
Chapter 10
Micromechanics of Bone Modeled
as a Composite Material

Iwona Jasiuk

Abstract In this chapter, we present an overview of modeling of bone as a com-
posite material. First, we describe bone’s complex hierarchical structure spanning
from the nanoscale to macroscale and summarize bone’s mechanical properties and
biological characteristics which include self-healing, adaptation, and regeneration.
Then, we summarize nanomechanics and micromechanics modeling of bone.
Effective medium theories such as Mori–Tanaka, self-consistent, and generalized
self-consistent methods are used to model the elastic response of bone, while a
finite element method is used to more precisely account for bone architecture
and to simulate inelastic effects. Challenges in bone modeling include bone’s
composite and hierarchical structure, lack of scale separations, scale and size effects,
interfaces, porosity spanning across structural scales, and complex constitutive
laws (anisotropic, nonlinear, Cosserat, time dependent, piezoelectric, poroelastic).
Variability in bone properties due to the anatomic location, species, age, gender,
and method of storage makes validation of theoretical models challenging. Finally,
lessons learned from nature on bone structure–property relations can be applied to
design stiff, strong, tough, and lightweight bioinspired materials.

10.1 Introduction

10.1.1 Characteristics of Biological Materials

Engineers have traditionally studied materials such as metals, ceramics, polymers,
and their composites. Natural, including biological, materials are another class of
materials which offer new opportunities for analysis and discovery (Fratzl and
Weinkamer 2007; Chen et al. 2008; Meyers et al. 2008; Meyers et al. 2011; Meyers
et al. 2013). Examples of biological materials are bone, cartilage, muscle, tendon,
ligament, skin, brain tissue, enamel, dentin, and others. General characteristics of
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biological materials are that they self-assemble and self-organize from atomic level
into complex hierarchical, composite, often porous, and fluid-filled structures (Cui
et al. 2007; Bar-On and Wagner 2013). They are multifunctional, adapt to the
environment, and can often self-heal (Meyers et al. 2008; Weinkamer and Fratzl
2011). They range from soft and highly deformable tissues such as skin to hard
mineralized materials such as bone. Knowledge of biological materials is needed
for various medical applications and to design new bioinspired synthetic materials
(Munch et al. 2008; Studart 2012; Mirkhalaf et al. 2013; Libonati et al. 2014;
Naleway et al. 2015).

10.1.2 Hierarchical Composite Structure of Bone

In this chapter, we focus on the mechanics of bone. Bone is a multifunctional
biological material, which has a structural role in the body by providing the
frame, facilitating movement, and protecting organs. In addition, it stores minerals,
manufactures blood, maintains PH of blood, and detoxifies the body. As a structural
material, bone has excellent mechanical properties when healthy as it is stiff, strong,
tough, and lightweight (Rho et al. 1998; Weiner and Wagner 1998; Launey et al.
2010; Ural and Vashishth 2014). In addition, by being a biological material, bone is
in a constant state of remodeling as old or damaged tissues are being continuously
replaced by a new bone. This allows bone to continuously change to adapt to its
environment (stronger bone is built when subjected to exercise) and to self-heal
(e.g., healing of bone fractures) (Weinkamer and Fratzl 2011; Zimmermann and
Ritchie 2015).

The superior mechanical properties of bone are due to bone’s composite and
hierarchical structure (Weiner and Traub 1992; Lakes 1993; Rho et al. 1998; Olszta
et al. 2007; Hamed et al. 2010, 2012a, b). Bone consists of a soft organic phase
with collagen type I and non-collagenous proteins, 33–43% by volume (vol%), a
stiff inorganic phase with hydroxyapatite crystals, 32–44 vol%, and water-filled
pores, 15–25 vol%. Collagen and water provide bone its ductility and toughness,
and minerals give it high stiffness and strength, while porosity makes it lightweight.

Bone self-assembles from atoms into a complex hierarchical structure up to a
whole bone level, as shown in Fig. 10.1. In this paper, we distinguish six structural
levels: macroscale, mesoscale, microscale, sub-microscale, nanoscale, and sub-
nanoscale following (Rho et al. 1998; Hamed et al. 2010). These choices are
not unique and other choices have been proposed in the literature (Weiner and
Traub 1992; Katz et al. 2007). This is due to the fact that bone structure changes
continuously with length scale, i.e., bone does not have clear scale separations.

At the macroscale, bone is made of dense cortical (also called compact) bone
which forms an outer shell of whole bone and a spongy trabecular (also called
cancellous) bone which fills ends of bone. Cortical bone, in the form of a hollow
shaft, provides stiffness and strength and superior bending and torsion resistance
while trabecular bone absorbs energy. Such structure achieves optimal structural
performance while being lightweight.
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Fig. 10.1 Hierarchical structure of bone (Hamed and Jasiuk 2013)
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At the mesoscale, cortical bone (with 5–10% porosity) consists of concentric
hollow cylinders, called osteons, embedded in an interstitial bone which is made
of old osteons. The outer shell of cortical bone is made of softer periosteum and
circumferential bone. Trabecular bone, present mainly at bone’s ends, has a highly
porous structure (20–95% porosity) with porosity increasing in the direction away
from the cortical bone giving it a functionally graded structure. Its architecture
consists of randomly arranged rodlike or platelike struts, called trabeculae, which
give it a foamlike appearance.

At the microscale level, bone is made of lamellar structures, resembling those of
laminated composite materials. These include osteonal, interstitial, and circumfer-
ential bone types in cortical bone and trabecular pockets forming trabecular struts
in trabecular bone.

At the sub-microscale, a single lamella, which is few microns thick, is made of
preferentially oriented mineralized collagen fibrils.

At the nanoscale, the mineralized collagen fibril consists of tropocollagen
molecules and nanosized minerals. It is considered a basic building block of
bone. The tropocollagen molecules, which have a triple-helix structure, about one
nanometer (nm) in diameter and 300 nm in length, are crosslinked with each other
and arranged in a staggered way with gap and overlap zones and assembled into
collagen fibrils which are 50–100 nm in diameters and microns in length. The gap
and overlap zones in collagen fibrils result in a characteristic banded pattern which
is visible under a transmission electron microscope. The minerals are in the shape
of platelets and they are about 25 nm by 50–100 nm and few nanometers thick.
Crystals are believed to be infused within the gaps, to fit between collagen molecules
(intrafibrillar crystals) and to form cores outside the collagen fibrils (extrafibrillar
crystals). There is still a lack of consensus on the percentages of minerals within
and outside the collagen fibrils and their precise arrangements. Also, the role of
non-collagenous proteins is not fully understood, but it is believed that they reside
at collagen–crystal and crystal–crystal interfaces. Most of the models of bone at
the nanoscale assume the matrix-fiber geometry with collagen being a matrix and
crystals being inclusions (Fratzl et al. 2004). More recent studies observed that bone
with organic phase removed still has a self-standing structure, which implies that
crystals form a continuous phase (Chen et al. 2011; Hamed et al. 2015).

10.1.3 Overview on Modeling of Bone

Thus, bone is a complex natural nanocomposite material having distinct features
at different structural scales. There are several geometric models proposed to
represent bone at the nanoscale. Most popular is a matrix-inclusion model
which assumes that isolated minerals are embedded in a collagen matrix (Fratzl
et al. 2004). More recent propositions involve assumptions of bi-continuous
collagen–mineral phases (Chen et al. 2011). At the sub-microscale, a single
lamella can be represented as a collection of preferentially aligned fibers
(mineralized collagen fibrils) and extrafibrillar minerals and pores (osteocytes
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and canaliculi canals). At the microscale, bone resembles a laminated composite
material forming various lamellar structures (osteonal, interstitial, and circumferen-
tial bone) and trabecular struts. At the mesoscale, cortical bone can be considered as
a hybrid composite material consisting of osteons and resorption cavities embedded
in an interstitial bone, while trabecular bone can be modeled as a random or periodic
foam.

Various computational approaches have been proposed to model bone. They
can be classified into the following four categories: (a) approximate analytical
models based on strength of materials theories, (b) analytical models based on
micromechanics theories, (c) computational models using mainly a finite element
method, and (d) atomic level simulations utilizing molecular dynamics (Hamed and
Jasiuk 2012; Sabet et al. 2016).

Each approach has its advantages and limitations. Strength of materials models
are approximate and they can provide quick estimates. Micromechanical approaches
involve more rigorous mechanics formulations but they also utilize simplified
geometric models. They have been used to estimate the elastic properties of
bone. Computational models have addressed more complex geometries and have
been used to model damage, plasticity, and fracture of bone. In particular, the
finite element models, using images obtained by computed and micro-computed
tomography (CT and micro-CT), provide a powerful tool to account precisely for
bone’s complex geometries and architectures. Molecular dynamics simulations have
been used to predict the mechanical properties of bone’s main constituents (collagen
and crystals) and to provide insights on interfaces between them.

Numerous models have been proposed for modeling of bone at different struc-
tural scales. For a review of the literature on characterization and elastic modeling of
bone, the reader is referred to a recent review paper (Novitskaya et al. 2011). Elastic
modeling of bone at the nanoscale is summarized in Hamed and Jasiuk (2012).
Modeling of bone fracture and strength at different structural scales is summarized
in Sabet et al. (2016).

In the next section, we present a hierarchical approach for modeling the elastic
properties of bone. It involves successive steps spanning from the nanoscale to the
mesoscale. Effective elastic properties are computed analytically at each structural
level by using a “bottom-up” approach in which the effective properties computed
at a lower level serve as the inputs for a next higher up level. In the analysis, we
employ micromechanics theories and a classical lamination theory. C and ˆ denote,
respectively, a stiffness tensor and a volume fraction of phases. The analysis follows
our formulations presented in Hamed et al. (2010, 2012a, b, 2015).

10.2 Elastic Hierarchical Modeling of Bone

In this section, we present a representative approach to model the elastic properties
of bone in order to illustrate how micromechanics methods can be used to study this
biological material. This example also provides a framework for modeling other
mineralized tissues. Note that scale definitions are not unique, effective medium
choices are not unique, and there are various assumptions made on bone geometry
at the defined length scales. Different modeling steps are summarized in Fig. 10.2.
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10.2.1 Nanoscale

At the nanoscale, the mineralized collagen fibril is modeled as a bi-continuous
composite material, following (Chen et al. 2011). We use a self-consistent method
(Hill 1963; Budiansky 1965) to account for the two interpenetrating phases: collagen
fibrils and hydroxyapatite crystals. In this model, there is no matrix and both phases
are represented as inclusions. For simplicity, we assume that the bone constituents
are linear elastic and isotropic. The properties used in the analysis and their volume
fractions are given in Table 10.1. Note that there are a wide range of values reported
in the literature as summarized in Table 1 in Hamed et al. (2010), so input choices
are not unique.

Collagen fibrils are modeled as cylinders with an aspect ratio of 1000:1:1
following the dimensions reported in the literature 100 �m length and 100 nm
diameter of collagen fibrils (Olszta et al. 2007; Hang and Barber 2011), while
platelet-like crystals are represented as ellipsoidal inclusions with an aspect ratio
of 50:25:3 (Robinson 1952) which are aligned in the direction of a long axis of the
collagen fibril. Again, these aspect ratios reflect representative values. The effective
stiffness tensor of a mineralized collagen fibril, Cfib, is computed in terms of stiffness
tensors of wet collagen, Cwcol, and hydroxyapatite, CwHA, as follows:

Cfib D
(

ˆwcolCwcol W
h
I C Scyl

fib W C�1
fib W �

Cwcol � Cfib
�i�1

C ˆwHACwHA W
h
I C Sellipse

fib W C�1
fib W �

CwHA � Cfib
�i�1

)

W
(

ˆwcol

�
ICScyl

fib W C�1
fib W �

Cwcol�Cfib
���1

CˆwHA

�
ICSellipse

fib W C�1
fib W �

CwHA�Cfib
���1

) �1

;

(10.1)

Table 10.1 Elastic properties and volume fractions of bone constituents used in modeling

Material Young’s modulus (GPa) Poisson’s ratio Volume fraction (%)

Collagen 1.5 (Hall 1951; Currey 1969) 0.28 (Nikolov and
Raabe 2008)

41

Hydroxyapatite
(HA)

114 (Katz and Ukraincik 1971;
Gilmore and Katz 1982)

0.23 (Snyders et al.
2007)

42

Non-
collagenous
proteins (NCPs)

1 (Nikolov and Raabe 2008) 0.45 (Nikolov and
Raabe 2008)

4

Bulk modulus (GPa) Poisson’s ratio Volume fraction (%)
Water 2.3 0.49 13
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where the expressions for Cwcol and CwHA are given in the next paragraph.
Subscripts in Eq. (10.1), “wcol,” “HA,” and “fib,” represent, respectively, the wet
collagen, interfibrillar hydroxyapatite, and mineralized collagen fibril. The fourth-
order Eshelby tensor (Eshelby 1959) Sr

0 accounts for the shape of phase r in a matrix
with a stiffness tensor C0, with 0 being a generic subscript.

Furthermore, the superscripts “cyl” and “ellipse” refer to the cylindrical and
ellipsoidal shapes of collagen fibrils and hydroxyapatite crystals, respectively. Note
that the effective stiffness tensor of the mineralized collagen fibril, Cfib, is not
isotropic since hydroxyapatite crystals are assumed to be aligned in the direction
of collagen fibrils. Thus, the components of the Eshelby tensor need to be evaluated
numerically by considering the problem of an ellipsoidal inclusion embedded in
an anisotropic matrix using the approach of Gavazzi and Lagoudas (1990). Cfib is
computed by solving Eq. (10.1) iteratively, with the Eshelby tensors Scyl

fib and Sellipse
fib

being updated at each iteration.
Water and non-collagenous proteins (NCPs) also influence the mechanical

properties of bone, and solid phases are immersed in fluid (Yoon and Cowin 2008).
Thus, in Eq. (10.1), we use the properties of wet collagen while the minerals are
represented as a porous HA foam filled with water and NCPs (Fritsch and Hellmich
2007).

We compute the effective elastic properties of wet collagen, Cwcol, following
the approach of Fritsch and Hellmich (2007). More specifically, we use the Mori–
Tanaka scheme (Mori and Tanaka 1973; Benveniste 1987), with the crosslinked
collagen molecules modeled as a matrix and the voids (filled with water and NCPs)
represented as inclusions as shown in Fig. 10.2b

Cwcol D Ccol C ˆw

�
.Cw � Ccol/ W

h
I C Ssph

col W Ccol
�1 W .Cw � Ccol/

i�1
�

W�
ˆcolI C ˆw

h
I C Ssph

col W Ccol
�1 W .Cw � Ccol/

i�1
� �1

:

(10.2)

Secondly, we obtain the stiffness of the interfibrillar hydroxyapatite, CwHA, using
the Mori-Tanaka method, as follows

CwHA D CHA C ˆw

n
.Cw � CHA/ W

h
I C Ssph

HA W CHA
�1 W .Cw � CHA/

i�1o
W

n
ˆHAI C ˆw

h
I C Ssph

HA W CHA
�1 W .Cw � CHA/

i�1o�1

:

(10.3)

In Eqs. (10.3) and (10.4), the subscripts “col,” “w,” and “HA” denote, respec-
tively, the dry collagen, water and NCPs, and hydroxyapatite crystals. The super-
script “sph” refers to the spherical shape of voids. Furthermore, we assume equal
water volume fractions in wet collagen composite and hydroxyapatite foam. In
addition, 75% of the total hydroxyapatite crystals are taken as interfibrillar and the
remaining 25% are extrafibrillar (Hamed et al. 2010). Again, these choices are not
unique, as there is still no clear consensus on these percentages.
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The nanoscale model, presented in this section and captured in Fig. 10.2b–c,
applies to both cortical and trabecular bone. Alternatively, one can use molecular
dynamics, finite element method, or other micromechanics theories. A comprehen-
sive review of literature on elastic modeling of bone at the nanoscale is presented in
Hamed and Jasiuk (2012).

10.2.2 Sub-microscale

At the sub-microstructural level, we use two modeling steps: (1) mineralized
collagen fibrils interacting with an extrafibrillar hydroxyapatite matrix and (2) the
matrix of step 1 combined with lacunar cavities to form a single lamella, following
(Hamed et al. 2010).

Several experimental studies reported on the presence of extrafibrillar hydrox-
yapatite crystals on the outer surface of mineralized collagen fibrils (Katz and Li
1973; Prostak and Lees 1996; Sasaki and Sudoh 1997; Sasaki et al. 2002) and
noted that these crystals are randomly dispersed (Lees et al. 1994; Fratzl et al. 1996;
Benezra Rosen et al. 2002) (Fig. 10.3). Therefore, the extrafibrillar hydroxyapatite is
modeled here as a HA foam with intercrystalline pores, filled with water and NCPs
(Hellmich et al. 2004; Fritsch et al. 2006; Fritsch and Hellmich 2007; Fritsch et al.
2009). The effective stiffness tensor of this extrafibrillar foam, CEfoam, was evaluated
using the self-consistent scheme with two interpenetrating phases, HA crystals and
pores, as

CEfoam D
n
ˆwCw W

h
I C Ssph

Ifoam W C�1
Ifoam W �

Cw � CEfoam
�i�1

C ˆHACHA W
h
I C Ssph

Ifoam W C�1
Ifoam W �

CHA � CEfoam
�i�1o

W
n
ˆw

h
I C Ssph

Efoam W C�1
Efoam W �

Cw � CEfoam
�i�1

CˆHA

h
I C Ssph

Efoam W C�1
Efoam W �

CHA � CEfoam
�i�1o�1

;

(10.4)

where the subscript “Efoam” denotes the extrafibrillar HA foam. The resulting
stiffness tensor is isotropic due to the random arrangement of extrafibrillar HA
crystals in the foam. Also, for simplicity, both phases, HA crystals and voids, are
assumed to be spherical in shape, following (Hellmich and Ulm 2002).
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Fig. 10.2 Homogenization steps used in modeling the elastic properties of cortical bone following
Hamed et al. (2010)
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Fig. 10.3 Scanning electron microscopy images of bone at the nanoscale and sub-microscale.
(a) The nanoscale with a mineralized collagen fibril (length bar is 125 nm) and (b) the sub-
microscale with single lamella with preferentially aligned mineralized collagen fibrils and a lacuna
cavity which houses a bone sensing cell (osteocyte)

Mineralized collagen fibrils, with the elastic properties obtained in Eq. (10.2),
and the extrafibrillar HA foam, with the elastic properties obtained in Eq. (10.5),
form two bi-continuous phases, resulting in coated fibrils. The self-consistent
method is used to predict the effective elastic stiffness tensor of coated fibrils,
Ccfib, as

Ccfib D
n
ˆfibCfib W

h
I C Scyl

cfib W C�1
cfib W �

Cfib � Ccfib
�i�1

C ˆEfoamCEfoam W
h
I C Ssph

cfib W C�1
cfib W �

CEfoam � Ccfib
�i�1o

W
n
ˆfib

h
I C Scyl

cfib W C�1
cfib W �

Cfib � Ccfib
�i�1

CˆEfoam

h
I C Ssph

cfib W C�1
cfib W �

CEfoam � Ccfib
�i�1o�1

:

(10.5)

In Eq. (10.6), the subscript “cfib” denotes the coated fibrils consisting of
mineralized collagen fibrils coated with the extrafibrillar HA foam. The superscripts
“cyl” and “sph” denote, respectively, the cylindrical shape of fibrils and spherical
shape of voids in extrafibrillar HA foam. Here again, two bi-continuous phases are
assumed, modeled as two different types of inclusions and no matrix.

A single lamella is represented as a material with coated fibrils as a matrix, with
properties given in Eq. (10.6), containing ellipsoidal cavities, lacunae, which house
bone cells osteocytes. The subscript “lac” denotes the ellipsoidal lacunae, with an
aspect ratio of 5:2:1 following their approximate 25 � 10 � 5 �m3 dimension
(Remaggi et al. 1998; Yoon and Cowin 2008). The osteocytes are stimuli sensing
cells in bone which play a key role in bone remodeling. The major axes of lacunae
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are assumed to be oriented along the long axis of bone. The effective elastic stiffness
tensor of a single lamella, Clamella, is computed by using the Mori–Tanaka scheme as

Clamella D Ccfib C ˆlac

��
Clac � Ccfib

� W
h
I C Sellipse

cfib W C�1
cfib W �

Clac � Ccfib
�i�1

�
W�

ˆcfibI C ˆlac

h
I C Sellipse

cfib W C�1
cfib W �

Clac � Ccfib
�i�1

� �1

:

(10.6)

In our model, the effect of canaliculi on elastic properties of the single lamella
is neglected. Canaliculi are canals, about 50–100 nm in diameter, which connect
lacunae and form an intricate network. They transport nutrients and waste in bone.

Again, the presented model applies to cortical and trabecular bones. Other
models of bone at the sub-microscale have been reported in the literature but they
are rather limited. They include predictions obtained using other micromechanics
approaches (Yoon and Cowin 2008), finite element models (Hamed and Jasiuk
2013), and finite element beam network method (Jasiuk and Ostoja-Starzewski
2004). They are summarized in our review paper (Novitskaya et al. 2011) and in
our more recent study (Hamed et al. 2015).

In Jasiuk and Ostoja-Starzewski (2004), mineralized collagen fibrils were rep-
resented as three-dimensional Timoshenko beam finite elements as shown in Fig.
10.4a. The inputs included dimensions of rectangular cross sections of fibrils and
their lengths, the fiber volume fraction, and fiber orientations. Rigid or flexible
connections were assumed at fiber contacts as shown in Fig. 10.4b, and the boundary
value problem was solved under displacement boundary conditions. The elastic
stiffness tensor was computed by equating the elastic strain energy stored in a
discrete fiber network and the energy of the approximating homogeneous medium.

Fig. 10.4 Finite element beam network approach to model a single lamella in bone. (a) Randomly
oriented fibers with preferential orientation shown in black with fiber connections shown by red
dots and (b) detail of the fiber–fiber connection (rigid or flexible)
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Anisotropic stiffness tensor was obtained as a function of fiber volume fraction,
aspect ratio, and orientation.

10.2.3 Microscale

At the microscale level, the lamellae in bone are arranged in orthogonal, rotated,
or twisted plywood-like patterns (Weiner and Wagner 1998). In our model, we
consider a twisted pattern which involves continuous rotation of lamellae and use the
properties obtained in Eq. (10.7). There is still no consensus in the literature on the
number of lamellae and their orientations in osteons and other lamellar bone types.
Also, those orientations vary spatially. In our analysis, we choose the 0ı starting
angle for the innermost layer and we assume that the mineralized collagen fibrils
complete a 180ı turn from the innermost to the outermost layer. It was reported
that if the layers are not orthogonal to each other, then the angle change between
successive layers does not significantly influence the results (Cheng et al. 2008).

The elastic stiffness tensor of osteonal lamella is obtained using a composite
laminate theory following the approach of Sun and Li (1988) developed for
laminated composite materials. Details on applying this method to an osteonal
lamella are given in Hamed et al. (2010).

The properties of an interstitial lamella are obtained using the same approach as
for the osteonal lamella. The interstitial bone is more mineralized than the osteons
and thus more stiff (Burr et al. 1988; Guo et al. 1998). To capture such behavior,
one can use a higher mineral content for an interstitial lamella as compared to an
osteonal lamella (Hamed et al. 2010).

Similar approach can be used to obtain the elastic properties of lamellar bone in
trabecular bone forming trabecular pockets as discussed in Hamed et al. (2012a).

Next, we compute the effective properties of an osteon forming a basic building
block of cortical bone. The osteon is modeled as a hollow cylinder with the osteonal
lamella being a solid part and the Haversian canal being a cylindrical void. The
osteon has an outer diameter of about 250 �m and is approximately 1 cm long, while
the inner diameter (Haversian canal) is approximately 50 �m (Cowin 2001). The
volume fraction of the Haversian canals is about 4%. Using the elastic properties of
an osteonal lamella, a generalized self-consistent method (Christensen and Lo 1979)
is used to calculate the effective elastic constants of an osteon, Cost, following the
approach of Dong and Guo (2006).

10.2.4 Mesoscale Level

The mesoscale level represents cortical and trabecular bone levels. Here again, one
can use micromechanics analysis or finite element models to model these two bone
types.
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First, focus on the modeling of cortical bone. The hybrid Mori–Tanaka scheme
(Taya and Chou 1981), with an interstitial lamellar bone being a matrix and osteons
and resorption cavities being two different types of inclusions, is used to compute
the elastic stiffness tensor of cortical bone. The osteons and the resorption sites
are assumed to be cylindrical in shape with an aspect ratio of 4:1:1, following the
1 cm length and 250 �m diameter of osteons (Cowin 2001), and aligned along
the long axis of the bone. The volume fraction of osteons is assumed to be 70%.
Resorption cavities form during bone remodeling process and in time new osteons
are built in their place. The subscripts “inters,” “ost,” and “v” denote, respectively,
the interstitial lamella, the osteons, and the voids.

Then, the transversely isotropic effective stiffness tensor of the cortical bone,
Cbone, is computed as

Cbone D
n
ˆintersCinters C ˆostCost W

h
I C Scyl

inters W C�1
inters W .Cost � Cinters/

i�1

C ˆvCv W
h
I C Scyl

inters W C�1
inters W .Cv � Cinters/

i�1o
W

n
ˆinters C ˆost

h
I C Scyl

inters W C�1
inters W .Cost � Cinters/

i�1

C ˆv

h
I C Scyl

inters W C�1
inters W .Cv � Cinters/

i�1o�1

:

(10.7)

Trabecular bone has a random and highly porous structure with porosity ranging
from 20 to over 90 vol%. Effective medium theories in general do not provide
reliable estimates for materials with high porosity. Thus, alternate simplified
strength of materials-based approaches have been used. For example, trabecular
bone has been modeled as an idealized open-cell foam. Among other models, a
simple anisotropic cell, which has a length of l in x1 and x2 directions and a height
of h in the x3 direction, has been used. The degree of anisotropy in such a model is
defined as D D h/l. Young’s modulus of trabecular bone in the x3 direction, E3, was
obtained by Huber and Gibson (1988) as

E3

Etrabecula
D CD

�
�bone

�trabecula

	
(10.8)

where Etrabecula is Young’s modulus of a single trabecula as obtained at the
microscale, �bone and �trabecula are, respectively, densities of trabecular bone and
solid trabeculae, and C is a constant of proportionality. Gibson (1985) proposed
two types of models for trabecular bone: an open cell (with rodlike elements) at
relative densities smaller than 0.2 and a closed cell (with platelike elements) at
relative densities greater than 0.2. The power n D 2 for an open cell and n D 3
for a closed cell (Gibson 1985). The relative density, �bone/�trabecula, is equal to the
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Fig. 10.5 Finite element model of trabecular bone: (a) finite element mesh and (b) strain energy
density (Hamed et al. 2012a)

bone volume fraction. Young’s modulus of trabecular bone in the direction x1 or x2,
E1 D E2, was determined as (Huber and Gibson 1988)

E1

E3

D 1 C 1=D3

2D2
: (10.9)

The modeling results obtained at this scale, namely, E1 and E3, represent the
elastic moduli of trabecular bone. We utilized this approach for simplicity in Hamed
et al. (2015).

However, the mechanical properties of trabecular bone are dependent not only on
relative density but also on its architecture. Micro-computed tomography (micro-
CT) is a powerful technique that can capture trabecular bone structure. This
technique gave rise to micro-CT-based finite element modeling of trabecular bone.
Elastic and inelastic properties have been obtained using this approach (Gross et al.
2012; Hambli 2013; Park et al. 2013; Panyasantisuk et al. 2015; Baumann et al.
2016; Gong et al. 2016; Schwiedrzik et al. 2016). An illustration of such an approach
is given in Fig. 10.5 with more details in Hamed et al. (2012a).

Numerical results on effective elastic properties of bone, using a similar
approach, were reported for cortical bone in Hamed et al. (2010, 2012b) and
for trabecular bone in Hamed et al. (2012a, 2015). Very good agreement was found
with measurements on bovine bone using experimentally obtained inputs. Cortical
bone properties range from 15 to 25 GPa, depending on age, species, and anatomical
location, while trabecular bone properties are much lower, ranging from 200 MPa
to 1 GPa, depending on porosity.

In this section, we illustrated how micromechanics theories can be used to model
the elastic properties of bone. Effective medium theories choices, selected scales,
and geometric models used at each scale as well as materials inputs, which are
not fully known, they all make this problem computationally and experimentally
challenging.
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10.3 Trabecular Bone Anisotropy

An important issue to consider when modeling trabecular bone is to account for
its anisotropy. Trabecular bone is considered to be orthotropic. Cowin (1985)
introduced a fabric tensor (second-order tensor) to capture the characteristics of
microstructure of porous materials. In the formulation, it is assumed that the
base material is isotropic and the anisotropy arises from the pore architecture.
Cowin showed that the cases of three, two, and one distinct eigenvalues of the
fabric tensor correspond to orthotropy, transverse isotropy, and isotropy of the
material, respectively. This concept has been successfully applied to trabecular
bone. Computation of fabric tensor allows to determine orthogonal symmetrical
planes in trabecular bone. By determining those directions, the problem becomes
simpler for computations as only nine elastic constants are needed to define
trabecular bone properties. Fabric tensor has been incorporated in computational
models of elastic stiffness tensor of bone (VanRietbergen et al. 1996; Odgaard et al.
1997; Zysset et al. 1998; Kabel et al. 1999; Homminga et al. 2003; Maquer et al.
2015; Moreno et al. 2016) and has been used to construct anisotropic yield/failure
criteria in bone (Pietruszczak et al. 1999; Doblare et al. 2001; Garcia et al. 2009;
Charlebois et al. 2010).

10.4 Modeling of Plasticity, Damage, and Fracture of Bone

Predictions of bone fracture and strength are of high scientific and clinical interest.
In Sect. 10.2, we focused on the elastic properties of bone (stiffness). As men-
tioned in the “Introduction,” bone is also strong and tough. These properties are
again due to bone’s composite and hierarchical structure, which includes complex
architecture, various interfaces, and hierarchical porosity. There are a number of
comprehensive reviews that have addressed the underlying mechanisms of bone
fracture toughness and strength (Ritchie et al. 2005, 2006; Gao 2006; Gupta and
Zioupos 2008; Launey et al. 2010; Ural and Vashishth 2014; Zimmermann et al.
2015).

Following Launey et al. (2010), high toughness of bone results from a mutual
competition between intrinsic (local damage and plasticity) and extrinsic (crack-tip
shielding) toughening mechanisms as shown in Fig. 10.6. At the sub-nanoscale,
the molecular uncoiling and intermolecular sliding of tropocollagen molecules
are present, and at the nanoscale, slipping at interfaces and microcracking of
collagen take place within the mineralized collagen fibrils. At the sub-microscale
(single lamella level), microcracking and fibrillar sliding are observed in the fibril
arrays. Also, breaking of sacrificial bonds formed by non-collagenous proteins
contributes to increasing the energy dissipation capacity of bone at the interface
of fibril arrays, together with crack bridging by collagen fibrils. At larger length
scales (the microscale and higher), the primary sources of toughening are extrinsic
and they result from extensive crack deflections due to lamellar layering and
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Fig. 10.6 Bone toughness mechanism at different structural scales (Launey et al. 2010)
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interfaces between them (such as cement lines around osteons) and crack bridging
by uncracked ligaments. It is important to note that damage zones filled with
microcracks stimulate bone remodeling, resulting in damaged bone being replaced
by a newly formed bone. Such a continuous process of bone resorption and
formation allows bone to adapt to new loads and create thicker bone when loads
are increased. When the applied force is too large and/or bone remodeling process
does not have enough time to replace new bone, the macrocracks will form resulting
in the whole bone fracture.

Various models have been proposed to model bone damage, plasticity, and
fracture. A comprehensive literature review on various modeling approaches applied
at different structural scales is given in our recent review paper (Sabet et al. 2016).
The open issues are as follows. Most of the models address only one or two
structural scales, while bone fracture is a multiscale phenomenon. Also, no compre-
hensive multiscale models exist that address the fracture processes in bone across
scales. Many studies considered idealized, two-dimensional representations of bone.
Since crack initiation and growth are sensitive to microstructures, three-dimensional
models would provide more accurate predictions. Also, spatial inhomogeneity and
randomness are rarely accounted for, while fracture is a stochastic phenomenon. The
bone structure and properties are still not fully characterized especially at smaller
scales (nanoscale and below) in both healthy and diseased bone. Open issues remain
on the collagen–HA crystal arrangements and interfaces. Most models assume
isotropic properties for collagen and HA crystals, while these constituents are
anisotropic. One reason is simplicity and the other is that the anisotropic properties
are not readily available in the literature. Also, accurate constitutive laws of bone’s
constituents and bone at different scales up to failure are needed. Finally, insights
gained from theoretical and experimental studies on bone fracture and strength
should be more closely linked to clinical practice, as they have potential to provide
more accurate predictions of bone fracture risk in patients. The key challenge is to
be able to incorporate clinically measured parameters in the computational models.
There are some exciting advances which involve patient-specific models computed
using tomography images in a finite element method to predict bone stiffness and
strength (Giambini et al. 2016; Rossman et al. 2016).

There are several other challenges that will be discussed next. The transition
between different structural scales is continuous rather than discrete. Do we have
a representative volume element (RVE) at each structural scale? Studies on the
effects of scale and boundary conditions on bone properties, in particular fracture
and strength, are needed.

10.5 Apparent Properties

In the micromechanics analyses, described in Sect. 10.2, we assumed the existence
of a representative volume element (RVE). The RVE is defined as a represen-
tative region such that it is much larger than the microstructural dimensions
(inclusions) and the predicted properties are independent of applied uniform
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boundary conditions. However, in bone in general, we do not have an RVE. For
example, at the nanoscale level, the mineralized collagen fibril is about 50–200 nm
in diameter, while the size of mineral crystals is on average 50 � 25 � 3 nm3.
Thus, these dimensions are of comparable size. This is also visible in Fig. 10.2,
which illustrates collagen fibrils and HA crystals (which are the irregular shapes
on collagen fibers). Another example is a trabecular bone at the mesoscale level.
Trabecular bone has a spatially changing structure and porosity so only a relatively
small region can be selected with constant porosity for testing or computations.
Also, the trabecular bone region is limited in size. The typical dimensions of studied
trabecular bone compression specimens are 2–4 mm in diameter and about twice
that in height, while the voids in trabecular bone may reach up to 0.5 mm. Thus,
specimen’s dimensions are of comparable sizes to microstructural features (pores)
and the samples are smaller than the RVE.

When the size of a specimen is smaller than the RVE size, then experimental
results depend on boundary conditions and the so-called apparent properties will
be measured. Similarly, computationally, when the size of a region used for
computations is smaller than the RVE, then the computed results will depend
on boundary conditions unless one models a periodic microstructure and applies
periodic boundary conditions. However, trabecular bone, for example, has a highly
irregular structure, and thus periodic boundary conditions cannot be used. One can
follow the approach of Huet (1990), who showed that when the size of the specimen
is smaller than the RVE, the effective properties of composite are bound from above
by the properties obtained by applying kinematic (displacement with uniform strain)
boundary conditions and are bound from below by the properties obtained using
static (tractions with uniform stress) boundary conditions. When the size of the
specimen increases, these bounds will come closer and the results will converge
when the RVE size is reached.

These findings of Huet (1990) can be described mathematically as follows. The
apparent elastic properties are dependent on the size of a window (or specimen size)
and boundary conditions which give rise to a hierarchy of bounds

CR � �
SR

��1 � ˝
St

1

˛�1 � ˝
St

ı0

˛�1 � ˝
St

ı

˛�1 � Ceff � ˝
Cd

ı

˛ � ˝
Cd

ı0

˛ � ˝
Cd

1

˛ � CV

(10.10)

where 8ı 0 < ı, ı D d/L denotes the relative size of the window, d is the size of the
microstructure, L is the size of the window, and hidenotes ensemble averages. The
inequality between any two tensors implies

C � D () .C � D/ W a W a � 0; for any tensor aij ¤ 0

In Eq. (10.10), C is the fourth-order stiffness tensor Cijkl and S is the compliance
tensor Sijkl, where S�1 D C. The superscripts R and V denote Voigt and Reuss
bounds, respectively, while the superscripts t and d imply traction and displacement
boundary conditions, respectively. Following Eq. (10.10), the effective properties
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are bounded from above and below by the apparent elastic moduli obtained using
displacement and traction boundary conditions, respectively. The larger is the
window size ı, the closer are the bounds. When ı reaches the size of the RVE,
the bounds merge and the effective properties are obtained.

Mixed boundary conditions (combination of displacements and tractions) will
give apparent properties which are between the two bounds but will not give
effective properties until the RVE size is reached:

˝
Stt

ı

˛�1 � ˝
Cdt

ı

˛ � ˝
Cdd

ı

˛
(10.11)

Several studies addressed the apparent properties of trabecular bone both exper-
imentally and computationally. They include experimental studies of BeVill et al.
(2007) and Chevalier et al. (2007) and computational studies of Yeni and Fyhrie
(2001), Wang et al. (2009), Gross et al. (2012), Park et al. (2013), Panyasantisuk
et al. (2015), and Gong et al. (2016), among others.

In our exploratory computational study (Wang et al. 2009), we modeled tra-
becular bone, for simplicity, as two- and three-dimensional periodic networks and
calculated the apparent orthotropic elastic properties of such idealized models as a
function of boundary conditions (displacement, traction, and mixed), window size,
and choice of a unit cell. We also obtained effective elastic moduli by applying
periodic boundary conditions to obtain effective elastic stiffness tensor. We found
that effective results are bound from above by the apparent elastic properties
obtained using displacement boundary conditions and from below by apparent
properties computed using traction boundary conditions as expected and apparent
elastic mixed boundary conditions were very close to effective ones. In addition,
we found that for materials like bone, which has one hard phase and one very soft
phase (bone marrow, which is often modeled as void), these bounds are far apart and
converge slowly. Also, the rate of convergence depends on a choice of the periodic
unit cell. These results point out to challenges in obtaining effective properties of
trabecular bone.

More advanced studies addressing the effects of window size and boundary
conditions on apparent properties of bone, accounting for actual trabecular bone
geometries, were done by Yeni and Fyhrie (2001) and Panyasantisuk et al. (2015).

10.6 Bone as a Cosserat Material

The concept of apparent properties which arises due to the fact that the size of
tested samples or region used for computations may be smaller than the RVE
was discussed in Sect. 10.5. In this section, we address a related problem. When
dimensions of materials are comparable in size to the length of the microstructural
features, such as pores in trabecular bone, then higher-order effects are present.
Classical continuum mechanics theories do not include intrinsic length scales and
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give first-order approximations for materials behavior. Higher-order continuum
theories such as micropolar, strain gradient, or non-local theories aim to account
for such phenomena. Micropolar theory, also called the Cosserat theory, is a
generalized continuum theory in which not only a force-stress is defined (from
force vector) but also a couple-stress (from moment vector) is defined. In terms
of kinematics, at a point, not only a translation but also a rotation is defined. Such
enriched constitutive equations allow to better capture the mechanical behavior of
heterogeneous materials like bone.

First experimental evidence of bone behaving like a Cosserat material is due to
Lakes and his coworkers. These experiments on bone showed a stiffening effect in
bending and torsion in bone (Lakes 1982; Yang and Lakes 1982; Park and Lakes
1986), and tougher notched bone than predicted by classical fracture mechanics
theory (Nakamura and Lakes 1988; Lakes et al. 1990).

Several more recent studies aimed to predict Cosserat or couple-stress (special
case of Cosserat theory) constants of trabecular bone. They include studies of Yoo
and Jasiuk (2006), Tekoglu and Onck (2008), Fatemi et al. (2002), Onck (2002), and
Fatemi et al. (2003).

10.7 Bone as a Viscoelastic Material

Bone is also a viscoelastic material. Characteristics of viscoelastic materials include
an increase in strain with time under a constant stress (creep), a decrease in stress
with time under a constant strain (relaxation), when properties depend on rate of
application of the load and when hysteresis occurs under cyclic load, when acoustic
waves experience attenuation, and rebound of an object following an impact is less
than 100%. The viscoelastic constitutive law accounting for time effect is given as

�ij.t/ D
tZ
0

Cijkl .t � �/
@"kt

@�
d� (10.12)

Viscoelastic constants involve storage and loss moduli. In bone viscoelastic
damping, tan •, exhibits a broad minimum at frequencies 1 to 100 Hz which are
associated with normal activities. Thus, viscoelasticity is not a shock-absorbing
mechanism. Interestingly, bone exhibits substantial damping at low frequencies and
substantial creep at high frequencies. Tan • has an intermediate value between that of
polymers and metals (• is 0.01 at 1–10 Hz). Viscoelasticity of bone has been studied
by a number of researchers both experimentally and theoretically. These studies date
back to early works of Lakes and Katz (1974a, b), and Lakes et al. (1979) as well
as more recent studies (Garner et al. 2000; Buechner and Lakes 2003; Ojanen et al.
2015). Most of these papers focus on the overall viscoelastic response of bone rather
than micromechanics analyses of bone. An interesting micromechanics study of
viscoelasticity of fluid-filled materials like bone or concrete was done by Hellmich
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and his coworkers (Eberhardsteiner et al. 2014; Shahidi et al. 2014). These studies
addressed the effects of fluid-filled interfaces on viscoelastic properties of materials.
In Sandino et al. (2015), they reported that “interface results in exponentially
decaying macroscopic viscoelastic phenomena, with both creep and relaxation times
increasing with increasing interface size and viscosity, as well as with decreasing
elastic stiffness of the solid matrix; while only the relaxation time decreases with
increasing interface density.”

10.8 Conclusions

In this study, we presented an overview on micromechanics modeling of bone. This
subject is broad so this study only captures selected topics in this area. Bone is a
highly complex composite material, with numerous challenges to model it. There
are still many open topics for mechanicians to explore.
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