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Abstract We study the relation between semi-classical orthogonal polynomials and
nonlinear differential equations coming from the isomonodromic deformation of
linear system of differential equations on P

1. There are many works establishing this
kind of relations between the Painlevé equations and semi-orthogonal polynomials
with the weight functions taking from the integrands for hypergeometric, Kummer,
Bessel, Hermite, Airy integrals. Some extension of these results is obtained for
the semi-classical orthogonal polynomials with the weight functions coming from
the general hypergeometric integrals on the Grassmannian G2;N . To establish the
desired relations, we make use of the Atiyah-Ward Ansatz construction of particular
solutions for the 2 � 2 Schlesinger system and its degenerated ones.
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1 Introduction

In this note we discuss a relation of semi-classical orthogonal polynomials to the
nonlinear systems of partial differential equations obtained from the theory of
isomonodromic deformation of linear differential equations on the projective line
P

1.
First we explain our motivation. Let w.t/ be a positive weight function on some

subset I � R and let . f ; g/ D R
I f .t/g.t/w.t/dt be the inner product for polynomials

with respect to the measure w.t/dt. By the process of orthogonalization we have
a series of monic orthogonal polynomials pn.t/ of degree n 2 Z�0: One of the
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important features of orthogonal polynomials is the three-term recurrence relations

tpn.t/ D pnC1.t/ C ˛npn.t/ C ˇnpn�1.t/:

It is important to know the coefficients ˛n; ˇn: These quantities can be expressed
using the determinants

Dn D det

�Z

I
tjCkw.t/dt

�n�1

j;kD0

of the Hankel matrix whose .i; j/ entry is the i C j th moment of w.t/. It is known
that ˇn can be expressed as

ˇn D Dn�1DnC1

D2
n

and ˛n is also computable in terms of fDng. For the classical orthogonal polynomi-
als, namely, Jacobi, Laguerre and Hermite polynomials, we take w.t/ D t˛.1�t/ˇon
Œ0; 1�; t˛e�ton Œ0; 1/ and e�t2 on .�1; 1/ as the weight function, respectively. Evi-
dently, we impose the condition ˛; ˇ > �1 so that the inner product can be defined
for polynomials. In these cases, Dn are constants depending on the parameters ˛; ˇ

contained in the weight function. It should be noted here that, these weight functions
are integrands of Beta, Gamma and Gaussian integrals, respectively:

B.˛ C 1; ˇ C 1/ D
Z 1

0

t˛.1 � t/ˇdt; �.˛ C 1/ D
Z 1

0

t˛e�tdt;
p

� D
Z 1

�1
e�t2dt:

Several semi-classical orthogonal polynomials are defined using the weight
functionsw.t; x/ depending on a parameter x. In these cases the Hankel determinants
Dn depend on x, so we denote them as Dn.x/. A numerous works are devoted to
clarify how Dn.x/ are related to the Painlevé equations P2,. . . ,P6. For example, Dai
and Zhang [3] considered the semi-classical orthogonal polynomials attached to the
weight function w.t; x/ D t˛.1 � t/ˇ.t � x/� and showed that the function

Hn.x/ WD x.x � 1/
d

dx
logDn.x/ C d1x C d2

with

d1 D �n.n C ˛ C ˇ C �/ � .˛ C ˇ/2

4
;

d2 D �1

4
Œ2n.n C ˛ C ˇ C �/ C ˇ.˛ C ˇ/ � �.˛ � ˇ/�

satisfies the Okamoto’s �-form equation for the sixth Painlevé equation P6. This
result indicates that Dn.x/ is the �-function for some particular solution of P6.
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Similar connection of semi-classical orthogonal polynomials of other type to the
Painlevé equations was also discussed [1, 2, 4, 9]. The form of weight functions and
the related Painlevé equations are listed in the following table.

w.t; x/ Painlevé Special function

t˛.1 � t/ˇ.t � x/� P6 Gauss

t˛.1 � t/ˇe�x=t P5 Kummer

.1 C t/˛.1 � t/ˇe�xt ” ”

jt � xj˛e�t2 P4 Hermite-Weber

t˛e�t2Cxt ” ”

jt2˛C1je�t4Cxt2 ” ”

t˛e�t�x=t P3 Bessel

et
3=3Cxt P2 Airy

In the third column of the above table, we listed the name of special functions,
where the weight function, or rather the measure w.t; x/dt, is essentially the
integrand of the integral representation of the corresponding special function.

It is natural to ask if it is possible to extend the above story by taking an appropri-
ate class of weight functions and a class of nonlinear differential equations. Here we
take, as a weight function w, the integrand of integral representation of the general
hypergeometric function (GHGF) on the Grassmannian manifold G2;N consisting of
2-dimensional subspaces in C

N , see [6]. As is explained in Sect. 2, GHGF is defined
as a Radon transform of a character of the universal covering group of a maximal
abelian subgroup H� � GLN.C/ indexed by a partition � of N. We observe that
the Beta, Gamma and Gaussian integral are regarded as GHGF on G2;3 for the
partitions � D .1; 1; 1/; .2; 1/; .3/, respectively, and the special functions listed
above, namely, Gauss, Kummer, Bessel, Hermite-Weber and Airy are GHGF on
G2;4 for the partitions � D .1; 1; 1; 1/; .2; 1; 1/; .2; 2/; .3; 1/ and .4/, respectively.

The nonlinear differential equations which we consider are those obtained from
the isomonodromic deformation of systems of linear differential equations on P

1

with regular and irregular singular points for 2 � 2 unknowns, so the nonlinear
equations are equivalent to the Garnier system [5] and the systems of its confluent
type. We call these systems as general Schlesinger system (GSS). The twistor
theoretic approach is used to describe the isomonodromic deformation, where the
deformation parameters live in the subspace Z�of Mat2;N.C/ whose quotient space
GL2.C/ n Z� is a Zariski open subset of G2;N ; and the infinitesimal action of the
group H� on Z� plays an important role.

A connection of the Hankel determinants to GSS is a consequence of the result
due entirely to Shah and Woodhouse [10] on the construction of particular solutions,
so called Ward ansatz solutions, for GSS.

This note is of expository nature and serves as a remark on the recognition of a
possible extension of the connection between the theory of semi-classical orthogo-
nal polynomials and nonlinear systems coming from isomonodromic deformation.
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This note is organized as follows. In Sect. 2, we recall the definition of general
hypergeometric functions (GHGF) on the Grassmannian manifold G2;N . Then we
review the twistor theoretic treatment of isomonodromic deformation in Sect. 3
following [10] and [8]. In Sect. 4, we explain the construction of Ward ansatz
solution of the generalized anti-self-dual Yang-Mills equation (GYM) and of
the related GSS in terms of general hypergeometric functions, which say that
the determinant of the Hankel matrix, whose entries are moments of integrand
of general hypergeometric integral on the Grassmannian, describes a particular
solution of GSS. This establishes an extension of the results on the relation of semi-
classical orthogonal polynomial theory to Painlevé equations.

2 Hypergeometric Function on G2;N

Maximal Abelian Subgroup

We shall recall the definition of general hypergeometric functions (GHGF). Let N
be a positive integer and � D .n1; : : : ; n`/ be a partition of N. For �, we associate a
maximal abelian subgroup of complex general linear group GLN.C/ defined by

H� WD J.n1/ � � � � � J.n`/;

where J.n/ � GLn.C/ is the abelian subgroup obtained as a centralizer of the shift
matrix ƒ D .ıiC1;j/0�i;j<n and is called the Jordan group of size n. Explicitly we
have

J.n/ D ˚
h D h0I C h1ƒ C � � � C hn�1ƒ

n�1 j h0 ¤ 0
� � GLn.C/;

from which we can know the isomorphism J.n/ ' CŒX�=.Xn/ as multiplicative
groups, where CŒX� is the ring of polynomials in X and .Xn/ is the ideal generated
by Xn. The Lie algebras for H� and J.n/ will be denoted by h� and j.n/, respectively.

Character

Let QH� be the universal covering group ofH� and consider a character of QH�; namely
a group homomorphism 	 W QH� ! C

�: Explicit description is as follows. Let

m.x/ .m � 0/ be the functions of x D .x0; x1; : : : / defined by

X

0�m<1

m.x/Tm D log.x0 C x1T C x2T

2 C � � � /: (1)

D log x0 C
1X

mD1

.�1/m�1

m

�
x1

x0

T C x2

x0

T2 C � � �
�m

: (2)
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Then we see that 
0.x/ D log x0 and


1.x/ D x1

x0


2.x/ D x2

x0

� 1

2

�
x1

x0

�2


3.x/ D x3

x0

�
�
x1

x0

��
x2

x0

�

C 1

3

�
x1

x0

�3

:::

Since the correspondence QJ.n/ ! j.n/, given by h 7! .
0.h/; 
1.h/; : : : ; 
n�1.h//,
defines the identification of QJ.n/ with its Lie algebra j.n/, exponentiating a character
of j.n/ and using this correspondence, we have a character 	n W QJ.n/ ! C

� as
	n.hI ˛/ D exp

�P
0�i<n ˛i
i.h/

�
with a weight ˛ D .˛0; ˛1; : : : ; ˛n�1/ 2 C

n: Since
QH� is a direct product of QJ.nk/, the characters 	 of QH� are given by

	.hI ˛/ D
Y

1�k�`

	nk .h
.k/; ˛.k// D

Y

1�k�`

exp

0

@
X

0�i<nk

˛
.k/
i 
i.h

.k//

1

A ;

for h D .h.1/; : : : ; h.`// 2 QH�; h.k/ 2 QJ.nk/. Here ˛ D .˛.1/; : : : ; ˛.`// 2 C
N ,

˛.k/ D .˛
.k/
0 ; : : : ; a.k/

nk�1/ 2 C
nk is a weight.

General Hypergeometric Function

The general hypergeometric function (GHGF) is defined as a Radon transform of the
characters 	 of QH� as follows. Let Z� be the open subset of Mat2;N.C/ consisting of
matrices z D .z.1/; : : : ; z.`//; z.k/ D .z.k/

0 ; : : : ; z.k/
nk�1/ 2 Mat2;nk .C/ satisfying

det.z.k/
0 ; z.k/

1 / 6D 0; .if nk � 2/

det.z.k/
0 ; z.l/

0 / 6D 0; .k ¤ l/:

Definition 2.1 Assume that the weight of a character 	 of QH� satisfies the condition

X

1�k�`

˛
.k/
0 D �2: (3)
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Then the general hypergeometric function of type � is defined by

F.z; ˛/ D
Z

C
	.Etz; ˛/dt .z 2 Z�/ (4)

where Et D .1; t/, Etz D .Etz.1/
0 ; : : : ; Etz.1/

n1�1; : : : ; Etz.`/
0 ; : : : ; Etz.`/

n`�1/ and C is a one
dimensional cycle in C of the homology group defined by the integrand. We do
not enter in detailed explanation for the homology group.

On the space Z�, the groups GL2.C/ and H� act from left and right, respectively, by
the matrix multiplication GL2.C/ �Z� �H� 3 .g; z; h/ 7! gzh 2 Z�. Then we know
the following results.

Proposition 2.2 F.z; ˛/ satisfies

F.gz; ˛/ D .det g/�1F.z; ˛/ .g 2 GL2.C//;

F.zh; ˛/ D 	.h; ˛/F.z; ˛/ .h 2 QH�/ (5)

.@0i@1j � @1i@0j/F.z; ˛/ D 0 .8i; j/ (6)

Roughly speaking, the last equation (6) comes from the fact that GHGF is defined
as a Radon transform of a function on QH�.

Relation to the Classical Special Functions

We explain how the integral representation for the classical special functions is
obtained as GHGF on the Grassmannian manifold G2;4. We list up the following
data:

1. the character of QH�,
2. GHGF of type �,
3. a subspace X� of Z� which is a realization of GL2.C/nZ�=H�,
4. restriction of GHGF to X� with a normalization of parameters.

Gauss HGF(� D .1; 1; 1; 1/)

1. 	.h/ D h˛1

1 � � � h˛4

4 with ˛1 C ˛2 C ˛3 C ˛4 D �2,
2. F.z; ˛/ D R

C.z01 C z11t/˛1 � � � .z04 C z14t/˛4dt,

3. X.1;1;1;1/ D
�

x D
�

1 0 1 �x
0 1 �1 1

�

j x ¤ 0; 1

�

;

4. F.x; ˛/ D R
C t

˛2 .1 � t/˛3 .t � x/˛4dt.
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Kummer’s Confluent HGF(� D .2 ; 1; 1/)

1. 	.h/ D h˛1

1 exp.˛2
h2

h1
/h˛3

3 h˛4

4 with ˛1 C ˛3 C ˛4 D �2; ˛2 D �1

2. F.z; ˛/ D R
C.z01 C z11t/˛1 exp

	
˛2

z02Cz12t
z01Cz11t


Q
iD3;4.z0i C z1it/˛i dt,

3. X.2;1;1/ D
�

x D
�

1 0 0 1

0 x 1 �1

�

j x ¤ 0

�

;

4. F.x; ˛/ D R
C e

�xtt˛3 .1 � t/˛4dt.

Hermite-Weber(� D .3; 1/)

1. 	.h/ D h˛1

1 exp
	
˛2

h2

h1
C ˛3. h3

h1
� 1

2
. h2

h1
/2/


h˛4

4 with ˛1 C ˛4 D �2; ˛2 D
0; ˛3 D 1,

2. F.z; ˛/ D R
C.z01 C z11t/˛1 exp

	
z03Cz13t
z01Cz11t

� 1
2
. z02Cz12t
z01Cz11t

/2



.z04 C z14t/˛4dt,

3. X.3;1/ D
�

x D
�

1 0 0 0

0 1 x 1

�

j x 2 C

�

;

4. F.x; ˛/ D R
C exp.xt � 1

2
t2/t˛4dt.

Bessel(� D .2 ; 2/)

1. 	.h/ D h˛1

1 exp
	
˛2

h2

h1



h˛3

3 exp.˛4
h4

h3
/ with ˛1 C ˛3 D �2; ˛2 D 1; ˛3 D 1,

2. F.z; ˛/ D R
C.z01 C z11t/˛1 exp

	
z02Cz12t
z01Cz11t



.z03 C z13t/˛3 exp

	
z04Cz14t
z03Cz13t



dt,

3. X.2;2/ D
�

x D
�

1 0 0 �x
0 1 1 0

�

j x ¤ 0

�

;

4. F.x; ˛/ D R
C exp.t � x

t /t
˛3dt:

Airy(� D .4/)

1. 	.h/ D h˛1

1 exp

�

˛2
h2

h1
C ˛3.

h3

h1
� 1

2
. h2

h1
/2/ C ˛4. h4

h1
�
	
h2

h1


 	
h3

h1



C 1

3

	
h2

h1


3

/

�

with ˛1 D �2; ˛2 D ˛3 D 0; ˛4 D 1,

2. F.z; ˛/ D R
C.z01 C z11t/˛1 exp

	
z04Cz14t
z01Cz11t

� z02Cz12t
z01Cz11t

� z03Cz13t
z01Cz11t

C 1
3
. z02Cz12t
z01Cz11t

/3


dt,

3. X.4/ D
�

x D
�

1 0 0 0

0 1 0 x

�

j x 2 C

�

;

4. F.x; ˛/ D R
C exp.xt C 1

3
t3/dt:
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3 General Schlesinger System and the Result

Schlesinger System

Consider a family of linear differential equations on P
1

dy

d�
D
0

@
N�1X

jD1

Aj.x/

� � xj

1

A y; Aj.x/ 2 sl2.C/ (7)

where Aj.x/ depends holomorphically on x in some open subset of .P1/N�1. Assume
that AN WD �PN�1

jD1 Aj.x/ D diag.a; �a/:

Definition 3.1 The Eq. (7) gives an isomonodromic family if there exists a funda-
mental system of solutions Y.�; x/ such that the associated monodromy representa-
tion is invariant under the variation of xjs.

Assume here that, for each j, 2 eigenvalues of Aj do not differ by an integer. Then
we know the following result.

Proposition 3.2 The family of Eqs. (7) gives an isomonodromic family with
a fundamental system of solutions Y.�; x/ which has the form Y.�; x/ D
.
P1

mD0 Ym��m/diag.�a; ��a/ at � D 1 with Y0 D I2 , if and only if (7) together
with

@y

@xj
D � Aj.x/

� � xj
.1 � j < N/

form an integrable system. This condition can be written as the Schlesinger system:

dAj D
X

i.¤j/

ŒAi;Aj�d log.xi � xj/ .1 � j < N/: (8)

General Schlesinger System

For a given partition � D .n1; : : : ; n`/ of N, let us consider the system of linear
differential equations of the form

dy

d�
D
0

@
X̀

kD1

nk�1X

jD0

A.k/
j .z/

d
j.E�z.k//

d�

1

A y (9)
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where 
j are those defined in (1), z D .z.1/; : : : ; z.`// varies in some open subset

U � Z� and A.k/
j .z/ 2 sl2.C/ depends holomorphically on z 2 U and satisfy

P`
kD0 A

.k/
0 .z/ D 0: The equation has the singular points fx1; : : : ; x`g, where xk D

� z
.k/
00

z
.k/
10

.1 � k � `/: Since d
j.E�z.k//
d�

has a pole of order nk; the Eq. (9) has in general an

irregular singular point at xk when nk � 2. Roughly speaking, the family (9) gives
an isomonodromic family if there is a fundamental system of solutions such that
the associated monodromy representation is independent of z and the connection
matrices among canonical solutions at irregular singular points(including Stokes
matrices) are also independent of z. We refer Sect. 4 of [10] for the detailed
explanation for it. The nonlinear system for A.k/

j .z/ governing the isomonodromic
deformation is called the general Schlesinger system (GSS). We remark that when
the partition of N is � D .1; : : : ; 1/, the GSS coincides with the Schlesinger system.
Note also that the Schlesinger system is known to be completely integrable, but the
integrability of GSS is checked in a particular case [7].

Result

Here we present a particular solution of GSS given in terms of the Hankel
determinants of moments associated with the general hypergeometric function of
type �.

As above, take a partition � D .n1; : : : ; n`/ of N, a character 	.h; ˛/ of QH�. For
any fixed n0 2 Z, consider moments of 	.Etz; ˛/:

�n.z/ D
Z

C
tnCn0	.Etz; ˛/dt; (10)

where C is a cycle and the Hankel determinant �p
m.z/ D det.�iCjCp�mC1.z//m�1

i;jD0,
where m is a size of matrix and p denotes the index of moment which is arrayed in
the main anti-diagonal entries. For example when p D 0,

�0
m.z/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�1�m �2�m : : : �0

�2�m �0

::: : :
: :::

�0 �m�2

�0 : : : �m�2 �m�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

;

where �0 is arrayed along the main anti-diagonal line.
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Put

f0.z/ D .�1/m

�0
m

�
�1
m �0

mC1

�0
m�1 ��1

m

�

(11)

We know that f0.z/ belongs to SL2.C/ by virtue of Sylvester’s formula of determi-
nants.

Theorem 3.3 For any positive integer m, we have an isomonodromic family (9) of
the form

A.k/
j .z/ D �1

2

 
˛

.k/
j

�˛
.k/
j

!

C
X

0�i

z.k/
1i

@f0

@z.k/
1;iCj

� f�1
0 .1 � k � `; 0 � j < nk/

and hence a particular solution to GSS expressed in terms of Hankel determinants
associated with GHGF of type �.

This theorem is just a rephrase of the result due to Shah and Woodhouse [10].
It relies on the description of isomonodromic deformation via twistor theory and
on the construction of particular solution of generalized anti-self-dual Yang-Mills
equation on G2;N using Ward ansatz. It is not yet known that �0

m is so called the �-
function for the isomonodromy problem. In the following sections, we explain how
the above solution can be obtained.

4 Twistor Theory and Isomonodromic Deformation

In this section, we explain how the Schlesinger system and its confluent type systems
can be obtained from the twistor theoretic point of view following [8, 10].

Generalized Yang-Mills Equation

Let Z D fz 2 Mat2;N.C/ j rk z D 2g with the coordinates z D .zij/0�i�1;1� j�N .
Let U � Z be an open set and consider a holomorphic connection D on the trivial
bundle U � C

2 with connection matrices in sl2.C/. Then D can be written as

D D d C
X

i;j

ˆij.z/dzij D
X

ij

Dijdzij;

where

Dij D @

@zij
C ˆij.z/; ˆij.z/ 2 sl2.C/:
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Definition 4.1 A holomorphic connection D is called the generalized (anti-self-
dual) Yang-Mills (GYM) connection, if we have

Œ�D0j � D1j; �D0k � D1k� D 0 .j ¤ k; � 2 C/: (12)

Equivalently, we have the nonlinear equations for ˆij.z/:

ŒD0j;D0k� D 0; ŒD1j;D1k� D 0; ŒD0j;D1k� C ŒD1j;D0k� D 0; (13)

1 � j; k � N, which we call the generalized Yang-Mills equation.

Ward-Penrose Transform

The important feature in treating GYM equation is to encode its solutions in terms of
some class of vector bundles on the twistor space PN�1. Consider a double fibration

PC
�1 . & �2

P
N�1 Z

where PC WD f.Œt0; t1�; z/ 2 P
1 � Z j .t0; t1/ ¤ .0; 0/g with the homogeneous

coordinates .t0; t1/ of P1 and the maps �1 and �2 are defined by

�1.Œt0; t1�; z/ D Œt0 Ez0 C t1 Ez1�; z D
�Ez0

Ez1

�

�2.Œt0; t1�; z/ D z:

PC is called the correspondence space and P
N�1 the twistor space. The above double

fibration gives the correspondence from Z to the twistor space PN�1 by

Z 3 z 7! Oz WD �1.��1
2 .z// D fŒt0 Ez0 C t1 Ez1� j .t0; t1/ ¤ .0; 0/g � P

N�1:

Here Oz is a projective line in P
N�1 joining two points ŒEz0�; ŒEz1� and is called the twistor

line determined by z. On the other hand, it gives a correspondence from P
N�1 to Z

by

P
N�1 3 p D Œx� 7! Qp WD �2.�

�1
1 .Œx�// D fz 2 Z j Ez0 ^ Ez1 ^ x D 0g;

where Qp is a plane in Z of dim D N � 1 called the twistor surface.
It is known that a connection D on U�C

2 is GYM if and only if DjQp is integrable
for 8p 2 OU D �1.��1

2 .U// � P
N�1:
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The Ward-Penrose transform is the correspondence between the following two
sets

�
holomorphic SL2.C/-vector bundles
E ! OU; trivial on twistor lines Oq.q 2 U/

�

$
�

solutions D of
GYM on U

�

We call an element of the left-hand side a twistor bundle. We shall explain the Ward-
Penrose transform from a twistor bundle to a solution of GYM.

Let E ! OU be a SL2.C/-twistor bundle, and ��
1 E be the lift of E to ��1

1 . OU/ D
P

1 � U. If F 2 SL2.C/ is a patching function for E, then that for ��
1 E is F� D

F. Ez0 C �Ez1/; where � D t1=t0 is the affine coordinates of P1. Let fV; QVg be an open
covering of ��1

1 . OU/ defined by

V D fj�j < rg � U; QV D fj�j > Qrg � U; Qr < r:

We may assume that F� is defined on the intersection V \ QV . Since E is trivial on
twistor lines, there is a Birkhoff decomposition F� D Qf�1 � f , where f ; Qf 2 SL2.C/

are holomorphic respectively on V and QV such that Qf .1; z/ D 12. Combining this
with the fact that F� is a lift of F, we have .�@0j � @1j/F� D .�@0j � @1j/.Qf�1 � f / D 0

for any j. It implies

�@0jf � f�1 � @1jf � f�1 D �@0jQf � Qf�1 � @1jQf � Qf�1: (14)

The left-hand side and the right-hand side are defined on V and QV , respectively. By
Liouville Theorem, both sides define a polynomial function in � with a simple pole
at � D 1. From Qf .1; z/ D 12, we see that � D 1 is not a pole of both sides, and
hence (14) defines a sl2.C/ valued function depending only on z, which we denote
as ˆ1j.z/ 2 sl2.C/. Then we have

Œ�.@0j C 0/ � .@1j C ˆ1j.z//� f D 0; Œ�.@0j C 0/ � .@1j C ˆ1j.z//�Qf D 0:

This implies that the connection r D d C P
j ˆ1j.z/dz1j is a solution to GYM

equation.
Note that, if f D f0.z/ C f1.z/� C � � � , then ˆ1j can be determined only from f0;

ˆ1j.z/ D �@1jf0 � f�1
0 .1 � j � N/: (15)

Isomonodromic Deformation

First we introduce some notation. Let x D .x1; : : : ; xN/ be the homogeneous
coordinates of PN�1. We denote by Œx� (or sometimes by x) a point of PN�1. For
 2 h�; define a vector field X on P

N�1 and Y on PC by

Xg WD d

ds
g.Œx exp s�/jsD0; Yh WD d

ds
h..Œt0; t1�; z exp s//jsD0:
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Sometimes we use also the notation x D .x.1/; : : : ; x.`//; x.k/ D .x.k/
0 ; : : : ; x.k/

nk�1/ 2
C

nk for the homogeneous coordinates of PN�1.

Definition 4.2 SL2.C/-twistor bundle E ! OU is said to be symmetric with respect
to H�, if the infinitesimal action of H� on OU � P

N�1 can be lifted to E, in other
terms, if there is a Lie derivation L for any  2 h�, which acts on local sections of
E, such that  7! L is a Lie algebra homomorphism.

Note that the Lie derivation L can be written locally as L D X C B.x/ with
B.x/ 2 sl2.C/. Since X spans a tangent space TxPN�1at any points x such that

x.k/
0 ¤ 0 for any k, symmetry of the twistor bundle implies the integrable connection

r on OU whose connection form can be written locally as

X̀

kD1

nk�1X

jD0

B.k/
j .x/d
j.x

.k//; (16)

B.k/
j 2 sl2.C/ is B for  D E.k/

j WD 0 ˚ � � � ˚ .ƒ.k//j ˚ � � � ˚ 0/ 2 h�, where

ƒ.k/ D .ıiC1;j/ 2 j.nk/ is the shift matrix of size nk.
We want to get an isomonodromic family of linear differential equations on P

1

by restricting the connection r on twistor lines, or r� on the lines P1�fzg � PC. To
get a such family, we trivialize the twistor bundle, which is symmetric with respect
to H�, on twistor lines. Let r� be the lift of r to the pullback bundle ��

1 E !
��1

1 . OU/ � PC whose connection form on V; QV are of the forms

! D
X̀

kD1

nk�1X

jD0

B.k/
j .�; z/d
j.E�z.k//; Q! D

X̀

kD1

nk�1X

jD0

QB.k/
j .�; z/d
j.E�z.k//

and let F� be the patching function for the bundle ��
1 E on V \ QV . Then it is known

that the symmetry is assured if F� satisfies the condition

YF
� D F�B � QBF

� .8 2 h�/; (17)

where B and QB are holomorphic on V and QV respectively which comes from the
local form of L on V and QV . Since ��

1 E is trivial on P
1 � fzg for any z 2 U; we can

find f ; Qf 2 SL2.C/, holomorphic respectively on V and QV , such that F� D Qf�1f with
Qf .1; z/ D 12: Then the integrable connection r� on the product bundle:

r� D d C � WD d C f!f�1 � df � f�1 D d C Qf Q! Qf�1 � dQf � Qf�1 (18)

gives an isomonodromic deformation and the integrability condition .r�/2 D 0 is
a nonlinear system of differential equations. This nonlinear equation is the general
Schlesinger system(GSS) of type �. We want to express � more explicitly. Put
‚.z/ WD fB f�1 �Y f � f�1 D Qf QB

Qf�1 �Y
Qf � Qf�1. Then we can show the following.
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Proposition 4.3 The connection form � for the connection r� is given by

� D �
X̀

kD1

nk�1X

jD0

A.k/
j .z/d
j.E�z.k// C ˆ; (19)

where A.k/
j .z/ WD ‚

E
.k/
j

.z/ � iY
E

.k/
j

ˆ, iY
E

.k/
j

being the interior product with respect to

the vector field Y
E

.k/
j
, and ˆ WD P

ˆ1j.z/dz1j is a solution of GYM given by (15)

corresponding to the twistor bundle E:

The integrability of the connection r� D d C � describes the isomonodromic
deformation of the linear differential equation (9).

5 Ward Ansatz Solution of GYM

We explain the construction of particular solutions of GSS of type � following the
description of [10], which gives Theorem 3.3.

Ward Ansatz Solution

Let U � Z be an open set as in the previous section, and put OU D �1.��1
2 .U//. We

set the following Ansatz:

(i) SL2.C/-twistor bundle E on OU corresponds to a solution of GYM equation,
(ii) the patching function F� of ��

1 E has the form

F� D
�

�m �.�; z/
��m

�

on V \ QV: (20)

Let �.�; z/ D P1
nD�1 �n.z/��n be the Laurent expansion with respect to �. Then

we follow the process of Ward-Penrose transform explained above. We can construct
the Birkhoff decomposition

F� D Qf�1 � f (21)

uniquely under the condition Qf .1; z/ D 12 using linear algebra. Especially the
constant term f0 in the Taylor expansion of f at � D 0 can be given by (11). Hence
if we can find the twistor bundle E such that the lifted patching function F� satisfies
the ansatz (i), (ii) and the condition (17) of symmetry with respect to H�; we can get
a particular solution of GSS by the process of previous section.
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First we consider the condition for �.�; z/ so that F� has the form (20). Since F�
is a lift of a transition F of E, we have .�@0j � @1j/F� D 0; equivalently, .�@0j �
@1j/� D 0 for any j. Substituting the Laurent expansion of �.�; z/ with respect to �,
we get

@0j�n D @1j�n�1 .1 � j � N; n 2 Z/: (22)

Notice that (22) implies

.@0j@1k � @0k@1j/�n D 0 .j ¤ k; n 2 Z/; (23)

which are just the Eqs. (6) used in characterizing the image of Radon transform.

Particular Solutions for GSS

In the construction of Ward ansatz solution described in the previous subsection,
let us determine �n.z/ so that the resulting twistor bundle becomes symmetric with
respect to H� and as a result, it gives a particular solution to GSS of type �.

Let 	 W QH� ! C
� be a character with a weight ˛ 2 C

N . Take a fixed n0 2 Z and
define

�n.z/ D
Z

C
tnCn0	.Etz; ˛/dt; (24)

where C is a cycle of the homology group associated with 	.Etz; ˛/. This choice of
C assure the exchange of differentiation with respect to z and integration. We can
check easily that �n.z/ satisfies contiguous relation (22) and �n.zh/ D �n.z/	.h; ˛/.
The last identity implies

Y�n.z/ D h; ˛i �n.z/ . D
X

j;k


.k/
j E.k/

j 2 h�/

where h; ˛i D P
j;k 

.k/
j ˛

.k/
j : It follows that F�, given by (20) and (24), satisfies the

condition (17) for the symmetry of the twistor bundle with

B.z/ D � QB.z/ D 1

2

� h; ˛i
� h; ˛i

�

: (25)

Finally, putting in ‚.z/ the expression (25) for QB.z/ and ˆ D �P @1jf0 � f�1
0 with

f0 given by (11) with (24), Proposition 4.3 produces a particular solution of GSS in
terms of GHGF given in Theorem 3.3.
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