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Abstract. This paper considers the problem of gathering a set of asyn-
chronous robots on the two dimensional plane under the additional
requirement that the maximum distance traversed by the robots should
be minimized. One of the implications of this optimization criteria is the
energy efficiency for the robots. The results of this paper are two folds.
First, it is proved that multiplicity detection capability is not sufficient
to solve the constrained gathering problem for a set of oblivious robots
even when the robots are fully synchronous. The problem is then stud-
ied for the robots having O(1) bits persistent memory and a distributed
algorithm is proposed for the problem in this model for a set of n ≥ 5
robots. The proposed algorithm uses only two bits of persistent memory.
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1 Introduction

A swarm of robots is a distributed system of small, autonomous, inexpensive
mobile robots designed to work cooperatively to achieve some goal. They can
execute some task which is beyond the capability of a single robot. The sys-
tem is usually a collection of autonomous (without any centralized control),
homogeneous (same capabilities), anonymous (without any identity i.e., indis-
tinguishable) robots. They do not have any explicit communication. The implicit
communications are achieved via observing the positions of other robots using
their endowed sensors. They do not have any global coordinate system. However,
each robot has its own local coordinate system. The directions and orientations
of the axes and the unit distances of the local coordinate systems may vary
from robot to robot. The robots may be oblivious (they do not remember any
information from their past computations).

At any point of time, a robot is either active or inactive (idle). An active robot
operates in Look-Compute-Move cycles. In the Look phase, it takes a snapshot of
its surrounding to capture the locations of other robots. In the Compute phase,
it computes a destination point using information collected in the Look phase.
Finally, it moves towards the computed destination point in the Move phase.
An inactive robot does not perform any action i.e., it is in sleep mode. To solve a
variety of problems, robots are endowed with some additional capabilities. Weak
multiplicity detection helps a robot to identify multiple occurrences of robots at
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a single point. Whereas, strong multiplicity detection enables the robots also to
count the total number of robots occupying the same location. The robots may
have an agreement on a common orientation (clockwise direction) i.e., chirality.
They may have some agreement on the directions of their local coordinate axes.
In memory model, robots are endowed with externally visible lights, which can
assume a constant number of predefined colours, to indicate their states [8,10].

Depending on the timings of the operations and activation schedules of the
robots, three types of models are used. The most general model is the asyn-
chronous (ASYNC or CORDA) model [14]. The activation of the robots are
arbitrary and independent of each other. The time spans of the operations are
finite but unpredictable. Thus, robots may compute on some obsolete data. In
the semi-synchronous (SSYNC or ATOM) [16] model, robots operate in rounds
and a subset of robots is activated simultaneously in each round. The opera-
tions are instantaneous and hence a robot is not observed while in motion. The
unpredictability lies in the activated subset of robots in each round. The most
restrictive of these three is the fully synchronous (FSYNC) model in which all
robots are activated in all rounds. We assume a fair scheduler which activates
each robot infinitely often [9].

A variety of problems can be solved by designing proper coordination strate-
gies. Fundamental geometric problems like gathering, circle formation, arbitrary
pattern formation, flocking, scattering etc. have been studied extensively in the
literature. The gathering problem is defined as follows: a swarm of robots, in the
two dimensional plane, should coordinate their motions in such way that in finite
time all of them meet at a single point which is not defined in advanced. The
constrained gathering problem asks robots to achieve gathering by minimizing
the maximum distance traversed by any robot.

1.1 Earlier Works

Considering different schedulers and different capabilities of the robots, a variety
of solutions have been proposed by researchers for the gathering problem. The
primary goal of these works has been understanding the minimal set of capabil-
ities of the robots which enables the robots to gather at a point not known in
advanced, under different scheduling models.

– FSYNC Model: In this model the gathering problem is solvable without any
extra assumption [10].

– SSYNC Model: Suzuki and Yamashita [17] proved that gathering of n = 2
robots is impossible without any agreement on the local coordinate systems
even with strong multiplicity detection. Prencipe [15] studied the problem for
n > 2 robots and proved that there does not exist any deterministic algorithm
for the gathering problem in absence of multiplicity detection and any form of
agreement on the local coordinate systems [15]. Bramas and Texeuil [3] pre-
sented an algorithm to solve the problem in the presence of arbitrary number
of crashed robots, when the robots are endowed only with strong multiplic-
ity detection capability. A study of probabilistic gathering was presented by
Défago et al. [9].
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– ASYNC Model: Cieliebak et al. [6] solved the gathering problem for n > 2
robots, with weak multiplicity detection capability. Bhagat et al. [2] presented
a fault-tolerant distributed algorithm, for n ≥ 2 robots with agreement in
one direction, which solves the problem in the presence of arbitrary number of
crashed robots even if robots are opaque i.e., they obstruct the visibility of the
other robots. Flocchini et al. [11] showed that gathering is possible in limited
visibility model (the robots can see up to a limited radius around themselves)
if robots have agreements in the directions and orientations of both the axes.
The gathering problem for robots, represented as unit discs (fat robots), have
also been investigated by the researchers [1,4,7]. A restricted version of the
gathering problem has been studied in [5] where robots are asked to gather
at any one of the predefined fixed points (known as meeting points) on the
plane. Their solution also satisfies the constraint that the maximum distance
traversed by any robot is minimized. To the best of our knowledge, this is the
only work which considers the constrained version of the gathering problem,
but for a restricted model. This paper considers the general version of the
problem.

The use of externally visible lights was first suggested by Peleg [13]. Das et al.
[8] investigated the characterizations of the model, in which robots are endowed
with externally visible lights. In memory model, the gathering problem for n = 2
robots (also known as rendezvous), was studied under different restrictions. The
studies of [18] and [8] proposed solutions to the rendezvous problem, using the
lights for both internal memory and communication purpose. Flocchini et al. [12]
investigated the possibilities of solving the rendezvous problem in two models:
(i) the lights are used only to remember internal states and (ii) light are used
for communication purposes.

1.2 Our Contribution

In this paper, we study the constrained gathering problem for a set of
autonomous robots. The contribution of this paper is in two parts. While the
gathering problem is solvable for n > 2 asynchronous robots with weak multi-
plicity detection only, it is shown that even in the FSY NC model, multiplicity
detection capability is not sufficient to solve the constrained gathering prob-
lem for oblivious robots. A distributed algorithm is then presented to solve the
problem in finite time for a set of n ≥ 5 asynchronous, oblivious robots under
the assumptions that robots are endowed with only two bits of memory. We do
not make any extra assumption like agreements in coordinate systems, unit dis-
tance and chirality, rigidity of movements. In spite of these weak assumptions,
we have showed that the constrained gathering problem is solvable for asyn-
chronous robots using only four colours. Our solution also provides collision free
movements for the robots. To the best of our knowledge, this paper is the first
attempt to study the constrained gathering problem, in general, for asynchro-
nous robots. One may view this constrained version of gathering problem as a
solution to energy efficiency.



40 S. Bhagat and K. Mukhopadhyaya

2 General Model and Definitions

The robots are autonomous, homogeneous, anonymous, asynchronous in nature.
They are considered as points in the two dimensional plane and they can move
freely on the plane. We consider the ASY NC model (CORDA). Each robot
has its own local coordinate system (Cartesian coordinate system) having origin
at its current position. The directions and orientations of the axes and unit dis-
tances of the local coordinate systems may differ. They do not have any common
chirality. All the measurements are done with respect to the local coordinate sys-
tems of the robots. We assume that initially all the robots occupy distinct points.
The visibility range of the robots is unlimited. The movements of the robots are
non-rigid i.e., a robot may stop before reaching its destination point and start
a fresh computational cycle. However, there exists a constant δ > 0 such that it
moves at least a distance minimum{δ, d} towards its destination point where d
is the distance of its destination point from its current position. It assures finite
time reachability of the robots to their respective destinations. The value of δ
is not known to the robots. Since the timing of operations by the robots are
unpredictable, a robot may be observed by other robots in the system while it
is in motion and the computation of robot may be done on some obsolete data.

– Configuration of the Robots: Let R = {r1, r2, . . . , rn} denote the set
of n robots. A robot configuration is denoted by the multi set R(t) =
{r1(t), . . . , rn(t)}, where ri(t) is the position of the robot ri at time t. Let
˜R denote the set of all such robot configurations. We assume that the initial
configuration R(t0) does not contain any multiplicity point (a point having
multiple robots on it).

– Smallest Enclosing Circle: Let SEC(R(t)) denote the smallest enclosing
circle of the points in R(t) and Ot denote its centre. Let Cout(t) denote the
set of robot positions on the circumference of SEC(R(t)) and Cint(t) the set
of robot positions lying within SEC(R(t)). When there is no ambiguity, we
use SEC(t) instead of SEC(R(t)).

– Let ab denote the closed line segment joining two points a and b (including
the end points a and b) and (a, b) the open line segment joining the points a
and b (excluding the two end points a and b). By |a, b|, we denote the distance
between the points a and b. For two sets A and B, by A\B we denote the set
difference of A and B. The angle between two given line segments is considered
as the angle which is less than or equal to π.

We use the following terms, as defined in [3], to describe our algorithm:

– View of a Robot: For a robot ri ∈ R, the view V(ri(t)) of ri is defined as
the set of polar coordinates of the points in R(t) where the polar coordinate
system of ri is defined as follows: (i) the centre of the coordinate system is
ri(t) and (ii) the point (1, 0) is Ot if ri(t) �= Ot, otherwise it is any point
rk(t) �= ri(t) ∈ R(t) that maximizes V(rk(t)). The orientation of the polar
coordinate system should maximize V(ri(t)). The view of each robot is defined
uniquely. While comparing the views of two robots, lexicographic sorting is
used.



Optimum Gathering of Asynchronous Robots 41

– Rotational Symmetry: An equivalence relation ∼ is defined on R(t) as
follows: ∀ri(t), rj(t) ∈ R(t), ri(t) ∼ rj(t) iff V(ri(t)) = V(rj(t)) with same
orientation. Let sym(R(t)) denote the cardinality of the largest equivalence
class defined by ∼. The set R(t) is said to have rotational symmetry if
sym(R(t)) > 1.

– Successor: Given a robot configuration R(t) and a fixed point c ∈ R
2, the

clockwise successor of a point ri(t) ∈ R(t) around c, denoted by S(ri(t), c),
is the point rj(t) ∈ R(t) defined as follows: if (c, ri(t)) contains at least one
point of R(t), then rj(t) is the point in R(t) ∩ (c, ri(t)) which minimizes
|ri(t), rj(t)|. Otherwise, rj(t) is the point in clockwise direction such that
∠(ri(t), c, rj(t)) contains no other point of R(t) and |c, rj(t)| is maximized. The
counter-clockwise successor of ri can be defined analogously. The kth clockwise
successor of ri(t) around c, denoted by Sk(ri(t), c), is defined by the recursive
relation: for k > 1, Sk(ri(t), c) = S(Sk−1(ri(t), c)), S1(ri(t), c) = S(ri(t), c)
and S0(ri(t), c) = ri(t).

– String of Angles: Let SA(ri(t), c) denote the string of angles α1(t), α2(t),
. . . , αm(t) where m = n − mult(c), mult(c) is the number of robots at the
point c and αi(t) = ∠(Si−1(ri(t)), c, Si(ri(t))). The length of SA(ri(t), c) is
|SA(ri(t), c)| = m. The string SA(ri(t), c) is k-periodic if there exists a con-
stant 1 ≤ k ≤ m such that SA(ri(t), c) = Xk, where X is a sub-string of
SA(ri(t), c). The periodicity of SA(ri(t), c), denoted by per(SA(ri(t), c)), is
the largest value of k for which SA(ri(t), c) is k-periodic.

– Regularity: A robot configuration R(t) is said to be regular if ∃ a point c ∈
R

2 and an integer m such that per(SA(ri(t), c)) = m > 1 and the regularity
of R(t) is denoted by reg(R(t)) = m. The point c is called the centre of
regularity.

– Quasi Regularity: A robot configuration R(t) is said to be quasi regular or
Q-regular iff ∃ a configuration B(t) and a point c ∈ R

2 such that reg(B(t)) > 1,
c is the centre of regularity of B(t) and p ∈ R(t)\B(t), p = c. In other words,
B(t) can be obtained from R(t) by moving the robot positions located at
c, if any, along particular half lines starting at c (including c). If R(t) is
Q-regular, then the point c is called as the centre of Q-regularity. By cq,
we denote the centre of Q-regularity. The quasi-regularity of R(t) is denoted
qreg(R(t)) = reg(B(t)). If R(t) is not quasi-regular, then qreg(R(t)) = 1.

Fact 1. Let R(t0) be an initial robot configuration. Then the centre Ot0 of
SEC(t0) is the unique point which minimizes the maximum distance from any
point in R(t0) to it.

For a set of points A, the Weber point of A is a point c which minimizes the
sum of distances of all the points in A to it. It is known that the Weber point is
not computable, in general, for a set of more than four points.

Fact 2. Weber point of a non-linear configuration is unique and this point
remains invariant under the straight movements of the robots towards it.
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Fact 3. If a configuration has multiple lines of symmetry, then it is Q-regular.
However, the converse is not true.

Fact 4. The centre of Q-regularity of a non-linear configuration coincides with
its unique Weber point and it is computable in finite time.

Fact 5. For a set A of n ≥ 3 points, there exists a subset B ⊆ A such that
|B| ≤ 3 and the smallest enclosing circles of A and B are same.

We state the following theorem without proof:

Theorem 1. The constrained gathering problem for a set of oblivious robots
is deterministically unsolvable even with strong multiplicity detection capability
under the FSYNC model.

3 Gathering Algorithm with Persistent Memory

By Fact 1, for an initial configuration R(t0), the centre Ot0 of the circle
SEC(R(t0)) is the only candidate for the gathering point which satisfies the
optimization criteria. But this point does not remain invariant under the move-
ments of the robots. Thus, strategies are designed in such a way that even when
configuration is changed, the robots can identify the point Ot0 . We assume that
each robot has two bits of persistent memory. This is implemented by endowing
the robots with externally visible lights. These lights can assume a finite num-
ber of colours, each colour indicates a different state. The colours do not change
automatically and they are persistent. The lights are used in two different ways:
one way is to remember the robot’s own state and the other way is to broadcast
its current state i.e., for both internal memory and communication purpose [12].
A robot can identify the colours of the lights of all the robots in the system
even when multiple robots occupy same position. It may be noted that strong
multiplicity detecting follows directly from it; the light model provides some
additional powers to the robots also. Except for the colour of its light, robots
are oblivious i.e., they do not remember any other information of its previous
computational cycles. Our algorithm assumes total four colours i.e., two bits
memory.

3.1 States of the Robots

The robots use colours for their external lights to indicate their current states.
This set of colours is denoted by X . Let R(t0) be an initial configuration. Fol-
lowing are the list of states and their corresponding colours: yellow indicates
that it is an inactive robot or it has not changed its colour yet, red indicates
that it has found R(t0) as a Q-regular configuration in which the centre of
SEC(R(t0)) coincides with centre of Q-regularity i.e., Ot0 = cq, green indicates
that it has found either R(t0) as not Q-regular or as Q-regular with Ot0 �= cq
and initially the robot was not at Ot0 and blue indicates that it has found either
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R(t0) as not Q-regular or as Q-regular with Ot0 �= cq and it is at Ot0 . Thus,
X = {yellow, red, green, blue}. Let si(t) denote the colour of the light for the
robot ri at time t.

3.2 Configurations

Let Rc(t) denote the set of all tuples (ri(t), si(t)) for all ri(t) ∈ R(t) and si(t) ∈
X . The set of all such Rc(t) is denoted by ˜Rc where R(t) ∈ ˜R. We partition ˜Rc

into the following classes:

– Central (CL): A robot configuration Rc(t) belongs to this class if it satisfies
exactly one of the following: (i) Rc(t) contains a multiplicity point pm such
that at least one robot at pm has red light or (ii) Rc(t) contains a point such
that at least one robot at this point has blue light. A configuration in this
class is called a central configuration and the multiplicity point or the point
with blue robot is called the central point.

– Q*-regular (QR0): A robot configuration Rc(t), containing no multiplicity
point, is in this class if (i) R(t) is Q-regular with Ot = cq and all the robots
have yellow light or (ii) contains at least one tuple (ri(t), si(t)) such that the
value of si(t) is red.

– Non Q*-regular (NQ): This class contains all the configurations R(t) ∈
˜Rc\(CL∪QR0). The configurations which are asymmetric or have exactly one
line of symmetry belong to this class.

3.3 Algorithm MoveToDestination()

Let ri be a robot which has a destination point px. The robot ri follows following
steps to reach the point px:

– If (ri(t), px) ∩ R(t) = ∅ i.e., there is no other robot position in between ri(t)
and px on the line segment ri(t)px, the robot ri moves directly to px along
ri(t)px.

– If (ri(t), px) ∩ R(t) �= ∅ i.e., there is at least one robot position in between
ri(t) and px on the line segment ri(t)px, the robot ri waits until it finds a free
corridor straight to px.

3.4 Algorithm GatheringLight()

We assume that (i) the initial robot configuration R(t0) does not contain any
multiplicity point (ii) all the robots initially have yellow lights and (iii) n ≥ 5.
An initial configuration Rc(t0) belongs to either QR0 or NQ. The basic idea
is to convert the initial configuration, within finite time, into a central one i.e.,
one in CL in which Ot0 is the central point. During the conversion phase, the
movements of the robots are coordinated in such way that the initial SEC(t0)
does not change until a central configuration is created. Once a central config-
uration is created, the point Ot0 remains recognizable by the robots even if the
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initial SEC(t0) changes. The movements of the robots are designed to satisfy
the constraint of the problem. Let ri be an arbitrary active robot in R, at time
t. Robot ri takes one of the following actions, depending on the configuration
and the position of the robot:

– Case-1 R(t) ∈ QR0: In this case, all the active robots have cq as their
destination point. Robot ri finds that either all robots have yellow lights or
at least one robot has red light. If ri(t) = cq, the robot ri does not move.
Otherwise, it does one of the following: (i) if there is a yellow robot at cq, the
robot ri waits (ii) otherwise, it sets cq as its destination point. In all these
sub-cases, if the light of ri is yellow, it also changes the colour to red.

– Case-2 R(t) ∈ NQ: The robot ri finds either all robots with yellow light
or at least one robot with green light and it acts according to the following:

• Case-2.1 Cint(t) �= ∅: If ri(t) ∈ Cout(t), the robot ri does nothing.
Otherwise, it does one of the following: (i) if ri(t) = Ot, the robot ri does
not move and it turns its light blue. (ii) if ri(t) �= Ot, the robots ri sets
Ot as its destination and it changes its colour to green.

• Case-2.2 Cint(t) = ∅: In this case all the robots lie on the circumference
of SEC(t).
∗ Case-2.2.1 R(t) is not Q-regular: Fact 3 implies that the robot

positions in R(t) have at most one line of symmetry.
· Case-2.2.1.1 R(t) does not have any line of symmetry: The

robot positions in R(t) are orderable in this case [4]. Consider an
ordering G (the ordering algorithm is same for all robots) of the
points in R(t). Select the robot position ru(t) ∈ R(t) such that
the smallest enclosing circle of R(t)\{ru(t)} is same as SEC(R(t))
and ru(t) has the highest order in G among all the points satis-
fying this property. Since n ≥ 5, such a point exists by Fact 5. If
ri(t) = ru(t), then it moves towards Ot and turns its light green.
Otherwise, it does nothing.

· Case-2.2.1.2 R(t) has exactly one line of symmetry L:
There are two possibilities: (i) the line L passes through at least
one robot position in R(t) or (ii) there are four robot positions,
say H1 = {rv1(t), rv2(t), rv3(t), rv4(t)}, belonging to Cout(t) which
are closest to L. If ri(t) ∈ H1 or L does not pass through ri(t),
the robot ri does nothing. Otherwise, ri has Ot as its destination
point and it changes its colour to green.

∗ Case-2.2.2 R(t) Q-regular with Ot �= cq: There are at most two
distinct robot positions in Cout which are farthest from cq. Let U
denote the set of these points. Lz is the ray defined as follows (i) if
|U| = 1 and rl(t) ∈ U , then Lz is the ray from rl(t), which passes
through Ot (ii) otherwise, it is the ray from the middle point of the
two robot positions in U , which passes through Ot. Let Lz intersect
the circumference of SEC(t) at pz. W is the set defined as follows: (i)
if pz contains a robot position, W is the singleton set containing this
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point (ii) otherwise, W = {rj(t), rk(t)} where rj(t), rk(t) ∈ Cout(t)
and they lie on two different sides of Lz. If ri(t) �= U ∪ W, it sets
Ot as its destination point and turns its light green. Otherwise, the
robot ri does nothing. Note that |U ∪ W| is at most 4 and the robot
positions in U ∪ W keep SEC(t) intact. Since n ≥ 5, at least one
robot moves inside SEC(t).

– Case-3 R(t) ∈ CL: An initial configuration Rc(t0) does not belong to this
class. A configuration in this class is generated by the movements of the robots
as described in case-1 and case-2. The destination point of each robot is Ot0 .
First, consider the case when Rc(t) contains a multiplicity point at Ot0 , with
all robots at this point having red colour. If ri(t) = Ot0 , the robot ri does not
move. Otherwise, it sets Ot0 as its destination point. In both the cases, if the
colour of ri is yellow, it changes its colour to red. Since robots can distinguish
colours of all the robots occupying the same position, they can easily identify
the point Ot0 . Now, let Rc(t) contain a blue robot at the point Ot0 . Same
strategies are followed. In this case a robot does not change its colour.

In all of the above cases, a robot moves to its destination point according to
algorithm MoveToDestination() described in Sect. 3.3. Following list shows the

transactions between different states of the robots: {yellow} R(t)∈QR0−−−−−−−→ {red},

{yellow} R(t)∈NQ∧Cint(t) �=∅∧Ot=ri(t)−−−−−−−−−−−−−−−−−−−−→ {blue}, {yellow} R(t)∈NQ∧Ot �=ri(t)−−−−−−−−−−−−−→
green, {green} R(t)∈NQ∧Cint(t) �=∅∧Ot=ri(t)−−−−−−−−−−−−−−−−−−−−→ {blue}.

3.5 Correctness of GatheringLight()

In this section, it is proved that GatheringLight() solves the constrained gath-
ering problem.

Lemma 1. Algorithm MoveToDestination() guarantees collision free move-
ments for the robots during the whole execution of algorithm GatheringLight().

Proof. During the whole execution of algorithm GatheringLight(), the des-
tination point for each robot in the system is Ot. Let ri be robot which
wants to move to the point Ot. The robot ri starts moving towards Ot

only when it finds a free corridor straight to this point. Otherwise, it waits,
until all the robots in (ri(t),Ot) reach their respective destinations. Thus,
algorithm MoveToDestination() guarantees a collision free movement for the
robot ri. ��
Lemma 2. During the whole execution of algorithm GatheringLight(), � a time
t such that si(t) = red and sj(t) = green ∨ blue for any two robots ri, rj ∈ R.

Proof. Let R(t0) be an initial robot configuration. Initially all the robots have
yellow lights.
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– Case-1 Rc(t0) ∈ QR0: Since Ot0 = cq, when a robot wakes up, it either
finds that all robots are yellow or at least one robot has red light. In both
the cases, it turns its light red and it never changes its colour again during
the whole execution of the algorithm. Thus through out the whole execution
of the algorithm, each robot has any one of the colours from the set F1 =
{yellow, red} for its light.

– Case-2 Rc(t0) ∈ NQ: The robots which wake up first, find that R(t0) ∈
NQ and all the robots have yellow lights. First, they turn their lights green
or blue, depending upon their positions and then execute move phase. The
robots which wake up after this, find that either Rc(t) has at least one robot
with green light or it contains unique point occupied by at least one blue
robot. They change their colours to green or to blue. Hence, in this case, the
set of colours of consumed by the robots is F2 = {yellow, green, blue}.

– Case-3 Rc(t) ∈ CL: This case is applicable for a robot configuration Rc(t)
where t > to. From case-1 and case-2, it is clear that Rc(t) does not contain
two robots; one with red colour and other with blue colour. When a robot finds
a multiplicity point with red robots, it changes its colour to red. Otherwise,
when it finds a robot with blue colour, it does not change its colour. This
implies at time t′ > t, the system does not have two robots; one with red light
and other with blue light. Hence the lemma holds. ��

Lemma 3. Algorithm GatheringLight() converts any initial configuration
R(t0) with more than 4 distinct robot positions, to a central configuration in
finite time.

Proof. Let Rc(t0) /∈ CL be an initial robot configuration with more than 4
distinct robot positions. The algorithm GatheringLight() maintains one of the
two invariants (i) if the initial configuration is Q-regular with Ot0 = cq, it remains
Q-regular until a multiplicity point with red robots is created (ii) otherwise, the
smallest enclosing circle SEC(t0) of R(t0) remains the same until at least one
robot reaches Ot0 and changes its colour to blue. Thus each active robot has
exactly one desired destination point Ot0 .

– Case-1 R(t0) ∈ QR0: Here, Ot0 = cq and the robots move towards cq. By
Fact 2, the point cq, remains invariant under the straight movements of the
robots towards it. The robots which are moving towards cq, have red colour
lights to indicate the state of the initial configuration. By Lemma2, within
finite time at least two red robots occupy the point Ot0 = cq. This converts cq
as a multiplicity point with all red robots. The uniqueness of the multiplicity
point follows from Lemma 1. Thus, within finite time, we would have a central
configuration.

– Case-2 R(t0) ∈ NQ: The robots which discover this case first, turn their
lights green or blue so that all other robots, whenever they wake up, can have
this information about the initial configuration. The robots have any one of
the following scenarios:

• Case-2.1 Cint(t0) �= ∅: In this case, the robots in Cint(t0) move towards
Ot0 . Since the robots in Cout(t0) do not move, the circle SEC(t0) and
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hence Ot0 , remain invariant. Within finite time at least one robot reaches
Ot0 and turns its light blue, which converts the configuration into a central
one. Since a robot at Ot0 decides to turn its colour to blue when it finds no
robot with blue light in the system, the point with blue robots is unique.

• Case-2.2 Cint(t0) = ∅: The objective, in this case, is to move at least
one robot inside SEC(t0) so that |Cint(t)| becomes at least 1. The selec-
tion of this robot depends on the symmetry of R(t0).
∗ Case-2.2.1 R(t0) is not Q-regular: There are two possibilities:

· Case-2.2.1.1 R(t0) does not have any line of symmetry:
The robot positions in R(t0) are orderable. Exactly one robot
can be selected deterministically to move inside SEC(t0) such
that SEC(t0) remains invariant.

· Case-2.2.1.2 R(t0) has exactly one line of symmetry L:
Since n ≥ 5 and at most four robots retain their positions on the
circumference of SEC(t0) to keep it intact, there is at least one
robot which is eligible to move inside SEC(t0). Whenever one
such robot moves inside SEC(t0), we are done.

∗ Case-2.2.2 R(t0) is Q-regular with Qt0 �= cq: Same arguments as
in the case-2.2.1.2 above, works for this case also.

Within finite time, |Cint(t)| will be at least 1 and case-2.1 shall be applica-
ble. This implies that the initial configuration will be converted into a
central one within finite time.

Hence, the lemma is true. ��
Lemma 4. Algorithm GatheringLight() solves the constrained gathering prob-
lem in the ASYNC model for n ≥ 5 robots in finite time.

Proof. By Lemma 3, an initial configuration Rc(t0) can be converted into a cen-
tral configuration in finite time if the number of distinct robot positions in the
configuration is more than 4. Now, let R(t) ∈ CL, ∀ t > t0. By Lemma 2, exactly
one of the following is the case: (i) R(t) contains a unique multiplicity point
with red robots or (ii) R(t) contains a unique point with blue robots. In both
the cases, the special point is created at Ot0 . Thus, a robot not at Ot can easily
identify the location of Ot0 even when the circle SEC(t0) has changed. All the
robots move towards Ot0 . They follow algorithm MoveToDestination() to reach
their destination point. Algorithm MoveToDestination() guarantees that (i) the
movements of the robots are collision free, by Lemma 1 and (ii) the movements
of the robots satisfy the constraint of the problem (since robots move along
the straight lines to the destination points). Thus, algorithm GatheringLight()
achieves the required goal. It is easy to see that the constrained gathering prob-
lem is not solvable, in general, for n ≤ 4 robots with lights. ��
Theorem 2. The constrained gathering problem is solvable in the ASYNC
model for n ≥ 5 robots when robots are endowed with externally visible lights
with 4 different colours.
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4 Conclusion

This paper presents a distributed algorithm to solve the constrained version
of gathering problem for asynchronous robots, when robots are endowed with
externally visible lights using only 4 colours (O(1) bit of memory) for n ≥ 5
robots. It is also proved that the problem is not solvable solely with multiplicity
detection under non-rigid motion even for fully synchronous robots. One of the
future directions is to study the problem in the presence of faulty robots.
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