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Abstract. The optimal packing problem of equal circles (2-D spheres)
in a bounded set P in a two-dimensional metric space is considered.
The sphere packing problem is to find an arrangement in which the
spheres fill as large proportion of the space as possible. In the case where
the space is Euclidean this problem is well known, but the case of non-
Euclidean metrics is studied much worse. However there are some applied
problems, which lead us to use other special non-Euclidean metrics. For
instance such statements appear in the logistics when we need to locate a
given number of commercial facilities and to maximize the overall service
area. Notice, that we consider the optimal packing problem in the case,
where P is a multiply-connected domain. The special algorithm based on
optical-geometric approach is suggested and implemented. The results of
numerical experiment are presented and discussed.
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Introduction

The optimal circle packing problem [1] is one of the classical problems of com-
binatorial geometry. It is of interest both from a theoretical point of view and
in connection with a wide variety of applications.

The circle packing problem has a long history, for example, one of the famous
statements relating to the packing of spheres in three-dimensional Euclidean
space is called “Kepler conjecture” and was formulated more than 400 years ago.
It says that no arrangement of equally sized spheres filling space has a greater
average density than that of the cubic close packing (face-centered cubic) and
hexagonal close packing arrangements. An introduction to its history can be
found in [2].
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In the literature there are a lot of formulations of the problem: from the
different variants of the knapsack problem [3] to considering it in the abstract
n-dimensional space [4].

Note that nearly always (except for some special cases) the packing problem
is NP-complete. So the problem of constructing efficient numerical algorithms is
extremely urgent [5].

Apparently, the most popular problems is the problem of the 2-D optimal
circle packing of equal radius to a closed set with smooth or piecewise smooth
boundary (circles, squares, rectangles, etc.). For example, in the papers [2,6,7]
authors deal with the problem to maximize the radius associated with the n
circles when the container is the unit square. The number of circles is from 1
to 200. In the case where the number of packing elements is small (up to 36,
inclusive), the problem is solved analytically. In other words, it is proved that
the constructed packing is the best.

In papers [8–10] the problem of packing identical circles of unit radius in the
circle is considered. The results for number of packing elements up to 81 are
obtained. Birgin and Gentil [11] consider the problem of packing identical circles
of unit radius in a variety of containers (circles, squares, rectangles, equilateral
triangles and strips of fixed height) to minimize the size of the latter.

The linear model for the approximate solution of the problem of packing of
the maximum number of identical circles to the closed bounded set is suggested
in [12]. The problem of packing of various circles of a given radius in order
to maximize the number (or weight), or to minimize the waste is considered
in [13,14].

Lopez and Beasley present a heuristic algorithm based on the formulation
space search method to solve the packing problem for equal [15] and unequal [16]
circles. Finally, a substantial and original class of packing problems where circles
may be placed either inside or outside other circles, the whole set being packed
in a rectangle is considered in [17].

Completing the survey part of the article, we note that the authors, who deal
with the packing problem, were not limited by the case when elements are circles.
Thus, in [18] authors consider the packing of rectangles (with the possibility of
rotation) into triangles.

The survey of publications could be continued because there are hundreds of
notable publications. The vast majority of books and articles devoted to the
study of the problem of packing in Euclidean space. This is not accidental
because such is the most natural formulation. However, sometimes the problems
arise in applications, where in order to define the distance between two points it
is necessary to use another metrics. For instance such statements appear in the
logistics when we need to locate a given number of commercial facilities and to
maximize the overall service area [19].

Coxeter [20] and Boroczky [21] deal with congruent circles packing problem
for multidimensional spaces of constant curvature (elliptic and hyperbolic) and
assess the maximum packing density. Besides above, this problem was studied
in a series of papers by Szirmai. In [22,23] he presents a method that determines
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the data and the density of the optimal ball and horoball packings Coxeter
tiling (Coxeter honeycomb) in the hyperbolic 3-, 4- and 5-spaces and based on
the projective interpretation of the hyperbolic geometry. The goal of [24] is to
extend the problem of finding the densest geodesic ball (or sphere) packing for
the other 3-dimensional homogeneous geometries (Thurston geometries).

In this paper we consider the circle packing problem in a bounded set with
piecewise smooth boundary in a special metric, which, generally speaking, is
not an Euclidean except one particular case. The container is not required to be
convex, and even simply connected. We present a numerical algorithm for solving
this problem and perform computational experiment, the results of which show
the effectiveness of the suggested approach.

1 Formulation

Let X is a metric space, Ci, i = 1, ..., n are congruent circles with centers in
si = (xi, yi), P is closed multiply-connected set.

P = cl

(
D \

m⋃
k=1

Bk

)
⊂ X ⊆ R

2.

Here D ⊂ X is the bounded set, Bk ⊂ D, k = 1, ...,m are compact sets with
non-empty interior.

It is necessary to find vector s = (s1, ..., sn) ∈ R
2n, which provides the

packing of the given number of circles with maximum radius R in P .
The distance between the points of the space X is determined as follows:

ρ(a, b) = min
G∈G(a,b)

∫
G

dG

f(x, y)
, (1)

where G(a, b) is the set of all continuous curves, which belong X and connect
the points a and b, 0 < α ≤ f(x, y) ≤ β is continuous function defined instanta-
neous speed of movement at every point of P . In other words, the shortest route
between two points is a curve, that requires to spend the least time.

It is easy to make sure that all the metric axioms are satisfied. In the partic-
ular case when f(x, y) ≡ 1 we have a Euclidean metric in the two-dimensional
space and the shortest route is a straight line.

Thus, we formulate the following problem:

R → max (2)

ρ(si, sj) ≥ 2R, ∀i = 1, n − 1,∀j = i + 1, n (3)

ρ(si, ∂P ) ≥ R, ∀i = 1, n (4)

si ∈ P, ∀i = 1, n (5)

Here ∂P is the boundary of the set P , ρ(si, ∂P ) is the distance from a point
to a closed set.
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The objective, Eq. (2), maximizes the radius associated with the circles.
Equation (3) ensure that no circles overlap each other. Equations (4)–(5) are
the constraints which ensure that every circle is fully inside the container.

For any vector s, satisfying the conditions (3)–(5) define the sets

Pi = {p ∈ P : ρ(p, si) ≤ ρ(p, sj),∀j = 1, ..., n, i 
= j} . (6)

In the literature, such sets are called Dirichlet cells [25] for points si on the

set P . It’s obvious that P =
n⋃

i=1

Pi.

The solution of the problem above reduces to the solution of the following
sequence of subproblems:

1. For every set Pi find the point s̄i ∈ Pi that ρ(s̄i, ∂Pi) = max
p∈Pi

ρ(p, ∂Pi).

2. Find the guaranteed value of the radius satisfying the constraints (3)–(5):
R = min

i=1,...,n
ρ(s̄i, ∂Pi).

3. For the new vector s̄ = (s̄1, ..., s̄n) redefine sets Pi according to formula (6).

The steps 1–3 are carried out while the coordinates of s̄ are changed.

2 Solution Method

To solve the described subproblems authors suggest methods based on the phys-
ical principles of Fermat and Huygens, which are used in geometric optics. The
first principle says that the light in its movement chooses the route that requires
to spend a minimum of time. The second one states that each point reached by
the light wave, becomes a secondary light source.

Thus, in order to solve of the first subproblems we should carried out the
construction of the light wave front, started from the border ∂Pi for each Pi

to the time when the front degenerate into a point. It’s coordinates are the
required solution s̄i, i = 1, ..., n. To solve the third subproblems it’s required to
simultaneously initiate the light waves from the points s̄i, i = 1, ..., n, and to
find such points of P , which are simultaneously reached by two or more waves.
We presented two algorithms in [26,27].

Let’s go back to the first subproblem and suggest an algorithm for it.
Algorithm “BorderWaveInside-BWI”

1. Boundary of the considered set is approximated by the closed polygonal line
with nodes at the points Ai, i = 0,m. Ai are called the initial points.

2. For each pair of points Ai, Ai+1 we construct line segment AiAi+1. Then we
construct line segments AiB

′
i and Ai+1B

′′
i which are perpendicular to AiAi+1.

The length of the line segments are f(Ai)Δt and f(Ai+1)Δt respectively. Let
B is a set of all these line segments. It is easy to see that the amount of new
points is twice more than initial one.

3. If there is a pair of line segments V W ∈ B and Y Z ∈ B that W = Z, then
all initial points between V and Y are eliminated.
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Fig. 1. Several iterations of BWI -algorithm

4. We construct straight lines B′
iB

′′
i , i = 0,m − 1, by the points B′

i and B′′
i .

5. The points of intersection of B′
iB

′′
i and B′

i+1B
′′
i+1, i = 0,m − 2, form a set of

the new front points.
6. If there is a pair of crossing line segments V W ∈ B and Y Z ∈ B, then

all initial points between V and Y are eliminated. The point of intersection
becomes a point of the new front.

7. If the constructed front is nonclosed line, then the solution is the “middle”
of the line, namely the point the distance from which to the ends of line is
the same. If the constructed front consists of one point, then this point is the
solution. Otherwise, built front is taken as the initial and Go to Step No 1.

Note that after finding of the initial wave front the outer part of considered
set becomes to be impassable. So, the perpendicular is directed to inside part.

The steps 3 and 6 provide the correct construction of the front when the
“dovetail” problem arises.

Figure 1 illustrates BWI -algorithm. Left part shows the process of the first
front constructing, in the middle there is a moment of the front splitting, on the
right there is a packed circle of maximum radius.

In the case when the set Pi is not simply connected, in other words, it contains
impenetrable for the light wave barriers, in order to solve the first subproblem we
need an additional algorithm. The algorithm allow to construct light wave fronts,
propagating from the boundary of barrier in the outer area (BorderWaveOutside-
BWO). This algorithm differs from BWI only by the perpendicular direction.

Thus the algorithm for multiply connected set is follow.
Algorithm (BorderWaveInside Multiply-connected set-BWI-MCS)

1. By the algorithm BWI we construct the fronts of the light wave, which is
started from the border of the considered set. By the algorithm BWO we con-
struct the fronts of the light waves, which are started from barriers’ borders.
The algorithms work until the first contact BWI -wave with one of BWO-
waves. Constructed fronts are saved.

2. The set of points, which are not reached neither of the waves, is divided into
the maximal simply connected subsets Sj (segments), which are saved in the
list of segments S. Segments obtained in the previous iteration are removed.
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Fig. 2. Several iterations of BWI-MCS -algorithm

3. One iteration of algorithms BWI and BWO, since the stored fronts, is per-
formed. The process 2–3 continues while the set of points, which are not
reached by any of the waves, is not empty.

4. All elements of the list of segments are analyzed: If the segment contains
a single point, it is a potential solution. If the segment is open curve, its
“middle” is a potential solution. In other cases, we find a potential solution
by using an algorithm BWI, because the segment now is simply connected
set.
All received potential solutions qj are added to the list Q.

5. The list of potential solutions Q is analyzed: If it contains one point, then this
point is the desired solution. Otherwise, for each point q ∈ Q by using the
algorithm proposed in [28], the value of rj = ρ(qj , ∂Xi) is calculated, where
∂Xi are sets the boundaries of the Pi. The desired solution is a point q∗ ∈ Q,
for which r∗ = max

j
rj .

Figure 2 illustrates BWI-MCS -algorithm. Left part shows the process of the
first front constructing, in the middle there is the last iteration, on the right
there is a packed circle of maximum radius. The solid line shows the wave front
started from the boundary of set. The dashed line shows the wave front initiated
from the border of barrier.

Now we are able to present the general algorithm for the problem (2)–(5).
Algorithm of Equal Circles Packing – AECP-MCS

1. Randomly generate an initial solution s = (s1, ..., sn), which satisfies the
constraint (5). The radius R is assumed to be zero.

2. The set P is divided into subsets Pi, i = 1, ..., n, according to the definition
(6) by the authors’ algorithm proposed in [28].

3. For each Pi, i = 1, ..., n, we solve the subproblem 1 by BWI-MCS algorithm.
As a result, for each Pi, i = 1, ..., n, we find the coordinates of the packed
circle center s̄i and its maximum radius ri.

4. Calculate R = min
i=1,...,n

ri.

Steps 2–4 are repeated until the R increases, then the current vector s̄ is
saved as an approximation to a global maximum of the problem.
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5. The counter of an initial solution generations Iter is incremented. If Iter
becomes equal some preassigned value, then the algorithm is terminated.
Otherwise, go to step 1.

3 Numerical Experiment

Example 1. This example illustrates how the given in the previous section algo-
rithms work in the case of the Euclidean metric f(x, y) ≡ 1. We solve the equal
circle packing problem in unit square. The number of circles is given and we
maximize the radius. The results are presented in Table 1. Note, that the Best
of known results were obtained from [29].

Considering Table 1 it is clear that our AECP-MCS algorithm produces low
percentage deviations (less then 0.1%). In the case when n ≥ 50 the deviations
are retained, but the calculation time is significantly increased. So we can say
that AECP-MCS algorithm allows to solve the equal circle packing problem for
Euclidian metric, but it is not highly effective. It’s advantages will be shown in
next examples.

Table 1. AECP-MCS results for Euclidean metric

n Best of known AECP-MCS Deviation

Radius (R) Density (d) Radius (R) Density (d) ΔR Δd

1 0,50000000 0,78539816 0,50000000 0,78539816 0,00000000 0,00000000

2 0,29289322 0,53901208 0,29289140 0,53900539 0,00000182 0,00000669

3 0,25433310 0,60964481 0,25433090 0,60963429 0,00000220 0,00001052

4 0,25000000 0,78539816 0,25000000 0,78539816 0,00000000 0,00000000

5 0,20710678 0,67376511 0,20710390 0,67374635 0,00000288 0,00001875

6 0,18768060 0,66395691 0,18767851 0,66394208 0,00000210 0,00001483

7 0,17445763 0,66931083 0,17445600 0,66929832 0,00000163 0,00001251

8 0,17054069 0,73096383 0,17053746 0,73093617 0,00000323 0,00002766

9 0,16666667 0,78539816 0,16662136 0,78497118 0,00004531 0,00042698

10 0,14820432 0,69003579 0,14819925 0,68998856 0,00000507 0,00004723

11 0,14239924 0,70074158 0,14239800 0,70072940 0,00000124 0,00001218

12 0,13995884 0,73846822 0,13992800 0,73814277 0,00003084 0,00032545

15 0,12716655 0,76205601 0,12694119 0,75935742 0,00022536 0,00269859

16 0,12500000 0,78539816 0,12500000 0,78539816 0,00000000 0,00000000

2000 0,01172594 0,86392312 0,01151634 0,83331402 0,00020960 0,03060910

3000 0,00967451 0,88212297 0,009243172 0,80521747 0,00043134 0,07690550
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Fig. 3. Level curves (left) and 3-D view with barriers (right) of f(x, y)

Example 2. The metric is define by Eq. (1) where f(x, y) has following form:

a1(x, y) = (x−2.5)2+(y−2.5)2

1+(x−2.5)2+(y−2.5)2
, f1(x, y) =

{
0, a1(x, y) ≥ 0.8
a1(x, y)

a2(x, y) = (x−2.5)2+(y−7.5)2

1+(x−2.5)2+(y−7.5)2
, f2(x, y) =

{
0, a2(x, y) ≥ 0.8
a2(x, y)

a2(x, y) = (x−7.5)2+(y−2.5)2

1+(x−7.5)2+(y−2.5)2
, f3(x, y) =

{
0, a3(x, y) ≥ 0.8
a3(x, y)

a3(x, y) = (x−7.5)2+(y−7.5)2

1+(x−7.5)2+(y−7.5)2
, f4(x, y) =

{
0, a4(x, y) ≥ 0.8
a4(x, y)

F (x, y) = f1(x, y) + f2(x, y) + f3(x, y) + f4(x, y)

f(x, y) =

⎧⎨
⎩

0.4, 0 < F (x, y) ≤ 0.4
F (x, y)
0.8, F (x, y) = 0

Figure 3 shows level curves of function f(x, y) and location of barriers which
is superimposed on the 3-D view of f(x, y).

The metrics like described above arise in infrastructure logistics when we
want to locate some objects in the highlands. Here speed of movement depends on
the angle of ascent or descent. Therefore the wave fronts are strongly distorted.

The computational results are presented in Table 2. Here Rmax is the radius,
dmax(C) is the density of package, d(B) is the density of barriers, t is the com-
puting time.

Figure 4 shows the solutions associated with Table 2 for n = 1, 2, 4, 8, 16, 32
when the container is multi-connected set in the case where the form of the wave
fronts is unknown.

With respect to Fig. 4 it is clear that AECP-MCS algorithm gives acceptable
results even for quite complicated metric. Note that, as in the previous example,
in the given metric presented on Fig. 4 “circles” have the same radius.
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Table 2. AECP-MCS results for multiply-connected set

n Rmax dmax(C) d(B) t

1 52,09715102 0,220326330383 0,0542817532 12,3

2 50,39798735 0,395009064733 0,0542817532 105,2

4 29,65098366 0,440226085102 0,0542817532 151,4

8 25,35214222 0,623120400981 0,0542817532 315,3

16 17,21536804 0,592833528847 0,0542817532 2088,7

32 12,88156661 0,665244747787 0,0542817532 3150,9

Fig. 4. AECP-MCS results for n = 1, 2, 4, 8, 16, 32

4 Conclusion

The presented algorithm is a modification of the Lloyd algorithm (widely known
in machine learning and data mining community as k-means). The difference
between the traditional k-means method and proposed approach is that the
distance of each object to the centroids is not Euclidean.

We suppose that the scope of the clustering and classification problems may
be significantly expanded by using special non-Euclidean metrics. So, authors
will try to apply it to solve the problem of machine learning and data mining on
the completely new aspect.

In conclusion we note that the further development of proposed approach
involves consideration of the 3-D packing problem [30].
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