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Abstract. In this work we present Rotation clustering, a novel method
for consensus clustering inspired by the classifier ensemble model Rota-
tion Forest. We demonstrate the effectiveness of our method in a real
world application, the identification of enriched gene sets in a TCGA
dataset derived from a clinical study on Glioblastoma multiforme.

The proposed approach is compared with a classical clustering algo-
rithm and with two other consensus methods. Our results show that this
method has been effective in finding significant gene groups that show a
common behaviour in terms of expression patterns.
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1 Introduction

Technological advances lead to a huge increase in the number of technologies
available to produce omics data such as gene expression, RNA expression (RNA),
microRNA expression (miRNA), protein expression etc.

Nowadays, especially for microarray gene expression technology, the greatest
effort no longer consists in the production of data, but in their interpretation to
gain insights into biological mechanisms.

Microarray gene expression data allow to quantify the expression of thou-
sands of genes across hundreds of samples under different conditions [4]. Here
the main idea is that genes with similar expression patterns can have a relation
in functional pathways or be part of a co-regulation system. This analysis is
usually performed with exploratory techniques such as cluster analysis [7].

Clustering is an unsupervised technique used in data analysis to detect nat-
ural groups in data without making any assumption about their internal struc-
ture. There are two main reasons for choosing such an approach, that are (1) to
try to confirm a hypothesis (e.g. about latent classes of objects) (2) to uncover
previously unknown relationships among data points.
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Clustering has been successfully applied in bioinformatics in cancer subtyping
[5,19,20,23] and in identifying groups of genes that show a similar behaviour
[10,14,16].

However, one of the issues of full data-driven approaches (as opposed to
hypothesis-driven approaches) is the risk of modelling noise or uninteresting
properties w.r.t. the problem domain.

This is even more true for microarray gene expression data, since they are
characterized by intrinsic noise, due to the high dynamics of the studied sys-
tems. Moreover, data have a background noise related to mechanical tools used
to perform the analyses. For this reason, robust clustering techniques, such as
consensus clustering, have been applied in gene expression clustering [9,17].

Consensus clustering has been devised as a method to deal with these issues
by combining multiple clustering solutions in a new partition [22]. The main
idea is to exploit the differences among base solutions to infer new information
and discard results that might have been affected by the presence of noise or
by intrinsic flaws of the chosen clustering algorithm. Being a consensus solution
supported by the agreement of several base clusterings, not only it is more stable
and robust to overfitting, but it also guarantees a higher degree of confidence in
the results.

The ratio behind consensus clustering is analogous to that of classifier ensem-
ble, where multiple “weak” classifiers are combined to obtain better perfor-
mances [3]. Previous results have shown how diversity in the initial clustering
solutions can lead to an improvement of the quality of the final consensus clus-
tering [15]. For instance, in [8] the authors have investigated the relation between
clustering accuracy (w.r.t. known classes of points) and the average normalized
mutual information between pairs of partitions.

Since then many concepts have been borrowed from the classifier ensemble
literature, such as subsampling or projections of the original data to promote
diversity in the base partitions. Following this idea, here we propose a novel
consensus clustering technique inspired by the Rotation Forest classifier [18]
called Rotation Clustering.

2 Materials and Methods

2.1 Consensus Clustering

Consensus techniques are characterized by how the diversity among base solu-
tions is generated and how the agreement among clusterings is quantified. In
the following, two representative examples of consensus clustering methods are
presented.

The approach by Monti et al. [17] generates multiple perturbed versions of
the original data by computing random subsamples of the input matrix. Then a
consensus (or co-association) matrix M ∈ Rn×n (where n is the number of data
objects) is built, where each entry M(i, j) is the count of how many times items
i and j were assigned to the same cluster across different partitions, normalized
by the number of times that the two objects were present in the same subsample.
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The approach by Bertoni and Valentini [1] uses random projections to build
the perturbed versions of the input data. Random projections [2] are based on
two main results. The first is the Johnson-Lindenstrauss lemma [13], that can
be summarized as follows: if points in a vector space are projected onto a ran-
domly selected subspace of suitably high dimension, then the distances between
the points are approximately preserved. The second is the Hecht-Nielsen lemma
[12], that states that “in a high-dimensional space, there exists a much larger
number of almost orthogonal than orthogonal directions. Thus, vectors having
random directions might be sufficiently close to orthogonal” [2]. Starting from
these premises, the idea is to project the original d-dimensional data set to dif-
ferent k-dimensional (k << d) subspaces using random matrices whose elements
are Gaussian distributed; a clustering is then executed on each subspace. Both
rotation clustering and the approach based on random projections use the co-
association matrix to measure the level of consensus. The final clustering can be
obtained using the consensus matrix as a similarity matrix to be given as input
to a hierarchical clustering algorithm.

In all the experiments the base solutions to be combined are generated with
a single execution of the k-means algorithm with random initialization of the
initial centroids.

2.2 Rotation Forest

Rotation Forest [18] is a classifier ensemble method that trains several base
classifiers in the following way: starting from the training data matrix X (n
samples × d features), the feature set is partitioned into K subsets, then from
each of the submatrices Xi (for i = 1, . . . ,K) extracted from X selecting only
one of the K subsets of features, a random subset of classes is eliminated and
the remaining items are subsampled to obtain a sample size of, say, 75% of the
original number of objects; PCA is applied on each one of the resulting matrices
Xi and the computed coefficients are arranged in matrices Ci. All the components
extracted by PCA are retained to not disrupt discriminatory information that
might lie in the last components. The Ci matrices are then combined to build
a sparse rotation matrix R which is arranged in such a way that its columns
match the order of the original feature set; finally, the classifier is trained using
XR as the training set.

This method has been proven to be able to outperform well established tech-
niques in the classifier ensemble literature [18].

2.3 Rotation Clustering

Rotation Clustering follows the same steps of the Rotation Forest for building
the input matrix except for what concerns the removal of a subset of classes
since no prior information is available (see Algorithm1 for the pseudo-code of
the algorithm). Each of the input matrices for the base clustering is generated
in the following way: first features are split randomly in subsets and for each
subset a submatrix is built that contains only the features in the subset and
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a random subsample of the original data items; PCA is applied on each of the
submatrices and a rotation matrix is built by combining the coefficients of all
the principal components of each submatrix; finally the original data matrix
is rotated using the obtained rotation matrix. Once the base clusterings are
computed, a pair-wise co-association matrix is built counting how many times
each pair of data objects was assigned to the same cluster across base solutions.
The final consensus solution is the result of a hierarchical clustering algorithm
applied to the co-association matrix.

Algorithm 1. Rotation clustering
Input:

– data matrix X ∈ Rn×d where n is the no. of samples and d is the no. of features.
– the number M of base clusterings to generate
– the number K of feature subsets

for i = 1, . . . , M do
Split the feature set in K subsets of size � n

K
�

for j = 1, . . . , K do
Xi,j ← select from X the j − th subset of features j
X ′

i,j ← select a subsample of items from matrix Xi,j

Ci,j ← apply PCA on matrix X ′
i,j � PCA coefficients

end for
Arrange the Ci,j in a rotation matrix Ri

X ′
i ← XRi � Rotate input matrix

clsi ← apply clustering algorithm on X ′
i

end for
final ← combine the clsi in a consensus solution
return final

3 Experimental Setup and Validation

We compared the results obtained with the proposed method with those pro-
duced by the best of 100 runs of k-means with random initialization of the
centroids and by two consensus techniques found in literature: the former builds
a co-association matrix starting from subsamples of the original data; the latter
is based on random projections (see Sect. 2.1).

The base solutions to be combined by each of the three consensus algorithms
are generated by single runs of the k-means algorithm. The choice of using the
same clustering algorithm across experiments is motivated by our dual goal of
(1) comparing the performance of consensus methods versus a simple run of a
clustering algorithm and (2) assessing the efficiency of our method compared to
that of existing techniques. All clustering algorithms used Pearson’s correlation
coefficient as similarity measure between genes, since the goal is to identify gene
sets that show a similar behaviour in terms of expression patterns.
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The validation process considers two fundamental aspects of the gene clus-
tering problems. Firstly, cluster analysis is a complex task and the results can
change based on the number K of clusters selected as input parameter [11].
Therefore, each clustering algorithm was executed with different values of K
(50, 100, 150, 200 and 250) and the performance was evaluated according to the
index proposed in [19]: ClV al = 1

4

(
IC+1

2 + 1 − EC+1
2 + (1 − S) + CG

)
. This

index takes into account the average sample correlations inside each cluster (IC),
the average sample correlation of the least similar objects for each pair of clusters
(EC), the number of singletons (S) and the compression gain (CG). Its range
is between 0 and 1, the higher the value, the better is the clustering result. Sec-
ondly, once the cluster analysis is performed on the gene expression dataset, the
gene group needs to be interpreted from a biological perspective. Therefore, after
selecting the best value of K, an enrichment set analysis was performed between
all the clustering algorithms. The aim of the gene set enrichment is to evaluate
microarray data at the level of gene sets [21]. Gene sets are defined based on
a priori knowledge and, usually, they are gene sets with similar characteristics
and behaviour. This is used to evaluate if the genes in a specific cluster have an
homogeneous biological behaviour. This kind of analysis compares the clusters
obtained with different methods by counting the number of gene sets enriched
by each cluster and evaluating the gene ratio. For each pair of cluster and path-
way, the gene ratio measures the proportion of genes in the cluster that are also
included in the pathway. The best method is the one that, overall its clusters,
has a higher number of enriched sets with the highest gene ratio. The analysis
was performed by using the KEGG pathways from the Kyoto Encyclopedia of
Genes and Genomes and the compareCluster function from the clusterProfiler
R package. The last part of validation consists in verifying how many gene sets
associated with specific diseases are identified by the used clustering algorithms.
Known association between pathways and Glioblastoma were downloaded from
the Comparative Toxicogenomics Database (CTD - http://ctdbase.org/) [6].

Dataset. Experiments have been performed on a real gene expression dataset,
related to a Glioblastoma multiforme study. The dataset was accesses through
the TCGA website (https://tcga-data.nci.nih.gov/tcga/ - Glioblastoma multi-
forme [GBM]) and publicly available gene expression data (level 3) were down-
loaded from 167 samples. As a further preprocessing step, features with low
variance were eliminated and batch effect removal was performed with the com-
Bat method in the sva R package).

4 Results and Discussion

We developed a new consensus clustering algorithm called Rotation Clustering.
We applied this method to the problem of clustering gene expression data. Analy-
ses were performed on a real gene expression dataset from TCGA repository with
2408 genes and 167 samples.

We clustered the genes with our method and we compared the results with
other three classical clustering algorithms: the Kmeans clustering, the consensus

http://ctdbase.org/
https://tcga-data.nci.nih.gov/tcga/
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clustering proposed by Monti et al. [17] and the random projection techniques
proposed by Bertoni and Valentini [1].

Clustering algorithms give different results depending on the input parame-
ters. To avoid this problem, the analyses were performed varying the number of
clusters to be retrieved (K). The algorithm results were then evaluated accord-
ing to the ClV al measure proposed by [19]. Figure 1(a) shows that the best value
for the parameter K is 50, in fact its score (light blue line) is the highest across
the four clustering methods.

Moreover, in order to characterize the biological meaning of the obtained
clusters, we performed an enrichment analysis with respect to the KEGG path-
ways. Figure 1(b) shows that the number of gene sets enriched by the clusters
obtained from the Rotation clustering is the highest compared to the other meth-
ods when the parameter K assumes the values of 50, 100 and 150. On the other
side, when the K value assumes values of 200 and 250, the best algorithm is the
one proposed by Monti et al. To obtain a summary assessment of the algorithms
we merged these 5 rankings with the Borda count method, implemented in the
TopKLists R package. The final rating of the algorithm shows that the Rota-
tion method is at the top, followed by the Random Projection approach, then
the consensus clustering proposed by Monti et al. and in the last position the
k-means algorithm. An important remark is that all the approaches based on
consensus clustering give better results compared to the k-means. This justifies
the higher computational effort that they require since they give more stable
and less noisy results. We further investigated the obtained clusters with respect
to the gene ratio. Here we report the results only for K = 50. Table 1 shows the
quantiles of the distribution of the gene ratio for each clustering algorithm. The
Rotation clustering, in addition to being the one with the highest count of gene
sets, also reaches the highest value for the gene ratio. That means that there
exists at least one cluster of genes in its solution that is completely included in
a gene set.

Fig. 1. (a) Evaluation or the ClV al index when changing the parameter K. The figure
shows the evaluation index for the parameter K for all the clustering algorithms and
the different values of K. (b) Number of enriched KEGG sets. The figure shows the
number of enriched KEGG sets for each algorithm and for each k. (Color figure online)
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Table 1. Gene ratio

k-means Monti-consensus Random projection Rotation clustering

0% 0.05 0.04 0.04 0.03

25% 0.11 0.10 0.11 0.10

50% 0.14 0.14 0.17 0.14

75% 0.19 0.20 0.25 0.24

100% 0.42 1.00 0.57 1.00

Gene Ratio with K = 50

More details on the enriched pathway are shown in Fig. 2. The figure shows
only the clusters that enrich at least one pathway. The clusters on the x-axis
are ordered by gene-ratio. To have more insights into the biological meaning of
the problem, we also checked if the pathways enriched from the four different

Fig. 2. Enrichment result for Rotation clustering (K = 50). The figure reports the
enrichment analysis results for the clusters obtained with the Rotation clustering algo-
rithm with K = 50 as input. Clusters with a significant p-value are reported on the
x-axis, while pathways are reported on the y-axis. Colour and size of the bubbles indi-
cate the p-value and gene ratio respectively. (Color figure online)
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solutions are known to be, somehow, related to Glioblastoma. To do this, we
downloaded a list of known pathways related to Glioblastoma from the CTD
dataset [6]. This list contains 219 KEGG pathways. We then counted how many
of these sets are in our solutions. Figure 3 shows the Venn diagram representing
the number of pathways (related to glioblastoma) shared among the four algo-
rithms. As we can see from the diagram, the Rotation Clustering solution is the
one with the highest number of enriched pathways. Particularly, k-means is able
to retrieve 46 pathways, the Monti’s consensus method retrieves 48 pathways,
the Random Projection method retrieves 49 of them and the Rotation cluster-
ing enriches 51 clusters. Most of the pathways of each of the three consensus
methodologies are shared with the ones of the k-means. This can be due to the
fact that the consensus algorithms are all based on the k-means, but the number
of enriched sets increases when the variability imposed by the consensus methods
to the data grows. In fact, while the Monti’s method induces a relatively smaller
perturbation by subsampling the data but preserving the original distribution
of points in space, random projection and rotation also perturb the relative dis-
tance among points, probably allowing for previously unobserved relationships
to emerge.

Fig. 3. Number of KEGG gene sets associated to Glioblastoma that give a significant
p-value for each clustering technique.

5 Conclusion

In this work we presented a new consensus clustering method called Rotation
clustering, that is based on the same idea of the Rotation Forest classifier. We
successfully applied this method to a real gene expression clustering problem,
related to a clinical study about patients affected by Glioblastoma. We validated
our results with respect to both the structure of the clusters and the prior bio-
logical knowledge. We also compared the new method with a classical clustering
and other consensus-based methodologies. We can conclude that this is an effec-
tive method for clustering noisy data because it gives stable and reliable results
that resemble the known biological information. The reasons of the efficacy of
this approach may be found in how diverse are the base clusterings that are
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combined in the final consensus solution, and this aspect will be further inves-
tigated in future work. However, diversity alone cannot guarantee the quality
of the results, especially if we try to merge poor or incompatible clusterings.
One possible way to overcome this problem might be merging only partitions
that are sufficiently similar, thus adding a meta-clustering step to the consensus
framework.

Acknowledgments. We would like to thank Teresa Savino and Luca Puglia for the
helpful discussions.
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