Chapter 1
Introduction

An odd candidate for controversy in mathematics education is the Mean Value The-
orem. It is easily, if imprecisely, described to the man in the street: Draw a smooth
curve and choose two points A and B on the curve. Somewhere on the arc of the
curve between these two points is another point C at which the line tangent to the
curve will be parallel to the line connecting A and B. Figures 1.1 and 1.2 illustrate
this nicely.

With such pictures in mind, the method of finding such a point C and the reason
for the truth of the Theorem suggest themselves. C is the point (or any of the points)
on the curve farthest from the line AB as possible and is found by sliding the line
AB upward (in Fig. 1.1) or leftward (in Fig. 1.2) or in whatever appropriate direction
— without rotating A B at all — until it exits the curve. The last point (or any of the
last points if there are more than one) at which A B had contact with the curve is this
farthest point C. Why is the tangent at C parallel to AB? Referring to Fig. 1.3, we
see that as we move along the curve from A to C, the tangents are always steeper
than A B but they are becoming less steep. And as we move from C to B, the tangents
continue to grow less steep and none are as steep as AB. The level of steepness, or
slope, of the tangent at C must lie between these two trends and thus bears the same
level of steepness as AB itself, i.e., the tangent is parallel to AB.

The argument given is not mathematically rigorous, but it can be made so first by
offering precise definitions of the terms involved (“curve”, “tangent”) and isolating
the conditions under which the Theorem is to hold, and then appealing to more
advanced theory to justify the individual steps. This will be done in the course of this
book. Here let me just indicate that some conditions must be met. The hyperbola of
Fig. 1.4 demonstrates an obvious condition: the Mean Value Theorem presupposes
A and B to lie on the same branch of the curve in question. If they don’t, there are
no points lying on the arc of the curve connecting them simply because there is no
such arc. One could try to find a point maximally distant from A B elsewhere on the
curve, but again no such point exists. Indeed, on the hyperbola, if A and B lie on
different branches, there is no point C at which the tangent is parallel to A B. There
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Fig. 1.1 Mean Value
Theorem; Example 1

Fig. 1.2 Mean Value . e
Theorem; Example 2 /

Fig. 1.3 Changing slopes

is a simple reason for this: the slope of A B lies strictly between the slopes of the two

asymptotes, while the slopes of the tangent lines are all strictly outside this range.
Also, the Theorem can fail if the curve fails to have tangents everywhere, as in

Fig. 1.5. Here, depending on how one defines “tangent”, the curve possesses infinitely
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Fig. 1.4 Hyperbola

Fig. 1.5 Corner

many, two, or no tangents at the point C farthest from the line AB. The grammar
school definition of a tangent to a curve being a line meeting the curve at a single
point without crossing the curve allows for infinitely many tangents through C, one
of which is indeed parallel to AB. The kinematic definition of the tangent at C as
being the line a particle travelling along the curve would follow if at C, instead of
following the curve, the particle would continue in the direction it was going when
it arrived at C, yields two tangents — the lines extending past C the segments AC
and BC, respectively. And the definition of tangent used in the Calculus as the line
passing through C with slope given by the derivative of the curve at that point yields
no tangent because the curve is not differentiable at the point C.

The curve of Fig. 1.6 has a cusp rather than a corner. The Mean Value Theorem
fails for the same reason. C has infinitely many tangents according to the grammar
school definition, one according to the kinematic definition (namely, the vertical
line), and none according to the definition used in the Calculus.

These counterexamples dictate the conditions a curve must satisfy for the Mean
Value Theorem to apply. It must be “connected” or “continuous”, i.e., it must consist
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Fig. 1.6 Cusp
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of a single branch. And it must be “smooth”, i.e., it must have no sudden changes of
direction as given by the corner and cusp of the last two figures.

The sequel divides into three chapters. The first (Chap. 2) provides precise formal-
isations of the concepts of curve, tangent, continuity, and smoothness, and finishes
with a rigorous proof of the Mean Value Theorem as geometrically described above.
Itis a leisurely presentation that seems to take its time getting to the point. However,
much of it is referred to later in the book, occasionally explicitly and occasionally
implicitly as absorbed background for the discussion of issues that are later raised. I
beg the reader’s indulgence in what may at first appear excessive background infor-
mation.

The Chap. 3 is devoted to the Mean Value Theorem itself, in its more familiar ana-
lytic form. This includes the Theorem and related results, some applications, and the
history of attempts to prove it. In this I stick to the Theorem as it is usually presented
in a single-variable Calculus course and do not attempt to discuss generalisations
except where such directly impinge on the discussion of the standard version of the
Theorem.

Finally, the last chapter discusses the educational question: Is the Mean Value
Theorem itself or one of several proposed replacements more appropriate for the
introductory course in the Calculus? I present and criticise some of the points that
have been raised in the debate, but offer no final solution. My purpose is not to dictate
the contents of the Calculus course, but to provide enough information for a more
informed discussion than has thus far taken place.

Ostensibly the issues of the present book will only interest those members of
departmental curriculum committees deciding on what must be covered in the basic
Calculus course, or, more broadly, those who teach Calculus. I think, however, the
issues might be of broader interest, say to the student who is taking such a course.
And I suppose such a book could have been written for him or her, particularly as the
topic comes from such a course. The temptations, however, to pepper the exposition
with examples assuming some computational facility and to approach the subject
from a higher point of view have played havoc with this good intention. The student
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who attempts to read the present work while first learning the Calculus might find
some of the material a bit heavy going: the present book discusses the theory of the
Calculus, not the Calculus per se, and although the main prerequisite is the sort of
mathematical maturity that can be acquired by a reasonably, but not overly, rigorous
course in the Calculus, it does presuppose some knowledge of the Calculus as well.

In this book I include many citations from the literature, so many that the book
might be viewed as an absurdly heavily annotated source book. I have included
excerpts from original mathematics, as well as comments from various historians and
other expositors. In doing this I have tried to be as true to the originals as possible,
short of including facsimile reproductions of the pages. Where I have taken liberties
is mostly footnoted. Exceptions are that: lacking the old “long s”, I have used only
the standard “s” in reproducing older material; I omit references to the literature of
the form “[ABC]” or “[1]” as these are not relevant; and, in place of indentation,
paragraphs in quoted material are separated by extra space between them. I am fairly
confident in the overall correctness of those passages I've translated. Occasionally I
have used an English idiom in place of the literal translation of idioms, and I have
been a bit loose when it comes to the tenses of verbs.

The decision to include the mathematical sources needs no justification. Citing
historians and other expositors I justify on several counts. Aside from acknowledging
the sources of some of my information, I do this in part to introduce whatever students
may be reading this book to some of the experts. In part I do this when I have not
checked the primary sources myself because I don’t read the language in question
(Sanskrit, Latin), the original was unavailable to me, or the point was too tangential
to check myself. Sometimes I find the historians or expositors to express matters so
well it would be impossible to improve upon them and I feel I must quote them; and
sometimes I cannot resist quoting someone so that I can spout my disagreement.

There is one by-product of quoting original sources; the notation shifts from author
to author. When discussing a particular paper, after quoting a passage, I may stick to
the author’s notation if it is clear enough, or I may translate the material into more
(currently) standard notation. My hope is that this will not confuse the reader.
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