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Abstract
Ischemic cardiomyopathy is frequently a consequence of myocardial infarction 
resulting in a marked loss of cardiomyocytes, which is replaced by a scar. As 
endogenous cardiovascular repair mechanisms are not sufficient to compensate 
for the loss of heart muscle and subsequent adverse remodeling predisposes 
to development of heart failure, novel experimental therapies are intensely 
explored to reduce scar size, counteract adverse hypertrophy and promote repair 
of the heart muscle. These therapies include cell-based therapies, cardiomyo-
cytes renewal or proliferation and trans-differentiation into cardiomyocytes. 
Importantly, microRNAs evolved as major modulators of pathophysiological 
mechanisms involved in heart failure progression as well as repair mechanisms. 
Identification of microRNAs contributing or counteracting these deteriorative 
mechanisms resulted in novel microRNA-targeted therapies in experimental stud-
ies. While this class of non-coding RNAs has already entered clinical  translation, 
another subclass of non-coding RNAs - long-non-coding RNAs (lncRNAs) – is 
now intensely explored as well. Recent observations indicate that lncRNAs are 
important regulators of cardiovascular development and  mechanisms involved 
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in adverse cardiac remodeling and development of cardiomyopathy. Therefore 
lncRNAs, in addition to microRNAs, may also emerge as novel therapeutic tar-
gets in cardiovascular disease.

4.1  Targeting miRNAs to Enhance Cell-Based Therapies

The studies of cell-based therapies using bone marrow-derived cells in patients with 
acute myocardial infarction (Assmus et al. 2002) triggered a vast number of experi-
mental and clinical investigations using bone marrow-, mesenchymal-, or cardiac- 
derived stem and progenitor cells (Jakob and Landmesser 2013). Recently, 
cardiac-derived stem cells were examined in clinical phase I/II trials (Bolli et al. 
2011; Makkar et al. 2012). However, while some clinical trials using cell-based 
therapies after myocardial infarction observed an improvement of left ventricular 
function or clinical symptoms, others failed to show beneficial effects (Jeevanantham 
et al. 2012; Fisher et al. 2015; Gyongyosi et al. 2015). Importantly, as the majority 
of conducted clinical trials included only small number of patients and was mostly 
underpowered for mortality as an endpoint, a Pan-European clinical phase III trial 
investigating the effect of cell-based treatment in patients with acute myocardial 
infarction (MI) (http://www.bami-fp7.eu/) is now being conducted.

The modest effects observed in cell-based therapies may in part be attributable to 
isolation procedures (Assmus et al. 2010; Seeger et al. 2012), low survival (Li et al. 
2009), limited homing (Chavakis and Dimmeler 2011), and highly limited differen-
tiation into contractility contributing cardiomyocytes of the applied cell product 
(Tongers et al. 2011). Of note, cells derived from patients with cardiovascular dis-
eases show an impaired cardiac repair capacity when compared to cells from healthy 
subjects (Jakob et al. 2012a; Heeschen et al. 2004). Mechanistic studies have shown 
that miRNAs are crucially involved in these processes. As a potential mechanism, 
deregulation of miRNAs in cells with repair capacity was observed (Mocharla et al. 
2013; Jakob et al. 2012a; Xu et al. 2012). We and others observed deregulation of 
miRNA expression in early angiogenic outgrowth cells (EOCs) derived from 
patients with chronic heart failure (CHF) (Jakob et al. 2012b). Notably, overexpres-
sion of miR-126 that was reduced in EOCs from patients with CHF enhanced EOC- 
mediated cardiac repair capacity in vivo (Jakob et al. 2012b). MiR-126 was 
previously shown to stimulate angiogenesis (Wang et al. 2008) and is also involved 
in the prevention of experimental atherosclerosis (Schober et al. 2014). In addition, 
miR-21, that is upregulated in EOCs from patients with coronary artery disease, 
impairs their migratory potential through an increase in reactive oxygen species 
(Fleissner et al. 2010). Another approach is to prevent apoptosis of transplanted 
cells, a process thought to substantially decrease cardiac repair capacity after cell 
transplantation due to low survival of transplanted cells. Expression of miR-34a, a 
pro-apoptotic miRNA, was increased in bone marrow mononuclear cells (BMC) 
from patients with myocardial infarction (Xu et al. 2012). Pretreatment of BMCs 
with miR-34a inhibitors improved their capacity to restore cardiac function in a 
murine infarct model (Xu et al. 2012). Of note, miR-34a is also increased during 
ageing in the heart (Boon et al. 2013). Hu et al. applied a cocktail consisting of 
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miR- 21, miR-24, and miR-221 to cardiac progenitor cells, which increased their 
survival after cardiac transplantation in an experimental myocardial infarct model 
and resulted in a better preserved cardiac function (Hu et al. 2011). Bim, an inducer 
of apoptosis, was repressed by these three miRNAs (Hu et al. 2011), demonstrating 
that multiple miRNAs can synergistically repress one target. Hence, miRNAs have 
the potential to improve impaired cardiac repair capacity of adult stem/progenitor 
cells, and miRNA modulation of adult stem/progenitor cells may serve as a strategy 
to enhance cardiac repair processes in cell-based therapies (Fig. 4.1).

As cell isolation procedures are labor intensive and expensive and improvement 
in cardiac function is mostly related to paracrine mechanisms (Gnecchi et al. 2008; 
Murry et al. 2004), recent studies focused on compounds released from progenitor/
stem cells. In this context, exosomes, small secreted membrane-bound vesicles 
released from cells, evolve as a potential cell-free therapy for cardioprotection 
(Vicencio et al. 2015; Chen et al. 2013b). Interestingly, miRNA transferred via exo-
somes contributes to this intercellular communication system. Intramyocardial 
delivery of exosomes derived from mouse embryonic stem cells improved LV func-
tion after induction of myocardial infarction in mice (Khan et al. 2015). This was 
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Fig. 4.1 Experimental (and clinical) strategies to improve cardiac function using cells with 
miRNA-mediated cardiac repair potential, cell-derived miRNA-containing components, or chemi-
cally modified synthetic miRNAs. Chemically modified synthetic miRNAs or viral constructs can 
be delivered directly (local or systemic) for therapeutic manipulation of miRNAs (a). Systemic or 
intramyocardial delivered cells enhance cardiac repair by the release of miRNAs (and other growth 
factors) to host cells through exosomes and gap junctions (b). MiRNA pretreatment of cells may 
enhance their cardiac repair potential and survival (c). MiRNA-containing exosomes of stem/pro-
genitor cells can be isolated and delivered to improve cardiac repair capacity. This cell-free strat-
egy avoids potential side effects that may arise after transplantation of stem cells (d). CM 
cardiomyocytes, EC endothelial cells, miR microRNA

4 Noncoding RNAs in Ischemic Cardiovascular Disease and Repair Mechanisms



64

related to an increase in proliferative myocytes and number of cardiac progenitor 
cells (CPCs, c-kit + cells) in vivo. Of note, miRNA profiling of exosomes revealed 
an enhanced expression of the cell cycle regulator cluster miR-290. Overexpression 
of one of the members, miR-294, in CPCs increased proliferation and decreased 
apoptosis in vitro (Khan et al. 2015). Similarly, hypoxia-induced release of exo-
somes in CPCs improved LV function in an experimental ischemia-reperfusion 
model, which is related to an increased exosome content of miRNAs involved in 
fibrosis pathways (Gray et al. 2015). In addition, exosomes from host tissue after 
cell therapy may alter function of the applied cell product. Ong et al. showed that 
CPCs co-delivered with a minicircle plasmid containing hypoxia-inducible factor 1 
(HIF-1)-induced endothelial cells to secrete exosomes enriched of miR-126 and 
miR-210. Uptake of these miRs in CPCs leads to a higher tolerance against hypoxic 
stress in vitro which in turn enhances survival of CPCs after intramyocardial deliv-
ery (Ong et al. 2014). Interestingly, Hosoda et al. (2011) showed that miR-499 may 
also be transferred via gap junctions from myocytes to cardiac stem cells, thereby 
promoting differentiation via suppression of differentiation modulators Sox6 and 
Rod1. MiR-499 is highly expressed in differentiated cardiomyocytes and markedly 
reduces proliferation rates of cardiomyocyte progenitor cells (Sluijter et al. 2010).

4.2  Targeting miRNAs to Induce a Cardiac Phenotype 
in Pluripotent Stem Cells

Stimulation of cardiomyocyte lineage commitment was reported in embryonic stem 
cells (ESCs) and inducible pluripotent stem cells (iPSCs) as a potential strategy 
to promote cardiac regeneration. Human ESC-derived cardiomyocytes enhanced 
cardiac function in a rat myocardial infarction model (Laflamme et al. 2007). In 
addition, integration and survival of human ESC-derived cardiomyocytes after trans-
plantation in nonhuman primates in an experimental myocardial infarct model were 
reported recently. Re-muscularization of substantial amounts of the infarcted mon-
key heart was observed, albeit with occurrence of nonfatal ventricular arrhythmias 
(Chong et al. 2014). Dynamic regulation of miRNA is involved in differentiation of 
ESCs toward a cardiomyocyte fate. In vitro, induction of miR-1 and miR-499 in the 
differentiation from human ECS and cardiac progenitor cells toward cardiomyocytes 
was observed. Forced expression of these miRNAs enhanced differentiation toward 
a cardiomyocyte fate (Wilson et al. 2010; Sluijter et al. 2010). In vivo, transplanta-
tion of hESCs treated with miR-1 mimics improved cardiac function and increased 
the number of donor-derived cardiomyocytes (Glass and Singla 2011). Of interest, 
cardiac apoptosis was decreased after treatment (Glass and Singla 2011) suggesting 
that miR-1 not only facilitates cardiomyocyte differentiation but also contributes 
to cardioprotection after cardiac injury via paracrine mechanisms. Using miRNA 
sequencing and bioinformatical analysis in hESCs-derived cardiomyocytes before 
and after (1 year) cardiac maturation revealed a pronounced upregulation of mem-
bers of the let-7 family. Overexpression of let-7 in human ESC-CMs accelerated 
cardiac maturation as shown by enhanced morphological and functional character-
istics. Profiling after overexpression of let-7 members showed upregulation of fatty 
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acid metabolism and downregulation of PI3/AKT/insulin signaling, suggesting that 
a metabolic switch enhances cardiomyocyte maturation (Kuppusamy et al. 2015). 
Together, these studies reveal important roles of miRNAs for cardiac lineage com-
mitment and maturation of pluripotent stem cells.

4.3  Targeting miRNAs to Facilitate Cardiac Regenerative 
Pathways

A limited number of cardiac cells are able or regain the potential to reenter cell 
cycle (Bergmann et al. 2009). However, this cell renewal cannot compensate for 
cardiomyocyte loss after acute myocardial infarction or in the progression of 
chronic heart failure. Therefore, therapeutic strategies to induce cardiac regenera-
tion are currently intensely investigated. As miRNAs are crucially involved in 
cardiac development, lineage commitment, differentiation, and maturation of car-
diomyocytes, miRNAs were recently investigated for their potential to regenerate 
the heart, either by direct cardiac reprogramming or induction of cardiomyocyte 
proliferation (Fig. 4.2).

Direct cardiac reprogramming describes a process in which resident cardiac host 
cells are directly trans-differentiated into cardiomyocytes. Direct reprogramming 
therefore circumvents the step of dedifferentiation into pluripotent stem cells but 
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Fig. 4.2 Induction or inhibition of cardiomyocyte proliferation is regulated by miRNAs. Whereas 
neonatal mice show a robust cardiac repair response after cardiac injury, proliferative capacity of 
cardiomyocytes is (almost) lost in the adult heart of human and mice. Therapeutic targeting of 
miRNAs that suppresses genes involved in cell cycle reentry and mitosis results in an increased 
proliferation of cardiomyocytes. Chek1 checkpoint kinase 1, Fntb beta subunit of farnesyltransfer-
ase, Smarca5 SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfam-
ily a, member 5, Btg3 B-cell translocation gene 3, Mps1 monopolar spindle 1, Cdc37 cell division 
cycle 37, PA2G4 proliferation associated protein, mst1 mammalian STE20-like protein kinase 1, 
Lats2 large tumor suppressor 2, Mob1b Mps one binder kinase activator 1B, Hopx HOP homeo-
box, PTEN phosphatase and tensin homolog
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pursues reprogramming directly from endogenous non-cardiomyocytes (e.g., car-
diac fibroblasts) toward functional cardiomyocytes. Ieda et al. (2010) reported 
recently reprogramming of mouse fibroblasts into cardiomyocytes. Delivery of 
three cardiac transcription factors (Gata4, Mef2c, Tbx5, or GMT) into fibroblasts 
derived from mouse hearts and skin resulted in cardiomyocyte-like cells with 
expression of cardiomyocyte-specific promoters and structures. The induction was 
also observed in a murine myocardial infarction model by using viral transfection of 
cardiac transcription factors (Qian et al. 2012; Song et al. 2012). Interestingly, the 
addition of miR-133a to GMT increased the number of directly reprogrammed car-
diomyocytes and accelerated onset of beating cells by suppression of fibroblast sig-
natures through SNAI1, a master gene of epithelial-to-mesenchymal transition 
(Muraoka et al. 2014). Jayawardena et al. (2012) extended these observations by 
using miRNAs involved in cardiac muscle development. Overexpression of miR-1, 
miR-133, miR-208, and miR-499 in mouse cardiac fibroblasts drives these cells 
toward cardiomyocytes with expression of cardiomyocyte markers and functions 
in vitro. Moreover, genetic tracing methods showed that intramyocardial injection 
of this set of miRNAs after experimental myocardial infarction converted cardiac 
fibroblast into cardiomyocytes-like cells (Jayawardena et al. 2012). In a follow-up 
study (Jayawardena et al. 2015), serial echocardiography in mice undergoing MI 
and injected with miR-1, miR-133, miR-208, and miR-499 showed an improvement 
in cardiac function over 3 months as compared to controls. Furthermore, repro-
grammed rod-shaped cells exhibited similar physiological properties as mature 
adult ventricular cardiomyocytes. Fibroblasts from humans are more resistant to 
reprogramming techniques, as cardiac transcription factors (Gata4, Mef2c, Tbx5, 
and Hand2) used in mouse fibroblasts (Song et al. 2012) failed to reprogram human 
fibroblasts (Nam et al. 2013). However, addition of MyocD effectively induced car-
diac gene expression. Interestingly, miR-1 and miR-133 together with four tran-
scription factors (Gata4, Hand2, Tbx5, and MyocD) further enhanced reprogramming 
efficiency toward a cardiomyocyte phenotype (Nam et al. 2013). Though 19% of 
reprogrammed cells were cardiac troponin T-positive, functional characteristics of 
mature cardiomyocytes such as upregulation of cardiac genes, calcium transients, 
and beating cells were rarely observed.

Apart from direct reprogramming, induction of cardiomyocyte proliferation is 
an alternative different strategy to enhance cardiac function in injured hearts that 
likely underlies the capacity of zebra fish and postnatal mice to regenerate after 
cardiac injury. Cardiomyocyte proliferation is recognized for decades to be a pre-
requisite in embryogenesis and for lower vertebrates. However, Bergmann et al. 
showed that in adults, a low but relevant count of cardiomyocytes still proliferates 
(approx. 1% turnover rate/year) (Bergmann et al. 2009), which raises the possibil-
ity to enhance cell cycle in mature cardiomyocytes. In experimental studies, prolif-
eration of cardiomyocytes after surgical injury in neonatal mice has been reported 
(Porrello et al. 2011b). These observations indicate postnatal regeneration of the 
heart. MiRNAs are required for modulation of proliferative and apoptotic pro-
cesses in cardiomyocytes, as cardiac deletion of enzymes required in the biogene-
sis of miRNAs resulted in dilatation of the heart and premature lethality (Chen 
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et al. 2008; Rao et al. 2009). MiR-1 and miR-133 have been shown to regulate 
mitotic processes. MiR-1 is specifically expressed in the skeletal and cardiac mus-
cle and consists of two miRNAs, miR-1-1 and miR-1-2 (Zhao et al. 2007). Mice 
lacking miR-1-2 die early due to ventricular septal defects (Zhao et al. 2007). 
Adult mice lacking miR-1 will result to overt cardiomyocyte hyperplasia. Molecular 
studies showed an increased expression of proteins involved in cardiac morpho-
genesis and development, such as Hand2 (Zhao et al. 2007). In contrast cardiac-
specific overexpression of miR-1 leads to decreased ventricular cardiomyocyte 
proliferation (Zhao et al. 2005). MiR-133a is co-transcribed as a bicistronic con-
struct with miR-1 and involved in cardiac development. Deletion of miR-133a-1/
miR-133a-2 causes lethal ventricular septal defects in embryonic and neonatal 
stages and dilated cardiomyopathy in surviving adult mice (Liu et al. 2008). In 
these double-mutant mice, a disorganization of sarcomeres and an increased pro-
liferation and apoptosis of cardiomyocytes were detected. Consistently, cell cycle 
genes were upregulated in double knockout mice. In zebra fish, downregulation of 
miR-133 was observed after resection of the cardiac apex. Transgenic overexpres-
sion of miR-133 suppresses cell cycle genes btg3, cdc37, PA2G4 and mps1, and 
connexin-43, a gap junction protein required for intercellular communication (Yin 
et al. 2012), as it was shown for miR-499 (Hosoda et al. 2011). MiR-133a therefore 
suppresses cardiomyocyte cell cycle and guides differentiation into cardiomyo-
cytes. As changes in spatiotemporal expression of miRNA are observed, a study 
linked the transient regenerative capacity in postnatal murine hearts (Porrello et al. 
2011b) to detect up- and downregulated miRNAs using a microarray approach 
(Porrello et al. 2011a). MiR-195, a member of the miR-15 family, is highly upregu-
lated in mouse hearts between day 1 and 10 after birth. Delivery of anti-miRs tar-
geting miR-15 family members in neonatal mice increased cardiomyocyte 
proliferation by de-inhibition of cell cycle genes (Porrello et al. 2011a). Porrello 
et al. (2013) further investigated the impact of miR-15 on cardiac regeneration 
after cardiac injury in postnatal mice. Postnatal MI at day 1 resulted in an extensive 
infarcted area. However, at day 21, a functional recovery can be observed (Porrello 
et al. 2013). Cardiac-specific overexpression of miR-195 (a member of the miR-15 
family) in these mice impaired cardiac regenerative capacity with extensive fibro-
sis in the infarcted area and decreased proliferating cardiomyocytes (Porrello et al. 
2013). Furthermore, pretreatment of postnatal mice with anti-miR-15 improved 
cardiac function after induction of myocardial infarction in adult mice (Porrello 
et al. 2013). Of note, transgenic overexpression of miR-195 results in cardiac 
growth and disassembly of cardiomyocytes (van Rooij et al. 2006), leading to 
dilated cardiomyopathy. However, inhibition of miR-195 was recently shown to 
increase elastin deposition in the aorta of mice (Zampetaki et al. 2014). Therefore, 
the role of miR-195 in cardiac extracellular matrix deposition has to be determined 
in future studies. Similar to miR-195, miR-29a is upregulated when comparing 
miRNA array expression data from cardiomyocytes derived from rats at postnatal 
day 2 when compared to postnatal day 28 (Cao et al. 2013). MiR-29a targets cell 
cycle genes (CCND2). In vitro, inhibition of miR-29a in neonatal cardiomyocytes 
enhances cardiomyocyte proliferation (Cao et al. 2013).

4 Noncoding RNAs in Ischemic Cardiovascular Disease and Repair Mechanisms



68

However, important regulators of regenerative processes can be missed in mam-
mals when evolutionary conserved mechanisms are not activated upon heart injury. 
In zebra fish, heart amputation results in a downregulation of miR-99/100 and let- -
7a/c, which is not observed in mice after MI (Aguirre et al. 2014). However, intra-
myocardial delivery of an adenovirus encoding for anti-miR-99/100 and anti-let-7a/c 
in mice undergoing MI improved cardiac function and decreased scar formation. 
These effects were triggered by an increase in dedifferentiated and proliferation of 
cardiomyocytes and resembled the regenerative mechanisms observed in zebra fish 
(Aguirre et al. 2014).

These studies investigated miRNAs with antiproliferative effects on cardiomyo-
cytes. In contrast, a recent study reported that miRNAs can also induce proliferation 
of cardiomyocytes (Eulalio et al. 2012). A functional high-throughput screening 
was performed to detect miRNAs involved in cardiomyocyte proliferation. Neonatal 
cardiomyocytes were transfected with a miRNA library consisting of 875 miRNAs 
(Eulalio et al. 2012). Remarkably, 204 miRNAs increased neonatal cardiomyocyte 
proliferation in vitro. Two pro-proliferative miRNAs – miR-199a and miR-590 – 
were further used for in vivo experiments. Overexpression of these miRNAs in neo-
natal rats revealed a thicker myocardium and increased cardiomyocyte proliferation. 
Moreover, intramyocardial overexpression of miR-199a and miR-590 in adult mice 
undergoing myocardial infarction induced cardiomyocyte proliferation in the peri- 
infarct area, reduced infarct size, and improved cardiac function (Eulalio et al. 
2012).

The role of the miRNA cluster miR-17-92 for cardiac proliferative processes was 
also investigated. Cardiac-specific deletion of miR-17-92 leads to decreased cardio-
myocyte proliferation in postnatal hearts (Chen et al. 2013a). Consistently, overex-
pression of miR-17-92 in embryonic and postnatal cardiomyocytes increased their 
proliferative capacity with a thickened myocardium due to hyperplasia. Intriguingly, 
induced cardiac expression of miR-17-92 in adult mice, where proliferative capac-
ity of cardiomyocytes is almost lost, resulted in an increased cardiomyocyte prolif-
eration. In addition, cardiac overexpression of miR-17-92 preserved cardiac function 
after myocardial infarction (Chen et al. 2013a). Another study investigated the miR- 
302- 367 cluster in hearts due to its contribution in lung development. Cardiac- 
specific knockout resulted in decreased embryonic cell proliferation associated with 
a decreased cardiomyocyte differentiation (Tian et al. 2015). Target analysis after 
overexpression of miR-302-367 showed suppression of Mst1, Lats2, and Mob1b, 
which are all acting as contributors of the Hippo signaling pathway upstream of the 
Yes-associated protein (YAP). Phosphorylation of the transcriptional co-activator 
YAP results in suppression of cell proliferation. Consistently, transgenic cardiac or 
systemic transient overexpression of the miR-302-367 enhanced cardiomyocyte 
proliferation and improved cardiac function in a mouse myocardial infarction 
model. However, long-term overexpression of miR-302-367, consistent with the 
role of the Hippo pathway in the regulation of organ growth, leads to dilatation of 
the left ventricle, which favors a transient application of this miR cluster (Tian et al. 
2015). These studies indicate that cell cycle reentry of cardiomyocytes can be 
induced by administration of pro-proliferative miRNAs.
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4.4  MiRNAs in the Development and Progression of Heart 
Failure

Multiple mechanical and pathological stress triggers and cardiac injury evoke detri-
mental cardiac remodeling processes in the adult heart leading to chronic heart fail-
ure. It is not surprising that miRNAs are also involved in cardiomyocyte 
pathophysiological mechanisms (including cardiomyocyte hypertrophy, apoptosis, 
survival, and reactivation of the fetal gene program). However, as the heart com-
prises other important cell fractions, miRNAs altering functions of cardiac fibro-
blasts, which trigger extracellular matrix deposition and fibrosis and changes in 
endothelial-derived miRNAs that regulate angiogenesis, are also important mecha-
nisms for heart failure development and progression. During heart failure develop-
ment, many fetal genes, which are quiescent in the adult heart, are reactivated 
(Miyata et al. 2000; Nakao et al. 1997). As activation of gene programs in the fetal 
heart is regulated by miRNAs, miRNAs inducing fetal genes were also found in 
experimental and clinical studies. First insights came from a conditional knockout 
of Dicer, an enzyme needed for processing functional mature miRNAs. Knockout 
of Dicer led to cardiac remodeling processes and upregulation of fetal gene tran-
scripts (viz., Acta1, Nppb, Myh7, and Nppa) (da Costa Martins et al. 2008). 
Comparison of miRNAs in experimental hypertrophic cardiomyopathy models 
showed >12 deregulated miRNAs as compared to sham-operated mice, which 
showed an overlap when comparing nonfailing versus end-stage heart failure tissues 
from humans (van Rooij et al. 2006). Seok et al. (2014) observed a downregulation 
of miR-155 in cardiomyocytes in a pressure overload model. Knockout of miR- 
155 in mice repressed cardiac hypertrophy, partly by targeting Jarid2, a key tran-
scriptional regulator of cardiac development and function. Formerly, miR-155 was 
known as an abundantly expressed miRNA in macrophages and monocytes. The 
loss of miR-155 in macrophages was found to inhibit leukocyte infiltration and 
protect murine hearts from hypertrophy, mostly by inhibition of pro-inflammatory 
macrophage-derived factors and downregulation of adhesion molecules (Heymans 
et al. 2013). These studies imply that targeted therapy of one miRNA may protect 
different cell types from pathological mechanisms – either by inhibition of para-
crine secretion of macrophages or from hypertrophic response in cardiomyocyte 
after pressure overload.

Comparison of miRNA expression profiles using left ventricular tissue samples 
from patients with heart failure, nonfailing hearts, and fetal human heart tissues 
revealed a profound alteration in miRNA expression of heart failure tissues as com-
pared to healthy tissue samples. In addition, up- and downregulated miRNA showed 
a > 85% coverage when miRNA expression of heart failure tissues was compared 
with fetal tissue, indicating a close relationship in molecular miRNA-dependent 
mechanism with the reactivation of fetal gene programs (Thum et al. 2007). Another 
elegant study performed a deep-sequencing analysis of RNA of human left ven-
tricular tissue samples derived from nonfailing human LV and failing human LV 
before and after left ventricular assist device (LVAD) support (Yang et al. 2014). 
More than 147 miRNAs were differentially regulated when comparing nonfailing 
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with heart failure LV samples; however, only two to five miRNAs returned to nor-
mal levels after LVAD support. These observations are consistent with a recent 
study where only subtle changes in miRNA expression between ischemic and 
dilated cardiomyopathy were detected, and miRNA profiling did not reveal differ-
ences before and after LVAD treatment (Akat et al. 2014). In contrast, >570 lncRNAs 
were found to be deregulated, mostly of mitochondrial origin, and approximately 
10% of these lncRNAs normalized after LVAD support (Yang et al. 2014).

Changes in intracellular calcium handling are critical for heart failure, as they 
determine cardiac contractility. Gene therapy using an adenoviral vector containing 
sarcoplasmic reticulum Ca2+-ATPase (SERCA2) led to a decrease in clinical symp-
toms and reverse remodeling in heart failure patients in a small clinical phase II 
study (Jessup et al. 2011). SERCA2 is a calcium-transporting ATPase, which 
enables calcium uptake in the sarcoplasmic reticulum during relaxation of cardio-
myocytes. Wahlquist et al. (2014) used the 3′-UTR region of SERCA2 as a sensor 
construct to identify miRNAs targeting SERCA2. MiR-25 markedly inhibited 
SERCA2 expression and was upregulated in the myocardium derived from patients 
with heart failure. Treatment with anti-miR-25 in a transaortic constriction (TAC) 
model in mice blunted progression of cardiac dysfunction and improved survival. 
Interestingly, in a study investigating experimental Hand2-induced cardiac hyper-
trophy, inhibition of miR-25 resulted in impaired cardiac function using a TAC 
model (Dirkx et al. 2013). Although the two studies used the same experimental 
hypertrophy model, inhibition of miR-25 was started 3 months (Wahlquist et al. 
2014) versus 3 days (Dirkx et al. 2013) after TAC operation and cardiac function 
were assessed at 5.5 months (Wahlquist et al. 2014) as compared to 1 month (Dirkx 
et al. 2013) after TAC. The findings therefore suggest that miR-25 has different 
functions in the subacute versus chronic heart failure phase, and miR-25 expression 
may be dynamic in the course of hypertrophy and heart failure. However, these 
questions have to be addressed in future studies. Dynamic expression of miRNAs 
upon a stress trigger has been shown in various studies, such as for miR-212/132 
(Ucar et al. 2012), miR-208 (van Rooij et al. 2007), and miR-195 (van Rooij et al. 
2006).

Cardiac fibroblasts contribute to adverse remodeling processes and progression 
of heart failure. MiRNAs have been identified as critical regulators in cardiac fibro-
blasts, thereby contributing to extracellular matrix modulation and cardiac fibrosis. 
MiR-29 targets multiple collagens and expression of extracellular matrix proteins. 
In an experimental model of MI, miR-29 expression was markedly reduced in the 
infarct region and mostly of fibroblast origin when comparing expression between 
fibroblasts and cardiomyocytes (van Rooij et al. 2008). Interestingly, transforming 
growth factor β (TGFβ), a key enhancer of cardiac fibrosis, decreased miR-29 
expression in vitro, suggesting that upregulation of TGFβ represses miR-29 expres-
sion, resulting in an enhanced deposition of extracellular matrix proteins (van Rooij 
et al. 2008). MiR-29 downregulation was also identified as a pro-fibrotic mecha-
nism in pulmonary (Cushing et al. 2011) and renal (Qin et al. 2011) fibrosis. 
However, miR-29 is also involved in the progression of aortic aneurysms. Reduced 
expression levels of miR-29a and inverse correlation with aortic size have also been 
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observed in patients with aortic aneurysm (Jones et al. 2011). Another miR-29 fam-
ily member, miR-29b, was reported to be upregulated in patients and in experimen-
tal models of aortic aneurysm (no significant difference of miR-29a expression was 
observed in this study). Downregulation of miR-29 by delivery of LNA-modified 
antisense oligonucleotides in vivo resulted in enhanced expression of collagen 
members and reduction in aortic diameter (Boon et al. 2011). Therefore, whereas 
overexpression of miR-29 after myocardial infarction may reduce cardiac fibrosis, 
a reduced matrix deposition in miR-29-treated subjects may lead to the progression 
of aortic dilatation.

Another prominent fibrosis regulating miRNA is miR-21 that is upregulated in 
rodent models of ischemia-reperfusion (Roy et al. 2009) and hypertrophy (van 
Rooij et al. 2006). First shown as a pro-fibrotic miRNA in a pressure overload 
mouse model, which supports cardiac remodeling by an increase of ERK-MAP 
kinase activity in cardiac fibroblasts, it was later shown that upregulation of miR-21 
after experimental ischemic preconditioning was protective in cardiac myocytes by 
inhibiting the expression of programmed cell death 4 (PDCD4) (Dong et al. 2009). 
In addition, sodium sulfide (Na2S), a donor for hydrogen sulfide, which is protec-
tive in various injury models of the heart, induces miR-21 in cardiomyocytes, indi-
cating that the observed improvement in survival and decreased infarct size in an 
ischemia-reperfusion injury model are mediated by miR-21 through an inhibition of 
inflammasome function (Toldo et al. 2014). As miR-21 is expressed in both cardio-
myocytes and cardiac fibroblasts, miRNA-mediated cell-to-cell communication 
was recently investigated. In this study, miR-21-3p (the star strand of miR-21, which 
is supposedly degraded) showed a high abundance in fibroblast-secreted exosomes 
and uptake of miR-21-3p in cardiomyocytes that resulted in cardiomyocyte hyper-
trophy via downregulation of SH3 domain-containing protein 2 (SORBS2) and 
PDZ and LIM domain 5 (PDLIM5) (Bang et al. 2014). These experimental studies 
imply that one miRNA may exert different functions in different cell types within 
the heart. In addition, miR-21-3p, a star strand that was earlier thought to be 
degraded, may also act as a functional miRNA. Moreover, the observation that miR- 
21 is not needed to induce cardiac hypertrophy in a knockout model and an experi-
mental model using a different anti-miR (8-mer LNA miR-21) (Patrick et al. 2010) 
and different cardiac heart failure models leading to divergent findings of miR-21 
action suggests that spatiotemporal expression of miRNAs and different method-
ological approaches are important determinants of miRNA functional activity.

4.5  Long Noncoding RNAs in Cardiovascular Disease

Long noncoding RNAs (lncRNAs) consist of a new group of noncoding RNAs 
emerging as genetic modifiers in cardiovascular disease. Whereas miRNAs belong 
to the short RNAs (i.e., <200 nucleotides), lncRNAs harbor more than 200 nucleo-
tides. In addition, other than miRNAs, lncRNA interaction is not (almost) exclu-
sively dependent on mRNA translational repression or mRNA degradation but 
rather activates or silences gene transcription through chromatin regulation and 
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transcriptional modulation (Geisler and Coller 2013; Wahlestedt 2013). In addition, 
transcriptional modulation of lncRNAs acts by cis (at the site of synthesis) or trans 
(at many different sites) fashion (Wahlestedt 2013; Mercer and Mattick 2013). 
LncRNA are not well preserved between species, and around 30% are specifically 
detected in primates (Derrien et al. 2012). Initial studies were performed in the 
oncology field, where investigated lncRNA was linked to cancer diseases (Gutschner 
et al. 2013; Yap et al. 2010). Some of these lncRNAs now gain also attention in the 
cardiovascular field, such as MALAT1 and ANRIL (Vausort et al. 2014; Burd et al. 
2010). As gene transcription regulators, lncRNAs, like miRNAs, are involved in the 
regulation of cardiac development. One such lncRNA is Fendrr. Fendrr knockout 
models have been shown to impair embryonic cardiomyocyte proliferation, leading 
to hypoplasia and impaired cardiac function, resulting in embryonic death (Grote 
et al. 2013). Mechanistic studies observed that Fendrr modifies chromatin regula-
tion through the binding of PRC2 and TrxG/MLL complexes (Grote et al. 2013). 
Deletion of Fendrr in another knockout model (Sauvageau et al. 2013) resulted in 
perinatal lethality. Ventricular septal defects and unstructured vessels were observed. 
In addition, reduced expression of Fendrr was observed in mutants of an endothe-
lial-specific knockout model of Forkhead Box transcription factor F1 (FOXF1), a 
critical factor for vascular development (Ren et al. 2014). Another lncRNA involved 
in heart development is Braveheart, which is expressed in mice but lacks an ortho-
logue in other species (Klattenhoff et al. 2013). Braveheart was found to interact in 
a gene network upstream of Mesp1 and is needed for activation of cardiac transcrip-
tion factors, which drive mesodermal cells toward a cardiovascular phenotype 
(Klattenhoff et al. 2013). Braveheart was also detected as a cardiac- enriched 
lncRNA in a study investigating lncRNA expression in different mouse tissues 
(hearts, livers, and skin cells) using RNA sequencing (Matkovich et al. 2014). In 
adult mouse hearts, 152 lncRNAs showed high expression levels. Out of these 
lncRNAs, 48 lncRNAs are enriched in the heart as compared to liver and skin cells. 
Furthermore, RNA sequencing in cardiomyocytes and fibroblasts from adult mouse 
hearts indicates that most of these lncRNAs are enriched in the cardiomyocyte cell 
fraction (Matkovich et al. 2014). RNA sequencing allows also to search for differ-
entially regulated lncRNA in cardiovascular disease models. Pedrazzini’s research 
group investigated alterations in cardiac lncRNA profiles after myocardial infarc-
tion in mice (Ounzain et al. 2015). Analysis of the RNA sequencing revealed 988 
annotated lncRNAs but also identified 1521 novel lncRNAs, of which 60% are heart 
specific according to computational analysis. Importantly, human orthologues were 
found in 73% of novel lncRNAs detected in mouse. Downregulation of an unanno-
tated novel lncRNA, NovInc6, was further shown in patients with dilated cardiomy-
opathy, in concert with suppression of a predicted target Nkx2-5, a key transcription 
factor of cardiac development and cardiac gene program. Using a similar approach, 
Zangrando et al. (2014) screened for differentially expressed lncRNAs 24 h after 
induction of MI in C57/BL6 mice using an Agilent microarray with 55,681 probes. 
Ten and twenty lncRNAs were down- and upregulated more than twofold, with 
NR_028427 (named myocardial infarction-associated transcript 1 (MIRT1)) and 
ENSMUST000001005122 (named MIRT2) showing the highest fold changes 
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between groups. As a trend toward a correlation with LV remodeling parameters 
was observed, computational analysis of genes involved in remodeling processes 
identified strong correlation with 18 (for MIRT 1) and 17 (for MIRT 2) remodeling 
genes. However, no orthologues of MIRT1 and MIRT2 exist in humans.

As experimental models significantly affect lncRNA levels, it is of interest 
whether therapeutic interventions result in changes of lncRNA expression in 
humans. Yang et al. (2014) investigated differential expression of lncRNA in isch-
emic and nonischemic cardiomyopathy before and after LVAD support using RNA 
sequencing. Interestingly, cluster analysis revealed lncRNA signatures discriminat-
ing between ischemic and nonischemic cardiomyopathy. After LVAD support, a 
higher percentage of lncRNA show improved or normalized levels as compared to 
miRNA and mRNA expression profiles. LncRNA expression profiles furthermore 
were able to distinguish between before and after LVAD treatment, which indicates 
that lncRNA is involved in signaling pathways leading to reverse remodeling after 
LVAD support (Yang et al. 2014). Changes in transcriptome, including lncRNA 
expression, not only occur in the heart. A recent report by Deveaux’s group (Vausort 
et al. 2014) assumed that MI alters lncRNA levels in the blood drawn from these 
patients. In a large sample group, five pre-specified lncRNAs associated with car-
diovascular disease processes (hypoxia-inducible factor 1A antisense RNA 2 
(aHIF), ANRIL, potassium voltage-gated channel, KQT-like subfamily, member 1 
opposite strand/antisense transcript 1 (KCNQ1OT1), MIAT, and MALAT1) were 
analyzed in patients with acute MI and presumably healthy subjects. Levels of aHIF, 
MALAT1, and KCNQ1OT1 were higher, and expression of ANRIL is lower in 
patients with MI as compared to healthy subjects. Expression analysis of the five 
lncRNAs in subpopulations of mononuclear cells (in healthy subjects) showed that 
the distribution pattern of lncRNAs differs in the subpopulations. In addition, 
ANRIL and KCNQ1OT1 added prognostic information to a clinical model for LV 
dysfunction (LVEF <40%) at 4-month follow-up.

Genetic variants have been observed as predictors of cardiovascular diseases. 
Variations on chromosome 9p21 (Samani et al. 2007; Ye et al. 2008) increase the 
susceptibility of cardiovascular disease. Single nucleotide polymorphisms (SNPs) 
within this genomic region are associated with coronary artery disease and prema-
ture myocardial infarction (Abdullah et al. 2008; Samani et al. 2007). Interestingly 
chromosome 9p21 harbors the lncRNA ANRIL (antisense noncoding RNA at the 
ink4 locus or CDKN2BAS (antisense to CDKN2B)). Recently, ANRIL expression 
was correlated with variants associated with a higher risk for coronary artery dis-
ease, suggesting that ANRIL regulates chromatin modulation of coronary artery 
disease susceptibility genes like the INK/ARF locus (Burd et al. 2010). 
Overexpression of ANRIL in monocytic cell lines increased proliferation, cell adhe-
sion, and blunts apoptosis (Holdt et al. 2013), potential mechanisms that trigger 
atherosclerosis. This raises the possibility that at least some lncRNAs are the miss-
ing link between SNP and risk of MI and CAD. Another example of SNPs causing 
a risk of myocardial infarction is the discovery of myocardial infarction associated 
transcript (MIAT). Subjects with a SNP in exon 5 of MIAT show a higher suscepti-
bility for myocardial infarction in a large-scale case-control association study. 
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Numerous reports observed that MIAT is involved in splicing efficiency, which may 
explain the findings of the aforementioned study (Aprea et al. 2013; Tsuiji et al. 
2011). Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/NEAT2 
is another nuclear lncRNA with splicing ability (Hutchinson et al. 2007) and was 
found to enhance proliferation in human diploid fibroblasts and HeLa cells via this 
mechanism. However, in endothelial cells, where MALAT1 silencing impairs endo-
thelial cell proliferation, expression of splicing-related genes is not altered, but 
cyclins and kinases were downregulated (Michalik et al. 2014). Together, these 
studies expand the knowledge of silencing and activation of gene networks in car-
diovascular research and introduce lncRNA as new regulators in the complex 
molecular understanding. As lncRNAs are crucially involved in key features of car-
diac injury, such as apoptosis, inflammation, impaired angiogenesis, and device 
treatment that lead to a change in lncRNA expression, lncRNAs may provide a 
future diagnostic and therapeutic clinical tool.
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