
Chapter 4
Putting the Building-Blocks Together

The previous two chapters were devoted to negative work. We have inventoried
problems and implausible properties that are connected with the traditional approach
to belief change. But the purpose of all this negative work was positive. In Section3.8
we summarized our findings in the form of a list of desiderata for an alternative
approach. In this chapter, the outlines of such an approach will be constructed. The
rest of the book is devoted to its further development and evaluation.

We will start from scratch. Section4.1 introduces a very general model for belief
change that is based on primitive belief states and inputs, neither ofwhich has any sen-
tential structure. This model has the advantage of making few controversial assump-
tions but also the disadvantage of low expressive power. It is used as a starting-point
to which more structure will successively be added in a guarded fashion, allowing
us to see what assumptions are needed to obtain the resulting increase in expressive
power. In Section4.2 sentences are associated with the belief states. In Section4.3 we
introduce descriptors, a versatile tool for expressing properties of belief states, and
in Section4.4 their properties are investigated. In Section4.5 descriptors are used
as a general means for expressing success conditions of operations of change. In
Section4.6 the main features of the resulting model of belief change are summa-
rized. At this point we will have arrived at the fundamental framework for belief
change, descriptor revision, that will be further investigated in the rest of the book.

4.1 Beginning Without Sentences

It is almost universally assumed in the belief change literature that beliefs are fully
representable as sentences in some language. The totality of beliefs held by an agent
is represented by a belief set that is a logically closed set of sentences. Inputs specify
a sentence (or sometimes a set of sentences) that has to be either added to the belief
set or removed from it. The use of sentences has the immense advantage of making
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logical treatments possible. Logic operates with sentences, and it is an astoundingly
efficient and versatile tool for modelling a wide array of phenomena [100]. However,
like other modelling tools it puts emphasis on some aspects of the objects it models
at the expense of others. One of the major characteristics of logical models is the
linguistic structure that they impose on their subject matter.

Some belief changes can be adequately described in terms of sentences. When
I learned that Georg Friedrich Händel wrote the Messiah in 1741, the resulting
effect on my belief state can be summarized by saying that I started to believe in
the sentence “Georg Friedrich Händel wrote theMessiah in 1741”.1 However, there
are many belief changes that cannot easily be expressed in sentential terms. For
instance, when I first heard theMessiah I acquired a whole set of new beliefs based
on my auditory impressions, namely beliefs about how the music sounds, but I was
not able to express all these beliefs in sentences. Similarly, I have beliefs about
how Barack Obama’s voice sounds, what Picasso’s Guernica looks like, how my
favourite brand of cheese tastes, and how hydrogen sulphide smells. In all these
cases my beliefs take the form of “mental pictures” or sensory impressions that can
only partially be translated into words. Such perceptually based beliefs are typically
adopted “automatically”, without any decision or reflection. (See [119], [192, p. 62],
and [197, p. 313].) They form a large part of our beliefs. This is one of the reasonswhy
the police use identity parades, photo-lineups, and facial composites in addition to
asking witnesses to verbally describe a suspect. A witness may know what a suspect
looks like without being able to express this knowledge in words.

Belief change theory is usually assumed to represent changes in the beliefs of
individual persons. With this interpretation the exclusion of non-sentential beliefs
is a significant limitation. The theory can also refer to belief-holders other than
individual persons. In some such cases the sentential format may be less problematic.
We can for instance use the theory to model database management. In that case
sentential representation is at least in principle fully adequate since the contents of
databases are typically representable by sentences. Another example is changes in
collectively created and maintained stocks of information or knowledge, such as the
corpus of scientific beliefs. Collective information processes are usually based on
sentential representations since these are needed for inter-individual communication
[112, 125, 136]. However, in order to cover the central case of changes in the beliefs
of individual human beings, it is useful to investigate a more general approach that
does not require all beliefs to be expressible in sentences. For that purpose we can
use a set of primitive belief states, i.e. belief states that are not assumed to have any
particular internal structure. Such a belief state may comprise both sentential and
non-sentential beliefs. Changes have the effect of taking us from one such belief
state to another (or vacuously keeping us in the original one).

1And in other sentences containing the same information. The joint information content of sentences
with the same meaning is called a proposition. All this could alternatively be expressed in terms of
propositions.
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Definition 4.1 A (deterministic) generic belief statemodel is a triple 〈K, I,�〉,
whereK = {K1,K2, . . . } is a set of belief states, I = {ı1, ı2, . . . }a set of inputs,
and � an input assimilation function2 from K × I to K.

In such a model all changes are brought about by inputs, and we use the universal
operation � to express their impact. For eachK ∈ K and ı ∈ I,K � ı is the outcome
of subjecting K to the input ı. K � ı is a new belief state on which further opera-
tions can be performed. Therefore this framework allows for iterated change such as
K � ı1 � ı2. . . � ın for arbitrary inputs ı1, ı2, . . . , ın .

Although this is a fairly general framework it relies on a couple of assumptions
that should be stated. It is input-assimilating, by which is meant that all changes
stem from an input. Input-assimilating models highlight the causes and mechanisms
of change. The inputs are usually interpreted as externally generated, which means
that these models contain no representation of internally generated changes such
as the loss or deterioration of information or the drawing of new inferences from
old information. This can be remedied by allowing for internally generated inputs.3

Furthermore, inputs come consecutively, i.e., one at a time. However, this is not a
serious limitation since the set I of inputs can contain “combined inputs” in the same
manner as the inputs of multiple contraction in AGM-style models. (We can define
an operation ÷ such that K ÷ {p, q} has the success condition that neither p nor q
should be an element of the outcome.) A much more important limitation is the lack
of explicit representation of time. It does not seem possible to include a representation
of time in an input assimilationmodel of belief changewithoutmaking it inordinately
complex and unmanageable for most purposes.

The belief state model in Definition 4.1 was called deterministic. That is because
the income assimilation function determines for each input exactly what the new
belief statewill be. In otherwords, for eachK ∈ K and each ı ∈ I, we haveK � ı ∈ K.
Another option is to use an input assimilation function that takes us to a non-empty set
of belief states. In formal terms we then have a function �̌ such that∅ �= K�̌ı ⊆ K.4

Such an indeterministic function can be used to reflect that we do not (and perhaps
cannot) know exactly what the outcome will be. Alternatively it can signify that the
outcome is, in an ontological sense, undetermined. In this book, the focus will be on
deterministic models of belief change, but we will return to indeterministic models
in Section5.3.

The structure introduced in Definition 4.1 can also be used to represent an agent’s
overall state of mind rather than the part of her state of mind that constitutes her
belief state. We can for instance conceive the elements of K as incorporating value
judgments, emotions, and desires. Such extensions will not be discussed here, but
they can be useful tools for investigating the relationships among these different

2In the terminology of automata theory it is a transition function.
3Changes consisting of the drawing of new inferences from old information have been included in
some belief change models; see [83], [91, pp. 20–21], [112, 204].
4The symbol ˇ above the symbol representing a (deterministic) belief change operation will be used
to denote the indeterministic generalization of that operation.
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components of mental states, for instance the effects of changes in belief on value
judgments and vice versa.

In the subsequent sections we will add structure to the generic belief state models.
But before doing sowewill have a look at some interesting properties of thesemodels
that can be expressed already with the structure that we have. The following notation
is useful:

Definition 4.2 Let 〈K, I,�〉 be a generic belief state model and let K ∈ K.
Then:

(1) KK = {K � ı | ı ∈ I} is the set of directly reachable belief sets from K.

(2) K
+
K = {K � ı1 � . . . � ın | {ı1, . . . , ın} ⊆ I} is the set of indirectly reach-

able belief sets from K.

The following are interesting reachability-related properties of generic belief state
models:

KK �= {K} for some K ∈ K. (changeability)
K ∈ KK for all K ∈ K. (retainability)
KK = K for all K ∈ K. (direct access)
K

+
K = K for all K ∈ K. (successive access)

Retainability can be seen as a technical property; it ensures that the option of changing
nothing is represented in the input set. Direct access says that we can go directly
(through one single input) from any belief state to any other belief state. This is
a problematic property since there seem to be situations where several successive
inputs are needed to reach a new belief state. For instance, if K is a belief state in
which the agent is a devout religious believer and K′ one in which she is a staunch
atheist, then there may be no single input that would take her from K to K′. It is
much more plausible that a series of inputs can take her there through a mechanism
whereby the earlier of these inputs facilitate her assimilation of those coming later.
If that is always possible, then successive access holds.

The following twoproperties express intuitions that run contrary to those expressed
by direct access and successive access:

If K �= K′, then K � ı �= K′ � ı′. (non-convergence)
If K � ı1 �= K, then K � ı1 � . . . � ın �= K. (non-reversion)

Observation 4.3 (1) No belief state model satisfies changeability, successive
access, and non-reversion.

(2) No belief state model with at least two belief states satisfies retainability,
direct access, and non-convergence.

(3) If a belief state model satisfies retainability and non-convergence, then it
satisfies non-reversion.

Non-convergence and non-reversion are both plausible under the assumption that
we “carry our history with us” in the sense that previous beliefs leave traces behind
them, for instance in the form of beliefs about what one believed previously.
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The following three finiteness properties all refer to the number of alternative
belief states that are in some sense available. They are stated here in order of increas-
ing strength.

KK is finite for all K. (finite direct access set)
K

+
K is finite for all K. (finite successive access set)

K is finite. (finite outcome set)

The framework introduced in Definition 4.1 has the important advantage of being
general enough to cover a wide range ofmore specifiedmodels of belief revision (and
mental dynamics in general)within one and the same formal structure. It can therefore
be used to compare different such models. However, no such general investigation
of different frameworks will be pursued here. Instead the remainder of this book is
primarily devoted to one particularly promising type of model that can be developed
within this framework. A couple of comparisons with other models will be made,
namely with the AGM model (Sections8.1, 8.2, and 10.3) and dynamic epistemic
logic (Section7.6).

4.2 Support Functions

With the introduction of generic belief state models we have discarded in one fell
swoop all the assumptions about relations between sentence structure and operations
of change thatwere found to be problematic inChapter3.Butwemayhave thrownout
toomuch.Actual belief states sustain both beliefs that are expressible in sentences and
beliefs that are not. By removing sentences altogether we have deprived ourselves of
all means to say something interesting about the special characteristics of the former
class of beliefs. In order to regain that capability we will now reintroduce sentences
in a cautious manner, avoiding some of the more controversial assumptions of the
traditional approach.

The first and crucial step is to assign to each belief state a set consisting of exactly
those sentences (in a given language) that represent beliefs held in that state. Formally,
this assignment is expressed with a support function s that takes us from elements
of K to sets of sentences in the object language L.

Definition 4.4 ([85, p. 525]) Let K be a set of belief states and L a language.
A support function forK inL is a function s such that s(K) ⊆ L for allK ∈ K.

In the intended interpretation, s(K) is the set of sentences in L that are supported
(believed by the epistemic agent) in the belief stateK. Importantly, a support function
always refers to a specific language. One and the same belief stateK may be associ-
ated with several support functions, sL1 , sL2 , . . . , for different languages. There may
also be different support functions referring to different epistemic attitudes that the
agent may have to sentences in one and the same language, such as the epistemic
attitudes of assuming something, taking it for granted, believing it, and being sure
of it. We may for instance distinguish between the set ssL of sentences in L that the

http://dx.doi.org/10.1007/978-3-319-53061-1_8
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agent is sure of in the state K and the set sbL of sentences in the same language that
she believes in. In studies comparing different epistemic attitudes it will be useful to
have more than one support function. Here the focus will be on a single epistemic
attitude, namely that of belief, and a single object language.

In this framework, operations of change are primarily performed on belief states,
not on the sets of supported sentences that are associated with them. In other words,
we do not apply the input assimilation function� to the set s(K) of sentences. Instead
we apply it to the (non-sentential) belief stateK, and then we apply s to the outcome
K � ı to obtain the new set of supported sentences, s(K � ı).

The introduction of support functions makes it possible to express a series of
important properties of belief change models, such as:

s(K) = Cn(s(K)) (closure)
⊥ /∈ s(K) (consistency)

As before, Cn is a consequence operation that includes classical truth-functional
consequence. In what follows we will assume that closure holds, i.e. that the support
function assigns a belief set to each belief state. We will also mostly assume that the
assigned belief sets are consistent. However, the presence of inconsistent belief sets
may not be as devastating here as it is in frameworks such as the original AGMmodel
where belief changes take place directly on belief sets. In classical truth-functional
logic, there is only one logically closed inconsistent set, namely the whole language.
Therefore, if K1 and K2 are inconsistent belief sets, i.e. ⊥ ∈ K1 and ⊥ ∈ K2, then K1 =
K2. Since further changes are performed on the belief sets that are now identical,
no posterior change can reintroduce the lost distinction.5 In contrast, the present
framework can accommodate distinct inconsistent belief states,6 i.e. belief statesK1

andK2 such that ⊥ ∈ s(K1), ⊥ ∈ s(K2), s(K1) = s(K2), andK1 �= K2.7 Since further
changes are performed on K1 and K2, not on s(K1) and s(K2), distinctions can be
reintroduced at a later stage, for instance through revision by some input ı such that
s(K1 ◦ ı) �= s(K2 ◦ ı). This is a property that corresponds to an important feature of
actual belief systems, namely that inconsistencies are reparable in a way that does
not blur all distinctions.8

5As noted by Hans Rott [223], this problem is not present in extended versions of the AGM model
where the outcome of a contraction or revision is not just a belief set but a larger object that contains
information about how additional changes will be performed.
6More precisely: different belief states that generate inconsistencies in the language of the support
function.
7The same is true of belief base models in which the belief state is represented by a set of sentences
that is not logically closed. Different such belief bases may have the same logical closure and
therefore represent belief states with the same belief set [84, 88, 89, 94].
8In addition, actual belief systems are capable of containing local inconsistencies that do not corrupt
the entire belief system. It is “quite feasible to believe both that Jesus was a human being and that
Jesus was not a human being, without believing that the moon is made of cheese” [139, p. 49]. To
represent this feature we can employ a support function s that does not satisfy closure under classical
consequence (but possibly someweaker, paraconsistent closure condition).On local inconsistencies,
see [139].
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The following properties are related to direct access and successive access that
were introduced in Section4.1.9

If ⊥ /∈ Cn({p}), then there is some input ı with p ∈ s(K � ı). (direct believability)
If ⊥ /∈ Cn({p}), then there is a series ı1, . . . , ın of inputs with p ∈ s(K � ı1 � . . . � ın).

(successive believability)
If p /∈ Cn(∅), then there is some input ı with p /∈ s(K � ı). (direct removability)
If p /∈ Cn(∅), then there is a series ı1, . . . , ın of inputs with p /∈ s(K � ı1 � . . . � ın).

(successive removability)
There is some input ı with s(K � ı) = Cn(∅). (direct depletability)
There is a series ı1, . . . , ın of inputs with s(K � ı1 � . . . � ın) = Cn(∅).

(successive depletability)

These are all fairly strong and arguably problematic properties. As mentioned above
in connection with direct access, some persons may have beliefs (such as articles
of religious faith) that nothing can make them give up. There may also be potential
beliefs that they will never adopt, come whatever may. However, it can be questioned
whether such stubbornness is compatible with rationality. The present framework
allows for different answers to that question, expressible in terms of whether or not
the believability and removability postulates hold. (Byway of comparison, the equiv-
alents of direct believability and direct removability hold in the AGM framework.10)

The following are twofiniteness properties that refer to the properties of individual
belief states.

s(K) is finite-based. (finite representability)

If s(K) is finite-based, then so is s(K � ı). (finite-based outcome)

Finite-based outcome, the weakest of the two, was discussed in Section3.1, where
we found its absence in the AGM framework to be problematic. Interestingly, it is
prone to conflict with the finiteness properties introduced in Section4.1.

Observation 4.5 Let s be a support function for the belief states of some
generic belief state model, and let the languageL to which it refers be logically
infinite. Then:

(1) Direct believability, finite-based outcome, and finite direct access set are
not all satisfied.

(2) Successive believability, finite-based outcome, and finite successive access
set are not all satisfied.

9The direct versions of these properties are discussed in [121].
10Since p ∈ K ∗ p and p /∈ (K ÷ p) \ Cn(∅).

http://dx.doi.org/10.1007/978-3-319-53061-1_3
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Finally, let us introduce properties indicating howmuch information about the belief
state K is contained in the supported set s(K).

If s(K) = s(K′), then K = K′. (injectivity)

If s(K) = s(K′), then s(K � ı) = s(K′ � ı) for all ı ∈ I. (sententiality)

According to injectivity, any difference between belief states is manifested on the
sentential level. For instance, suppose that the only difference betweenK andK � ı is
that in the latter you have looked somewhat more closely at your neighbour’s hedge,
and your mental picture of it has changed in consequence. Injectivity requires that
there is some sentence (presumably about the hedge) that you could utter to express
your beliefs in one of K and K � ı but not in the other. Notably, it does not require
that all the differences between the two belief states can be expressed linguistically,
only that at least one of them can.

Sententiality is the weaker of the two properties. It says that if two belief states
are indistinguishable in terms of what sentences they support, then no series of
changes will make their successors distinguishable in that respect.11 This excludes
the existence of belief states that are statically but not dynamically equivalent on the
linguistic level, i.e. such that they cannot be distinguished in terms of the beliefs they
support, but their successors after someoperation(s) of change can be distinguished.12

It also excludes belief changes that weaken or strengthen beliefs without moving any
of them across the belief/non-belief border.13 But contrary to injectivity, sententiality
allows for the existence of essentially non-linguistic properties of belief states that
will never show up when the beliefs are expressed linguistically [93].

The plausibility of these properties depends on the language L that the support
function sL operates with. The more expressive power the language has, the less
problematic is the assumption that twodistinct belief statesmust have somedifference
that is expressible in the language.14 However, this assumption will never be entirely
unproblematic since it deprives us of the possibility of distinguishing on the linguistic
level between different inconsistent belief states (given that sL satisfies the closure
property, sL(K) = Cn(sL(K)).)

11It can be applied repeatedly, and can therefore equivalently be expressed as follows: If s(K) =
s(K′), then s(K � ı1 � . . . � ın) = s(K′ � ı1 � . . . � ın) for all series ı1, . . ., ın of elements of I.
12On the difference between static and dynamic equivalence of belief states, see [83].
13Suppose that an input ı (1) strengthens p in K, but (2) does not move any sentence across the
belief/non-belief border. It would seem to follow from (1) that there is some series ı1, . . ., ın of inputs
such that p /∈ s(K � ı1 � . . . � ın) and p ∈ s(K � ı � ı1 � . . . � ın), but it follows from (2) that
s(K � ı) = s(K). This contradicts sententiality. On operations that strengthen or weaken beliefs,
see [28].
14This is particularly pertinent if autoepistemic or conditional beliefs are included in the belief set.
See Chapter7.

http://dx.doi.org/10.1007/978-3-319-53061-1_7
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4.3 Belief Descriptors

In order to reconstruct a sentential framework we need to represent not only belief
states but also inputs in sentential terms. Standard operations of belief change are
defined in terms of their success conditions, such as p ∈ K ∗ p for revision and
p /∈ (K ÷ p) \ Cn(∅) for contraction. These are statements about what is believed
in the belief state that the operation results in. We need a versatile way to express
such properties of belief states.

For that purpose, we will introduce a metalinguistic belief predicate B. As argu-
ments it takes sentences in the object language in which beliefs are expressed. For
any sentence p ∈ L, the expression Bp denotes that p is believed in the belief state
under consideration. A belief set satisfiesBp if and only if it has p as an element. An
expression like this, consisting of B followed by a sentence in the object language,
will be called an atomic belief descriptor. The term “atomic” signals that these sen-
tences are the smallest building-blocks in the language of belief descriptors that we
are now building. However, atomic belief descriptors are not atomic in the sense of
being logically independent. For instance, from Bp and Bq we can conclude that
B(p&q).15

Atomic belief descriptors can be combinedwith the usual truth-functional connec-
tives, classically interpreted. Hence,Bp ∨ Bq denotes that either p or q is believed,
and ¬Br that r is not believed. The truth conditions of these expressions follow the
standard pattern:¬Bp is satisfied wheneverBp is not satisfied,Bp &Bq whenever
bothBp andBq are satisfied,Bp ∨ Bq whenever eitherBp orBq is satisfied. These
composite expressions are called molecular belief descriptors.

Finally, we can form sets of (molecular) belief descriptors, such as {B(p ∨ q),

¬Bp,¬Bq}. Sets of molecular belief descriptors will be called composite belief
descriptors or in short just descriptors. A composite belief descriptor is satisfied if
and only if all its elements are satisfied.Hence the descriptor {B(p ∨ q),¬Bp,¬Bq}
is satisfied by the belief set Cn({p ∨ q}) but not by the belief set Cn({q}).16

A descriptor is (obviously) called finite if it has a finite number of elements.
Strictly speaking, finite descriptors are superfluous since they can be replaced by the
conjunction of their elements. For instance, {B(p ∨ q),¬Bp,¬Bq} is satisfied by
exactly the same belief sets that are satisfied by the molecular descriptor B(p ∨ q)

& ¬Bp & ¬Bq. However, the set-theoretical notation is often more convenient, and
it will be used freely in what follows.

Upper-case Greek letters such as �,�, . . . will be used to denote (composite)
descriptors.Occasionally,when a notation is needed formolecular descriptors, lower-
case Greek letters such as α, β, . . . will be used for that purpose.

15Frank Ramsey noted in 1925 that “A believes p” is not a truth function of p but can instead be
treated as “one of other atomic propositions”. [210, p. 9n].
16Composite descriptors with one element will be used interchangeably with the molecular descrip-
tor that they contain. For instance, {Bp} and Bp will be used interchangeably.



54 4 Putting the Building-Blocks Together

All this is important enough to be summarized in a formal definition:

Definition 4.6 ([124]) An atomic belief descriptor is a sentence Bp with p ∈
L. It is satisfied by a belief state K according to a support function s in L if
and only if p ∈ s(K).

A molecular belief descriptor (denoted by lower-case Greek letters α,
β, . . . ) is a truth-functional combination of atomic descriptors. Conditions
of satisfaction are defined inductively, such that K satisfies ¬α according to
s if and only if it does not satisfy α, it satisfies α ∨ β if and only if it satisfies
either α or β, etc.

A composite belief descriptor (in short: descriptor; denoted by upper-case
Greek letters �, �, . . . ) is a non-empty set of molecular descriptors. A belief
state K satisfies a composite descriptor � according to s if and only if it
satisfies all its elements.

A descriptor is satisfiable within a set of belief states if and only if it is
satisfied by at least one of its elements.

As defined here, the symbol B is not part of the object language, and therefore it
cannot be used to express an agent’s beliefs about her own beliefs. (It is possible to
include an autoepistemic belief predicate into the language. It may or may not coin-
cide withB, depending on whether the agent’s autoepistemic beliefs accord with her
epistemic conduct. See Section7.1.) It should also be noted that our definition does
not allow B to be iterated.17 Therefore expressions such as BBp or B(Bp → Bq)

are notwell-formed. The reason for this is that it is very unclearwhat such expressions
could possibly mean, given the metalinguistic interpretation of B.

Descriptors are well suited to express the success conditions of different types of
belief change operations. In revision, a specified sentence p should be included in
the outcome, in other words the success condition has the characteristic form Bp.
In contraction, a specified sentence p is instead required not to be present in the
outcome, thus a success condition of the form ¬Bp has to be satisfied. The success
conditions of many other, less common, types of operations can be expressed analo-
gously.Multiple revision by a set {p1, . . . , pn} of sentences has two variants, package
revision that requires all of them to be believed in the new belief state, and choice
revision that only requires that at least one of them be believed.18 Package revision
has the success condition {Bp1, . . . ,Bpn}, and choice revision the success condition
Bp1 ∨ . . . ∨ Bpn . Similarly, multiple contraction by a set {p1, . . ., pn} of sentences
has two variants, package contraction that requires all of them to be removed and
choice contraction that only requires that at least one of them be removed [64]. Pack-
age contraction has to satisfy the success condition {¬Bp1, . . . ,¬Bpn}, and choice
contraction the success condition ¬Bp1 ∨ . . . ∨ ¬Bpn . The operation of replace-
ment is constructed to remove one specified sentence and incorporate another [110].

17More precisely: It does not allow the formation of expressions in which an instance ofB appears
within the scope of another instance of B.
18This terminology is used in [107] and [239, p. 280]. It is based on the terminology for two types
of multiple contraction used in [64]. Hans Rott uses the terms “bunch revision” and “pick revision”
for the same concepts [217, p. 65].

http://dx.doi.org/10.1007/978-3-319-53061-1_7
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Its success condition has the form {¬Bp,Bq}. Finally, the operation of “making up
one’s mind” aims at either belief or disbelief in a specified sentence p. Its success
condition isBp ∨ B¬p [264]. In summary, descriptors can be used to express a wide
range of success conditions in a precise and unified way. We will use this locution to
construct a uniform type of belief change that covers all operations whose success
conditions are expressible with descriptors. But before that we need to have a brief
look at some of the formal properties of descriptors.

4.4 Properties of Descriptors

Descriptors refer to what sentences a belief state supports, i.e. to the contents of
the belief set s(K) supported by a belief state K. We can therefore assume that if
s(K) = s(K′), then K and K′ satisfy the same descriptors. For simplicity, we can
then refer to descriptors as satisfied by belief sets rather than by belief states. The
symbol ⊩ will be used for that relation of satisfaction:

Definition 4.7 ([124]) Let K be a belief set and let � and � be descriptors.

K ⊩� means that K satisfies �, and � ⊩� that all belief sets satisfying
� also satisfy �.

The corresponding equivalence relation is written ,- ; hence � ,- � holds
if and only if both � ⊩� and � ⊩� hold.

As can be seen from the definition, ⊩ is (for simplicity) used to denote two binary
relations. First, it stands for a relation between belief sets and descriptors, such that
K ⊩� holds if and only if K satisfies � (in the sense of satisfaction specified in
Definition 4.6, which means that it has to satisfy all elements of �). Secondly, ⊩
also represents a relation between descriptors, such that � ⊩� holds if and only if
it holds for all belief sets K that if K ⊩� then K ⊩�.

The following observation summarizes some elementary properties of descriptors:

Observation 4.8 (1) Let K be a belief set and α a molecular descriptor. Then
either K ⊩ α or K ⊩ ¬α.

(2) Letα1, . . . , αn bemolecular descriptors. Then {α1, . . . , αn} ,- {α1& . . .&αn}.
(3) For any descriptors � and �: � ⊩� if and only if there is some � ′ such
that � ⊆ � ′ and � ′ ,- �.

Part (1) of the observation cannot be extended to formulas in which the belief set K
has been replaced by a descriptor. It does not hold in general that if � is a descriptor
and α a molecular descriptor, then either � ⊩ α or � ⊩ ¬α.19

A descriptor can be inconsistent in the sense that no belief set can satisfy it. The
following notation is introduced to express such inconsistency:

19To see that, let p and q be logically independent elements of L, and let � = {Bp} and α = Bq.
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Definition 4.9 ([124]) ⊩ (descriptor falsum) denotes {Bp,¬Bp} for an arbi-
trary p.

It is important to distinguish ⊩ from the falsum ⊥ of the object language (that is
introducable as p&¬p for an arbitrary p). The inconsistent belief set K = Cn({⊥})
satisfies the condition K � ⊥, but no belief set satisfies the condition K ⊩ ⊩.

We can apply ordinary conjunction anddisjunction tomolecular descriptors, form-
ing sentences such as α&β and α ∨ β. For composite descriptors, we can use set
unionwith essentially the same effect as conjunction. The parallel is obvious: a belief
set satisfies α&β if and only if it satisfies α and it also satisfies β. Similarly, it sat-
isfies � ∪ � if and only if it satisfies � and it also satisfies �. For disjunction, the
following construction can be used:

Definition 4.10 ([126]) The descriptor disjunction � is defined by the
relationship � � � = {α ∨ β | α ∈ � and β ∈ �}.
Observation 4.11 Let K be a belief set and let� and� be descriptors. Then:

K ⊩� � � if and only if either K ⊩� or K ⊩�.

It follows from Definition 4.6 that the negation of a molecular descriptor α is a
descriptor ¬α such that for any belief set X : X ⊩ ¬α if and only if X � α. A gener-
alization of negation to composite descriptors should have the same property, in other
words the negation of a composite descriptor � would have to be another descriptor
¬¬ � such that for any belief set X : X⊩ ¬¬ � if and only if X � �. For any finite
descriptor {α1, . . . , αn} we can use the set:

¬¬{α1, . . . , αn} = {¬α1 ∨ . . . ∨ ¬αn}
as its negation. However, as the following observation shows, there are infinite
descriptors for which no construction with the desired property is possible. In other
words, there are non-negatable descriptors.

Observation 4.12 Let the object language L have infinitely many logically
independent atoms. Then there are non-negatable descriptors, i.e. descriptors
� such that there is no descriptor ¬¬� satisfying the condition that for any
belief set X: X⊩ ¬¬� if and only if X � �.

To each descriptor � we can assign a characteristic set of belief sets, namely the
set consisting of those belief sets that satisfy the descriptor. The descriptors that
characterize a single belief set are worth special attention since they are very useful
in formal proofs.

Definition 4.13 ([126])Adescriptor� ismaxispecified (maximally specified)
if and only if there is exactly one belief set Y in ℘(L) such that Y ⊩�. It is
then a maxispecified descriptor for Y .

There are many (equivalent) maxispecified descriptors for each belief set. For
instance, if X = Cn({q}) then both {Bq} ∪ {¬Bx | x /∈ X} and {Bx | x ∈ X} ∪
{¬Bx | x /∈ X} are maxispecified descriptors for X . For convenience, one of the
maxispecified descriptors for a belief set X will be denoted as follows:
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Definition 4.14 ([126]) Let X be a belief set. Then �X is the maxispecified
descriptor for X such that:

�X = {Bx | x ∈ X} ∪ {¬Bx | x /∈ X}
Whereas all (single) belief sets can be characterized by a descriptor, there are sets of
belief sets that cannot:

Definition 4.15 A setY of belief sets is descriptor-definable if and only if there
is some descriptor � such that for all belief sets Y :

Y ∈ Y if and only if Y ⊩�.

Observation 4.16 ([124]) (1) Let Y be a finite set of belief sets. Then Y is
descriptor-definable.

(2) If L is logically infinite20 then there are sets of belief sets that are not
descriptor-definable.

We now have the formal means to analyze an issue that was brought up informally
in Section2.4, namely which success conditions are preserved under intersection.
We noted that if each element of a set of belief sets satisfies the success condition
for revision by the sentence p (i.e. they all contain p), then their intersection also
satisfies that condition (i.e. the intersection contains p). Similarly, if all belief sets
in a collection satisfy the success condition for contraction by the sentence p (i.e.
none of them contains p), then their intersection does the same (i.e. it does not
contain p). This is what makes the select-and-intersect method viable for both revi-
sion and contraction. But not all success conditions are preserved under intersection.
Since success conditions can be represented by descriptors we can now express this
condition in a fully formalized way:

Definition 4.17 A descriptor � is preserved under intersection if and only if
it holds for all sets Y of belief sets that if Y ⊩� for all Y ∈ Y, then

⋂
Y ⊩�.

The following observation identifies an important class of descriptors that are pre-
served under intersection.

Observation 4.18 ([135]21) A descriptor is preserved under intersection if
each of its elements has one of the three forms

(i) Bp,

(ii) ¬Bp, or

(iii) Bp1 ∨ . . . ∨ Bpn ∨ ¬Bq, with q � p1 ∨ . . . ∨ pn → pk for some pk.

20A set of sentences is logically infinite if and only if it has infinitely many equivalence classes in
terms of logical equivalence. Cf. Section2.5.
21This observation is related to thewell-known theorem that a theory is equivalent to aHorn theory if
and only if the set of its models is closed under intersection. This was proved (in a generalized form)
in [187]. A more accessible proof can be found in [38, pp. 254–257], and an excellent introduction
to Horn clauses in [148].

http://dx.doi.org/10.1007/978-3-319-53061-1_2
http://dx.doi.org/10.1007/978-3-319-53061-1_2
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4.5 Descriptor Revision Introduced

We are now ready for the final step in the construction of a new framework for belief
change: the transition from primitive inputs, i.e. elements of I, to changes based on
success conditions, expressed with descriptors. We are looking for a way to revise
a belief state K by a descriptor � rather than by an element of I. This means that
we need an operation ◦ of belief change that takes descriptors as inputs. Such an
operation will supersede and unify the traditional operations, thus K ◦ Bp takes
the role of revision, K ◦ ¬Bp that of contraction, K ◦ {¬Bp1, . . . ,¬Bpn} that of
multiple (package) contraction, etc.

Importantly, the use of descriptors instead of elements of I as inputs does not
require the introduction of new outputs. We can assume that I is exhaustive in the
sense that every new belief state that is directly reachable from K can be reached
through revision by one of the inputs in I. This means that for every descriptor �

we can identify K ◦ � with a belief state K � ı for some ı ∈ I. In other words, we
should have K ◦ � ∈ KK. Furthermore, since the operation ◦ should be successful,
the outcome K ◦ � should satisfy �, i.e. we should have sL(K � ı) ⊩� (unless, of
course, there is no set K � ı with this property). Combining the two conditions, we
obtain:

K ◦ � ∈ {K′ ∈ KK | sL(K′) ⊩�} if � is satisfiable within KK.

In order to construct such an operation we need to select an element of {K′ ∈ KK |
sL(K′) ⊩�}. Typically that set will have more than one element, i.e. there will be
more than one element ofKK that satisfies�. For instance, if� represents the belief
that the old vase in my family’s living-room is broken, then � is satisfied in a large
number of potential belief change outcomes, including far-fetched ones with various
additional beliefs such as that awild birdflew in through anopenwindowandknocked
down the vase. Revision by � should not result in one of these far-fetched outcomes
but rather in a “minimally changed” belief state that is, intuitively speaking, as close
or similar to my previous belief state as is compatible with the assimilation of�. We
can expect K ◦ � to have as few features as possible that are not shared by all the
reasonably credible revision outcomes that satisfy �. The crucial assumption that
we have to make when modelling deterministic belief change is that one among the
various potential outcomes satisfying � is singled out to be the outcome of revision
by �. In the formal language, this singling out is most conveniently represented by
a choice function that extracts only one element from the set it is applied to. (In
indeterministic belief change, we instead have an operation ◦̌ such that K ◦̌� is a
non-empty set of belief sets, each of which is equal to s(K′) for some K′ ∈ KK with
s(K′) ⊩�.)

A function that singles out a single element can be constructed as a special case
of the definition of a choice function. Then the formal object that we obtain will be
a set with the chosen belief state as its only element. Alternatively we can construct
a function that directly delivers this belief state (instead of a set in which it is the
only element). It does not make much of a difference which of these two formal
constructions we employ. They are both introduced in the following definition:
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Definition 4.19 ([120]) LetY be a set. Amonoselective choice function forY
is a choice function C for Y such that if ∅ ⊂ Y

′ ⊆ Y then C(Y′) has exactly
one element. Alternatively it can be represented by a function Ĉ such that
Ĉ(Y′) ∈ Y

′ whenever ∅ ⊂ Y
′ ⊆ Y, and otherwise Ĉ(Y′) is undefined.

We will apply monoselective choice functions to a predetermined set of potential
outcomes, namely the set KK of belief states that are directly reachable from K. In
this way the select-and-intersect method is replaced by a direct choice among the
potential outcomes.We can use thismethod to construct our first version of descriptor
revision:

Definition 4.20 Let K be a set of belief states, I a set of inputs, � an input
assimilation function on K × I, s a support function for K in a language L,
and Ĉ a monoselective choice function for K. The (deterministic) descriptor
revision22 based on 〈K, I,�, s, Ĉ〉 is the operation ◦ such that for all K ∈ K

and all descriptors � for the language L:
(i) If � is satisfiable within KK, then K ◦ � = Ĉ({K′ ∈ KK | s(K′) ⊩�}),

and

(ii) otherwise K ◦ � = K.

This definition introduces a uniformity property for descriptor revision. If it holds
for a belief state K and two descriptors �1 and �2 that

{K′ ∈ KK | s(K′) ⊩�1} = {K′ ∈ KK | s(K′) ⊩�2},
then K ◦ �1 = K ◦ �2. To see why this is a plausible principle, it may be helpful to
consider the special case when there are sentences p and q such that�1 = {Bp} and
�2 = {Bq}. It then follows from

{K′ ∈ KK | s(K′) ⊩Bp} = {K′ ∈ KK | s(K′) ⊩Bq}
that exactly those belief changes that make the agent believe in p will also make
her believe in q, and vice versa. Therefore, making her believe in p and making her
believe in q seems to be essentially the same thing.

Definition 4.20 provides the most general form of (deterministic) descriptor revi-
sion. We will now introduce two useful simplifications of the model, both of which
were anticipated in the previous sections of this chapter. First, we can assume that
the set of reachable belief states is the same irrespective of what belief state we begin
with, i.e. that KK = KK′ for all K,K′ ∈ K. Since we do not need to consider belief
states that are not reachable from anywhere, this is equivalent to adopting the pos-
tulate of Direct access, i.e. KK = K. This allows us to make a small but important
modification of clause (i) in Definition 4.20:

(iL ) If � is satisfiable within K, then K ◦ � = Ĉ({K′ ∈ K | s(K′) ⊩�}).

22The term “descriptor revision” refers to operations that take descriptors as inputs. For clarity, the
operations called “revision” in the traditional approach will be called “sentential revision”.
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The index of (iL ) stands for “local”. Obviously, replacing (i) by (iL ) makes no dif-
ference in studies of local change, i.e. one-step changes that all start with the same
belief state.

The second simplification is somewhat more far-reaching. It consists in adopting
the principle of injectivity from Section4.2. (If s(K) = s(K′) then K = K′.) There
will then be a one-to-one correspondence between the set K of belief states and the
set {s(K′) | K′ ∈ K} of the support sets of its elements. The following observation
shows that the belief states that are reachable with � will then coincide with those
that are reachable with ◦:

Observation 4.21 Let ◦ be the descriptor revision based on 〈K, I,�, s, Ĉ〉.
If injectivity holds, then for each K ∈ K and ı ∈ I there is a descriptor � with
K � ı = K ◦ �.

We can use these correspondences to construct a version of descriptor revision that
refers directly to belief sets and descriptors, without mentioning the primitive belief
states and inputs that we started with. For that purpose, letX = {s(K′) | K′ ∈ K} and
Xs(K) = {s(K′) | K′ ∈ KK}:

Definition 4.22 Let L be a language, X a set of belief sets in L, a an acces-
sibility function that assigns to each K in X a set XK with K ∈ XK ⊆ X, and
Ĉ a monoselective choice function for X. The descriptor revision ◦ based on
〈L,X, a, Ĉ〉 is the operation ◦ such that for all K ∈ X and all descriptors �

for the language L:
(iS) If � is satisfiable within XK , then K ◦ � = Ĉ({X ∈ XK | X ⊩�}),

and

(iiS) otherwise K ◦ � = K.

The index of (iS) and (iiS) stands for “sentential”. We can of course combine the
two simplifications. This amounts to letting a in Definition 4.22 have the property
a(K ) = X for all K . We can then replace (iS) by the following:

(iSL ) If � is satisfiable within X, then K ◦ � = Ĉ({X ∈ X | X ⊩�}).

4.6 Conclusion

In this chapter we have done two things in parallel. First, we have removed all
references to sentences in the belief statemodel, and then reintroduced them in a step-
by-step fashion, identifying the assumptions required at each stage.At the completion
of this process, we have a fully sentential model. However, we have not reintroduced
the more problematic assumptions related to possible worlds and remainders that are
usually associated with sentential models. In particular, we now have the means to
perform belief change through a choice among a finite set of logically finite potential
outcomes rather than among an infinite set of logically infinite entities that are not
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themselves potential outcomes. The expansion property does not hold, and (as will
be shown in detail later on) neither does the recovery property.

Secondly, we have introduced the two major formal elements of descriptor revi-
sion, namely: (1) the use of belief descriptors as a general representation of the
success conditions of belief change, and (2) the direct application of a choice func-
tion to the set of potential outcomes of the operation. The rest of this book is devoted
to the further development of belief change models employing these two principles.
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