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Abstract. In this paper we analyse ways to improve the acoustic mod-
els based on deep neural networks with the help of data augmentation.
These models are used for speech recognition in a priori unknown pos-
sibly noisy acoustic environment (with the presence of office or home
noise, street noise, babble, etc.) and may deal with both the headset
and distant microphone recordings. We compare acoustic models trained
on speech corpora with artificially added noises of different origins and
reverberation. At various test sets, word recognition accuracy improve-
ment over the baseline model trained on clean headset recordings reaches
45%. In real-life environments like a meeting room or a noisy open space,
the gain varies from 10 to 40%.
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1 Introduction

Recently, multilayer neural networks (deep neural networks, DNNs) have found
a widespread use for acoustic modeling in speech recognition [1]. In many cases
the DNNs demonstrate better generalization capabilities as compared with the
conventional Gaussian mixture models (GMMs). But in the case where the con-
ditions for training and testing (usage) of the DNN mismatch the recognition
quality may degrade significantly. In order to compensate this mismatch, vari-
ous techniques are used to increase the quality of the speech and decrease the
influence of noises.

This research is concerned with methods to improve the DNN based acoustic
models using bottleneck features [2] and speech data augmentation [3].

The initial training dataset includes clean headset recordings, whereas the
trained acoustic model is intended to be used for recognition in noisy open space
or in a meeting room.

The general problem which arises in the case where the training and testing
corpora mismatch is to construct a recognition system which is robust to acoustic
environment variability.
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To solve that problem, techniques are utilized which compensate the mis-
match between the testing and training corpora with the help of:

1. special features (application of noise robust features such as PNCC [4] and
RASTA [5], feature normalisation [6], feature compensation—correction of
features in the frequency domain—spectral subtraction [7], Wiener filter-
ing [8]) or acoustic model parameters transformation (standard statisti-
cal techniques such as the maximum a posteriori (MAP) estimators [9],
SAT+CMLLR [10]);

2. a priori knowledge about the environment (utilization of stereo data [11]
to train the mapping from the noisy to clean speech; here the advantage
depends on how close the training corpora is to the testing environment;
multi-condition training, construction of noise dictionaries (cluster adaptive
training, CAT [12]); combination of pre-trained acoustic models with the use
of non-negative matrix factorisation (NMF [13]));

3. application of explicit and implicit noise models (vector Taylor series [14]);
4. addition of various kinds of noise with different SNRs, which may occur in

the testing corpus (data augmentation) [15–17].

Many of the above approaches use a priori information to estimate the para-
meters for specific conditions and fail when no environment-specific data are
present. The data augmentation based approach provides a considerable advan-
tage because it works well even when no target data is available.

There are several ways to augment the training data:
semi-supervised training [15], multi-lingual training [18], transformation of
acoustic data [19], speech synthesis [20,21].

The semi-supervised training approach assumes the use of the text produced
by an automatic speech recognition system to train acoustic models. The advan-
tage of this approach is that we are able to use, say, radio or TV broadcasts
featuring various kinds of speakers and noises; the obvious drawback is the pres-
ence of recognition errors in the texts.

The important advantage of synthesized datasets lies in the ability to approx-
imate the required recognition conditions and get the necessary amount of train-
ing data. In addition, this method allows to obtain a precise alignment of noised
data using known text transcriptions and the corresponding clean recordings.

The methods based on transformation of acoustic features include the varia-
tion of the vocal tract length on the stage of extracting the standard features [17]
and stochastic feature mapping (SFM) [20].

The family of techniques based on recording transformations includes such
methods as the audio signal speed alteration [19], applying noises, introduction
of artificial reverberation into the records [22].

To transform the data we apply the artificial reverberation with the use of
binaural room impulse response (BRIR) [21] and several kinds of noise (street
noise, office or home noise, babble) with various signal-to-noise ratio (SNR).
The initial training dataset includes headset recordings. The problem consists of
training the acoustic model which can be applied both to headset and to distant
microphone recordings under various noises and reverberation conditions. We
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demonstrate that the bottleneck feature extractor trained on the augmented
train datasets is more robust to the noise and increases the recognition accuracy.

In the second section, we describe acoustic features and the DNN structure
used in training. The third section includes the description of the train and test
datasets, as well as the datasets resulting from data augmentation. The fourth
section presents the results and discussion of the study, and the conclusion follows
in the fifth section.

2 Bottleneck Features and DNN Structure

The bottleneck features extracted from a multilayer neural network have found
a wide use in automatic speech recognition systems. Such features have been
successfully used in [23,24] to solve the recognition problem under the testing and
training corpora mismatch conditions. All acoustic models in our presentation
are trained on this kind of features. The bottleneck features are generated from
the DNN which has a hidden layer of smaller dimension as compared with the
other layers.

In this paper we consider two bottleneck feature extractors:

1. the extractor trained on the initial training dataset including clean headset
voice records only;

2. the extractor trained on the same corpora after applying data augmentation.

In Fig. 1, the general structure of deep neural networks used for training is
shown. The first DNN is trained on plain MFCC features [25] (the left and right
context length is equal to 15) to produce the bottleneck features. The network
contains four fully connected hidden layers of dimension 2048 and a bottleneck
layer of dimension 80.

The second DNN is trained on bottleneck features with context of length
5 and left/right spacing 3. The network contains four fully connected layers of
dimension 2048 and a final classification layer with 2857 outputs.

Fig. 1. The general DNN structure used to train the acoustic model
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3 Speech Datasets for Training and Testing

In order to decrease the mismatch between the training and testing conditions,
we make use of various transformations of the initial sound files preserving the
state alignment unaltered. The difficulty consists in constructing a corpus which
matches the reverberation and noise conditions which are unknown at the train-
ing phase. Since this objective is unattainable, we augment the training dataset
with some variations to make our acoustic model more robust.

The training and test datasets are compiled from the recordings made by the
Speech Technology Center. The sets contain phonetically rich sentences recorded
with the use of a headset and distant microphones.

We consider the following ways to augment the training dataset:

1. application of noises corresponding to certain acoustic conditions (babble,
office, home, car, street) with SNR from a fixed interval;

2. artificial reverberation of speech recordings.

For convenience we label the training datasets by abbreviations that reflect
the properties of data containing in them. The training set C (clean data) con-
tains only clean headset recordings of more than a thousand of different speak-
ers. The set NB (noise, babble) includes a subset of recordings from C mixed
with office, street, car noises and background speech (babble). The background
recordings were scaled before mixing them with the clean data to produce the
desired signal to noise ratio.

For artificial reverberation, we use BRIR, which contains the information
about the size of the room where the recording is carried out, the distance to
the sound source and its direction. BRIR includes three basic components:

h(t) = hdp(t) + hee(t) + hrev(t),

where

hdp(t) reproduces the sound passing directly from the source to the microphone;
it depends on the azimuth and height of the source and the microphone;
its energy decreases as r2, where r is the distance between the source
and the microphone;

hee(t) is the early echo related to reflection; it contains the information con-
cerning the geometry of the room, its volume, number and positions of
the walls;

hrev(t) is the echo induced by reverberation, it contains a large number of reflec-
tions and dispersions of higher order.

We use two kinds of BRIR:

1. the distance from the source to the microphone is equal to 3 m, the azimuth
is 0, the room parameters are 24 × 15 × 4.5, which makes the reverberation
time equal to 0.5 s;
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Table 1. The description of the training and test datasets

Dataset Duration, hours SNR, dB RT60, sec.

Train datasets

C (clean data) 353 [15; 30] [0.1; 0.3]

R (reverb) 222 [15; 30] [0.5; 1.5]

NB (noise, babble) 250 [−5; 10] [0.2; 1.5]

Test datasets

T1 1.4 [15; 30] [0.1; 0.3]

T2 1.4 [7; 10] [0.1; 0.3]

T3 1.4 [−5; 7] [0.1; 0.3]

T4 1.5 [15; 30] [0.1; 0.5]

T5 0.4 [20; 45] [0.1; 0.3]

2. the distance from the source to the microphone is equal to 5.5 m, the azimuth
is 90, the room parameters are 24 × 15 × 4.5, which makes the reverberation
time equal to 0.8 s.

Detailed description of the training and test datasets is presented in Table 1.
The test datasets are divided into five groups based on the SNR and noise

types. Each test dataset contains recordings of several dozens of speakers which
were not included in the training sets. The first three groups contain the record-
ings made with the use of the close (T1), medium (T2) and long (T3) range
microphone respectively. The environments are the office, domestic, and street.
T4 contains background speech. T5 contains headset recording with a high SNR.
The SNR is calculated as in [27] with decisions made by our voice activity detec-
tion (VAD) algorithm. RT60 denotes the reverberation time which is the time
required for reflections of a direct sound to decay 60 dB.

The concluding table in this paper contains the results of comparison of
acoustic models trained with the use of data augmentation on real-life datasets,
which consist of recordings of dialogues in a meeting room and in a noisy open
space at a peak rush of people. The recordings are characterized by a low SNR
(10 dB on average), presence of background speech and noise of various kinds
(the sales register printer, electronic queue alerts, phone rings, etc.).

The information concerning the datasets compiled from real-life data is pre-
sented in Table 2.

Table 2. The description of the train and test datasets derived from real recordings

Dataset Type of microphone SNR, dB Rev-time, sec.

R1 Headset [20; 35] [0; 0.3]

R2 Distant (1 m) [10; 15] [0; 0.5]

R3 Distant (1 m) [−10; 15] [0; 0.6]
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R1 and R2 are done at the same time and at the same place but with the use
of different devices.

4 Experimental Results

In order to test the acoustic models which utilize the data augmentation tech-
niques, we train several DNNs on bottleneck features. All networks contain 4
fully connected hidden layers of dimension 2048 and are trained with the use
of discriminative pre-training [29]. In Table 3, we show how the word accuracy
(recognition accuracy, WAcc) depends on the properties of the train datasets
compiled with the use of clean, noisy and reverberated recordings. Only the
most interesting results were included in Table 3.

Word accuracy is defined as follows:

WAcc = 1 −WER =
N − S −D − I

N
,

where WER – word error rate, N is the number of words in the reference, S is
the number of substitutions, D is the number of deletions, I is the number of
insertions.

Table 3. The recognition accuracy dependence from the datasets properties

N Name Training data Features Test accuracy

C R NB Hrs MFCC bn C bn N T1 T2 T3 T4 T5

1 Baseline + 280 + 75.2 27.9 1.4 67.7 83.3

2 C bn C + 353 + 78.9 51.2 8.4 78.6 87.2

3 CR bn C + + 575 + 83.7 63.5 25.5 78.7 86.3

4 CNBR bn C + + + 825 + 84.6 73.6 41.1 76.9 86.9

5 CNBR mfcc + + + 825 + 82.8 74.1 46.3 78.9 87.8

6 CNBR bn N + + + 825 + 84.3 74.3 47.2 79.6 87.2

As a baseline we used the model trained with plain MFCC features on a
subset of the C dataset (280 of 353 h).

From the Table 3 it is obvious that adding augmented data improves recogni-
tion accuracy a lot and that bottleneck features are more robust to the speaker
and environment variability.

In Table 4, comparison results on real-life test sets are given.
One can see that at different test cases the increase of the recognition accu-

racy as compared with the baseline model is substantial and varies from 12
to 40%.

The test set Real 3 is a more challenging one, so the recognition accuracy
gain obtained with the proposed methods is less than on Real 2. Recordings
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Table 4. The recognition accuracy on real-life test cases

N Name R1 R2 R3

1 Baseline 51.5 2.4 8.6

2 C bn C 60.5 14.4 25.7

3 CR bn C 62.2 29.7 37.9

4 CNBR bn C 62.3 34.4 38.6

5 CNBR mfcc 59.5 38 37.9

6 CNBR bn N 63.9 42.7 37.9

in the Real 3 contain specific kinds of noise which we didn’t use during the
augmentation process and background speech. The latter is loud enough to be
passed by the voice activity detection algorithm so the acoustic models recognize
it as they become more robust to noisy environment and since the reference texts
contain only words belonging to a target speaker a larger number of insertions
occurs. Some reduction in WER may be achieved with a VAD algorithm tuned
to work in adverse noisy environments.

The presented recognition accuracy values are low but they allow to success-
fully perform keyword search and solve certain speech analytics tasks.

We publish a Kaldi recipe1 for building a speech recognition system for the
Russian language. It is based on publicly available speech corpus (Voxforge)
and may well serve as a starting point to study data augmentation and other
techniques aimed at producing effective ASR solutions.

5 Conclusions

In this research, it has been shown experimentally that the application of data
augmentation methods increases substantially the robustness of the DNN-based
acoustic models. The bottleneck features themselves are more robust to pertur-
bations of acoustic conditions, but when the extractor is trained on the aug-
mented datasets the recognition accuracy increases even more. The increase of
the recognition accuracy has been found to be as high as 45% at some test cases.
Experiments with real-life recordings in a quiet meeting room and in a noisy
open space with low SNR demonstrate that even in the case where we have only
clean recordings from a low-range microphone for training purposes, certain data
transformations allow us to significantly increase the recognition accuracy.
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1 https://github.com/freerussianasr/recipes.

https://github.com/freerussianasr/recipes


24 T. Prisyach et al.

References

1. Hinton, G., Deng, L., Yu, D., Dahl, G.E.: Deep neural networks for acoustic mod-
eling in speech recognition: the shared views of four research groups. IEEE Sig.
Process. Mag. 29, 82–97 (2012)

2. Yaman, S., Pelecanos, J.W., Sarikaya, R.: Bottleneck features for speaker recogni-
tion. Odyssey 12, 105–108 (2012)

3. Ragni, A., Knill, K.M., Rath, S.P., Gales, M.J.F.: Data augmentation for low
resource languages. In: Proceedings of Interspeech 2014, pp. 810–814 (2014)

4. Kim, C., Stern, R.M.: Feature extraction for robust speech recognition based on
maximizing the sharpness of the power distribution and on power flooring. In:
Proceedings of ICASSP 2010, pp. 4574–4577 (2010)

5. Hermansky, H., Morgan, N., Bayya, A., Kohn, P.: Compensation for the effect
of communication channel in auditory-like analysis of speech (RASTA-PLP). In:
Proceedings of European Conference on Speech Technology 1991, pp. 1367–1370
(1991)

6. Viikki, O., Bye, D., Laurila, K.: A recursive feature vector normalization approach
for robust speech recognition in noise. In: Proceedings of ICASSP 1998, pp. 733–
736 (1998)

7. Boll, F.: Suppression of acoustic noise in speech using spectral subtraction. IEEE
T-ASSP 27(2), 113–120 (1979)

8. Mauuary, L.: Blind equalization in the cepstral domain for robust telephone based
speech recognition. In: Proceedings of EUSPICO 1998, vol. 1, pp. 359–363 (1998)

9. Gauvain, J.-L., Lee, C.-H.: Maximum a posteriori estimation of multivariate
Gaussian mixture observations of Markov chains. IEEE T-SAP 2(2), 291–298
(1994)

10. Gales, M.J.F.: Maximum likelihood linear transformations for HMM-based speech
recognition. Comput. Speech Lang. 12, 75–98 (1998)

11. Deng, L., Acero, A., Jiang, L., Droppo, J., Huang, X.D.: High-performance robust
speech recognition using stereo training data. In: Proceedings of ICASSP 2001, pp.
301–304 (2001)

12. Gales, M.J.F.: Cluster adaptive training of hidden Markov models. IEEE T-SAP
8(4), 417–428 (2000)

13. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Pro-
ceedings of NIPS 2000, pp. 556–562 (2000)

14. Deng, J., Li, L., Yu, D., Gong, Y., Acero, A.: High-performance HMM adaptation
with joint compensation of additive and convolutive distortions via vector Taylor
series. In: Proceedings of ASRU 2007, pp. 65–70 (2007)

15. Lamel, L., Gauvain, J.-L.: Lightly supervised and unsupervised acoustic model
training. Comput. Speech Lang. 16, 115–129 (2002)

16. Gales, M.J.F., Ragni, A., AlDamarki, H., Gautier, C.: Support vector machines
for noise robust ASR. In: Proceedings of ASRU 2009, pp. 205–210 (2009)

17. Jaitly, N., Hinton, G.E.: Vocal tract length perturbation (VTLP) improves speech
recognition. In: Proceedings of ICML 2013 (2013)

18. Burget, L., Schwarz, P., Agarwal, M., Akyazi, P.: Multilingual acoustic modeling
for speech recognition based on subspace Gaussian mixture models. In: Proceedings
of ICASSP 2010, pp. 4334–4337 (2010)

19. Ko, T., Peddinti, V., Povey, D., Khudanpur, S.: Audio augmentation for speech
recognition. In: Proceedings of Interspeech 2015 (2015)



Data Augmentation for Training of Noise Robust Acoustic Models 25

20. Cui, X., Goel, V., Kingsbury, B.: Data augmentation for deep neural network
acoustic modeling. In: Proceedings of ICASSP 2014 (2014)

21. Jeub, M., Schaefer, M., Vary, P.: A binaural room impulse response database for
the evaluation of dereverberation algorithms. In: Proceedings of 16th International
Conference on Digital Signal Processing (DSP), Santorini, Greece (2009)

22. Peddinti, V., Chen, G., Povey, D., Khudanpur, S.L.: Reverberation robust acoustic
modeling using i-vectors with time delay neural networks. In: Proceedings of Inter-
speech 2015, pp. 2440–2444 (2015)

23. Yu, D., Seltzer, M.L.: Improved bottleneck features using pretrained deep neural
networks. In: Proceedings of Interspeech 2011, pp. 237–240 (2011)
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