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Abstract. The concept of convex polygon-offset distance function was
introduced in 2001 by Barequet, Dickerson, and Goodrich. Using this
notion of point-to-point distance, they showed how to compute the cor-
responding nearest- and farthest-site Voronoi diagram for a set of points.
In this paper we generalize the polygon-offset distance function to be
from a point to any convex object with respect to an m-sided convex
polygon, and study the nearest- and farthest-site Voronoi diagrams for
sets of line segments and convex polygons. We show that the combina-
torial complexity of the nearest-site Voronoi diagram of n disjoint line
segments is O(nm), which is asymptotically equal to that of the Voronoi
diagram of n point sites with respect to the same distance function. In
addition, we generalize this result to the Voronoi diagram of disjoint con-
vex polygonal sites. We show that the combinatorial complexity of the
nearest-site Voronoi diagram of n convex polygonal sites, each having
at most k sides, is O(n(m + k)). Finally, we show that the correspond-
ing farthest-site Voronoi diagram is a tree-like structure with the same
combinatorial complexity.

Keywords: Polygon-offset distance function · Nearest-site Voroni
diagram · Farthest-site Voroni diagram · Convex polygonal sites · Line
segments

1 Introduction

The Voronoi diagram is a very powerful tool which is widely used in diverse
fields like epidemiology, ecology, computational chemistry, robot motion plan-
ning, and architecture, to name just a few. Being studied from as early as in the
17th century by Descartes [7], the topic has a vast literature. Many variations
of Voronoi diagrams, differing by dimension, sites, measure of distance, etc.,
have been studied. To unify the concept, at least in two dimensions, Klein [11]
introduced the notion of an abstract Voronoi diagram.
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Chew and Drysdale [6] proposed a Voronoi diagram for point sites with
respect to convex distance function (also known as Minkowski functionals [2,9]),
which is based on the notion of scaling of a convex polygon.

Barequet et al. [3] introduced the concept of convex polygon-offset distance
function between two points. This function captures the distance according to
the notion of shrinking or expanding a convex polygon along its medial axis. In
the cited paper, the authors pointed out that polygon-offset distance functions
are more natural than convex distance functions for many applications, e.g.,
manufacturing processes of physical three-dimensional objects, because a convex
distance function varies, for the same underlying polygon, if different center
(reference) points are used, which is not the case with polygon-offset distance
function whose center is determined by the polygon. However, if the underlying
polygon is not regular, the respective polygon-offset distance function does not
satisfy the triangle inequality. In the same work, the authors also presented an
algorithm for computing the Voronoi diagram for points with respect to this
distance function.

In the current paper, we generalize the convex polygon-offset distance func-
tion to measure distances from a point to a convex object. This distance measure
is useful, for example, to model the distribution of pollution expanded from an
industrial zone to a residential area. Assume that an industrial zone P should
be placed such that the pollution from P takes maximum time to reach any
part of the residential area. Here, the residential area is described as a poly-
gon set S and the (polygon-offset) distance is measured with respect to the
industrial zone P. The Voronoi vertices of the nearest-site Voronoi diagram are
the candidates for the placement of the industrial zone. The vertex with the
maximum distance to a site is the sought solution.

1.1 Related Work

The Voronoi diagram of point sites has been studied extensively in the literature.
In the Euclidean metric, the combinatorial complexity of both the nearest- and
farthest-site Voronoi diagram is O(n), where n is the number of point sites [8]
or disjoint line segments [1,16] in the diagram. These diagrams can be con-
structed in optimal O(n log n) time. For a set of k disjoint convex polygonal
sites with total complexity n, the combinatorial complexity of the nearest-site
Voronoi diagram in the Euclidean metric is also O(n) [10,13,17]. McAllister
et al. [14] presented an algorithm to compute a compact representation of the
diagram in O(k log n) time using only O(k) space. This compact representation
can be used to answer closest-site queries in O(log n) time. Recently, Cheong
et al. [5] showed that in the Euclidean metric, the combinatorial complexity of
the farthest-site counterpart is also O(n), and the diagram can be computed
in O(n log3 n) time. On a related note, Bohler et al. [4] introduced recently the
notion of abstract higher-order Voronoi diagram and studied its combinatorial
complexity.

With respect to the polygon-offset distance function, the combinatorial com-
plexity of both nearest- and farthest-site Voronoi diagrams of a set of n points
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is O(nm) [3], where m is the complexity of the underlying convex polygon. Both
diagrams can be computed in expected O(n log n log2 m + m) time. Neither the
combinatorial complexity nor the computation algorithm were investigated so
far for sites which are disjoint line segments or convex polygons, with respect to
the polygon-offset distance function.

1.2 Our Contribution

In this paper, we generalize the definition of the polygon-offset distance func-
tion DP(p, S) to be from a point p to an object S (either a line segment or a
convex polygon, rather than just to another point), where P is, as before, an
m-sided convex polygon. Next, we study the properties and complexities of both
nearest- and farthest-site Voronoi diagrams of disjoint line segments and convex
polygons with respect to this distance function.

We show that the combinatorial complexity of the nearest-site Voronoi dia-
gram of n disjoint line segments is O(nm), which is asymptotically the same as
that of the nearest-site Voronoi diagram of n point sites. Next, we prove that
the combinatorial complexity of the nearest-site Voronoi diagram of n polygo-
nal sites, each having at most k sides, is O(n(m + k)). Finally, we show that
the farthest-site Voronoi diagrams for both line segments and convex polygons
are tree-like structures; they have the same combinatorial complexity as their
nearest-site counterpart.

1.3 Organization

First, we give some relevant definitions and preliminaries in Sect. 2. Then, the
nearest-site Voronoi diagrams of line segments and convex polygons are studied
in Sect. 3. The farthest-site Voronoi diagram is studied in Sect. 4. We end in
Sect. 5 with some concluding remarks.

2 Preliminaries

We begin with illustrating the process of offsetting a convex polygon, follow-
ing closely the description of Barequet et al. [3]. Given a convex polygon P,
described by the intersection of m closed half-planes {Hi}, an offset copy of P,
denoted as OP,ε, is defined as the intersection of the closed half-planes {Hi(ε)},
where Hi(ε) is the half-plane parallel to Hi with bounding line translated by ε.
Depending on whether the value of ε is positive or negative, the translation is
done outward or inward of P . See Fig. 3(a) for an illustration. The value of ε0 < 0
for which the OP,ε′ degenerates into a point c (or a line segment s) is the radius
of P, and the point c (or any point on s) is referred to as the center of P.

Using the above concept, Barequet et al. [3] defined the polygon-offset dis-
tance function DP between two points as follows.
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Definition 1 (Point to point distance [3]). Let z1 and z2 be two points
in R

2 and OP,ε be an offset of P such that a translated copy of OP,ε, cen-
tered at z1, contains z2 on its boundary. The offset distance is defined as
DP(z1, z2) = ε+ |ε0|

|ε0| = ε
|ε0| + 1.

Note that this distance function is not a metric since it is not symmetric. We
generalize the offset distance function DP to measure distance from any point z
to any object o in R

2 in a natural way, as follows.

Definition 2 (Point to object distance). Let z be any point, and let o
be any object in R

2. The offset distance DP(z, o) is defined as DP(z, o) =
minz′∈o DP(z, z′).

2.1 Properties of DP :

The following properties [3] also hold for the generalized distance function DP .

Property 1 [3, Sect. 3.1, Property 1]. The distance function DP induces a Euclid-
ean topology in the plane. In other words, each small neighborhood of a point
contains an L2-neighborhood of it, and vice versa.

Property 2 [3, Sect. 3.1, Property 2]. The distance between every pair of points
is invariant under translation.

Property 3 [3, Theorem 6]. The distance function DP is complete, and for each
pair of points z1, z3 ∈ R

2, there exists a point z2 /∈ {z1, z3} such that DP(z1, z2)+
DP(z2, z3) = DP(z1, z3).

Property 4 [3, Theorem 7]. For each pair of points z1, z2 ∈ R
2, there exists a

point z3 �= z2} such that DP(z1, z2) + DP(z2, z3) = DP(z1, z3).

It is easy to observe the following property of DP .

Observation 1. Let z be a point and o be a convex object. Then, the func-
tion DP(z, o) increases monotonically when z moves along a ray originating at
a point on the boundary of o and never crossing it again.

2.2 Definitions of Voronoi Diagram

Under the convex polygon offset distance function, the bisector of two points (as
defined originally [3]) can be 2-dimensional instead of 1-dimensional (see Fig. 1
for an illustration). This makes the Voronoi diagram of points unnecessarily
complicated. To make it simple, as is also defined by Klein and Woods [12], we
redefine the bisector and Voronoi diagram with respect to the offset distance
function DP as follows.
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Fig. 1. (a) Three different positions of the offset polygons from where both line seg-
ments are equidistant; (b) The bisector of two line segments according to the definition
used in [3]; and (c) The bisector according to our definition.

Let z be a point, and Π = {σi} a set of objects in the plane. In order to
avoid 2-dimensional bisectors between two objects in Π, we define the index of
the objects as the “tie breaker” for the relation ‘≺’ between distances from z to
the sites. That is,

DP(z, σi) ≺ DP(z, σj)

if DP(z, σi) < DP(z, σj) or, in case DP(z, σi) = DP(z, σj), if i < j.1 Note that
the relation ‘≺’ does not allow equality if i �= j. Therefore, the definition below
uses the closure of portions of the plane in order to have proper boundaries
between the regions of the diagram.

Definition 3 (Nearest-site Voronoi diagram). Let Π = {σ1, σ2, . . . , σn} be
a set of n sites in R

2. For any σi, σj ∈ Π, we define the region of σi with
respect to σj as NV

σj

P (σi) = {z ∈ R
2|DP(z, σi) ≺ DP(z, σj)}. The bisecting

curve BP(σi, σj) is defined as NV
σj

P (σi) ∩ NV σi

P (σj), where X is the closure of
X. The region of a site σi in the Voronoi diagram of Π is defined as NVP(σi) =
{z ∈ R

2|DP(z, σi) ≺ DP(z, σj)∀j �= i}. The nearest-site Voronoi diagram is the
union of the regions: NV DP(Π) =

⋃

i

NVP(σi).

In other words, the diagram NVDP(Π) is a partition of the plane, such that
if a point p ∈ R

2 has more than one closest site, then it belongs to the region
of the site with the smallest index. The bisectors between regions are defined
by taking the closures of the open regions. The farthest-site Voronoi diagram is
defined analogously.

1 A disadvantage of this approach is that relabeling of the input sites will change
the diagram. One can adopt the rule of Klein and Wood [12], who break ties by
the lexicographic order of the input points, but with such a solution, the Voronoi
diagram will not be invariant under rotation of the plane.
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3 Nearest-Site Voronoi Diagram

3.1 Line Segments

Let S = {s1, s2, . . . , sn} be a set of n line segments in R
2. First, we study the

combinatorial complexity of the nearest-site Voronoi diagram NVDP(S ) with
respect to DP , where P is an m-sided convex polygon. We use the abstract
Voronoi diagram paradigm of Klein and Wood [12].

Theorem 2 [12, Theorem 4.6]. If DP satisfies Property 1, Property 3, and
Property 4, then all Voronoi regions are simply connected.

As a result, we have the following.

Lemma 3. Every Voronoi region NVP(si) in NV DP(S ) is simply connected.

Let s1, s2 be two line segments in the plane, and B(s1, s2) and BP(s1, s2)
be the bisectors of s1 and s2 with respect to the Euclidean distance and the
polygon-offset distance DP , respectively. In the sequel, we will use the term
polyline to denote a piecewise-simple curve all of whose elements are described
by low-degree polynomials, like line segments and parabolic arcs. It is well known,
then, that B(s1, s2) is a polyline. Let Nt be the normal to the bisector B(s1, s2)
at a point t on the bisector. Now, observe the following.

Observation 4. If we move a point x from t along Nt towards s1,
then DP(x, s2) increases monotonically and DP(x, s1) behaves like a convex
function. At the minimum of DP(x, s1), we have that DP(x, s1) ≤ DP(x, s2)
(see Fig. 3(b) for an illustration). A similar claim holds (with the roles of s1
and s2 exchanged) when we move x from t in the opposite direction along Nt

(towards s2).

t

t1

x1

x2

y

s2

s1

B(s1 2)

BP(s1

, s

, s2)

Nt1

Nt

Fig. 2. Illustration of Lemma 5.

Now, we prove the following.

Lemma 5. For any two line segments s1 and s2, the curve BP(s1, s2) is
monotone with respect to B(s1, s2).
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Proof. We need to show that for any point t on the Euclidean bisector B(s1, s2),
the normal Nt to the bisector B(s1, s2) at t intersects BP(s1, s2) at most once.
Assume to the contrary that there exist on Nt two points x1 and x2, such that
DP(x1, s1) = DP(x1, s2) and DP(x2, s1) = DP(x2, s2). Assume further, without
loss of generality, that both x1 and x2 are closer to s2 than to s1 (see Fig. 2).
Then, since both B(s1, s2) and BP(s1, s2) are continuous, there is a point t1
on B(s1, s2) for which the line Nt1 is tangent to BP(s1, s2), say, at point y. Thus,
there exist a direction along which the two functions DP(x, s1) and DP(x, s2)
are tangent but do not cross. This can happen only where both functions are
monotone increasing or monotone decreasing. However, in light of Observa-
tion 4, this behavior cannot happen near the DP -bisector, where one function
decreases and the other increases (see Fig. 3(b)), which is a contradiction. The
claim follows. �	
Corollary 1. For any two line segments s1 and s2, the curve BP(s1, s2) is
unbounded.

Lemma 6

(i) Let s1, s2 be two line segments in the plane. The bisecting curve BP(s1, s2)
is a polyline with O(m) arcs and line segments.

(ii) Two different bisecting curves intersect O(m) times.

0

0

t

DP( 2) DP(
x, s

x, s1)

s1
s2

O
ecnatsid

tesff

)c()b()a(

Fig. 3. (a) Different offset copies of a polygon; (b) Illustration of Observation 4; and
(c) Euclidean bisector of two line segments.

Proof

(i) Let us swipe a point t along the bisector BP(s1, s2) from end to end, and
characterize every position of t by (a) which elements (vertices or sides) of
the current offset of P (which now touches simultaneously s1 and s2) touch
the two segments; and (b) the location of the touching points on the two
segments (either one of the endpoints, or a point internal to the segment,
in which case we also distinguish between the two sides of the segment).
We call this characterization the status of the bisector at t; see Fig. 4(a)
for an illustration. During this sweep, a new basic piece of the bisector is
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manifested by a change in the status. In between such changes, the bisector
is a line segment or a parabolic arc, depending of the elements of the status.
Estimating the complexity of the bisector boils down to setting an upper
bound on the total number of such changes in the status.
There are two crucial issues to observe. First, when t is swept
along BP(s1, s2), the offset-distance from BP(s1, s2) to s1 (or s2) first
decreases monotonically until a minimum point (or an interval of one min-
imum value, in the degenerate case in which the two segments are parallel
and their mutual orthogonal projection is non-empty), and then it increases
monotonically. This implies that P first shrinks continuously (a process in
which sides only “disappear”) and then expands (the opposite process in
which sides only “appear”). During this process, the touching point moves
cyclically around BP . Hence, the status can change O(m) times due to
changes of the touching element of BP . The fact that BP first shrinks and
then expands does not change this bound—it only implies that some ele-
ments of P are skipped without contributing to these changes.
Second, the touching point on each segment also rotates about it. This means
that each segment contributes an additional constant number of changes to
the status.
In conclusion, the total number of changes of the status during the sweep
is O(m).

(ii) Let BP(s1, s2) and BP(s3, s4) be the two bisectors (with respect to DP of
two pairs of segments s1, s2 and s3, s4. As we already know, the complex-
ity of each one of them is O(m). Every pair of basic elements of the two
bisectors may intersect at most two times (as they are partial polynomials
of degree 1 or 2). Suppose that we advance along the two bisectors from
end to end and detect one (or two) intersection(s) between the same basic
pieces of the bisectors. It is crucial to observe that if we continue further
along the one of the bisectors switching to another basic piece, and discover
another intersection, this intersection must lie on a basic element which
is further along the other bisector. This follows from the monotonicity of
the polygon-offset distance functions. Indeed, as seen in Fig. 1(b), one can
decompose the range of the parameter t into three intervals: One in which
both functions decrease, one in which one increases and the other decreases,
and one in which both functions increase. Hence, the number of intersections
behaves like a merge between two ordered lists, each of complexity O(m):
The complexity of the merged list is O(m) as well. �	

Theorem 7 [12, Theorem 2.5]. Assume that a distance function DP induces the
Euclidean topology in the plane. Furthermore, assume that each bisector consists
of disjoint simple curves, and curves belonging to different bisectors can intersect
only finitely often within each bounded area. Finally, assume that all possible
Voronoi regions are connected sets. Then NV DP(S ), where S is a set of n
sites, has n faces and O(n) edges and vertices.

Property 1, Lemma 3, and Lemma 6(i) ensure that all the assumptions in The-
orem 7 are satisfied. As a corollary to the theorem above, and due to Lemma6(ii),
we have the following.
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Fig. 4. Status configuration for (a) line segments, and (b) convex polygons.

Theorem 8. For a set S of n line segments, the combinatorial complexity of
the Voronoi diagram NV DP(S ) is O(nm), where m is the number of sides of P.

Remark. The bound O(nm) on the complexity of the diagram is attainable. For
example, put n line segments more or less aligned horizontally and well spaced,
so that most of the bisector of every pair of consecutive segments is present
in the diagram, for a total complexity of Ω(nm). Hence, we conclude that the
complexity of the diagram is Θ(nm) in the worst case.

3.2 Convex Polygons

We can easily extend the sites from line segments to convex polygons. Let Q =
{p1, p2, . . . , pn} be a set of n convex polygonal sites, each having at most k
sides, and let NVDP(Q) be the nearest-site Voronoi diagram of these sites with
respect to the convex polygon-offset distance function DP , where P is an m-
sided convex polygon. With similar arguments given for Lemmata 3 and 5 for
the nearest-site Voronoi diagram of a set of line segments (with respect to DP),
we can prove the following.

Lemma 9. Every Voronoi region NVP(pi) in the nearest-site Voronoi diagram
NV DP(Q) is simply-connected.

Lemma 10. For any convex polygons p1 and p2, the curve BP(p1, p2) is
monotone with respect to B(p1, p2).

In the same manner, the following generalizes Lemma 6 to deal with polygonal
sites.
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Lemma 11

(i) The bisecting curve BP(p1, p2) of a pair of convex polygons p1, p2, each
having at most k sides, is a polyline with O(m + k) arcs and segments.

(ii) Two such bisecting curves intersect O(m + k) times.

The proof of the lemma above is identical to that of Lemma6 with the
following refinements.

1. The offset of P can touch any of the up to k corners and k sides of each of
the sites.

2. When swiping the point t along the bisector, the touching points on the two
sites move sequentially along their boundaries without turning back, there-
fore, decomposing the bisector according to the touching points contributes
at most 4k additional pieces.

3. Except that, the proofs of the two parts of the lemmas are identical. Therefore,
the complexity O(m) is replaced by O(m + k).

Similarly to the argument in the proof of Theorem8, in the polygonal case
Property 1, Lemma 9, and Lemma 11 also ensure that all the assumptions in
Theorem 7 are satisfied, and due to Lemma 11(ii), we have the following.

Theorem 12. For a set Q of n convex polygons, each having at most k sides,
the combinatorial complexity of the Voronoi diagram NV DP(Q) is O(n(m+k)),
where m is the number of sides of P.

4 Farthest-Site Voronoi Diagram

We are given a set S = {σ1, σ2, . . . , σn} of sites (line segments or convex poly-
gons) in R

2. In this section, following the framework of Mehlhorn et al. [15] (and
generalizing the approach of Barequet et al. [3, Sect. 5]), we obtain the combina-
torial complexity of the farthest-site Voronoi diagram of S with respect to the
distance function DP , where P is a convex polygon with m sides.

Let σi, σj be a pair of sites in S . As in Sect. 2, we define NVσj

P (σi) to contain
all the points in the plane that are closer to σi than to σj with respect to DP .
Let us also define the dominant set M(σi, σj) to be equal to NVσj

P (σi) except
the bisecting curve δM(σi, σj) = BP(σi, σj).

Consider the family M = {M(σi, σj)|1 ≤ i �= j ≤ n}. The family M is
a called a dominance system if for all σi, σj ∈ S, the following properties are
satisfied:

1 M(σi, σj) is open and non-empty;
2 M(σi, σj) ∩ M(σj , σi) = ∅ and δM(σi, σj) = δM(σj , σi); and
3 δM(σi, σj) is homeomorphic to the open interval (0, 1).

Similarly to the argument given in the cited work [3, Theorem 16], we can
prove the following.
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Lemma 13. The family M is a dominance system.

Proof. We argue why the properties of a dominance system are satisfied.

1. M(σi, σj) is open because DP is monotone and continuous.
Let � be a line which splits the plane into two parts and separating between σi

and σj . Without loss of generality, assume that � is vertical and that σi is to
the left side of �. In this situation, all the points which are further to the left
of σi belong to M(σi, σj). Hence, M(σi, σj) is always non-empty.

2. Centering P at any point r ∈ R
2, if we “pump” P up, then either it

hits σi first, or σj first, or hits simultaneously σi and σj . In the first case,
r ∈ M(σi, σj); in the second case, r ∈ M(σj , σi); and in the third case,
if DP(r, σi) ≺ DP(r, σj) (that is, if i < j), then r ∈ M(σi, σj), other-
wise r ∈ M(σj , σi). Hence, M(σi, σj) ∩ M(σj , σi) = ∅. On the other hand,
δM(σi, σj) = BP(σi, σj) = NVσj

P (σi) ∩ NVσi

P (σj) = BP(σj , σi) = δM(σj , σi).
3. δM(σi, σj) is homeomorphic to the open interval (0, 1) since BP(σi, σj) is a

polyline (see Lemma 11(i)). �	
A dominance system is admissible if it also satisfies the following properties.

4. Any two bisecting curves intersect finitely-many times.
5. For all non-empty subsets S′ of S, and for every reordering of indices in S,

(a) The (nearest neighbor) Voronoi cell of every sites σi ∈ S′ (with respect
to S′) is connected and has a non-empty interior.

(b) The union of all the (nearest neighbor) Voronoi cells of all sites σi ∈ S′

(with respect to S′) is the entire plane.

A dominance system which satisfies only Properties 4 and 5(b) is called semi-
admissible.

It is easy to verify from Lemmata 9 and 11(ii) that the family M is admissible.
Thus, we have the following.

Theorem 14. The family M is admissible.

The fact that M is semi-admissible suffices for our purposes. Consider now
the family M∗, the “dual” of M , in which the dominance relation as well as the
ordering of the sites are reversed. From [15], we have the following theorem.

Theorem 15. [3,15] If M is semi-admissible, then M∗ is semi-admissible too.
Moreover, the farthest site Voronoi diagram that corresponds to M∗ is identical
to the nearest site Voronoi diagram that corresponds to M .

As a consequence, we conclude the following.

Theorem 16. Let P be a convex polygon with m sides.

(i) For a set of n line segments, the combinatorial complexity of the farthest-site
Voronoi diagram (with respect to DP) is O(nm).
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(ii) For a set of n convex polygons, each having at most k sides, the combina-
torial complexity of the farthest-site Voronoi diagram (with respect to DP)
is O(n(m + k)).

As we could show that the farthest-site Voronoi diagram can be defined as a
dominance system, we could benefit from all the results of [15] on this diagram,
namely, that it is a tree.

5 Conclusion

We investigate the combinatorial complexity of the nearest- and farthest-site
Voronoi diagram of line segments or convex polygons under a convex polygon-
offset distance function. It would be interesting to see how fast one can compute
these diagrams. Another important direction for future research is to investigate
higher-order Voronoi diagram in this setting.
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