O). Similarly, for α ≥ 0 and

p ∈ [1,+∞], we denote the fractional Sobolev spaces by Wα,p(O), Wα,p
0 (O (or

Hα(O), Hα
0 (O) when p = 2) defined in the usual way (see e.g. [1] Chap.VII). By

duality then one defines, for every α > 0, the negative order spaces H−α(O) setting
(Hα

0 (O))∗ = H−α(O) (see e.g. [404] Sect. 1.12).
If the boundary ∂O is a C∞ manifold of dimension n − 1 in R

n then the spaces
L p(∂O), Hα(∂O), Wα,p(∂O) can also be defined. We refer to [404], Sect. 1.7 or
[1], Chap.VII, p. 215.

IfY is a real, separableBanach space and a < b, we define the spaceW 1,p(a, b; Y )

(p ∈ [1,∞]) to be the set of all functions f ∈ L p(a, b; Y )whose weak derivative f ′
(see [554] Chap. III, Sect. 1) exists and belongs to L p(a, b; Y ). It is a Banach space
equipped with the norm | f |W 1,p(a,b;Y ) := | f |L p(a,b;Y ) + | f ′|L p(a,b;Y ).

Let X be a subset of a Banach space Z , Y be a Banach space and I be a subset of
R

n (usually an interval in R). We define the space

UCx
b (I × X, Y ) :=

{
ϕ ∈ Cb(I × X, Y ) :

ϕ(t, x) is uniformly continuous in x, uniformly with respect to t ∈ I
}
. (A.5)

It is equipped with the ‖ · ‖0 norm.

1That is, the set of all equivalence classes of such functions with respect to the relation of a.e.
equality.
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If Y = R, we write UCx
b (I × X) instead of UCx

b (I × X,R).

Remark A.2 We recall some useful properties of UCx
b (I × X, Y ) (see [108] for

more).

(1) If I⊂R
n is compact and u ∈ UCx

b (I × X, Y ), then for every compact set K⊂X ,
the restriction u|I×K of u to I × K belongs to UCb(I × K , Y ). Thus, for every
compact set K⊂X ,

u|I×K ∈ Cb(I,Cb(K , Y )). (A.6)

In particular, u(·, x) is uniformly continuous on I , uniformly with respect to
x ∈ K , namely, for every t, s ∈ I , we have

sup
x∈K

|u(t, x) − u(s, x)|Y ≤ ρK (|t − s|), (A.7)

where ρK is a modulus of continuity (see Appendix D.1) depending on the
compact set K .

(2) UCb(I × X, Y )⊂UCx
b (I × X, Y )⊂Cb(I × X, Y ). In particular, as the uniform

continuity is stable with respect to the convergence in the norm ‖ · ‖0, the space
UCx

b (I × X, Y ) is a closed subspace of Cb(I × X, Y ). On the other hand, if X
is the whole space, ϕ ∈ UCb(X) and {et A, t ≥ 0} is a strongly continuous (not
uniformly continuous) semigroup on X , then

w(t, x) = ϕ(et Ax)

is a natural example of a function belonging toUCx
b (I×X, Y )but not toUCb(I×

X, Y ).
(3) In view of the above, given u ∈ UCx

b (I × X, Y ), the function I → UCb(X, Y ),
t → u(t, ·) may not be continuous and even not be measurable (see on this
Lemma 1.21 and the discussion preceding it).

�
For a given m > 0 we define Bm(I × X, Y ) (respectively, Cm(I × X, Y ) and

UCm(I × X, Y )) to be the set of all functions φ ∈ B(I × X, Y ) such that the function

ψ(t, x) := φ(t, x)

1 + |x |m (A.8)

belongs to Bb(I × X, Y ) (respectively, Cb(I × X, Y ) and UCb(I × X, Y )). These
spaces of functions that have at most polynomial growth of order m in the variable
x are Banach spaces when they are endowed with the norm

N (φ) := sup
(t,x)∈I×X

|φ(t, x)|
1 + |x |m .

We will write ‖φ‖Bm (I×X,Y ), ‖φ‖Cm (I×X,Y ), ‖φ‖UCm (I×X,Y ) to denote these norms.
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Following [102], we introduce the space

UCx
m(I × X, Y ) :=

{
ϕ ∈ C(I × X, Y ) :

ψ(t, x) := φ(t, x)

1 + |x |m ∈ UCx
b (I × X, Y )

}
.

(A.9)

It is equipped with the ‖ · ‖Cm (I×X,Y ) norm. The space has properties similar to those
described in Remark A.2 for UCx

b (I × X, Y ).

Let X be an open subset of a Banach space Z , and Y be a Banach space. Let I ⊂ R

be open. Given a function u ∈ C(I × X, Y ) which is l times Fréchet differentiable
in t and k times Fréchet differentiable in x , we denote its l-th partial derivative in t
by Dl

t u, and its k-th partial derivative in x by Dk
xu. For the low order derivatives we

use the symbols ut , Du, D2u, and so on.
For l, k = 0, 1, . . . , we denote byCl,k(I ×X, Y ) (respectively, byCl,k

b (I ×X, Y ),
UCl,k(I × X, Y ), UCl,k

b (I × X, Y )) the space of all functions ϕ : I × X → Y that
are Fréchet differentiable l times in t and k times in x and which are continuous
(respectively, continuous and bounded, uniformly continuous, uniformly continuous
and bounded), together with their Fréchet derivatives up to these orders. If I is an
interval which is not open thenCl,k(I×X, Y ) is the space of functions from I×X →
Y whose restrictions to I o×X (where I o is the interior of I ) belong toCl,k(I o×X, Y )

and such that the functions and all their derivatives extend continuously to I × X .
The spaces Cl,k

b (I × X, Y ), UCl,k(I × X, Y ), and UCl,k
b (I × X, Y ), for I not open,

are defined similarly.
Cl,k
b (I × X, Y ) and UCl,k

b (I × X, Y ) are Banach spaces endowed with the norm

‖ϕ‖Cl,k
b (I×X,Y ) = sup

x∈X
‖ϕ(·, x)‖l + sup

t∈I
‖ϕ(t, ·)‖k .

Since the notation C0,1
b (X, Y ) is also used to denote the space of bounded Lipschitz

continuous functions, to avoid confusion we emphasize that in this book, whenever
the first set is equal to the product of a time interval and a subset of a Banach space,
C0,1
b (I × X, Y ) will always be the space defined above and not the space of bounded

Lipschitz functions on I × X .
For l, k = 0, 1, . . . , and m > 0 we denote by Cl,k

m (I × X, Y ) (respectively,
UCl,k

m (I × X, Y )) the set of all functions φ ∈ Cm(I × X, Y ) ∩ Cl,k(I × X, Y )

(respectively, φ ∈ UCm(I ×X, Y )∩UCl,k(I ×X, Y )) such that, for all i = 1, . . . , l,
j = 1, . . . k,

sup
(t,x)∈I×X

‖Di
tφ(t, x)‖Li (R,Y )

1 + |x |m < +∞, sup
(t,x)∈I×X

‖D j
xφ(t, x)‖L j (Z ,Y )

1 + |x |m < +∞.

(A.10)
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We set

‖φ‖Cl,k
m (I×X,Y ) = ‖φ‖Cm (I×X,Y )

+
l∑

i=1

sup
(t,x)∈I×X

‖Di
tφ(x)‖Li (R,Y )

1 + |x |m +
k∑

i=1

sup
(t,x)∈I×X

‖D j
xφ(x)‖L j (Z ,Y )

1 + |x |m .

(A.11)

Equipped with this norm Cl,k
m (I × X, Y ) and UCl,k

m (I × X, Y ) are both Banach
spaces. If φ ∈ UCl,k

m (I × X, Y ) we will denote its norm by ‖φ‖UCl,k
m (I×X,Y ).

IfY = Rwewill use the notationCl,k(I×X),Cl,k
b (I×X),Cl,k

m (I×X),UCl,k(I×
X), UCl,k

b (I × X) and UCl,k
m (I × X) for the above spaces.

Let I be an interval in R, X be a real separable Hilbert space and Y be a real
Banach space. Similarly to the time-independent case we set, for k ∈ N ∪ {∞},

Ck
0 (I × R

n, Y ) := {
f ∈ Ck(I × R

n, Y ) : f has compact support in I × R
n
}
.

If k ∈ N ∪ {∞}, we denote by FCk
0(I × X, Y ) the space

FCk
0 (I × X, Y ) :=

{
ϕ : I × X → Y : ∃n ∈ N, x1, ..xn ∈ X, f ∈ Ck

0 (I × R
n, Y ),

such that ϕ(t, x) = f (t, 〈x, x1〉 , ..., 〈x, xn〉), ∀(t, x) ∈ I × X} . (A.12)

Similarly, for k ∈ N ∪ {∞} and a linear, densely defined closed operator B :
D(B)⊂X → X , we define

FCk,B
0 (I × X) =

{
ϕ : I × X → R : ∃n ∈ N, x1, ..xn ∈ D(B), f ∈ Ck

0 (I × R
n,R)

such that ϕ(t, x) = f (t, 〈x, x1〉, ..., 〈x, xn〉), ∀(t, x) ∈ I × X} . (A.13)



Appendix B
Linear Operators and C0-Semigroups

All spaces considered in this book are real. However, the spectral theory has to
be done in complex spaces and thus some results presented here require the use
of complex spaces. To accommodate real Hilbert and Banach spaces we thus use
complexification of spaces and operators, which for Hilbert spaces can be done in a
natural way. If H is a real Hilbert space, its complexification Hc is defined by

Hc := {x̃ = x + iy : x, y ∈ H}
with standard operations

(x+iy)+(z+iw) := (x+z)+i(y+w), (a+ib)(x+iy) = (ax−by)+i(bx+ay), a, b ∈ R,

and with the inner product

〈(x + iy), (z + iw)〉c := 〈x, z〉H + 〈y, w〉H + i(〈y, z〉H − 〈x, w〉H ).

Thus |x + iy|Hc = |(x, y)|H×H . A real Banach space E is complexified in the same
way, however, except for special cases, the product norm is no longer a norm because
the homogeneity condition fails. To define a norm in Ec we first compute

eit (x + iy) = (x cos t − y sin t) + i(x sin t + y cos t)

and then define

|x + iy|Ec := sup
0≤t≤2π

|(x cos t − y sin t, x sin t + y cos t)|E×E .

We refer the reader to [454, 527] for more on complexification.
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A linear operator T : D(T ) ⊂ E → E is complexified by setting

D(Tc) := {x + iy : x, y ∈ D(T )}, Tc(x + iy) := T x + iT y.

It is easy to see that T ∈ L(E) if and only if Tc ∈ L(Ec), and moreover ‖T ‖ = ‖Tc‖.
Also T is invertible if and only if Tc is invertible. It is a standard convention, which
will not be repeated, that the spectrum and the resolvent set of T are understood to
be the spectrum and the resolvent set of Tc. This is how the statements here should
be understood in the context of real Hilbert and Banach spaces.

Throughout Appendix B, E will be a Banach space endowed with the norm | · |E
and H will be a Hilbert space endowed with the inner product 〈·, ·〉H and the norm
| · |H .

B.1 Linear Operators

For an operator T we denote by D(T ) its domain, by R(T ) its range and by ker T
its kernel (or null space).

Definition B.1 (Pseudoinverse) If E is a uniformly convex Banach space, Z is a
Banach space, and T ∈ L(E, Z), the pseudoinverse T−1 of T is the linear operator
defined on T (E)⊂Z that associates to every element z in T (E) the element in T−1(z)
with minimum norm (for the existence of such an element, see [202], II.4.29, p. 74).
Notice that if E is a Hilbert space then we have

R(T−1) = (ker T )⊥.

The following result is taken from [180], Proposition B.1, p. 429, where the reader
can find its proof.

Proposition B.2 Let E, E1, E2 be three Hilbert spaces, let A1 : E1 → E, A2 :
E2 → E be linear bounded operators, let A∗

1 : E → E1 and A∗
2 : E → E2 be

their adjoints and finally let A−1
1 : R(A1)⊂E → E1, A

−1
2 : R(A2)⊂E → E2 be the

respective pseudoinverses. Then we have:

(i) R(A1)⊂R(A2) if and only if there exists a constant k > 0 such that

|A∗
1x |E1 ≤ k|A∗

2x |E2 ∀x ∈ E .

(ii) If
|A∗

1x |E1 = |A∗
2x |E2 ∀x ∈ E,

then R(A1)=R(A2) and

|A−1
1 x |E1 = |A−1

2 x |E2 ∀x ∈ R(A1).
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Definition B.3 (Closed operator, Graph norm) Let E and Z be two Banach spaces.
A linear operator A : D(A) ⊂ E → Z is said to be closed if its graph

{(x, y) ∈ D(A) × Z : y = Ax}

is closed in E × Z . Given a closed operator A : D(A) ⊂ E → Z the graph norm
on D(A) is defined as follows:

|x |D(A) := (|x |2E + |Ax |2Z
) 1

2 for all , x ∈ D(A).

Sometimes an equivalent norm |x |D(A) := |x |E + |Ax |Z is also used. If E and Z
are Hilbert spaces then D(A) can be endowed with the inner product 〈x, y〉D(A) :=
〈x, y〉E + 〈Ax, Ay〉Z with respect to which D(A) is a Hilbert space.

Proposition B.4 Let E and Z be two Banach spaces. If A : D(A) ⊂ E → Z is a
linear, closed operator, then D(A)with the graph norm is a Banach space. Moreover,
if D(A) is endowed with the graph norm, A : D(A) → Z is continuous.

Definition B.5 (Resolvent) Consider a linear, closed operator A : D(A) ⊂ E → E
and define, for λ ∈ C, the operator (λI − A) : D(A) → E . The resolvent set of A
is defined as follows:

�(A) := {
λ ∈ C : (λI − A) is invertible and (λI − A)−1 ∈ L(E)

}
.

σ(A) := C \ �(A)

is called the spectrum of A. For each λ ∈ �(A) the operator (λI − A)−1 is called
the resolvent operator of A. The family of resolvent operators satisfies the so-called
resolvent identity: for all λ1,λ2 ∈ �(A) we have

(λ1 I − A)−1 − (λ2 I − A)−1 = (λ2 − λ1)(λ1 I − A)−1(λ2 I − A)−1. (B.1)

Lemma B.6 Let A : D(A) ⊂ E → E be a linear, closed operator. Then the
resolvent set �(A) is open.

Proof See [576], Theorem 1 p. 201. �

Definition B.7 (Closable operator, closure of an operator) Let E and Z be two
Banach spaces. A linear operator A : D(A) ⊂ E → Z is said to be closable if the
closure of its graph in E× Z is the graph of some (closed) operator. Such an operator
is called the closure of A and it is denoted by A.

Remark B.8 It is easy to see that A : D(A) ⊂ E → Z is closable if and only if, for
any sequence xn in D(A) and any y ∈ Z such that
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xn
n→∞−−−→

E
0 and Axn

n→∞−−−→
Z

y,

we have y = 0. �
Definition B.9 (Core of a closed operator) Let E and Z be two Banach spaces.
Consider a closed linear operator A : D(A) ⊂ E → Z . A linear subspace Y of
D(A) is said to be a core for A if it is dense in D(A) (endowed with its graph norm).
In other words, Y is a core for A if and only if Y⊂D(A) and, for any x ∈ D(A),
there exists a sequence xn of elements of Y such that xn → x and Axn → Ax .

B.2 Dissipative Operators

Definition B.10 (Duality mapping) Let E be a Banach space and E∗ be its dual.
The function J : E → 2E

∗
, defined by

J (x) :=
{
x∗ ∈ E : 〈

x∗, x
〉
〈E∗,E〉 = |x |2E = |x∗|2E∗

}
, for x ∈ E,

is called the duality mapping.

The duality mapping is in general multivalued and, for all x ∈ E , J (x) 	= ∅. If the
dual E∗ is strictly convex, and in particular if E is a Hilbert space,J is single-valued
(see Sect. 1.1 in [26] and in particular Theorem 1.2).

Lemma B.11 (Kato’s Lemma) Let E be a Banach space and x, y ∈ E. There exists
a w ∈ J (x) such that 〈w, y〉〈E∗,E〉 ≥ 0 if and only if

|x |E ≤ |x + λy|E
for any λ > 0.

Proof See [26], Lemma 3.1, p. 98. �
In the remainder of this section A will denote a possibly nonlinear operator.

Definition B.12 (Dissipative operators) Let E be a Banach space. An operator A :
D(A) ⊂ E → E is called dissipative if

〈w, A(x) − A(y)〉E∗,E ≤ 0, for all x, y ∈ D(A) and somew ∈ J (x − y). (B.2)

A dissipative operator A is said to be m-dissipative if R(I − A) = E . A dissipa-
tive operator A is said to be maximal dissipative if there does not exist any proper
dissipative extension of A.

In the specific case of a linear operator A in a Hilbert space H the expression
(B.2) can be rephrased as 〈Ax, x〉H ≤ 0 for all x ∈ D(A). If the Hilbert space is
complex one considers its real part: Re 〈Ax, x〉H ≤ 0.
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Definition B.13 (Accretive operators) Let E be a Banach space. An operator A :
D(A) ⊂ E → E is called accretive (respectively m-accretive, maximal accretive)
if −A is dissipative (respectively m-dissipative, maximal dissipative).

Remark B.14 It easily follows from the definition that any m-dissipative operator is
maximal dissipative. In case of (possibly nonlinear) operators in Hilbert spaces the
two properties are equivalent, see Remark 3.1, p. 101 of [26]. �

Proposition B.15 An operator A : D(A) ⊂ E → E is dissipative if and only if, for
any λ > 0, for any x, y ∈ D(A),

|x − y|E ≤ |x − y − λ(A(x) − A(y))|E ,

or equivalently, if there exists a λ > 0 with such a property.

Proof See Proposition 3.1, p. 98, of [26]. �

Remark B.16 Proposition B.15 can be rewritten in an obvious way in the following
form: A : D(A) ⊂ E → E is dissipative if and only if for any λ > 0, for any
x, y ∈ D(A),

|x − y|E ≤ 1

λ
|(λx − A(x)) − (λy − A(y))|E ,

or equivalently, if there exists a λ > 0 with such a property. �

Proposition B.17 A dissipative operator A : D(A) ⊂ E → E is m-dissipative if
and only if R(I − λA) = E for all (equivalently, for some) λ > 0.

Proof See Proposition 3.3, p. 99 of [26]. �

Proposition B.18 Any linear maximal dissipative operator A in a Hilbert space H
is closed if and only if it has a dense domain.

Proof See [490], Theorem 1.1.1, pp. 200–201 and Lemma 1.1.3, p. 201. �

Proposition B.19 Let E be a Banach space. Let λ0 > 0 and

F : [λ0,+∞) → C0,1(E, E)

be a function such that, for any λ ≥ λ0, F(λ) is injective and, for any λ,μ ≥ λ0,

F(λ) = F(μ) ◦ (IE + (μ − λ)F(λ)) . (B.3)

Then there exists a unique operator A : D(A)⊂E → E such that, for any λ ≥ λ0,

F(λ) = (λI − A)−1.
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If, moreover,

|F(λ)x − F(λ)y| ≤ 1

λ
|x − y|, for allλ ≥ λ0, x, y ∈ E, (B.4)

then A is m-dissipative. Hence (λ − A)−1 is well defined for all λ ∈ (0,+∞) and
satisfies the properties (B.3) and (B.4) for any λ, μ > 0.

Proof Proposition I.3.3, p. 13 of [146] ensures the existence of the operator A. The
second part about the m-dissipativity of A follows from Proposition II.9.6 of [146].
The third part about the extension follows from Propositions I.3.2 and II.9.1 of
[146]. �

We refer to Chap.3 of [26], Appendix D of [180], Chap.5 of [177], Chap.3 of
[183], [217], [479], [587], [588] for more about dissipative and accretive operators.

B.3 Trace Class and Hilbert–Schmidt Operators

Throughout this section H,U, V will denote real, separable Hilbert spaces, 〈·, ·〉H ,

〈·, ·〉U , 〈·, ·〉V , | · |H , | · |U , | · |V will be, respectively, the inner products in H,U and
V and the related norms.

Definition B.20 A linear operator T ∈ L(U, H) is called nuclear or trace class if
T can be represented in the form

T (z) =
+∞∑

k=1

bk 〈z, ak〉U for any z ∈ U,

where ak and bk are two sequences of elements, respectively, in U and H such that∑+∞
k=1 |ak |U |bk |H < +∞. We denote the set of all nuclear operators fromU to H by

L1(U, H). We write L1(H) instead of L1(H, H).

Proposition B.21 L1(U, H) is a separable Banach space with respect to the norm

‖T ‖L1(U,H) := inf

{ +∞∑

k=1

|ak |U |bk |H : {ak}⊂U, {bk}⊂H,

and T (z) =
+∞∑

k=1

bk 〈z, ak〉U ,∀z ∈ U

}
.

(B.5)

Proof See [523] Proposition 2.8, p. 21 and the subsequent observations. �
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Proposition B.22 Given T ∈ L1(H) and an orthonormal basis {ek} of H, the series

∑

k∈N
〈T ek, ek〉H

converges absolutely and its sum does not depend on the choice of the basis {ek}.
Proof See [487], pp. 357–358 after the proof of Proposition A.4. �
Definition B.23 Given T ∈ L1(H) and any orthonormal basis {ek} of H ,

Tr(T ) :=
∑

k∈N
〈T ek, ek〉H

is called the trace of T .

We have |Tr(T )| ≤ ‖T ‖L1(H) (see e.g. [487], p. 357).

Definition B.24 Let {ek}k∈N be an orthonormal basis of U . The space of Hilbert–
Schmidt operators L2(U, H) from U to H is defined by

L2(U, H) :=
{

T ∈ L(U, H) :
∑

k∈N
|T ek |2H < +∞

}

. (B.6)

We write L2(H) for L2(H, H).

Proposition B.25 The space of Hilbert–Schmidt operators L2(U, H) does not
depend on the choice of orthonormal basis {ek}k∈N. It is a separable Hilbert space
if endowed with the inner product

〈S, T 〉2 :=
∑

k∈N
〈Sek, T ek〉H , S, T ∈ L2(U, H).

The inner product is independent of the choice of basis.

Proof See Appendix C of [180] after Proposition C.3. �
The following proposition follows easily from the definition of the space of Hilbert–
Schmidt operators and elementary calculations.

Proposition B.26 (i) T ∈ L2(U, H) if and only if T ∗ ∈ L2(H,U ). Moreover,
‖T ‖L2(U,H) = ‖T ∗‖L2(H,U ).

(ii) If T ∈ L2(U, H) and S ∈ L(H, V ) then ST ∈ L2(U, V ) and

‖ST ‖L2(U,V ) ≤ ‖S‖L(H,V )‖T ‖L2(U,H).

If T ∈ L(U, H) and S ∈ L2(H, V ) then ST ∈ L2(U, V ) and

‖ST ‖L2(U,V ) ≤ ‖S‖L2(H,V )‖T ‖L(U,H).
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Definition B.27 Let U⊂H . The embedding U⊂H is said to be Hilbert–Schmidt if
for some orthonormal basis {ek}k∈N of U , we have

∑

k∈N
|ek |2H < +∞.

Thanks to Proposition B.25 this definition does not depend on the choice of basis
{ek}.
Proposition B.28 The following properties hold:

(i) If T ∈ L1(U, H) and S ∈ L(H, V ) then ST is in L1(U, V ) and

‖ST ‖L1(U,V ) ≤ ‖S‖L(H,V )‖T ‖L1(U,H).

If T ∈ L(U, H) and S ∈ L1(H, V ) then ST is in L1(U, V ) and

‖ST ‖L1(U,V ) ≤ ‖S‖L1(H,V )‖T ‖L(U,H).

(ii) If T ∈ L1(U, H) and S ∈ L(H,U ) (respectively, T ∈ L(U, H) and S ∈
L1(H,U )) then ST is in L1(U ), T S is in L1(H) and

Tr(ST ) = Tr(T S).

(iii) If T ∈ L2(U, H), S ∈ L2(H, V ) then ST ∈ L1(U, V ) and

‖ST ‖L1(U,V ) ≤ ‖S‖L2(H,V )‖T ‖L2(U,H).

Moreover, if U = V , then Tr(ST ) = Tr(T S).
(iv) L1(U, H)⊂L2(U, H).
(v) If T ∈ L2(U, H) then T is compact.

Proof Most claims are proved inAppendixA.2 of [487].More precisely: (i) is proved
in Propositions 4, p. 356, (ii) is proved in Proposition A.5-(i), p. 358, while (iv) and
(v) are proved in Proposition A.6, p. 359. The proof of (iii) also repeats the proof of
Proposition A.5-(ii), p. 358, however we include it here for completeness. Consider
an orthonormal basis { fk}k∈N of H . For every z ∈ U we have

T z =
∑

k∈N
〈T z, fk〉H fk =

∑

k∈N

〈
z, T ∗ fk

〉
U

fk

so
ST z =

∑

k∈N

〈
z, T ∗ fk

〉
U
S fk (B.7)

and then, using the definition of L1-norm given in (B.5) and the Cauchy–Schwarz
inequality, we get
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‖ST ‖L1(U,V ) ≤
∑

k∈N
|T ∗ fk |U |S fk |V ≤

(
∑

k∈N
|T ∗ fk |2U

)1/2 (∑

k∈N
|S fk |2V

)1/2

= ‖T ∗‖L2(H,U )‖S‖L2(H,V ) = ‖T ‖L2(U,H)‖S‖L2(H,V ),

where in the last step we used Proposition B.26-(i). It also follows from (B.7) and
the Parseval identity that, if U = V ,

Tr(ST ) =
∑

k∈N

〈
S fk, T

∗ fk
〉
U =

∑

k∈N
〈T S fk, fk〉H = Tr(T S).

�

Observe that in general, if T, S ∈ L(H) and T S ∈ L1(H), this does not nec-
essarily imply ST ∈ L1(H). Indeed, consider two operators defined on H × H
by

T =
(

I I
−I −I

)
, S =

(−I I
I −I

)
,

where I stands for the identity operator. Then

T S = 0, ST = 2

(−I −I
I I

)
,

however ST is not trace class if H is infinite-dimensional. Another example is given
in [179], p. 6.

Notation B.29 We set

L+(H) := {T ∈ S(H) : 〈T x, x〉H ≥ 0 ∀x ∈ H}

and
L+
1 (H) := L1(H) ∩ L+(H).

�

The operators in L+(H) are called positive operators on H . A positive operator T
on H is called strictly positive if it satisfies 〈T x, x〉H > 0 for all x ∈ H .

Proposition B.30 An operator T ∈ L+(H) is nuclear if and only if

∑

k∈N
〈T ek, ek〉H < +∞

for an orthonormal basis {en} on H. Moreover, in this case Tr(T ) = ‖T ‖L1(H).

Proof See [180], Proposition C.3. �



802 Appendix B: Linear Operators and C0-Semigroups

B.4 C0-Semigroups and Related Results

B.4.1 Basic Definitions

Definition B.31 (C0-semigroup) A map S : [0,+∞) → L(E) is called a C0-
semigroup (or a strongly continuous semigroup on E) if the following three condi-
tions are satisfied:

(i) S(0) = I .
(ii) For all s, t ∈ [0,+∞), S(t)S(s) = S(t + s).
(iii) For all x ∈ E , the map t→S(t)x is continuous from [0,+∞) to E .2

For C0-semigroups we will use the notation {S(t), t ≥ 0} or simply S(t).

Definition B.32 (Generator of a C0-semigroup) Let S(t) be a C0-semigroup on E .
The linear operator A : D(A) ⊂ E → E defined as

⎧
⎨

⎩

D(A) :=
{
x ∈ E : S(t)x−x

t has a limit in E when t → 0+
}

Ax := limt→0+ S(t)x−x
t

is called the infinitesimal generator of S(t).

Proposition B.33 Let S(t) be a C0-semigroup on E. Then there exist M ≥ 1 and
ω ∈ R such that

‖S(t)‖ ≤ Meωt , for t ≥ 0. (B.8)

Proof See for instance [479], Theorem 2.2, Chap. 1, p. 4. �
The infimum of all ω such that (B.8) is satisfied for some Mω is called the type

of the C0-semigroup S(t) and is denoted by ω0, see [47], Part II, Sect. 2.2. We have
ω0 ∈ [−∞,+∞). If ω0 < 0 we say that the C0-semigroup S(t) is of negative type
and if ω0 > 0 we say that the C0-semigroup S(t) is of positive type.

Definition B.34 (Contraction semigroup) A C0-semigroup S(t) on E is called a
C0-semigroup of contractions if (B.8) holds with M = 1,ω = 0.

Definition B.35 (Pseudo-contraction semigroup) A C0-semigroup S(t) on E is
called a C0-semigroup of pseudo-contractions if (B.8) holds with M = 1 for some
ω ∈ R.

Definition B.36 (Uniformly bounded semigroup) A C0-semigroup S(t) on E is
called uniformly bounded if (B.8) holds with ω = 0 for some M ≥ 1.

We remark that the complexification Sc(t) of a C0-semigroup on E is a C0-
semigroup on Ec whose generator is the complexification Ac of the generator A of
S(t).

2Equivalently one can ask here that limt↘0 S(t)x = x for all x ∈ E , see e.g. [479] Corollary 2.3,
p. 4.
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B.4.2 The Hille–Yosida Theorem and Yosida Approximations

Theorem B.37 (Hille–Yosida) A linear operator A : D(A) ⊂ E → E is the
infinitesimal generator of a C0-semigroup S(t) on E satisfying (B.8) if and only if

(1) A is closed and D(A) is dense in E,
(2) (λI − A) is invertible and (λI − A)−1 ∈ L(E) for every λ > ω, and

‖((λI − A)−1)k‖ ≤ M (λ − ω)−k for all k ∈ N and λ > ω.

Proof See [296], Theorem 2.13, p. 20 or [479], Theorem 5.3. �

In fact, see [479], Remark 5.4, we have the following.

Remark B.38 For complex spaces condition (2) in Theorem B.37 can be replaced
by {λ ∈ C : Reλ > ω} ⊂ �(A) and, for all k ∈ N and λ ∈ C, Reλ > ω,

‖((λI − A)−1)k‖ ≤ M ( Reλ − ω)−k .

�

Remark B.39 Considering, if needed, S̃(t) := e−(ω+ε)t S(t), ε > 0, we can always
restrict to uniformly bounded C0-semigroups having invertible generators. In partic-
ular, condition (2) of Theorem B.37 can be assumed to hold with ω = 0. �

Definition B.40 (Yosida approximations) Let A : D(A) ⊂ E → E be the infini-
tesimal generator of a C0-semigroup S(t) on E satisfying (B.8). For n ∈ N greater
than ω, define

Jn = n(nI − A)−1. (B.9)

The Yosida approximation of A is defined as follows:

An := n2(nI − A)−1 − nI = AJn ∈ L(E). (B.10)

Lemma B.41 Let A and Jn be as in Definition B.40. Then

‖Jn‖ ≤ Mn

n − ω
for all n > ω. (B.11)

Proof This follows directly from condition (2) (k = 1) of Theorem B.37. �

Proposition B.42 Let A : D(A) ⊂ E → E be the infinitesimal generator of a
C0-semigroup on E. Let Jn and An be as in Definition B.40. Then

Jnx
n→∞−−−→

E
x for all x ∈ E (B.12)

and
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Anx
n→∞−−−→

E
Ax for all x ∈ D(A). (B.13)

Proof See [180], Proposition A.4, p. 409. �

Proposition B.43 Let A : D(A) ⊂ E → E be the infinitesimal generator of a
C0-semigroup S(t) on E satisfying (B.8). Let An be the Yosida approximation of A.
Define, for x ∈ E and t ≥ 0,

et An x :=
∑

j∈N

t j A j
nx

j ! .

Then,
‖et An‖ ≤ Met

nω
n−ω (B.14)

and
S(t)x = lim

n→∞ et An x for every x ∈ E (B.15)

uniformly on bounded subsets of [0,+∞).

Proof See [479], Theorem 5.5, p. 21 and [47], Step 2 of the proof of Theorem 2.5,
pp. 102–103. �

Expression (B.15) shows how to explicitly construct the semigroup generated by
a linear operator A.

Notation B.44 The semigroup generated by A will be denoted by et A. �

Theorem B.45 (Lumer–Phillips) Let H be a separable Hilbert space. Given a
linear operator A : D(A) ⊂ H → H, the following facts are equivalent:

(1) A is the generator of a C0-semigroup of contractions on H.
(2) D(A) = H and A is maximal dissipative.
(3) D(A) = H and A∗ is maximal dissipative.
(4) D(A) = H, A is dissipative and R(λ0 I − A) = H for some λ0 > 0.
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Proof See [490], Theorem 1.1.3, p. 203, Theorem 1.4.2, p. 214, and [479], Theorem
4.3, p. 14. �

The following result is a corollary of the Trotter–Kato Theorem.

Proposition B.46 (Trotter–Kato) Let S(t), Sn(t), n ∈ N, be strongly continuous
semigroups on E with generators A and An, respectively. Assume that D(A) ⊂
D(An) for every n ∈ N and that

‖S(t)‖, ‖Sn(t)‖ ≤ Meωt , ∀t ≥ 0, n ∈ N

for some constants M ≥ 1 and ω ∈ R. If Anx → Ax for every x ∈ D(A) then

Sn(t)x → S(t)x, ∀t ≥ 0, x ∈ X,

and the limit is uniform in t for t in bounded intervals.

Proof See [479], Theorem 4.5, p. 88, or [217], Theorem 4.8, p. 209. �

Proposition B.47 Let S(t) be a strongly continuous semigroup on E with the gen-
erator A. Let Y⊂D(A) be a subspace of D(A). Assume that

(i) Y is dense on E,
(ii) S(t)(Y )⊂Y for all t ≥ 0.

Then Y is a core for A.

Proof See [153], Proposition A.19, p. 204. �

B.4.3 Analytic Semigroups and Fractional Powers
of Generators

Throughout this section H is a separable Hilbert space. The material about analytic
semigroups requires that H be complex. The statements for real H should be under-
stood with the convention that H, A, S(t) are their complexifications Hc, Ac, Sc(t).

Definition B.48 (Differentiable semigroup) A C0-semigroup S(t) on H is called
differentiable if for every x ∈ H , t → S(t)x is differentiable for t > 0.

Definition B.49 (Analytic semigroup) A C0-semigroup S(t) on H is called analytic
if it has an extension G(z) to a sector of the form � := {z ∈ C : a < arg(z) < b}
for some a < 0 < b with the following properties:

(i) z→G(z) is analytic on �.
(ii) G(0) = I and lim z∈�

z→0
G(z)x = x for every x ∈ H .

(iii) G(z1 + z2) = G(z1)G(z2) for z1, z2 ∈ �.
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Theorem B.50 Let S(t) be a uniformly bounded C0-semigroup on H and let A be
the generator of S(t). Assume that 0 ∈ �(A). The following are equivalent:

(1) S(t) can be extended to an analytic semigroup in a sector �δ = {z ∈ C :
| arg(z)| < δ}, and ‖S(z)‖ is uniformly bounded in every subsector �δ′ = {z ∈
C : | arg(z)| ≤ δ′}, δ′ < δ.

(2) There exists a δ ∈ (
0, π

2

)
and B > 0 such that

� :=
{
λ : | arg(λ)| <

π

2
+ δ

}
∪ {0} ⊂ �(A)

and, for every λ ∈ � \ {0},

‖(λI − A)−1‖ ≤ B

|λ| .

(3) S(t) is differentiable and there exists a constant C > 0 such that

‖AS(t)‖ ≤ C

t
for t > 0.

Proof See [479] Theorem 5.2, p. 61. �

Theorem B.51 Consider a linear operator A : D(A) ⊂ H → H that generates a
uniformly bounded analytic C0-semigroup S(t), and 0 ∈ �(A). Define, for α < 0,

(−A)α := 1

�(α)

∫ ∞

0
t−α−1S(t)dt, (B.16)

where �(·) is the Gamma function, and set (−A)0 := I . Then:

(i) The integral in (B.16) converges in norm and (−A)α is a well-defined operator
in L(H).

(ii) (−A)α(−A)β = (−A)α+β for α,β ≤ 0.
(iii) (−A)α is injective.

Proof See [479] pp. 70–72. �

The operator (−A)α can also be defined by

(−A)α = − 1

2πi

∫

C
λα(λI + A)−1dλ, (B.17)

where the pathC is in �(−A) and goes from∞e−iθ to∞eiθ for θ ∈ (
π
2 ,π

)
, avoiding

the non-positive real axis. Using (B.17) one can define the fractional powers for more
general operators, as is done in classical references such as [547] or [479]. We are
only interested in the analytic case in this book.
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Definition B.52 Let A be as in Theorem B.51. The fractional powers of −A are
defined as follows:

(i) If α < 0, D((−A)α) = H and (−A)α is defined by (B.16).
(ii) If α = 0, D((−A)0) = H and (−A)0 := I .
(iii) If α > 0, D((−A)α) = R((−A)−α) and (−A)α := (

(−A)−α
)−1

.

Theorem B.53 Let A be as in Theorem B.51. The fractional powers of −A satisfy
the following properties:

(i) For all positive α, D((−A)α) is dense in H and (−A)α is a closed operator.
(ii) If α ≤ β then D((−A)β) ⊂ D((−A)α).
(iii) For all real numbers α,β, (−A)α(−A)β = (−A)α+β on D((−A)β∨(α+β)).

Proof See [479], Theorem 6.8, p. 72. �

Theorem B.54 Let A be as in Theorem B.51. The following hold:

(i) et A(H) ⊂ D((−A)α) for every t > 0 and α ≥ 0.
(ii) et A(−A)αx = (−A)αet Ax for every x ∈ D((−A)α) and α ∈ R.
(iii) For every t > 0 and α > 0 the operator (−A)αet A is bounded and there exist

a > 0 and Mα > 0 such that

‖(−A)αet A‖ ≤ Mαt
−αe−at . (B.18)

(iv) If α ∈ (0, 1] then for every x ∈ D((−A)α)

|et Ax − x |H ≤ Cαt
α|(−A)αx |H

for some constant Cα independent of x.

Proof See [479], Theorem 6.13, p. 74. �

B.5 π-Convergence,K-Convergence, π- andK-Continuous
Semigroups

In this section, where H is always a real separable Hilbert space, we introduce the
notions of π-convergence, K-convergence, π-continuous and K-continuous semi-
groups and we recall their basic properties as well as other related notions. For
further results and details we refer the reader to [179, 492, 493, 496], Sect. 6.3, for
π-convergence and π-continuous semigroups; to [101, 102, 108] and the appendix
of [105], for K-convergence and K-continuous (also called weakly continuous, see
e.g. [101]) semigroups. We also recall the paper [170] that deals with semigroups
which are not strongly continuous. Finally, we recall the recent paper [243] which
develops the theory of equicontinuous semigroups in locally convex spaces which
includes, as special cases, both π-continuous and K-continuous semigroups.
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Most of the literature on the present subject deals with the spaces Cb(H) and
UCb(H), except for [102, 300] which deal with UCm(H) and [300] which deals
with Cm(H) in the case of K-continuous semigroups, and the final part of [492]
(pp. 293–294, see also [493], Sect. 6.5) which shows how to extend the results to the
space Bb(H), in the case of π-continuous semigroups. Here we present the results
for π-continuous and K-continuous semigroups mainly in the spaces Cm(H) and
UCm(H) because these are the spaces most commonly used in this book. In some
cases we will also deal with Bm(H).

B.5.1 π-Convergence andK-Convergence

The definition of π-convergence can be found, for example, in [219], p. 111, where it
is called bp-convergence (bounded-pointwise), and in [492]; the former in spaces of
continuous and bounded functions, the latter in spaces of uniformly continuous and
bounded functions. For K-convergence in UCb(H) the reader is referred to [101,
108] and, for the Cm(H) (respectively,UCm(H)) framework, to [300] (respectively,
[102]3).

We state all the definitions in this section considering Bm(H) (m ≥ 0) as the
environment space. The same definitions hold if the basic space Bm(H) is replaced
by Cm(H) or UCm(H) (m ≥ 0).

Definition B.55 (π-convergence) Let m ≥ 0. A sequence ( fn)⊂Bm(H) is said to
be π-convergent to f ∈ Bm(H) and we will write

fn
π−→ f or f = π- lim

n→+∞ fn

if the following conditions hold:

(i) supn∈N ‖ fn‖Bm < +∞.
(ii) limn→+∞ fn(x) = f (x) for any x ∈ H .

Moreover, given I⊂R, t0 ∈ I , a family ( ft )t∈I\{t0} ⊂ Bm(H) and f ∈ Bm(H) we
write

ft
π−−→

t→t0
f or f = π-lim

t→t0
fn

if, for any sequence tn of elements of I \ {t0} converging to t0, we have ftn
π−→ f .

Similarly, given I⊂R, a sequence ( fn)⊂Bm(I × H) is said to be π-convergent to
f ∈ Bm(I × H) and we will write

fn
π−−−−→

n→+∞ f or f = π- lim
n→+∞ fn

3In this paper the K-convergence in UCm(H) is called Km -convergence.
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if the following conditions hold:

(i) supn∈N ‖ fn‖Bm < +∞.
(ii) limn→+∞ fn(t, x) = f (t, x) for any (t, x) ∈ I × H .

Definition B.56 (K-convergence) A sequence ( fn) in Bm(H) is said to be K-
convergent to f ∈ Bm(H) if

⎧
⎨

⎩

sup
n∈N

‖ fn‖Bm < +∞,

lim
n→+∞ sup

x∈K
| fn(x) − f (x)| = 0

(B.19)

for every compact set K ⊂ H . In this case we will write

fn
K−−−−→

n→+∞ f or f = K- lim
n→+∞ fn.

Moreover, given I⊂R, t0 ∈ I and a family ( ft )t∈I\{t0} ⊂ Bm(H), where I⊂R and
f ∈ Bm(H), we write

ft
K−−→

t→t0
f or f = K-lim

t→t0
ft

if, for any sequence tn of elements of I \ {t0} converging to t0, we have ftn
K−→ f .

In a similar way, given I⊂R, a sequence ( fn) in Bm(I × H) is said to be K-
convergent to f ∈ Bm(I × H) if

⎧
⎪⎪⎨

⎪⎪⎩

sup
n∈N

‖ fn‖Bm < +∞,

lim
n→+∞ sup

(t,x)∈I0×K
| fn(t, x) − f (t, x)| = 0

(B.20)

for all compact sets I0⊂I and K ⊂ H .4 In this case we will write, as before,

fn
K−−−−→

n→+∞ f or f = K- lim
n→+∞ fn.

Remark B.57 The notions of π-convergence andK-convergence can be extended in
exactly in the same way to sequences in Bm(H, Y ) or in Bm(I × H, Y ), where Y is a
given Hilbert space. This will be used when we consider convergence of derivatives
in Sect.B.7. �

4In the literature (see e.g. [108, 308, 309]) this definition is given taking the supremum over I × K
even when I is not compact. We prefer to use the above definition as it is more coherent with the
concept of K-convergence and it does not change anything in the results and in the proofs.



810 Appendix B: Linear Operators and C0-Semigroups

The above convergences induce a series of related concepts like those of closed-
ness and density. In the two following definitions we recall some of them taken from
[108, 492, 493].

Definition B.58 Letm ≥ 0. A subset Y of Bm(H) (respectively, Cm(H),UCm(H))
is said to be π-closed if, for any sequence ( fn) in Y and f ∈ Bm(H) (respectively,
Cm(H), UCm(H)) such that fn

π−→ f , we have f ∈ Y .

A subset Y of Bm(H) (respectively, Cm(H), UCm(H)) is said to be π-dense
in Bm(H) (respectively Cm(H), UCm(H)) if, for any f ∈ Bm(H) (respectively,
Cm(H), UCm(H)), there exists an ( fn)⊂Y such that fn

π−→ f .

A linear operatorA : D(A) ⊂ Bm(H) → Bm(H) is said to be π-closed if, given
a sequence ( fn)⊂D(A), the following condition holds:

(
fn

π−→ f and A fn
π−→ g

)
⇒

(
f ∈ D(A) and A f = g

)
.

Likewise if A : D(A) ⊂ Cm(H) → Cm(H) or A : D(A) ⊂ UCm(H) →
UCm(H).

Definition B.59 Letm ≥ 0. A subset Y of Bm(H) (respectively, Cm(H),UCm(H))
is said to be K-closed if for any sequence ( fn) in Y and f ∈ Bm(H) (respectively,
Cm(H), UCm(H)) such that

K- lim
n→+∞ fn = f,

we have f ∈ Y .

A subset Y of Bm(H) (respectively,Cm(H),UCm(H)) is said to beK-dense if for
any f ∈ Bm(H) (respectively, Cm(H), UCm(H)) there exists a sequence ( fn)⊂Y
such that

f = K- lim
n→+∞ fn.

A linear operatorA : D(A) ⊂ Bm(H) → Bm(H) is said to beK-closed if, given
a sequence ( fn) in D(A) such that

K- lim
n→+∞ fn = f and K- lim

n→+∞A fn = g,

we have
f ∈ D(A) and A f = g.

Likewise if A : D(A) ⊂ Cm(H) → Cm(H) or A : D(A) ⊂ UCm(H) →
UCm(H).

Let A : D(A) ⊂ Bm(H) → Bm(H) and B : D(B) ⊂ Bm(H) → Bm(H) be
two linear operators and assume that A ⊂ B and that B is K-closed. We say that B
is the K-closure of A, and we write B = AK

, if for every f ∈ D(B) there exists a
sequence ( fn) in D(A) such that
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⎧
⎪⎨

⎪⎩

K- lim
n→+∞ fn = f

K- lim
n→+∞A fn = B f .

(B.21)

Likewise if A : D(A) ⊂ Cm(H) → Cm(H), B : D(B) ⊂ Cm(H) → Cm(H) or if
A : D(A) ⊂ UCm(H) → UCm(H), B : D(B) ⊂ UCm(H) → UCm(H).

Motivated byTheorem4.5 of [300]we introduce the notions ofK-core andπ-core.

Definition B.60 (K-core and π-core) Let m ≥ 0. Let the operator A : D(A)⊂
Bm(H) → Bm(H) be K-closed (respectively, π-closed). A linear subspace Y of
D(A) is a K-core (respectively, a π-core) for A if for any f ∈ D(A) there exists a
sequence fn of elements of Y such that

K- lim
n→+∞ fn = f and K- lim

n→+∞A fn = A f

(respectively,

π- lim
n→+∞ fn = f and π- lim

n→+∞A fn = A f ).

The same holds if A : D(A) ⊂ Cm(H) → Cm(H) or A : D(A) ⊂ UCm(H) →
UCm(H).

Remark B.61 Let ( fn)⊂Bm(H) be a sequence which π-converges to a function f :
H → R. Since measurability is preserved over pointwise limits (see e.g. Lemma
1.8) then it must be f ∈ Bm(H).

Similarly, since converging sequences in H are compact, one can prove that, if
( fn)⊂Cm(H) is a sequence which K-converges to a function f : H → R, then
f ∈ Cm(H) (i.e. Cm(H) is K-closed in Bm(H)).

On the other hand, if fn
K−−−→

n→∞ f and ( fn)⊂UCm(H), it is not true, in general,

that f ∈ UCm(H). Indeed, using Lemma B.78 below, one easily sees thatUCm(H)

is K-dense in Cm(H). Similarly, if fn
π−−−→

n→∞ f and ( fn)⊂Cm(H) it is not true, in

general, that f ∈ Cm(H). �
Remark B.62 Concerning π-convergence, in [492], Theorem 2.2 (see also [493],
Theorem 6.2.3), the author introduces a “natural” Hausdorff locally convex topology
τ0, not metrizable and not sequentially complete in UCb(H), whose convergent
sequences are exactly π-convergent sequences. As stated in [492] (end of Sect. 5)
the same holds in Cb(H). The lack of completeness of τ0 relies on the fact that
continuity (and, a fortiori, uniform continuity) is not preserved under π-convergence,
as observed in the previous remark.

Similarly, concerning K-convergence, in [300] it is shown (see, in particular,
Proposition 2.3) that in the so-called mixed topology τM, which is a locally con-
vex and complete one, introduced in [573], convergent sequences are precisely K-
convergent sequences. The result is obtained in Cm(H) for m ≥ 0. Completeness of
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τM relies on the fact that continuity is preserved under K-convergence, as observed
in the previous remark. However, completeness of such topology is not guaranteed
if we consider it on UCm(H), as observed in the introduction of [300].

In [219] pp. 495–496 a topology in the space Bb(H) is given whose convergent
sequences coincide with π-convergent sequences.

It is clear that all the concepts introduced in Definitions B.58, B.59 and B.60 can
also be seen as topological concepts in the topologies just described. �
Remark B.63 In [423] (Definition 2.1 and Remark 2.6, see also [500] Sect. 5.2) the
author also considers π-convergence for multisequences and defines the concepts
of π-closedness, π-density (Definition 2.5 there) and π-core (Definition 2.10) with
multisequences. It seems that the theory also works using multisequences, since the
dominated convergence is still preserved under π-convergent multisequences. Since
in this book we do not need such a general setting, we keep the definitions with
single sequences which, a priori, are not equivalent to the analogous definitions in
[423]. �

B.5.2 π- andK-Continuous Semigroups and Their
Generators

We use the definitions of the previous section to introduce π-continuous and K-
continuous semigroups. The theory of such semigroups has been developed in the
literature mainly using UCb(H) as the environment space, but the definitions and
the results can easily be adapted to the Cb(H) (or also to the Cm(H) and UCm(H))
framework. We will present the UCb(H) setting, making a few remarks on how to
generalize the results to Cb(H) (or also to Cm(H) and UCm(H)).

B.5.2.1 The Definitions

Definition B.64 (π-continuous semigroup) Let S(t) be a semigroup of bounded
linear operators on UCb(H), namely, for any f ∈ UCb(H) and s, t ∈ R

+, S(t +
s) f = S(t)S(s) f and S(0) f = f . We say that S(t) is a π-continuous semigroup on
UCb(H) of class Gπ(M,ω) if the following conditions hold:

(i) There exist M ≥ 1 and ω ∈ R s.t.

‖S(t)‖L(UCb(H)) ≤ Meωt , t ≥ 0.

(ii) For any ( fn)⊂UCb(H), f ∈ UCb(H) s.t. fn
π−→ f we have S(t) fn

π−−−−→
n→+∞

S(t) f for all t ≥ 0.
(iii) For any x ∈ H and f ∈ UCb(H), the map [0,+∞) → R, t→(S(t) f )(x) is

continuous.
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Definition B.65 (K-continuous semigroup) Let S(t) be a semigroup of bounded
linear operators on UCb(H), namely, for any f ∈ UCb(H) and s, t ∈ R

+, S(t +
s) f = S(t)S(s) f and S(0) f = f . We say that S(t) is a K-continuous semigroup
(or a weakly continuous semigroup) of class GK(M,ω) onUCb(H) if the following
conditions hold:

(i) There exist M ≥ 1 and ω ∈ R s.t.

‖S(t)‖L(UCb(H)) ≤ Meωt , t ≥ 0.

(ii) For any ( fn)⊂UCb(H), f ∈ UCb(H) s.t. fn
K−→ f we have S(t) fn

K−−−−→
n→+∞

S(t) f for all t ≥ 0. The limit is uniform in t ∈ [0, T ] for any T > 0.
(iii) For every f ∈ UCb(H) and t0 ≥ 0 we have

K- lim
t→t0

S(t) f = S(t0) f.

(iv) For any T > 0 and f ∈ UCb(H), the family of functions

{ S(t) f : t ∈ [0, T ] }

is equi-uniformly continuous in UCb(H).

We now give some observations concerning:

• The relationship between the above two definitions and the definition of a strongly
continuous semigroup.

• The extension of the above two definitions to more general spaces.
• The relationship of the notions of K and π-continuous semigroups with strongly
continuous semigroups in coarser topologies.

• The main reason why they are introduced: to deal with transition semigroups.

Remark B.66 The above definitions were introduced first in [492, 493] (for π-
semigroups) and in [101] (for K-semigroups, there called weakly continuous). We
observe the following.

(1) In contrast to the case of strongly continuous semigroups (see Proposition B.33),
condition (i) has to be included in both definitions above because it is not known
if it follows from other assumptions.

(2) Condition (ii) in both definitions gives a kind of continuity with respect to the
π orK-convergence. In condition (ii), for aK-continuous semigroup (following
[101]) the limit is required to be uniform in t ∈ [0, T ]. Such a requirement is
avoided in the definition given in [102]: we keep it here since it is verified in all
cases we consider. Also this is not the case for π-continuous semigroups. There
are examples of π-continuous semigroups where the limit is not uniform (see
Remark 6.2.2 in [493]).
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(3) Condition (iii) in both definitions are analogues of condition (iii) in Definition
B.31. However, here the equivalence mentioned in the footnote there is not
obvious. Indeed, condition (iii) for a π-continuous semigroup clearly implies
that

π- lim
t→0+

S(t) f = f, (B.22)

while the opposite is not obvious: the above implies right continuity of the map
t→(S(t) f )(x) but it is not known if left continuity also holds (see Remark 6.2.5
(a) in [493]). In [492] Remark 2.5 (see also Remark 6.2.5 (b) in [493]), the
author proves that the equivalence holds for π-semigroups defined on Cb(M)

for a compact metric space M . Similarly, for a K-continuous semigroup is not
obvious if condition (iii) for t0 = 0 implies that the same holds true for all t0 ≥ 0.
The reason why in both cases the stronger conditions in the definitions are used
is that the continuity of the map t→S(t) f (x) is useful to simplify various steps
in the proofs. Moreover, the stronger conditions are satisfied in the cases we
consider in this book. We finally observe that in the original definition of K-
continuous semigroup (see [101], Definition 2.1) the weaker condition (B.22) is
used but it seems that the author still uses continuity of the map t→S(t) f (x)
(proof of Proposition 3.1, [101]).

(4) Condition (iv) for a K-continuous semigroup extends the regularity in time of
the function (t, x) → (S(t) f )(x) requiring uniformity in time of the modulus
of continuity in x . We point out that in the original definition of K-continuous
semigroups in [101] the uniformity in conditions (ii) and (iv) is required on
[0,+∞) since in this paper the author deals with semigroups of negative type
which we do not want to assume here.

�

Remark B.67 Thedefinition of aπ-continuous semigroup can also bemade inCb(H)

or in Bb(H) by simply substituting UCb(H) with Cb(H) or Bb(H) (see [492] pp.
293–294). Similarly we can define them in UCm(H), Cm(H), Bm(H).

Concerning K-continuous semigroups, they can be easily defined in UCm(H)

by simply substituting UCb(H) with UCm(H), as is done in Sect. 2.2 of [102]. On
the other hand, to define K-continuous semigroups in Cb(H) and in Cm(H) one
should also substantially modify (or erase) condition (iv) of Definition B.65. This
is done in Theorem 4.1 of [300], where (iv) is implicitly substituted with the local
equicontinuity of the family of operators S(t), t ≥ 0. The extension of the definition
of K-continuous semigroups to spaces Bb(H) or Bm(H) is not considered in the
literature. �

Remark B.68 Recalling Remark B.62, consider a π-continuous (respectively, K-
continuous) semigroup S(t) acting on the spaceUCb(H) (respectively, on the space
Cm(H)) endowedwith the topology τ0 generated by theπ-convergence (respectively,
τM generated by the K-convergence). By Definition B.64-(ii) (respectively, B.65-
(ii)), for every t ≥ 0, S(t) is sequentially continuous but it is not known if it is also
continuous. In [300] the authors show that the transition semigroups (introduced in
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the following section) are strongly continuous with respect to the mixed topology
τM so, in particular, they are continuous in such topology. �

Remark B.69 The reason why K-continuous semigroups, and later, π-continuous
semigroups, were introduced (in [101] and in [493], respectively) is the need to
study5 Markov transition semigroups associated with finite and infinite-dimensional
SDEs since such semigroups are naturally notC0-semigroups: as shown, for instance,
in Example 6.1 of [101], already in spatial dimension 1, the Ornstein–Uhlenbeck
semigroup is not strongly continuous. Nevertheless, by a simple application of the
dominated convergence theorem, one can see that all Markov transition semigroups
defined in (1.99) are π-continuous semigroups (see also Definition 3.5 in [492] and
the subsequent comments). Moreover, with a slightly more complicated proof it can
also be proved that such semigroups are K-continuous.

On the other hand, it is not true, as one may expect, that all strongly continuous
semigroups are also π-continuous or K-continuous. Indeed, it is shown in [493],
Proposition 6.2.4 and the subsequent observation, that the class of uniformly con-
tinuous semigroups on UCb(R) is not contained in the class of π-continuous semi-
groups nor in that of K-continuous semigroups. Moreover, even though the class
of π-continuous semigroups has been introduced to study a wider set of problems
(see Remark 6.2.2 in [493]), it is not clear if all K-continuous semigroup are also
π-continuous semigroups. �

B.5.2.2 The Generators

Similarly towhatwe have done forC0-semigroups, we can define the generators ofπ-
continuous andK-continuous semigroups. Given a semigroup of bounded operators
S(t), we will write

�h := S(h) − I

h
.

Definition B.70 Let S(t) be a π-continuous semigroup on UCb(H). We define the
infinitesimal generator A of S(t) as follows:

{
D(A) := {

f ∈ UCb(H) : there exists a g ∈ UCb(H) s.t. π- limt→0+ �t f = g
}

(A f )(x) := limt→0+ �t f (x), f or x ∈ H.

Definition B.71 Let S(t) be a K-continuous semigroup on UCb(H). We define the
infinitesimal generator A of S(t) as follows:

5Other approaches are possible to deal with such semigroups (see, for example, the theory of
semigroups on general locally convex spaces [243, 366, 367]) but, as remarked in the introduction
of [492], the use of such a theory for the above goal would be much more complicated.
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{
D(A) := {

f ∈ UCb(H) : there exists a g ∈ UCb(H) s.t. K- limt→0+ �t f = g
}

(A f )(x) := limt→0+ �t f (x), f or x ∈ H.

Remark B.72 In [101, 105, 106, 108] the generatorA of aK-continuous semigroup
S(t) is defined in a different way, by using the resolvent. Indeed, A is the unique
closed linear operator such that, for all λ > ω, f ∈ UCb(H), x ∈ H , we have

(λI − A)−1 f (x) =
∫ +∞

0
e−λt S(t) f (x)dt.

In fact the two definitions are equivalent. The equivalence is implicitly proved for
π-continuous semigroups in [493], Proposition 6.2.11 (see also [492], Proposition
2.5), with a proof that easily adapts to K-continuous semigroups too. Moreover,
the equivalence of the two definitions is also proved in [300], Remark 4.3, for K-
continuous transition semigroups (which is the case of interest in this book).

In [493], Theorem 6.2.13, the author shows that, if a π-continuous semigroup is
also K-continuous, the two generators coincide. �

We finally observe that the generators can be introduced, in exactly the same
way, if we consider, as mentioned in Remark B.67, π- continuous semigroups on
UCm(H), Cm(H), Bm(H) and K-continuous semigroups in UCm(H), Cm(H), for
some m ≥ 0.

B.5.2.3 Cauchy Problems for π-Continuous andK-Continuous
Semigroups

The following propositions establish the relationship between π-continuous/K-
continuous semigroups, their generators and homogeneous Cauchy problems.

Proposition B.73 Let A be the generator of a π-continuous semigroup S(t) on
UCb(H). Then:

(i) D(A) is π-dense in UCb(H).
(ii) A is a closed and π-closed operator on UCb(H).
(iii) For any f ∈ D(A):

(a) S(t) f ∈ D(A) and AS(t) f = S(t)A f , for any t ≥ 0.
(b) For any x ∈ H the mapping

(0,+∞) → R, t→(S(t) f )(x)

is continuously differentiable and

d

dt
S(t) f (x) = A(S(t) f )(x)

for all t > 0.
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Proof See [493] Proposition 6.2.9 and 6.2.7. Closedness ofA follows from Remark
B.72. �

Proposition B.74 Let A be the generator of a K-continuous semigroup S(t) on
UCb(H). Then:

(i) D(A) is K-dense in UCb(H).
(ii) A is a closed and K-closed operator on UCb(H).
(iii) For every f ∈ D(A):

(a) S(t) f ∈ D(A) and AS(t) f = S(t)A f , for any t ≥ 0.
(b) For any x ∈ H the mapping:

(0,+∞) → R, t→(S(t) f )(x)

is continuously differentiable and

d

dt
S(t) f (x) = A(S(t) f )(x)

for all t > 0.

Proof See [108] Proposition 2.9 and Remark 2.10. Closedness of A follows from
Remark B.72. �

Remark B.75 In the case of a K-continuous semigroup with generator A, if we
consider the function u : [0, T ] × H → R defined as

(t, x)→ (S(t)ϕ) (x), (B.23)

which should be the natural solution of the homogeneous Cauchy problem corre-
sponding to the operatorA, then u belongs toUCx

b ([0, T ]×H)6 and not, in general,
toC([0, T ],UCb(H)) = UCb([0, T ]×H). Indeed, if for every datumϕ ∈ UCb(H),
u ∈ C([0, T ],UCb(H)), thenA generates a C0-semigroup. Similarly, in the case of
π-continuous semigroups the function in (B.23) does not belong toUCb([0, T ]×H)

in general, but it belongs in a natural way to a space called Cπ([0, T ],UCb(H))

(requiring global boundedness and separate continuity), introduced in Definition
7.2.1 on p. 161 of [493], which is strictly bigger than UCx

b ([0, T ] × H).
Moreover, in general the UCb(H)-valued function t→etAϕ is not even measur-

able. In fact, measurability of this map implies strong continuity of the semigroup
(see [576], pp. 233–234 and Proposition B.89 below). �

The above propositions can be extended, as said in Remark B.67, to the case of π-
continuous semigroups inUCm(H),Cm(H), Bm(H), andK-continuous semigroups
in UCm(H), Cm(H), for some m ≥ 0.

6Indeed, as remarked in [108], Remark 2.6, this is equivalent to requiring that points (iii) and (iv)
of Definition B.65 be satisfied.
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We now consider non-homogeneous Cauchy problems. Similarly to the case of
C0-semigroups (see e.g. [47] Chap. II.1.3), given a π-continuous or a K-continuous
semigroup S(t) and the related generator A, one can consider the following non-
homogeneous Cauchy problem on UCb(H)7:

{
d
dt v(t) = Av(t) + f (t), t ∈ (0, T ],
v(0) = ϕ ∈ UCb(H),

(B.24)

where f : (0, T ] → UCb(H).
In analogy with what is usually done for C0-semigroups, the mild solution of

problem (B.24) is, by definition, the function u : [0, T ] × H → R given by

u(t, x) = [S(t)ϕ](x) +
∫ t

0
[S(t − s) f (s)](x)ds. (B.25)

Remark B.76 This definition assumes that, for every t > 0 and x ∈ H , the map

[0, t] → R, s→[S(t − s) f (s)](x)

is measurable. This is true under mild assumptions on f but one has to be careful
since, even when f above is constant, as recalled in Remark B.75, for a fixed t ∈
[0, T ], the function

[0, t] → UCb(H), s→S(t − s) f

may not be measurable if the semigroup S(t) is not strongly continuous. �

Results on uniqueness and regularity of mild solutions and their relationship with
other concepts of solutions (in particular, approximations by classical solutions) are
contained in [102, 108] for the case of K-continuous semigroups and in Chap.7 of
[493, 496] for π-continuous semigroups. They are applied mainly to obtain suitable
approximations ofmild solutions ofKolmogorov equationswhich are used inChap.4.
Such results are presented inSect.B.7 for theKolmogorov equationswe are interested
in.

Several other results on π-continuous andK-continuous semigroups are obtained
in [492, 493, 496] and [101, 102, 108]. We recall in particular the possibility of
proving an analogue of the Hille–Yosida theorem in both cases.

7Clearly, extending the concepts of π-semigroups and K-semigroups it is possible to consider the
same problem in the spaces Cb(H), Cm(H), UCm(H), Bm(H).
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B.6 Approximation of Continuous Functions Through
K-Convergence

Recall that H is a real separable Hilbert space. When dimH = +∞, the space
UC2

b (H) is not dense in UCb(H) (see [457]). We refer to Appendix D.3 for more
on approximations in Hilbert spaces. However, in many cases (in particular to prove
verification theorems for optimal control problems), we need to be able to approxi-
mate functions in Cm(H), m ≥ 0, (or UCm(H)) by smooth (at least C2) functions
with special properties. We can substitute uniform convergence by π-convergence
or K-convergence which are good enough to apply the dominated convergence the-
orem. We start with the following lemma, which is a slight variation of Lemma 5.2
in [108].

Lemma B.77 Let A be the generator of the strongly continuous semigroup S(t) =
et A in H. Let Jn be as in (B.9) and let Pn be a sequence of finite-dimensional
orthogonal projections on H strongly convergent to the identity operator. Then, for
all compact subsets I0 ⊂ R and K ⊂ H, the sets

R1(K ) =: { Pnx : x ∈ K , n ∈ N } ⊂ H,

R1(I0 × K ) =: { (t, Pnx) : t ∈ I0, x ∈ K , n ∈ N } ⊂ R × H,

R2(K ) =: { Pn Jnx : x ∈ K , n ∈ N } ⊂ H

are relatively compact.

Proof We prove the claim forR2(K ). The argument forR1(K ) andR1(I0 × K ) is
the same and easier. Let

(
Pn j Jn j x j

)
j∈IN be a sequence inR2(K ). From compactness

of K it follows that there exists an increasing subsequence jk and x̄ ∈ K such that

x jk → x̄, as k → +∞.

If there exists a C > 0 such that n jk ≤ C , for all jk , then we can suppose n jk = n̄,
for all jk , and then

lim
k→+∞ Pn jk

Jn jk
x jk = Pn̄ Jn̄ x̄ .

Otherwise, let us suppose limk→+∞ n jk = +∞. Then, using (B.11) and (B.12),

|Pn jk
Jn jk

x jk − x̄ | ≤ |Pn jk
Jn jk

(x jk − x̄)| + |Pn jk
(Jn jk

x̄ − x̄)| + |Pn jk
x̄ − x̄ |

≤ Mn jk

n jk + ω
|x jk − x̄ | + |Jn jk

x̄ − x̄ | + |Pn jk
x̄ − x̄ | → 0 as k → +∞.

�

The following lemma generalizes Lemma 2.6, p. 25 in [300].
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Lemma B.78 Let m ≥ 0 and let I⊂R be an interval. Then FC∞
0 (H) is K-dense

in Cm(H) and FC∞
0 (I × H) is K-dense in Cm(I × H). Moreover, for every closed

operator B with dense domain we also have that FC∞,B
0 (H) is K-dense in Cm(H)

and FC∞,B
0 (I × H) is K-dense in Cm(I × H).

Proof Take an orthonormal basis E = {en}n∈N of H and, for x ∈ H , let x =∑∞
i=1 xi ei . For every n ∈ N let Pn be the orthogonal projection onto the n-

dimensional subspace of H spanned by {e1, . . . en}. Define

�n : H → R
n, �x = (x1, . . . , xn),

Qn : Rn → H, Qn(x1, . . . , xn) = x1e1 + · · · + xnen,

and recall that Pn = Qn ◦ �n . Let ϕ ∈ Cm(H). Given a family of C∞ mollifiers
ηk : Rn → R with support in B(0, 1/k), we define the regularizing convolutions (as
e.g. [486])

ψn
k (x) =

∫

Rn

ϕ(Qny)ηk(�nx − y)dy =
∫

Rn

ϕ(Pnx − Qny)ηk(y)dy.

Observe that, by the definition, we have for x ∈ H ,

|ψk
n(x)| ≤ sup

|x1|≤|Pnx |+1/k
|ϕ(x1)| ≤ sup

|x1|≤|x |+1/k
|ϕ(x1)|,

so |ψn
k (x)|

1 + |x |m ≤ sup
|x1|≤|x |+1/k

{ |ϕ(x1)|
1 + |x1|m

1 + |x1|m
1 + |x |m

}

≤ ‖ϕ‖Cm (H) sup
|x1|≤|x |+1/k

1 + |x1|m
1 + |x |m .

Now it is easy to see that

sup
|x1|≤|x |+1/k

1 + |x1|m
1 + |x |m = 1 + ρm(1/k)

for some modulus ρm . Hence we get

‖ψn
k ‖Cm (H) ≤ ‖ϕ‖Cm (H)(1 + ρm(1/k)). (B.26)

Now, from the properties of finite-dimensional convolutions, we easily observe
that, setting ξn(x) := ϕ(Pnx), the sequence

(
ψn
k

)
k∈N converges to ξn uniformly

on bounded sets of Rn . For every n ∈ N, let k(n) ∈ N be such that
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sup
|x |≤n

|ψn
k(n)(x) − ξn(x)| ≤ 1

n
. (B.27)

Therefore, if we set ψn = ψn
k(n), we have, for any compact set K ⊂ H and n ≥

supx∈K |x |,

sup
x∈K

|ψn(x) − ϕ(x)| ≤ sup
x∈K

|ψn(x) − ξn(x)| + sup
x∈K

|ξn(x) − ϕ(x)|

≤ 1

n
+ sup

x∈K
|ξn(x) − ϕ(x)|. (B.28)

By Lemma B.77 and the continuity of ϕ it follows that, for all x ∈ K and n ∈ N,

|ξn(x) − ϕ(x)| ≤ ρR1(K )|Pnx − x |, (B.29)

where ρR1(K ) is the modulus of continuity of ϕ over the compact set R1(K ). Since
limn→+∞ supx∈K |Pnx − x | = 0, it then follows from (B.26) and (B.28), that

K- lim
n→+∞ ψn = ϕ. (B.30)

To end the proof of the first statement in the time-independent case it is enough to
define ϕn(x) := ψn(x)θ(|Pnx |2/n2), where θ ∈ C∞(R) is a cut-off function such
that 0 ≤ θ ≤ 1, θ(r) = 1 for |r | ≤ 1 and θ(r) = 0 for |r | ≥ 2.

Consider now the time-dependent case. Let f ∈ Cm(I × H). First let I = R, and
define fn following the same procedure used for ϕn . Given a family ofC∞ mollifiers
ηk : R × R

n → R with support in B(0, 1/k) ⊂ R × R
n , we define the regularizing

convolutions

gnk (t, x) =
∫

Rn+1
f (s, Qny)ηk(t − s,�nx − y)dsdy

=
∫

Rn+1
f (t − s, Pnx − Qny)ηk(s, y)dsdy.

Similarly to the time-independent case, we prove that

‖gnk ‖Cm (I×H) ≤ ‖ f ‖Cm (I×H)(1 + ρm(1/k)). (B.31)

Furthermore, we define hn(t, x) := f (t, Pnx) and gn(t, x) = gnk(n)(t, x) as we did
in the time-independent case for ξn and ψn , respectively. Hence we obtain

K- lim
n→+∞ gn = f. (B.32)

Then, defining fn(t, x) := gn(t, x)θ(|Pnx |2/n2) with θ as in the time-independent
case, we get the claim.
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If I = [a, b] for a < b ∈ R we first define f̄ (t, x) = f (a, x) for t < a and
f̄ (t, x) = f (b, x) for t > b. We then take the approximations f̄n defined above
and finally define fn as the restrictions of f̄n to I × H . In other cases, we first
take a sequence of suitable approximations. For example, if I = (a, b) is open we
first define f̃h on R × H for h > 4/(b − a) by f̃h(t, x) = χh(t) f (t, x), where χ
is continuous, 0 ≤ χh ≤ 1,χh(t) = 1 for t ∈ [a + 2/h, b − 2/h], χh(t) = 0
for t /∈ [a + 1/h, b − 1/h]. Then for every h we approximate the functions f̃h
by a sequence

(
fh,n

)
n chosen as above. The diagonal sequence ( fn)n := (

fn,n
)
n K-

converges to f . Indeed, given I0 and K compact subsets of (a, b) and H , respectively,
we have

sup
I0×K

| fn,n(t, x) − f (t, x)| ≤ sup
I0×K

| fn,n(x) − f̃n(x)| + sup
I0×K

| f̃n(x) − f (x)|.

The second term of the right-hand side converges to 0 since, by construction, f̃n
K-converges to f ; for the first term we observe that, replicating (B.28) in this case,
it remains to estimate supI0×K | f̃n(t, Pnx) − f̃n(t, x)|. By construction, if n is suf-
ficiently large, then f̃n = f on I0 × K . Hence, arguing as in (B.29) and using the
compactness ofR1(I0 × K ) from Lemma B.77, we get the claim.

Regarding the second statement, it is enough to take an orthonormal basis E which
is contained in D(B), it always exists since D(B) is dense. �

B.7 Approximation of Solutions of Kolmogorov Equations
ThroughK-Convergence

Let H be a real separable Hilbert space and T > 0. We consider the following initial
value problem for a linear Kolmogorov equation8

⎧
⎪⎨

⎪⎩

ut = 1

2
Tr [QD2u] + 〈

x, A∗Du
〉 + Cu + f (t, x), (t, x) ∈ (0, T ] × H,

u(0, x) = ϕ(x), x ∈ H,

(B.33)
where C ∈ R, ϕ ∈ C(H), f ∈ C((0, T ] × H) and A, Q satisfy the following.

Hypothesis B.79 (i) A is the infinitesimal generator of a strongly continuous semi-
group { et A , t ≥ 0 } on H with ‖et A‖ ≤ Meωt for all t ≥ 0 for given M ≥ 1,
ω ∈ R.

(ii) Q ∈ L+(H) and esAQesA
∗ ∈ L1(H) for all s > 0. Moreover, for all t ≥ 0,

8Often (see e.g. [179] Chap.6) the term 〈x, A∗Dv〉 is replaced by the term 〈Ax, Dv〉, which is well
defined if x ∈ D(A). Here we use the former expression because we will look for more regular
solutions, having the derivative in D(A∗) (see the notion of classical solution used in Sect. 6.2 of
[179]).
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∫ t

0
Tr

[
esAQesA

∗]
ds < +∞,

so the symmetric positive operator

Qt : H → H, Qt :=
∫ t

0
esAQesA

∗
ds, (B.34)

is of trace class for every t ≥ 0.

If we let, formally, A be the operator associated to the second and third terms of
(B.33) and, still formally, Rt be the corresponding semigroup, then we can rewrite
(B.33) in the following mild form

u(t, x) = eCt Rt [ϕ](x) +
∫ t

0
eC(t−s)Rt−s[ f (s, ·)](x)ds (B.35)

and call the function on the right-hand side themild solutionof (B.33). Inwhat follows
weprovide someuseful approximation results for solutions of such equations. Similar
results are available in the literature (see e.g. [108, 308, 493, 496]) but only when
the data ϕ and f are bounded and in a slightly different setting. Here we allow the
data to have polynomial growth and take a setting which is more suitable for the
purpose of this book (see Remark B.97 for more on this).

In the next three subsections we first present (Sect.B.7.1) suitable definitions of
classical and strong solutions of (B.33); then (Sect.B.7.2) we define precisely Rt , the
mild solutions, and connect the generatorA of Rt with (B.33) through the operators
A0 and Â0; finally, (Sect.B.7.3) we present a useful approximation result.

B.7.1 Classical and Strong Solutions of (B.33)

Let us introduce the operator A0 in C(H) as follows (compare it with the operators
A1 in Sect. 4.5 and A0 in Sect. 4.6):

⎧
⎪⎨

⎪⎩

D(A0) =
{
φ ∈ UC2

b (H) : A∗Dφ ∈ UCb(H, H), D2φ ∈ UCb(H,L1(H))
}

A0φ =1
2Tr [QD2φ] + 〈x, A∗Dφ〉 .

(B.36)
We also consider the restriction Â0⊂A0 defined as in [108], Sect. 5 (see also [496],
Sect. 5 or [493], Sect. 7.4.3),
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D(Â0) =
{
φ ∈ UC2

b (H) : A∗Dφ ∈ UCb(H, H),

〈x, A∗Dφ〉 ∈ UCb(H) and D2φ ∈ UCb(H,L1(H))
}

Â0φ =1
2Tr [QD2φ] + 〈x, A∗Dφ〉 .

(B.37)

Remark B.80 The operator Â0 can be seen as an unbounded operator in Cm(H) for
all m ≥ 0 since, by the definition of D(Â0), one easily sees that Â0φ ∈ Cb(H) (and
so it also belongs to Cm(H)) for all φ ∈ D(Â0). On the other hand this is not the
case for A0. Indeed, for a generic φ ∈ D(A0) we can only say that A0φ ∈ Cm(H)

for m ≥ 1 since the term 〈x, A∗Dφ〉 may be unbounded. The same considerations
holds if we consider the operators in UCm(H).

Both operators are used to define suitable approximations of the solution of (B.33).
Inmost of the literature only Â0 is used.Herewe see that, for approximation purposes,
A0 can also be used with some advantages. �

We endow D(A0) with the norm

‖φ‖D(A0) := ‖φ‖0 + ‖Dφ‖0 + ‖A∗Dφ‖0 + sup
x∈H

‖D2φ(x)‖L1(H), (B.38)

while in D(Â0) we take the norm

‖φ‖D(Â0)
:= ‖φ‖0 + ‖Dφ‖0 + ‖A∗Dφ‖0 + ‖ 〈x, A∗Dφ

〉 ‖0 + sup
x∈H

‖D2φ(x)‖L1(H).

(B.39)
Arguing as in Theorem 2.7 of [176], it can be proved that both D(A0) and D(Â0)

with the above norms are Banach spaces.9 However, the Banach structure is not
essential for our purposes, even if it simplifies the notation.

We now give two notions of classical solutions of (B.33). The first, a more restric-
tive one, uses the operator Â0, and is in line with what is done, for example, in
Definition 4.6 of [308] or Definition 4.1 of [309].

Definition B.81 u ∈ Cb([0, T ] × H) is a classical solution of (B.33) in D(Â0) if

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u(·, x) ∈ C1([0, T ]), ∀x ∈ H

u(t, ·) ∈ D(Â0) for any t ∈ [0, T ] and supt∈[0,T ] ‖u(t, ·)‖D(Â0)
< +∞

Du, A∗Du ∈ Cb([0, T ] × H, H), D2u ∈ Cb([0, T ] × H,L1(H))

Â0u ∈ Cb([0, T ] × H),

(B.40)
and u satisfies, for every (t, x) ∈ [0, T ] × H , Eq. (B.33).

The second definition is similar to Definition 4.129 and uses the operator A0.

9The definition of the domain of the operator studied in this paper is slightly different but the
arguments there can be adapted easily.
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Definition B.82 u ∈ Cb([0, T ] × H) is a classical solution of (B.33) in D(A0) if

⎧
⎪⎪⎨

⎪⎪⎩

u(·, x) ∈ C1([0, T ]), ∀x ∈ H

u(t, ·) ∈ D(A0) for any t ∈ [0, T ] and supt∈[0,T ] ‖u(t, ·)‖D(A0) < +∞
Du, A∗Du ∈ Cb([0, T ] × H, H), D2u ∈ Cb([0, T ] × H,L1(H)),

(B.41)
and u satisfies, for every (t, x) ∈ [0, T ] × H , Eq. (B.33).

Remark B.83 Concerning the above definitions we observe the following.

(1) If we compare these definitions with the one given in Sect. 6.2 of [179], we see
that the classical solutions in the sense of both Definitions B.81 and B.82 are
more regular. Indeed, the goal here is not (as in Sect. 6.2 of [179]) to prove that
mild solutions are classical, but to approximate mild solutions with classical
solutions to which we can apply the Itô/Dynkin formula (see Sect. 1.7); hence
we want the approximating solutions to be as regular as possible.

(2) The definitions above are the same regardless of whether we work in the spaces
Cm(H) (as we mainly do) or UCm(H), (m ≥ 0).

(3) Note that, if u is a classical solution from Definition B.81, then Â0u, and con-
sequently also ut , belong to Cb([0, T ] × H). On the other hand, if u is a clas-
sical solution from Definition B.82, then Â0u, and then also ut , only belong to
C1([0, T ] × H).

(4) If we compare Definition B.81 with Definition 4.6 of [308] and Definition 4.1
of [309] we see that, in the last two, the functions u, ut , Du, D2u, A∗Du, Â0u
are required to belong to UCx

b ([0, T ] × H). The reason is that elements of this
space possess, roughly speaking, the maximal joint regularity one can expect
even when f = 0,C = 0 and ϕ ∈ UC∞

b (H). Indeed, in such case the mild
solution is u(t, x) = RT−t [ϕ](x) (where Rt is the Ornstein–Uhlenbeck semi-
group corresponding to A and Q) which is in UCx

b ([0, T ] × H) but not in
UCb([0, T ] × H), see Sect.B.7.2. Here we decided to ask for less joint regu-
larity, i.e. u, Du, D2u, A∗Du ∈ Cb([0, T ] × H) since this last space is more
commonly used in the literature on PDEs in infinite dimension and since all the
results we need, in particular the Itô/Dynkin formula, still hold.

(5) The definitions implicitly require regularity of data. Indeed, the second require-
ment of (B.40) implies that ϕ ∈ D(Â0) (and similarly for (B.41)) while, from
the last requirement we see that necessarily f ∈ Cb([0, T ] × H).

�

We now pass to the definition of a strong solution, i.e. approximation of classical
solutions. It is substantially a variation of Definition 4.7 of [308] (see also Definition
4.3 of [309]) in the sense that we use, as the underlying space, the space Cm instead
of the spaceUCb. The definition below is a special case of Definition 4.132 and uses
some definitions given in Chap. 4 which, for the reader’s convenience, we repeat in
the forms needed here.
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We recall the definitions of the classes of weights I1 and I2 introduced in (4.29)–
(4.30):

I1 :=
{
η : (0,+∞) → (0,+∞) decreasing and η ∈ L1(0, T ), ∀T > 0

}
.

(B.42)

I2 :=
{
η ∈ I1 : ∃ lim

t↘0+

1

η(t)

∫ t

0
η(s)η(t − s)ds = 0

}
. (B.43)

We also recall (see (4.32)) that, given η ∈ I1, a function f : (0, T ]×H → Z (where
Z is a given real separable Hilbert space) belongs to Cm,η((0, T ] × H, Z) if

f ∈ Cm([τ , T ] × H, Z) ∀τ ∈ (0, T ) and η−1 f ∈ Bm((0, T ] × H, Z). (B.44)

When Z = R, we omit it as usual, simply writing Cm,η((0, T ] × H). Furthermore,
we give a variant of the definition of K-convergence (see Definition 4.131).

Definition B.84 Let m ≥ 0, η ∈ I1 and let Z be a real Hilbert space. We say that a
sequence ( fn)n∈N⊂Cm,η((0, T ] × H, Z) K-converges to f ∈ Cm,η((0, T ] × H, Z)

if ⎧
⎨

⎩

sup
n∈N

‖ fn‖Cm,η((0,T ]×H,Z) < +∞,

lim
n→+∞ sup

(t,x)∈(0,T ]×K
η(t)−1| fn(t, x) − f (t, x)| = 0, (B.45)

for every compact set K ⊂ H . In such case we write K-limn→+∞ fn = f in
Cm,η((0, T ] × H, Z).

Below is the definition of K-strong solution.

Definition B.85 Letm ≥ 0 and η ∈ I1. Letϕ ∈ Cm(H) and f ∈ Cm,η((0, T ]×H).
We say that a function u ∈ Cm([0, T ]×H) is aK-strong solution in D(Â0) of (B.33)
if u(t, ·) is Fréchet differentiable for any t ∈ (0, T ] and there exist three sequences
(un) in Cb([0, T ] × H), (ϕn) in D(Â0), ( fn) in Cm,η((0, T ] × H) such that:

(i) For every n ∈ N, un is a classical solution in D(Â0) (from Definition B.81) of

{
wt = Â0w + Cw + fn
w(0) = ϕn.

(B.46)

(ii) The following limits hold

⎧
⎨

⎩

K- lim
n→+∞ ϕn = ϕ in Cm(H)

K- lim
n→+∞ un = u in Cm([0, T ] × H)

and, for some η1 ∈ I1 (possibly different from η),
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⎧
⎨

⎩

K- lim
n→+∞ fn = f in Cm,η((0, T ] × H)

K- lim
n→+∞ Dun = Du in Cm,η1((0, T ] × H, H).

Finally, we say that a function u ∈ Cm([0, T ] × H) is a K-strong solution in D(A0)

of (B.33) if all the above holds substituting D(Â0) with D(A0).

Remark B.86 The spirit of this definition is substantially that of the so-called strong
solutions in the Friedrichs sense (a terminology dating back to [268]) for abstract
Cauchy problems, see e.g. Definition 4.1.1 of [416]. It is useful to connect the concept
of a mild solution with that of a classical solution proving that mild solutions are
indeed strong solutions. We make two key points here: first, the convergences in (i i)
are asked to hold in the K-sense, and second, the convergence of the derivatives is
also required. The reason for the former is that uniform convergence in the whole H
would be a requirement which is too strong asUC2

b (H) (and so D(A0)) is not dense
inUCb(H)when H is infinite-dimensional, see [457] and also [493], Remark 2.2.11.
On the other hand the use of π-convergence (as in [496], Sect. 4 or [493], Chap.7) is
possible but in the cases we treat here it would give weaker results, asK-convergence
can always be proved when the data are continuous. The latter is motivated by the use
of this definition for applications to HJB equations (as in Chap.4) which are written
in the mild form of (B.35) with f depending on u and Du (see e.g. (4.1) and (4.5)).
Hence convergence of the derivatives allows us to pass to the limit in such a mild
form. �

B.7.2 The Ornstein–Uhlenbeck Semigroup Associated
to (B.33), the Mild Solutions and Their Properties

Assume that Hypothesis B.79 holds and take a generalized reference probability
space μ = (

�,F , {Fs}s≥0,P,W
)
, where W is a cylindrical Wiener process on H .

Consider the following linear stochastic equation on H

{
dX (t) = AX (t) dt + √

Q dW (t)

X (0) = x .
(B.47)

Under Hypothesis B.79 the problem (B.47) has an H -valued mild solution from
Definition 1.119 (see Proposition 1.147). Such a solution is mean square continuous
(see Proposition 1.144 or also [180], Theorem 5.2-(i)) and is denoted by X (t, x).

We denote by {Rt , t ≥ 0} or simply by Rt , the corresponding (Ornstein–
Uhlenbeck) transition semigroup (see Sect. 1.6) on Bm(H):

Rt [ϕ](x) = E [ϕ(X (t, x))] =
∫

H
ϕ(y)N (et Ax, Qt )(dy) =

∫

H
ϕ(y+et Ax)N (0, Qt )(dy),

(B.48)
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where N (z, Q) is the Gaussian measure introduced in Definition 1.58. See
Sects. 4.3.1.1 and 4.3.1.2 for more on this.

We immediately see that, whenϕ ∈ Bm(H) and f ∈ Bm([0, T ]×H), the function
u in (B.35) iswell defined. Thuswe can give the precise definition of themild solution
of Eq. (B.33).

Definition B.87 Given ϕ ∈ Bm(H) and f ∈ Bm([0, T ] × H), the function u given
by (B.35) is well defined on [0, T ] × H and is called the mild solution of (B.33).

We now explain the connection between Eq. (B.33) and the notion of the mild
solution. We start with the following result.

Lemma B.88 Let X be a separable Banach space. Let {S(t), t ≥ 0} be a family
of operators in L(X) satisfying S(0) = I and S(t + s) = S(t)S(s) for all t, s ∈
[0,+∞). Assume that ‖S(t)‖L(X) is bounded in (0, a) for some a > 0. If for a given
x ∈ X, the map (0, a) → X, s → S(s)x, is Borel measurable, then it must be
continuous.

Proof The proof is contained in [201] or in [576] (pp. 233–234). Since both results
are slightly different from what we need, we provide a proof.

Let x ∈ X . The function (0, a) → X , s → x(s) = S(s)x is Borel measurable
and bounded since |x(s)| ≤ ‖S(s)‖L(X)|x | for all s ∈ (0, a). Then, for all 0 ≤
α < β ≤ a we may define the Bochner integral

∫ β

α x(s)ds and we have, by (1.4),∣∣∣
∫ β

α x(s)ds
∣∣∣ ≤ ∫ β

α
|x(s)| ds. Moreover, for all t ∈ [−α, a − β],

∫ β

α

x(t + s)ds =
∫ β+t

α+t
x(s)ds.

Let 0 ≤ α < η < β < ξ − ε < ξ with ε ∈ (0, ξ − β). Since x(ξ) = S(ξ)x =
S(η)S(ξ − η)x = S(η)x(ξ − η), we have

(β − α)x(ξ) =
∫ β

α

x(ξ)dη =
∫ β

α

S(η)x(ξ − η)dη.

Hence

(β − α) [x(ξ ± ε) − x(ξ)] =
∫ β

α

S(η)(x(ξ ± ε − η) − x(ξ − η))dη,

which gives

(β − α) |x(ξ ± ε) − x(ξ)| ≤ sup
s∈(α,β)

‖S(s)‖L(X)

∫ ξ−β

ξ−α

|x(τ ± ε) − x(τ )|dτ
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The right-hand side tends to zero as ε → 0+. This may be seen by approximating
x(t) by simple functions (for which the right-hand side clearly goes to 0) and using
(1.3) and the subsequent remark. �

Proposition B.89 Let Hypothesis B.79 hold. Then we have the following.

(i) {Rt , t ≥ 0} is a K-continuous semigroup and a π-continuous semigroup in
Cm(H) and UCm(H) (m ≥ 0).

(ii) {Rt , t ≥ 0} is not strongly continuous in these spaces unless A = 0. Indeed, as
s → 0+, we have Rs[φ] → φ in UCb(H) if and only if

sup
y∈H

|φ(esA y) − φ(y)| → 0. (B.49)

(iii) Let t > 0. We have Rt+s[φ] → Rt [φ] as s → 0+ in UCb(H) if and only if

sup
x∈H

∣
∣
∣
∣

∫

H

(
φ(y + e(t+s)Ax) − φ(y + et Ax)

)NQt (dy)

∣
∣
∣
∣ → 0. (B.50)

The above is not satisfied for all φ ∈ UCb(H) (e.g. when H = R, A = Q =
I , and φ(x) = sin x). In particular this implies that the map (0,+∞) →
UCb(H), s → Rs[φ] is in general not measurable.

Proof
Proof of (i). For the K-continuity, see [101], Proposition 6.2, and [493], Sect. 6.3.3,
when m = 0. Moreover, see [102] for the UCm(H) case and Theorem 4.1 in [300]
for the case of Cm(H) (recalling the change in the definition mentioned in Remark
B.67).

For the π-continuity, see [493], Sect. 6.3.3, and [492] (pp. 293–294): there the
proof is done in UCb(H) but it can be easily extended to the cases of Cm(H) and
UCm(H).
Proof of (ii). Regarding the non-strong continuity, see [101], Example 6.1, where an
example of a bounded smooth function φ is given for which Rs[φ] 	→ φ inUCb(H)

as s → 0. The second statement is proved in [179], Proposition 6.3.1.
Proof of (iii). Let t > 0, x ∈ H and let, as in the proof of Proposition 6.3.1 in [179],

Gt [φ](x) :=
∫

H
φ(y + x)NQt (dy), φ ∈ Cb(H),

so Rt [φ](x) = Gt [φ](et Ax). As proved in [179] Proposition 6.3.1, the semigroup
{Gt , t ≥ 0} is strongly continuous in UCb(H).10 Taking φ ∈ UCb(H) we have, for
t > 0, s > 0, x ∈ H ,

10The semigroup {Gt , t ≥ 0} is not strongly continuous inCb(H) as proved, for example, in [179],
Theorem 3.1.1.
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Rt+s[φ](x) − Rt [φ](x)
= (

Gt+s[φ](e(t+s)Ax) − Gt [φ](e(t+s)Ax)
) + (

Gt [φ](e(t+s)Ax) − Gt [φ](et Ax)) .

By the strong continuity of Gt , the first term of the right-hand side above converges
to 0 as s → 0 uniformly in x ∈ H . Hence supx∈H |Rt+s[φ](x) − Rt [φ](x)| goes to
0 as s → 0 if and only if (B.50) holds.

We now show that (B.50) is not satisfied when H = R, A = Q = I , and
φ(x) = sin x . Indeed, in this case we have by standard computations

∫

H

(
φ(y + e(t+s)Ax) − φ(y + et Ax)

)
NQt (dy)

= [
cos(et+s x) − cos(et x)

] ∫

R

sin yNQt (dy)+
[
sin(et+s x) − sin(et x)

] ∫

R

cos yNQt (dy)

= [
sin(et+s x) − sin(et x)

]
Gt [cos](0),

where in the last equality we used
∫
R
sin yNQt (dy) = 0 and

∫
R
cos yNQt (dy) =

Gt [cos](0). We thus obtain

sup
x∈H

∣∣∣
∣

∫

H

(
φ(y + e(t+s)Ax) − φ(y + et Ax)

)NQt (dy)

∣∣∣
∣

= |Gt [cos](0)| sup
z∈R

∣∣sin(esz) − sin z
∣∣ .

Since Gt [cos](0) 	= 0 and it is easy to find a sequence sn ↘ 0 such that
supz∈R |sin(esn z) − sin z| = 2 (e.g. asking that esn (2nπ + π/2) = 2nπ + 3π/2)
the claim follows.

Concerning the last claim, observe that if the map (0,+∞) → UCb(H), s →
Rs[φ] ismeasurable, then byLemmaB.88 itmust be continuous,which is not possible
for all φ ∈ UCb(H), as we have just proved. �

From now on Am will denote the generator of the transition semigroup Rt as a
K-continuous semigroup in Cm(H) (or UCm(H) when specified), as defined in the
previous section. We prove two useful results.

Lemma B.90 Let Hypothesis B.79 be satisfied and letAm be the generator of Rt as
a K-continuous semigroup in Cm(H) (or UCm(H)).

(i) For all t ≥ 0, the operator Rt maps D(A0) into itself, and there exists a constant
L1 > 0 such that (here ω is from Hypothesis B.79)

‖Rt [φ]‖D(A0) ≤ L1e
2(ω∨0)t‖φ‖D(A0), ∀ t ≥ 0, φ ∈ D(A0). (B.51)

The same holds for D(Â0).
(ii) For all m ≥ 1 we have A0⊂Am and, for any φ ∈ D(A0), we have

d

dt
(Rt [φ]) = A0Rt [φ] = Rt [A0φ], t ≥ 0. (B.52)
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Similarly, for all m ≥ 0 Â0⊂Am and, for any φ ∈ D(Â0), we have

d

dt
(Rt [φ]) = Â0Rt [φ] = Rt

[
Â0φ

]
, t ≥ 0. (B.53)

(iii) Let T > 0. For every f ∈ Cb([0, T ] × H) such that, for all t ∈ [0, T ],
f (t, ·) ∈ D(A0) and

‖ f (t, ·)‖D(A0) ≤ g0(t)

for a suitable g0 ∈ L1(0, T ;R+), let us set

g(t, x) =
∫ t

0
Rt−s[ f (s, ·)](x) ds, ∀ x ∈ H. (B.54)

Then g ∈ Cb([0, T ]× H) and for every t ∈ [0, T ], g(t, ·) ∈ D(A0). Moreover,

‖g(t, ·)‖D(A0) ≤ L1e
2(ω∨0)T ‖g0‖L1 , ∀ t ∈ [0, T ]. (B.55)

The same holds if we replace A0 by Â0.
(iv) Let m ≥ 0 and let λ > m(ω ∨ 0), where ω is given in Hypothesis B.79. Then

(λI − Am)−1 exists and it is a bounded operator. Moreover, it maps D(A0)

into itself. The same is true for D(Â0).

Proof We present the proofs of (ii) and (iv) in the case when Am is the generator of
Rt in Cm(H). The case when Am is the generator of Rt in UCm(H) is completely
analogous and we omit it.

Proof of (i). If φ ∈ D(A0) we have, using the last equality of (B.48) and straight-
forward computations, for x, h, k ∈ H , t ≥ 0,

〈DRt [φ](x), h〉 =
∫

H
〈Dφ(y + et Ax), et Ah〉N (0, Qt )(dy) = Rt [〈Dφ(·), et Ah〉],

(B.56)

〈A∗DRt [φ](x), h〉 =
∫

H
〈A∗Dφ(y + et Ax), et Ah〉N (0, Qt )(dy) = Rt [〈A∗Dφ(·), et Ah〉],

(B.57)

〈D2Rt [φ](x)h, k〉 =
∫

H
〈D2φ(y + et Ax)et Ak, et Ah〉N (0, Qt )(dy) = Rt [〈D2φ(·)et Ak, et Ah〉],

(B.58)
and, for a given orthonormal basis {en},

Tr
(
D2Rt [φ](x)

)
=

+∞∑

n=0

〈D2Rt [φ](x)en, en〉 =
∫

H

+∞∑

n=0

〈D2φ(y+et Ax)et Aen, e
t Aen〉N (0, Qt )(dy).

(B.59)
Hence, by simple computations, we get that Rt [φ] ∈ D(A0) and

‖Rt [φ]‖D(A0) ≤ ‖φ‖0 + Meωt [‖Dφ‖0 + ‖A∗Dφ‖0] + M2e2ωt‖Dφ‖L1(H),
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which gives the claim. In the case of D(Â0) we also need to estimate the term
〈A∗DRt [φ](x), x〉. We have, thanks to (B.57),

〈A∗DRt [φ](x), x〉 =
∫

H
〈A∗Dφ(y + et Ax), y + et Ax〉N (0, Qt )(dy)

−
∫

H
〈A∗Dφ(y + et Ax), y〉N (0, Qt )(dy).

Since, by the Hölder inequality and by Proposition 1.59,

∣
∣
∣
∣

∫

H
〈A∗Dφ(y + et Ax), y〉N (0, Qt )(dy)

∣
∣
∣
∣ ≤ ‖A∗Dφ‖0(Tr(Qt ))

1/2,

we obtain

sup
x∈H

| < A∗DRt [φ](x), x > | ≤ sup
x∈H

| < A∗Dφ(x), x > | + ‖A∗Dφ‖0(Tr(Qt ))
1/2,

which gives the claim thanks to Lemma 4.39.

Proof of (ii). From Dynkin’s formula of Proposition 1.168 we easily get that (here
X (s, x) is the solution of (B.47))

Rh[φ](x) − φ(x)

t
= 1

h
E (φ(X (h, x)) − φ(x))

= 1

h
E

∫ h

0

(
1

2
Tr [QD2φ(X (s, x))] + 〈A∗Dφ(X (s, x)), X (s, x)〉

)
ds.

Now we have sups∈[0,T ] E|X (s; x)|2 ≤ C for some C > 0. Moreover, by the defini-
tion of X it is also easy to see that we haveE|X (s; x)−x |2 ≤ ρ(s) for somemodulus
ρ. Thus, arguing similarly as in the proof of Theorem 3.66, we can conclude that
when h ↘ 0, the first term of the right-hand side of the last formula converges to

1

2
Tr[QD2φ(x)] + 〈x, A∗Dφn(x)〉.

Hence

lim
h→0

Rh[φ](x) − φ(x)

t
= A0φ(x),

which, by the definition of a generator (Definition B.71), implies A0 ⊂ Am for
m ≥ 1 and Â0 ⊂ Am for m ≥ 0. Now Eqs. (B.52) and (B.53) follow immediately
from Proposition B.74-(iii) and from point (i) of this lemma.
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Proof of (iii).11 Since f ∈ Cb([0, T ]×H), using the first equality in (B.48) and the
mean square continuity of X (t, x), one can prove exactly as in Proposition 4.50-(ii)
that also g ∈ Cb([0, T ] × H). Moreover, since f (t, ·) ∈ D(A0), for all t ∈ [0, T ],
by part (i) it follows that, for 0 ≤ s ≤ t ≤ T , Rt−s[ f (s, ·)] ∈ D(A0) and

‖Rt−s[ f (s, ·)]‖D(A0) ≤ LT ‖ f (s, ·)‖D(A0) ≤ LT g0(s).

Now, using that the derivative operator is closed (see Corollary 4.14), we get that
g(t, ·) is Fréchet differentiable and, for t ∈ [0, T ], x, h ∈ H ,

〈Dg(t, x), h〉 =
∫ t

0
〈DRt−s [ f (s, ·)](x), h〉ds =

∫ t

0
Rt−s

[
〈Df (s, ·), e(t−s)Ah〉

]
(x)ds,

(B.60)
where we exploited (B.56) in the last equality. The integrand is Borel measurable in
s since it is the limit of the difference quotients; the continuity of Dg(t, x) is proved
again as in Proposition 4.50-(ii). Similarly, using (B.57) we get for t ∈ [0, T ],
x, h ∈ H ,

〈A∗Dg(t, x), h〉 =
∫ t

0
〈A∗DRt−s [ f (s, ·)](x), h〉ds =

∫ t

0
Rt−s

[
〈A∗Df (s, ·), e(t−s)Ah〉

]
(x)ds.

(B.61)
Moreover, iterating the argument and exploiting (B.56) in the last equality, we prove
that g(t, ·) is twice Fréchet differentiable and, for t ∈ [0, T ], x, h, k ∈ H ,

〈D2g(t, x)h, k〉 =
∫ t

0
〈D2Rt−s [ f (s, ·)](x)h, k〉ds =

∫ t

0
Rt−s

[
〈D2 f (s, ·)e(t−s)Ah, e(t−s)Ak〉

]
(x)ds.

(B.62)
The integrand is Borel measurable in s since it is the limit of the difference quotients
and the continuity of D2g(t, x)h for each h is proved again as in Proposition 4.50-(ii).
This does not even imply the measurability of Dg(t, x) in general, but it is enough
to prove the continuity of the trace. Indeed,

Tr(D2g(t, x)) =
+∞∑

n=0

〈D2g(t, x)en, en〉

=
∫ t

0

∫

H

+∞∑

n=0

〈D2 f (s, y + et Ax)e(t−s)Aen, e
(t−s)Aen〉N (0, Qt−s)(dy)ds.

(B.63)

As before the integrand is Borel measurable in (s, y), hence continuity can be proved
as in Proposition 4.50-(ii).

11This proof is partially similar to the proof of Lemma 4.5 in [496].
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In the case of D(Â0)we also need to estimate the term 〈A∗Dg(t, x), x〉. We have,
thanks to (B.61),

〈A∗Dg(t, x), x〉 =
∫ t

0
〈A∗DRt−s [ f (s, ·)](x), x〉ds =

∫ t

0
Rt−s

[
〈A∗Df (s, ·), e(t−s)Ax〉

]
(x)ds

=
∫ t

0

∫

H
〈A∗Df (s, y + e(t−s)Ax), y + e(t−s)Ax〉N (0, Qt−s)(dy)ds

−
∫ t

0

∫

H
〈A∗Dφ(y + e(t−s)Ax), y〉N (0, Qt−s)(dy)ds.

The conclusion now follows as in part (i) using Hölder’s inequality and Proposition
1.59.

Proof of (iv). Recall first that, for any φ ∈ Cm(H), x ∈ H , the function
t → e−λt Rt [φ](x) is integrable when λ > m(ω ∨ 0), due to the first estimate of
Theorem 4.41. Thus by Remark B.72, we have that λ is in the resolvent set of Am

and

(λI − Am)−1φ =
∫ +∞

0
e−λt Rt [φ](x)dt.

Taking φ ∈ D(A0) or in D(Â0), the required conclusion follows using the same
arguments as in the proof of part (iii), which here are even easier since we do not
have the time dependency of the integral. �

Proposition B.91 Let Hypothesis B.79 be satisfied and let T > 0.

(i) Let ϕ ∈ D(A0) and f ∈ Cb([0, T ] × H) be such that, for all t ∈ [0, T ],
f (t, ·) ∈ D(A0) and

‖ f (t, ·)‖D(A0) ≤ g0(t)

for some g0 ∈ L1(0, T ;R+). Then the function u defined in (B.35) is a classical
solution in D(A0) of (B.33).

(ii) If the assumptions of Part (i) holdwith D(Â0) in place of D(A0) then the function
u defined in (B.35) is a classical solution in D(Â0) of (B.33).

Proof We takeC = 0 as the caseC 	= 0 can be obtained by a straightforward change
of variable. We start by proving (i). As a first step we need to prove that u satisfies
the regularity required in (B.41). Indeed, by Lemma B.90, in particular (B.51) and
(B.55), it immediately follows that the second line of (B.41) is true. The third line
of (B.41) is obtained, for the first term in (B.35), from (B.56)–(B.59), and for the
convolution term, from (B.60)–(B.63). Hence continuity is immediately deduced.
The first line of (B.41) follows from the next computation which also shows that u
satisfies (B.33).

We applyDynkin’s formula of Proposition 1.168 to the processϕ(X (s, x)) obtain-
ing, on the interval [0, t],
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Eϕ(X (t, x)) = ϕ(x) + E

∫ t

0
〈A∗Dϕ(X (s, x)), X (s, x)〉ds

+ 1

2
Tr

[
QD2ϕ(X (s, x))

] ]
ds.

(B.64)

We now compute the right derivative of u at t = 0. We observe first that, by the
definition of u,

u(h, x) − u(0, x)

h
= Rh[ϕ](x) − ϕ(x)

h
+ 1

h

∫ h

0
Rh−s[ f (s, ·)](x)ds.

Arguing as in the proof of Lemma B.90 we obtain that, when h ↘ 0, the first term
of the above right-hand side converges to

〈A∗Dϕ(x), x〉 + 1

2
Tr[QD2ϕ(x)].

Again applying the same argument to the integrand in the second term of the right-
hand side we get that this term, when h ↘ 0, converges to f (0, x). We then have,
denoting by D+

t the right time derivative,

D+
t u(0, x) = lim

h↘0

u(h, x) − u(0, x)

h

= 〈A∗Dϕ(x), x〉 + 1

2
Tr[QD2ϕ(x)] + f (0, x),

so the equation is satisfied for t = 0. For t > 0 we observe that, by the semigroup
property (see Theorem 1.157),

u(t + h, x) = Rh[u(t, ·)](x) +
∫ t+h

t
Rt+h−s[ f (s, ·)](x)ds,

hence we have

u(t + h, x) − u(t, x)

h
= Rh[u(t, ·)](x) − u(t, x)

h
+ 1

h

∫ t+h

t
Rt+h−s[ f (s, ·)](x)ds

and, arguing as for the case t = 0 but replacing ϕ by u(t, ·), we get

D+
t u(t, x) = 〈x, A∗Du(t, x)〉 + 1

2
Tr

[
QD2u(t, x)

] + f (t, x).
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Now the right-hand side of the above identity is a continuous function on [0, T ]× H
and consequently, by LemmaD.19, u(·, x) is continuously differentiable and satisfies
Eq. (B.33).

The proof of part (ii) is almost exactly the same. The only difference is that, thanks
to the regularity of the data, Â0u and ut are also bounded. �

B.7.3 The Approximation Results

We start with the following result about the operators A0, Â0 and Am (recall that ω
below is the one given by Hypothesis B.79).

Proposition B.92 Let Hypothesis B.79 hold. We have the following:

(i) For any m ≥ 1, we have A0⊂Am, and D(A0) is a K-core for Am in Cm(H).

In particular,A0 isK-closable in Cm(H) and itsK-closureA0
K
coincides with

Am.
Moreover, for all m ≥ 0 and λ > m(ω ∨ 0), the set

(λI −Am)−1
(
FC∞,A∗

0 (H)
)

:=
{
φ ∈ Cm(H) : (λI − Am)φ ∈ FC∞,A∗

0 (H)
}

is contained in D(A0) and it is always a core for Am.
All the statements above are also true if Cm(H) is replaced by UCm(H).
Finally, the set FC∞,A∗

0 (H)⊂D(A0) is always a core for Am in Cm(H) when
m ≥ 1, but not, in general, when m ∈ [0, 1).

(ii) For any m ≥ 0, we have Â0⊂Am, and D(Â0) is a K-core for Am in Cm(H)

In particular, Â0 isK-closable in Cm(H) and itsK-closure Â0

K
coincides with

Am.
Moreover, for all m ≥ 0 and λ > m(ω∨0), the set (λI −Am)−1

(
FC∞,A∗

0 (H)
)

is contained in D(Â0) and it is always a core for Am when m ≥ 0.
Finally, the set FC∞,A∗

0 (H) is in general not contained in D(Â0).
All the statements above are also true if Cm(H) is replaced by UCm(H).

Proof
Proof of part (i). For any m ≥ 1, we have A0⊂Am by Lemma B.90-(ii). To prove
that D(A0) is a K-core forAm in Cm(H) we take any φ ∈ D(Am) and set, for some
λ > m(ω ∨ 0), g := (λI − Am)φ ∈ Cm(H). Then we consider the approximating
sequence (gn) in FC∞,A∗

0 (H)⊂D(A0)
12 given by Lemma B.78. By construction

we have gn
K→ g. Define φn := (λI − Am)−1gn . By Lemma B.90-(iv) we have

12This fact is straightforward: see Step 1 of the proof of Theorem 4.135.
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φn ∈ D(A0) and, by the dominated convergence theorem,we getφn
K→ φ.Moreover,

A0φn = Amφn = λφn − (λI − Am)φn = λφn − gn,

hence also A0φn
K→ Amφ.

As said above FC∞,A∗
0 (H)⊂D(A0) and, since (λI − Am)(D(A0))⊂D(A0)

(Lemma B.90- (iv)),

(λI − Am)−1
(
FC∞,A∗

0 (H)
)

⊂D(A0).

The choice of the sequence above implies that such a set is a core for Am .
The fact that the set FC∞,A∗

0 (H) is a core for Am when m ≥ 1 follows using
Lemma 4.4 in [300]. This lemma generalizes a well-known result about cores (see
e.g. [217], Proposition 1.7, p. 53) implying that a K-dense subspace D of Cm(H)

which is invariant for Rt is always a core. Indeed, let φ ∈ FC∞,A∗
0 (H) and let

f : Rn → R and x1, . . . xn ∈ D(A∗) be such that

φ(x) = f (〈x, x1〉, . . . , 〈x, xn〉).

Then

Rt [φ](x) =
∫

H
φ(y + et Ax)N (0, Qt )(dy)

=
∫

H
f
(〈y + et Ax, x1〉, . . . , 〈y + et Ax, xn〉

)N (0, Qt )(dy)

=
∫

H
f
(〈y, x1〉 + 〈x, et A∗

x1〉, . . . , 〈y, xn〉 + 〈x, et A∗
xn〉

)N (0, Qt )(dy)

= g
(〈x, et A∗

x1〉, . . . , 〈x, et A∗
xn〉

)

for a suitable function g ∈ FC∞,A∗
0 (H). Since x1, . . . xn ∈ D(A∗) we have

et A
∗
x1, . . . et A

∗
xn ∈ D(A∗) and the claim is proved.

However, when m ∈ [0, 1) it is not true in general that, for φ ∈ FC∞,A∗
0 (H), one

has A0φ ∈ Cm(H), so the core property in general fails, contrary to what is stated
in Theorem 4.5 of [300] (see on this [500], Remark 5.11).
Proof of part (ii).
The proof of this part is exactly the same except for the fact that, since in general
FC∞,A∗

0 (H) 	⊂ D(Â0), we need to prove directly that

(λI − Am)−1
(
FC∞,A∗

0 (H)
)

⊂D(Â0).

In fact, we can prove, as in Proposition 4.6 of [496], that

(λI − Am)−1 (D(A0))⊂D(Â0). (B.65)
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To do this it is enough to show that, given φ ∈ (λI − Am)−1 (D(A0)), the map
x→〈A∗Dφ(x), x〉 is bounded, which is equivalent to proving that A0φ is bounded,
since the second-order term is always bounded when φ ∈ D(A0). Let f ∈ D(A0)

and let φ := (λI − Am)−1 f . Then f = (λI − Am)φ. Since φ ∈ D(A0) we also
have f = (λI − A0)φ, which gives A0φ = λφ − f . Since the right-hand side is
bounded, then A0φ is also bounded.

The proofs of both parts whenCm(H) is replaced byUCm(H) is exactly the same.
Notice that the last statement of part (i) holds only forCm(H) since its proof is based
on Lemma 4.4 of [300] which, up to now, is proved only for Cm(H). �

We are going to use, in addition to Hypothesis B.79, the following assumption
(compare it with Hypotheses 4.29 and 4.32).

Hypothesis B.93 The operators A and Q satisfy the following:

(i) For all t > 0 we have et A(H)⊂Q1/2
t (H).

(ii) Defining �(t) := Q−1/2
t et A we have that the map t→‖�(t)‖ (which is always

decreasing) belongs to I1.
Remark B.94 If Hypothesis B.93 holds, then the semigroup Rt enjoys the smoothing
property stated in Theorem 4.41 with the estimate, for all f ∈ Cm(H),

‖DRt f ‖Cm (H) ≤ C(m)em(ω∨0)t‖�(t)‖ ‖ f ‖Cm (H), (B.66)

for some constant C(m) ≥ 1. In particular, Hypothesis B.93 implies that, form ≥ 0,
D(Am)⊂C1

m(H). Indeed, let φ ∈ D(Am). Then, taking λ > m(ω∨0)wemust have,
for some f ∈ Cm(H),

φ(x) = (λI − Am)−1 f (x) =
∫ +∞

0
e−λt Rt [ f ](x)dt, x ∈ H.

Estimate (B.66) and the closedness of the derivative operator (see Corollary 4.14)
then imply

Dφ(x) =
∫ +∞

0
e−λt DRt [ f ](x)dt, x ∈ H.

This fact also implies that the approximating sequence (φn) of elements in D(A0)

in the proof of the previous proposition can be chosen such that

φn
K→ φ, A0φn

K→ Aφ, Dφn
K→ Dφ.

�

Here is the final result.

Theorem B.95 Let Hypotheses B.79 and B.93 hold. Let m ≥ 0 and η(t) = ‖�(t)‖
for t > 0.
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(i) Let ϕ ∈ Cm(H) and f ∈ Cm,η((0, T ] × H). Then the mild solution u (given by
(B.35)) of the Cauchy problem (B.33) is also a K-strong solution (in the sense
of Definition B.85) of (B.33) both in D(A0) and in D(Â0).

(ii) If in addition ϕ ∈ C1
m(H), f ∈ Cm([0, T ] × H), f is differentiable in the x

variable and D f ∈ Cm,η((0, T ] × H, H), then the approximating sequences
un,ϕn, fn defining the K-strong solution u in part (i) (both in D(A0) and in
D(Â0)) can be chosen such that, for some η1 ∈ I1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K- lim
n→+∞ Dϕn = Dϕ, in Cm(H, H),

K- lim
n→+∞ Dfn = Df, in Cm,η((0, T ] × H, H),

K- lim
n→+∞ Dun = Du, in Cm((0, T ] × H, H),

K- lim
n→+∞ D2unh = D2uh in Cm,η1((0, T ] × H, H), ∀h ∈ H.

If η ∈ I2, as defined in (B.43), then we can choose η1 = η in (ii) and in the definition
of a strong solution in (i).

Proof A similar result is proved in Proposition 4.10 of [308] when m = 0. Here we
give a complete proof.

Proof of (i).We first approximate ϕ by a sequence (ϕn) in FC∞,A∗
0 (H) given by

Lemma B.78.
Since f may not belong toCm((0, T ]×H) due to the singularity at t = 0, we have

to modify a little the approximation argument of Lemma B.78 (see also the proof
of Theorem 4.135). For each sufficiently big k ∈ N we define, for t ∈ (0, T ] × H ,
f̂k(t, x) := χk(t) f (t, x), where χk : (0, T ] → [0, 1] is a smooth function such
that χk(t) = 1 for t ∈ [2/k, T ] and χk(t) = 0 for t ∈ (0, 1/k]. Then, for every
sufficiently big k,we take a sequence ( fk,n)n fromLemmaB.78whichK-converges to
f̂k . Now the diagonal sequence ( fn)n := ( fn,n)n has elements inFC∞,A∗

0 ([0, T ]×H)

and can be proved to K-converge to f in Bm,γG ([0, T ) × H), exactly as in the last
part of Lemma B.78. We then set

un(t, x) := Rt [ϕn](x) +
∫ t

0
Rt−s[ fn(s, ·)](x)ds. (B.67)

By construction we know that ϕn and fn satisfy the assumptions of part (i) of
Proposition B.91 and so un is a classical solution of (B.33) in D(A0). Moreover,
still by construction, we have

⎧
⎪⎨

⎪⎩

K- lim
n→+∞ ϕn = ϕ, in Cm(H),

K- lim
n→+∞ fn = f, in Cm,η((0, T ] × H).
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By Proposition 4.50 (i) and (ii) we get u ∈ Cm([0, T ] × H) while using dominated
convergence we obtain K- limn→+∞ un = u in Cm([0, T ] × H). Up to now we have
not used Hypothesis B.93. We use it now to show that, as required, u(t, ·) is Fréchet
differentiable for any t ∈ (0, T ] and that Dun K-converges to Du. Indeed, using
Proposition 4.50, Remark 4.52 and the closedness of the derivative operator (see
Corollary 4.14) we get the required differentiability and that

Du(t, x) = DRt [ϕ](x) +
∫ t

0
DRt−s[ f (s, ·)](x)ds.

Note that Du ∈ Cm,η1([0, T ]× H, H), where η1 is an element of I1 which is greater
than both η (coming from the first term of the right-hand side) and

∫ t
0 η(s)η(t − s)ds

(coming from the integral term). From Proposition 4.21-(iii) it follows that we can
choose

η1(t) = 2η(t/2)

[(∫ T

0
η(s)ds

)
∨ 1

]
, t ∈ (0, T ],

and set η1(t) = η1(T ) for t ≥ T . Finally, note that if η ∈ I2, as defined in (B.43),
then we have limt↘0 η(t)−1

∫ t
0 η(s)η(t − s)ds = 0 and hence we can choose η1 = η.

Lastly, the required convergence of Dun to Du inCm,η1([0, T ]×H, H) follows using
the representation formula (4.75) for the derivatives of Rt [ϕ] and Rt−s[ f (s, ·)], and
then applying the dominated convergence theorem.

The above approximating sequences un,ϕn, fn are not suitable, in general, for u to
be aK-strong solution in D(Â0) since the sequences ϕn and fn(t, ·) may not belong
to D(Â0), as we discussed in the proof of Proposition B.92. To get an approximating
sequence ūn for a K-strong solution in D(Â0) it is enough to define, as in [496],
Sect. 4,

ūn(t, x) := Jnun(t, x) = Rt [Jnϕn](x) +
∫ t

0
Rt−s[Jn fn(s, ·)](x)ds,

where, as in (B.9), we set Jn := n(nI − Am)−1. By Lemma B.90-(iv) we easily see
that ūn(t, ·) ∈ D(Â0) for all t ∈ [0, T ]. All the other required properties can be
proved exactly as we did for un .

Proof of (ii). Assume now that, in addition, ϕ ∈ C1
m(H), f ∈ Cm([0, T ] × H), f

is differentiable in the x variable and Df ∈ Cm,η((0, T ] × H, H). Take sequences
(ϕn) in FC∞,A∗

0 (H) and ( fn) in FC∞,A∗
0 ((0, T ] × H) given by Lemma B.78 and

take un given by (B.67). It is not difficult to see, looking at the proof of Lemma B.78,
that for such sequences we also have, under the assumptions on ϕ and f ,

⎧
⎪⎨

⎪⎩

K- lim
n→+∞ Dϕn = Dϕ, in Cm(H, H),

K- lim
n→+∞ Dfn = Df, in Cm,η((0, T ] × H, H).
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To prove the regularity of u and the remaining convergences we observe first that,
using (B.56) and (B.60), we have, for t ∈ (0, T ], x, h ∈ H ,

〈DRt [ϕ](x), h〉 = Rt [〈Dϕ(·), et Ah〉], (B.68)

〈D
∫ t

0
Rt−s[ f (s, ·)](x)ds, h〉 =

∫ t

0
Rt−s

[〈Df (s, ·), e(t−s)Ah〉] (x)ds, (B.69)

so the required regularity of u follows again using the smoothing property and the
estimates of Theorem 4.41. On the other hand, the formulae (B.68) and (B.69) also
hold for ϕn and fn , hence the required convergences simply hold by applying the
dominated convergence theorem as in the first part of the proof. Also, the choice of
the weight η1 is the same as in part (i) and again, if η ∈ I2 (see (B.43)), we can
choose η1 = η.

The proof of (ii) for the strong solution in D(Â0) follows the same arguments,
replacing ϕn by Jnϕn and fn(s, ·) by Jn fn(s, ·), s ∈ (0, T ]. �
Remark B.96 In Definition B.85 (of a strong solution), as noted in Remark B.86,
we also required convergence of the derivatives. If we did not ask such convergence,
then part (i) of Theorem B.95 would be true without using Hypothesis B.93, as noted
in the body of the proof. In such a case the first part of Theorem B.95 may be seen
as a particular case of a more general result for a class of abstract K-continuous
semigroups (see [108] Theorem 4.10 for the case m = 0). �
Remark B.97 We point out some general observations that can be extracted from
the results of this section.

First of all, when one needs to approximate continuous functions in infinite dimen-
sion by C2 functions through K-convergence, a straightforward approach (not the
only one, see e.g. [496] Sect. 4 for an alternative) is to use cylindrical functions (as
in Lemma B.78). The use of cylindrical functions allows us to find approximating
sequences required in the definition of strong solutions, as in TheoremB.95, however
it is not adequate to find approximations belonging to D(Â0) since the map

x→〈A∗Dφ(x), x〉

may be unbounded for φ ∈ FC∞,A∗
0 (H). This also implies, as observed in [500]

Remark 5.11, that FC∞,A∗
0 (H) is in general not a K-core for Am , m ∈ [0, 1).

Thus we decided to use separately the two operators A0 and Â0. They have
their advantages and drawbacks. Indeed, using A0 allows us to use the cylindrical
functions directly to find approximations to the mild solutions of (B.33) but, since
the K-closure of A0 is Am only for m ≥ 1, it is not suitable to look at the generator
Am for m ∈ [0, 1) (Proposition B.92). On the other hand, using Â0 calls for more
complicated approximations but allows us to study the generator Am for all m ≥ 0.
For these reasons,A0 is used when we want to find strong solutions to HJB equations
in Sects. 4.5 and 4.7, while Â0 is used when we use the generator Am in the spaces
Cb(H) to study mild solutions to the infinite horizon problem in Sect. 4.6.2. �



Appendix C
Parabolic Equations with Non-homogeneous
Boundary Conditions

In this section we show how to rewrite some classes of parabolic equations with
control and noise on the boundary using the infinite-dimensional formalism.We focus
on two particular cases: Dirichlet and Neumann boundary conditions. Throughout
the sectionO will denote a bounded domain (open and connected) inRd with regular
(C∞) boundary ∂O.

We begin introducing and recalling some properties of the Dirichlet andNeumann
maps.

C.1 Dirichlet and Neumann Maps

Consider the Laplace equation with Dirichlet boundary condition

{
�ξ y(ξ) = 0, ξ ∈ O,

y(ξ) = γ(ξ), ξ ∈ ∂O.
(C.1)

Theorem C.1 Given s ≥ 0 and a boundary condition γ ∈ Hs(∂O), there exists a
unique solution Dγ ∈ Hs+1/2(O) of the problem (C.1). Moreover, for all s ≥ 0, the
operator

{
D : Hs(∂O) → Hs+1/2(O),

γ→Dγ,
(C.2)

is continuous.

Proof See [404] Theorem 5.4, p. 165, Theorem 6.6, p. 177 and Theorem 7.3,
p. 187. �

Definition C.2 The operator D introduced in (C.2) is called the Dirichlet map.
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Proposition C.3 Consider the heat equationwith zeroDirichlet boundary condition

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂s y(s, ξ) = �ξ y(s, ξ), (s, ξ) ∈ (0, T ) × O,

y(s, ξ) = 0, (s, ξ) ∈ (0, T ) × ∂O,

y(0, ξ) = x(ξ), ξ ∈ O,

(C.3)

where the initial datum x belongs to L2(O). For s ≥ 0 denote by SD(s)x the solution
of (C.3) at time s. Then SD(s) is a C0-semigroup on L2(O). Its generator AD is given
by: {

D(AD) := H 1
0 (O) ∩ H 2(O)

ADx := �x, x ∈ D(AD).
(C.4)

AD is maximal dissipative, self-adjoint, invertible, A−1
D ∈ L(L2(O)), and SD(s) is

analytic.

Proof This is a standard result. We refer for instance to Theorem 12.40 of [507] for
the proof that the C0-semigroup SD(s) is analytic and that A−1

D ∈ L(L2(O)) (it is
included in the definition of an analytic semigroup given there). �
Proposition C.4 The Dirichlet map D introduced in (C.2) is continuous as a linear
map between the spaces L2(∂O) and D((−AD)1/4−ε) for all ε > 0:

D : L2(∂O) → D((−AD)1/4−ε). (C.5)

Proof See [399], Sect. 6.1. �
Similarly we consider the following problem with Neumann boundary condition:

{
�ξ y(ξ) = λy(ξ), ξ ∈ O
∂
∂n y(ξ) = γ(ξ), ξ ∈ ∂O,

(C.6)

where n is the outward unit normal vector and ∂
∂n is the normal derivative.

Theorem C.5 Let λ > 0. Given any s ≥ 0 and a boundary condition γ ∈ Hs(∂O),
there exists a unique solution Nλγ ∈ Hs+3/2(O) of the problem (C.6). Moreover, for
all s ≥ 0, the operator

{
Nλ : Hs(∂O) → Hs+3/2(O),

γ→Nλγ,
(C.7)

is continuous.

Proof See [404] Theorem 5.4, p. 165, Theorem 6.6, p. 177 and Theorem 7.3,
p. 187. �
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Definition C.6 The operator Nλ introduced in (C.7) is called the Neumann map.

Proposition C.7 Consider the following heat equation with zero Neumann bound-
ary condition

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂s y(s, ξ) = �ξ y(s, ξ), (s, ξ) ∈ (0, T ) × O,

∂
∂n y(s, ξ) = 0, (s, ξ) ∈ (0, T ) × ∂O,

y(0, ξ) = x(ξ), ξ ∈ O,

(C.8)

where the initial datum x belongs to L2(O). For s ≥ 0 denote by SN (s)x the solution
of (C.8) at time s. Then SN (s) is a C0-semigroup on L2(O). Its generator AN is given
by {

D(AN ) := {
x ∈ H 2(O) : ∂x

∂n = 0 on ∂O}

AN x := �x, x ∈ D(AN ).
(C.9)

Ifλ ≥ 0 then (AN−λI ) ismaximal dissipative, self-adjoint, and es(AN−λI ) is analytic.
If λ > 0 then (AN − λI ) is invertible and (AN − λI )−1 ∈ L(L2(O)).

Proof This is a standard result. For the proof of analyticity, see for instance [2]. �
Proposition C.8 For any ε > 0, the Neumann map Nλ introduced in (C.7) is con-
tinuous as a linear map between the spaces L2(∂O) and D((−AN + λI )3/4−ε):

Nλ : L2(∂O) → D((−AN + λI )3/4−ε). (C.10)

Proof See [399], Sect. 6.1. �
We remark that, see [399], Sect. 6.1, in fact we have

D((−AD)α) = H 2α(O), 0 < α <
1

4
,

D((−AD)α) = H 2α
0 (O), 0 < α <

3

4
,α 	= 1

4
, (C.11)

D((−AN + λI )α) = H 2α(O), 0 < α <
3

4
,λ > 0.

Moreover, for α ≥ 0,

|x |H 2α(O) ≤ Cα|(−AD)αx |, x ∈ D((−AD)α), (C.12)

|x |H 2α(O) ≤ Cα,λ|(−AN + λI )αx |, x ∈ D((−AN + λI )α), λ > 0. (C.13)

Remark C.9 The results above also hold in less regular domains, for instance when
O is a rectangular parallelepiped, see e.g. [399] Sect. 6. Examples of problems in
such domains are discussed, for instance, in Sects. 2.6.2, 4.3.1.5 and 4.8.3. �
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We also recall the Sobolev embeddings (see e.g. [1], Theorem 7.57).

Theorem C.10 Let O be a domain in R
d with C1 boundary, s > 0, 1 < p < +∞.

The following embeddings are continuous:

• If d > sp then Ws,p(O) ↪→ Lq(O) for p ≤ q ≤ dp/(d − sp).
• If d = sp then Ws,p(O) ↪→ Lq(O) for p ≤ q < +∞.
• If d < (s − j)p for some nonnegative integer j then Ws,p(O) ↪→ C j

b (O).

For more on Sobolev embeddings we refer to [1], Chaps.V and VII.

C.2 Non-zero Boundary Conditions, the Dirichlet Case

In this and in the following subsections, we show how to rewrite some classes
of parabolic equations with control and noise on the boundary using the infinite-
dimensional formalism.

We will always work on the time interval [t, T ] where t and T are such that
0 ≤ t < T . We consider the initial datum at time t instead of time 0 to be consistent
with the notation we use in Chap.2.

We consider the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂s y(s, ξ) = �ξ y(s, ξ) + f (s, ξ), (s, ξ) ∈ (t, T ) × O,

y(s, ξ) = γ(s, ξ), (s, ξ) ∈ (t, T ) × ∂O,

y(t, ξ) = x(ξ), ξ ∈ O.

(C.14)

Until the end of the section, H and 	 denote, respectively, the Hilbert spaces L2(O)

and L2(∂O), and AD is the operator defined in (C.4). Recall from Theorem C.1 that
the Dirichlet map D : 	 → H is continuous.

Lemma C.11 Assume that A is the generator of a C0-semigroup on H. Suppose
that η ∈ W 1,1(t, T ; H), x ∈ D(A) and

z(s) = e(s−t)Ax +
∫ s

t
e(s−r)Aη(r)dr, for s ∈ [t, T ].

Then z ∈ C1([t, T ], H) ∩ C([t, T ], D(A)) and

Az(s) = Ae(s−t)Ax +
∫ s

t
e(s−r)A d

dr
η(r)dr + e(s−t)Aη(t) − η(s), for s ∈ [t, T ].

Proof See [177] Lemma 13.2.2, Chap. 13, p. 242. �

Proposition C.12 Assume that y ∈ C∞([t, T ]×O) is a classical solution of (C.14).
Then, with X (s) = y(s, ·), s ∈ [t, T ], the solution can be written as
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X (s) = e(s−t)AD x − AD

∫ s

t
e(s−r)AD Dγ(r)dr +

∫ s

t
e(s−r)AD f (r)dr, s ∈ [t, T ].

(C.15)

Proof We follow a well-known procedure, see for instance [177] Chap. 13 or [403]
Chap. 9, Sect. 1.1.

Since y is smooth, by classical theory we have that Dγ(s) is smooth andmoreover
d
ds Dγ(s) = D d

ds γ(s) for t < s < T . In particular, the function

z(s) := X (s) − Dγ(s) for s ∈ [t, T ] (C.16)

is in C1((t, T ), H) ∩ C([t, T ], D(AD)) and

d

ds
z(s) = d

ds
X (s) − d

ds
Dγ(s) = �ξX (s) − �ξDγ(s) + �ξDγ(s)

− d

ds
Dγ(s) + f (s) = ADz(s) − D

d

ds
γ(s) + f (s),

where in the last equality we used that �ξDγ(s) = 0. Observe that the expression
ADz(s) is well defined because z(s) belongs to D(AD)while neither X (s) nor Dγ(s)
are contained in D(AD). In particular, z(·) is a strict solution (see [47], Definition
3.1, p. 129) of the following evolution equation in H :

{
d
ds z(s) = ADz(s) − D d

ds γ(s) + f (s)
z(t) = x − Dγ(t).

(C.17)

The strict solution of (C.17) can be written in the mild form (see e.g. [47]
Chap. II.1, Lemma 3.2, p. 135)

z(s) = e(s−t)AD [x − Dγ(t)] +
∫ s

t
e(s−r)AD

[
−D

d

dr
γ(r) + f (r)

]
dr, s ∈ [t, T ].

Therefore

X (s) = z(s) + Dγ(s)

=e(s−t)AD [x − Dγ(t)] +
∫ s

t
e(s−r)AD

[
−D

d

dr
γ(r) + f (r)

]
dr + Dγ(s), s ∈ [t, T ],

which, upon using Lemma C.11, yields, for s ∈ [t, T ],

X (s) = e(s−t)AD x − AD

∫ s

t
e(s−r)AD Dγ(r)dr +

∫ s

t
e(s−r)AD f (r)dr.

�
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Observe that Eq. (C.15) can be seen as a mild form of equation

{ d
ds X (s) = ADX (s) − ADDγ(s) + f (s)

X (t) = x ∈ H.
(C.18)

Define for ε > 0
GD := (−AD)1/4−εD. (C.19)

By (C.5), GD ∈ L(	, H). Thus (if γ(·) ∈ L1(t, T ;	))

AD

∫ s

t
e(s−r)AD Dγ(r)dr =

∫ s

t
(−AD)3/4+εe(s−r)ADGDγ(r)dr. (C.20)

Hence we can rewrite

X (s) = e(s−t)AD x −
∫ s

t
(−AD)3/4+εe(s−r)ADGDγ(r)dr +

∫ s

t
e(s−r)AD f (r)dr.

(C.21)

Notation C.13 Expression (C.21) is called the mild form of Eq. (C.18) (and of
(C.14)). �
Notation C.14 Weused the letter X for the unknown in the equation to be consistent
with the notation we use in Chap.2 where the variable y is only used for the equation
in the PDE form. �

Let Q ∈ L+(H)13 and let
(
�,F ,

{
F t

s

}
s∈[t,T ] ,P,WQ

)
be a generalized refer-

ence probability space.
We consider now the following stochastic parabolic equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy(s, ξ) = [
�ξ y(s, ξ) + f (s, y(s, ξ))

]
ds + g(s, y(s, ξ))dWQ(s)(ξ), on (t, T ) × O

y(s, ξ) = γ(s, ξ), on (t, T ) × ∂O
y(t, ξ) = x(ξ), on O

(C.22)
where f, g : [t, T ] × R × � → R and γ : [t, T ] × ∂O × � → R are appropriately
measurable functions.

Define b(s, y)(·) := f (s, y(s, ·)) and [σ(s, y)z](·) := g(s, y(s, ·))z(·) and con-
sider, for s ∈ [t, T ], the following integral equation

X (s) = e(s−t)AD x +
∫ s

t
e(s−r)ADb(r, X (r))dr +

∫ s

t
(−AD)3/4+εe(s−r)ADGDγ(r)dr

+
∫ s

t
e(s−r)ADσ(r, X (r))dWQ(r) P-a.e. (C.23)

13With the notation of Chap. 1, this means that we assume in this case 
 = H .
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Similarly to the deterministic case it can be viewed as themild formof the equation

{
dX (s) = [ADX (s) − ADDγ(s) + b(s, X (s))] ds + σ(s, X (s))dWQ(s)

X (t) = x ∈ H.

(C.24)

Notation C.15 Equation (C.23) is called the mild form of Eq. (C.22) (and of
Eq. (C.24)). Its solution is called mild solution of (C.22) (and of (C.24)) and is
defined in Definition 1.119, see Remark 1.120. Thanks to (C.19) we can rewrite the
term −ADD in (C.24) as (−AD)3/4+εGD in (C.23). �

Conditions under which some equations of the form (C.22) (and (C.24)) have
unique mild solutions are given in Theorem 1.141. If σ /∈ L2(
0, H) then the
stochastic term in (C.23) must be given proper interpretation and the same is also
true of (C.32).

C.3 Non-zero Boundary Conditions, the Neumann Case

The Neumann case is similar to the Dirichlet case which was explained in Sect.C.2.
We consider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂s y(s, ξ) = �ξ y(s, ξ) + f (s, ξ), (s, ξ) ∈ (t, T ) × O
∂
∂n y(s, ξ) = γ(s, ξ), (s, ξ) ∈ (t, T ) × ∂O
y(t, ξ) = x(ξ).

(C.25)

As before, we denote respectively by H and	 theHilbert spaces L2(O) and L2(∂O).
AN is the generator of the C0-semigroup associated to heat equations with zero Neu-
mann boundary conditions defined in (C.9), and λ > 0. Using the same arguments
as those in the proof of Proposition C.12 one can prove the following proposition.

Proposition C.16 If y ∈ C∞([t, T ] × O) is a classical solution of (C.25) then
X (s) := y(s, ·), s ∈ [t, T ], can be written as

X (s) = e(s−t)AN x − (AN − λI )
∫ s

t
e(s−r)AN Nλγ(r)dr

+
∫ s

t
e(s−r)AN f (r)dr.

(C.26)

The previous expression can be seen as the mild form of the equation
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{
d
ds X (s) = AN X (s) + (λI − AN )Nλγ(s) + f (s)
X (t) = x ∈ H.

(C.27)

If γ ∈ L1(t, T ;	), thanks to (C.10) we have

− (AN − λI )
∫ s

t
e(s−r)AN Nλγ(r)dr =

∫ s

t
(λI − AN )1/4+εe(s−r)AN GNγ(r)dr,

(C.28)
where

GN := (λI − AN )3/4−εNλ ∈ L(	, H). (C.29)

Therefore we can rewrite (C.26) as

X (s) = e(s−t)AN x +
∫ s

t
(λI − AN )1/4+εe(s−r)AN GNγ(r)dr

+
∫ s

t
e(s−r)AN f (r)dr, , s ∈ [t, T ]. (C.30)

Notation C.17 Equation (C.30) is called the mild form of (C.25) and (C.27). �

To define a mild form of the stochastic parabolic equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dy(s, ξ) = [
�ξ y(s, ξ) + f (s, y(s, ξ))

]
ds + g(s, y(s, ξ))dWQ(s)(ξ), on (t, T ) × O

∂
∂n y(s, ξ) = γ(s, ξ), on (t, T ) × ∂O
y(t, ξ) = x(ξ), on O

(C.31)
we consider the integral equation on s ∈ [t, T ]

X (s) = e(s−t)AN x +
∫ s

t
e(s−r)AN b(r, X (r))dr +

∫ s

t
(λI − AN )1/4+εe(s−r)AN GNγ(r)dr

+
∫ s

t
e(s−r)AN σ(r, X (r))dWQ(r) P-a.e., (C.32)

where b(s, y)(·) := f (s, y(·)) and [σ(s, y)z](·) := g(s, y(·))z(·). Equation (C.32)
is in fact the mild form of the problem

{
dX (s) = [AN X (s) + (λI − AN )Nλγ(s) + b(s, X (s))] ds + σ(s, X (s))dWQ(s)

X (t) = x .
(C.33)

Notation C.18 Equation (C.32) is called the mild form of Eq. (C.31) (and of
Eq. (C.33)) and its solution is called mild solution. Thanks to (C.29) we can rewrite
the term (λI − AN )Nλ in (C.33) as (λI − AN )1/4+εGN in (C.32). �
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Conditions under which some equations of the form (C.31) have unique mild
solutions are given in Theorem 1.141.

C.4 Boundary Noise, Neumann Case

Let H,	, Q, and
(
�,F ,

{
F t

s

}
s∈[t,T ] ,P,WQ

)
be defined as in Sect.C.2. We con-

sider the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂s y(s, ξ) = �ξ y(s, ξ) + f (s, y(s, ξ)), (s, ξ) ∈ (t, T ) × O
∂
∂n y(s, ξ) = h(s, y(s, ξ)) dWQ (s)

ds + g(s, ξ), (s, ξ) ∈ (t, T ) × ∂O
y(t, ξ) = x(ξ)

(C.34)

where f, h : [t, T ] × R × � → R and g : [t, T ] × ∂O × � → R are appropriately
measurable functions.

As in Sect.C.3, GN := (λI − AN )3/4−εNλ ∈ L(	, H), λ > 0, AN is defined by
(C.9) and Nλ by (C.7).

To rewrite the equation in an infinite-dimensional setting in H , we follow the
approach used in Sects.C.2 and C.3. The idea is to consider formally the boundary
term as a (particularly irregular) boundary condition corresponding to γ appear-
ing in (C.25). So, defining as before b(s, y)(·) := f (s, y(·)) and [σ(s, y)z](·) :=
h(s, y(·))z(·), we define the mild form of (C.34), for s ∈ [t, T ], as

X (s) = e(s−t)AN x+
∫ s

t
e(s−r)AN b(r, X (r))dr

+
∫ s

t
(λI − AN )1/4+εe(s−r)AN GNg(r)dr

+
∫ s

t
(λI − AN )1/4+εe(s−r)AN GNσ(r, X (r))dWQ(r) P-a.e. (C.35)

The above expression can also be referred to as the mild form of the infinite-
dimensional problem

⎧
⎪⎪⎨

⎪⎪⎩

dX (s) = [AN X (s) + (λI − AN )Nλg(s) + b(s, X (s))] ds

+(λI − AN )Nλσ(s, X (s))dWQ(s)

X (t) = x ∈ H,

(C.36)

where, thanks to (C.29), the term (λI − AN )Nλg(s) is rewritten as (λI − AN )1/4+ε

GNg(s) and the stochastic term is rewritten similarly.



852 Appendix C: Parabolic Equations with Non-homogeneous Boundary Conditions

Notation C.19 The solution of (C.35) is called the mild solution of (C.34) (and
(C.36)). �

Theorem 1.141 provides conditions under which some equations of the form
(C.34) (and (C.36)) have unique continuous mild solutions.

C.5 Boundary Noise, Dirichlet Case

To apply the approach of Sect.C.4 to the Dirichlet-boundary-noise version of the
problem (C.34) we would need to give a meaning to the term

(−AD)3/4+ε

∫ s

t
e(s−r)ADGDσ(r, X (r))dWQ(r),

where AD and GD ∈ L(	, H) are introduced respectively in (C.4) and (C.19).
However, estimate (B.18) does not allow us to prove the convergence of the integral

∫ T

t

∥∥(−AD)3/4+εe(T−r)ADGD

∥∥2
L2(	,H)

dr.

One way to resolve this problem is to look for a solution of the stochastic PDE in
the completion of H in the weaker norm |x |∗ := |(−AD)−αx | for some α > 0. It is,
roughly speaking, a space of distributions. This approach was used, for example, in
[175], see in particular Proposition 3.1, p. 176.

Another way, used, for example, by [9, 65, 225], is to look for a solution in a
weighted L2 space. Consider for example a simple case of the following problem on
the positive half-line

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
∂s y(s, ξ) = ∂2

∂ξ2
y(s, ξ) + f (s, y(s, ξ)), (s, ξ) ∈ (t, T ) × R

+

y(s, 0) = h(s, y(t, 0)) dW (s)
ds + g(s), s ∈ (t, T )

y(t, ξ) = x(ξ),

(C.37)

where W is a one-dimensional Brownian motion.
Define the weight η(ξ) := min{1, ξ1+θ} for some θ > 0 and the weighted L2

space

L2
η :=

{
p : [0,+∞) → R measurable :

∫ +∞

0
p2(ξ)η(ξ)dξ < ∞

}
.

It is a real separable Hilbert space. The inner product in L2
η is given by
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〈p, q〉L2
η
:=

∫ +∞

0
p(ξ)q(ξ)η(ξ)dξ

and it induces the usual norm

|p|L2
η
=

(∫ +∞

0
p(ξ)2η(ξ)dξ

)1/2

.

Proposition C.20 The heat semigroup with zero Dirichlet-boundary conditions
extends to a C0-semigroup on L2

η. The semigroup is analytic. Denote its genera-
tor by Aη. For λ > 0, (λI − Aη) is invertible and the Dirichlet map

Dλa = φ ⇐⇒
{

(λI − ∂2
x )φ[ξ] = 0 for all ξ > 0

φ(0) = a

is linear and continuous from R to D((λI − Aη)
α) for all α ∈ [0, 1/2 + θ/4).

Proof See Proposition 2.1 and Lemma 2.2 in [225]. �

Using the abovepropositionwe canproceed in a fashion similar to that of Sect.C.4.
We fix λ > 0 and we choose

αθ := 1

2
+ θ

8
.

We define Gη := (λI − Aη)
αθ Dλ ∈ L(R, L2

η) and rewrite (C.37) as an integral
equation on s ∈ [t, T ]

X (s) = e(s−t)Aη x+
∫ s

t
e(s−r)Aηb(r, X (r))dr

+
∫ s

t
(λI − Aη)

(1−αθ)e(s−r)AηGηg(r)dr

+
∫ s

t
(λI − Aη)

(1−αθ)e(s−r)AηGησ(r, X (r))dWQ(r) P-a.e. (C.38)

This integral equation is in fact themild form of the evolution equation in L2(t, T ;R)

⎧
⎪⎪⎨

⎪⎪⎩

dX (s) = [
AηX (s) + (λI − Aη)

(1−αθ)Gηg(s) + b(s, X (s))
]
ds

+(λI − Aη)
(1−αθ)Gησ(s, X (s))dWQ(s)

X (t) = x ∈ L2(t, T ;R),

(C.39)
and we remark that (λI − Aη)

(1−αθ)Gη = (λI − Aη)Dλ.
One can use Theorem 1.141 to obtain the existence and uniqueness of a mild

solution X (·) of (C.39) which, similarly to Notation C.19, is also called mild solution
of (C.37).



Appendix D
Functions, Derivatives and Approximations

In this appendix we collect some standard definitions related to functions which are
used in the text and are recalled here for the reader’s convenience. In the second
part of this appendix we recall the definition and some properties of the sup-inf
convolutions.

D.1 Continuity Properties, Modulus of Continuity

Definition D.1 (Monotonicity) Let I ⊂ R. We say that a function f : I → R is
increasing (respectively, decreasing) on I if for all x1, x2 ∈ I

x1 < x2 =⇒ f (x1) ≤ f (x2) (respectively, f (x1) ≥ f (x2)).

Such functions are also called non-decreasing (respectively, non-increasing).
We say that a function f : I → R is strictly increasing (respectively, strictly

decreasing) if for all x1, x2 ∈ I

x1 < x2 =⇒ f (x1) < f (x2) (respectively, f (x1) > f (x2)).

Definition D.2 (Modulus) We say that a function ρ : [0,+∞) → [0,+∞) is a
modulus (of continuity) if ρ is continuous, increasing, subadditive, and ρ(0) = 0.

In the literature the subadditivity property in the definition of a modulus is not
always required and continuity is sometimes required only at 0. The following the-
orem shows that one can use Definition D.2 without loss of generality.

Theorem D.3 Consider η : R+ → R
+, increasing, such that lims→0 η(s) = η(0) =

0, and

lim
s→∞

η(s)

s
< +∞.

© Springer International Publishing AG 2017
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Then there exists a modulus ρ (in the sense of Definition D.2) such that ρ(s) ≥ η(s)
for all s ∈ R

+.

Proof See Theorem 1, p. 406 in [17]. �

The modulus ρ in Theorem D.3 can also be assumed to be concave. Thus we will
always assume that a modulus is concave.

Remark D.4 Thanks to the subadditivity, we have the following property for any
modulus ρ(·): given any ε > 0, there exists a Cε > 0 such that

ρ(r) ≤ ε + Cεr for every r ≥ 0. (D.1)

�

Definition D.5 (Local Modulus) A function ρ : [0,+∞) × [0,+∞) → [0,+∞)

is called a local modulus if the following three conditions are satisfied:

(i) ρ is continuous and increasing in both variables.
(ii) ρ is subadditive in the first variable.
(iii) ρ(0, r) = 0 for every r ≥ 0.

Definition D.6 Consider two Banach spaces E0 and E1. Given ϕ ∈ UC(E0, E1),
we define its modulus of continuity ρ[ϕ](·) as follows:

ρ[ϕ](ε) := sup
x,y∈E0

{|ϕ(x) − ϕ(y)|E1 : |x − y|E0 ≤ ε
}
, for ε ≥ 0. (D.2)

Of course |ϕ(x) − ϕ(y)|E1 ≤ ρ[ϕ](|x − y|E0) for every x, y ∈ E0. Any modulus
with such property is also called amodulus of continuity of ϕ. In particular, for every
ϕ ∈ UC(E0, E1) we can always find two positive constants C0,C1 such that

|ϕ(x)|E1 ≤ C0 + C1|x |E0 , for every x ∈ E0.

Definition D.7 (Local boundedness from above (below)) Let G ⊂ E0. A function
u : G → R is said to be locally bounded from above (respectively, below) if, for
every R > 0, u is bounded from above (below) on G ∩ (BE0(0, R)). u is said to be
locally bounded if it is both locally bounded from above and from below.

Definition D.8 (Local uniform continuity) Let G ⊂ E0. A function u : G → R

is said to be locally uniformly continuous if, for every R > 0, its restriction to
G ∩ (BE0(0, R)) is uniformly continuous.

Definition D.9 (Local uniform convergence) Given G ⊂ E0, and un, u ∈ C(G), we
say that un converge locally uniformly to u if, for every R > 0, the restrictions of un
to G ∩ (BE0(0, R)) converge uniformly to the restriction of u to G ∩ (BE0(0, R)).
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Definition D.10 (Upper/lower semicontinuous envelope) Let G ⊂ E0. Consider a
function u : G → R. Its upper (respectively, lower) semicontinuous envelope is
defined as follows:

⎧
⎪⎨

⎪⎩

u∗ : G → R

u∗(x) := lim sup
y∈G
y→x

u(y) (respectively, , u∗(x) := lim inf
y∈G
y→x

u(y)).

Definition D.11 (Strict maximum/minimum) Let G ⊂ E0. We say that a function
u : G → R ∪ {−∞} (respectively, u : G → R ∪ {+∞}) has a strict maximum
(respectively, strict minimum) at x ∈ G if u has a maximum (respectively, minimum)
at x and whenever xn ∈ G are such that u(xn) → u(x) then xn → x . We define a
strict local maximum and a strict local minimum similarly.

Definition D.12 (Convex set) Let E be a real Banach space. A subsetG⊂E is called
convex if, for every x, y ∈ G and λ ∈ [0, 1], λx + (1 − λ)y ∈ G.

Definition D.13 (Convex and strictly convex function) LetG be a convex subset of a
real Banach space E . A function f : G → R∪{+∞} is called convex if f (x) < +∞
for at least one x ∈ E and if, for every x, y ∈ G and λ ∈ [0, 1],

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

A function f : G → R ∪ {+∞} such that f (x) < +∞ for at least one x ∈ E is
called strictly convex if, for all pairs of distinct points x, y in G with f (x) < +∞
and f (y) < +∞,

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y), for anyλ ∈ (0, 1).

A function f is called concave (respectively, strictly concave) if − f is convex
(respectively, strictly convex).

We remark that a function satisfying Definition D.13 is usually called a proper
convex function in the literature.

D.2 Fréchet and Gâteaux Derivatives

Throughout this section Y, Z are Banach spaces, X is an open subset of Z , and H is
a real separable Hilbert space with inner product 〈·, ·〉.
Definition D.14 (Fréchet derivative) A function u : X → Y is said to be Fréchet
differentiable at a point x̄ ∈ X if there exists a linear functional Du(x̄) ∈ L(Z , Y )

such that

lim|x−x̄ |Z→0

|u(x) − u(x̄) − Du(x̄)(x − x̄)|Y
|x − x̄ |Z = 0.
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Notation D.15 We consider a continuous function u : X → Y having Fréchet
derivative at all x ∈ X . If the function

{
X → L(Z , Y )

x̄→Du(x̄)

is continuous (L(Z , Y ) is endowed with the operator norm) then u is said to be
continuously (Fréchet) differentiable on X . �

The k-th order Fréchet derivative Dku of u is defined inductively

D1u = Du, Dku = D(Dk−1 f ), k = 1, 2, 3, . . .

(see e.g. [266] p. 186). If Dku is defined at a point x̄ ∈ X then we say that u is k times
Fréchet differentiable at x̄ and we call Dku(x̄) the k-th Fréchet derivative of u at x̄ .
Clearly Dku(x̄) ∈ L(Z ,L(Z , . . . ,L(Z , Y )) . . . ). Since this space is isometrically
isomorphic to Lk(Z , Y ), we will always consider Dku(x̄) as an element of this last
space endowed with its natural norm ‖T ‖Lk (Z ,Y ) := supz∈Zk ,z 	=0

|T (z1,...,zk )|Y
|(z1,...,zk )|Zk . If u

is k times Fréchet differentiable at x̄ , the k-linear form Dku(x̄) is symmetric, i.e.
Dku(x̄)(z1, ..., zk) = Dku(x̄)(zσ(1), ..., zσ(k)) for every permutation σ(1), ...,σ(k)
of 1, ..., k (see e.g. [266], statement 3.5.7, p. 192).

If X is an open subset of H and Y = R then thanks to the Riesz Representation
Theorem, we can identify the linear functional Du(x̄) with the element y ∈ H such
that 〈y, x〉 = Du(x̄)(x) for all x ∈ H . Abusing the notation slightly, we will denote
y by Du(x̄). The second-order derivative D2u(x̄) can be identified with a symmetric
bilinear form in L2(H,R). So we can identify D2u(x̄) with the unique T ∈ S(H)

having the property that

〈T x, y〉 = D2u(x̄)(x, y) for all x, y ∈ H.

With an abuse of notation we will again denote T by D2u(x̄).
The following is a special case of the Generalized Taylor’s Theorem.

Theorem D.16 Let the function f : U (x) ⊂ H → R be defined on an open
neighborhood U (x), of x, and let f ∈ C2(U (x)). Then, for all h in a neighborhood
of the origin in H, we have

f (x + h) = f (x) + 〈Df (x), h〉 + 1

2
〈D2 f (x)h, h〉 + o(|h|2).

Proof See [586], p. 148. �
We now introduce the notion of Gâteaux derivative.

Definition D.17 (Gâteaux derivative) A function u : X → Y is said to be Gâteaux
differentiable at a point x̄ ∈ X if there exists a linear functional ∇u(x̄) ∈ L(Z , Y )

such that, for any y ∈ Z with |y|Z = 1,



Appendix D: Functions, Derivatives and Approximations 859

lim
t→0+

|u(x̄ + t y) − u(x̄) − t∇u(x̄)(y)|Y
t

= 0. (D.3)

Theorem D.18 Let the function f : U (x) ⊂ H → R be defined on an open, convex
neighborhood U (x) of x. Consider h ∈ Z such that x + h ∈ U (x). Suppose that f
is Gâteaux differentiable at any point x ∈ U (x) and that the mapping

y→∇ f (y)(h)

is continuous on U (x). Then

f (x + h) = f (x) +
∫ 1

0
∇ f (x + th)(h)dt.

Proof See Theorem 4.A, p. 148 of [586]. �

We finally recall a useful lemma on continuity of derivatives or real functions and
a version of the mean value theorem for Banach space-valued functions.

Lemma D.19 If a continuous real function f has a continuous right derivative on
an interval [0, a) then it is of class C1 on [0, a).

Proof See Lemma 3.2.4, p. 51 of [179]. �

Theorem D.20 (Mean value theorem) Let −∞ < a < b < +∞. Let f : [a, b] →
Y be a continuous map into the Banach space Y . Suppose that f ′(t) exists for all
t ∈ [a, b]; here f ′(a) and f ′(b) are one-sided limits. Then the following are true:

f (b) − f (a) ≤ (b − a) sup
a<t<b

| f ′(t)|Y ,

f (b) − f (a) − (b − a) f ′(t0) ≤ (b − a) sup
a<t<b

| f ′(t) − f ′(t0)|Y , ∀t0 ∈ [a, b].

If f ′ is also continuous on [a, b] then

f (b) − f (a) =
∫ b

a
f ′(t)dt.

Proof See Proposition 3.5, p. 76 of [586]. �

Other types of derivatives are also used in this book. The basic material on direc-
tional derivatives can be found in Sect. 6.1.2. The concepts of G-directional deriv-
ative, G-Gâteaux derivative and G-Fréchet derivative, used in Chaps. 4 and 5, are
introduced in Sect. 4.2.1.
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D.3 Inf-Sup Convolutions

We recall here some results from [401] on approximations of bounded uniformly
continuous functions in Hilbert spaces. Consider a real and separable Hilbert space
H with inner product 〈·, ·〉, and dim(H) = +∞. Since closed balls are not compact in
H , functions in Cb(H) cannot be approximated uniformly on bounded sets by func-
tions inUCb(H) and consequently by functions inC1

b(H). It was proved in [393] that
UCb(H) ∩ C∞(H) is dense in UCb(H). However, it was observed in [457] that, in
contrast to what we have in the finite-dimensional case,UC2

b (H) is not a dense sub-
set of UCb(H). Nevertheless, the inclusion UC1,1

b (H) ⊂ UCb(H) remains dense.
Lasry and P.L. Lions introduced in [401] an explicit way to approximate functions in
UCb(H) by elements of UC1,1

b (H), the so-called inf-sup-convolutions and sup-inf-
convolutions. These explicit approximations have many other interesting properties,
for instance they preserve order and commute with translations. More information
about them can be found in [179, 401]. We also remark that P.L. Lions proved in
[410] that functions in UC1,1

b (H) can be uniformly approximated by functions in
UC1,1

b (H) with uniformly continuous second-order partial derivatives, for which
Itô’s formula can be applied (see the proof of Lemma IV.1 and Lemma III.2 in
[410]). The technique of [410] is based on limits of mollifications over increasing
finite-dimensional subspaces of H . Also in [493, 494] it is proved that the space
UC2

s (H), the subspace of UC1,1
b (H) admitting a weakly uniformly continuous sec-

ond Hadamard derivative, is dense in UCb(H).

Definition D.21 (Semiconvex and semiconcave functions) A function u : H → R

is said to be semiconcave (respectively, semiconvex) if there exists a constant M ≥ 0
such that

x→u(x) − M |x |2 (respectively, x→u(x) + M |x |2)

is concave (respectively, convex).

Definition D.22 (Sup-convolution and Inf-convolution) Given u ∈ Cb(H) and ε >

0, we define the inf-convolution of u as

uε(x) := inf
y∈H

(
u(y) + |x − y|2

2ε

)
, x ∈ H

and its sup-convolution as

uε(x) := sup
y∈H

(
u(y) − |x − y|2

2ε

)
, x ∈ H.

We set u0(x) = u0(x) := u(x).

Proposition D.23 For all ε, δ ≥ 0 and u ∈ UCb(H), uε, uε ∈ UCb(H), and
(uε)δ = uε+δ, (uε)δ = uε+δ . Moreover, for all u, v ∈ UCb(H) and ε > 0, we have
the following properties:
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(1) ‖uε − vε‖0 ≤ ‖u − v‖0 and ‖uε − vε‖0 ≤ ‖u − v‖0.
(2) ρ[uε] ≤ ρ[u] and ρ[uε] ≤ ρ[u].
(3) limε→0 uε = u and limε→0 uε = u in UCb(H), more precisely

‖uε − u‖0 ≤ ρ[u](2√ε‖u‖0) and ‖uε − u‖0 ≤ ρ[u](2√ε‖u‖0).

(4) x→uε(x) − |x |2
2ε is concave.

(5) x→uε(x) + |x |2
2ε is convex.

(6) uε and uε are Lipschitz continuous, and, for all x, y ∈ H,

|uε(x) − uε(y)|
|x − y| ,

|uε(x) − uε(y)|
|x − y| ≤ 2

√‖u‖0√
ε

.

Proof Most of the claims are proved in [179], Propositions C.3.2, C.3.3, and C.3.4.
We sketch the proof of (6) for uε.

Let x, y ∈ H . We define the function v : R → R by

v(t) := uε(x + t (y − x)).

Since uε is semiconvex, v is semiconvex and hence locally Lipschitz and differen-
tiable a.e. Let 0 < t̄ < 1 be a point of differentiability of v and let ϕ ∈ C1(R) be
such that v − ϕ has a strict maximum at t̄ . By Theorem 3.25, for every n there are
an ∈ R, pn ∈ H, |an| + |pn| < 1/n such that

u(z) − |x + t (y − x) − z|2
2ε

− ϕ(t) + 〈pn, z〉 + ant (D.4)

has a global maximum over [0, 1]× H at some point (tn, zn). Since the maximum of
v − ϕ at t̄ was strict, it is easy to see that we must have tn → t̄ and |zn| ≤ C, n ∈ N

for some C . Moreover, setting z = zn and differentiating the function in (D.4) with
respect to t we obtain

Dϕ(tn) = 〈x + tn(y − x) − zn, x − y〉
ε

+ an. (D.5)

Taking z = x + tn(y − x) we get, since (tn, zn) maximizes (D.4),

u(x + tn(y− x))+〈pn, x + tn(y− x)〉 ≤ u(zn)− |x + tn(y − x) − zn|2
2ε

+〈pn, zn〉,

which implies, for some C1 > 0 depending on the norm of x and y,

|x + tn(y − x) − zn |2
2ε

≤ u(zn)−u(x+ tn(y−x))+〈pn, zn−x− tn(y−x)〉 ≤ 2‖u‖0+ C1

n
.
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Using this and letting n → +∞ in (D.5) we thus obtain

|Dϕ(t̄)| ≤ 2
√‖u‖0√

ε
|y − x |. (D.6)

We can thus conclude that

|uε(y) − uε(x)| = |v(1) − v(0)| ≤
∫ 1

0
|v′(t)|dt ≤ 2

√‖u‖0√
ε

|y − x |.

�

We remark that the above proof shows that one can in fact obtain

|uε(y) − uε(x)| ≤ tε√
ε
|y − x |,

where tε is defined in Proposition D.26.
We also remark that it follows from semiconvexity of uε that if v′(t) exists, we

must have

v′(t) = 〈p, y − x〉 for every p ∈ D−uε(x + t (y − x)),

where D−uε(x+t (y−x)) is the subdifferential of uε at (x+t (y−x)) (see Definition
E.1). Moreover, D−uε(z) is non-empty for every z. In fact, for a semiconvex function
w : H → R,

D−w(z) = conv{p : Dw(zn) ⇀ p, zn → z}, (D.7)

where the zn above are points of Fréchet differentiability of w (see [67], p. 522).
Lipschitz functions on H are Fréchet differentiable on a dense subset of H by Preiss’s
theorem.

Finally, we remark that if uε is differentiable at some point x̄ then Duε(x̄) =
(ȳ − x̄)/ε, where ȳ is the unique point such that

uε(x̄) = u(ȳ) − |x̄ − ȳ|2
2ε

. (D.8)

To show this let ϕ ∈ C1(H) be such that uε − ϕ has a global strict maximum at
x̄ and ϕ(x) = |x |2 if |x | is large enough. By Theorem 3.25, for every n there are
pn, qn ∈ H, |pn| + |qn| < 1/n such that

u(y) − |x − y|2
2ε

− ϕ(x) + 〈pn, x〉 + 〈qn, y〉 (D.9)

has a global maximum over H × H at some point (xn, yn). Since the maximum of
uε − ϕ at x̄ was strict, it is easy to see that we must have xn → x̄ and
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u(yn) − |xn − yn|2
2ε

→ uε(x̄)

as n → +∞. Moreover, setting y = yn and differentiating the function in (D.9) with
respect to x we obtain

Dϕ(xn) = − xn − yn
ε

+ pn,

which implies that limn→+∞ yn = ȳ for some point ȳ,

Duε(x̄) = Dϕ(x̄) = ȳ − x̄

ε
, (D.10)

and (D.8) is satisfied. Since (D.10) holds for every point ȳ satisfying (D.8), it must
be unique.

Definition D.24 (Inf-sup and sup-inf-convolutions) Given ε > 0 and a function
u ∈ Cb(H), we define the inf-sup convolution (respectively, sup-inf-convolution) of
u as

uε := (uε)
ε
2 (respectively,uε := (uε) ε

2
).

More explicitly we have, for x ∈ H ,

uε(x) = sup
z∈H

inf
y∈H

(
u(y) + 1

2ε
|z − y|2 − 1

ε
|z − x |2

)

(respectively,

uε(x) = inf
z∈H sup

y∈H

(
u(y) − 1

2ε
|z − y|2 + 1

ε
|z − x |2

)
.)

Proposition D.25 The inf-sup-convolution and the sup-inf-convolution preserve the
order. In other words, given u, v ∈ UCb(H) such that

u(x) ≥ v(x), for all x ∈ H,

we have uε(x) ≥ vε(x) and uε(x) ≥ vε(x) for all x ∈ H. Moreover, the inf-sup-
convolution and the sup-inf-convolution commute with translations, i.e. for every y ∈
H and translation τy : x→x − y, we have (τyu)ε(x) = (τyuε)(x) and (τyu)ε(x) =
(τyuε)(x) for all x ∈ H.

Proof See [401]. �

Proposition D.26 Let u ∈ UCb(H). Let tε be the maximum positive root of the
equation

t2ε = 2ερ[u](tε),
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which implies that tεε−1/2 → 0 as ε → 0. Then uε and uε belong to UC1,1
b (H) and,

for all x, y ∈ H, the following properties hold:

(1) inf y∈H u(y) ≤ uε(x) ≤ u(x) ≤ uε(x) ≤ supy∈H u(y).
(2) |uε(x) − uε(y)| ≤ ρ[u](|x − y|) and |uε(x) − uε(y)| ≤ ρ[u](|x − y|).
(3) ‖uε − u‖0, ‖uε − u‖0 ≤ ρ[u](tε).
(4) ‖Duε‖0, ‖Duε‖0 ≤ tε

ε
.

(5) |Duε(x) − Duε(y)|, |Duε(x) − Duε(y)| ≤ 2
ε
|x − y|.

Proof See [401], pp. 260–261. �

Remark D.27 In fact, x→uε(x) − |x |2
2ε is concave and x→uε(x) + |x |2

ε
is convex.

Similarly x→uε(x) − |x |2
ε

is concave and x→uε(x) + |x |2
2ε is convex. �

The inf-sup and sup-inf-convolutions can also be used to approximate more gen-
eral functions.

Proposition D.28 If u ∈ C(H) and there exists a C > 0 such that |u(x)| ≤
C(1 + |x |2) then, for all ε small enough, the inf-sup convolution uε and the sup-inf
convolution uε are well defined, they belong to C1,1(H) and they converge pointwise
to u when ε → 0. Moreover, if u is locally uniformly continuous then uε and uε

converge to u locally uniformly.

Proof See [401], p. 261 (iii). �

We remark that to obtain pointwise convergence in the above proposition one can
replace u ∈ C(H) by u ∈ USC(H) for uε, and by u ∈ LSC(H) for uε.

D.4 Two Versions of Gronwall’s Lemma

We recall two versions of Gronwall’s Lemma. The first is a well-known result while
the second is more specialized. (See e.g. [219] or [266] pp. 95–97 for similar versions
of Gronwall’s Lemma).

Proposition D.29 (Gronwall’s Lemma 1) Let T ∈ [0,+∞) ∪ {+∞} and I =
[t0, T ). Let a(·) be a nonnegative, measurable, increasing function on I . Let b(·) be
a non-negative, locally integrable function on I . Suppose that u(·) is a non-negative
function such that b(·)u(·) is locally integrable on I . Assume also that

u(s) ≤ a(s) +
∫ s

t0

b(r)u(r)dr, for a.e. s ∈ I. (D.11)

Then

u(s) ≤ a(s) exp

(∫ s

t0

b(r)dr

)
, for a.e. s ∈ I.
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Proof Define

v(s) = exp

(
−

∫ s

t0

b(r)dr

)∫ s

t0

b(r)u(r)dr, s ∈ I.

Then, for a.e. s ∈ I , v′(s) exists and

v′(s) =
(
u(s) −

∫ s

t0

b(r)u(r)dr

)
b(s) exp

(
−

∫ s

t0

b(r)dr

)
.

So, using (D.11) and integrating, we have

v(s) ≤
∫ s

t0

a(r)b(r) exp

(
−

∫ r

t0

b(τ )dτ

)
dr.

Now, since ∫ s

t0

b(r)u(r)dr = v(s) exp

(∫ s

t0

b(r)dr

)
, s ∈ I,

by (D.11) we get

u(s) ≤ a(s) +
∫ s

t0

b(r)u(r)dr = a(s) + exp

(∫ s

t0

b(r)dr

)
v(s)

≤ a(s) + exp

(∫ s

t0

b(r)dr

)∫ s

t0

a(r)b(r) exp

(
−

∫ r

t0

b(τ )dτ

)
dr

= a(s) +
∫ s

t0

a(r)b(r) exp

(∫ s

r
b(τ )dτ

)
dr.

Since the function a(·) is increasing the above implies

u(s) ≤ a(s) +
∫ s

t0

a(s)b(r) exp

(∫ s

r
b(τ )dτ

)
dr

= a(s) +
(

−a(s) exp

(∫ s

r
b(τ )dτ

))∣∣∣∣

r=s

r=t0

= a(s) exp

(∫ s

t0

b(r)dr

)
,

which is the claim. �

Proposition D.30 (Gronwall’s Lemma 2) Let T ∈ [0,+∞)∪{+∞}, b ≥ 0, β > 0.
Let a(·) be a non-negative, locally integrable function on [0, T ). Suppose that u(·)
is a non-negative, locally integrable function on [0, T ) such that
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u(s) ≤ a(s) + b
∫ s

0
(s − r)β−1u(r)dr, for a.e. s ∈ [0, T ].

Then

u(s) ≤ a(s) + θ

∫ s

0
E ′

β(θ(s − r))a(r)dr, for a.e. s ∈ [0, T ],

where, for s > 0, �(s) := ∫ +∞
0 r s−1e−r dr , and θ and Eβ(s) are defined as

θ := (b�(β))1/β

and

Eβ(s) :=
+∞∑

n=0

snβ

�(nβ + 1)
.

The function E ′
β(s) = d

ds Eβ(s) has the following properties: (i) E ′
β(s) = sβ−1

�(β)
+

o(sβ−1) as s → 0+, (ii) E ′
β(s) = es

β
+ o(es) as s → +∞.

As a particular case, if a, b, T ∈ R
+ and α,β ∈ [0, 1), there exists an M ∈ R

(depending on b, T , α and β) such that any integrable function u : [0, T ] → R such
that

0 ≤ u(s) ≤ as−α + b
∫ s

0
(s − r)−βu(r)dr, for a.e. s ∈ [0, T ],

satisfies
0 ≤ u(s) ≤ aMs−α, for a.e. s ∈ [0, T ].

Proof See Lemma 7.1.1, Chap. 7, p. 188 of [341]. The second claim is again in [341],
Sect. 1.2.1, p. 6. �



Appendix E
Viscosity Solutions in RN

We collect some basic definitions and results about viscosity solutions in finite-
dimensional spaces. We refer the reader to [139] and the books [40, 41, 263] for
more information on the subject.

E.1 Second Order Jets

Let O be an open subset of RN .

Definition E.1 (Sub- and superdifferentials) Let u : O → R be an upper semicon-
tinuous function. The superdifferential of u at a point x̄ ∈ O is defined as

D+u(x̄) :=
{

p ∈ R
N : lim sup

y→x̄,y∈O
u(y) − u(x̄) − 〈p, y − x̄〉

|y − x̄ | ≤ 0

}

.

Similarly, given a lower semicontinuous function u : O → R, the subdifferential of
u at a point x̄ ∈ O is defined as

D−u(x̄) :=
{
p ∈ R

N : lim inf
y→x̄,y∈O

u(y) − u(x̄) − 〈p, y − x̄〉
|y − x̄ | ≥ 0

}
.

Lemma E.2 Let u : O → R be an upper semicontinuous function, and x̄ ∈ O.
Then p ∈ D+u(x̄) if and only if there exists a function φ ∈ C1(RN ) such that u − φ
attains a strict global maximum at x̄ and

(φ(x̄), Dφ(x̄)) = (u(x̄), p).

© Springer International Publishing AG 2017
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Similarly, if u : O → R is a lower semicontinuous function, and x̄ ∈ O, then
p ∈ D−u(x̄) if and only if there exists a function φ ∈ C1(RN ) such that u−φ attains
a strict global minimum at x̄ and

(φ(x̄), Dφ(x̄)) = (u(x̄), p).

Proof See [575], Lemma 2.7, p. 173 or [220], p. 544. �

We remark that Definition E.1 is exactly the same and Lemma E.2 is true if RN

is replaced by a real Hilbert space.

Definition E.3 (Second order sub- and superjets) Let u : O → R be an upper
semicontinuous function, and x̄ ∈ R

N . The set

J 2,+u(x̄) :=
{
(p, X) ∈ R

N × S(RN ) :

lim sup
y→x̄,y∈O

u(y) − u(x̄) − 〈p, y − x̄〉 − 1
2 〈X (y − x̄), (y − x̄)〉

|y − x̄ |2 ≤ 0

}

is called the second-order superjet of u at x̄ . Similarly, given a lower semicontinuous
function u : O → R, and x̄ ∈ O, the set

J 2,−u(x̄) :=
{
(p, X) ∈ R

N × S(RN ) :

lim inf
y→x̄,y∈O

u(y) − u(x̄) − 〈p, y − x̄〉 − 1
2 〈X (y − x̄), (y − x̄)〉

|y − x̄ |2 ≥ 0

}

is called the second-order subjet of u at x̄ .

Lemma E.4 Let u : O → R be an upper semicontinuous function, and x̄ ∈ O.
Then (p, X) belongs to J 2,+u(x̄) if and only if there exists a function φ ∈ C2(RN )

such that u − φ attains a strict global maximum at x̄ and

(
φ(x̄), Dφ(x̄), D2φ(x̄)

) = (u(x̄), p, X).

Similarly, if u : O → R is a lower semicontinuous function, and x̄ ∈ O, then
(p, X) ∈ J 2,−u(x̄) if and only if there exists a function φ ∈ C2(RN ) such that u − φ
attains a strict global minimum at x̄ and

(
φ(x̄), Dφ(x̄), D2φ(x̄)

) = (u(x̄), p, X).

Proof See [575] Lemma 5.4, p. 193 or [263], Lemma 4.1, p. 211. �
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Definition E.5 (Closure of second-order sub- and superjets) Let u : O → R be an
upper semicontinuous function, and x̄ ∈ O. We define

J
2,+

u(x̄) :=
{
(p, X) ∈ R

N × S(RN ) : there exist xn ∈ O

and (pn, Xn) ∈ J 2,+u(xn) s.t. (xn, u(xn), pn, Xn)
n→∞−−−→ (x̄, u(x̄), p, X)

}
.

Similarly, given a lower semicontinuous function u : O → R and x̄ ∈ O, we define

J
2,−

u(x̄) :=
{
(p, X) ∈ R

N × S(RN ) : there exist xn ∈ O

and (pn, Xn) ∈ J 2,−u(xn) s.t. (xn, u(xn), pn, Xn)
n→∞−−−→ (x̄, u(x̄), p, X)

}
.

Remark E.6 Note that the definition is a little different from what one would expect
as closures of set-valued mappings. Indeed, we also ask u(xn) → u(x̄). This form
of the closures of the semijets was first introduced in [362]. �

Definition E.7 (Parabolic second-order sub- and superjets) Let T > 0. Let u :
(0, T ) × O → R be an upper semicontinuous function, and (t̄, x̄) ∈ (0, T ) × O.
The set

P2,+u(t̄, x̄) :=
{
(a, p, X) ∈ R × R

N × S(RN ) :

lim sup
(s,y)→(t̄,x̄)

u(s, y) − u(t̄, x̄) − a(s − t̄) − 〈p, y − x̄〉 − 1
2 〈X (y − x̄), (y − x̄)〉

|s − t̄ | + |y − x̄ |2 ≤ 0

}

is called the parabolic second-order superjet of u at (t̄, x̄). Similarly, given a lower
semicontinuous function u : (0, T ) × O → R, and (t̄, x̄) ∈ (0, T ) × O, the set

P2,−u(t̄, x̄) :=
{
(a, p, X) ∈ R × R

N × S(RN ) :

lim inf
(s,y)→(t̄,x̄)

u(s, y) − u(t̄, x̄) − a(s − t̄) − 〈p, y − x̄〉 − 1
2 〈X (y − x̄), (y − x̄)〉

|s − t̄ | + |y − x̄ |2 ≥ 0

}

is called the parabolic second-order subjet of u at (t̄, x̄).

The closures of the parabolic second-order sub- and superjets P2,−
u(t̄, x̄),P2,+

u(t̄, x̄) are defined in the same way as J
2,−

u(x̄), J
2,+

u(x̄). A parabolic analogue of
Lemma E.4 is also true, see [263], Lemma 4.1, p. 211.



870 Appendix E: Viscosity Solutions in R
N

E.2 Definition of Viscosity Solution

Let O be an open subset of RN . Consider an equation

F(x, u, Du, D2u) = 0 in O, (E.1)

where F : O×R×R
N×S(RN ) → R is continuous, increasing in the secondvariable,

and degenerate elliptic, i.e. for every (x, r, p) ∈ O × R × R
N , and X, Y ∈ S(RN ),

F(x, r, p, X) ≤ F(x, r, p, Y ) if X ≥ Y.

Definition E.8 An upper semicontinuous function u : O → R is a viscosity subso-
lution of (E.1) if

F(x, u(x), p, X) ≤ 0 if x ∈ O and (p, X) ∈ J 2,+u(x).

A lower semicontinuous function u : O → R is a viscosity supersolution of (E.1) if

F(x, u(x), p, X) ≥ 0 if x ∈ O and (p, X) ∈ J 2,−u(x).

A viscosity solution of (E.1) is a function which is both a viscosity subsolution and
a viscosity supersolution of (E.1).

We remark that since F is continuous, we obtain an equivalent definition if

J 2,+u(x), J 2,−u(x) in Definition E.8 are replaced, respectively, by J
2,+

u(x), J
2,−

u(x). Moreover, in light of Lemma E.4, Definition E.8 is equivalent to
the following definition using test functions.

Definition E.9 An upper semicontinuous function u : O → R is a viscosity subso-
lution of (E.1) if whenever u − ϕ has a local maximum at a point x ∈ O for a test
function ϕ ∈ C2(O) then

F(x, u(x), Dϕ(x), D2ϕ(x)) ≤ 0.

A lower semicontinuous function u : O → R is a viscosity supersolution of (E.1) if
whenever u−ϕ has a local minimum at a point x ∈ O for a test function ϕ ∈ C2(O)

then
F(x, u(x), Dϕ(x), D2ϕ(x)) ≥ 0.

A viscosity solution of (E.1) is a function which is both a viscosity subsolution and
a viscosity supersolution of (E.1).
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Viscosity sub/supersolutions and solutions of parabolic initial value problems

{
ut + F(t, x, u, Du, D2u) = 0 in (0, T ) × O,

u(0, x) = g(x) on O (E.2)

are defined in the same way if we replace J 2,−u(x̄), J 2,+u(x̄) in Definition E.8
by P2,−u(t̄, x̄),P2,+u(t̄, x̄) and use test functions ϕ which are once continuously
differentiable in t and twice continuously differentiable in x on (0, T ) × O in
Definition E.9.

It is often useful to use the notion of a discontinuous viscosity solution. A function
u is a discontinuous viscosity subsolution if u∗ is a viscosity subsolution, and u is a
discontinuous viscosity supersolution if u∗ is a viscosity supersolution.

E.3 Finite-Dimensional Maximum Principles

The following form of the finite-dimensional maximum principle was introduced in
[138] and is sometimes referred to as the Crandall–Ishii lemma.

Theorem E.10 (Maximum principle) Let N ∈ N and O be an open subset of R
N .

Let ui : O → R, i = 1, 2, be two upper semicontinuous functions, and φ ∈
C2(O × O). Set, for x = (x1, x2) ∈ O × O,

w(x) := u1(x1) + u2(x2).

Suppose thatw−φ has a local maximum at x̄ = (x̄1, x̄2) ∈ O. Then, for each ε > 0,
there exist Xi ∈ S(RN ) such that

(
Dxi φ(x̄), Xi

) ∈ J
2,+

ui (x̄i ) for i = 1, 2

and

−
(
1

ε
+ ∥∥D2φ(x̄)

∥∥
)
I ≤

(
X1 0
0 X2

)
≤ D2φ(x̄) + ε

(
D2φ(x̄)

)2
.

Proof Theorem E.10 is a particular case of Theorem 3.2 of [139]. Its proof is given
in the appendix of [139]. �

The following is a parabolic version of Theorem E.10 and is taken from [138],
see also [139], Theorem 8.2 or [263], Theorem 6.1, p. 216.

Theorem E.11 (Parabolic maximum principle) Let T > 0, N ∈ N, and O be an
open subset ofRN . Let ui : (0, T )×O → R, i = 1, 2, be two upper semicontinuous
functions, and φ : (0, T ) × O × O → R be once continuously differentiable in
t and twice continuously differentiable in x = (x1, x2) ∈ R

2N . Set, for (t, x) =
(t, x1, x2) ∈ (0, T ) × O × O,
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w(t, x) := u1(t, x1) + u2(t, x2).

Suppose that w − φ has a local maximum at (t̄, x̄) = (t̄, x̄1, x̄2) ∈ (0, T ) × R
2N .

Assume, moreover, that there is an r > 0 such that for every M > 0 there is a C > 0
such that for i = 1, 2

{
bi ≤ C whenever (bi , pi , Xi ) ∈ P2,+ui (t, xi ),
|xi − x̄i | + |t − t̄ | ≤ r and |ui (t, xi )| + |pi | + ‖Xi‖ ≤ M.

(E.3)

Then, for each ε > 0, there exist bi ∈ R, Xi ∈ S(RN ) such that

(
bi , Dxi φ(t̄, x̄), Xi

) ∈ P2,+
ui (t̄, x̄i ) for i = 1, 2, b1 + b2 = ϕt (t̄, x̄),

and

−
(
1

ε
+ ∥

∥D2φ(t̄, x̄)
∥
∥
)
I ≤

(
X1 0
0 X2

)
≤ D2φ(t̄, x̄) + ε

(
D2φ(t̄, x̄)

)2
.

We remark that the somewhat strange looking condition E.3 is satisfied if u1 is a
viscosity subsolution and −u2 is a viscosity supersolution of a parabolic equation.

E.4 Perron’s Method

Perron’s method is an easy and very general procedure to obtain the existence of
viscosity solutions. Consider a parabolic initial value problem (E.2), whereO = R

N

and F : [0, T ]×R
N ×R×R

N × S(RN ) → R is continuous, increasing in the third
variable, and degenerate elliptic. This is the only case that will be used in this book.

Suppose that we have a viscosity supersolution u of (E.2) and a viscosity subso-
lution u of (E.2) such that u ≤ u and u(0, x) = u(0, x) = g(x). Suppose, moreover,
that the equation satisfies the following comparison property: If u is a viscosity sub-
solution of (E.2) and v is a viscosity supersolution of (E.2) such that u∗ ≤ u, v ≤ u∗,
then u ≤ v. We then have the following theorem. Its proof follows standard argu-
ments, see for instance [139], Sect. 4, pp. 22–24.

Theorem E.12 (Perron’s method) If the assumptions of this subsection are satisfied
then the function

w(t, x) = sup{u(t, x) : u ≤ u ≤ u, u is a viscosity subsolution of (E .2)}

is a viscosity solution of (E.2).



Appendix E: Viscosity Solutions in R
N 873

We remark that when applying Perron’s method it is often more convenient to
use the notion of a discontinuous viscosity solution. The comparison property is
then not needed and one always has that the function w, defined as the supremum
of discontinuous viscosity subsolutions u such that u ≤ u ≤ u, is a discontinuous
viscosity solution.
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13. S. Aniţa, Analysis and Control of Age-dependent Population Dynamics, Mathematical Mod-
elling: Theory and Applications, vol. 11 (Kluwer, Dordrecht, 2000)

14. D. Applebaum, On the infinitesimal generators of Ornstein-Uhlenbeck processes with jumps
in Hilbert space. Potential Anal. 26(1), 79–100 (2007)

15. M. Arisawa, H. Ishii, P.L. Lions, A characterization of the existence of solutions for Hamilton-
Jacobi equations in ergodic control problems with applications. Appl. Math. Optim. 42(1),
35–50 (2000)

© Springer International Publishing AG 2017
G. Fabbri et al., Stochastic Optimal Control in Infinite Dimension,
Probability Theory and Stochastic Modelling 82,
DOI 10.1007/978-3-319-53067-3

875



876 References

16. L. Arnold, Mathematical models of chemical reactions, in Stochastic Systems: The Mathe-
matics of Filtering and Identification and Applications, ed. by M. Hazewinkel, J.C. Willems
(Reidel, Dordrecht, 1981), pp. 111–134

17. N. Aronszajn, P. Panitchpakdi, Extension of uniformly continuous transformations and hyper-
convex metric spaces. Pacific J. Math. 6, 405–439 (1956)

18. R.B. Ash, Probability and Measure Theory, 2nd edn. (Harcourt/Academic Press, Burlington,
2000)

19. J. Assaad, J.M.A.M. van Neerven, L2-theory for non-symmetric Ornstein-Uhlenbeck semi-
groups on domains. J. Evol. Equ. 13(1), 107–134 (2013)

20. J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Modern Birkhäuser Classics (Birkhäuser,
Boston, 2009). Reprint of the 1990 edition

21. M. Avellaneda, A. Levy, A. Paras, Pricing and hedging derivative securities in markets with
uncertain volatilities. Appl. Math. Finance 2(2), 73–88 (1995)

22. F. Baghéry, I. Turpin, Y. Ouknine, Some remark on optimal stochastic control with partial
information. Stoch. Anal. Appl. 23(6), 1305–1320 (2005)

23. S. Bahlali, Necessary and sufficient optimality conditions for relaxed and strict control prob-
lems. SIAM J. Control Optim. 47(4), 2078–2095 (2008)

24. M. Bambi, Endogenous growth and time-to-build: the AK case. J. Econ. Dyn. Control 32(4),
1015–1040 (2008)

25. M. Bambi, G. Fabbri, F. Gozzi, Optimal policy and consumption smoothing effects in the
time-to-build AK model. Econ. Theor. 50(3), 635–669 (2012)

26. V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer
Monographs in Mathematics (Springer, Berlin, 2010)

27. V. Barbu, G. Da Prato, Global existence for the Hamilton-Jacobi equations in Hilbert space.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8(2), 257–284 (1981)

28. V. Barbu, G. Da Prato, A direct method for studying the dynamic programming equation
for controlled diffusion processes in Hilbert spaces. Numer. Funct. Anal. Optim. 4(1), 23–43
(1981/82)

29. V. Barbu, G. Da Prato,Hamilton-Jacobi Equations in Hilbert Spaces, Pitman Research Notes
in Mathematics Series, vol. 86 (Longman, Boston, 1983)

30. V. Barbu, G. Da Prato, Solution of the Bellman equation associated with an infinite-
dimensional stochastic control problem and synthesis of optimal control. SIAM J. Control
Optim. 21(4), 531–550 (1983)

31. V. Barbu, G. Da Prato, The stochastic nonlinear damped wave equation. Appl. Math. Optim.
46(2–3), 125–206 (2002)

32. V. Barbu, G. Da Prato, The two phase stochastic Stefan problem. Probab. Theory Relat. Fields
124(4), 544–560 (2002)

33. V. Barbu, G. Da Prato, The Kolmogorov equation for a 2D-Navier-Stokes stochastic flow in
a channel. Nonlinear Anal. 69(3), 940–949 (2008)

34. V. Barbu, G. Da Prato, A. Debussche, The Kolmogorov equation associated to the stochastic
Navier-Stokes equations in 2D, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7(2),
163–182 (2004)

35. V. Barbu, G. Da Prato, C. Popa, Existence and uniqueness of the dynamic programming
equation in Hilbert space. Nonlinear Anal. 7(3), 283–299 (1983)

36. V. Barbu, G. Da Prato, L. Tubaro, Kolmogorov equation associated to the stochastic reflection
problem on a smooth convex set of a Hilbert space. Ann. Probab. 37(4), 1427–1458 (2009)

37. V. Barbu, G. Da Prato, Kolmogorov equation associated to the stochastic reflection problem
on a smooth convex set of a Hilbert space II. Ann. Inst. H. Poincaré Probab. Statist. 47(3),
699–724 (2011)

38. V. Barbu, C. Marinelli, Variational inequalities in Hilbert spaces with measures and optimal
stopping problems. Appl. Math. Optim. 57(2), 237–262 (2008)

39. V. Barbu, T. Precupanu, Convexity and Optimization in Banach Spaces, 4th edn., Springer
Monographs in Mathematics (Springer, Dordrecht, 2012)



References 877

40. M. Bardi, I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-
Bellman Equations, Systems and Control: Foundations andApplications (Birkhäuser, Boston,
1997)

41. G.Barles,Solutions de viscosité des équations deHamilton-Jacobi,Mathématiques andAppli-
cations, vol. 17 (Springer, Paris, 1994)

42. A. Bátkai, S. Piazzera, Semigroups for Delay Equations, Research Notes in Mathematics,
vol. 10 (Peters, Wellesley, 2005)

43. H.H. Bauschke, P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, CMS Books in Mathematics (Springer, Berlin, 2011)

44. A. Bensoussan, Filtrage optimal des systèmes linéaires, Methodes Mathematiques de
l’Informatique, vol. 3 (Dunod, Paris, 1971)

45. A. Bensoussan, Stochastic maximum principle for distributed parameter systems. J. Franklin
Inst. 315(5), 387–406 (1983)

46. A. Bensoussan, Stochastic Control of Partially Observable Systems (Cambridge University
Press, Cambridge, 1992)

47. A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter, Representation and Control of Infi-
nite Dimensional Systems, 2nd edn., Systems and Control: Foundations and Applications
(Birkhäuser, Boston, 2007)

48. A. Bensoussan, J. Frehse, S.C.P. Yam, Mean Field Games and Mean Field Type Control
Theory, Springer Briefs in Mathematics, vol. 101 (Springer, New York, 2013)

49. A. Bensoussan, J. Frehse, S.C.P. Yam,On the interpretation of theMaster Equation, Stochastic
Process. Appl. (to appear)

50. A. Bensoussan, The Master equation in mean field theory. J. Math. Pures Appl. 103(6),
1441–1474 (2015)

51. A. Bensoussan, J.-L. Lions, Applications of Variational Inequalities in Stochastic Control,
Studies in Mathematics and its Applications, vol. 12 (North-Holland, Amsterdam, 1982)

52. A. Bensoussan, R. Temam, Équations stochastiques du type Navier-Stokes. J. Funct. Anal.
13(2), 195–222 (1973)

53. D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1 (Athena Scientific,
Belmont, 1995)

54. D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. 2 (Athena Scientific,
Belmont, 1995)

55. U. Bessi, Existence of solutions of the Master equation in the smooth case. SIAM J. Math.
Anal. 48(1), 204–228 (2016)

56. J. Bierkens,O. vanGaans, S. Lunel, Existence of an invariantmeasure for stochastic evolutions
driven by an eventually compact semigroup. J. Evol. Equ. 9(4), 771–786 (2009)

57. E. Biffis, F.Gozzi, C. Prosdocimi,Optimal portfolio choicewith path dependent labor income:
the infinite horizon case. In preparation

58. P. Billingsley, Probability and Measure, 3rd edn., Wiley Series in Probability and Mathemat-
ical Statistics (Wiley, New York, 1995)

59. A. Biryuk, On invariant measures of the 2D Euler equation. J. Stat. Phys. 122(4), 597–616
(2006)

60. J.-M. Bismut, Martingales, the Malliavin calculus and hypoellipticity under general Hörman-
der’s conditions. Probab. Theory Relat. Fields 56(4), 469–505 (1981)

61. V.I. Bogachev, Measure Theory. Vol. I and II (Springer, Berlin, 2007)
62. S. Bonaccorsi, F. Confortola, E. Mastrogiacomo, Optimal control of stochastic differential

equations with dynamical boundary conditions. J. Math. Anal. Appl. 344(2), 667–681 (2008)
63. S. Bonaccorsi, F. Confortola, E.Mastrogiacomo, Optimal control for stochastic Volterra equa-

tions with completely monotone kernels. SIAM J. Control Optim. 50(2), 748–789 (2012)
64. S. Bonaccorsi,M. Fuhrman, Regularity results for infinite dimensional diffusions. AMalliavin

calculus approach. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat.
Appl. 10(1), 35–45 (1999)

65. S. Bonaccorsi, G. Guatteri, Stochastic partial differential equations in bounded domains with
Dirichlet boundary conditions. Stoch. Stoch. Rep. 74(1–2), 349–370 (2002)



878 References

66. V.S. Borkar, Optimal Control of Diffusion Processes (Longman, New York, 1989)
67. J.M. Borwein, D. Preiss, A smooth variational principle with applications to subdifferentia-

bility and to differentiability of convex functions. Trans. Amer. Math. Soc. 303(2), 517–527
(1987)

68. R. Boucekkine, C. Camacho, G. Fabbri, Spatial dynamics and convergence: the spatial AK
model. J. Econ. Theory 148(6), 2719–2736 (2013)

69. R. Boucekkine, O. Licandro, L.A. Puch, F. del Rio, Vintage capital and the dynamics of the
AK model. J. Econ. Theory 120(1), 39–72 (2005)

70. B. Bouchard, N.-M. Dang, C.-A. Lehalle, Optimal control of trading algorithms: a general
impulse control approach. SIAM J. Financ. Math. 2(1), 404–438 (2011)

71. B. Bouchard, M. Nutz, Weak dynamic programming for generalized state constraints. SIAM
J. Control Optim. 50(6), 3344–3373 (2012)

72. B. Bouchard, N. Touzi, Weak dynamic programming principle for viscosity solutions. SIAM
J. Control Optim. 49(3), 948–962 (2011)

73. N. Bourbaki, Éléments de mathématique. Intégration. Chapitres 1–4 (Springer, Paris, 2007)
74. A.J.V. Brandão, E. Fernández-Cara, P.M.D. Magalhães, M.A. Rojas-Medar, Theoretical

analysis and control results for the Fitz-Hugh-Nagumo equation. Electron. J. Differ. Equ.
164, 1–20 (2008)

75. P. Briand, F. Confortola, BSDEs with stochastic Lipschitz condition and quadratic PDEs in
Hilbert spaces. Stoch. Process. Appl. 118(5), 818–838 (2008)

76. P. Briand, F. Confortola, Differentiability of backward stochastic differential equations in
Hilbert spaces with monotone generators. Appl. Math. Optim. 57(2), 149–176 (2008)

77. P. Briand, F. Confortola, Quadratic BSDEs with random terminal time and elliptic PDEs in
infinite dimension. Electron. J. Probab. 13(54), 1529–1561 (2008)

78. P. Briand, B. Delyon, Y. Hu, É. Pardoux, L. Stoica, L p solutions of backward stochastic
differential equations. Stoch. Process. Appl. 108(1), 109–129 (2003)

79. P. Briand, Y. Hu, Stability of BSDEs with random terminal time and homogenization of
semilinear elliptic PDEs. J. Funct. Anal. 155(2), 455–494 (1998)

80. P. Briand, Y. Hu, BSDEwith quadratic growth and unbounded terminal value. Probab. Theory
Relat. Fields 136(4), 604–618 (2006)

81. J. Bricmont, A. Kupiainen, R. Lefevere, Exponential mixing of the 2D stochastic Navier-
Stokes dynamics. Commun. Math. Phys. 230(1), 87–132 (2002)
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476. É. Pardoux, A. Răşcanu, Backward stochastic differential equations with subdifferential oper-
ator and related variational inequalities. Stoch. Process. Appl. 76(2), 191–215 (1998)
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