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Preface

There exists considerable work involving isotropic and homogeneous solids. Most
metallic and polymeric composite materials are heterogeneous in nature. The het-
erogeneity is the result of the presence of multiphases and interfaces both adhesively
and cohesively in these composites. Their effective elastic properties are governed
by the joint properties of the different phases, where volume fractions, directionality,
inhomogeneity and anisotropy, and varied length and time scales govern these
properties. Two major categories exist: composites with microscopic functional
reinforcements/alloying elements and composites with nanoscopic reinforcements.
The treatments of those two categories of composites are the focus of this work.

This edited book covers micromechanics and nanomechanics as applied to
composite solids. Micromechanics employs traditional continuum mechanics tech-
niques to describe the behavior of features in the order of microns. Nanomechan-
ics, on the other hand, considers the atomic/molecular structures by employing
molecular mechanics, molecular dynamics, sequential and concurrent coupling of
length scales, and atomistic-based continuum techniques, among others. Whether
micromechanics or nanomechanics are used in the treatment of composites, a rep-
resentative unit cell or a representative volume element is typically developed and
used to obtain a homogenized determination of the effective macroscopic properties
of the composite. Many micromechanics, nanomechanics, and homogenization
techniques exist, and it is the intention of this effort to provide the reader with
recent advances in these fields. The unique property combinations that result from
the introduction of fiber and alloying elements and additives, the interface, and
the matrix provide greater opportunities for the development of advanced material
technologies to meet the challenges of the next century.

There are three reasons for the surge and interest in micro- and nanomechanics
research as applied to composite, functional materials, and granular structures. The
first stems from the desire to tailor the properties of engineered materials to suit a
specific application(s). The second, from the desire to reduce our carbon print and
ensure effective use of resources. And the third, from the current advances in com-
putational micromechanics, nanomechanics, and multiscale modeling techniques.

v



vi Preface

This book is not an attempt to exhaustively cover all the relevant topics on
micromechanics, nanomechanics, and homogenization of heterogeneous solids.
Instead, it is dedicated to recent developments in the field and its most exciting
aspects. It covers a range of topics that clearly demonstrate the depth, the diversity,
and the breadth of this fertile area of research which is governed by size/scale,
anisotropy, and morphology dependence of interacting phases that define the bulk
properties of the resulting materials. It contains 17 chapters authored/coauthored by
some of the most talented and respected researchers in the community. Specifically,
it covers the following important topics:

Sequential and concurrent atomistic multiscale modeling of multiphysics prob-
lems (Chapter 1), MD modeling of nanoindentaion of multilayered graphene-
reinforced nanocomposites (Chapter 2), MD studies of nanocomposites reinforced
by defective CNTs (Chapter 3), Electrical conductivity of CNT- and Graphene-
Based Nanocomposites (Chapter 4), Mechanical behavior of nanowires with high-
order surface stress effects (Chapter 5), Design of nano-inhomogeneities with
internal strain in antiplane deformations of Composites (Chapter 6), Ballistic per-
formance of bimodal nanostructured and nanotwin-strengthened metals (Chapter 7),
Full-field micromechanics of Precipitated SMAs (Chapter 8), Micromechanics of
ferroic functional materials (Chapter 9), Micromechanics of bone modeled as a
composite material (Chapter 10), Linear elastic composites containing spheroidal
inclusions (Chapter 11), Time-incremental Eshelby-based homogenization scheme
for viscoelastic heterogeneous materials (Chapter 12), Local spin effects on bulk
properties of granule materials (Chapter 13), Parametric HFGMC micromechanics
(Chapter 14), Parameterization of reinforcement phase distribution in continuous
FRCs (Chapter 15), Micromechanical modeling of polymeric composites with
moisture absorption (Chapter 16), General interface integral equations in elasticity
of random structure composites (Chapter 17).

In each chapter, the state of the art in the respective field and the future trends are
covered and discussed.

This effort offers an up-to-date coverage of diverse but highly related topics on
modeling, characterization, and applications of micromechanics and nanomechanics
in advanced and functional materials in a single volume. We believe that it is an
excellent resource and it should be of interest to undergraduate and graduate physics
and engineering students as well as researchers in academic institutions, government
agencies and industries specializing in aerospace, mechanical, electrical, material
science, mining, biomedical, and civil engineering. We are confident that the readers
will find the information covered in this book current, useful, and informative. We
are confident that the readers will find the information covered in this book current,
useful, and informative.

Finally, we wish to take this opportunity to sincerely express our gratitude to the
authors for their outstanding contributions in addressing many of the exciting new
concepts and developments in micromechanics and nanomechanics of composites.
Their informative efforts should guide both the experienced and the new-comers
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to these fascinating areas of research. We are also indebted to our wives Valerie
Meguid and Jackie Li for their affectionate encouragement and support throughout
the different stages of this effort.

Shaker A. Meguid, Toronto, Canada
George J. Weng, New Jersey, USA
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Chapter 1
Sequential and Concurrent Multiscale Modeling
of Multiphysics: From Atoms to Continuum

James D. Lee, Jiaoyan Li, Zhen Zhang, and Leyu Wang

Abstract The multiscale and multi-physics approaches reach a new height for
modeling and simulation. It opens up a new opportunity to connect engineering
applications with basic science. In this work, a more general governing equation of
non-equilibrium molecular dynamics, covering thermo-mechanical-electromagnetic
coupling effects, has been derived. This theoretical development of classical
molecular dynamics provides a solid foundation for our bottom-up sequential mul-
tiscale modeling, from which we calculate material properties including the elastic
constants, thermal conductivity, specific heat, and thermal expansion coefficients for
thermoelasticity. With these preparations, we further present our newly formulated
concurrent multiscale theory. The key challenge in constructing a concurrent
multiscale theory hinges at the formulation of the interfacial conditions, which
determine the communication between the atomic region and genuine continuum
region. Our philosophy of concurrent modeling is that we decompose the solution
region into two sub-regions in space and utilize the central difference method
with different time steps for different sub-regions to march on in time. For sub-
regions where critical physical phenomena, such as crack initiation and propagation,
occur, we adopt molecular dynamics with small time step to simulate the material
behavior with relatively high resolution. For non-critical regions, we adopt finite
element method with relatively large time step to reduce the computational effort.
The interfacial condition is constructed naturally by anchoring finite element nodes
at centroids of groups. Each group is a cluster of atoms simulated by molecular
dynamics. In this way, a concurrent multiscale modeling theory from atoms to
genuine continuum is constructed. To test the capability of our theory, we conduct
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2 J.D. Lee et al.

crack propagation simulations with different loading conditions. It was observed
that the crack that pre-existed in the continuum region can propagate into the critical
atomic region without any fracture criterion.

1.1 Introduction

Molecular dynamic (MD) simulation has established itself as a widely employed
simulation technique for the study of material behaviors at the nanoscale. Unfor-
tunately, the extension of MD into computational science over a realistic range of
length and time is limited, due to the large number of particles involved as well
as the complex nature of their interactions. The limitations are also imposed by
the requirement of smallness of the time steps, even though one may be primarily
interested in events that occur over a much longer time scale. The emergence
of multiple length scale and time scale approaches, along with the development
of massively parallel computers, remarkably expands the realm of modeling and
simulation from nanoscale to microscale.

The past several years have witnessed the explosive growth of interest in multiple
length scale theories and simulations. There have been several reviews on multiscale
modeling and simulation in the literature, focusing on different aspects. Generally
speaking, there are two categories of multiscale modeling methods: sequential and
concurrent. The sequential multiscale methodology separates calculation at each
scale and passes the results between scales. For instance, almost all conventional
MD simulations rely on interatomic potentials obtained from first principles cal-
culations. Material constants in constitutive relation for finite element calculation
could be predicted from MD simulation. The idea of sequential multiscale modeling
and simulation is straightforward and has shown applicability for systems which are
weakly coupled at different scales. The other one, concurrent multiscale method-
ology integrates calculations and solves the problem simultaneously, and therefore,
it is more efficient and more challenge than the sequential one. In a concurrent
simulation, the system is often decomposed into several sub-domains characterized
by different scales and physics. Different theories are applied to different domains
to simulate the material behaviors. A successful concurrent multiscale model seeks
a smooth coupling between these sub-domains, interpreted as the construction of
interfacial conditions. Although there are a lot of attempts on this important issue,
challenges and limitations still exist. The concurrent approach is more desirable for
systems in which system behavior at each scale depends strongly on what happens
at the higher or lower scales.

We organize the remaining part of this work as follows. In Sect. 1.2, the molec-
ular dynamics simulation of multiphysics is formulated. It includes the introduction
of Maxwell’s equations and Lorentz force at nanoscale, reformulation of Nosé-
Hoover thermostat, proof of the objectivity of Nosé-Hoover thermal velocity, and
virial stress tensor. In Sect. 1.3, we demonstrate that the material properties of
thermoelasticity can be obtained from molecular dynamics simulation through a
set of procedures named as sequential multiscale modeling. Graphene and Tersoff
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potential are used as examples. In Sect. 1.4, we construct a concurrent multiscale
theory and formulate the interfacial conditions to bridge the gap between atoms
and genuine continuum. It also includes a multiple time scale algorithm and a
corresponding numerical procedure. Sample problems are solved and numerical
results are discussed. The work ends with discussions on the significance and the
achievement of this multiscale theory in Sect. 1.5.

1.2 Molecular Dynamics Simulation of Multiphysics

When Molecular Dynamics (MD) was originally conceived (Alder and Wainwright
1959; Rahman 1964), the fundamental idea was to determine the trajectories of
atoms or molecules by numerically solving the Newton’s equations of motion for a
system of interacting particles. To begin with, the general picture in our mind is a
material system which consists of many different kinds of atoms. Let the Newton’s
law be expressed as

mi Pvi D fi C®i; i D Œ1; 2; 3; ::::;N� ; (1.1)

where N is the total number of atoms in the material system; mi is the mass of
atom i; vi and fi are the velocity of atom i and the interatomic force acting on atom i,
respectively; ®i is reserved, in this book chapter, for forces other than interatomic
force acting on atom i, i.e., ®i could be any combination of applied force, body
force including Lorentz force, fictitious force due to the translation and rotation of
the coordinate system, and thermal force due to the presence of thermostat.

A detailed formulation of Maxwell’s equations and Lorentz force at the atomistic
level was given by de Groot and Suttorp (1972). For non-relativistic electromagnet-
ics, ®i was obtained:

®i D qi
˚
Ee C c�1vi � Be

�C
NX

jD1;j¤i

qiqj rij

.rij/
3
; (1.2)

where qi is the electric charge of atom i; Ee and Be are the external electric and
magnetic fields, respectively; c is the speed of light; rij� ri� rj; and rij�krijk. It
is seen that the last term on the right-hand side of Eq. (1.2) is the Coulomb forces
between atom i and atom j. It is worthwhile to note that, due to the non-relativistic
approximation, i.e.,kvik< < c, the Lorentz force exists only between charged atom
and external Ee and Be fields; between charged atoms themselves, only Coulomb
forces exist.

The interatomic force fi acting on atom i can be expressed as

fi D �@U

@ri
; (1.3)
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where U is the interatomic potential, a function of the position vectors
(ri, iD 1, 2, 3, .... , N) of all atoms in the system, i.e.,

U D U
�
r1; r2; r3; ::::; rN

�
: (1.4)

It is noticed that, in MD simulation, temperature is a dependent variable. Usually,
but not correctly, it was expressed as

T D
PN

iD1 mi
�
vi � vi

�

Ndof kB
; (1.5)

where Ndof is the number of degrees of freedom of the system and kB is the
Boltzmann constant.

1.2.1 Reformulation of Nosé-Hoover Thermostat

The revolutionary Nosé-Hoover dynamics, originally introduced by Nosé (1984a, b)
and developed further by Hoover (1985), modified Newtonian dynamics so as
to reproduce canonical and isobaric-isothermal ensemble equilibrium systems.
However, there is an increasing interest in conducting MD simulations which do
not fall within the classification of these classical ensembles. A typical example is a
nano material system whose temperature varies spatially and temporally during
the simulation with the imposition of a temperature gradient. Clearly, this is
a nanoscale heat conduction problem and requires Nonequilibrium Molecular
Dynamics (NEMD) with a suitable algorithmic thermostat for the local temperature
regulation. Li and Lee (2014a) pointed out the need to reformulate the Nosé-Hoover
thermostat to locally regulate the temperatures at many distinct regions without
introducing the unphysical linear and angular momenta. In this way, the trajectories
of atoms and molecules can be generated more rigorously and accurately by NEMD
simulations.

Here, for the reader’s convenience, we briefly review the procedures and results
of the reformulation of the Nosé-Hoover thermostat. Let’s consider the whole
specimen is divided into NG groups; in group g, there are ng atoms, not necessarily
of the same kind. Then it is straightforward to calculate the mass, the position of the
centroid, and the average velocity of group g as follows:

mg �
ngX

iD1
mi ; rg �

 ngX

iD1
miri

!

=mg ; vg �
 ngX

iD1
mivi

!

=mg: (1.6)

Then the relative position and relative velocity can be obtained as

ri � ri � rg ; vi � vi � vg: (1.7)
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It is noticed that
X

i

miri D 0 ;
X

i

mivi D 0: (1.8)

From now on, if there is no ambiguity, we use the abbreviation
P

i �
Png

iD1, r �
rg, v � vg. The angular momentum (with respect to the centroid) is calculated as

H D
X

i

miri � vi: (1.9)

If, in general, a system of n particles has a rigid body rotation about the centroid
with an angular velocity ¨, then the relative velocity of the i� th particle, ˜i, with
respect to the centroid can be calculated as

˜i D ¨ � ri: (1.10)

The angular momentum due to the rigid body rotation can now be calculated as

H D
X

i

miri � ˜i D
X

i

miri � �¨ � ri� D J¨; (1.11)

where the moment of inertia tensor, J, is defined as

J �
X

i

mi
˚�

ri � ri
�

I� ri ˝ ri
�
: (1.12)

By equating H and H, one may find the angular velocity of the system:

H D H D J¨ ) ¨ D J�1H: (1.13)

Now we define the Nosé-Hoover thermal velocity as

Qvi � vi � v � ˜i D vi � v �¨ � ri D vi � v � �J�1H
� � ri: (1.14)

In other words, the Nosé-Hoover thermal velocity is the velocity beyond rigid
body translation and rotation. Now one may prove the following theorem.

Theorem 1 The total linear momentum and angular momentum caused by the
Nosé-Hoover thermal velocity are vanishing.

Proof

X

i

mi Qvi D
X

i

mi
�
vi � v � ˜i

�

D
X

i

mivi �mv �
X

i

mi¨ � ri

D �¨ �
X

i

miri D 0;

(1.15)
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X

i

miri � Qvi D
X

i

mi
�
ri C r

� � �vi � v � ˜i
�

D
X

i

miri � �vi � v � ˜i
�C r �

X

i

mi
�
vi � v � ˜i

�

D
X

i

miri � �vi � v �¨ � ri�

D
X

i

miri � vi �
X

i

miri � �¨ � ri�

D H �H D 0:

(1.16)

Now the temperature of group g is calculated as

Tg D 1

Ndof
g kB

ngX

iD1
mi Qvi � Qvi; (1.170)

where Ndof
g D 3ng � 6 is the number of degrees of freedom of group g. It is noticed

that, according to Eqs. (1.15) and (1.16), rigid body translation and rotation have
no contribution to the calculation of temperature. The subtraction of 6 from 3ng is
due to the elimination of linear and angular momenta from the velocity field in the
calculation of the Nosé-Hoover thermal velocity.

The governing equations for a material system with upgraded Nosé-Hoover
thermostats should now be expressed as

mi Pvi D fi C®i � �gmi Qvi; i 2 group g; (1.180)

where ��gmi Qvi is named as the Nosé-Hoover temperature force. The role of �g is
similar to that of the damping coefficient, except that �g is not a constant—instead
it is governed by

P�g D 1

�2g To
g

�
Tg � To

g

�
; (1.190)

where �g is a specified time constant associated with group g; To
g is the target

temperature of the Nosé-Hoover thermostat. It is noticed that if group g doesn’t
have a thermostat, then it is a special case with �g D P�g D 0. From now on, if there
is no ambiguity, we use the general case for description and derivation. Now one
can readily prove the following theorem.

Theorem 2 The total force and total moment caused by the Nosé-Hoover tempera-
ture forces are vanishing.
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Proof

X

i2Sg

���gmi Qvi
� D ��g

X

i2Sg

mi Qvi D 0; (1.20)

X

i2Sg

ri � ���gmi Qvi
� D ��g

X

i2Sg

miri � Qvi D 0: (1.21)

Together with Theorem 1, it means that the Nosé-Hoover thermal velocity doesn’t
introduce extra linear and angular momenta; the Nosé-Hoover temperature force
doesn’t introduce extra force and moment to the temperature-controlled group
either. Actually, these conditions must be imposed whenever a thermostat is applied.
Also, it is noticed that, according to Eq. (1.17), (1) the temperature of group g
can be calculated irrespective of whether that group has a thermostat or not and
(2) the temperature depends on the Nosé-Hoover thermal velocity, but not on linear
or angular momentum.

1.2.2 Hamiltonian of the Material System

The Hamiltonian of the entire system can be expressed as

H DPNg

gD1
P

i2g

�
1
2
mivi � vi �

tR

0

®i.s/ � vi.s/ds

�

CPNg

gD1
�
1
2
Qg�

2
g C Qg

�2g

tR

0

�g.s/ds

�

CU
�
r1; r2; r3; ::::; rN

�
;

(1.22)

where U is the total interatomic potential energy of the entire system and

Qg � Ndof
g kBTo

g �
2
g : (1.23)

It is seen that the Hamiltonian, H, consists of four parts: (1) the kinetic
energy which is the sum of the kinetic energies of all atoms, i.e., 1

2
mivi �

vi .i D 1; 2; 3; :::;N/, (2) the potential energy U(r1, r2, r3, .... , rN), which in
principle cannot be divided into a summation of subsets, (3) the work done by force
®i [iD 1, 2, 3, ... , N], and (4) the sum of thermal energy Eg [gD 1, 2, 3, ... , Ng] of
all groups, where

Eg �
8
<

:
1

2
Qg�

2
g C

Qg

�2g

tZ

0

�g.s/ds

9
=

;
: (1.24)

One may prove the following theorem.
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Theorem 3 Hamiltonian is a constant.

Proof If there is no ambiguity, we use the abbreviation
PN

iD1 �
PNg

gD1
P

i2g. Now
we differentiate Eq. (1.22) term by term with respect to time as follows:

d

dt

NX

iD1

1

2
mivi � vi D

NX

iD1
mi Pvi � vi; (1.25)

� d

dt

NX

iD1

tZ

0

®i.s/ � vi.s/ds D �
NX

iD1
®i � vi; (1.26)

d

dt

NgX

gD1

8
<

:
1

2
Qg�

2
g C

Qg

�2g

tZ

0

�g.s/ds

9
=

;
D

NgX

gD1

(

Qg�g P�g C Qg�g

�2g

)

D
NgX

gD1
Ndof

g kB�gTg D
NgX

gD1

X

i2g

�gmi Qvi � Qvi

D
NgX

gD1

X

i2g

�gmi Qvi � vi D
NgX

iD1
�gmi Qvi � vi;

(1.27)

dU

dt
D

NX

iD1

@U

@ri
� vi D �

NX

iD1
fi � vi: (1.28)

Now we have

PH D
NX

iD1

˚
mi Pvi � fi �®i C �gmi Qvi

� � vi: (1.29)

We recall that mi Pvi � fi � ®i C �gmi Qvi D 0 Œi D 1; 2; 3; :::;N� is the governing
equation for every atom in the system. Thus we have proved Theorem 3. We also
notice that

PEg D Ndof
g kB�gTg: (1.30)

Actually, PEg is the flow of energy per unit time out of group g due to the action
of the Nosé-Hoover thermostat.
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1.2.3 Objectivity in Molecular Dynamics

The principle of objectivity, sometimes referred to as the principle of material
frame-indifference, addresses the invariance attributes of physical quantities and
material properties under change of reference frame. This concept of objectivity has
been introduced in almost every textbook of continuum mechanics, for example,
in Mechanics of Continua (Eringen 1980) and Microcontinuum Field Theories
(Eringen 1999). The idea is very simple: material properties measure in different
reference frames are required to be objectively equivalent, i.e., not subject to the
motion of the observers. However, in molecular dynamics (MD), sharing common
ground with Newtonian mechanics, objectivity was rarely discussed. Recently,
Yang et al. (2016) presented detailed discussions about objectivity. Here we briefly
describe the concepts, end results, and implications of objectivity. We first recall the
two definitions on objectivity given by Eringen (1980) as follows.

Definition 1. Two motions xk(X, t) and x�
k .X; t

�/ are called objectively equivalent
if and only if

x� �X; t�
� D Q.t/x .X; t/C b.t/; t� D tC a; (1.31)

where a is a constant time shift, b(t) is a time-dependent translation, and Q(t) is
time-dependent orthogonal transformations, i.e.,

QQT D QTQ D I; det .Q/ D 1: (1.32)

It is seen that Q consists of all rigid rotations (det QD C 1). Two objectively
equivalent motions differ only in relative frame and time.

Definition 2. Any tensorial quantity that obeys the following tensor transformation
law is said to be objective or material frame-indifferent.

A�
abcd::::

�
X; t�

� D Qa˛.t/Qbˇ.t/Qc� .t/Qdı.t/::::A˛ˇ�ı:::: .X; t/ (1.33)

Following Eq. (1.31), one may obtain

v� D QvC PQxC Pb ; a� D QaC RQxC 2 PQvC Rb (1.34)

which simply says velocity and acceleration are not objective—actually this state-
ment is just a common sense.

Among N atoms, if one picks atom i as the reference point, the interatomic
potential can be expressed as

U D U
�
ri1; ri2; ri3; ::::

�
(1.35)
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From the viewpoint of objectivity, U is a scalar-valued isotropic function of many
objective vectors. Following Wang’s representative theorem for isotropic functions
(Wang 1970), one may rewrite U as a function of lengths and angles:

rij D ��rij
�
� ; � ijk � cos�1

�
rij � rik

rijrik

	
: (1.36)

In fact, for a two-body potential, e.g., Lennard Jones potential or Buckingham
potential, it takes the form

U.2/ D 1

2Š

NX

i;jD1
Uij
�
rij
� I (1.37)

for a three-body potential, e.g., Tersoff potential (Tersoff 1988, 1989) or Stillinger-
Weber potential (Stillinger and Weber 1985),

U.3/ D 1

3Š

NX

i;j;kD1
Uijk

�
rij; rik; � ijk

� I (1.38)

for a four-body potential, e.g., in UFF (Rappe et al. 1992),

U.4/ D 1

4Š

NX

i;j;k;lD1
Uijkl

�
rij; rik; ril; � ijk; �; '

�
; (1.39)

where � and ® are the torsion angle and inversion angle, respectively. Also, the
interatomic force can be obtained as

fi D �@U
�
ri1; ri2; ri3; ::::

�

@ri

D �
X

j

@U
�
ri1; ri2; ri3; ::::

�

@rij

@rij

@ri

D �
X

j

@U
�
ri1; ri2; ri3; ::::

�

@rij

rij

rij
:

(1.40)

Again, it is seen that fi, in Eq. (1.40), obeys Wang’s representative theorem and
is an objective vector-valued isotropic function.

Although velocity,v, is not objective, one may prove that the Nosé-Hoover
thermal velocity, Qv, is objective (Yang et al. 2016), i.e.,

Qv� D QQv: (1.41)

Then it is straightforward to conclude that temperature expressed in Eq. (1.17)
is objective, but the one expressed in Eq. (1.5) is not. From now on, we name the
temperature calculated by Eq. (1.17) as atomistic temperature.
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Also, we express the virial stress tensor S, which is the counterpart of the Cauchy
stress tensor in continuum mechanics, as

S D � 1

V�

X

i2�

0

@mi Qvi ˝ Qvi C
X

j

ri ˝ fi

1

A ; (1.42)

where � is the region of which one seeks to find the virial stress; V� is the volume
of �; ri is the position vector of atom i; fi is all the interatomic force acting on
atom i; and the summation on j means all the interactions between atom i and atom j
should be counted, irrespective of whether atom j is in � or not. Now let’s examine
whether the virial stress expressed in Eq. (1.42) is objective. Since the kinetic part
is obviously objective now, let’s take a look at the potential part:

QS˛ˇ D
X

i2�

X

j

Qri
˛
Qfi
ˇ D

X

i2�

X

j



Q˛�ri

� C b˛
�

Qˇıfi
ı

D
X

i2�

X

j

Q˛�ri
�Qˇıfi

ı C b˛Qˇı

X

i2�

X

j

fi
ı

D Q˛�QˇıS�ı C b˛Qˇı

X

i2�

X

j

fi
ı

D QikQjlSkl;

(1.43)

which means the virial stress tensor expressed in Eq. (1.42) is objective. It
is noticed that the proof indicated in Eq. (1.43) depends on two key points:
(1) interatomic force fi is objective (which has been shown in Eq. (1.40)) and (2)
the total interatomic forces in a close system are zero, i.e.,

X

i2�

X

j

fi D 0: (1.44)

What if not all atom j are in �? For example, there is an n-body potential and
there are n atoms among which one has

nX

iD1
fi D 0 )

nX

iD1
ri ˝ fi is objective: (1.45)

If atom i is one of the n atoms, then consider that 1n
Pn

iD1 ri˝fi is the contribution
of atom i to the virial stress of �.

So far, we have imposed the principle of objectivity on constitutive relations
in molecular dynamics (MD). To capture the full motion of a material body with
respect to a non-inertial reference frame (a reference frame accelerates and rotates),
the governing equation must account for the motion of the reference frame itself,
thus fictitious forces are introduced. Rectilinear acceleration force, centrifugal
force, Coriolis force, Euler force, etc., are several commonly noticed fictitious
forces. Moreover, Einstein pointed out that gravity, too, is a form of fictitious force,
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which leads to the birth of general relativity. It is regarded that the appearance of
fictitious force resolves the discrepancy in different non-inertial reference frames
so that motion observed in one frame can be converted to the motion observed in
another. As one may observe that acceleration a � Pv is not objective (cf. Eq. (1.34)),
let i be the acceleration induced by the fictitious force. The principle of objectivity
imposes a requirement:

a� � i� D Q .a � i/ : (1.46)

For simplicity, we assume there is no fictitious force in the inertia reference
frame, which at most moves with constant speed, then Eq. (1.46) simply means

i� D RQxC 2 PQvC Rb: (1.47)

Yang et al. (2016) further developed the expressions for a� and i� as

a� D QaC Œ�2¨ � v� �¨ � .¨ � x�/ � P̈ � x��
C Œ2¨ � PbC¨ � .¨ � b/ � P̈ � b�C Rb; (1.48)

i� D Œ�2¨ � v� � ¨ � .¨ � x�/� P̈ � x��
C Œ2¨ � PbC¨ � .¨ � b/ � P̈ � b�C Rb; (1.49)

where�ij � PQikQjk and !k � 1
2
eijk�ij.

1.3 Thermoelasticity and Sequential Multiscale Modeling

1.3.1 Governing Equations of Thermoelasticity

In small-strain thermoelasticity (a branch of continuum mechanics), the relevant
balance laws and constitutive equations may be expressed as (Eringen 1999; Chen
et al. 2006; Boresi et al. 2011)

	o Pv D r � ¢ C 	o®; (1.50)

	o Pe � ¢ W rvCr � q � 	oh D 0; (1.51)


ij D �ˇij
�
T � Tref

�C Aijklekl; (1.52)

	oPe D 	o� PT C Aijkleij Pekl; (1.53)

qi D ��ijT;j; (1.54)
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where 	o is the mass density in the reference state, u is the displacement vector
and v D Pu is the velocity vector, ¢ is the Cauchy stress tensor, e is the internal
energy density, q is the heat flux, T is the absolute temperature, Tref is the reference
temperature, e is the strain tensor (e� (ruC (ru)T)/2), “ is named as the thermal
expansion coefficients, A are the elastic constants, › is the thermal conductivity,
� is the specific heat, and ® is the body force per unit mass. Notice that, in
thermoelasticity, the Cauchy stress is derivable from a scalar-valued Helmholtz
free energy density function; stress tensor and strain tensor are both symmetric.
Therefore, one has

ˇij D ˇji ; Aijkl D Ajikl D Aijlk D Aklij: (1.55)

It is emphasized that in continuum mechanics (CM), temperature is an inde-
pendent variable. Therefore, an energy equation, Eq. (1.51), is needed. On the
contrary, the Nosé-Hoover thermostat is not needed—all one needs to do is to
set temperature-specified boundary conditions. Of course, one may set heat-flux-
specified boundary conditions too. Also, the temperature field and displacement
field in CM are functions of spatial and temporal variables—that is why we see
terms such as r �¢ ,ru ,rv ,r � q , andrT in Eqs. (1.50) to (1.54). From now on,
we refer to the temperature in continuum mechanics as continuum temperature, to
distinguish it from atomistic temperature in molecular dynamics.

In finite element analysis, relate the displacement and temperature fields with
their nodal values as

ui D Ni˛U˛ ; eij D Bij˛U˛

T D N�T� ; T;k D Ck�T� :
(1.56)

Then it is straightforward to obtain the dynamic finite element equations as

M RUCKU D PTC F
1 C F2; (1.570)

G PTCHTC Tref PT PU D �Q1 CQ2; (1.580)

where

M˛ˇ �
Z

v

	oNi˛Niˇdv D Mˇ˛; (1.59)

K˛ˇ �
Z

v

AijklBkl˛Bijˇdv D Kˇ˛; (1.60)

Pˇ �
Z

v

ˇijNBijˇdv; (1.61)
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G� �
Z

v

	o�N�Ndv D G� ; (1.62)

H� �
Z

v

�klCk�Cldv D H� ; (1.63)

F1ˇ �
Z

s


b
 iNiˇds; (1.64)

F2ˇ �
Z

v

	o'iNiˇdv; (1.65)

Q1
 �

Z

sq

bqNds; (1.66)

Q2
 �

Z

v

	ohNdv: (1.67)

Now it is noticed that, if one has the values of A , “ , › , and � , then one may
proceed to solve Eqs. (1.57) and (1.58) for U(X, t) and T(X, t). If further we can
obtain those material properties from molecular dynamics (MD) simulation, then
this approach would be named as a sequential multiscale modeling.

1.3.2 Material Constants from Molecular Dynamics
Simulation

In Voigt’s convention, one may rewrite Eqs. (1.52) and (1.54) as

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ


11

22


33

23

31


12

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

D �

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ11
ˇ22

ˇ33
ˇ23
ˇ31

ˇ12

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

�
T � Tref

�C

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

A1111 A1122 A1133 A1123 A1131 A1112
A1122 A2222 A2233 A2223 A2231 A2212
A1133 A2233 A3333 A3323 A3331 A3312
A1123 A2223 A3323 A2323 A2331 A2312
A1131 A2231 A3331 A2331 A3131 A3112
A1112 A2212 A3312 A2312 A3112 A1212

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

e11
e22
e33
�23
�31

�12

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

:

(1.68)
ˇ
ˇ
ˇ
ˇ̌
ˇ

q1
q2
q3

ˇ
ˇ
ˇ
ˇ̌
ˇ
D �

ˇ
ˇ
ˇ
ˇ̌
ˇ

�11 �12 �13
�21 �22 �23
�31 �32 �33

ˇ
ˇ
ˇ
ˇ̌
ˇ

ˇ
ˇ
ˇ
ˇ̌
ˇ

T;1
T;2
T;3

ˇ
ˇ
ˇ
ˇ̌
ˇ
; (1.69)

where �23D 2e23, �31D 2e31, �12D 2e12.
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1.3.2.1 Elastic Constants

In a simple strain problem, the deformation can be expressed as

ˇ̌
ˇ
ˇ
ˇ
ˇ

x
y
z

ˇ̌
ˇ
ˇ
ˇ
ˇ
D
ˇ̌
ˇ
ˇ
ˇ
ˇ

1C e1 �12 �13
�21 1C e2 �23
�31 �32 1C e3

ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ
ˇ

X
Y
Z

ˇ̌
ˇ
ˇ
ˇ
ˇ

or xk D FkKXK ; (1.70)

which implies the Green’s deformation tensor, and Lagrangian strain tensor can be
calculated as

CKL D FkKFkL ; EKL D .CKL � ıKL/ =2: (1.71)

One may obtain the Lagrangian strains and their small-strain counterparts as
follows:

E11 D 0:5
n
.1C e1/

2 C �221 C �231 � 1
o
� e1; (1.72)

E22 D 0:5
n
.1C e2/

2 C �212 C �232 � 1
o
� e2; (1.73)

E33 D 0:5
n
.1C e3/

2 C �213 C �223 � 1
o
� e3; (1.74)

E12 D E21 D 0:5 f.1C e1/ �12 C .1C e2/ �21 C �31�32g
� .�12 C �21/ =2; (1.75)

E13 D E31 D 0:5 f.1C e1/ �13 C .1C e3/ �31 C �21�23g
� .�13 C �31/ =2; (1.76)

E23 D E32 D 0:5 f.1C e2/ �23 C .1C e3/ �32 C �12�13g
� .�23 C �32/ =2: (1.77)

In molecular dynamics (MD) simulation, let the whole specimen have N atoms.
There are six independent simple strains that can be created in the following six
cases:

(1) Simple tension along the x-axis

ri
1  .1C e1/ ri

1 ; i 2 Œ1; 2; 3; ::::;N� ; (1.78)

where ri is the position vector of atom i; ri
2 and ri

3 remain unchanged.
(2) Simple tension along the y-axis

ri
2  .1C e2/ ri

2: (1.79)
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(3) Simple tension along z� axis

ri
3  .1C e3/ ri

3: (1.80)

(4) Simple shear on the x� y plane

ri
1  ri

1 C �12ri
2 ; ri

2  ri
2 C �21ri

1; (1.81)

with ri
3 unchanged.

(5) Simple shear on the y� z plane

ri
2  ri

2 C �23ri
3 ; ri

3  ri
3 C �32ri

2; (1.82)

with ri
1 unchanged.

(6) Simple shear on the z� x plane

ri
1  ri

1 C �13ri
3 ; ri

3  ri
3 C �31ri

1; (1.83)

with ri
2 unchanged.

Because these six cases are static cases, the virial stress tensor is reduced to

S D � 1
V

NX

iD1
ri ˝ fi; (1.84)

where V is the volume of the whole specimen. For each case, we obtain six
components of the virial stress, from which the elastic constants are deduced as:

Case 1

fA1111;A1122;A1133;A1123;A1131;A1112g
D fS11;S22;S33;S23;S31;S12g =e1:

(1.85)

Case 2

fA1122;A2222;A2233;A2223;A2231;A2212g
D fS11;S22;S33;S23;S31;S12g =e2:

(1.86)

Case 3

fA1133;A2233;A3333;A3323;A3331;A3312g
D fS11;S22;S33;S23;S31;S12g =e3:

(1.87)

Case 4

fA1112;A2212;A3312;A2312;A3112;A1212g
D fS11;S22;S33;S23;S31;S12g =�12: (1.88)
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Case 5

fA1123;A2223;A3323;A2323;A2331;A2312g
D fS11;S22;S33;S23;S31;S12g =�23: (1.89)

Case 6

fA1131;A2231;A3331;A2331;A3131;A3112g
D fS11;S22;S33;S23;S31;S12g =�31: (1.90)

In general, the stress-strain relation is nonlinear, and we focus our attention
to small strain theory; therefore, to evaluate the elastic constants, those specified
strains, namely, e1 , e2 , e3 , �12 , �23 , and �31, should be in the linear elastic range.

1.3.2.2 Thermal Conductivity

Now suppose we have several atomic groups lined up in series and let the first group
subject to Nosé-Hoover thermostat at atomistic temperature be TH and let the last
group subject to Nosé-Hoover thermostat at atomistic temperature be TL. Those
groups in between do not have Nosé-Hoover thermostat. After the system reaches
steady state, one may obtain the thermal energies EH and EL as

EH �
8
<

:
1

2
QH�

2
H C

QH

�2H

tZ

0

�H.s/ds

9
=

;
; (1.91)

EL �
8
<

:
1

2
QL�

2
L C

QL

�2L

tZ

0

�L.s/ds

9
=

;
: (1.92)

Because, in MD simulation, atomistic temperature is a statistical quantity and
involves a significant amount of noises, one may plot the thermal energies EH and EL

as functions of time, which can be approximated by two straight lines. Numerically
one should obtain

�EH

�t
� PEH D Ndof

H kB�HTH ;
�EL

�t
� PEL D Ndof

L kB�LTL; (1.930)

where PEH and PEL should be approximately equal in magnitude but opposite in sign.
The heat flux in magnitude is equal to PEH and PEL divided by the cross-sectional

area; the temperature gradient is equal to �T
.

�L , where �TD TH � TL and �L

is the distance between the centers of mass of the two atomic groups controlled by
Nosé-Hoover thermostats. Following this way, one may find the numerical values
of thermal conductivities.
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1.3.2.3 Specific Heat and Thermal Expansion Coefficients

We now recall two constitutive equations in small-strain thermoelasticity:

	oPe D 	o� PT C Aijkleij Pekl; (1.5300)


ij D �ˇijT C Aijklekl; (1.5200)

where � and “ are the specific heat and thermal expansion coefficients, respectively.
In MD simulation, one may consider a group of atoms in relaxed and idealized
state, i.e., absolute zero temperature, vanishing interatomic forces, and vanishing
virial stresses. Then imagine that this group of atoms is put into a rigid box and
prohibited to move out of the box. In this situation, the strain and the strain rate are
zero; Eqs. (1.5300) and (1.5200) are rewritten as

Sij D �ˇijT ; Pe D � PT : (1.94)

Here we assume that the Cauchy stress tensor in continuum mechanics is
equivalent to the virial stress tensor in MD simulation (Subramaniyan and Sun
2008). This may be considered as an approximation. But, without it, it is very
difficult, even impossible to bridge the gap between atoms and genuine continuum.

Now let the atomistic temperature of atoms in the box be raised to a specified
temperature T by Nosé-Hoover thermostat and, after steady state is reached, one
may calculate virial stresses Sij and internal energy density e (sum of potential
energy and thermal energy divided by total mass of atoms). It results in

ˇij D �Sij=T ; � D e

T
: (1.95)

1.4 Concurrent Multiscale Modeling from Atoms to Genuine
Continuum

1.4.1 One Specimen, Two Regions

The basic strategy for concurrent modeling may be described as: divide the entire
solution domain into non-critical far field and several critical sub-regions, where
stress concentrations, crack initiation and propagation, dislocations, and other
critical physical phenomena may occur. We have successfully modeled the critical
regions (or atomic regions) by molecular dynamics (MD) simulation and the atom-
based-continuum (ABC) region by Coarse-Grained Molecular Dynamics (CGMD)
simulation (Li et al. 2012; Li and Lee 2014a, b) in a single theoretical framework.
One may extend this approach by dividing the entire solution domain into three
parts: atomic region, ABC region, and genuine continuum (GC) region, modeled by
continuum theory.
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Fig. 1.1 (a) Finite element mesh in the genuine continuum region, (b) groups of atoms in the
atomic region, (c) apparent FE mesh

In this work, just to illustrate the idea, the entire solution domain is divided into
two regions: atomic region and GC region. As mentioned in Sect. 1.2, the atomic
region is further divided into Ng groups;group g has ng atoms; and the total number
of atoms in the atomic region is N. Let the first Mg groups have Nosé-Hoover
thermostats, Ng > Mg. For example, Fig. 1.1b shows NgD 22 and MgD 17. These
Mg groups are linked to the first Mg nodes in the GC region (cf. Fig. 1.1a). It is
noticed that there are Ng �MgD 5 groups not controlled by thermostats because
they are not linked to any node in the GC region. If one had viewed the Ng groups as
nodes and inserted them into the finite element (FE) mesh (cf. Fig. 1.1a) of GC, then
an apparent FE mesh would have been created as shown in Fig. 1.1c. The basic idea
is that there is an interface between the atomic region and the continuum region. In
the interface, each node is corresponding to a group of atoms, not just a single atom
(cf. Fig. 1.1a, b).

In this work, we make two major assumptions:
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Assumption 1
Each node in the interface is anchored at the mass center of its corresponding group.

Assumption 2
The sum of heat fluxes into the node and its corresponding group is zero.

Now the mathematical formulation proceeds as follows: First, for the atomic
region, we recall the relevant governing equations as

mi Pvi D fi C®i C fi
int � �gmi Qvi; (1.1800)

P�g D 1

�2g Tc
g

�
Ta

g � Tc
g

�
; (1.1900)

Ta
g D

1

Ndof
g kB

ngX

iD1
mi Qvi � Qvi; (1.1700)

PEg D Ndof
g kB�gTa

g : (1.9300)

However, we replace Tg by Ta
g to emphasize that it is the atomistic temperature

of group g calculated through the Nosé-Hoover thermal velocity Qvi in the atomic
region; we replace To

g by Tc
g to indicate the target temperature of the group g is

no longer a constant, but the nodal temperature of the corresponding node g in the
GC region, g2 [1, 2, 3, .... , Mg]. Especially, it is noticed that we add an interactive
term fi

int into Eq. (1.18) to indicate the interaction between atoms in group g and
its corresponding node g in the GC region. We employ the velocity Verlet method
to solve Eqs. (1.1800) and (1.1900). Detailed formulas will be derived later. The time
steps used in the atomic region is denoted by �ta.

For the GC region, we recall and rewrite the finite element equations as

M RUCKU D PTC F
1 C F2 C Fint; (1.5700)

G PTCHTC Tref PT PU D �Q1 CQ2 CQint: (1.5800)

It is seen that, for those nodes anchored in groups of atoms in the atomic region,
we add Fint and Qint to the governing equations; for other nodes, FintDQintD 0. We
employ the central difference method to solve Eqs. (1.5700) and (1.5800). Detailed
formulas will be derived later. The time steps used in the continuum region is
denoted by �tc. The ratio of time steps Ntime, which should be an integer, is defined
as

Ntime � �tc.

�ta or �tc D Ntime�ta: (1.96)
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1.4.2 Interfacial Conditions

One needs to impose boundary conditions, either displacement-specified or force-
specified, at each component of each node, and, similarly, impose boundary
condition, either temperature-specified or heat flow-specified, at each node, at outer
boundary of GC region, but not at inner boundary, which is the interface.

At each node/group in the interface, one should have the following two condi-
tions:

X

i2g

fi
int C Fg

int D 0; (1.97)

Qg
int D PEg D Ndof

g kB�gTa
g : (1.98)

The first condition, Eq. (1.97), simply means the sum of interactive forces of the
node/group pair should be vanishing. Recall that PEg is the flow of energy per unit
time out of group g due to the action of the Nosé-Hoover thermostat. Therefore, the
second condition simply says PEg should be the inward flow of energy per unit time
to the corresponding node g.

We now rewrite Eqs. (1.1800) and (1.5700), respectively, as

mi Rui D mi Pvi D fi C ®i C fi
int � �gmi Qvi � f

i C fi
int; (1.99)

M RU D �KUC PTC F1 C F2 C Fint � FC Fint; (1.100)

where ui denotes the position vector of atom i. In this work, the lumped-mass
system is adopted, i.e., the mass matrix M is diagonalized and, hence, nodal mass is
well defined. Similarly, the G matrix in Eq. (1.58) is also diagonalized. Eq. (1.9700)
leads to

Mg RUg C
X

i2g

mi Rui D F
g C

X

i2g

f
i
: (1.101)

Assumption 1, that we made, says node g is anchored at the mass center of
group g. It implies

RUg D
P

i2g mi Rui

P
i2g mi

�
P

i2g mi Rui

mg
� Rug

avg: (1.102)

To ensure Eq. (1.102), one needs

Rui D f
i

mi
C RUg �

P
i2g f

i

mg
: (1.1030)
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Substituting Eq. (1.102) into Eq. (1.101) results

RUg D 1

Mg C mg

8
<

:
F

g C
X

i2g

f
i

9
=

;
: (1.1040)

1.4.3 Multiple Time Scale Algorithm

There are two regions, atomic and continuum, and therefore, there are two time
scales, n and m. Then time t equals

t .n;m/ D n�tc C m�ta: (1.105)

It is seen that t(nC 1, 0)D t(n, Ntime). First, suppose at t(n, 0) we know un , 0,
an;0 � Run;0, �n , 0,vn;� 1

2 D Pun;� 1
2 , Un , 0, Vn;0 � PUn;0, An;0 � RUn;0, Tn , 0, and PTn;0.

The numerical procedures to solve Eqs. (1.1800), (1.1900), (1.5700), and (1.5800) are
listed in the following.

Step 1
Calculate Un , m and Tn , m (mD 1, 2, 3, .... , Ntime).

Un;m D Un;0 Cm�taVn;0 C 0:5.m�ta/2An;0; (1.106)

Tn;m D Tn;0 C m�ta PTn;0: (1.107)

Impose boundary conditions at t(n, m) on Un , m and Tn , m. Notice that UnC1;0 D
Un;Ntime

and TnC1;0 D Tn;Ntime
.

Step 2
Based on Velocity Verlet Method, let the velocity and position of each atom be
updated as

vn;mC1=2 D vn;m�1=2 C�taan;m; (1.108)

un;mC1 D un;m C�tavn;mC1=2: (1.109)

For each node/group in the interface, identify the position of node g as Rg D
Ro

g C Ug (Ro
g denotes the position of node g in the reference state and Ug is the

displacement vector obtained from Step 1) and calculate the position of the mass
center of group g as

ug
avg D

P
i2g miui

mg
: (1.110)



1 Sequential and Concurrent Multiscale Modeling of Multiphysics: : : 23

Then let every atom in group g move according to

ui  ui C Rg � ug
avg: (1.111)

This simply means that Assumption 1 is enforced on the atomic positions at all
time t(n, m).

Step 3

Calculate Ta
g according to Eq. (1.1700) based on vn;mC1=2(cf. Eq. (108)). Notice that

Qvn;mC1=2 can be obtained from vn;mC1=2 and un , m C 1. Then calculate

P�n;mC1=2
g D 1

�2g Tc.n;mC1/
g



Ta

g � Tc.n;mC1/
g

�
; (1.112)

�n;mC1
g D �n;m

g C�ta P�n;mC1=2
g : (1.113)

The force acting on all atoms, without counting the interactive force between
node g and group g, can now be calculated as

f
i.n;mC1/ D fi.n;mC1/ C ®i.n;mC1/ � �n;mC1

g mi Qvi.n;mC 1
2 /: (1.9900)

Then the acceleration is updated as

ai.n;mC1/ D f
i.n;mC1/

=mi; (1.114)

with the understanding that, at mDNtime, a special treatment (cf. Eqs. (1.102)–
(1.104)) needs to be implemented. Repeat the cycle of Steps 2 and Steps 3 for Ntime

times.

Step 4
After m reaches Ntime, calculate

VnC 1
2 ;0 D Vn;0 C�tcAn;0; (1.115)

F
nC1;0 D �KUnC1;0 C PTnC1;0 C F1.nC1;0/ C F2.nC1;0/; (1.116)

AnC1:0 � RUnC1;0 D F
nC1;0

=M: (1.117)

Here, we notice that (1) because we adopt the lumped-mass system, we can

express RUnC1;0 D F
nC1;0

=M and (2) only for the nodes in the interface, we have
special treatment as follows:
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AnC1;0 � RUg.nC1;0/ D 1

Mg Cmg

8
<

:
F

g.nC1;0/ C
X

i2g

f
i.nC1;0/

9
=

;
; (1.10400)

anC1;0 D Rui.nC1;0/ D f
i.nC1;0/

mi
C RUg.nC1;0/ �

P
i2g f

i.nC1;0/

mg
: (1.10300)

Now the velocity vector in the GC region is updated as

VnC1;0 D VnC 1
2 ;0 C 1

2
�tcAnC1;0: (1.118)

Step 5
Following Eq. (1.5800), calculate

QnC1;0 � �HTnC1;0 � Tref PTVnC1;0 �Q1.nC1;0/ CQ2.nC1;0/ CQg.nC1;0/
int ;

(1.119)

PTnC1;0 D QnC1;0=G; (1.120)

where

Qg.nC1;0/
int D Ndof

g kB�
nC1;0
g Ta.nC1;0/

g : (1.9800)

It is seen that, after going from Steps 1 to Steps 5, all the unknown variables are
updated as

Un;0;Vn;0;Tn;0;An;0;Tn;0 ! UnC1;0;VnC1;0;TnC1;0;AnC1;0;TnC1;0; (1.121)

un;m; vn;m� 1
2 ; an;m;¦n;m ! un;mC1; vn;mC 1

2 ; an;mC1;¦n;mC1: (1.122)

1.4.4 Sample Problems and Numerical Results

For illustrative purposes, the material we studied in this work is graphene. Graphene
belongs to a broad family of two-dimensional (2D) materials, characterized by
strong covalent in-plane bonds and weak interlayer van der Waals interactions which
give them a layered structure. One of the fascinating properties of 2D crystals
is their high stretchability and the possibility to use external strain to manipulate
their optical and electronic properties, coined as strain engineering. For interested
readers, a review article by Roldan et al. (2015) is recommended.
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1.4.4.1 Material Constants Obtained from MD Simulations

The interatomic potential for graphene used in this work is the Tersoff potential
(Tersoff 1988, 1989), which is a three-body potential. In the continuum region,
we model the material as a 2D thermoelastic solid with its material properties
obtained from MD simulation (cf. Sect. 1.3). Since graphene is anisotropic, we
identify x1� axis� x� axis as the one perpendicular to the armchair edge and
x2� axis� y� axis as the one perpendicular to the zigzag edge. The material
properties may be summarized as follows:

ˇ̌
ˇ
ˇ
ˇ
ˇ


11

22

12

ˇ̌
ˇ
ˇ
ˇ
ˇ
D �

ˇ̌
ˇ
ˇ
ˇ
ˇ

0:1723 x 10�6
0:1710 x 10�6

0

ˇ̌
ˇ
ˇ
ˇ
ˇ

�
T � Tref

�C
ˇ̌
ˇ
ˇ
ˇ
ˇ

0:04496 �0:00792 0

� 0:00792 0:04624 0

0 0 0:02646

ˇ̌
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ
ˇ

e11
e22
�12

ˇ̌
ˇ
ˇ
ˇ
ˇ
;

(1.123)
ˇ
ˇ̌
ˇ
q1
q2

ˇ
ˇ̌
ˇ D �

ˇ
ˇ̌
ˇ
0:6238 x 10�7 0

0 0:4936 x 10�7
ˇ
ˇ̌
ˇ

ˇ
ˇ̌
ˇ
T;1
T;2

ˇ
ˇ̌
ˇ ; (1.124)

� D 0:2551 x 10�9: (1.125)

In this work, we use atomic units, i.e., the dimensions and units of stress,
temperature, heat expansion coefficient, heat flux, thermal conductivity, and specific
heat are

Œ
� D Hartree
Bohr3

; ŒT� D Kelvin ; Œˇ� D Hartree
Bohr3 Kelvin

Œq� D Hartree
� Bohr2

; Œ�� D Hartree
� BohrKelvin ; Œ�� D Hartree

me Kelvin ;

(1.126)

where

Hartree D 4:3597482� 10�18 Joule
Bohr D 5:29177249� 10�11 meter
� D 2:418884326555� 10�17 sec ond
me D 9:10938291� 10�31 kg:

(1.127)

It can be calculated from Eq. (1.123) to obtain the Young’s modulus and Pois-
son’s ratio along the x� axis (y� axis) as 0.0436 (0.0448) and �0.171 (�0.176),
respectively; in other words, graphene is anisotropic and has negative Poisson’s
ratios if the Tersoff potential is adopted.
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1.4.4.2 Material Constants: Comparison with Other Researchers’ Work

Frank et al. (2007) measured the Young’s modulus of suspended multilayer
graphene sheets to be 0.5 TPa (0.01699 Hartree/Bohr3). Lee et al. (Lee et al.
2008) measured the effective Young’s modulus of monolayer graphene to be 1 TPa
(0.03399 Hartree/Bohr3). Monolayer graphene and multilayer graphene exhibit
different material properties. MD simulations can realize a variety of loading cases
to calculate the Young’s modulus and Poisson’s ratio, including nano-indentation,
tension, compression, and bending. So far, mechanical properties of graphene
have been intensively studied using MD simulations. Table 1.1 is the list of
reported values of Young’s modulus and Poisson’s ratio of graphene through MD
simulations. From Table 1.1, we can see that in many works, not only the thickness,
but also the size of graphene has effect on material properties.

Yoon et al. (2011) measured the thermal expansion coefficient of single-layer
graphene with temperature-dependent Raman spectroscopy in the temperature
range between 200 and 400 K. They found the thermal expansion coefficient
of single-layer graphene to be negative in the whole temperature range with a
room temperature value of (�8.0 ˙ 0.7) � 10�6 K�1. Shaina et al. (2016) also
measured the negative thermal expansion coefficient of graphene and the value is
�3.75� 10�6 K�1 for the entire temperature range. It is noticed that the terminology
“thermal expansion coefficient” used by Yoon et al. and Shaina et al. is different
from that used in this work.

Balandin et al. (2008) measured the thermal conductivity of a suspended single-
layer graphene and stated that graphene has excellent thermal conductivity, in
the range from (4.84 ˙ 0.44) � 103 to (5.30 ˙ 0.48) � 103 W/m/K, i.e.,
(1.421 ˙ 0.129) � 10�6 to (1.556 ˙ 0.141) � 10�6 Hartree/£/Bohr/K, at room
temperature. Not only the experiment conducted by Balandin et al. measured the
high thermal conductivity of graphene, but also many MD simulations draw the
same conclusion even though the value of thermal conductivity varies.

Table 1.2 lists some MD simulation results of thermal conductivity of graphene.
The specific heat of graphite at room temperature is reported to be 0.7 J/g/K

(1.4626 x 10�10 Hartree/me/K) (Tohei et al. 2006). Fried and Howard (2000) found
that at very high temperatures, the specific heat is nearly constant at 2.1 J/g/K
(4.3878 x 10�10 Hartree/me/K).

Through comparison, the material constants we obtained in our MD simulations
are different from other researchers’ work, but our values are in the same order.
Specially, the thermal expansion coefficient measured by Yoon et al. and Shaina
et al. is based on the change of geometry instead of the change of stress, which
is not the same as the heat expansion coefficient we use in Eq. (1.123). However,
we also obtain a negative value that would lead to the same physical phenomena.
In a word, the material constants we obtained are reasonable and are able to drive
reliable conclusions.
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1.4.4.3 Case Studies

The entire specimen is divided into two regions: (1) the finite element mesh of
the continuum region has 138 nodes and 108 2D 4-noded plane elements, shown
in Fig. 1.1a; (2) the atomic region is further divided into 22 groups, as shown in
Fig. 1.1b. There are 528 atoms in groups 1 and 17 and 1056 atoms in each of the
other 20 groups. There are 22,176 atoms in the atomic region and, equivalently,
more than 1.36 million atoms in the continuum region. One may take a close
look and find that group i and its corresponding node i(iD 1, 2, 3, .... , 17) form 17
node/group pairs. For the purpose of presentation, one may consider, and view later,
the finite element mesh of the entire specimen has 143 nodes (143 D 138 C 5
groups) and 120 elements (120 D 108 C 2(5 C 1)), as shown in Fig. 1.1c. In this
view, one may say this specimen had a crack and the crack tip is located at the
centroid of group 18. In this work the time steps are set at �taD 20, � D 0.4838 fs,
and �tcD 20 �ta. It is emphasized that, from the concurrent multiscale modeling,
one can obtain the positions of the centroids, the atomistic temperatures, and the
virial stress tensors of the 22 groups. Therefore, later in the Tecplot, one may see
the graphic representations of a mixture of Cauchy stress tensors and continuum
temperatures at 121 nodes (121 D 138–17) together with virial stress tensors and
atomistic temperatures at 22 groups. Of course, one may take another approach,
i.e., consider the positions of the centroids and the atomistic temperatures of the 22
groups as if they are the nodal values obtained in a classical finite element analysis.
However, this approach is not recommended because it simply defeats the purpose
of performing concurrent multiscale modeling.

In this work, we perform the analyses of several cases and present the results as
follows:

Case 1
The boundary conditions are specified as follows:

Along top edge

T D Tref C 50 K

uy D
�
20 t

tr .Bohr/ ; t � tr

20 .Bohr/ ; t � tr :
(1.128)

Along the bottom edge

T D Tref � 50 K

uy D
� �20 t

tr .Bohr/ ; t � tr

� 20 .Bohr/ ; t � tr ;
(1.129)

where trD 1000 �tcD 20000 �ta and the reference temperature is set at
Tref D 300 K.
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Fig. 1.2 VMD plot at t D 2000 �tc

In this work,�T�T � Tref is named as temperature variation; there are tempera-
ture gradient and elongation along the y� axis. It seems that this is a static problem.
But, in principle, there is no static problem in multiscale modeling and, besides,
there is no damping built in the theory, except we put in artificial damping in the
relaxation stage so that we have an idealized starting point, i.e., nearly zero atomic
forces, atomistic temperature, and virial stresses, to begin with.

The positions of 22,176 atoms are shown in the VMD plots (Humphrey et al.
1996), Fig. 1.2. Because, relatively speaking, the applied loading (in this case,
20 Bohr) is small, there is no crack opening in the atomic region and therefore only
one VMD plot is shown at tD 2000 �tc. The displacements (Bohr), continuum
and atomistic temperature variations (Kelvin), Cauchy stress, and virial stress
(Hartree/Bohr3) are shown in the Tecplots, Fig. 1.3. The matching between atomistic
temperatures and continuum temperatures of the 17 node/group pairs is surprisingly
good. The averages of virial stress V22 over t 2 [1901 �tc, 2000 �tc] for group i,
i2 [18, 19, 20, 21, 22] (cf. Fig. 1.1b) are shown in Fig. 1.4. In fact, the centroid of
group 18 is the crack tip. Figure 1.4 shows the stress distribution ahead of the crack
tip. It is seen that there is no stress singularity, no stress concentration either. In
short, the concepts behind linear elastic fracture mechanics (LEFM) and molecular
dynamics (MD) are totally different in this respect.

Case 2
The boundary conditions are specified as follows:

Along top edge

T D Tref

uy D 50 t
tf

Bohr:
(1.130)

Along the bottom edge

T D Tref

uy D �50 t
tf

Bohr;
(1.131)
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Fig. 1.3 (a) Continuum and atomistic temperature variations at t D 2000 �tc; Cauchy stress 
22

and virial stress S22 (Hartree/Bohr3 ) at (b) t D 1000 �tc, (c) t D 1500 �tc, (d)t D 2000 �tc

Fig. 1.4 Virial stress V22 in
ahead of crack tip

where tf D 2000�tcD 40000�ta. It means there is no temperature gradient and the
elongation is monotonically increasing with respect to time, from uyD 0 at tD 0
to uyD 50 Bohr at tD tf . The positions of 22,176 atoms at different time steps are
shown in the VMD plots (Fig. 1.5). Because the elongation is purposefully specified
to be very large, one may see the crack opening and crack propagations along
multiple fronts.

The displacements, temperatures (continuum and atomistic), and Cauchy and
virial stresses are shown in the Tecplots (Fig. 1.6). At tD 1050 �tc, it is seen that
the stress is high around group 1 and group 17. At tD 1900 �tc, the stress is even
higher around the same place. This is because the loading is higher but the crack has
not propagated yet. At tD 2000�tc, crack fronts reach group 18 (cf. Fig. 1.5c) and
it is seen that the high-stress area is shifted to the node corresponding to group 19
(cf. Fig. 1.6c).
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Fig. 1.5 VMD plots at various time steps: (a) t D 1050 �tc; (b) t D 1900 �tc, right before crack
propagates; (c) t D 2000 �tc, crack propagations and branches
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Fig. 1.6 Cauchy stress 
22 and virial stress S22 (Hartree/Bohr3 ) at (a) t D 1050 �tc, (b)
t D 1900 �tc, (c) t D 2000 �tc

Case 3
The boundary conditions are specified as follows:

Along top edge

T D Tref

uy D
�

40 t
tr .Bohr/ ; t � tr

40C 10 sin
�
2� t�tr

t

�
.Bohr/ ; t � tr :

(1.132)

Along the bottom edge

T D Tref

uy D
� �40 t

tr .Bohr/ ; t � tr

� 40� 10 sin
�
2� t�tr

t

�
.Bohr/ ; t � tr :

(1.133)

where tr D 500 �tc D 10000 �ta and t D 50 �tc D 1000�ta. It means there is
no temperature gradient and the elongation, after time becomes larger than tr, is a
constant plus a sinusoidal function with the period being t D 1000 �ta. It is seen
that, from Eqs. (1.132) and (1.133), the time average of juyj equals to 40 Bohr. The
purpose is to simulate the effect of fatigue loading. The positions of 22,176 atoms
at different time steps are shown in the VMD plots (Fig. 1.7). Because of the fatigue
loading with very high frequency, one may also observe the crack opening and crack
propagations along multiple fronts. It means, in critical regions, MD simulation can
be and should be utilized to investigate problems in fracture mechanics and fatigue
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Fig. 1.7 VMD plots at various time steps: (a) t D 800 �tc, (b) t D 900 �tc, (c) t D 1000 �tc
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Fig. 1.8 Cauchy stress 
22 and virial stress S22 (Hartree/Bohr3 ) at (a) t D 800 �tc, (b)
t D 900 �tc, (c) t D 1000 �tc

crack propagation. The displacements, temperatures (continuum and atomistic),
virial stresses are shown in the Tecplots (Fig. 1.8). Notice that the virial stress S
evaluated at current volume is equivalent to Cauchy Stress ¢ . Similar to Case 2, one
may observe that the high-stress area shifts with the propagating crack fronts. As
usual, the matching between atomistic temperatures and continuum temperatures of
the 17 node/group pairs is surprisingly good. This actually is a verification of the
computer software in handling the interfacial conditions.

1.5 Discussions

Nowadays, due to the development of massively parallel computers, numerical
simulation has emerged as a powerful tool to investigate material and structural
behaviors (Oden et al. 2006). Basically, there exist two fundamental physical
models, discrete and continuous, that provide foundations for all material modeling.
At nano-scale, in molecular dynamics (MD) simulation, the material body is viewed
as a collection of atoms moving under the influence of interatomic forces. Unfor-
tunately, due to a large number of particles involved as well as the complex nature
of atomistic interactions, the application of MD over a realistic range of length and
time scales is not feasible. Even worse, the occurring time of concerned physical
event is too far away in the future compared with the small time steps needed in MD
simulations. On the other hand, at macro-scale, materials are modeled by continuum
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physics, which is simply invalid for material systems at the nanoscale because, to
say the least, stress-strain relation cannot replace interatomic potential. Also, it is
emphasized that the treatment of temperature is totally different than that in MD.
Stress singularity at the crack tip as predicted by linear elastic fracture mechanics
(LEFM) simply doesn’t exist in MD; crack propagation occurs naturally in MD and
doesn’t need any criteria. From a practical viewpoint, the simulation of strongly
coupled multiscale systems becomes necessary. Therefore, we developed a multiple
length/time scale theory connecting atoms to genuine continuum. As indicated
in Sect. 1.2, molecular dynamics of multiphysics is adopted for the simulation
of atoms in the critical region. The numerical results of sample problems show
the distribution of virial stress tensors and atomistic temperature, crack opening
and crack propagation with multiple crack fronts, and the motion of individual
atoms. Meanwhile, the displacement and temperature fields and their derivables,
Cauchy stresses, and heat fluxes in the continuum region are obtained through finite
element analysis based on small-strain thermoelasticity. The material properties
used in the finite element analysis, including elastic constants, thermal expansion
coefficients, thermal conduction coefficients, and specific heat, are obtained from
MD simulation—usually named as sequential multiscale modeling. The continuum
theory used in this work is thermoelasticity. Of course, it can be generalized. Then
the problem is reduced to the finding of needed and specified material properties
through sequential multiscale modeling.

The pivot of the concurrent multiscale modeling is hinged at the interfacial
conditions, described and formulated in Sect. 1.4. In the interface, there are several
atomic groups, each corresponding to a node in the continuum region. For each
node/group pair, we assume (1) the sum of heat flow is vanishing, and (2) the
sum of interactive force is vanishing and the node is anchored at the centroid of
the group (cf. Eqs. (1.97), (1.103), and (1.104)). Assumption 1 is considered as
logical and reasonable. The sum of interactive force being zero is also logical and
reasonable. Whether one can improve or generalize the assumption “the node is
anchored at the centroid of the group” is left as an open question. If one is willing
to accept these two assumptions, then the challenge due to the huge differences in
length and time scales between the atomic region and continuum region is resolved
in principle. For example, in this work, the time steps for MD simulation is set
at �taD 20 � D . 4838 fs and the time steps for finite element analysis of the
continuum region is set at �tcD 20 �ta , i.e., the time ratio is 20. This ratio can be
enlarged. The smallest length scale in the continuum region is the distance between
the atomic groups. Beyond that, there is no limitation as far as finite element size
is concerned. It is noticed that the interfacial conditions have nothing to do with
the material properties. In other words, the material in the atomic region can be
different from the material in the continuum region and therefore, this work is
readily applicable for nanocomposites.
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Chapter 2
Atomistic Modelling of Nanoindentation
of Multilayered Graphene-Reinforced
Nanocomposites

Shaker A. Meguid, Ahmed R. Alian, and M.A.N. Dewapriya

Abstract The force-displacement curves, obtained from a nanoindentation
experiment, are generally analysed using continuum contact mechanics models.
However, the applicability of these models at the nanoscale is questionable due to
several inherited nanoscale phenomena, e.g., discreteness, quantum manifestations,
and scale effects. Atomistic simulations such as molecular dynamics could provide
better insight into the contact mechanics of nanoscale systems. In this chapter, we
present a comprehensive molecular dynamics simulations of the contact behaviour
of multilayered graphene-reinforced composite systems. Three aspects of the work
were considered. The first was concerned with the force-displacement curves
resulting from nanoindentation of a polyethylene matrix reinforced by multilayered
graphene sheets. The second is concerned with the associated deformation patterns
as well as the atomic adhesion associated with the retraction stage of the indenter.
The third is concerned with the reinforcement mechanism and fracture behaviour
associated with the increase in the number of graphene sheets and their spatial
locations within the composite. The results of our work reveal: (a) strong interlayer
interaction of graphene results in higher indentation resistance, (b) indentation
resistance of a single-layer graphene-coated polyethylene is about 13-fold of the
indentation resistance of pure polyethylene, (c) strong atomic adhesion between the
indenter and the graphene prevails at the nanoscale, and (d) the proper choice of
interlayer separation is critical in achieving the best performance of multilayered
graphene-reinforced nanocomposites.
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2.1 Introduction and Background

Nanoindentation tests have been used for material characterization since the 1970s
(Pethicai et al. 1983). Recently, these tests have been extensively improved by
developing advanced testing instruments and techniques and improved analysis
methods (Oliver and Pharr 1992, 2004; Hay et al. 1999; Li and Bhushan 2002). As a
result of these recent advances, nanoindentation has now become a vitally important
test in characterizing the mechanical properties of various materials ranging from
nanocomposites to biological materials (Paul et al. 2014). The focus of the current
work is multilayered graphene-reinforced composites.

Due to their better strength-to-weight ratio and stiffness, longer fatigue life, and
other superior electro mechanical properties, multilayered composites have proven
to be very effective in numerous industries ranging from automotive to biomedical
applications (Sinha Ray and Okamoto 2003; Pavlidou and Papaspyrides 2008; Jang
and Zhamu 2008). Recent advances in fabricating nanoscale multilayered systems,
such as graphene-based multilayered nanocomposites, are pushing the frontiers of
conventional nanocomposites research (Raccichini et al. 2014; Richardson et al.
2015). In developing such advanced nanoscale multilayered systems, a thorough
understanding of the mechanical behaviour of these systems is essential. This
has prompted extensive experimental and theoretical studies of the nanoscale
phenomena associated with reinforcement characteristics, contact stresses, force-
displacement response, failure criteria, atomic adhesion, and atomic pileup, which
are essential in designing high performance nanocomposite systems.

More importantly, however, using graphene in composite materials provides
an excellent opportunity to transfer the superior electromechanical properties of
graphene, across multiple length scales, up to the macroscopic level. Devices such
as electromechanical resonators have been fabricated using both single and multi-
layered graphene nanoribbons (Bunch et al. 2007; Chen et al. 2009, 2013). Novel
methods for constructing multilayered assembly of graphene have been developed
by several groups (Kong et al. 2009; Shen et al. 2009). Recent advances in synthesis
of graphene-based multilayered nanostructures are showing promising applications
in electrochemical energy storage (Raccichini et al. 2014), solar cells (Wang et al.
2011), and gas sensors (Ji et al. 2010). Such graphene-based layered materials could
also be used for structural applications in automotive and aerospace industries.
Latest developments in multilayered nanofilm assembly (Richardson et al. 2015)
will further accelerate the commercial scale fabrication of multilayered graphene-
based composites. In order to understand the mechanics of nanoscale multilayered
systems, nanoindentation tests on multilayered silicate/polymer nanocomposites
have been conducted by several groups; see, e.g., Bruzaud and Bourmaud (2007)
and Aldousiri et al. (2011).
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2.1.1 Experimental Techniques in Nanoindentation

Nanoindentation tests using atomic force microscopy have been widely used to
characterize the material properties at the nanoscale (Gibson 2014; Díez-Pascual et
al. 2015). A typical nanoindenter is composed of a force actuator and a displacement
sensor to apply a pre-programmed load/displacement profile on the test specimen
by using a hard tip (usually made out of diamond). The shape of the indenter
tip is often a three-sided Berkovich pyramid because geometric self-similarity of
this geometry creates a simple relationship between indentation depth and contact
area (Fischer-Cripps 2011). Other commonly used geometries are the three-sided
Berkovich pyramidal indenter and the four-sided Vickers pyramidal indenter. The
load and the displacement data acquired during the test are plotted against each
other, and the mechanical properties including the elastic modulus and the hardness
are calculated using analytical models, which will be presented in the next section.

In order to estimate the hardness and stiffness of a material using nanoin-
dentation, it is necessary to accurately determine the contact area between the
specimen and the indenter. In early days, the contact area had been estimated by
examining the induced residual impression using optical microscopy and image
analysis. However, as the dimensions of the indenters began to approach the atomic
level, determining of the contact area accurately became extremely challenging.
This challenge prompted the development of depth-sensing indentation technique
in which both the applied load and the resulting penetration depth are continuously
recorded during the indentation process (Doerner and Nix 1986).

In their recent review, Paul et al. (2014) identified several key challenges and
recent advances in nanoindentation experiments. Minor et al. (2006) demonstrated
the importance of achieving high load resolution (in the range of nN) because the
experiments carried out at a very small scale have shown that the initial yielding
could occur at extremely low loads even below the force resolution limit. Cross
et al. (2006) resolved this problem and succeeded in achieving smaller indenter
displacements and force resolution in the range of nN by using atomic force
microscopy for their nanoindentation experiments. Controlling surface chemistry
and morphology of the test specimen is also very critical in determining the surface
characteristics of the material at the nanoscale level (Song and Srolovitz 2006).
Preparing the surfaces of the sample and the tip and conducting the indentation
experiment in ultra-high vacuum is considered to be the best method to overcome
this problem. In addition, indenter characterization becomes increasingly difficult
at the atomic level. At this scale, not only the indenter radius but also the
crystallographic direction of the tip and the structure of the stepped crystal surface
could become important (Paul et al. 2014). Tip characterization can be carried out by
scanning and transmission electron microscopy; however these techniques cannot be
used to determine the full three-dimensional structure at the atomic scale (Egberts
et al. 2009).

In fact, nanoindentation tests have been employed to measure the elastic
properties and mechanical strength of graphene (Lee et al. 2008). Recently, Zan-
diatashbar et al. (2014) conducted nanoindentation tests of graphene to investigate
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the effect of defects on the stiffness and the strength of graphene. The obtained
load-displacement curves indicated that the strength of graphene with oxygen
adatom is 	14% smaller than the strength of pristine graphene. Shokrieh et al.
(2013) conducted nanoindentation and nanoscratch tests to investigate the wear
resistance of graphene-based polymer nanocomposites. They found that 0.5 wt%
of graphene improved the scratch resistance and the hardness of polymer by 83%
and 50%, respectively. By employing nanoindentation tests, Das et al. (2009)
demonstrated that 0.6 wt% of multilayered graphene significantly enhances the
stiffness (	70%) and hardness (	50%) of treated polymers. A more recent
experimental study (Flores et al. 2016) has demonstrated that the stiffness of
graphene-polyethylene nanocomposites obtained from dynamic nanoindentation
measurements is higher than those obtained from quasi-static tensile tests. Further-
more, they found that the hardness decreases with the increase in the strain rate. In
addition, they employed grid indentation, which is a very useful method to study the
spatial distribution of mechanical properties, to characterize the surface distribution
of the elastic modulus of graphene-based nanocomposites.

2.1.2 Analytical Modelling of Nanoindentation

In addition to the experimental developments, substantial advance has also been
made in both analytical and numerical modelling of nanoindentation. The classical
continuum mechanics has limited applicability at the nanoscale due to the discrete
nature of matter and quantum manifestations at the nanoscale (Luan and Robbins
2005; Tapasztó et al. 2012). However, the continuum concepts are computationally
efficient and provide reasonable insights into the mechanical behaviour of graphene-
based systems (Liu et al. 2011; Zhang et al. 2012; Xu et al. 2012; Dewapriya
et al. 2013, 2014; Dewapriya and Rajapakse 2014). On the other hand, when it
comes to modelling a complex system such as graphene-based nanocomposites, the
accuracy of continuum models is questionable, because they do not take into account
the structural configurations and the complex surface morphologies of nanoscopic
systems, which are quite important in modelling mechanical properties at the atomic
scale (Odegard et al. 2002; Haque and Ramasetty 2005; Dewapriya et al. 2015;
Dewapriya and Rajapakse 2016).

Continuum contact mechanics models (Oliver and Pharr 1992; Pharr et al. 1992;
Oliver and Pharr 2004) and Hertzian theory (Vlassak and Nix 1994) are widely used
to analyse the force-displacement curves obtained from nanoindentation tests. The
Oliver–Pharr method extended the initial analysis conducted by Sneddon (1965) on
the indentation of an elastic half space by a flat cylindrical punch, which provided a
simple relationship between load and displacement. Using the Sneddon’s analysis,
Oliver and Pharr established a simple method to estimate the elastic modulus and
the hardness of a given material by using loading/unloading curve and the geometry
of the indenter. According to the Oliver–Pharr simplified model, the hardness H was
calculated to be
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Fig. 2.1 Schematic
representation of loaded and
unloaded deformations of a
specimen during indentation
test (Oliver and Pharr 2004)

H D Pmax

A
(2.1)

where Pmax is the peak indentation force and A is the contact area between the
indenter and the specimen. The value of A depends on the height hc, which is defined
in Fig. 2.1.

The elastic modulus (E) of the specimen can be obtained from the relationship

1
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�
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�

Ei
(2.2)

where ¤ and ¤i are the Poisson’s ratios of the specimen and the indenter, respec-
tively. Ei is the elastic modulus of the indenter and Er is the reduced modulus,
which takes into account the induced elastic deformations in both the indenter and
the specimen. The value of Er is given as

Er D
p
�

2ˇ

Sp
A

(2.3)

where S is the initial unloading contact stiffness given by the initial slope of the
unloading curve. ˇ is a dimensionless parameter, and its value depends on the
geometry of the indenter. Using finite element models, Sakharova et al. (2009)
showed that ˇ is 1.034, 1.081, and 1.055 for the axisymmetric conical indenter,
the Berkovich pyramidal indenter, and the Vickers pyramidal indenter, respectively.

The model developed by Oliver and Pharr was modified by several researchers
in order to overcome its inherited limitations (Oyen and Cook 2003; Tang and Ngan
2003). For example, after several experimental studies demonstrated that the initial
portion of the unloading curve is nonlinear (Oliver and Pharr 2004), it was proposed
that the unloading curve is better represented by a nonlinear power law in the form

P D ˛�h � hf
�m

(2.4)

where P, h, and hf are defined in Fig. 2.1; ˛ and m are power law curve-fitting
parameters.

However, it is questionable whether the Oliver–Pharr method can be directly
applied to nanoindentation of polymers due to their viscoelastic properties (Gibson
2014). The viscoelastic properties could lead to an inaccurate estimate of the
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hardness and the stiffness of the considered polymer. As an example, the creep
behaviour of polymers could induce a “nose effect” during the unloading stage,
leading to an inaccurate estimation of the contact stiffness (Oyen and Cook 2003;
Tang and Ngan 2003). Furthermore, McAllister et al. (2012) and Wang et al.
(2016) studied the applicability of the Oliver–Pharr method in analysing the load-
displacement curves obtained by nanoindentation of polymers. They conducted both
experiments and finite element modelling and found that the Oliver–Pharr method
can be applied to polymers with a reasonable accuracy. They also revealed that the
viscoelastic effects of polymer can be minimized by using high loading/unloading
rate and by holding the load for a relatively longer duration. However, the Oliver–
Pharr method has several limitations when it is used at the atomic level (McAllister
et al. 2012; Yan et al. 2012).

2.1.3 Atomistic Modelling of Nanoindentation

Atomistic modelling and simulation methods such as quantum mechanics (QM) and
molecular dynamics (MD) play an important role in investigating the mechanical
behaviour of nanoscale material systems. First principle QM calculations have
been used to investigate the deformation at the contact region of a silicon (Si)
substrate (Pérez et al. 1995). The simulations revealed that the flow of atoms
occurs close to the interstitial position inside the Si substrate and extrusion of Si
atoms towards the tip, which was made out of aluminium atoms. This extrusion
is induced by non-uniform volumetric strain, and it is stabilized by the adhesive
interaction with the tip. QM-based models have been used to investigate several
mechanical aspects of graphene such as fracture (Khare et al. 2007a; Xu et al.
2012), edge stress and stability (Huang et al. 2009), bending (Kwon et al. 2012),
effect of defects (Robertson et al. 2013), and interface mechanics (Xu and Buehler
2010). However, MD simulations are used to investigate the temperature-dependent
properties because QM is not able to simulate systems at finite temperatures.

Molecular dynamics simulations have been widely used to study the mechanics
of graphene and carbon nanotube (CNT)-based nanocomposites. Meguid and his
collaborators used MD simulations to determine the effective elastic properties of
a representative volume element that is comprised of CNT nanofillers (Alian et al.
2016; Alian and Meguid 2016; Alian et al. 2015a; b). Xia et al. (2016) conducted
course-grained MD simulations of nanoindentation to study the interphase length
scale of a polymer. Beyond the interphase length scale, the elastic modulus can
be considered to be similar to the elastic modulus of the bulk polymer. They
found that the interphase length scale is several tens of nanometres in the case of
nanoindentation measurements and also found that this length scale is sensitive to
the indenter radii.

Mathew and Sewell (2016) characterized the thermomechanical response of an
energetic molecular crystal (i.e. TATB) by conducting MD simulations of nanoin-
dentation. They observed that the elastic part of the force-displacement curve on the
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basal plane is accurately predicted by an analytical solution obtained using Hertzian
theory of indentation of an anisotropic half space with a rigid, frictionless parabola
of revolution (Vlassak and Nix 1994; Willis 1966), whereas non-Hertzian response
is demonstrated on the nonbasal planes. Tavazza et al. (2015) investigated the
interaction between a diamond tip and nickel (Ni) substrate using MD simulations.
They observed a significant amount of Ni atoms transfer to the diamond tip. This
material transfer could have a significant impact on the nanoindentation test results.
Rocha et al. (2013) used MD simulations to study the indentation behaviour of
high-density polyethylene. Their study revealed that increasing the external force
results in a decrease in the viscoelastic recovery and that a larger size indenter, under
constant external force, generates increased viscoelastic recovery. MD simulations
of nanoindentation tests on crystalline cellulose materials (Wu et al. 2013) and
synthetic poly-dopamine (Lin et al. 2014) have been conducted to predict the
mechanical properties and structure of those advanced materials.

Li et al. (2012) carried out atomistic simulations of the tensile response of
thermoset polymer composites reinforced with multilayered graphene. Their results
revealed that regardless of the relative orientation of the multilayered graphene
and the composite interface, the strength of the composites under uniaxial tension
is higher than the corresponding strength for the bulk polymer. Tan et al. (2013)
conducted MD simulations to investigate the nanoindentation of circular monolayer
graphene. They found that in the small deflection range, the indenter has a near point
contact with graphene, and that the point load model is applicable. If the indenter is
large, the size effect of the indenter is evident in the large deflection range, and the
sphere-load model, which was developed to study spherical indentation of materials
(Begley and Mackin 2004; Scott et al. 2004), should be used. Neek-Amal and
Peeters (2010) conducted nanoindentation tests on bilayer graphene and found that
Young’s modulus is 0.8 TPa, which is less than a single-layer sheet. They also found
that Young’s modulus at 20 K is 14% less than the value at 300 K. A recent MD
simulation of tensile behaviour of multilayered graphene shows that the ultimate
tensile strength and Young’s modulus of multilayered graphene are insensitive to
the number of layers (Zhang and Gu 2013).

In this chapter, we present a detailed molecular dynamics simulations of the
contact mechanical behaviour of a multilayered graphene-polyethylene composite
resulting from numerical nanoindentation tests. Two aspects of the work are
considered. First, we conducted molecular dynamics simulations of nanoindentation
tests of single- and multilayered graphene. Second, building upon the knowledge
obtained from the first part, we investigated the contact mechanical behaviour
of multilayered graphene-reinforced polymer composites by conducting numerical
nanoindentation tests. This chapter is organized as follows. In Sect. 2.2, the basics
of molecular dynamics simulations are explained. Molecular dynamic modelling
of nanoindentation of graphene and graphene-reinforced polymer composite is
described in detail in Sect. 2.3, and results are also presented in that section. Finally,
the concluding remarks are given in Sect. 2.4.
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2.2 Basic Concepts of Molecular Dynamics Simulations

The main purpose of MD simulations is to study the time-dependent behaviour of a
system by computing the current and the future positions and the velocity of each
atom using Newton’s equations of motion. This information can be later used to
calculate the averaged mechanical properties of the system (Rapaport 1995; van
Gunsteren and Berendsen 1990).

The initial position and velocity of each atom of the system must be known at
the beginning of the MD simulation. The initial velocities are randomly generated
based on the required average temperature of the system. Then, the trajectories of
the atoms are determined by solving Newton’s equations of motion of the interacting
atoms of the system, viz.,

*

Fi D mi
*
a i (2.5)

where
*

Fi, mi, and
*
a i are the respective acting force, mass, and acceleration of atom i.

The interatomic forces are the gradient of the total potential energy V of the system
and is given by

*

Fi D �rV


*
r
�
: (2.6)

The velocity
*
v i and the acceleration

*
a i of each atom are the first and second

derivatives of the displacement vector
*
r i, respectively:

*
v i D d

*
r i

dt
(2.7)

*
a i D d

*
v i

dt
(2.8)

Using Eqs. (2.5) to (2.8), we can obtain the following differential equation:

�rV


*
r
�
D mi

d2
*
r i

dt2
: (2.9)

The most popular algorithm to integrate the resulting equations of motion of the
system is the Verlet algorithm (Verlet 1967). In this algorithm, Newton’s equations
of motion are approximated by a Taylor series expansion as a time series, as follows:

r .tC •t/ D r .t/C v .t/ •tC 1

2
a .t/ •t2 C 1

6

d3r.t/

dt3
•t3 C O

�
•t4
�

(2.10)
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Adding Eqs. (2.10) and (2.11), and moving the r(t� •t) term to the right-hand
side, we can obtain

r .tC •t/ D 2r.t/ � r .t� •t/C a.t/ •t2 C O
�
•t4
�

(2.12)

This is the general form of the Verlet algorithm for MD, where •t is the time
step of the analysis. The accuracy of this approach increases significantly with the
decrease in this time step, because it is a function of the fourth order of •t. The value
of a(t) is determined from Eq. (2.9), which depends on the location of the atom.
Here, we use the positions from the previous and current time steps and acceleration
of the current step to predict the trajectory of the atom. The instantaneous velocity
v(t) of each atom can be later calculated using the following Taylor series expansion

v.t/ D r .tC •t/� r .t� •t/
2•t

C O
�
•t3
�

(2.13)

The kinetic energy K(t) and the averaged instantaneous temperature T of the
system, based on the equipartition theory, can be calculated using the obtained
velocities in the following relations:

K .t/ D 1

2

X

i

mi .vi .t//
2 (2.14)

T .t/ D 2

3

K .t/

N KB
(2.15)

where KB is the Boltzmann constant.
The total potential energy of the system can be defined by interatomic potentials

or molecular mechanics force fields which describe how the atoms interact with each
other (LeSar 2013). The selected interatomic potential or force field for the system
under investigation must be very accurate for the quantum mechanical processes and
to yield reliable results. These potentials and force fields have been developed by
several researchers based on quantum mechanics calculations and then validated
by comparing their results with experimental tests (Brenner 2000; LeSar 2013).
The general expression for the total atomistic potential energy of the system can be
written as a many-body expansion that depends on the position of one, two, three,
or more atoms at a time (LeSar 2013), such that
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where V1 is the one-body term (energy of the isolated atom i due to an external force
field such as the electrostatic force), V2 is the two-body term (pair-wise interactions
of the atoms i and j such as Lennard-Jones potential (Jones 1924)), V3 is the three-
body term (three-body interactions and usually called many-body interactions such

as Tersoff and Brenner potentials), N is the number of atoms in the system, and
*
r i

is the position vector of atom i (Tersoff 1988; Brenner 1990). In this work, we
used an inter atomic many-body potential for hydrocarbons called the Adaptive
Intermolecular Reactive Empirical Bond Order (AIREBO) potential (Stuart et al.
2000).

The AIREBO potential consists of three sub-potentials, which are Lennard-Jones
potential, the torsional potential, and the reactive empirical bond order (REBO)
potential. Lennard-Jones potential incorporates the van der Waals forces, and the
torsional potential includes the energy due to torsional interactions between atoms.
The REBO potential (Brenner 1990) evaluates energy stored in atomic bonds; the
energy stored in a bond between atom i and atom j can be expressed as

Eij
REBO D f

�
rij
� �

VR
ij C bijV

A
ij


(2.17)

where Vij
R and Vij

A are the repulsive and the attractive potentials, respectively;
bij is the bond order term, which modifies Vij

A according to the local bonding
environment; rij is the distance between the atoms i and j; f (rij) is the cut-off
function, which limits the interatomic interactions to the nearest neighbours. The
cut-off function in REBO potential (Brenner 1990), given in Eq. (2.18), limits the
interatomic interactions to the nearest neighbours, such that
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�
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�
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0; R.2/ < rij

(2.18)

where R(1) and R(2) are the cut-off radii, which are determined to be 1.7 and 2 Å,
respectively. The values of cut-off radii are defined based on the first and the
second nearest neighbouring distances of the relevant hydrocarbon. The cut-off
function, however, causes non-physical strain hardening in carbon nanostructures
(Shenderova et al. 2000). Therefore, the modified cut-off radii, ranging from 1.9
to 2.2 Å, have been used to eliminate this non-physical strain hardening (Jhon et
al. 2014; Zhang et al. 2012; Zhao and Aluru 2010). High strains and fracture of
carbon–carbon bonds are possible during nanoindentation test simulations. There-
fore, we investigated the influence of the cut-off function on the nanoindentation test
results by using a truncated cut-off function ft(rij), given in Eq. (2.19) (Dewapriya
2012; Dilrukshi et al. 2015).

ft
�
rij
� D

�
1; rij < R
0; rij > R

(2.19)
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where the value of R is 2 Å. Similar cut-off functions have been used by Zhang et al.
(2012) and Cao and Qu (2013) to simulate the fracture of graphene.

All MD simulations are being conducted under specified conditions. These
ensembles are characterized by fixed values of the following thermodynamic
variables: potential energy, temperature, pressure, volume, and total number of
particles. The most commonly used ensembles in MD simulations are:

• Micro-canonical ensemble: constant number of atoms, volume, and energy
(NVE)

• Isothermal-isobaric ensemble: constant number of atoms, temperature, and
pressure (NTP)

• Canonical ensemble: constant number of atoms, temperature, and volume (NVT)

There is a common sequence that can be followed to build an MD model and
perform a successful simulation. The first step is to build the initial structure of
the system using the appropriate software such as Nanoengineer, Materials Studio,
Packmol, amongst others. The second step is to optimize this initial structure by
changing the location of its atoms relative to each other to reduce the total potential
energy of the system and also to release the existing residual stresses. The third step
is to assign an initial velocity to each atom based on the targeted average temperature
of the system. The fourth step is to equilibrate the minimized structure to obtain the
system at targeted initial conditions (pressure, volume, temperature). The final step
is to conduct the required analysis and measure the system properties of interest.

2.3 Molecular Dynamics Simulation of Graphene-Reinforced
Nanocomposites

The main goal of this study is to determine the reinforcement effect of graphene
sheets on nanocomposites. In order to understand the reinforcing mechanism of
such composites, MD simulations of the numerical nanoindentation test of pure
polymer and both single and multilayered graphene structures were conducted.
Consequently, numerical nanoindentation tests of multilayered graphene-reinforced
systems with different configurations followed. The results of the MD simulations
for all the systems considered are presented and compared in order to give
insight into the behaviour of these materials at the nanoscale. All MD simulations
were performed with large-scale atomic/molecular massively parallel simulator
(LAMMPS; Plimpton 1995) using the adaptive intermolecular reactive bond order
(AIREBO) potential (Stuart et al. 2000).
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Fig. 2.2 Preliminary system used for the nanoindentation simulations. (a) The pyramid-shaped
diamond indenter with dimensions of 24 � 24 � 10 Å and (b) the graphene sheet with dimensions
of 50 � 50 Å

2.3.1 Indentation of a Single Layer of Graphene

We used a pyramid-type diamond indenter (Vickers indenter) for the nanoinden-
tation simulations. Figure 2.2 shows the diamond indenter and the graphene sheet
used for the study. The base of the indenter selected was 24 � 24 Å with a thickness
of 10 Å. The indenter tip consists of 9 carbon atoms (3 � 3 atoms). In a graphene
sheet, carbon atoms are arranged in a honeycomb lattice, where the carbon–carbon
bond length is assumed to be 1.396 Å (Stuart et al. 2000). The dimensions of the
graphene target selected were 50 � 50 Å, and it has 1070 carbon atoms. The MD
simulations were conducted at a temperature of 300 K with a time step of 0.5 fs. The
energy of the system (the graphene target and the indenter) was firstly minimized
using the Conjugate Gradient algorithm. The system was considered to be optimized
once the change in the total potential energy between subsequent steps is less than
1.0 � 10�10 kcal/mol (Alian and Meguid 2017). Then, the minimized system was
allowed to reach equilibrium over 50,000 time steps in the constant temperature and
volume (NVT) ensemble. Figure 2.3 shows the system reaching equilibrium after
some 5 ps.

The initial gap between the indenter tip and the graphene target was selected to
be 15 Å as the system reaches its equilibrium. The diamond indenter was brought
into contact with the graphene target at a constant speed of 1 Å/ps, and the resisting
force on the indenter was calculated at each simulation step and also averaged over
an interval of 0.1 ps to reduce the effect of fluctuations on the obtained results.
The MD unit cell was equilibrated using the NVT ensemble at 300 K during the
indentation process. Four edges of the graphene target were kept fixed during the
indentation, and the diamond indenter was considered as a rigid body (i.e. constant
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Fig. 2.3 Variation in potential energy of the simulated system with the equilibration time

speed in z direction and zero speed in x and y directions). The indentation process
continued until the graphene sheet was fractured to establish the upper bound of
indentation depth and the associated indenter force. Figure 2.4 demonstrates the
corresponding deformation and the fracture behaviour of the graphene sheet during
the indentation process. The figure shows the severe deformation of the graphene
sheet upon fracture revealing its extraordinary out-of-plane flexibility. Interestingly,
however, even at fracture, several carbon chains hold the two fractured entities of the
graphene together, as shown in Fig. 2.4d. Similar phenomenon had been observed in
experiments (Chuvilin et al. 2009; Jin et al. 2009) as well as in MD/QM simulation
studies (Hobi et al. 2010). These linear carbon chains represent connected dimers
composed of two coordinated carbon atoms. Hobi et al. (2010) revealed that in the
absence of such dimers, full rupture of graphene will take place.

Figure 2.5 shows the change in the indenter force versus the total potential energy
of the system with the indentation time. The indenter touches the graphene sheet at
3 ps. Fracture of the graphene target occurs at an indentation depth of 20 Å, and
the maximum indenter force is 510 nN. It can be seen in the figure that the indenter
experiences a significant resisting force even after the fracture of the graphene target.

In MD simulations of nanoscale systems, selection of the system and boundary
condition is very critical in obtaining reliable results (Mattoni et al. 2005; Dewapriya
2012). Therefore, we investigated the influence of the graphene sheet size on
the resulting indentation force at a fixed indentation depth by modelling square
graphene sheets with various dimensions ranging from 50 to 200 Å. The indentation
force at an indentation depth of 17 Å was determined and compared for all cases
considered; see Fig. 2.6. It can be clearly seen that the indentation force decreases
significantly as the sheet size increases. This is due to the additional stiffness
provided by the fixed boundaries in the out-of-plane direction of the graphene sheet
during the indentation process.
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Fig. 2.4 Snapshots of the graphene-indenter system during indentation. The diamond indenter,
shown in blue, was moved downwards (along –z direction) at a constant speed of 1 Å/ps. (a) and
(b) show the deformation of the graphene prior to fracture, and (c) and (d) show the behaviour of
graphene after fracture
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Fig. 2.5 Time variations of (a) indentation force versus time and (b) system potential energy
versus time

The influence of the cut-off function on the indentation force during the MD
simulation is investigated in this section. The original and modified cut-off functions
are given in Eqs. (2.18) and (2.19), respectively. Even though the original cut-off
function introduced non-physical strain hardening of graphene when simulating
a tensile test, our study revealed that the influence of a cut-off function on the
indentation force is unnoticeable as shown in Fig. 2.7.
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Fig. 2.6 Effect of graphene
sheet size upon the resistance
to indentation
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2.3.2 Indentation of Multilayers of Graphene Sheets

Single-layer graphene sheets tend to agglomerate and form a multilayered system
(Li et al. 2008; Shen et al. 2009). The interlayer separation in multilayered
graphene is assumed to be 3.4 Å (Lu 1997; Ohta 2006). We performed numerical
nanoindentation tests on different multilayered graphene systems consisting of a
gradually increasing number of layers up to five sheets. A diamond indenter similar
to the one used for the aforementioned single sheet studies (see Fig. 2.2a) but with
a longer stem was used for the current simulations. All edges of all multilayered
graphene sheets were kept fixed during the indentation stage. The procedures of the
MD simulation were similar to that of the single-layer studies, which are explained
in Sect. 2.3.1. Figure 2.8 shows indentation of a three-layer graphene sheet for an
indentation depth of 30 Å.

Figure 2.9 compares the variation in indentation force with the indentation depth
for a different number of layers up to an indentation depth of 20 Å. The figure also
shows the best fit polynomial for a single-layer graphene, where the force-depth
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Fig. 2.8 Nanoindentation of a three-layered graphene sheet (a) prior to indentation and (b)
deformed shape during indentation

Fig. 2.9 Variation of
indentation force with
indentation depth for
multilayered graphene targets
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relationship is in the third order as proposed by Lee et al. (2008) and Komaragiri
et al. (2005). It can be seen that, at a given indentation depth, the indentation
forces of the multilayered graphene cannot be expressed as the linear sum of the
indentation force of a single-layer graphene. This is because contact is nonlinear
even at the continuum level. In addition, the contact stresses and the resulting contact
area are typically unknown a priori.

Figure 2.10 compares the variation of indentation force with the number of
graphene sheets at three indentation depths (i.e. 10, 20, and 30 Å). It should be
noted that the force is obtained as the average force over 100 time steps in order to
obtain more reliable results by reducing the effect of the instantaneous force-time
fluctuations. The figure clearly demonstrates an approximately linear relationship
between the number of graphene sheets and the indentation force up to five layers.
It is also interesting to note that the slope of each curve is different indicating the
complexity of the problem.

For example, during the nanoindentation of the five-layered graphene system, all
graphene sheets begin to experience some form of fracture around an indentation
depth of 27 Å. Figure 2.11a shows the variation in the indentation force during
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Fig. 2.10 Variation of the
maximum indentation force
with the number of graphene
sheets of a multilayered
system at different
indentation depths

0

200

400

600

800

1 2 3 4 5
In

de
nt

at
io

n 
fo

rc
e 

(n
N

)
Number of layers

depth = 30 Å

depth = 20 Å

depth = 10 Å

the indentation process, at t D 0, when the indenter is in contact with the
top graphene layer. It can be seen in that figure that the indenter experiences
a noticeable indentation force even before it touches the top uppermost layer.
This force is generated by the repulsive van der Waals interaction forces. Figure
2.11b–g demonstrate the interaction between graphene and indenter at the times
shown in Fig. 2.11a. It can be seen in Fig. 2.11c, d that the atoms in contact
with the indenter experience highly concentrated deformation. The fracture of the
multilayered graphene sheets starts at a depth of 26.5 Å as shown in Fig. 2.11e.
Figure 2.11f shows that three graphene sheets are fractured at a depth of 30 Å.
After reaching a depth of 30 Å, the indenter was retracted with the same velocity.
Figure 2.11g–i show the interaction between the multilayered graphene targets and
the indenter during the retraction stage. It can be seen from these figures that there
is a significant adhesion between the fractured graphene sheets and the indenter.
Fracture of graphene sheet leads to the generation of carbon atoms with dangling
bonds which have very high cohesion with the indenter (Alian et al. 2017).

In the following sections, we investigate the mechanical behaviour of polyethy-
lene with and without the use of multilayered reinforcing graphene sheets.

2.3.3 Indentation of Polyethylene

In this section, we will investigate the response of a pure polymer to nanoindentation
tests using MD simulations. The results obtained from this analysis will be used as
a reference for comparisons with graphene-reinforced polymer nanocomposites. To
model the surrounding matrix, a polyethylene (PE) polymer was selected. The unit
cell used for the MD simulations consists of 952 PE chains, in which each chain
was formed by 10 C2H4 units. Planar dimensions (x and y) of the PE block are
100� 100 Å and thickness is 50 Å; the density of PE is 0.9 g/cm3. Periodic boundary
conditions were applied along x and y directions. In addition, an invisible surface



56 S.A. Meguid et al.

(a)

0

200

400

600

800

0 10 20 30 40

Fo
rc

e 
(n

N
)

Indentation time (ps)

(b)

(c)

(d)

(e) (f)

(g)

Fig. 2.11 Nanoindentation of five-layered graphene targets: (a) Variation in indentation force with
time during the test. (b)–(g) Interaction between graphene and indenter at times indicated as (b)–
(g) on Fig. 2.11a. Figures (g)–(i) depict behaviour of the system during retraction stage. In Figs.
2.11b–i, a cross section cut through the centre of the indenter was taken in order to demonstrate
the position of the indenter and deformation of the different graphene layers
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was created just above the PE block to repel any polymer chains from escaping the
top polymer surface, while a layer of thickness 3 Å at the bottom of the PE block
was kept fixed. The diamond indenter used in the previous sections was used here
as well to perform nanoindentation. The procedures of the MD simulation of the
indentation test were similar to that of the multilayered graphene system studies,
which is explained in Sect. 2.3.2.

Figure 2.12a shows the variation in indentation force during the numerical
nanoindentation test, while Fig. 2.12b–d demonstrate the behaviour of the system at
different times during the indentation process. Indentation time was measured from
the instance where the indenter touches the top of the equilibrated polyethylene
system. It can be seen clearly in Fig. 2.12a that the indentation force rapidly
increases during the first 12 ps of the indentation stage. After this initial duration, the
indentation force increased slightly before reaching its maximum value at a depth
of 30 Å. The recorded maximum indentation force in the case of pure polyethylene
was 24.5 nN, which represent 10% of the maximum indentation force of a single-
layer graphene at the same indentation depth. It can also be seen in Fig. 2.12a that
the indentation force does not decrease immediately after the start of the retraction
of the indenter at 30 ps. This phenomenon is attributed to the recovery of the
polyethylene chains to their original positions and thus maintains the resisting force.
However, the polyethylene chains cannot fully return to their original positions at
the rate of indenter retraction. In other words, density of polyethylene around the
indenter decreases significantly, which eventually leads to a sudden drop in the
indentation force at 32 ps.

In the ensuing section, we investigate the contact behaviour of polyethylene
matrix reinforced by a single-layer of graphene.

2.3.4 Single-Layer Graphene-Reinforced Polyethylene

In this section, we investigate the reinforcement effect resulting from adding a
single-layer of a graphene sheet on the top of the polyethylene used in Sect. 2.3.3.
The difference between the composite and the pure polymer will be presented and
discussed thoroughly to determine the improvement in the mechanical properties
and performance. Figure 2.13 shows a graphene-reinforced polyethylene system.
The equilibrium separation distance between the graphene sheet and the polymer
matrix is around 3 Å, which was maintained by the repulsive forces between the
graphene sheet and the polyethylene atoms in contact with the sheet. Periodic
boundary conditions were applied along the x and the y directions of the system,
while the graphene sheet was allowed to stand freely on the polymer block.

Figure 2.14 compares the indentation force vs depth relation of a graphene-
reinforced polymer composite with the response of a single-layer graphene and that
of pure polyethylene. The maximum indentation force for the graphene and the
polyethylene are 254 and 24.5 nN, respectively. When these two materials were
put together, the maximum indentation force of the combined system becomes
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Fig. 2.13 A single-layer
graphene-reinforced
polyethylene system, which
has 67,985 atoms.
Dimensions of the
polyethylene block are
100 � 100 � 50 Å
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Fig. 2.14 Force-Indentation response for graphene-reinforced polyethylene together with the
individual responses of graphene and polyethylene separately

327 nN, which is 13-fold increase in the maximum indentation force of pure
polyethylene. In fact, and more remarkably, the indentation resistance of graphene
has also increased by 29%. It can be seen in Fig. 2.14 that the graphene-reinforced
polyethylene is much stiffer than the combined individual stiffness of graphene
and polyethylene. The polyethylene matrix resists the deformation of the graphene
sheet, and the graphene sheet is able to distribute the concentrated force exerted
by the indenter through a considerably larger area. As a consequence of these two
interacting effects, both the graphene and the polyethylene deforms much less than
their individual responses to the indentation force, which results in a higher effective
stiffness.
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2.3.5 Graphene-Reinforced Multilayered Polyethylene
Composites

Five systems representing PE matrix reinforced with increasing number of graphene
sheets that form multilayered structures were considered here. The difference
between the response of these systems and the pure polymer to numerical nanoin-
dentation tests will be presented and discussed to determine the improvement in
the material performance and also to help designing new nanocomposites with
optimized properties. The number of graphene sheets and hence the thickness of
the graphene/PE layers range from zero (to represent pure polymer of a thickness of
50 Å) to five layers (to represent a PE layer of 10 Å).

Selecting the system size and boundary conditions properly is very crucial
in obtaining accurate and reliable results at a reasonable computational cost.
Accordingly, performing MD simulations of large graphene-reinforced polyethy-
lene systems could be computationally very expensive. In order to reduce this
burden, we investigated the ability of using smaller structures to model multilayered
graphene-reinforced polymer composites. For this purpose, several systems of
different sizes were considered to determine the effect of the system size on the
obtained properties (i.e. boundary effects). Figure 2.15a–c show the deformation
of a multilayered graphene-reinforced polyethylene system during nanoindentation,
where the size of the graphene sheets is 50 � 50 Å (designated case A); thickness
of individual polyethylene layers is 10 Å, and the system consists of five such
layers. Periodic boundary conditions were applied along x and y directions. Indent-
ing/retracting speed of the indenter were 1 Å/ps. It can be seen in Fig. 2.15b that the
entire system underwent severe deformation during the indentation process.

The indentation test of a larger system with planar dimensions of 100 � 100 Å
(designated case B) was also simulated. Figures 2.15d, e depict snapshots of the
larger system before the start of the indentation process at the maximum indentation
depth, and after retracting the indenter, respectively. It can be seen in Fig. 2.15e that
the boundaries of case A are not severely deformed, and the deformation is mostly
localized around the indenter. It is also noticed that the graphene sheet, which was
in contact with the indenter, was partially fractured in case B, however the sheet
was not fractured in case A. This indicates that even under the same indentation
depth, the graphene sheets at the surface of the two system experience totally
different levels of deformation. In case A, the entire system (including boundaries)
deforms, which can be seen in Fig. 2.15b. However, in case B, the boundaries are
slightly deformed as shown in Fig. 2.15e. Therefore, at a given indentation depth,
the effective deformation experienced by graphene in case B is higher than that
of case A. It can also be seen that there is a significant migration of the polymer
chains due to the indentation, which can be clearly seen in Fig. 2.15e. But then,
substantial amount of individual polymer chains has come back closer to their
original positions during the retraction stage. This polymer migration phenomenon
results in a relatively lower density of polyethylene below the indenter. Figure
2.15f demonstrates a significant cohesion between the indenter and the adjacent
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Fig. 2.15 Deformation of multilayered Graphene-PE systems (Cases A and B) considered during
nanoindentation. (a)–(c) depict case A of indentation of 50 � 50 Å, and (d)–(e) depict case B of
indentation of 100 � 100 Å system with five layers

graphene layer and also between indenter and polymer chains in the multilayered
system during the retraction stage. One reason for this cohesion is that the graphene
sheet has been partially broken which lead to the formation of several dangling
bonds on the graphene sheet at the fractured region. The dangling bonds want to be
stabilized by creating covalent bonds. Therefore, carbon atoms with dangling bonds
have strong cohesion with the diamond indenter and polymer chains (Alian et al.
2017).

Figure 2.16 compares the indentation forces for Cases A and B. There is a 10%
difference in the maximum indentation forces of the 50 � 50 Å and 100 � 100 Å
systems, which are 307 and 341 nN, respectively. The loading curve of the 50� 50 Å
system indicates that the system is slightly stiffer than the other one. This could be
due to the fact that the boundary effects are dominant in case A, whereas this effect
lessens in Case B. All polymer layers of case A deform and exert a resisting force
on the indenter, but the deformation is localized in case B.
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Fig. 2.16 Comparison of indentation force vs time curves of the two five-layered systems shown
on Fig. 2.15

Considering the boundary effects, we decided to use a system with planar
dimensions of 100 � 100 Å to further investigate the indentation resistance of
graphene-reinforced multilayered systems. Figure 2.17 shows the two-, the three-,
and the four-layered systems used in the study. Figure 2.18a compares the variation
of indentation force with time in all systems, where the indentation was carried out
at a speed of 1 ps/Å until the indentation depth of 30 Å is reached. Time is measured
from the instant that the indenter touches the uppermost layers of the graphene sheet.
The figure reveals that the behaviour of the single, the two, and the three-layered
systems is almost identical except that the fracture of a single layer occurs slightly
early around an indentation depth of 27 Å; fracture of other systems is not evident.
This identical indentation resistance of these layered systems occurred due to the
fact that only the uppermost graphene layer is resisting the indenter and that the
interior sub-graphene sheets layers do not exert substantial resisting force to the
indenter due to the large interlayer separation distance. As an example, Fig. 2.18b
shows the deformation of the three-layered system at the maximum indentation
depth, and it demonstrates that the second graphene layer does not experience a
significant deformation. Therefore, the second layer does not exert any resisting
force during the indenter penetration of the first graphene layer. It can be seen that
the four-layered system experienced a significant improvement in the performance,
which is due to the contribution of the second graphene layer. Surprisingly, however,
the performance of the five-layered graphene system is the weakest amongst all
the considered systems, even though it was expected to offer greater resistance
to indentation due to the higher number of the multilayered graphene sheets. This
weakness is attributed to the inability of the 10 Å polyethylene layers to resist the
applied load.
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Fig. 2.17 Multilayered graphene-reinforced polyethylene systems. (a) The two-, (b) the three-,
and (c) the four-layered systems

Figure 2.18c shows the maximum indentation force of the studied multilayered
systems. These results indicate that there is a slight improvement in the maximum
resisting force up to three-layered system, where the interlayer spacing is 16.7 Å.
When the spacing is reduced from 16.7 to 12.5 Å, there is a 16.5% improvement
of the maximum force. However, this improvement completely vanishes when
the spacing was further reduced to 10 Å. This result indicates that proper choice
of the interlayer separation distance is critically important in achieving the best
performance of multilayered graphene-reinforced composites.

2.4 Concluding Remarks

Nanoscale multilayered systems have attracted significant attention in recent
research. Graphene has been already proven in its ability to become an exceptional
reinforcement for nanocomposites, and graphene-based multilayered systems are
believed to be a candidate of the next generation of advanced multifunctional
nanocomposites. Recently fabricated graphene-based multilayered nanostructures
have demonstrated promising potential for applications in electrochemical energy
storage, solar cells, and gas sensors. These multilayered materials could also be
used for structural applications in automotive and aerospace industries. Latest
developments in multilayered nanofilm assembly will further accelerate the
commercial scale fabrication of multilayered graphene-based composites.

In order to design advanced nanoscale multilayered systems with optimized
properties, a thorough understanding of the mechanical behaviour of these systems
is essential. Even though there is considerable research interest in nanoscale
multilayered systems, understanding of their mechanical behaviour is still in its
infancy.

Nanoindentation tests using atomic force microscopy have been widely used to
characterize the mechanical properties at the nanoscale. The force-displacement
data obtained from a nanoindentation test are generally analysed using continuum



64 S.A. Meguid et al.

(a)  

(b)

(c)

0

100

200

300

400

0 5 10 15 20 25 30 35 40 45

In
de

nt
at

io
n 

Fo
rc

e 
(n

N
)

Indentation time (ps)

1 layer
2 layers
3 layers
4 layers
5 layers

300

325

350

375

400

10 20 30 40 50

M
ax

im
um

 fo
rc

e 
(n

N
)

Interlayer spacing ( Å)

Fig. 2.18 Force-indentation depth of multilayered graphene systems: (a) variation of indentation
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contact mechanics models. However, the applicability of continuum models at
the atomic level is questionable due to the discrete nature of structures at this
scale. Our comprehensive molecular dynamics simulations of the nanoindentation
of multilayered graphene-reinforced composites provide significant insight into the
force-indentation behaviour of these advanced systems. The results of the molecular
dynamics simulations reveal that a strong interlayer interaction has a substantial
influence on the material response at the nanoscale.
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Furthermore, the observed strong atomic adhesion between the multilayered
system and the indenter during indentation could not be studied using exist-
ing continuum-based models. Similarly, the atomic adhesion results in a unique
deformation pattern that develops during the retraction stage of the indenter. In
addition, graphene demonstrated an extraordinary reinforcing influence on the
force-indentation predictions. For example, indentation resistance of a single-layer
graphene-coated polyethylene is about 13-fold of the indentation resistance of a
pure polyethylene target. Significant improvement in the indentation resistance of
the multilayered graphene-reinforced system was also observed with the increase
of the number of graphene layers. However, proper choice of their spatial locations
within the composite is crucial in attaining the greatest resistance to indentation by
multilayered graphene-reinforced nanocomposites.
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Chapter 3
Molecular Dynamics Studies of Load Transfer in
Nanocomposites Reinforced by Defective
Carbon Nanotube

Xudong Peng and Shaker A. Meguid

Abstract This chapter is concerned with the development of relatively more
accurate numerical simulations than those adopted in the literature to investi-
gate the considerable discrepancies between experimental findings and theoretical
predictions of the interfacial shear strength (ISS) of nano-reinforced thermoset
composites. Those differences are most likely attributed to the presence of various
defects, the possible inaccuracies in the system modeling, and the variance between
experiments. In this chapter, we present a review of the literature as well as recent
work conducted by the authors focusing on the effect of defects and functional-
ization on the ISS and buckling behavior of carbon nanotube (CNT)-reinforced
composites. Different modeling and calculation techniques pertinent to CNT pull-
out tests are presented, and proper selection of the simulation parameters are
discussed. Unlike earlier studies, which focused on thermoplastics, in this chapter
attention is devoted to CNT-reinforced thermoset polymer composites with different
degrees of conversion. Pull-out and compressive load simulations were performed
on a representative volume element comprising a single-walled CNT embedded in
an epoxy matrix. All MD simulations used the consistent valence forcefield (CVFF)
to represent the interatomic potential. Our results revealed that different defects
can, to some extent, either enhance or degrade the properties of nanocomposites.
The findings of this chapter will assist in improving our understanding of the
toughening/weakening mechanisms associated with nanoscopic reinforcement and
the load transfer capability in epoxy-based nanocomposites and give an insight into
the reasons for the discrepancies in ISS.
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3.1 Introduction

Since their discovery by Iijima (1991), carbon nanotubes (CNT) have attracted great
interest from the mechanics and materials communities because of their promise
and potential as reinforcements in polymer-based nanocomposites. These advanced
polymer nanocomposites are used in various fields such as light-weight automobile
and aerospace engineering, biomedical applications, energy storage devices, and
molecular electronics, to name a few. The mechanical properties of CNT-reinforced
composites are significantly influenced by the interface condition (cohesion and
adhesion) between the CNT and the surrounding matrix. Higher interfacial shear
strength (ISS) is an indicator of better stress transfer from the polymer matrix to the
embedded nanotube, and hence enhanced reinforcement’s effect (Desai and Haque
2005).

3.1.1 Interfacial Shear Strength

Numerous experimental efforts have been devoted to the experimental studies of
the ISS of CNT-reinforced composites. Three techniques including CNT pull-
out tests (depicted in Fig. 3.1), Raman spectroscopy, and fragmentation tests
have been mainly used to determine the ISS experimentally. For example, Lourie
and Wagner (1998, 1999) presented transmission electron microscopy (TEM)-
based evidence of significant nanotube-polymer interfacial adhesion. They directly
observed damage doublets and fracture of nanotubes under tensile stresses, implying
strong nanotube-polymer interface. Qian and Dickey (2001) performed in-situ
TEM straining studies on MWCNT-polystyrene composite films. Their experiments
demonstrated significant load transfer across the nanotube-polystyrene interface by
showing crack bridging, sword-in-sheath, and transverse shear fracture mechanisms.
However, in a TEM study of an aligned CNT-epoxy composite, Ajayan et al.
(1994) indicated the interfacial bonding between an MWCNT and epoxy matrix
was weak. Schadler et al. (1998), using Raman spectroscopy, also concluded that
the interfacial bonding was very weak when an MWCNT–epoxy composite was
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Fig. 3.1 Schematics of the procedures of CNT pull-out testing
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under tension. Advances in high precision instruments at the atomic level have
led to quantitative measurements of interface strength. For example, Cooper et al.
(2002) calculated the ISS for single-walled CNTs (SWCNTs) and multi-walled
CNTs (MWCNTs) embedded in an epoxy matrix based on pull-out experiments
using a scanning probe microscope. In both cases, the ISS was found to be in
the range of 35–376 MPa. Barber et al. (2003, 2004) employed an atomic force
microscope (AFM) to carry out direct CNT pull-out tests. Depending on the
nanotube radius, they observed an ISS of 10–130 MPa for MWCNTs embedded
in the polyethylene (PE)-butene matrix. Barber et al. (2006) further investigated the
effect of functionalization using both pristine and chemically modified MWCNTs
in their AFM experiments. They found that for different embedded length, the
measured ISS ranges from 10 to 50 MPa for pristine SWCNTs and from 20 to
165 MPa for MWCNTs. Roy et al. (2010) measured the ISS of SWCNT-polyvinyl
alcohol composite functionalized with biomolecules using a novel Raman peak shift
method. The ISS was found to be larger than 160 MPa. Meguid and Sun (2004)
also reported that the homogeneous dispersion of CNTs in an epoxy adhesive can
improve the bonding and shear properties of composite interfaces by 1.2 and 1.3
times the pure epoxy adhesive. Xu et al. (2002) added 0.1 wt% MWCNTs into
thin epoxy films and observed a 20% increase in the elastic modulus using a shaft-
loaded blister test. The ISS was estimated to be between 88 and 280 MPa, based on
transmission electron microscopy (TEM) images. Recently, Ganesan et al. (2011,
2014) conducted in-situ pull-out experiments on pristine and fluorinated MWCNTs
embedded in an epoxy matrix within an SEM using a nanoindenter assisted micro-
device. The average value of ISS for the fluorinated MWCNT–epoxy interface
(19.8˙ 7.78 MPa) was found to be larger than that for the pristine MWCNT–epoxy
interface (6.24 ˙ 3.6 MPa). This demonstrated the effect of interfacial adhesion
to CNT surface treatments such as sidewall fluorination. Tsuda et al. (2011)
used a nano-pull-out testing system installed in an SEM to pull out MWCNTs
embedded in a Poly-ether-ether-ketone (PEEK) composite. The ISS of MWCNT-
PEEK composite was measured as 3.5–7 MPa, and the ISS of the specimen treated
at 573 K under 1 MPa for 1 h increased to 6–14 MPa because of the recovery
in interfacial bonding. Newcomb et al. (2014) characterized CNT-polyacrylonitrile
(PAN) get-spun composite fibers through Raman spectroscopy by monitoring the
Raman band shift during tensile deformation. The as-spun and fully drawn CNT-
PAN nanocomposite fibers exhibit the ISS of 13.1 and 30.9 MPa, respectively,
while improved CNT dispersion resulted in an ISS of 44.3 MPa. Chen et al. (2013)
presented an in-situ nanomechanical single-tube pull-out testing scheme of the ISS
between double-walled CNTs (DWCNTs) and polymethyl methacrylate (PMMA).
The average ISS was reported to be within 32–68 MPa and the maximum ISS was
within 85–372 MPa depending on different nanotube diameters. Chen et al. (2015)
further employed the same technique to study both PMMA and epoxy materials.
They found that the average ISS of the PMMA and epoxy is 45 ˙ 9 MPa and
130 ˙ 34 MPa, respectively. They further reported that the respective maximum
ISS can reach 178 and 282 MPa for PMMA and epoxy considered.
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Several analytical works have also been conducted to shed light on the complex-
ities and the marked discrepancies in the reported ISS of CNT-polymer composites.
A number of models such as Kelly–Tyson model, shear-lag model, and energy
minimization approach previously used for the analysis of carbon fiber composites
have been modified for determining the ISS of CNT-reinforced composites. For
instance, Wagner et al. (1998) combined fragmentation tests with the Kelly–Tyson
model modified for hollow tubes to estimate the efficiency and quality of CNT-
urethane composite interfaces. The ISS obtained was to be on the order of 500 MPa
and higher. Wagner (2002) further demonstrated that the ISS is dependent on
the CNT strength which may be strongly reduced by the presence of defects on
CNTs. Xu et al. (2002) further applied the same modified Kelly–Tyson model to
theoretically calculate the ISS and found it to be in the range of 88–280 MPa for
different diameters MWCNTs. Lau (2003) studied the ISS of SWCNT/MWCNT-
reinforced polymer matrix through the uses of local density approximation (Lenosky
et al. 1992), elastic shells (Tu and Ou-Yang 2002), and conventional fiber pull-
out models (Zhou et al. 1995). The ISS increased to 200 MPa with the increase
in nanotubes’ wall thickness. Xiao and Zhang (2004) used a modified Cox model
(Cox 1952) to investigate the effects of length and diameter of an SWCNT in
an epoxy matrix on the load transfer properties. They found that the maximum
ISS increases with the decrease in the CNT diameter and that there exists an
optimal CNT length at which the ISS reaches its maximum. The maximum ISS
was reported to be in the range of 30–100 MPa. Gao and Li (2005) modified the
shear-lag model originally proposed by Cox (1952) and used a cylindrical matrix
embedded with a capped SWCNT as the representative volume element (RVE) of
a nano-reinforced polymer composite. The maximum ISS for different aspect ratios
of the RVE was predicted to be about twice as large as the axial normal stress
in the matrix. Zhang and Wang (2005) used an analytical method to investigate
thermal effects on interfacial stress transfer characteristics of SWCNT/MWCNT
polymer composites, based on a thermoelastic theory and conventional fiber pull-
out models (Quek 2002). They found that the maximum ISS decreases from as
high as 500 MPa with increasing temperature change. Furthermore, other models
dedicated to CNT-reinforced composites such as multi-layer structure and structural
mechanics approach have been developed to evaluate the ISS. For example, Natsuki
et al. (2007) evaluated the ISS of SWCNTs/MWCNTs with composite coatings
by means of a multi-layer CNT pull-out model. Their results suggested that the
maximum ISS occurred at the pull-out end of CNTs and decreased from as high as
100 MPa with increasing coating thickness as well as CNT wall thickness. Li and
Saigal (2007) employed a refined micromechanics model including three concentric
cylinders as the RVE for assessing the ISS in CNT-reinforced polymer composites.
They reported that the maximum ISS normalized by the axial normal stress in
the matrix can range from 0.2 to 1.5 depending on the different volume fractions,
aspect ratios, and end gaps. A multiscale model for interfacial stress transfer in
SWCNT-reinforced polymer composites was developed by Li and Chou (2003a),
which employed the molecular structural mechanics proposed by the same authors
(Li and Chou 2003b) to characterize the nanotube and the finite element method to
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Dispersion Representation

CNT CNT-polymer composite RVE

Matrix

CNT

Fig. 3.2 RVE of CNT-reinforced composites

model the polymer matrix. The maximum ISS normalized by the applied stress is
between 0.5 and 3 depending on the different nanotube aspect ratio and interfacial
interface.

In addition to existing experimental and analytical investigations, numerous
numerical simulations have also been conducted to study the interfacial behavior
of CNT-reinforced composites. Molecular mechanics (MM), molecular dynamics
(MD) simulations, atomistic-based continuum (ABC), and multiscale modeling
technique have been mainly used to determine the ISS of an RVE (refer to Fig. 3.2)
comprised of CNT-polymer composites. For instance, Wong et al. (2003) used MD
simulations and elasticity calculations to quantify the ISS. They found that the non-
bonded interactions, consisting of electrostatic and van der Waals forces, result in
respective ISS of 138 and 186 MPa for CNT-epoxy and CNT-polystyrene systems.
Gou et al. (2004, 2005) investigated the ISS of individual SWCNTs and CNT ropes
via both MM and MD simulations. The ISS was calculated to be 61 and 36 MPa for
an SWCNT and a three CNT rope embedded in an epoxy matrix, respectively. Wei
(2006) studied the temperature dependent adhesion behavior and the reinforcement
effect of CNTs in a polypropylene matrix using MD simulations. He only considered
van der Waals (vdW) interactions in the model and established a lower bound ISS of
approximately 47 MPa. Liao and Li (2001) used MM to simulate a pull-out process
in an SWCNT-polystyrene system and reported that the ISS could be as high as
160 MPa, even without considering the chemical bonding between the nanotube
and matrix. Liu et al. (2007) used MD simulations to investigate the influence of
noncovalent and covalent functionalization on the interfacial properties of SWCNT-
epoxy system. They found that properly designed hybrid system containing both
covalent and noncovalent functionalization can increase the ISS to 940 MPa from
170 MPa for a pristine SWCNT-epoxy system. In an MD study of SWCNT-PE
composite, Al-Ostaz et al. (2008) used COMPASS forcefield to obtain an ISS of
133 MPa. Li et al. (2011) further conducted pull-out simulations on SWCNT-PE
systems. Instead of assuming a uniform distribution of ISS on the entire sidewalls
of CNTs, they assumed that the ISS was distributed uniformly within 1 nm from
each end of the CNTs but was zero at the middle of the nanotubes. The calculated
ISS from this approach ranges from 106.7 to 142 MPa for different CNT diameters.
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Xiong and Meguid (2015) investigated the interfacial mechanical characteristics of
CNT-reinforced epoxy composites using MD simulations. They found that the ISS
varies from 20 to 80 MPa as they studied various parameters, such as epoxy density,
length and diameter of the CNT, the CNT-epoxy interfacial thickness, Lennard-
Jones (LJ) cutoff distance, and capping conditions of a CNT. Alian et al. (2015a)
used a multiscale modeling scheme to study the effect of embedded CNT length,
diameter, interfacial thickness, and LJ cutoff distance. Their reported ISS values are
also found to be almost identical to those predicted by Wernik et al. (2012) using
ABC multiscale modeling technique.

Evidently, numerous experimental, analytical, and numerical studies have been
carried out to investigate the ISS of CNT-reinforced composites. However, sig-
nificant discrepancies exist among these studies. This may be partly due to the
complexity of the problem and partly due to the oversimplified numerical models
adopted. The simplifications included: (1) the matrix materials are usually assumed
to be “frozen” during the pull-out process to avoid excessive degrees of freedom,
resulting in an inappropriate estimation of the interfacial thickness and the CNT–
matrix interaction energy, (2) the neglect of experimentally observed defects in
CNTs, such as vacancies (Meyer et al. 2008), Stone–Wales (SW) (Suenaga et al.
2007), and interstitial atoms (Hashimoto et al. 2004), as depicted in Fig. 3.3, which

Fig. 3.3 Intrinsic defects of CNTs: (a, b) HR-TEM image of single vacancy (Meyer et al. 2008),
(c, d) HR-TEM image of SW defect (Suenaga et al. 2007), (e, f) HR-TEM image of a single adatom
defect (Hashimoto et al. 2004)
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are inevitably introduced during CNT synthesis as well as manufacturing (Collins
2010; Charlier 2002; Nardelli et al. 1998), and (3) the neglect of covalent bonding
between CNTs and matrix materials. Covalent bonding is usually introduced
through surface functionalizations of CNTs (Liu et al. 2005; Spitalsky et al. 2010;
Thostenson et al. 2005), which are used to improve the load transferability of
nanocomposites.

In addition to the above limitations, most existing numerical models focused their
attention on thermoplastic polymers (Chowdhury et al. 2010; Frankland et al. 2002;
Xiao et al. 2015; Zheng et al. 2009). Numerical models which can better characterize
the interfacial properties of CNT-reinforced thermoset composites systems are
scarce. Thermoset materials generally have very different mechanical properties
than thermoplastic materials because they comprise three-dimensional networks of
bonds (crosslinking). However, to the best of authors’ knowledge, there have been
no studies performed on the effect of crosslink density on the interfacial properties
of CNT-reinforced thermoset composites. The importance of nano-reinforced epoxy
composites to many engineering applications as well as the lack of coverage in the
literature has motivated the current chapter.

3.1.2 Buckling Behavior

As mentioned in Sect. 3.1.1, considerable experimental and theoretical studies have
been carried out to characterize the ISS of CNT-reinforced nanocomposites. How-
ever, significant discrepancies exist between experimental and theoretical results.
These theoretically obtained values are remarkably different from the experimental
data. Apart from the reasons mentioned in Sect. 3.1.1, some researchers attributed
the discrepancy of the results to buckled CNTs in nanocomposites.

In particular, the diameters of CNTs are in the range of less than a nanometer
for SWCNTs to about 30 nm for MWCNTs while the typical length of CNTs
is on the order of microns (Pan et al. 1999; Qian et al. 2000), leading to a
large aspect ratio (length to diameter). Because of this large aspect ratio and
hollow cylindrical structure, CNTs are prone to buckle under mechanical loads.
Buckling can lead to failure in the form of a sudden decline in compressive
load carrying capacity and undesirably distorted configuration of structures. Under
axial compression, a CNT exhibits shell-like or beam-like buckling depending
on its aspect ratio; shell-like buckling appears when the aspect ratio is relatively
small, while beam-like buckling appears when the aspect ratio is relatively large.
Numerous experimental and theoretical studies have investigated the buckling of
CNT-reinforced nanocomposites. Experimental researchers have observed graphs
of CNTs in buckled state both as individual nanotubes (Dai et al. 1996; Iijima et
al. 1996; Wong et al. 1997) and when embedded in nanocomposites (Schadler et
al. 1998; Lourie et al. 1998). A large volume of theoretical work, based on both
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continuum-based shell and beam theories (Yakobson et al. 1996; Ru 2000; Wang
et al. 2003), and atomistic techniques such as MD (Zhang et al. 2009a; Talukdar
et al. 2011; Motevalli et al. 2013; Wang et al. 2014), concentrates on buckling
of nanotubes by themselves. However, an increasing number of researchers are
interested in the compressive behavior of nanotubes when embedded in composites.
For instance, Lourie et al. (1998) coupled the classical Euler model with energy
method to examine a CNT buckling behavior within a polymeric matrix. To account
for the effect of transverse shear deformation during the CNT buckling, Zhang
et al. (2006a) developed Timoshenko beam model, which offers a more precise
prediction of the critical buckling stress. Ru (2001) developed an elastic double-
walled shell model for the buckling analysis of CNTs in an elastic matrix based
on the classical shell theory (Timoshenko 1961). Later, Liew et al. (2005) and
Kitipornchai et al. (2005) introduced a Pasternak foundation into Ru’s model (Ru
2001). They proposed multi-walled shell model to describe the buckling behavior
of MWCNTs that are embedded in a matrix with consideration of the van der Waals
(vdW) interactions.

Since CNTs are highly prone to structural defects and buckling, many investiga-
tions have focused on buckling of defective CNTs. For example, the MD simulations
were employed by Chandra and Namilae (2006) to explore the compressive behavior
of SWCNTs in the presence of chemical functionalization and SW defects. They
found that functionalization and topological defects have a negative impact on the
buckling stress of CNTs. The compressive behavior of SWCNTs and double-walled
CNTs in the presence of vacancy defects was examined by Hao et al. (2008) and Xin
et al. (2007) using MD simulations. They found that the extent to which vacancy
defects weaken the compressive load carrying capacity of CNTs is dependent on
the length, chirality, and temperature of the nanotubes as well as the density of the
defects and their relative position. Zhang et al. (2009b) conducted an investigation
into the buckling behavior of SWCNTs with defects via MD simulations. They
revealed that point defects cause a higher reduction in the buckling load than SW
defects. Kulathunga et al. (2010) examined the effects of various configurations of
vacancy defects on the buckling of SWCNTs by MD simulations in different thermal
environments. Their findings revealed that increasing number of missing atoms,
asymmetry of vacancy configurations, and asymmetric distribution of vacancy
clusters lead to higher deterioration in buckling properties. Ranjbartoreh and Wang
(2011) studied the effects of length, radius, chirality, SW defect, and single vacancy
defect on the buckling behavior of SWCNTs. Obtained results indicated that the
axial stability of SWCNTs decreases significantly due to topological defects and
the critical buckling strain was more susceptible to defects than the critical buckling
force. Different aspect ratio of defective CNTs on the buckling behavior was
investigated by Parvaneh et al. (2009), who showed that single vacancy defects only
have a weak impact on the critical buckling load of CNTs with a large aspect ratio at
room temperature. Poelma et al. (2012) combined analytical continuum theory with
MD to study the effects of vacancy defect position on the CNT critical buckling
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load. They concluded that the defects at the ends of the CNT and close to the middle
of the CNT significantly reduce the critical buckling load and strain at 1 K. The
compressive mechanical properties of SWCNTs with up to 20 randomly distributed
vacancies were studied by Cheng et al. (2007) using MD method. It was found
that the Young’s modulus of the SWCNTs is approximately linearly proportional
to the number of vacancies and SWCNTs containing more vacancies have more
complicated deformation procedures.

It is evident from the foregoing literature review that there has been no work on
the effect of various defects on the buckling of embedded CNTs. To the authors’
knowledge, only a few studies have used MD simulations to focus on the buckling
of embedded pristine CNTs. For instance, Namilae and Chandra (2006) studied
the compressive behavior of CNTs when they are embedded in PE matrix and
with interface chemical modifications using MD simulations. It is observed that the
buckling load for buckling increases only very marginally for nanotubes embedded
in PE matrix compared with neat CNTs. In the case of chemically bonded interfaces,
the critical stress for buckling is reduced compared with neat CNTs because of the
changes in curvature introduced by chemical bonding. The buckling of SWCNTs
embedded in PE matrix was examined by Kulathunga and Ang (2014) via MD
method. They found that the embedded CNT has higher buckling stress compared to
the freestanding CNT. This stress increment is greater in CNTs with smaller aspect
ratio. It is clear that there is an urgent need to carry out a comprehensive research
on the buckling of defective CNTs embedded in polymer nanocomposites.

3.1.3 Objectives

It is therefore the objectives of this chapter to:

(1) Provide a critical review of different modeling techniques, CNT pull-out
methods, ISS distribution models and discuss recent developments in the field.

(2) Evaluate the ISS of CNT-reinforced thermoset composites and examine the
effect of the following parameters on the strength of the interface:

(a) Defects in embedded CNTs
(b) Presence of foreign atoms
(c) Interfacial non-bonded (van der Waals) and bonded (covalent bonding)

interactions
(d) Buckling of embedded CNTs

(3) Investigate which of these parameters either singly or jointly have major effect
on the ISS of CNT-reinforced composites.
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3.2 Fundamental Aspects of MD Simulation Techniques

3.2.1 Numerical Simulation Techniques

CNT pull-out test has been recognized as a standard method for evaluating the ISS
of nanocomposites. The force or energy required to debond the CNTs from the
surrounding matrix is the output of these tests which are then used to calculate the
ISS. The analysis of the ISS of nanocomposites is experimentally conducted using
improvised scanning probe microscope (Cooper et al. 2002) and AFM (Barber et
al. 2003, 2006), which require high precision instruments to measure the pull-out
force because the pull-out forces are usually on the order of nanonewton. These
experiments also require high-resolution microscopes such as scanning electron
microscope (Barber et al. 2003, 2006) and TEM (Cooper et al. 2002) for imaging
the CNTs. The challenge in experiments is manifested from the fact that relatively
few experimental works have been published in the literature due to the difficulties
of setting up nanoscale experiments and the inability to produce reliable high
precision measuring instruments at the atomic scale. Therefore, researchers rely
on atomistic-based or continuum-based methods for the ISS analysis of nanocom-
posites. However, continuum-based approaches such as shear-lag model (Gao and
Li 2005) and Kelly–Tyson approach (Xu et al. 2002; Wagner et al. 1998) are less
accurate since they do not account for the nanoscopic effects explicitly. It is also
difficult to apply continuum methods to CNTs with defects and functional groups.
Hence, many researchers resort to atomistic methods such as ABC, MM, and MD
simulations to investigate the influence of defects and functionalization on the ISS
of nanocomposites.

ABC technique is developed to model CNTs and CNT-reinforced composites
by replacing the atomistic structures with equivalent continuum elements. In this
technique, in contrast to traditional continuum modeling methods, the discrete
nature of the structures on the atomic scale is considered by replacing bonded and
non-bonded interactions with continuum elements such as beam, truss, and spring.
For example, as illustrated in Fig. 3.4, Wernik and Meguid (2010) used FEA to
model CNTs as space frame structures in which beam elements were successfully
used to simulate carbon–carbon covalent bond, while nonlinear rotational spring
element was used to model non-bonded interactions.

Fig. 3.4 Atomistic-based
continuum representations of
(a) a hexagonal lattice of the
CNT, and (b) the connecting
structural finite elements used
to model the CNT

(a)

Connecting 
node

Rotational 
spring

Beam 
element

(b)
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In MD and MM techniques, the atomic structures of nanocomposites are
initially defined. Interactions of atoms in nanocomposites are defined by interatomic
potential energy function, which is either obtained from first-principle calculations
(Sun 1998), or from experimental results, such as bond energy and atomization
energy (Brenner et al. 2002). In general, the interatomic potential energy is a
function of the positions of atoms in nanocomposites. Force on each atom is derived
from the gradient of the total potential energy in nanocomposites.

In MM, thermodynamic equilibrium is achieved by minimizing the total potential
energy of the system by considering the atomic coordinates. The governing equation
for MM is given by

@U.r/

@r
D 0 (3.1)

where U is the total potential energy of the system and r is the position vector of an
atom.

MM does not consider time-dependent quantities like velocity, acceleration, and
inertia force. Unlike MM, MD is performed by solving Newton’s equation of motion
for each atom in the system. The governing equations for MD are

mi
d2ri

dt2
D Fi (3.2)

and

Fi D �@U .r1; r2; : : : ; ri; : : : ; rN/

@ri
(3.3)

where ri is the position vector of atom i, N is the total number of atoms, and Fi

is the force vector acting on atom i, mi is the mass of ith atom, and t is the time.
Since MM does not consider transient and dynamic quantities, it cannot account for
the thermal effect during the CNT pull-out process. In order to determine the ISS
accurately under realistic temperature, MD approach is used by the authors in this
chapter.

The current MD simulations were carried out using the large-scale atomic/molecular
massively parallel simulator (LAMMPS) (Plimpton 1995). The CVFF (Dauber-
Osguthorpe et al. 1988) was adopted in the simulations to model all bonded and
non-bonded interactions in the CNT-epoxy systems. This forcefield has been widely
used by other researchers to study the mechanical properties of CNT-reinforced
epoxy composites (Alian et al. 2015a, 2015b; Kumar et al. 2014; Li et al. 2012).
The analytic forms (Upot) of the energy expressions utilized in the CVFF are given
below:

Upot D Ubond CUangle C Udihedral C Uimproper C UvdW C UCoulomb (3.4)
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Fig. 3.5 Schematics of the different bonded CVFF terms: (a) bond length, (b) bond angle, (c)
torsion angle, (d) inversion angle

where Ubond, Uangle, Udihedral, Uimproper are the bonded interactions which represent
the respective energy of deformation of bond lengths, bond angles, torsion angles,
and inversion angles, UvdW and UCoulomb are the non-bonded interactions which
represent the respective van der Waals (vdW) and electrostatic interactions. The
components of the potential energy due to the bonded interactions are shown in
Fig. 3.5.

3.2.2 Molecular Modeling of Pull-Out Simulation

3.2.2.1 Molecular Structure of CNTs with Defects and Functionalization

The molecular structures of five different types of possible defects and one type
of CNT functionalization considered are presented in Fig. 3.6. All defects are
assumed to form onto the sidewall of an armchair (9, 9) SWCNT. As can be seen
in Fig. 3.6a–c, monovacancy, bivacancy, and trivacancy were formed by removing
one-, two-, and three-bonded carbon atoms from the pristine SWCNT, respectively.
A single adatom presented in Fig. 3.6d is an interstitial defect formed by an
extra carbon that is covalently bonded to two adjacent carbon atoms. The SW
defect shown in Fig. 3.6e is formed via a 90ı rotation of the carbon–carbon bond,
transforming four hexagons into two pentagons and heptagons (5-7-7-5). Finally,
Fig. 3.6f shows the phenyl functional group (�C6H5) which is end-grafted to the
sidewall of the CNT. The phenyl group contains a benzene ring, which typically
exists in epoxy resins. The associated change in geometry of the atoms is that the
phenyl group becomes perpendicular to the sidewalls of CNTs and the hybridization
of the bonded atom is changed from sp2 to sp3.

Five different defects in CNTs and one case of functionalization were considered
in our research; as follows: (1) CNTs with 3, 6, 9, 12, 15, 18 monovacancies; (2)
CNTs with 2, 3, 4, 5, 6, 7, 8, 9 bivacancies; (3) CNTs with 1, 2, 3, 4, 5, 6 trivacancies;
(4) CNTs with 4, 8, 12 adatoms; (5) CNTs with 5, 10, 15 SW defects; and (6)
Functionalized CNTs using 3, 6, 9 phenyl functional groups. The positions of the
defects and functionalization were randomly located on the sidewalls of the CNTs.
The simulation for each case was repeated three times, and the ISS results were
averaged and curve fitted.
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Fig. 3.6 Geometries of CNTs containing different defects and functionalization: (a) monova-
cancy, (b) bivacancy, (c) trivacancy, (d) single carbon adatom defect, (e) SW defect, and (f) phenyl
group functionalization

Fig. 3.7 Chemical structures of (a) epoxy resin (DGEBA), (b) curing agent (TETA), and (c) cured
epoxy oligomer (6 DGEBA molecules connected by 1 TETA). (The hydrogen, carbon, oxygen, and
nitrogen atoms of the epoxy chain are presented by white, gray, red, and blue colors, respectively)

3.2.2.2 Cured versus Uncured Polymer

The polymer used was a specific two-component epoxy resin based on a diglycidyl
ether of bisphenol A (DGEBA) epoxy and triethylene tetramine (TETA) curing
agent, which is typically used in the aerospace industry. Different degrees of
conversion were introduced by analyzing both uncured and cured epoxy composites.
Cured epoxy system was developed during the curing process by forming covalent
bonds between the hydrogen atoms in the amine groups of the curing agent and the
epoxide groups of the epoxy. As shown in Fig. 3.7, each epoxy oligomer consists of
six DGEBA molecules connected by one TETA molecule so that the resin-hardener
weight ratio in the epoxy polymer is equal to 100:16.7. Finally, 33 epoxy oligomers
were packed into the RVE using Packmol software (Martínez et al. 2009) to obtain
an appropriate density, and the final structure of the RVE is visualized by VMD
(Humphrey et al. 1996) as shown in Fig. 3.8a. For the uncured epoxy matrix, the
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Fig. 3.8 Preparation of the RVE (a) SWCNT embedded in 33 randomly placed cured epoxy
oligomers in a simulation box of size 150 � 150 � 45 Å, and (b) the compressed SWCNT-epoxy
system in a simulation box of size 50 � 50 � 42 Å

same numbers of individual DGEBA and TETA as the cured system were used to
generate the RVE. The uncured state means that there is no curing process in the
epoxy matrix and no covalent bonds were formed between the DGEBA and TETA.

3.2.2.3 Construction of Nanocomposite RVE

In order to conduct the pull-out simulations of a CNT from an epoxy matrix, an RVE
was built to contain an SWCNT embedded at the center of the RVE and the epoxy
polymer molecules. In the current MD simulations, periodic boundary conditions
were applied in the x- and y-directions, while the z-direction was non-periodic and
shrink-wrapped. The time step used in the MD simulations was selected to be 1 fs
for all MD simulations, and a cutoff distance of 12 Å was used to model vdW
interactions. The main steps involved in preparing both the uncured and cured epoxy
composites are as follows:

Step 1–Volume reduction: Since Packmol software treats molecules as rigid
bodies, the size of the RVE was initially enlarged to accommodate all the epoxy
molecules and the CNT atoms. Subsequently, the RVE was compressed gradually
through seven steps from its initial dimensions of 150 � 150 � 45 Å to the targeted
size of 50 � 50 � 42 Å, resulting in the appropriate density of the RVE. At each
stage, the CNT was “frozen,” and the coordinates of the epoxy atoms were remapped
to fit inside the compressed box. The potential energy of the compressed box was
then minimized using the conjugate gradient method. The final compressed box is
demonstrated in Fig. 3.8b.

Step 2–Equilibration: The compressed box was initially equilibrated for 2 ns
in the isothermal-isobaric (NPT) ensemble at 300 K and 1 atm using the Nose–
Hoover algorithm to evenly distribute the molecules due to the volume reduction.
The equilibrium was ensured by using the following temperature cycle protocol.
Two stepwise NPT cycles of heating and cooling (from 400 K to 300 K by a step
of 25 K) were performed with each step occupying 10 ps. This was followed by a
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simulation in the NPT ensemble for 1 ns at 300 K and 1 atm to generate an epoxy
system with an appropriate CNT-matrix interfacial thickness. The final equilibrated
density was found to be 0.94 g/cm3, which is slightly less than expected due to the
non-periodic boundary in the z-direction of the RVE.

3.2.3 Molecular Modeling of Compressive Load Simulation

3.2.3.1 Molecular Structure of CNTs with Defects

It is expected that defects have an influence on buckling behavior of CNTs, since
buckling is very sensitive to geometric imperfections. However, it is crucial to
understand the severity of the effect of different defects on the buckling behavior
of CNTs. For CNTs with vacancy and SW defect, several factors can be presumed
to influence buckling such as the number and location of defects, the number of
vacancy clusters, and the distribution of these vacancy clusters. In order to examine
the contribution of these factors, the defect configurations given in Fig. 3.9 are
investigated. Specifically, vacancies coded as (1A), (2B), and (3A) are symmetric
monovacancy, bivacancy, and trivacancy, respectively. Vacancies coded as (2C)
and (2B) are asymmetric bivacancy and trivacancy, respectively. Both vacancies
coded as (1B) and (1C) contain two monovacancies. The monovacancies (1B) locate
exactly opposite to each other while the monovacancies (1C) locate towards one side
of the nanotubes. Symmetric and asymmetric SW defects are coded as (1SW-A) and
(1SW-B), respectively. Armchair (7, 7), (9, 9) and zigzag (12, 0) SWCNTs with the
same aspect ratio of 6.5 were considered here. Two types of armchair SWCNTs were

Fig. 3.9 Defects studied in this research (0A—pristine, 1A—monovacancy, 1B—two symmet-
rically distributed monovacancies, 1C—asymmetrically distributed two monovacancies, 2B—
symmetric bivacancy, 2C—asymmetric bivacancy, 3A—symmetric trivacancy, 3B—asymmetric
trivacancy, 1SW-A—symmetric SW defect, 1SW-B—asymmetric SW defect)
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repeated to confirm the simulation results, and zigzag (12, 0) SWCNTs were chosen
to have similar diameters to armchair (7, 7) SWCNTs. All defects were assumed to
form onto the sidewall of SWCNTs. The defects were introduced approximately at
the middle of the nanotubes since defects at the mid-length are proven to reduce
buckling strain and buckling load to the greatest (Parvaneh et al. 2009; Wang et al.
2008).

3.2.3.2 Construction of Freestanding CNT and Nanocomposite RVE

It should be emphasized that the objective of the present chapter is to investigate
the buckling behavior of an embedded CNT within a matrix and not the buckling
behavior of the CNT-reinforced nanocomposites. Thus, both freestanding CNTs
and CNT-epoxy nanocomposites were prepared here with the view to understand
the influence of matrix material on the buckling of defective CNTs. To prepare
freestanding armchair (7, 7), (9, 9) and zigzag (12, 0) SWCNTs for compression,
the SWCNTs were initially minimized in terms of total potential energy using the
conjugate gradient method. This was followed by canonical (NVT) equilibration at
300 K for the duration of 50 ps using a time step of 1 fs. The boundary condition
was kept non-periodic in all three directions, and vdW interactions were truncated
at a cutoff distance of 12 Å.

For the buckling simulation of embedded CNTs, the epoxy system was the same
as the one for the pull-out analysis. In this MD simulation, periodic boundary
conditions were applied in x- and y-directions, while periodicity was removed in
z-direction. The time step used in the MD simulation was selected to be 1 fs, and a
cutoff distance of 12 Å was used to model vdW interactions. The same parameters
were followed for different RVEs containing different armchair (7, 7), (9, 9) and
zigzag (12, 0) SWCNTs. For example, the main steps involved in preparing the
buckling simulation for the (7, 7) pristine SWCNT-epoxy nanocomposites are as
follows:

Step 1–Volume reduction: Since Packmol software treats molecules as rigid
bodies, the size of the RVE was initially enlarged to accommodate all the epoxy
molecules and the CNT atoms. Subsequently, the RVE was compressed gradually
through seven steps from its initial dimensions of 150 � 150 � 62 Å to the targeted
size of 50 � 50 � 62 Å, resulting in the appropriate density of the RVE. At each
stage, the CNT was “frozen,” and the coordinates of the epoxy atoms were remapped
to fit inside the compressed box. The potential energy of the compressed box was
then minimized using the conjugate gradient method.

Step 2–Equilibration: The compressed box was initially equilibrated for 2 ns
in the isothermal-isobaric (NPT) ensemble at 300 K and 1 atm using the Nose–
Hoover algorithm to distribute the molecules evenly due to the volume reduction.
The equilibrium was ensured by using the following temperature cycle protocol.
Two stepwise NPT cycles of heating and cooling (from 400 to 300 K by a step
of 25 K) were performed with each step occupying 10 ps. This was followed by a
simulation in the NPT ensemble for 1 ns at 300 K and 1 atm to generate an epoxy
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system with the appropriate CNT-matrix interfacial thickness. The final equilibrated
density of the SWCNT-epoxy RVE was found to be 0.95 g/cm3, which is slightly
less than expected due to the non-periodic boundary in the z-direction of the RVE.

3.3 Molecular Dynamics Simulation

3.3.1 Pull-Out Simulation

3.3.1.1 CNT Pull-Out Method

The MD pull-out numerical experiments were carried out to determine the ISS
of the epoxy nanocomposite systems considered. In the existing pull-out studies,
mainly two types of approaches are used to conduct MD pull-out simulations:
the displacement pull-out approach (Chen et al. 2015; Li et al. 2011; Zheng et
al. 2008, 2009) and the velocity pull-out approach (Wernik et al. 2012, Meguid
et al. 2010; Wernik and Meguid 2011). For the displacement pull-out approach,
the CNT is pulled out a certain distance. This is followed by an equilibration to
ensure that the CNT-polymer system reaches equilibrium prior to the next CNT
pull-out. This process is repeated until the CNT is completely out of the matrix.
In terms of the velocity pull-out approach, the CNT is pulled out a small distance
each step continuously until it is completely out of the matrix. Xiong and Meguid
(2015) found that these two approaches produced very similar pull-out results
if the simulation parameters were properly adjusted. Hence, in this chapter, we
employed only the velocity pull-out approach, thanks to the less time spent on
the MD simulations. In order to prevent the simultaneous drift of the epoxy with
the CNT in the z-direction during the pull-out process, one edge of the epoxy
molecules was constrained (shown in red in Fig. 3.10). The constrained system
was further equilibrated in the NVT ensemble at 300 K for 50 ps to avoid the
effect of the constraint on the final results. The composition of the RVE prior to
the pull-out process of the pristine CNT is listed in Table 3.1. Subsequently, the
edge atoms of the CNT, which are marked in green in Fig. 3.10, were pulled out
at a uniform velocity of 1 � 10�4 Å/fs at 300 K in the NVT ensemble until the
CNT was completely pulled out from the matrix. During the pull-out process, the
driving forces formed by the CNT edge atoms pulled out the remaining CNT atoms
in the z-direction. Since the interactive deformation of the CNT and the epoxy
atoms were enabled, our method can accurately capture the effect of each defect
and functionalization on the interfacial load transfer mechanisms in a deformable
epoxy polymer matrix.



88 X. Peng and S.A. Meguid

Fig. 3.10 Setup for pull-out simulation of a CNT from the epoxy matrix

Table 3.1 Composition of nanocomposite RVE immediately before pristine CNT pull-out simu-
lation

CNT Epoxy Composites
Chiral
vector Length (Å) Radius (Å)

No. of
chain X (Å) Y (Å) Z (Å)

Density
(g/cm3)

Total number
of atoms

(9,9) 38.120 5.752 33 52.323 52.323 51.111 0.94 11,238

3.3.1.2 Evaluation of ISS

There are four theories in the literature regarding the location along the CNT where
the ISS is the largest. Natsuki et al. (2007) and Zhang and Wang (2005) proposed
that the ISS be the largest at the pull-out end of the CNT and decays nearly
exponentially with the nanotube depth into the polymer (model A in Fig. 3.11a).
In contrast, Gao and Li (2005) suggested that the maximum occurs at both ends of
the CNT but that it is zero at the middle of the nanotube (model B in Fig. 3.11b).
A similar method was used by Li et al. (2011), where they assumed that the ISS
was distributed uniformly within 10 Å from each end of the CNT (model C in Fig.
3.11c). The most common assumption is that the ISS is uniformly distributed along
the entire length of the CNT (Gou et al. 2004; Al-Ostaz et al. 2008) (model D in
Fig. 3.11d).

In model A, the maximum ISS (�), which occurs at the nanotube pull-out end, is
given as (Cox 1952; Chua and Piggott 1985),

� D Fn

2�r2tanh .nL=r/
(3.5)
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Fig. 3.11 Different proposed distribution of ISS: (a) exponential decay of ISS, (b) dominant ISS
at CNT ends and decays rapidly, (c) uniform distribution of ISS near CNT ends, and (d) uniform
ISS for the entire length of CNT

where F is the pull-out force, r is the radius of the CNT, L is the embedded initial
length of the CNT into the matrix, n is a parameter given by n D

q
Em

Ent.1Cvm/ log. t
2r /

,

in which Em is the polymer’s Young’s modulus, vm is its Poisson’s ratio, Ent is the
nanotube’s Young’s modulus, and t is the total thickness of the polymer film. Most
numerical simulations used models C and D to estimate the ISS, since it is easy to
calculate. In model C, the ISS is defined by,

� D F

4�ra
(3.6)

which assumes that the ISS is distributed at both ends of the CNT, and where a is
the length along the CNT over which the ISS is distributed.

For model D, there are two approaches: force approach and energy approach, to
calculate the ISS in the literature. In terms of the force approach, the ISS can be
calculated from the pull-out force, as follows:

� D F

2�rL
(3.7)

The energy approach adopted in Gou et al. (2005), Zheng et al. (2009) and Yang
et al. (2015) is the most common approach used to predict the ISS of CNT-reinforced
composites. Since the work required to pull the CNT out is attributed to the shear
force between the CNT and the matrix, the ISS can be calculated from the pull-out
work (Wpull � out), as follows:
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Wpull�out D
Z L

0

2�r .L� z/ �idz D �rL2� (3.8)

where z is the pull-out distance from the initial position to the final position of the
CNT.

Hence, in this chapter, we will adopt the energy approach to estimate the ISS.
The pull-out work is usually defined as the variations in the potential energy of the
entire system after and prior to the pull-out process, as follows:

Wpull�out D Efinal
potential � Einitial

potential (3.9)

The potential energy of the nanocomposite can be described as follows:

Etotal D Ecnt C Eepoxy C Einteraction (3.10)

where Ecnt, Eepoxy, and Einteraction are the potential energy of the CNT and epoxy as
well as the interaction energy between the CNT and epoxy matrix, respectively.
However, some researchers (Zheng et al. 2008, 2009; Yang et al. 2015; Jang
et al. 2013) argue that the change in the total potential energy includes both the
potential energy variations of the CNT and the epoxy which do not contribute to the
calculation of ISS. Therefore, in order to obtain more accurate and reliable ISS, the
change in the CNT–matrix interaction energy is considered as the pull-out work, as
follows:

Wpull�out D Echange
interaction D E

final

interaction � Einitial
interaction (3.11)

Both of these pull-out work definitions are used to calculate the ISS, and their
application conditions are discussed in this chapter. Since most of the atoms in
the CNTs are electrically neutral and there are no bonded interactions between
the CNT and the matrix, the CNT–matrix interaction energy is mostly attributed
to non-bonded vdW interactions. Several researchers (Gou et al. 2004, 2005) also
determined the interfacial binding energy � between a CNT and the matrix which
serves as another reliable indicator of the effect of defects and functionalization on
the nanocomposites. The interfacial binding energy � per unit area can be obtained
from the interaction energy (Einteraction) scaled by twice the instantaneous contact
area,

� D Einteraction

2A
(3.12)

where A is the instantaneous contact area at each pull-out step.
Since the dimensional changes of CNTs containing defects and functional groups

influence the ISS, the diameter and length of defective and functionalized CNTs
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Table 3.2 Equilibrium
length and radius of CNTs
according to different types
and numbers of modified sites

Defect type No. of defects 300 K
Radius (Å) Length (Å)

Pristine 5.752 38.120
Monovacancy 3 5.756 38.208

6 5.762 38.297
9 5.775 38.345
12 5.776 38.466
15 5.794 38.507
18 5.799 38.612

Bivacancy 2 5.758 38.197
3 5.752 38.201
4 5.750 38.254
5 5.754 38.253
6 5.762 38.254
7 5.763 38.267
8 5.769 38.308
9 5.782 38.323

Trivacancy 1 5.758 38.146
2 5.754 38.122
3 5.749 38.272
4 5.757 38.229
5 5.761 38.245
6 5.761 38.183

Adatom 4 5.761 38.187
8 5.772 38.258
12 5.780 38.313

SW 5 5.758 38.071
10 5.743 38.091
15 5.758 38.006

Phenyl group 3 5.760 38.230
6 5.759 38.156
9 5.766 38.182

after the equilibration of epoxy systems were used in all of our MD simulations.
The new averaged dimensions of CNTs are summarized in Table 3.2. Compared
with the pristine CNT, only the length of SW defective CNT decreases, whereas the
diameter and length of other CNTs increase.
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Fig. 3.12 Setup for the buckling simulations of (a) freestanding SWCNT, and (b) SWCNT
embedded in the epoxy matrix

3.3.2 Compressive Load Simulation

3.3.2.1 CNT and RVE Compressive Load Method

The MD compression simulations were carried out to determine the critical
buckling strain and buckling load of both freestanding SWCNTs and SWCNT-
epoxy nanocomposite systems. To prevent the simultaneous drift of the SWCNT
and epoxy atoms in the z-direction during the compression process, we constrained
one end of the freestanding SWCNT and the RVE (shown in red in Fig. 3.12).
In order to avoid the effect of the constraint on the final results, the constrained
systems were further equilibrated in the NVT ensemble at 300 K for 50 ps. The
composition of the freestanding SWCNTs and RVEs containing different SWCNTs
prior to the compression process is listed in Table 3.3. After the equilibration was
complete, an incremental displacement of 0.01 Å was applied on the other end of
the freestanding SWCNTs and RVEs, which are marked in green in Fig. 3.12. After
each increment, the systems were relaxed for a period to achieve a new equilibrium
state while keeping the two ends constrained. The loading was repeated at 300 K in
the NVT ensemble until the buckling occurred. Similar to the pull-out simulation,
our method can capture the effect of each defect accurately on the buckling behavior
of CNTs embedded in a deformable epoxy polymer matrix.

3.3.2.2 Evaluation of Buckling Behavior

As for the assessment of buckling behavior, the strain energy-strain and force-
displacement curves for the pristine SWCNTs are shown in Fig. 3.13a, b, respec-
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Table 3.3 Composition of freestanding SWCNTs and RVEs containing different SWCNTs
immediately before compression simulations

SWCNT Epoxy Composites
Chiral
vector Length (Å) Radius (Å)

No. of
chain X (Å) Y (Å) Z (Å)

Density
(g/cm3)

Total number
of atoms

(7, 7) 55.89 4.46 – – – – – 700
(9, 9) 72.11 5.73 – – – – – 1152
(12, 0) 56.68 4.39 – – – – – 696
(7, 7) 55.47 4.48 44 52.47 52.47 66.79 0.95 14,868
(9, 9) 71.70 5.75 57 52.21 52.21 87.05 0.97 19,506
(12, 0) 55.97 4.45 44 52.47 52.47 67.12 0.94 14,864

Fig. 3.13 (a) Strain energy-strain curves; (b) force-displacement curves for different pristine
freestanding and embedded SWCNTs

tively. The critical buckling state is detected by a sudden drop of strain energy or
force. This sudden drop is associated with significant structural and geometrical
changes of CNTs (shown in Fig. 3.14) corresponding to the release of energy in
CNTs. It can be seen in Fig. 3.14 that different pristine SWCNTs with an aspect
ratio of 6.5 buckle sideway with the occurrence of a flattening at the center, which is
recognized in the literature as being “beam-shell buckling mode.” It is a mixture of
globalized beam-like buckling for a long and slender CNT and localized shell-like
buckling within the atomic layer of a short CNT. In agreement with the findings
of Wang et al. (2010, 2014), we conclude that CNTs with aspect ratios more than
6 exhibit beam-shell buckling mode, such as a single beam while preserving its
circular cross section with localized shell buckling within the atomic layer. From
Fig. 3.13a, it is observed that the strain energy can be approximately expressed as a
quadric function of the strain before the singularity happens in each curve, viz.:

U D 1

2
EAL"2 (3.13)
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Fig. 3.14 Buckling mode shapes of the freestanding SWCNTs (a) (7, 7), (b) (9, 9), and (c) (12, 0)

where U, E, A, L, and " are the strain energy, Young’s modulus, cross-sectional
area, original length, and strain of the nanotubes, respectively. This indicates that
the SWCNTs sustain elastic deformation under a compressive force in accordance
with Hooke’s law until bifurcation. Note that in Fig. 3.13a the critical buckling strain
is defined as the strain at which the strain energy of the simulated SWCNT registers
its first sudden drop in value. We can also see in Fig. 3.13b that the compressive
force which the SWCNTs can withstand increases almost linearly with the axial
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displacement until the buckling load is reached. Accordingly, this relationship can
be formulated as

F D EA

L
�L (3.14)

where F is the compressive force and �L is the end-shortening displacement. As it
is shown in Fig. 3.13b, there are two values of axial load P at the critical buckling
state. The upper value of P at the critical buckling state is defined as the critical
buckling load Pcr and the corresponding end-shortening displacement is defined as
the critical buckling displacement �cr. Coincident with the value obtained through
strain energy, the critical buckling strain "cr can also be calculated by dividing �cr

with the original length L of CNT.

3.4 Results and Discussions

3.4.1 Analysis of Pull-Out Simulation

3.4.1.1 MD Model Validation

Figure 3.15 shows a snapshot of the respective pull-out process of a pristine
CNT from uncured and cured epoxy matrices. We can see that debonding takes
place among the uncured epoxy molecules in close proximity to the CNT-matrix
interfaces, and that a substantial number of uncured epoxy molecules are attached
to the CNT. However, in the cured case, no epoxy molecules are pulled out along

Fig. 3.15 Schematics of the pull-out processes of pristine CNT embedded in (a) uncured epoxy
matrix and (b) cured epoxy matrix
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Fig. 3.16 (a) Potential energy and (b) interaction energy variations in pristine CNT with pull-out
distance

with the CNT. The respective variations in the total potential energy and interaction
energy of the uncured and cured CNT-epoxy systems are shown in Fig. 3.16. The
zero point of the potential energy is taken as the position where the CNT is pulled
out from the matrix completely. Note that the fluctuation in the potential energy of
the system is attributed to the rearrangement of molecules in the RVE, and they are
fitted using dashed polynomial curves. It can be observed from Fig. 3.16a that the
potential energy of the cured system changes from approximately �1000 Kcal/mol
to zero at full pull-out, while the corresponding uncured system changes from
approximately �700 Kcal/mol to zero again at full pull-out of the CNT from the
matrix. This is because the pull-out work is transferred into an increase in the
potential energy of the system as the pull-out process proceeds. The reduced level of
the change in potential energy of the uncured system can be explained in Fig. 3.15a.
The figure shows that some of the uncured molecules are attracted back to the RVE
due to vdW forces. And, this happens before the CNT is pulled out completely
from the matrix. Since no epoxy molecules are pulled out from the cured epoxy
system, the potential energy of the matrix and CNT remains almost constant. This
is demonstrated by the very similar variation in the interaction energy of the cured
system in Fig. 3.16b. We can also see in Fig. 3.16b that the initial interaction energy
magnitude of the uncured system is larger than that of the cured one. However,
the final interaction energy of the uncured system does not change to zero as some
epoxy molecules are attached on the pull-out CNT.

Based on the change in the total potential energy, the ISS of the uncured and
cured epoxy composites was determined to be 198 and 250 MPa, respectively. The
higher ISS of the cured system is because the epoxy resin is strengthened by the
crosslinked structures developed during the curing process. Since the CNT does not
interact with the epoxy matrix after the CNT is pulled out completely, the change
in the interaction energy is equal to the initial CNT–matrix interaction energy. By
applying the initial interaction energy, we found that the ISS of cured systems is
very similar to the ISS based on the total potential energy. However, the ISS of the
uncured system becomes 277 MPa, which is unreasonably high because it ignores
the energy expended in deforming the polymer during the pull-out test. Thus, we
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decide to use the determination based on the total potential energy to calculate
the ISS accurately while keeping the ISS based on the initial interaction energy
for comparison. The current ISS estimates for the pristine CNTs were found to be
in good agreement with those of existing MD pull-out studies with some minor
discrepancies due to the use of the different forcefields used in the simulations.
For instance, Bohlén and Bolton (2013) used COMPASS forcefield to calculate the
ISS via a new approach which assumed that the ISS was distributed uniformly
within 10 Å from each end of the SWCNT, but was zero at the middle of the
nanotube. The ISS of an SWCNT-polyvinylidene fluoride system resulting from
their approach was found to be 214.4 MPa compared with 250 MPa from the
current chapter. Chowdhury and Okabe (2007) used MD simulations to examine
the effect of polymer matrix density on the ISS. The carbon–carbon interaction in
the CNT was modeled using Brenner potential while AMBER potential was used
for the polymer matrix. The ISS was calculated to be 245 MPa for an SWCNT-
PE composite with a density of 0.97 g/cm3. Chowdhury et al. (2010) then used the
same potential to study the effect of vacancy defects on the ISS of SWCNT-PE
composites. They reported ISS reaching 300 MPa for a nanocomposite reinforced
with pristine SWCNTs.

Figure 3.17 shows the relative concentrations of all atoms and sp2 aromatic
carbon atoms monitored as a function of the distance from the center of the CNT
before and after crosslinking. We can see in Fig. 3.17a that the relative concentration
of all atoms for the uncured matrix near the CNT is higher than the cured one. The
increase in the relative concentration is because a less crosslinked structure allows
more conformational freedom for the matrix to interact favorably with the CNT.
Enhanced conformational flexibility allows a more favorable and denser packing
of matrix atoms with the CNT. Moreover, Fig. 3.17b reveals that it is the relative
concentration of the sp2 carbon atoms that plays a major role in the CNT–matrix
interaction energy. Such factors can improve the initial interaction energy at the
CNT-epoxy interface, leading to overestimation of the ISS of the uncured system.
Figure 3.18 compares the aromatic ring distribution near the CNT in the uncured

Fig. 3.17 Spatially averaged concentration profiles versus distance from the center of the CNT
before and after curing to 50% conversion (a) for all atoms and (b) for sp2-hybridized carbon
atoms
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Fig. 3.18 Aromatic ring distribution near the CNT in (a) uncured epoxy matrix and (b) cured
epoxy matrix

and cured systems schematically. The red circles highlight typical aromatic ring
conformation near the CNTs. We can see that aromatic rings in the uncured epoxy
matrix are preferentially aligned parallel to the surface of the CNT, which optimizes
 -stacking. The curing of the epoxy matrix sterically works against the aromatic
rings lying flat on the surface of the CNT, reducing the interaction energy induced
by  –  attractions at the CNT-epoxy interface. This chapter examines the relative
concentration of the sp2 carbon atoms to investigate the resulting interface properties
better.

3.4.1.2 Effect of Vacancy Defects upon ISS

The variations in the ISS of uncured and cured nanocomposite systems containing
a defective CNT with different numbers of missing atoms are depicted in Fig.
3.19. This figure reveals that the ISS of the cured systems decreases as the number
of missing atoms in the CNTs increases irrespective of the type of these defects.
Since the potential energy of the epoxy and CNT does not alter very much for the
cured systems, the interaction energy becomes the major contributor to the ISS.
The vdW interaction between the CNT and the matrix solely contributes to the
interfacial interaction energy. Thus, and as expected, the vdW interaction energy
is reduced as a result of increasing number of vacancy defects in the CNT, which
will eventually degrade the ISS. From Fig. 3.20a–c, it is clear that the relative
concentrations of sp2 carbon atoms near the CNT decrease with the increase in the
number of vacancy defects irrespective of the type of defect. An increasing number
of vacancy defects decreases the number of sp2 carbon atoms in the CNT, which in
turn reduces the ISS induced by –  attractions. Unlike the cured systems, Fig. 3.19
shows that the number of vacancies in the uncured systems does not affect the ISS.
This observation can be explained by the very low shear strength in the uncured
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Fig. 3.19 Variations in ISS with number of missing atoms

Fig. 3.20 Relative concentrations of sp2 carbon atoms for (a) different monovacancies after
curing, (b) different bivacancies after curing, and (c) different trivacancies after curing

systems. Similar to the uncured pristine CNT system, the debonding takes place
initially among the epoxy molecules near the CNT-matrix interface during the pull-
out process. Therefore, it is predominantly the uncured epoxy molecules rather than
the CNT-epoxy interface that governs the shear strength of the interface. In addition,
based on the initial interaction energy, the ISS of the uncured systems in Fig. 3.19
is unreasonably higher than the ISS of the cured systems due to the ignorance of the
matrix deformation energy.
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Our results in Fig. 3.19 also reveal that for the same number of missing atoms,
different types of vacancy defects have almost the same effect on the ISS of the cured
systems. We can see that the ISS for various types of vacancies decline at a similar
rate and are overlapped for the most part of the curves. Therefore, it can be deduced
that the decrease in the ISS is independent of the defect type. The fluctuation of
the ISS is possibly due to the different distribution of vacancies within the CNTs
and the surrounding epoxy molecules. A total of 18 missing atoms were considered
in this chapter, and the average maximum percentage of decrease in the ISS of the
cured epoxy matrix was found to be 7.0%.

Our findings generally agree with the earlier work of Yang et al. (2015), but their
work used COMPASS forcefield to study SWCNTs embedded in thermoplastic (PE)
systems with no crosslinked structures. They reported 4.71% reduction of the ISS
for 9 missing atoms. Chowdhury et al. (2010) examined three patterns of vacancy
defects with different sizes and distributions; considering up to 8 missing atoms.
They found a maximum reduction in ISS of about 5.33%, 5.00%, and 6.00% for
one-atom, two-atom, and line vacancies, respectively. Furthermore, the weakened
interfacial load transfer ability at the nanotube-matrix interface often leads to a
decrease in mechanical properties of nanocomposites. For instance, Xiao and Hou
(2006) used MD simulations to investigate the effect of a two-atom vacancy defect
on the fracture of CNT-aluminum(AL) composites. As compared with pristine
CNT-AL composites, the fracture stress and fracture strain of defected CNT-AL
composites reduced by 36% and 57%, respectively. In general, it was found that
defected CNT with a small volume fraction cannot reinforce but instead weaken
nanocomposite materials. Joshi et al. (2011) investigated the effect of pinhole
defects on mechanical properties of wavy CNT-based nanocomposites using RVE as
well as Halpin–Tsai equations. They observed that the presence of 7 pinhole defects
with each containing 24 atoms on a wavy nanotube can reduce the longitudinal
elasticity modulus of the composite by 0.93% when compared with CNT without
pinhole defects, and the elasticity modulus decreases with the increase in the number
of pinhole defects. Sharma et al. (2014) used MD simulations to study the effects
of vacancy defects on SWCNT-polypropylene composites. Results showed that one
vacancy defect with 16% SWCNT volume fraction reduces both Young’s modulus
and shear modulus by 13% and 34%, respectively.

Figure 3.21 exhibits the interfacial binding energy of cured epoxy systems for the
respective monovacancy, bivacancy, and trivacancy defects in CNTs obtained from
the CNT–matrix interaction energy divided by twice the instantaneous contact area,
as defined in Eq. (3.12). In all cases, the magnitude of interfacial binding energy
increases gradually as the CNT is pulled out from the matrix. The increase in the
interfacial binding energy is due to the reduction in the contact area between the
CNT and matrix during the pull-out process. Furthermore, it can be observed that
the magnitudes of the interfacial binding energies in the case of vacancy defects
in CNTs are initially smaller and then exceed that of pristine CNTs as the pull-out
distance of the CNT increases. The snapshots of the pull-out process depicted in Fig.
3.22 reveal that some of the epoxy molecules entered in the vacancy defective CNT
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Fig. 3.21 Variation in
interfacial binding energy
between vacancy defective
CNTs and cured epoxy
matrix with pull-out distance

Fig. 3.22 Cross sections of the pull-out processes for pristine and vacancy defective CNT in cured
epoxy matrix at z D 30 Å: (a) pristine, (b) 6 monovacancy, (c) 10 bivacancy, and (d) 12 trivacancy

through their uncapped ends, leading to the enhancement of the interaction energy
during the pull-out process. This results in a prominent increase in the interfacial
binding energy of vacancy defective CNT during the pull-out process.



102 X. Peng and S.A. Meguid

Fig. 3.23 Variation in ISS with number of adatom defects

Fig. 3.24 Relative
concentrations of sp2 carbon
atoms for different adatoms
after curing

3.4.1.3 Effect of Carbon Adatom upon ISS

Unlike the cured cases of vacancy defects, adatom defects have only marginal
influence on the ISS of the cured epoxy composites, as depicted in Fig. 3.23. This
observation can be explained in terms of the rehybridization and the total number
of carbon atoms in the adatom defective CNTs. Newly introduced carbon atoms
rehybridize the adjacent carbon atoms and replace 2 sp2 by 3 sp3 carbon atoms.
Although adatom defective CNTs have more carbon atoms, the unchanged ISS
indicates that the interaction energy due to 3 sp3 carbon atoms is similar to that due
to 2 sp2 carbon atoms. As showed in Fig. 3.24, the concentrations of sp2 carbons are
almost the same for different number of adatoms in the cured matrix. This also helps
to shed light on the marginal influence of adatom defects. Additionally, it is evident
from Fig. 3.23 that adatom defective CNTs embedded in the uncured system have
very similar ISS, which is analogous to the uncured case of vacancy defects. We can
also see that, without considering the matrix deformation energy, the method using
the interaction energy still overestimates the ISS as expected.
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Fig. 3.25 Variation in
interfacial binding energy
between adatom defective
CNTs and cured epoxy
matrix with pull-out distance

Our results are generally consistent with those reported by Yang et al. (2015), but
their studies focused on thermoplastic (PE) systems without crosslinked structures.
They found that adatom defects marginally increase the ISS by 1.14%, and they
further demonstrated that the PE molecules are more effectively adsorbed on the
sidewall of the adatom defective CNT than on the pristine CNT. Other researchers
also studied the effect of other types of interstitial atoms on nanocomposites.
For instance, Pavia and Curtin (2011) used MD simulations of a pull-out test to
investigate the degree of interfacial coupling/adhesion between diamond matrix
and CNTs. The interfacial behavior was captured using modified REBO potential
through interstitial carbon atoms located in the interface, which can form and break
bonds with both the matrix and CNT atoms. The total friction force is directly
proportional to the number of interstitial carbon atoms along the interface, and the
frictional stresses are high, reaching several GPa. Hence, the composite strength and
toughness of such materials are expected to be greatly improved relative to materials
with no covalent bonds at the interface. Pavia and Curtin (2013) further studied the
response of CNT and interface to the matrix crack impingement as a function of
the interface strength influenced by the number of interstitial carbon atoms. They
simulated an annular crack propagating through a diamond matrix and impinging on
the interface with a pristine SWCNT and DWCNT. The results showed that weaker
interfaces fail in shear, while stronger interfaces do not fail, and instead the CNT
fails once the stress acting on the CNT reaches its tensile strength. The transition
from interface debonding to CNT fracture was found to depend on the interface and
CNT strength.

Figure 3.25 shows the variations in the interfacial binding energies with the pull-
out distance for the cured epoxy matrix. Analogous to the case of vacancy defects,
the interfacial binding energies increase with the increase in the pull-out distance,
and they further exceed that of pristine CNTs for larger pull-out distances. The
prominent increase in the interfacial binding energy can be explained by the fact
that carbon adatoms on the sidewalls of the CNTs act like a spike, protruding in the
surrounding epoxy molecules, which tends to pull out epoxy molecules of the RVE
during the pull-out process, as shown in Fig. 3.26.
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Fig. 3.26 Cross section of
the pull-out process for 12
adatom defective CNT in
cured epoxy matrix at
z D 30 Å

Fig. 3.27 Variation in ISS with number of SW defects

3.4.1.4 Effect of SW Defect upon ISS

In contrast to the vacancy and adatom defects, the ISS of epoxy nanocomposite
reinforced with CNTs containing SW defects increases as the number of SW
defects increases for the cured epoxy systems, as depicted in Fig. 3.27. Note
that the formation of SW defect involves neither missing carbon atoms nor the
rehybridization of these atoms in the CNTs. In this case, four hexagons are
transformed into two pentagons and two heptagons for a single SW defect. It may
be observed from Fig. 3.27 that the increase in the ISS of the cured systems is
6.0%. Since the growth in the number of SW defects increases the concentrations
of sp2 carbons near the CNT (Fig. 3.28), it can be concluded that the increase in
the ISS results from the increase in  –  attractions at the CNT-matrix interface. In
addition, the ISS in the uncured matrix tends to be unvaried. This again is caused by
the relatively low shear strength of the uncured epoxy systems. Due to the lack
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Fig. 3.28 Relative
concentrations of sp2 carbon
atoms for different SW
defects after curing

of the energy expended in deforming the polymer during the pull-out test, it is
expected that the ISS based on the interaction energy for the uncured systems is
again overestimated in Fig. 3.27.

Our results are in agreement with the observation made by Yang et al. (2015),
though their work was concerned with thermoplastic (PE). They studied the effect
of SW defects on the ISS of SWCNT-PE composite and found that the percentage
increase in the ISS ranged from 0.71% to 7.14%. Zhou and Shi (2003) helped
to explain the increase in the ISS by using a first-principle discrete variational
method to estimate the binding energy of foreign atoms attached to CNTs with
and without an SW defect. They found that SW defective CNT improves the
binding energy magnitude by about 0.5 eV for some foreign atoms compared
with the pristine CNT. This would improve the adsorption of the polymer matrix
onto the CNTs. However, the overall mechanical properties of SW defective CNT-
reinforced composites degrade, since SW defects reduce the mechanical properties
of CNTs. For instance, Mahboob and Islam (2013) studied the effect of SW defects
on the mechanical properties of composites reinforced with SWCNTs using MD
simulations. Their results showed that the longitudinal Young’s modulus of the
SWCNT-PE composites is strongly dependent on the number of SW defects and
CNT volume fraction. They found that SW defects reduce the longitudinal Young’s
modulus of the SWCNT-PE composites by 12%. Sharma et al. (2014) also used MD
simulations to investigate the effect of SW defects on the elastic stiffness of CNT-PP
composites. They found that the percentage decrease in moduli is greater for CNTs
with SW defects in comparison to vacancy defective CNTs, and one SW defect with
16% SWCNT volume fraction decreases both Young’s modulus and shear modulus
by 16% and 44%, respectively.

Figure 3.29 shows the variations in the interfacial binding energies for the SW
defective CNTs in the cured epoxy matrix against the CNT pull-out distance. Unlike
the vacancy and adatom defective cases, the magnitudes of the interfacial binding
energies of this case are larger than that of the pristine CNTs, and the energy
difference increases with the increase in the pull-out distance. This is attributed
to the stronger adhesion effect of SW defective CNTs. Figure 3.30 shows the cross
section of the cured CNT-epoxy nanocomposite. It can be observed from Fig. 3.30
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Fig. 3.29 Variation in
interfacial binding energy
between SW defective CNTs
and cured epoxy matrix with
pull-out distance

Fig. 3.30 Cross section of
the pull-out process for 12
SW defective CNT in cured
epoxy matrix at z D 30 Å

that some epoxy molecules adjacent to the sidewall of SW defective CNT are pulled
out together with the CNT leading to an enhanced CNT–matrix interaction energy.
This increase in the interaction energy leads to the increased interfacial binding
energy difference between SW defective and pristine CNTs.

3.4.1.5 Effect of Phenyl Functional Group upon ISS

In this section, we establish the effect of functionalization on the ISS of CNT-
epoxy nanocomposites. Figure 3.31 shows that the ISS increases dramatically
with the increase in the number of the phenyl group functionalization on the
sidewalls of the CNTs for the cured epoxy composites. Noteworthy is the fact
that the carbon atoms of the CNTs are directly bonded to the phenyl group which
changes the hybridization from sp2 to sp3, and this formation of the phenyl group
functionalization adds more atoms to the original CNTs. Moreover, Fig. 3.32
shows that the relative concentrations of sp2 carbons increase as the number of
phenyl groups increases. This also results in the increase in the ISS induced by
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Fig. 3.31 Variation in ISS with number of phenyl groups

Fig. 3.32 Relative
concentrations of sp2 carbon
atoms for different phenyl
groups after curing

�–� attractions. Therefore, the increased ISS is mainly attributed to the additional
vdW interactions between the attached phenyl groups and the epoxy molecules.
Unsurprisingly, phenyl functional groups do not improve the ISS of the uncured
systems due to the same reasons mentioned above. As expected in Fig. 3.31, the
negligence of the matrix deformation energy for the uncured systems results in the
overestimation of ISS.

It can be observed from Fig. 3.31 that the ISS of the cured epoxy composites
increases by 11.5% in comparison with the pristine CNT. Our results are also found
to be generally comparable with those reported in the literature despite different
matrix materials and simulation techniques (Fig. 3.33). However, most of them
only paid attention to cured epoxies or thermoplastics (PE) with no crosslinked
structures. For example, Sharma et al. (2015) examined the effect of functionaliza-
tion using ethylene-di-amine (E-NH2) functional group on the interfacial bonding
characteristics of CNT-epoxy composite. They found that the amine functionalized
SWCNT increases the ISS twice the pristine SWCNT. Xiao et al. (2015) studied
the effects of different functionalization schemes on the interfacial strength of
SWCNT-PE systems. They also found that the respective ISS is improved by 8.89%,



108 X. Peng and S.A. Meguid

Fig. 3.33 Variations in
interfacial binding energy
between functionalized CNTs
and cured epoxy matrix with
pull-out distance

12.22%, and 31.11% for three types of alkyl groups (C5H11/C10H21/C15H31). Zheng
et al. (2008) studied the influence of chemical functionalization on the interfacial
bonding characteristics of SWCNT-reinforced polymer composites using MM and
MD simulations. The simulations showed that phenyl functional group occupying
only 5% of the nanotube carbon atoms drastically increases the ISS by about 1000%.
Zheng et al. (2009) also used pull-out simulations to investigate the interfacial
bonding characteristics between SWCNTs, on which –COOH, �CONH2, �C6H11,
or –C6H5 groups were chemically attached, and the PE matrix. They found that the
ISS for –C6H11 and –C6H5 functionalized groups increases 3 times and 17 times
compared with the pristine SWCNT, whereas the ISS for –COOH and –CONH2

functionalized groups has an almost identical value to that of the pristine SWCNT.
Chen et al. (2008) performed MD simulations to study the effect of chemical
functionalization on the wrapping ability of the polyphenylacetylene (PPA) polymer
chains. They concluded that the SWCNTs modified by methyl or phenyl groups can
be well-wrapped by PPA, while the SWCNTs modified by other types of groups
such as hydroxyl or –F cannot. The results also indicated that the interaction energy
between the SWCNTs and PPA increases with the increase in the concentration of
functionalized groups.

Unlike conventional fiber-reinforced polymer composites, CNTs offer large areas
for load transfer. However, due to their unique electrical and structural properties,
CNTs tend to agglomerate and aggregate and does not bond strongly with their host
matrix. Therefore, the potential increase in mechanical properties of CNT-reinforced
composites is limited by the degree of interfacial stress transfer. We can see from the
above-mentioned results that surface modification of CNTs enhances the nanotube-
matrix interfacial bonding. Besides, the modifications can also improve the CNTs’
solubility and dispersibility in their nanocomposites by acting as shells to separate
CNTs. Many researchers (Park and Bandaru 2010; Zou et al. 2008; Zhu et al. 2004;
Tseng et al. 2007; Sun et al. 2008; Chen et al. 2006; Bekyarova et al. 2007) have
investigated the effects of CNT functionalization on the mechanical properties of
nanocomposites. They found that functionalized CNTs enhance the elastic modulus
and tensile strength of nanocomposites, while other structural characteristics such
as toughness decrease.
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Fig. 3.34 Cross section of
the pull-out process for 9
phenyl group functionalized
CNT in cured epoxy matrix at
z D 30 Å

The interfacial binding energies of the functionalized CNTs for the cured epoxy
systems (depicted in Fig. 3.41) are initially larger and present more prominent
energy changes than that of the pristine CNTs as the pull-out process progresses.
Similar to the SW defect, the initial larger interfacial binding energy is attributed to
the stronger adsorption effect of the functionalized CNTs. Furthermore, the presence
of a greater number of phenyl groups introduces additional molecular interactions,
leading to a dramatic increase in the interfacial binding energy. It may be observed
from Fig. 3.34 that a significant portion of the epoxy molecules are pulled out
with the CNT during the pull-out process, indicating a stronger adhesion of the
functionalized CNT with the epoxy matrix.

3.4.2 Analysis of Compressive Load Simulation

3.4.2.1 Effect of Vacancy Defect upon Freestanding SWCNTs

This section focuses on exploring the effect of different vacancy defects on the
buckling behavior of freestanding SWCNTs. Based on the foregoing definitions
of Sect. 3.3.2.2, buckling strain and buckling load of the pristine SWCNTs are
obtained in Table 3.4. We can see that the armchair SWCNT (7, 7) possesses very
similar buckling capacity compared to the zigzag SWCNT (12, 0) with the same
length and diameter. However, the buckling strain of the armchair SWCNT (9, 9) is
smaller than that of the armchair SWCNT (7, 7) despite the same aspect ratio. The
reverse is seen when the buckling load is considered. Our results are consistent
with those reported by other researchers. For instance, Wang et al. (2014) used
MD simulations to study a broad range of armchair SWCNTs based on AIREBO
potential. Their results showed that the buckling strain is in the range of 0.0131–
0.0734 and the buckling load varies from 18.6 to 86.8 nN. Zhang et al. (2009c)
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Table 3.4 Comparison of buckling behavior of freestanding defective SWCNTs against the
buckling behavior of freestanding pristine SWCNTs

CNT type
CNT
configuration

Buckling
strain

% reduction
w.r.t. pristine
CNT

Buckling load
(Kcal/mol-Å)

% reduction
w.r.t. pristine
CNT

(7, 7) 0A 0.095 1276 (89 nN)
1A 0.091 4.3 1208 5.3
1B 0.084 11.3 1178 7.7
1C 0.090 5.0 1140 10.7
2B 0.094 0.7 1134 11.1
2C 0.090 5.8 1215 4.8
3A 0.092 3.0 1094 14.2
3B 0.085 10.2 1145 10.2
1SW-A 0.093 2.5 1130 11.5
1SW-B 0.092 3.5 1224 4.0

(9, 9) 0A 0.091 1560 (108 nN)
1A 0.086 4.7 1520 2.6
1B 0.086 5.4 1575 –0.9
1C 0.087 4.3 1566 –0.3
2B 0.089 1.6 1513 3.0
2C 0.087 3.7 1543 1.1
3A 0.087 4.2 1418 9.1
3B 0.086 4.8 1556 0.3
1SW-A 0.085 6.3 1489 4.6
1SW-B 0.089 1.4 1506 3.5

(12, 0) 0A 0.094 1222 (85 nN)
1A 0.090 4.6 1199 1.8
1B 0.083 11.7 1148 6.0
1C 0.087 7.3 1104 9.7
2B 0.090 4.3 1163 4.8
2C 0.091 3.6 1174 3.9
3A 0.093 0.8 1122 8.2
3B 0.085 9.7 1117 8.6
1SW-A 0.097 –3.1 1021 16.4
1SW-B 0.091 3.3 1138 6.8

and Wang et al. (2010) also found that the nonlocal cylindrical shell model predicts
comparable results compared with MD simulation results for SWCNTs with short
aspect ratios (L/d < 8). The buckling strain can reach up to 0.1 when the aspect ratio
is close to 5. Zhang et al. (2006b) investigated the effect of chirality on the buckling
behavior of SWCNTs. They reported that the influence of chirality can be neglected
for SWCNTs with relatively larger chiral angles.

Next, we turn our attention to the effect of vacancy defects on the buckling
behavior of freestanding CNTs. Fig. 3.35 shows the strain energy-strain and the
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Fig. 3.35 (a, c, e) Strain energy-strain curves; (b, d, f) force-displacement curves for different
freestanding defective SWCNTs

force-displacement curves for the armchairs (7, 7), (9, 9) and zigzag (12, 0) defective
SWCNTs. The buckling strain and buckling load obtained based on Fig. 3.35 are
compared with the pristine SWCNTs and are tabulated in Table 3.4. The buckling
modes of different defective SWCNTs are depicted in Fig. 3.14. It is interesting
to observe that the buckling modes of various defective SWCNTs are similar to
that of the pristine SWCNTs where one flattening is formed at the mid-length. In
order to study the effect of missing atoms, only the symmetric vacancies (1A),
(2B), and (3A) are analyzed here. It can also be seen from the results that the
monovacancy (1A) has the lowest buckling strain, but increasing the number of
missing atoms decreases the buckling load irrespective of the chirality of SWCNTs.
It is easy to understand that monovacancy is superior to bivacancy and trivacancy
because the defective area induced by the monovacancy is obviously smaller.
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However, by taking a closer look at the buckling shapes in Fig. 3.14, monovacancy
tends to develop a flattening kink close to the defect, leading to excessive stress
concentration. This makes the local buckling occur easily at the defect position.

The vacancies (2B), (2C), (3A), and (3B) are considered next to study the effect
of symmetric and asymmetric configurations on the buckling behavior. The results
for armchair SWCNTs in Table 3.4 indicate that asymmetric vacancies, compared
with symmetric vacancies, cause a higher reduction in the buckling strain but not in
the buckling load. This can be explained by Fig. 3.14 that asymmetric vacancies
develop flattening kinks near the defect, which expedites the occurrence of the
buckling. Those kinks serve to withstand more loads and increase the buckling load
accordingly. However, a difference can be observed between armchair and zigzag
SWCNTs. For zigzag SWCNTs, asymmetric vacancies reduce both the buckling
strain and buckling load, and the buckling behavior is most affected by trivacancies.
This may be due to the special bond structure of zigzag CNTs. The third focus here
is on the effect of vacancy distribution on the buckling behavior of CNTs. Hence,
we studied the nanotubes with vacancies (1B) and (1C). The results in Table 3.4
indicate that the vacancy (1B) has lower buckling strain but higher buckling load
than the vacancy (1C). As shown in Fig. 3.14, this again occurs as a result of the
positions of kinks relative to the defects. Since the monovacancies in (1B) locate
exactly opposite to each other, the kinks tend to develop near the defects, leading to
excessive stress concentration. This makes the vacancy (1B) easier to buckle than
the vacancy (1C) but allows the vacancy (1B) to withstand higher loads for both
armchair and zigzag SWCNTs.

3.4.2.2 Effect of Missing Atoms upon Embedded SWCNTs

In this section, we examine the effect of missing atoms on the buckling behavior
of SWCNTs embedded in the epoxy matrix. Embedded pristine SWCNTs are
initially taken as a reference to compare with freestanding pristine SWCNTs. Figure
3.13a, b shows the strain energy-strain and the force-displacement curves for the
embedded pristine SWCNTs in comparison with pristine stand-alone SWCNTs.
Table 3.5 shows the buckling strain and buckling load obtained from Fig. 3.13.
Interestingly, the surrounding epoxy matrix significantly reduces resistance to
buckling of SWCNTs by up to 43%. The reason for the embedded CNTs to have
lower resistance to buckling than their freestanding counterparts is the uneven
atomic forces exerted by the surrounding matrix atoms. These atomic forces deform
the CNTs unevenly, leading to easier occurrence of buckling. The buckled shapes
in Fig. 3.36 show that the embedded pristine CNT displays only pure shell-like
buckling modes, where two flattenings referred to as “fins” by Yakobson et al.
(1996) that are perpendicular to each other are formed. This is because the atomic
forces exerted by the surrounding matrix atoms provide some form of confinement,
preventing the CNTs from buckling sideway. The buckling shape transformation
may also lead to the reduction in the buckling behavior.
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Table 3.5 Comparison of buckling behavior of embedded defective SWCNTs against the
buckling behavior of embedded pristine SWCNTs

Embedded
CNT type

CNT
configuration

Buckling
strain

% reduction
w.r.t. pristine
CNT

Buckling load
(Kcal/mol-Å)

% reduction w.r.t.
pristine CNT

(7, 7) 0A 0.071 979 (68 nN)
1A 0.051 28.9 710 27.5
1B 0.050 30.0 676 30.9
1C 0.053 25.0 629 35.7
2B 0.054 24.4 712 27.3
2C 0.047 34.5 629 35.7
3A 0.057 20.1 756 22.7
3B 0.043 40.2 576 41.2
1SW-A 0.059 17.0 784 19.9
1SW-B 0.052 27.4 690 29.6

(9, 9) 0A 0.052 912 (63 nN)
1A 0.043 18.4 733 19.6
1B 0.042 19.4 733 19.6
1C 0.049 7.3 768 15.8
2B 0.044 15.9 771 15.4
2C 0.045 15.1 762 16.4
3A 0.044 15.5 631 30.8
3B 0.043 17.9 722 20.8
1SW-A 0.048 7.6 866 5.1
1SW-B 0.042 19.5 749 17.9

(12, 0) 0A 0.070 959 (67 nN)
1A 0.053 24.9 711 25.9
1B 0.042 39.7 564 41.2
1C 0.053 24.1 680 29.1
2B 0.052 25.9 678 29.3
2C 0.049 30.6 614 36.0
3A 0.052 26.2 656 31.6
3B 0.046 35.1 605 36.9
1SW-A 0.056 20.7 750 21.8
1SW-B 0.051 26.9 699 27.2

We now proceed to study the buckling of nanotubes with different missing
atoms (1A), (2B), and (3A) embedded in the epoxy matrix. Figure 3.37 shows
the strain energy-strain and the load-displacement plots for the defective embedded
nanotubes discussed above. As demonstrated in Table 3.5, both the buckling strain
and buckling load increase as the number of missing atoms increases. The maximum
reductions in the buckling strain and buckling load are 29% and 31%, respectively,
which is also higher than what we observed in freestanding defective armchair
SWCNTs. This may be explained by the buckled shapes depicted in Fig. 3.36; the
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Fig. 3.36 Buckling mode shapes of the embedded SWCNTs (a), (7, 7), (b) (9, 9) and (c) (12, 0)

first buckling mode occurs only on one side of the SWCNTs near the missing atoms,
which are neither beam-like nor shell-like buckling modes. These buckled modes
depicted in Fig. 3.36 result in excessive stress concentration for monovacancies,
leading to a minima of both the buckling strain and the buckling load. However, an
exception can be observed for the (9, 9) SWCNT with the trivacancy (3A) which
has the lowest buckling load. A closer look at the buckled shape of (3A) reveals
that it displays the shell-like buckling mode due to its longer nanotube. This may
contribute to a reduction in the buckling load. In contrast to the embedded defective
armchair SWCNTs, Table 3.5 shows that both the buckling strain and buckling load
for the embedded defective zigzag SWCNTs decrease with an increasing number of
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Fig. 3.37 (a, c, e) Strain energy-strain curves; (b, d, f) force-displacement curves for different
embedded defective SWCNTs

missing atoms. This reveals that more missing atoms in zigzag SWCNTs have more
negative influence on the buckling behavior despite similar buckling shapes to the
embedded defective armchair SWCNTs.

3.4.2.3 Effect of Vacancy Symmetry and Distribution upon Embedded
SWCNTs

First, let us focus on the effect of symmetric and asymmetric vacancy configurations
(2B), (2C), (3A), and (3B) on the buckling behavior of embedded SWCNTs. It
can be seen in Table 3.5 that asymmetric vacancies generally reduce the buckling
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behavior of both armchair and zigzag SWCNTs when compared with symmetric
vacancies. This is different from corresponding freestanding armchair nanotubes,
where the buckling load is increased due to the presence of kinks in asymmetric
vacancies. Compared with the symmetric vacancies, asymmetric vacancies further
reduce the buckling strain and buckling load by 5–20%. The reason for the
discrepancies may be because embedded defective SWCNTs display different
buckling modes in Fig. 3.36, where the nanotubes only narrow at one side while
keeping their cylindrical shapes at the other side. The position of the narrowing is
close to the vacancies. However, due to the longer length in (9, 9) nanotubes, the
buckling behavior of the bivacancies (2B) and (2C) is very similar to each other.
They tend to buckle in a shell-like way similar to the embedded pristine SWCNTs.

Second, let us devote our attention to the effect of vacancy distribution (1B)
and (1C) on the buckling behavior of embedded SWCNTs. Unlike the case of
freestanding SWCNTs, both the buckling strain and buckling load of the SWCNTs
containing the vacancy (1C) (see Table 3.5) are increased when compared with
those of the SWCNTs containing the vacancy (1B) irrespective of the chirality of
SWCNTs. This may be due to the different buckling modes presented in Fig. 3.36,
which are similar to the previously investigated embedded SWCNTs. It is worth
noting that there exists an anomaly for the buckling load of the (7, 7) SWCNT with
the vacancy (1C). It is clear from Fig. 3.37b that the (7, 7) SWCNT with the vacancy
(1C) does not show an abrupt drop in the load-displacement curve. We can see that
the vacancy in the (7, 7) SWCNT helps to delay the occurrence of buckling, which
increases the buckling strain, although the buckling load is still relatively low.

3.4.2.4 Effect of SW Defect upon Freestanding and Embedded SWCNTs

As shown in Table 3.4, the SW defects reduce the buckling capacity of SWCNTS
in general. Similar to the vacancy symmetry of freestanding SWCNTs, asymmetry
results in lower buckling strain but generally requires higher buckling load irrespec-
tive of the chirality of SWCNTs. It is noted in Fig. 3.14 that kinks tend to locate close
to the asymmetric SW defect (1SW-B). This leads to excessive stress concentration,
which expedites the occurrence of the buckling, and the kinks help to withstand
more loads, increasing the buckling load.

The second part of this section studies the SW defects (1SW-A) and (1SW-B) of
embedded SWCNTs. The embedded SWCNTs containing asymmetric SW defects
(1SW-B) have lower buckling strain and buckling load (see Table 3.5) regardless
of the chirality of SWCNTs. The maximum decreases in the buckling strain and
buckling load are 22% and 30%, respectively, which are higher than the reduction
found in their freestanding counterparts. The buckling modes for the embedded
SW defective SWCNTs are similar to other embedded SWCNTs. Moreover, if we
compare the buckling behavior of SW defective SWCNTs with vacancy defective
SWCNTs in Table 3.5, it is evident that the SW defects (1SW-A) have the least effect
on the buckling behavior of embedded SWCNTs. By contrast, the degradation effect
of embedded SW defective SWCNTs (1SW-B) is very similar to the corresponding
embedded vacancy defective SWCNTs.
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3.5 Conclusions

In the first part of the chapter, we provided a detailed account of the effect of intrinsic
defects and functionalization in CNTs upon the interfacial properties of CNT-
reinforced composites. Different modeling and calculation techniques pertinent to
CNT pull-out tests are presented, and proper selection of the simulation parameters
are discussed. The main conclusions of the pull-out studies are summarized as
follows:

(1) Deformation energy of defective CNT-reinforced polymers needs to be taken
into account to obtain accurate ISS of uncured epoxy polymers.

(2) Among all the defects and functionalization, the influence of vacancy defects
on the ISS was found to be significant. Moreover, the influence of the same
number of missing atoms on the ISS was found to be almost identical.

(3) Adatom defects have only marginal effect on the ISS. The ISS increased for the
cured epoxy systems as the number of SW defects increases.

(4) In the case of phenyl groups, the ISS of the cured systems increases due to the
additional vdW interactions generated as a result of functionalization.

(5) Uncured epoxy systems have lower ISS than cured ones, and defects and
functionalization do not affect the ISS very much.

The second part of this chapter is to conduct a quantitative analysis of the
degradation of buckling behavior due to various types of defects (vacancy and SW
defect) using MD simulations. Both freestanding and embedded SWCNTs with
different size and chirality ((7, 7), (9, 9), and (12, 0)) were simulated and the results
were compared with each other to understand the effect of epoxy matrix atoms. To
understand the factors affecting the degree of degradation of buckling behavior, we
investigated several defect configurations including the number of missing atoms,
symmetry, and vacancy distribution. The main conclusions of the compressive load
studies are summarized as follows:

(1) Defects generally either increase or decrease the buckling strain of freestanding
and embedded SWCNTs at the same time. However, compared with those of
freestanding SWCNTs, the buckling strain and buckling load for embedded
SWCNTs are reduced when SWCNTs are confined in an epoxy matrix.

(2) Increasing number of missing atoms generally reduces the buckling load of
freestanding SWCNTs; however, a higher number of missing atoms increases
the buckling load of embedded armchair SWCNTs because the compressive
force is partly supported by the kinks developed during buckling.

(3) The buckling load of freestanding SWCNTs is increased by asymmetric
vacancy and SW defects, but the same defects decrease the buckling load of
embedded SWCNTs due to different buckling modes.

(4) Freestanding SWCNTs containing asymmetric vacancy distribution have lower
buckling load because of the positions of kinks relative to the defects, but the
opposite is true for embedded SWCNTs in general.
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To sum up our findings, the defective and functionalized CNTs in cured epoxy
systems can lead to increased ISS and improved load transferability. However, the
presence of defects in the CNTs would ultimately result in a decrease in the effective
elastic properties of the nanocomposites. A trade-off between the degradation in
the mechanical properties of the defective CNTs and the improvement in the
ISS of the resulting multifunctional nanocomposite systems should be carefully
considered and addressed. Also, different buckling behaviors are seen between
freestanding and embedded CNTs in the presence of various defects. We cannot
rely on defect studies focusing only on the buckling of freestanding CNTs when
designing CNT-reinforced nanocomposites. It is hoped that the findings in this
chapter could contribute to deciding the expected strength from a certain sample of
CNT-reinforced nanocomposites, if the degradation of buckling strain and buckling
load due to different defects is known. Therefore, this chapter is also believed to be
helpful in designing multifunctional nanocomposites.
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Chapter 4
Electrical Conductivity of Carbon Nanotube-
and Graphene-Based Nanocomposites

Yang Wang and George J. Weng

Abstract Carbon nanotube- and graphene-based polymer nanocomposites are
known to have exceptional electrical conductivity even at very low filler loading.
In this chapter we present a widely useful composite model for studying this
property. This model has the capability of determining both the effective electrical
conductivity and the percolation threshold of the nanocomposites. It also embodies
several other important elements of the process of conduction, including filler
loading, filler agglomeration, anisotropic property of carbon fillers, effect of
imperfect interfaces, and the contribution of electron tunneling. The backbone of
the model is the effective-medium theory with a perfect interface; it can demonstrate
the percolation feature and can also comply with the Hashin-Shtrikman bounds. To
study the influence of filler agglomeration, a two-scale approach is further proposed.
The imperfect interface is incorporated into the model by the introduction of a thin,
weak interface surrounding each inclusion. To account for the effect of electron
tunneling, Cauchy’s statistical distribution function is further introduced to reflect
the increased activity of electron tunneling at and after the percolation threshold. It
is demonstrated that the theoretical predictions based on the developed model are in
close agreement with available experimental data.

4.1 Introduction

With the growth of nanotechnology in recent years, a new kind of nanocomposites
has emerged for their enhanced mechanical, thermal, and electrical performance.
This class of nanocomposites generally consists of a polymer matrix and various
types of carbon fillers, such as graphite, carbon nanofiber, carbon nanotube (CNT),
and graphene. Two of the most attractive fillers are carbon nanotubes and graphene.
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Both are known to possess very high mechanical stiffness and tensile strength, as
well as exceptional thermal and electrical conductivity. For electrical conductivity,
it can be as high as 106 to 107 S/m for pure CNT and 108 S/m for pure graphene.
These values are comparable to the two best kinds of metal conductor, silver and
copper, which have 6.30 � 107 and 5.96 � 107 S/m, respectively. This remarkable
electrical conductivity is due to the microstructure of CNT and graphene. Graphene
is an allotrope of carbon that comes in the form of a one-atom-thick two-dimensional
layer of sp2-bonded carbon atoms. All atoms are arranged in a honeycomb grid
sheet, so that each one of them is bonded with another three (Allen et al. 2010).
This two-dimensional single-layered graphene sheet is the basic structural element
of other allotropes of carbon. It can be rolled up into a hollow cylindrical structure to
get the one-dimensional CNT, while the honeycomb grid for carbon atoms remains
unchanged (Geim and Novoselov 2007). Since each carbon atom has four electrons
in the outer shell and only three are used to form covalent bonds, there is one
remaining electron that is highly mobile and available for electrical conduction.
As a consequence, both CNT and graphene are highly conductive. In experiments,
their intrinsic electrical conductivities are usually reported on the orders of 103 to
105 S/m. In contrast the electrical conductivity of most polymers is measured on the
orders of 10�15 to 10�8 S/m. This makes the property contrast between the inclusion
and matrix phase on the orders of 1012 to 1018. Therefore the electrical conductivity
of CNT and graphene-based nanocomposites is a high-contrast problem, and it
is significantly different from the classical problem of elastic property in fiber-
reinforced composites where the material property contrast is only on the order
of 102.

Another great feature for CNT and graphene-based nanocomposites is the
percolation phenomenon. As the loading of carbon fillers in the nanocomposites
increases, the growth of overall electrical conductivity does not follow a linear rule
of mixture. Around certain filler concentrations, its value can grow dramatically
for several orders of magnitude, so that the whole composite turns from almost
insulating to highly conductive. This rapid growth of overall electrical conductivity
around a critical filler concentration is the percolation phenomenon, which usually
occurs in composites whose constituent properties have very high contrast. It is also
a transitional stage in which the overall property of the composite shifts from the
property of matrix phase to that of the inclusion phase, and the onset of this transi-
tion is the percolation threshold. At microscopic scale the percolation phenomenon
indicates that the conductive fillers are not surrounded by the insulating matrix
anymore. Instead they have contact with each other; thus a conductive network
is formed and expanded throughout the composite (Nan et al. 2010). The electric
current can now flow into this conductive network, without having to bypass the
barrier of insulating matrix. Therefore the overall electrical conductivity of the
composite is tremendously improved. The value of percolation threshold is mainly
governed by the geometrical structure of the composite. One important parameter
that characterizes this geometrical structure is the aspect ratio (length-to-diameter
ratio) of the inclusion. As mentioned above, graphene has a microstructure of flat
sheet so that it can be treated as a spheroid with a very small (usually less than
0.01) aspect ratio, while the aspect ratio of CNT is very large (usually more than
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100) due to its long cylinder microstructure. Because of these two kinds of extreme
aspect ratios, the percolation thresholds for CNT and graphene fillers are generally
very low. This means that we can achieve highly conductive nanocomposites with
only a small amount of CNT or graphene loading, which is definitely a desirable
characteristic. For example, Gardea and Lagoudas (2014) reported a remarkable
10-order of magnitude increase in the overall electrical conductivity at 0.1 wt.%
of pristine CNTs for a CNT/epoxy nanocomposite. He and Tjong (2013) prepared
a graphene/polyvinylidene fluoride nanocomposite with a percolation threshold of
0.31 graphene vol.%, while the graphene/polyethylene nanocomposite fabricated
by Pang et al. (2010) had an even lower 0.07 vol.%. In short, with high property
contrast and extreme aspect ratios, CNTs and graphene are the ideal reinforcements
for nanocomposites that can substantially enhance the overall electrical conductivity
at very low filler loading.

Because of these geometrical similarities, one can study CNT- and graphene-
based nanocomposites together under the same theoretical framework, with only
a slight difference being their very long cylinder and thin plate structure. The
theoretical study of CNT and graphene-based nanocomposites involves two major
issues: (1) the determination of the overall electrical conductivity and (2) the
determination of percolation threshold. In retrospect, many investigations have been
separately made upon these two issues. For the first one, a simple and widely
used empirical model for calculating the effective electrical conductivity, 
e, is the
scaling law with the dependence on filler concentration c1, as (e.g., Bauhofer and
Kovacs 2009)


e D 
0
�
c1 � c�

1

�t
; (4.1)

where c�
1 is the percolation threshold and 
0 and t are the two fitting parameters.

This model offers an easy way of curve fitting with the experimental data, but it gives
no insights into the physical mechanism of the conduction process. More advanced
models that have been developed from the perspective of micromechanics are later
brought into the study of electrical conductivity. They can incorporate the issues
such as the volume concentration, shape, and orientations of carbon fillers. Among
these models, the most widely used ones include the Mori–Tanaka (M–T) method
(Mori and Tanaka 1973), the Ponte Castañeda-Willis (PCW) model (Castañeda
and Willis 1995), and Bruggeman’s effective-medium approach (Bruggeman 1935).
A comprehensive development of the M-T method was provided by Weng (1984)
and Benveniste (1987) in the elastic context and by Hatta and Taya (1985) and Nan
et al. (1997) for thermal conductivity. The PCW model was also originally devel-
oped for the elastic properties and was applied to thermal and electrical conductivity
by Duan et al. (2006) and Pan et al. (2011), respectively. As the PCW model could
easily go out of the Hashin–Shtrikman (H–S) upper bound (Hashin and Shtrikman
1962) beyond certain inclusion concentration, Pan et al. (2011) also suggested
using the H–S upper bound to guide the development of electrical conductivity
after PCW model hit the bound. The effective-medium approach is a symmetric
version of the self-consistent method that is also called the coherent potential
approximation. It has a realizable microstructure and treats both the inclusion and
matrix on equal, symmetric footing. With spherical inclusions it was first applied by
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Landauer (1952) to study the effective electrical conductivity of a metallic mixture
with spherical particles. In the mechanical context, it was first developed by Hill
(1965) and Budiansky (1965). It should be noted that many notable contributions
to the study of electrical conductivity have been made in recent years under the
framework of micromechanics. For instance, Xie et al. (2008) adopted another form
of the self-consistent method, which relied solely on the average field concentration
of the randomly oriented ellipsoids, to compare the electrical conductivity between
composites reinforced by CNT and graphene nanosheets. Deng and Zheng (2008)
provided an analytical model with the consideration of the percolation probability
of CNT inclusions. Seidel and Lagoudas (2009) and Feng and Jiang (2013) both
used the composite cylinder method to solve for the electric fields in a microscale
representative volume element. All these works have provided significant insights
for the physical principle of conduction process and the microstructure of the
nanocomposites.

The determination of percolation threshold has also been extensively studied by
both numerical methods and some analytical models. Due to the random orientation
and distribution of carbon fillers, Monte Carlo (MC) simulations, such as the
works by Li and Chou (2007) and Ma et al. (2010), have often been invoked
to numerically investigate the percolation threshold. However MC simulation is
computationally expensive. There are other theoretical approaches that focus on the
geometry of percolation network. For instance, Balberg et al. (1984) considered 3-D
randomly oriented sticks combined with their associated average excluded volume,
Bao et al. (2013) randomly generated cylinder models in the representative volume
and proposed a percolating network recognition scheme with periodic boundary
conditions, and Chatterjee (2013) used a polydisperse system of rods with the help
of Bethe lattice site percolation model. These models have the merit of providing
analytical results for the percolation threshold, but they are under a totally different
theoretical framework from the micromechanics theories. Some of the preceding
continuum composite models have to borrow the percolation threshold from other
numerical results; it implies that such composite models are not self-contained
to be able to cover the overall electrical conductivity and percolation threshold
simultaneously. This is an issue that we want to avoid here. In what follows, we
will show that, in our continuum model, the percolation threshold is an integral part
of the continuum theory can be directly derived.

There are some additional problems that affect the overall electrical conductivity
and percolation threshold of CNT and graphene-based nanocomposites. We con-
sider three important ones: (1) the filler agglomeration, (2) the imperfect interface
effect, and (3) the effect of electron tunneling. The first problem is related to
the inhomogeneous dispersion state of carbon fillers in the composite. In certain
cases a lot of CNT or graphene fillers tend to cluster together to form many filler
agglomerations. Inside each agglomerate, carbon fillers are highly dense, more so
than the rest of the composite. This phenomenon can be observed from various TEM
images of CNT and graphene-based nanocomposites. It is mainly caused by the
different processing routes of CNT and graphene samples. For instance, graphene
can be produced by the liquid-phase exfoliation of graphite, or by the thermal
reduction of graphite oxide. The former gives more dispersed graphene samples
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while the latter results in more graphene agglomerations. Filler agglomerations
change the microstructure of the nanocomposites, so it is necessary to investigate
its effect on the overall electrical conductivity and percolation threshold. A few
experimental results—including those by Martin et al. (2004), Hernández et al.
(2009), Aguilar et al. (2010)—have suggested that CNT agglomerations could favor
the formation of CNT conductive network and improve the effective electrical con-
ductivity. A theoretical study by Li et al. (2007a, b) has treated CNT agglomerations
to be of spherical shape and calculated the percolation threshold based on the
corresponding inter-particle distance. However it was not capable of predicting the
overall electrical conductivity, so a thorough theoretical analysis of the effect of filler
agglomeration was not completed. To this end, we will adopt a two-scale approach
as suggested by Barai and Weng (2011) in the study of CNT-based metal plasticity
to address the issue of filler agglomeration.

The second problem—the imperfect interface effect—has a long history in the
study of composite materials. In general the bonding between the inclusion and
matrix is not ideally perfect, and there exists a weak interface that could diminish
the overall property of the composite. In the context of thermal conductivity, Dunn
and Taya (1993), Duan and Karihaloo (2007), and Nan et al. (1997) have extended
the micromechanics formulation to account for the imperfect interface condition.
Hashin (2001) also proposed a generalized theory for the imperfect interface of
conduction, dielectric behavior, and permeability. A common theoretical treatment
for an imperfect interface is to model it as a thin interphase between two constituent
phases. Compared with the original inclusion, the interphase has lower electrical
conductivity, or in terms of its counterpart, higher electrical resistivity. With a
diminishing thickness, the interphase becomes a layer of interface surrounding the
original inclusion, so that it turns into a thinly coated inclusion. The overall electrical
conductivity of this coated inclusion is lowered due to the interfacial resistance of
the interface layer, and this signifies the effect of imperfect interfaces. The last
problem on the effect of electron tunneling has received less attention from the
continuum perspective. But it has been numerically studied by MC simulations,
such as the works by Bao et al. (2012) and Li et al. (2007a, b). MC simulations
are highly computational, while our objective is to develop a continuum scheme
that could have both simplicity and wide applicability. Electron tunneling is a
quantum mechanical effect that electrons can jump from one carbon filler to another
adjacent one, over the barrier of an insulating polymer matrix. It gives rise to
the tunneling-assisted interfacial conductivity which could enhance the overall
electrical conductivity of the nanocomposite. This contribution is incorporated
into our model by reducing the interfacial resistance. Finally, considering the
probabilistic nature of electron hopping, the reduction of interfacial resistance is
further characterized by Cauchy’s statistical distribution function. In this way, the
effects of imperfect interfaces and electron tunneling can all be taken into account.

In the following we will first introduce the effective-medium theory to determine
the overall electrical conductivity of a nanocomposite with a perfect interface.
This will be followed with the derivation of percolation threshold. Then the
effects of filler agglomeration, imperfect interface, and electron tunneling will be
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subsequently added into the model. To verify the applicability of the developed
model, three sets of experimental data on CNT and graphene-based nanocomposites
will be analyzed and compared with the calculated results.

4.2 The Theory

4.2.1 Effective-Medium Theory with a Perfect Interface

The microstructure of CNT and graphene-based nanocomposites can be conceived
to be a two-phase composite, with carbon fillers as the inclusions and polymer
binder as the matrix. All inclusions are assumed to have spheroidal shapes. CNT
inclusions correspond to prolate spheroids with high aspect ratios. Compared with
long cylindrical CNTs, a prolate spheroidal CNT will possess almost the same
shape when its aspect ratio is sufficiently large. Similarly, graphene inclusions are
represented by oblate spheroids with very low aspect ratios, and they can recover the
flat sheet graphene model when their aspect ratios are close to zero. The dispersion
state of CNT and graphene inclusions is considered to be homogeneous and their
orientations are totally random. This microstructure is schematically shown in
Fig. 4.1. As the volume concentration of carbon inclusions increases, it becomes
possible for them to have contact with each other. Those inclusions in touch can
form a percolating path as shown by the red dashed line in Fig. 4.1. All percolating
paths together become a conductive network, so that the electrical current can flow
in this network without having to bypass the insulating matrix. The formation of the
conductive network is exactly the percolation phenomenon at the microscopic scale.

Fig. 4.1 The microstructure of CNT and graphene-based nanocomposites, showing carbon fillers
(black solid line) in the effective medium and three percolating paths (one vertical and two
horizontal, in red dashed line)
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To study this phenomenon by micromechanics, we now introduce the effective-
medium theory. There are several ways to derive this theory. One of the most
attractive ways is to adopt Maxwell’s far-field matching (Maxwell 1891) of the
scattered fields between the two-phase composite and the homogenized effective
medium (Weng 2010). If we denote the moduli tensor of the reference medium
in which the scattered fields of the two-phase composite and the homogeneous
effective medium are to be evaluated by Lr , the moduli tensor of the effective
medium by Le, and those of the matrix and inclusion phase by L0 and L1,
respectively, then the scattered tensor Ti of phase i can be written as

Ti D
h
.Li � Lr/

�1 C SiL�1
r

i�1
; (4.2)

where Si is the Eshelby S-tensor (Eshelby 1957) of ith phase in the reference
medium. Now denote the volume concentrations of the matrix and inclusion phase
by c0 and c1, respectively, then Maxwell’s far-field matching requires that the
scattered fields from the effective medium and the sum of scattered fields from two
individual phases are equal, which leads to TeD c0T0C c1T1, or

h
.Le � Lr/

�1 C SeL�1
r

i�1 D c0
h
.L0 � Lr/

�1 C S0L�1
r

i�1

C c1
h
.L1 � Lr/

�1 C S1L�1
r

i�1
: (4.3)

In the effective-medium approach, the property of the reference medium Lr is
chosen to be equal to that of the effective medium, Le, so that the scattered field
on the left of Eq. (4.3) automatically vanishes. This leads to the final equation for
the effective-medium approach

c0
h
.L0 � Le/

�1 C S0L�1
e

i�1 C c1
h
.L1 � Le/

�1 C S1L�1
e

i�1 D 0: (4.4)

The effective property of this two-phase composite can be obtained by solving Eq.
(4.4) for tensor Le at any given inclusion volume concentration, c1.

In CNT and graphene-based nanocomposites, the moduli tensor for the electrical
conductivity, L, is a second-order tensor, which is defined by

Ji D LijEj; (4.5)

where vector J and E are the electric current density and electric field. In addition,
due to the microstructure of CNT and graphene, their properties are transversely
isotropic, with 3-direction as the symmetric direction, and plane 1–2 as the isotropic
plane (they also coincide with the symmetric direction and isotropic plane of the
spheroidal model of CNT and graphene inclusion). For the polymer matrix, it has
no particular orientation in the microstructure; thus its property is isotropic. As a
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result, the moduli tensors for the polymer matrix, L0, and carbon inclusions, L1,
can be expressed as

L0 D
2

4

0 0 0

0 
0 0

0 0 
0

3

5 ; and L1 D
2

4

1 0 0

0 
1 0

0 0 
3

3

5 ; (4.6)

where 
0 is the electrical conductivity of the polymer matrix, and 
1 and 
3 are that
of carbon inclusions along the in-plane and normal directions. In general, it is much
more conductive along the CNT length and in the graphene plane; thus we have

1
 
3 for CNT inclusions and 
1� 
3 for graphene inclusions. It is convenient
to introduce a constant m to describe this anisotropy relation as 
1Dm
3, so that
m < 1 for CNT and m > 1 for graphene. Still both 
1 and 
3 are much larger than

0, since the polymer is an electrically insulating material. Likewise, the Eshelby
S-tensor for the two phases, S0 and S1, are also isotropic and transversely isotropic,
respectively, such that

S0 D
2

4
S00 0 0

0 S00 0

0 0 S00

3

5 ; and S1 D
2

4
S11 0 0

0 S11 0

0 0 S33

3

5 : (4.7)

With 3-direction as the symmetric axis of the spheroidal inclusion, the components
of S1 depend on the inclusion aspect ratio, ˛, as

S11 D S22 D

8
ˆ̂
<

ˆ̂
:

˛

2.1�˛2/
3
2

h
cos�1˛ � ˛�1 � ˛2� 12

i
; ˛ < 1

˛

2.˛2�1/
3
2

h
˛
�
˛2 � 1� 12 � cosh�1˛

i
; ˛ > 1

(4.8)

and S33D 1� 2S11 (the sum of all three diagonal components of S-tensor is 1).
For the prolate-shaped CNT, its aspect ratio is always larger than 1, and 0 < ˛ < 1
corresponds to the oblate shape of graphene. When ˛!1 (long fiber), these
components are reduced to S11D S22D 1/2 and S33D 0, and when ˛! 0 (thin
plate), they are reduced to S11D S22D 0 and S33D 1. For spherical inclusions, ˛D 1
and each S-tensor component is 1/3. On the other hand, since S0 is isotropic, it
should carry the same diagonal components in all three directions so that S00D 1/3.
Since the orientations of CNT and graphene inclusions are totally random, the
overall nanocomposites must demonstrate isotropic property, and thus Le carries
the same component 
e in all three directions. At the same time we should also
implement the effective-medium approach with its 3-D random version. Denoting
the orientational average of a tensor by angular brackets, hi, the equation for the 3-D
random effective-medium approach can be written as

c0

�h
.L0 � Le/

�1 C S0L�1
e

i�1�C c1

�h
.L1 � Le/

�1 C S1L�1
e

i�1� D 0: (4.9)
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For any second-order tensor, its orientational average is given by the mean of three
diagonal components times the second-order identity tensor, ıij. Therefore Eq. (4.9)
can be simplified from a tensor equation to a scalar equation as

c0

0 � 
e


e C .1=3/ .
0 � 
e/
C c1

1

3

�
2 .
1 � 
e/


e C S11 .
1 � 
e/
C 
3 � 
e


e C S33 .
3 � 
e/

�
D 0:
(4.10)

Solving this implicit equation for 
e, the effective electrical conductivity of CNT
and graphene-based nanocomposites is then obtained.To explain why the effective-
medium approach is selected as the backbone of our model, we make a comparison
among the effective-medium approach, the M-T method, and the PCW model.
Besides, it is helpful to examine these three models in light of the H-S upper
and lower bounds. Because these two bounds have been widely used as the
maximum and minimum limit for the effective properties of composite materials,
any valid estimation of effective properties should stay within the range of them.
For simplicity, we make a preliminary study of the effective electrical conductivity
of a two-phase composite with isotropic CNT inclusions and polymer matrix (phase
0 for the polymer matrix and phase 1 for the spheroidal CNT inclusion). In this
setting, the M-T and PCW results for the effective electrical conductivity can be
explicitly written as


MT
e


0
D 1C c1T

1 � c1 Œ1 � T= .n � 1/� and

PCW

e


0
D 1C c1T

1 � c1T=3
; (4.11)

where

T D n � 1
3

�
2

1C .n � 1/ S11
C 1

1C .n � 1/ S33

�
: (4.12)

It is noted that S11 and S33 are defined in Eq. (4.8), and nD 
1/
0 is the normalized
electrical conductivity of the CNT inclusion. The results for the H-S upper and lower
bounds (denoted by “C” and “–” sign) are given by


HS.C/
e


0
D 1C .1 � c1/ .1 � n/

.1=3/ c1 .1 � n/C n
and


HS.�/
e


0
D 1C c1 .n � 1/

.1=3/ .1 � c1/ .n � 1/C 1 : (4.13)

Taking nD 1010 and the aspect ratio ˛D 20 as the properties of CNT inclusions, we
calculate the results of effective electrical conductivity given by these three models
and the two H-S bounds and plot them in logarithmic scale in Fig. 4.2. It is seen
that the PCW result quickly goes out of the H-S upper bound at a CNT volume
concentration of c1 < 0.1. In strict applications, this theory is limited to the range
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Fig. 4.2 The examination of the effective-medium approach, the Mori-Tanaka method (Mori and
Tanaka 1973) by Weng (1984, 1990) and Nan et al. (1997), and the Ponte Castañeda-Willis method
(Castañeda and Willis 1995) by Duan et al. (2006) in light of the Hashin and Shtrikman (1962)
bounds

c1 < 1/˛2, which is 0.0025 here, but it can go a bit higher before it hits the H-S
upper bound. This shows that the PCW model cannot properly yield the effective
electrical conductivity over the entire range of c1. In fact it was originally developed
in a mechanical setting where the elastic properties of the inclusion and matrix phase
have very little contrast (usually less than 10 times). But the electrical conductivity
is an extremely high-contrast problem, which would cause the PCW result to have
singularity at certain value of c1. Therefore the PCW model is not suitable to account
for a high-contrast, high aspect ratio problem. Both the effective-medium and the
M-T results are seen to stay within the bounds, but the M-T result has no early
percolation feature. Its curve stays rather flat at low CNT concentration and only
when c1 approaches 1 does it start to grow rapidly, which is close to the trend of
the H-S lower bound. Only the effective-medium result displays a sharp increase at
low CNT concentration and possesses a percolation threshold, which is very close
to the H-S upper bound at low volume concentration but is still always lower than it.
In the microstructure of CNT or graphene nanocomposites, since a large amount
of nanofillers are in contact with each other to form a conductive network, the
CNT or graphene inclusions cannot be considered to be directly “embedded” in the
polymer matrix any more. They are somewhat embedded in the effective medium,
and therefore the effective-medium approach is a very appropriate model to study
the effective electrical conductivity.



4 Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites 133

4.2.2 The Percolation Threshold

The percolation threshold of the nanocomposite, c�
1 , can be directly derived from

Eq. (4.10) (Wang et al. 2014). This is done with the observation that, when the
matrix phase is totally insulating (
0D 0), the effective electrical conductivity 
e is
entirely controlled by the conductive network of CNT and graphene inclusions, so
the inclusion volume concentration c1 that first gives rise to a non-negative value
of 
e represents the percolation threshold, c�

1 . With 
0D 0, Eq. (4.10) turns into a
quadratic equation for 
e, in the following form

A
2e C B
e C C D 0; (4.14)

with coefficient A, B, and C all being functions of c1, as

A D 9 �1 � S233
�C c1.1 � 3S33/

2;

B D 
1
h
�3c1 .1 � S33/ .5 � 3S33/C 9.1 � S33/

2
i
C 
3

��c1
�
9S233 C 3S33 C 2

�

C9S33 .1C S33/

;

C D 
1
3
��c1

��9S233 C 15S33 C 2
�C 9S33 .1 � S33/


; (4.15)

where the relation 2S11C S33D 1 has been used. As c1 increases from zero, initially
all three coefficients are positive, so there is no positive solution for 
e at very low
c1. When c1 reaches a critical value, there is a solution 
eD 0, and as c1 further
increases there is a positive solution for 
e. This is the generally sought effective
electrical conductivity with a perfectly insulating matrix, whereas the critical value
of c1 giving rise to 
eD 0 is exactly the percolation threshold, c�

1 . This occurs when
the coefficient CD 0, and this relation provides the value

c�
1 D

9S33 .1 � S33/

�9S233 C 15S33 C 2: (4.16)

Since the S-tensor component S33 only depends on inclusion aspect ratio, ˛, the
percolation threshold is thus a strictly geometrical parameter. To see its effects, we
plot its dependence on ˛ in Fig. 4.3, as ˛ increases from almost 0 (graphene-like) to
infinity (CNT-like). For CNT- and graphene-based nanocomposites, the percolation
thresholds with extreme values of ˛ are further illustrated in the insets. One can see
that CNT provides a lower percolation threshold than the graphene with reciprocal
aspect ratio. This is consistent with the result predicted by Pan et al. (2011). It
can be also seen that the maximum value that c�

1 can attain is exactly 1/3, which
corresponds to spherical inclusions, with ˛D 1. This value has been widely reported
in the literature.

The percolation threshold c�
1 can also be derived from Eq. (4.10) following

a procedure suggested by Gao and Li (2003). In general, the matrix is almost
insulating while inclusions are highly conducive. Therefore 
 i (iD 1 or 3, the
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Fig. 4.3 The dependence of percolation threshold on inclusion aspect ratio. The left-hand side is
the graphene side while the right-hand side is the CNT side

same below) are usually several orders of magnitude higher than 
0, which makes

0/
 i! 0. According to the percolation theory, when inclusion concentration c1 <
c�
1 , 
e has almost the same order of magnitude as 
0, therefore 
e/
 i! 0; but after

c�
1 , 
e will quickly approach 
 i, making 
e/
0!1. Therefore at c1 D c�

1 , 
e is
at the transition stage, satisfying both 
e/
0!1 and 
e/
 i! 0 at the same time.
Applying these two conditions to Eq. (4.10) and solving for c�

1 , one finds

c�
1 D

3= .1� S0/

3= .1 � S0/C 1=S11 C 1=S22 C 1=S33
D 9S33 .1 � S33/

�9S233 C 15S33 C 2; (4.17)

which is exactly the same result as Eq. (4.16).

4.2.3 The Two-Scale Composite Model for Filler
Agglomeration

In previous sections, we have assumed CNT and graphene-based nanocomposites to
be homogeneous. However, the inhomogeneous distribution of CNT and graphene
fillers, or filler agglomeration, is inevitable in reality. A good way to study the effect
of filler agglomeration is to adopt a two-scale approach as suggested by Barai and
Weng (2011) in the study of CNT-based metal plasticity and also by Prasher et al.
(2006) and Reinecke et al. (2008) in the context of thermal conductivity. In this
approach, the composite is considered to consist of CNT-rich agglomerated regions
embedded in a CNT-poor region. To calculate the effective electrical conductivity,
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Fig. 4.4 A schematic plot of the two-scale model of CNT- and graphene-based nanocomposites
with filler agglomeration

the effective-medium approach is applied to the filler-rich and filler-poor regions at
the smaller scale and then to the whole composite at the larger scale (Wang et al.
2015).

We will begin with establishing the two-scale morphology of the CNT and
graphene-based nanocomposites with filler agglomeration. The typical microstruc-
ture of such composite is shown in Fig. 4.4. Inside the composite, some CNT or
graphene fillers gather together to form the agglomerates, while others exist as
individual fillers. Both kinds of fillers are taken to be homogeneously dispersed and
randomly oriented in each region. To model such a morphology, we divide the entire
volume of the composite into two—one is the filler-rich agglomerate and the other is
the filler-poor region. The volume concentrations of the filler-rich and the filler-poor
regions are denoted as cR and cP, respectively, so that

cR C cP D 1; (4.18)

where subscript R stands for “rich” and P for “poor.” We assume that the
agglomerates are also homogeneously dispersed and randomly oriented and have a
shape that can be grossly represented by a spheroid, with an aspect ratio ˛R. Inside
the agglomerate, there is a large amount of carbon fillers residing in the polymer
matrix, with the volume concentrations, c.R/1 and c.R/0 , respectively, satisfying

c.R/1 C c.R/0 D 1; (4.19)
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where subscripts 1 and 0 stand for carbon fillers and the polymer matrix, respec-
tively. We shall also represent the individual carbon filler by a spheroid with aspect
ratio ˛. In the filler-poor region, there are also carbon fillers and the polymer matrix,
with the volume concentrations, c.P/1 and c.P/0 , respectively, such that

c.P/1 C c.P/0 D 1: (4.20)

As a result, the total volume concentration of carbon fillers, denoted by c1, is the
sum of the filler concentration from both filler-rich and filler-poor regions, and so is
the total volume concentration of the matrix, c0. They satisfy

c1 D c.R/1 cR C c.P/1 cP;

c0 D c.R/0 cR C c.P/0 cP;

c1 C c0 D 1:
(4.21)

It is this c1 that represents the volume concentration of carbon fillers that is
commonly measured in experiments. With these definitions, the dispersion state
of carbon fillers can be fully described. However, we still need to know how they
evolve as c1 increases. Here we choose to study the dependence of cR, c.R/1 , and c.P/1 ,
as the other three can be calculated from them. There are two basic requirements for
cR, c.R/1 , and c.P/1 . The first one is that, if there are no carbon fillers in the composite,
there should be no filler agglomerates and no individual filler inside the filler-poor
region. In other words, when c1D 0, we must have cRD 0 and c.P/1 D 0. The second
one is that, if carbon fillers occupy the entire composite, then both the filler-rich and
the filler-poor regions are completely filled. This implies that, when c1D 1, we must
have both c.R/1 D 1 and c.P/1 D 1.

We also need to know how graphene fillers are distributed into the graphene-
rich and the graphene-poor regions. For this purpose, we introduce a parameter, a
(0� a� 1), to represent the volume fraction of graphene inside the graphene-rich
region out of the total amount of graphene; it satisfies

a D c.R/1 cR=c1: (4.22)

Essentially, the parameter a specifies how much of the total amount of carbon filler
is allocated to the filler-rich region. We also need to specify the dependence of c.R/1
on c1. As the filler agglomerate tends to percolate earlier than the entire composite,
c.R/1 can be greater than the percolation threshold of the filler-rich region at low c1.

Hence when c1! 0, c.R/1 doesn’t need to start from 0 but can have a non-zero initial

value, represented by another parameter b. But this c.R/1 must grow to 1 when c1D 1.

From these two requirements we assume a linear dependence on c1 for c.R/1 , as

c.R/1 D bC c1 .1 � b/ : (4.23)
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Parameter b also lies between 0 and 1. When bD 0, we have c.R/1 D c.P/1 D c1. So
there is no distinction among the three and thus the composite is homogeneous.
For an agglomerated composite, its b value has to be greater than 0, so that
c.R/1 > c1. This implies that carbon fillers are more concentrated inside the filler-
rich region, and its percolation condition is reached earlier than that of the overall
nanocomposite. It should also be noted that it is the quantity, c.R/1 cR, that specifies the
volume fraction of carbon fillers out of the total c1 to reside inside the agglomerates.
When c1D 0, the volume fraction of the filler-rich region is zero, i.e., cRD 0. So
even though c.R/1 ¤ 0 in this situation, there is still no carbon filler in the “filler-
rich” region or anywhere else.

With parameters a and b, we can then obtain the dependence of cR and c.P/1 on
c1, as

cR D a

bC c1 .1 � b/
c1;

c.P/1 D
.1 � a/ ŒbC c1 .1 � b/�

�c1aC ŒbC c1 .1 � b/�
c1:

(4.24)

The dispersion state of carbon fillers is now completely specified by the two
parameters, a and b. In the limiting case when aD 1, all fillers are allocated to
the agglomerates and there is no c.P/1 . When aD 0, we have cRD 0 and c.P/1 D c1,
so the composite is completely specified by the filler-poor region. In both cases the
two-scale composite is reduced to only one scale, making it back to a homogeneous
composite. With Eqs. (4.23) and (4.24) representing the geometrical foundation of
filler agglomeration, we have now fully established the two-scale morphology of
CNT and graphene-based nanocomposites.

To evaluate the effective electrical conductivity, the effective-medium approach,
as given in Eq. (4.10), is applied to the two scales. At the smaller scale of the
filler-rich and filler-poor regions, phase 1 is identified as the individual carbon
filler. It has transversely isotropic property with electrical conductivity 
3 in the
normal direction and 
1D 
2 in the isotropic plane, S-tensor components S11 and
S33 which are determined by its aspect ratio ˛ according to Eq. (4.8), and volume
concentration c1 replaced by c.R/1 (for the filler-rich region) or c.P/1 (for the filler-
poor region). Phase 0, on the other hand, is identified as the polymer matrix. It has
isotropic electrical conductivity 
0, S-tensor component 1/3 in all three directions,
and volume concentration c0 replaced by c.R/0 (for the filler-rich region) or c.P/0 (for
the filler-poor region). On the larger scale of the composite, phase 1 is identified as
the filler agglomerates while phase 0 as the filler-poor region. In this case 
3 and 
1

become the overall electrical conductivity of the filler-rich region in the normal and
in-plane direction; 
0 becomes the overall electrical conductivity of the filler-poor
region; S11 and S33 are replaced by the S-tensor components of filler agglomerates,
S.R/11 and S.R/33 , which are calculated from the aspect ratio of filler agglomerates, ˛R;
and lastly, c1 and c0 become cR and cP, respectively.
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In our two-scale model, the calculation of effective electrical conductivity of the
overall nanocomposite takes two steps. In the first place, in both filler-rich and
filler-poor regions, carbon fillers are embedded in the polymer matrix (or more
strictly speaking, both carbon fillers and the polymer matrix are embedded in the
effective medium, as indicated by effective-medium approach). So we use Eq. (4.10)
on the smaller scale to obtain the overall electrical conductivity of the filler-rich
and filler-poor region, respectively. On the larger scale, it can be regarded that
the filler agglomerates are embedded in the filler-poor region. Therefore, we take
advantage of the properties of both regions to implement Eq. (4.10) once again, and
the effective electrical conductivity of the overall composite, 
e, can then be solved.

The percolation threshold will also be affected by the dispersion state of carbon
fillers. By using the S-tensor of individual carbon filler, Eq. (4.16) can be used to
determine the percolation threshold of the filler-rich region, with c�

1 identified as

c.R/�1 . c.R/�1 is related to c�
1 of the overall composite through Eq. (4.23), such that

c�
1 D

c.R/�1 � b

1 � b
; where c.R/�1 D 9S33 .1 � S33/

�9S233 C 15S33 C 2 : (4.25)

Likewise, Eq. (4.16) can also be used to determine the percolation condition of the
large-scale overall composite, c�

R, by identifying the S-tensor as that of the filler
agglomerate. This c�

R is related to c�
1 of the composite through Eq. (4.24), such that

c�
1 D

bc�
R

a � .1 � b/ c�
R

; where c�
R D

9S.R/33



1 � S.R/33

�

�9S.R/33
2 C 15S.R/33 C 2

; (4.26)

where S.R/33 is the S-tensor component of the filler agglomerate that depends on
its aspect ratio, ˛R. For the overall nanocomposite to be in a percolated state,
the percolation condition by individual carbon filler inside the filler-rich region as
specified by Eq. (4.25) and the percolation condition by the large-scale agglomerates
specified by Eq. (4.26) must both be satisfied. So it is the larger of the two c�

1

calculated from these two equations that represents the true percolation threshold
of the nanocomposite. But in general it is the second one given by Eq. (4.26)
that defines the percolation threshold as the first condition is easier to meet. It is
clear from Eq. (4.26) that the percolation threshold c�

1 for the overall, large-scale
composite depends on three parameters, a, b, and ˛R. Parameter a specifies how
much of the total amount of carbon fillers is allocated to the filler-rich agglomerates;
parameter b specifies the volume fraction of carbon fillers inside the agglomerate,
c.R/1 ; and parameter ˛R specifies the shape of the agglomerates. All of them together
describe the dispersion state of carbon fillers.
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4.2.4 The Interfacial Resistance

In this section we will consider the effect of imperfect interfaces on the effective
electrical conductivity. So far we have assumed perfect interface condition between
the two phases of CNT and graphene-based nanocomposites, but in real composite
materials the interface condition can never be perfect. The effect of imperfect
interfaces results in electrical resistance between two phases, which is the interfacial
resistance. This makes the transport of electric current more difficult, so that without
this additional consideration the calculated 
e could be much higher than the
actual value. To address this issue, we first consider the existence of a very thin
spheroidal layer of interphase by adding a tiny thickness t to the semi-axes of the
spheroidal CNT or graphene inclusion, with an electrical conductivity, 
 int

i . This
layer is taken to surround the spheroidal inclusion, making it similar to a “thinly
coated” inclusion. Due to the imperfect condition, 
 int

i is usually much lower than
the intrinsic conductivity of carbon fillers, 
 i, so that it is reasonable to assume

 int

i =
i ! 0. Compared to the radius of CNT R, or the thickness of the graphene
�, t is taken to be diminishingly small and we intend to make it approach zero to
turn the interphase into an interface. In the limiting case of diminishing thickness
(t! 0), the “coated” inclusion and the original inclusion share the same shape, or
the same S-tensor. This is a typical inclusion-matrix type of problem; therefore the
M-T method is appropriate to calculate the overall electrical conductivity of the
coated inclusion, 
c

i , as


c
i D 
 int

i

"

1C �
�

i � 
 int

i

�

.1 � �/ Sii
�

i � 
 int

i

�C 
 int
i

#

; (4.27)

where iD 1 or 3 (no sum over i in Sii), denoting the transverse or axial direction.
And � is the volume fraction of the original inclusion in the coated inclusion. For a
CNT inclusion, by taking the limit t! 0, � can be written as

� D
�

R

˛

	
R2=

��
R

˛
C t

	
.RC t/2

�
� 1 �

�
1

˛
C 2

	
t

R
: (4.28)

Then, with the assumption 
 int
i =
i ! 0, Eq. (4.27) can be rewritten as


c
i D


i

1C 	i
iSii .1=˛C 2/ =R
: (4.29)

Similarly, for a graphene inclusion, � is expressed in terms of � and t, as

� D �

2

�
�

2˛

	2
=
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and Eq. (4.27) is then rewritten as



.c/
i D


i

1C 	i
iSii .2C 4˛/ =� : (4.31)

In Eqs. (4.29) and (4.31), 	i D lim

 int

i =
i!0; t!0

t=
 int
i stands for the interfacial

resistivity in the axial or transverse direction. For simplicity, it’s convenient to
take the property of interface to be isotropic, so that 	iD 	. This result is also
consistent with the Kapitza resistance in thermal conductivity derived by Nan et
al. (1997) and Duan and Karihaloo (2007). This electrical conductivity of coated
CNT, 
c

i , can then be used to replace the original 
 i in Eq. (4.10) of the effective-
medium approach to calculate the effective electrical conductivity of imperfectly
bonded nanocomposites. In this way, the effect of interfacial resistance has been
incorporated into our model.

4.2.5 The Tunneling-Assisted Interfacial Conductivity

The interfacial resistivity 	 is an intrinsic property of the interface between carbon
fillers and the polymer matrix, and we denote its intrinsic value as 	0. This quantity
contributes to the overall electrical conductivity of the coated CNT, 
c

i , through
Eq. (4.29) or (4.31). However as the inclusion volume concentration c1 increases, 	
cannot remain constant at 	0. Electron hopping from one carbon filler to the surface
of another one can lead to enhanced electrical conductivity. This phenomenon, that
electrons can directly pass though insulating polymer from one CNT to an adjacent
one, is the quantum mechanical electron tunneling effect. The outcome is a higher
interfacial conductivity, or conversely, a lower interfacial resistivity. It plays an
essential role the electrical conduction process, but it is also difficult to analyze
due to its complex quantum mechanical nature.

In our continuum model we take this tunneling effect as a statistical process that
depends on the volume concentration of carbon fillers. In establishing a probabilistic
function, we note that, at dilute filler concentration, the distance between carbon
fillers is large and there is little tunneling possibility, so there is a large interfacial
resistivity, but around the percolation threshold c�

1 , the conductive networks begin
to build up and the overall distance between carbon fillers is greatly reduced. As a
consequence electron tunneling activity starts to become very intense and 	 begins
to decrease. After c�

1 , fillers will get even closer, and thus tunneling effect will
continue to be at a very high level, so that 	 will stay very low. It turns out that
Cauchy’s probabilistic model is particularly suited to describe this phenomenon.
We will incorporate Cauchy’s cumulative distribution function, F, which can signify
the dramatic increase of interfacial conductivity near c�

1 , to describe this tunneling
effect. This function is given by

F
�
c1I c�

1 ; �
� D 1

�
arctan

�
c1 � c�

1

�

	
C 1

2
; (4.32)
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Fig. 4.5 The illustration of Cauchy’s cumulative distribution function in Eq. (4.32), showing an
increasing tunneling activity near the percolation threshold

where � is a scale parameter denoting the rate of change for function F around
c1 D c�

1 . The nature of function F is illustrated in Fig. 4.5 with c�
1 D 0:0266 and

� D 0.001. It displays a sharp increase around c�
1 and continues to hold afterward.

With function F, the decrease of interfacial resistivity 	 from 	0 as c1 increases can
be described by

	 D 	 .c1/ D 	0
�
F
�
1I c�

1 ; �
� � F

�
c1I c�

1 ; �
�
=
�
F
�
1I c�

1 ; �
� � F

�
0I c�

1 ; �
�
: (4.33)

This c1-dependent 	 is the tunneling-assisted interfacial resistivity, which returns
to 	D 	0 at c1D 0 and 	D 0 at c1D 1. The nature of its variation is illustrated
in Fig. 4.6 which shows a drastic decrease of interfacial resistivity around c�

1 .
This tunneling-assisted interfacial resistivity 	(c1) now should replace the original
interfacial resistivity in Eqs. (4.29) and (4.31) to calculate the electrical conductivity
of the coated inclusion 
c

i , which in turn will replace 
 i in Eq. (4.11) for the
effective electrical conductivity, 
e, of the overall nanocomposite. In this way, the
influence of electron tunneling effect has been incorporated into our continuum
model via the tunnel-assisted interfacial resistivity, 	(c1). Up to this point we have
completed the development of our continuum model for CNT and graphene-based
nanocomposites. We now present some calculated results and make comparisons
with experimental data.
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Fig. 4.6 The illustration of the tunneling-assisted interfacial resistivity in Eq. (4.33), which leads
to a sharp drop in resistivity near the percolation threshold

4.3 Results and Discussion

4.3.1 The Electrical Conductivity of CNT Nanocomposites

To verify our continuum composite model, we take two steps to study the experi-
mental data of the electrical conductivity of CNT nanocomposites and agglomerated
graphene nanocomposites. In the first step, the composite is taken to be homo-
geneous. We use the effective-medium approach with interfacial resistance and
tunneling-assisted interfacial conductivity to study two sets of experimental data by
Ngabonziza et al. (2011) and McLachlan et al. (2005) showing notable percolation
phenomena. The first set of data involved multi-walled CNTs in the polyimide
matrix, while the second set was with single-walled CNTs and also the polyimide
matrix. The intrinsic electrical conductivity of CNTs and the matrix are both given
in the original papers and are listed in Table 4.1. In our calculations the anisotropic
constant m, in 
1Dm
3, for the CNT inclusion is assumed to be 0.001 at this
moment. All other relevant material constants used in the calculations are also listed
in Table 4.1.

4.3.1.1 The Effective Electrical Conductivity of the Coated CNT

With Cauchy’s cumulative distribution function F, we then use Eq. (4.29) to
calculate the increase of the effective electrical conductivity of the coated CNT, 
c

i ,
as c1 increases, to reflect the contribution from the probabilistic electron tunneling
process. The results with these two sets of experimental data are shown in Fig. 4.7a,
b, respectively, where the upper blue curves are for the axial electrical conductivity
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Table 4.1 Physical values used in the calculation of the effective electrical conductivity of CNT
nanocomposites

Physical values Ngabonziza et al. 2011 McLachlan et al. 2005


0 2.0 � 10�8 S/m 5.5 � 10�15 S/m

3 1.943 � 104 S/m 8.9 � 103 S/m

3/
0 9.715 � 1011 1.8 � 1018

m 10�3 10�3

Percolation threshold 0.0266 0.0005
Aspect ratio ˛ 21 213
CNT radius R 5 nm 5 nm
Interfacial resistivity 	0 4.82 � 10�8 m2/S 7.16 � 10�4 m2/S
Scale parameter � 0.003 0.0003

and the lower red ones for the transverse electrical conductivity. These two sets of
data have substantially different percolation thresholds, one at 0.0266 and the other
at 0.0005. So the initial, nearly horizontal portion spans over a wider range of c1 in
the first set, but following the percolation threshold, both curves display a notable
increase due to the stronger electron tunneling effect associated with the conductive
network formation.

This characteristic can be made more apparent if we rewrite Eq. (4.29) as


c
i D

1

1=
i C 	 .c1/ Sii .1=˛C 2/ =R
: (4.34)

It can be observed that, when c1 < c�
1 , the numerical value of 	(c1)Sii(1/˛C 2)/R

is much larger than 1/
 i. So in this case the latter can be neglected and we
have, approximately, 
c

i D R= Œ	 .c1/ Sii .1=˛C 2/�, which means that 
c
i is now

mainly controlled by the interfacial resistivity, rather than the intrinsic electrical
conductivity of CNT. As such, the several-orders-of-magnitude difference between
the axial conductivity 
c

3 and the transverse conductivity 
c
1 is only a result of the

different components in the S-tensor. S-tensor characterizes the geometric property
of CNT, which has a prolate spheroidal shape. Comparing Fig. 4.7a, b, it can be
further pointed out that the higher aspect ratio in the second data set also leads to
larger difference between 
c

3 and 
c
1 . Therefore we can conclude that the geometry

of CNT inclusions plays a very important role in the anisotropy of 
c
i .

4.3.1.2 The Effective Electrical Conductivity of CNT Nanocomposites

With the c1-dependent 
c
i to replace the original 
 i in Eq. (4.11), the effective

electrical conductivity of CNT nanocomposites, 
e, can be calculated as a function
of CNT concentration c1. The results are plotted in Figs. 4.8 and 4.9, respectively,
that correspond to the experiment results of Ngabonziza et al. (2011) and McLachlan
et al. (2005). In both figures the highest red curve represents the calculated result
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Fig. 4.7 The electrical conductivity of coated CNT inclusion with the consideration of the
interfacial resistance and tunneling-assisted interfacial conductivity: (a) by Ngabonziza et al.
(2011) data and (b) by McLachlan et al. (2005) data

under the assumption of perfect interface between CNT inclusions and the matrix.
It is seen that, without accounting for the interfacial resistance, the theoretical
predictions are substantially higher than the experimental data. The lowest black
curve in each figure represents the case in which the interfacial resistance is
included, but the interfacial resistivity 	 is regarded as a constant value 	0. This
curve is seen to be lower than the experimental data, especially after percolation
threshold. The middle blue curve represents the case in which 	 is modified to 	(c1)
according to Eq. (4.33) with the consideration of the additional contribution from
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Fig. 4.8 The effective electrical conductivity of CNT nanocomposites with Ngabonziza et al.
(2011) data

Fig. 4.9 Effective electrical conductivity of CNT nanocomposites with McLachlan et al. (2005)
data

the effect of tunneling-assisted interfacial conductivity. And this curve gives the
best predictions for the experimental data. This study clearly confirms the view
that the effect of imperfect interface is important and that the tunneling-assisted
increase in interfacial conductivity is also a critical component of the theory. It
is the combination of the effective-medium approach, interfacial resistance, and
tunneling-assisted interfacial conductivity that eventually gives rise to a complete
theory for the effective electrical conductivity of CNT nanocomposites.
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4.3.1.3 The Effect of CNT Anisotropy

Now with the theory established, we can examine the effect of CNT anisotropy
on the effective electrical conductivity. In our previous analysis, the results were
obtained based on the assumed value of mD 10�3. In fact while the transverse
electrical conductivity of CNT is known to be several orders of magnitude lower
than the axial one, the precise value of m is not clear yet. Thus further parametric
studies are needed to clarify its effect. So we again use the first set of parameters
listed in Table 4.1 for the experimental data of Ngabonziza et al. (2011) and consider
four cases from isotropic to transversely isotropic, with mD 1,10�3,10�8, and 0,
with the last one meaning that there is only axial electrical conductivity. The results
are displayed in Fig. 4.10. From this figure we can immediately conclude that the
effective electrical conductivity of overall composite is not sensitive to the value of
m. Although the transverse electrical conductivity of CNT is lower than its axial
one, it still has to be much higher than that of the polymer matrix. So far we
have not seen any direct measurement on 
1 for CNT, but for graphite sheets the
electrical conductivity in the basal plane has been reported to be about 2–3 orders
of magnitude higher than that along the normal direction. In this regard the value of
m is most likely to lie within the range of 10�3	 10�2, and our assumed value of
10�3 can be so justified.

4.3.1.4 The Effective Electrical Conductivity with a Totally Insulating
Matrix

In CNT nanocomposites, electric current can flow from CNT inclusions to the
matrix, or from one CNT to another one in contact. Both ways, plus the direct

Fig. 4.10 The effect of CNT anisotropy on the overall electrical conductivity. The orange isotropic
curve is entirely overlapped by the red transversely isotropic curve because of their insignificant
difference
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electron tunneling from one CNT to another, can all contribute to the overall
electrical conductivity. So even when the polymer matrix is totally insulating
(
0D 0), a viable continuum composite model should still be able to deliver a
non-zero 
e from the last two mechanisms. In fact, even without the electron
tunneling process, direct contact between CNT inclusions should still provide a
conductive pathway for current flows, and thus the overall electrical conductivity
should still exist. Such a capability, however, is lost in both the M-T method and
the PCW model, because in both cases each CNT inclusion must be embedded in
the polymer matrix. This can be seen from Eq. (4.11) that, if 
0D 0, the effective
electrical conductivity will be 
eD 0 (to see this, multiply 
0 on both sides of
the equation). To test such a capability for the effective-medium approach, we
take Eq. (4.10) to solve for 
e under the insulating matrix condition. As has been
discussed before, initially when c1 is very low, all coefficients A, B, and C in Eq.
(4.15) are positive, so there are two negative roots, which should be rejected since
the electrical conductivity must be positive. Only when c1 > c�

1 , coefficient C
becomes negative, and there is one positive root, which is the effective electrical
conductivity we want to solve. The condition of CD 0 is a critical point where the
root is 
eD 0. This analysis indicates that, when c1 < c�

1 , since at this stage all
CNT inclusions are isolated by the insulating matrix, there is no overall electrical
conductivity. And when c1 � c�

1 , the nanocomposite starts to give a non-negative
electrical conductivity due to the formation of the conductive network.With the first
set of constants taken from Table 4.1, the calculated 
e from c1 D c�

1 to c1D 0.1 is
shown in Fig. 4.11. A drastic increase of electrical conductivity is observed near the
percolation threshold.

Fig. 4.11 The examination of the effective-medium approach for the effective electrical conduc-
tivity of a composite with a totally insulating matrix
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4.3.2 The Electrical Conductivity of Agglomerated Graphene
Nanocomposites

In the last section our model has been successfully applied to study the electrical
conductivity of homogeneous CNT nanocomposites. In this section we will focus
on its capability to deal with nanocomposites with filler agglomeration, and we do so
by demonstrating that a set of experimental data reported by Tkalya et al. (2014) for
the electrical conductivity of agglomerated graphene/polystyrene nanocomposites
can be well captured by this theory.

This set of data consists of 4 samples of graphene nanocomposites with different
degrees of filler agglomeration, which is reproduced in Fig. 4.12. Note that the
electrical conductivity has the unit of S/m, and is shown in logarithmic scale. Among
them sample B has the highest percolation threshold of c�

1 D 0:023, followed by
samples A-HE, A-LC, and A with c�

1 D 0:015, 0.012, and 0.010 (note that the
original data are in wt.%, and they have been converted to vol.% by considering
the density of graphene is twice of that of polystyrene). It is also reported that the
different degrees of graphene agglomeration are due to different processing routes.
The graphene fillers in sample B are produced by the liquid-phase exfoliation of
graphite, which have the most dispersed distribution. In the other three samples,
graphene fillers are prepared by the thermal reduction of graphite oxide but with
different amount of energy provided during the sonication process. Samples A and
A-LC are more agglomerated than sample A-HE, which is in line with the fact
that more energy was supplied to sample A-HE during the sonication process. In
addition sample A is slightly more agglomerated than sample A-LC, making it the
most agglomerated sample among the four. Based on these observations, we assume

Fig. 4.12 The experimental data on the electrical conductivity of 4 samples of graphene nanocom-
posites with various degrees of filler agglomeration, reproduced from Tkalya et al. (2014)



4 Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites 149

Table 4.2 Physical values used in the calculations for agglomerated graphene nanocomposite
samples B, A-HE, A-LC, and A. The last column gives the percolation threshold for the idealized
spherical agglomerates

Sample A Sample A-LC Sample A-HE Sample B
Spherical
agglomerates

Parameter a 0.9 0.8 0.9 ... 0.7
Parameter b 0.05 0.08 0.05 ... 0.05
Percolation
threshold (%)

1.01 1.16 1.52 2.30 4.35

Aspect ratio of
agglomerate ˛R

0.1241 0.0728 0.1399 ... 1.0

Thickness of
agglomerate � (nm)

50 50 50 ... 50

Initial interfacial
resistivity 	0 (m2/S)

5 � 10�8 1 � 10�7 6 � 10�7 5 � 10�7 5 � 10�7

Scale parameter � 0.03 0.003 0.01 0.001 0.01

that the amount of graphene agglomeration in sample B is negligible and that the
degree of graphene agglomeration increases from sample A-HE, to A-LC, and to A.

In our numerical computations, the in-plane electrical conductivity of graphene
is taken to be 
1D 8.32� 104S/m, which is adopted from Stankovich et al. (2006)
(they gave a range of 104.92 ˙ 0.52S/m), and the electrical conductivity of polystyrene
is taken to be 
0D 6.09� 10�12S/m, from Srivastava and Mehra (2008). The
anisotropic constant m, in 
1Dm
3, is taken to be 103 since normal electrical
conductivity is weaker for graphene. Other material parameters used here include
the aspect ratio of graphene ˛D 0.0136, the thickness of graphene �D 5nm,
the initial interfacial resistivity 	0D 5� 10�7m2/S, and scale parameter� D 0.001.
On the larger scale of the composite consisting of graphene-rich agglomerates
and graphene-poor region, the constants used are sample dependent and listed in
Table 4.2. Note that the listed ˛R, �, and 	0 in Table 4.2 pertain to this large-scale
property. With these constants, we now show the calculated results.

4.3.2.1 Homogeneously Dispersed Graphene Nanocomposites: Sample B

First we consider the sample B data, which are reproduced in Fig. 4.13. This set of
data has a reported percolation threshold of c�

1 D 0:023, which can be directly
calculated from Eq. (4.16) with the aspect ratio ˛D 0.0136, since this sample
has negligible filler agglomerations. We make an initial calculation for the overall
electrical conductivity by assuming perfect interfaces (with 	D 0, or 
.c/i D 
i). The
effective electrical conductivity can be obtained from Eq. (4.10). The calculated
result is shown in red line in Fig. 4.13. The comparison between this curve and
the experimental data clearly indicates that the calculated electrical conductivity is
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Fig. 4.13 The theoretical curves for sample B data with perfect and imperfect interfaces

substantially higher than the test data. This is also an indication that the interface
condition between graphene and polystyrene cannot be perfect.

In order to understand the effect of imperfect interfaces, we then use the constant
interfacial resistivity, 	D 	0, to make the calculation. The calculated conductivity is
shown in the dashed blue line. When compared with the perfect interface curve, this
result clearly shows a substantial drop to an order that is closer to the test data. But
the trend of this curve is seen to stay relatively flat after percolation threshold. This
is an indication that, without accounting for the additional contribution from the
tunneling-assisted interfacial conductivity, the theoretical results become too low,
especially after the percolation condition has been reached. When this tunneling
effect is implemented through 	(c1) in Eq. (4.33), we can see a continuous gain
in effective electrical conductivity as shown in the blue line. The outcome is a
curve with an added slope, and the theory is then in very close agreement with the
experimental data. This consideration strongly points to the need of an imperfect
interface with a tunneling-assisted interfacial conductivity.

4.3.2.2 Agglomerated Graphene Nanocomposites: Sample A-HE, A-LC,
and A

We now use the two-scale composite model to study the effect of filler agglom-
eration on the percolation threshold and overall electrical conductivity in samples
A-HE, A-LC, and A. These three samples were reported to have an increasing
degree of agglomeration, respectively. Their experimental data are reproduced
in Figs. 4.14, 4.15, and 4.16, along with theoretical results from the two-scale
effective-medium approach. In each case parameters a and b and the aspect ratio
of graphene-rich agglomerates, ˛R, are all involved in the calculation.
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Fig. 4.14 The theoretical curves for sample A-HE data with perfect and imperfect interfaces

Fig. 4.15 The theoretical curves for sample A-LC data with perfect and imperfect interfaces

With the constants listed in Table 4.2, the calculated results for these three
samples are also plotted in Figs. 4.14, 4.15, and 4.16. As with Fig. 4.13, the red
line in each figure represents the calculated conductivity under the assumption of
a perfect interface. The three red curves are seen to be notably higher than their
respective experimental data. By implementing a constant interfacial resistivity,
	D 	0, the calculated conductivity, shown in each dashed blue line, is significantly
reduced. These curves, however, all appear to stay relatively flat after the percolation
threshold. It is only when the tunneling-assisted interfacial conductivity is also
implemented into the interface model can all the reported experimental data be well
captured.

In passing it is also noted that there is a kink in the red curve in Fig. 4.14
around c1D 0.05, and so is in Fig. 4.15 around c1D 0.07. This slight increase is
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Fig. 4.16 The theoretical curves for sample A data with perfect and imperfect interfaces

Fig. 4.17 The effective electrical conductivity of the graphene-rich and graphene-poor regions
and the overall composite for sample A-HE

not an artifact of the computational results; it is due to the onset of percolation
in the graphene-poor region. To reveal this phenomenon, we plot the effective
electrical conductivity of the graphene-rich, and graphene-poor region, and the
overall composite altogether in Fig. 4.17. It is clear that the graphene-rich region has
been percolated since the beginning, and the graphene-poor region starts to percolate
at the highest graphene concentration. The overall composite has the contributions
from both two regions, so it has low electrical conductivity in the beginning, but it
percolates earlier than the graphene-poor region.
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4.3.2.3 The Role of Agglomerate Shape on the Percolation Threshold

The preceding discussions have suggested that filler agglomeration has the primary
effect on the percolation threshold, and that interface conditions control the level
of overall conductivity post percolation. In the past, it is often said that filler
agglomeration tends to increase the percolation threshold, but we have proved and
the discussed experiment has also shown that filler agglomeration can decrease
the percolation threshold. This is a welcome consequence as high conductivity
can be achieved at even lower graphene loading. But it cannot be concluded
that graphene agglomeration will always lower the percolation threshold. The
percolation threshold c�

1 , as shown in Eqs. (4.2) and (4.26), is seen to depend on the
three parameters, a, b, and ˛R. The first two specify the dispersion state of graphene
in the agglomerates, whereas the third one defines the agglomerate shape. For the
percolation threshold to decrease, the shape has to be sufficiently oblate (or prolate).
If the shape is very rounded or becomes spherical, such a desirable outcome cannot
be expected. To show such an effect, we have taken ˛RD 1 while retaining the
other parameters used in the calculation of A-HE to determine the corresponding
percolation threshold. The newly calculated value is c�

1 D 0:044, which is higher
than the percolation threshold of sample B, at c�

1 D 0:023. This value is listed in the
last column of Table 4.2. So it is possible that the percolation threshold increases
with spherical or more rounded agglomerates.

To be sure, the choice of a spherical shape for the agglomerates, ˛RD 1, does not
guarantee that the calculated percolation threshold will always be higher than c�

1 D
0:023; it also depends on the dispersion state represented by parameters a and b.
This can be seen from the consideration of the percolation condition represented by
Eq. (4.26). When ˛RD 1, that is, when c�

R D 1=3, we have c�
1 D b= Œ3a � .1 � b/�.

Therefore in order to have c�
1 > 0:023, it requires b/[3a� (1� b)] > 0.023 or

b > 0.0235(3a� 1), which is 0.026 when aD 0.7. From the last column of Table 4.2,
the value of b is 0.05, which is indeed higher than 0.026; therefore the percolation
threshold is higher than 0.023. If, instead, a value of b < 0.026 is chosen, the
overall percolation threshold would become lower than that of the homogeneously
dispersed nanocomposites.

It is evident that the dispersion parameters a and b, and the agglomerate aspect
ratio, ˛R, all contribute to the final percolation threshold, c�

1 , of the agglomerated
graphene nanocomposites.

4.4 Conclusions

In this chapter, we have developed a continuum composite model to determine the
effective electrical conductivity and percolation threshold of CNT and graphene-
based nanocomposites. The theoretical framework of our model consists of four
major components: (1) the effective-medium approach under perfect interface
condition, (2) a two-scale model to account for the effect of filler agglomeration,
(3) a diminishing layer of imperfect interface with an interfacial resistivity, and
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(4) a statistical function to characterize the increase of interfacial conductivity due
to electron tunneling effect. The outcome is a simple and widely useful model
that can cover the nanocomposite with perfect and imperfect interfaces, as well as
homogeneous and inhomogeneous filler distribution.

Our theories start with the effective-medium approach, which serves as the
fundamental equation for the effective electrical conductivity of two-phase CNT and
graphene-based nanocomposites. This equation also directly leads to the derivation
of percolation threshold. To account for the effect of filler agglomeration, we then
establish the two-scale model which divides the whole composite into filler-rich
and filler-poor regions. The effective-medium approach is applied to the two-scale
composite morphology by first determining the electrical conductivity of the filler-
rich and the filler-poor regions and subsequently using their results to determine the
overall electrical conductivity of the nanocomposite. Furthermore, the interfacial
resistance and tunneling-assisted interfacial resistivity are incorporated in the model
to cover the effect of imperfect interfaces and electron tunneling.

We have demonstrated that this model could successfully capture the quanti-
tative behavior of two sets of experimental data of the electrical conductivity of
homogeneous CNT nanocomposites. We also studied a set of experimental data of
the agglomerated graphene nanocomposites to verify the applicability of our two-
scale composite model. In this process, we have further shown how the imperfect
interfaces lower the overall electrical conductivity and how the additional tunneling-
assisted interfacial conductivity significantly brings it up after the percolation
threshold. In addition, we have used the developed model to study the effect of
the anisotropic electrical conductivity of carbon fillers in the axial and transverse
directions and proved that this effect is insignificant. We have also proved that, even
with a perfectly insulating matrix, the effective-medium approach is still capable of
delivering non-zero electrical conductivity for the overall nanocomposites after the
percolation threshold. In the end we have discussed how the percolation threshold
can be influenced by the dispersion state of carbon fillers, as well as the shape of
filler agglomerates.
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Chapter 5
Mechanical Behavior of Nanowires
with High-Order Surface Stress Effects

Min-Sen Chiu and Tungyang Chen

Abstract Surface in solids could behave differently from their bulk part, especially
when the size of the solid is on the nanoscale. It has been widely accepted that
the continuum mechanics framework along with a suitable implementation of the
surface effect, referred to as surface stress model, could serve as a useful tool in
the analysis of mechanical behavior of nanosized solids and structures. Here we
review the surface stress model briefly and outline recent progress in application to
mechanics of nanosolids or nanocomposites. A refined model, termed high-order
surface stress model proposed by the authors few years ago, was recapitulated here,
particularly for two-dimensional configurations. The distinction between the two
frameworks is highlighted from the viewpoint of a simple geometric exposition
of mechanics of thin plate and shell. We demonstrate that, by comparison with
experimental data, the incorporation of high-order surface stress could be critical
in certain situations to capture the trend observed by the experimental observation.
Some illustrations are directed to the mechanics of nanowires, including bending
and bulking behavior. Future potential subjects along the trend are suggested.

5.1 Introduction

For nanostructures or nanoscaled solids, due to their large specific surface-to-
volume ratio, surface effects play an important role on the size-dependent physical
properties. The subject of surface elasticity, incorporating surface stress effects,
has received considerable attention in the last decade. This effect is particularly
important for nanosized solids and composites in that they possess large specific
surface area. The concept of surface tension in fluids dates back to more than about
two centuries ago by the celebrated Young-Laplace (YL) equation (Young 1805;
Laplace 1806). Surface tension in fluids is defined as a force per unit length along
the perimeter of the interface. Surface stress in solids seems to be first introduced
by Gibbs (1928), which is defined through the change in excess free energy when
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the interface is deformed at constant referential area. In contrast to fluids, surface
stress may not be isotropic and may depend on the crystallographic parameters
of the solids jointed at the interface. This stress is caused by the differences in
configuration and in coordination numbers between atoms at the surface and in
the bulk. In addition to surface of the domain boundary, surface effects also exist
in interfaces between different regions, such as inclusions and the surrounding
matrix. Interface stress is also playing the same role as that of surface stress.
Using an atomistic calculation analysis, Zhou and Huang (2004) demonstrated that
a solid surface can be either elastically softer or stiffer than their bulk counterparts.
This surface effect phenomenon has been studied in different disciplines, ranging
from material science, physical chemistry, to continuum mechanics (e.g., Nix and
Gao 1998; Miller and Shenoy 2000; Thomson et al. 1986; Spaepen 2000; Duan
et al. 2005a, b, c; Chen and Dvorak 2006). The aim of this chapter is to give an
introductory exposition of the subject and to summarize our recent proposition for
the high-order surface stress model, with potential applications in various problems
of nanosized solid and composites.

Specifically, we see in this chapter how the high-order surface stress model will
influence the solutions significantly for certain boundary value problems. The size-
dependent mechanical behavior of nanowires (NWs) will be demonstrated. The
difference between the calculations based on the high-order surface stress model
and the Gurtin-Murdoch model can be seen remarkably, especially when the scale
is in a few nanometers. This framework provides a simple continuum mechanics
approach, in place of atomistic analysis or experiments, to analyze the mechanical
behavior of nanostructures in a refined manner.

5.2 Surface Stresses in Mathematical Descriptions

It is generally thought that the surface stress tensor, 
 s
˛ˇ , is connected to the

deformation-dependent surface energy by the relation 
 s
˛ˇ D �0ı˛ˇ C @G=@"s

˛ˇ

(Shuttleworth 1950; Cammarata 1994). �0 and "s
˛ˇ denote the constant residual

surface tension and the strain tensor for surfaces, respectively, and ı˛ˇ is the
Kronecker delta for surfaces. The Greek indices take on values of interfacial
components, taking the numbers of 1–2, while the Latin index numbers indicated
later will range from 1 to 3. The index 3 will designate the normal direction
of the interface. The interface stresses can be written as a linear constitutive
law, 
 s

˛ˇ D �0ı˛ˇ C L˛ˇ�ı"s
�ı (Miller and Shenoy 2000), in which L˛ˇ�ı stands

for the surface stiffness tensor. Considering isotropic surface property, the linear
relationship between surface stress tensor 
 s

˛ˇ and surface strain field can be
written in the form (Gurtin and Murdoch 1975, 1978; Assadi et al. 2010) 
 s

˛ˇ D
�0ı˛ˇC

�
�s � �0

� 

us
˛;ˇ C us

ˇ;˛

�
C ��s C �0

�
us
�;� ı˛ˇC�0us

˛;ˇ . In the exposition, us
˛

are the displacement components of the surface, while �s and �s are surface Lame
constants. The effect of residual tension �0 is not associated with the deformation
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and is sometimes ignored in some relevant studies. For example, Sharma et al.
(2003) investigated the elastic state of eigenstrained spherical inhomogeneities
with surface effects and interpreted the concentration factor as a function of
surface properties and void radius. Sharma and Ganti (2004) presented closed-
form expressions of the modified Eshelby’s tensor for spherical and cylindrical
inclusions incorporating surface effects. Nix and Gao (1998) employed a simple
spring model to calculate the excess free energy of interface atoms. They pointed
out that this microscopic model is in complete accord with the classical macroscopic
interpretation for interface stresses (i.e., 
 s

˛ˇ D �0ı˛ˇ C @G=@"s
˛ˇ). Gurtin and

Murdoch (1975), in their 1975 paper, derived a mathematical framework for an
interface between two different solids with interface stresses using the classical
membrane theory (see also Gurtin and Murdoch 1978; Landau and Lifshitz 1987;
Povstenko 1993; Gurtin et al. 1998; Chen et al. 2006; Ru 2010 for subsequent
developments). In the formulation, a surface is assumed to ideally adhere to its
counterpart bulk and modeled as a layer of vanishing thickness. This condition
was referred to as the generalized Young-Laplace (generalized YL) equation in
distinction with its counterpart in fluids. Chen et al. (2006) presented a simple
geometrical exposition for the generalized YL equations, which provide a better
description on the underlying physical meaning of the YL equation in solids. This
approach is based on the notion that the interface stresses can be modeled as in-
plane stresses along the tangential planes of the curved surface and the stress vectors
on the top and lower faces of the curved surfaces are contributed from its three-
dimensional bulk neighborhood. The generalized YL equations were also derived
with generally curvilinear coordinates (Weng and Chen 2010), which are better
suited for descriptions of some nanostructures, such as nanotubes, in which the grids
are not orthonormal.

The modeling of surface/interface stress can be simulated by introducing a
vanishingly thin interphase layer between two different regions with relatively high
stiffness compared with the adjacent phases. A general rigorous approach is to
resolve the elasticity solution for a three-phase configuration and then deduce to
a two-phase one through a deliberated asymptotic process. A schematic illustration
of the approach is demonstrated in Fig. 5.1. This approach allows us to effectively
replace the effect of the thin interphase by equivalent interface conditions without
having to resolve the fields within the interphase. Benveniste and Miloh (2001)
examined the effects of imperfect soft and stiff interfaces in two-dimensional
elasticity. Based on an asymptotic analysis, they showed that, depending on the
softness or stiffness of the interphase layer with respect to the neighboring media,
there exist seven regimes of interface conditions.

Other derivations can be found in Benveniste (2006a, b) for a three-dimensional
thin interphase with anisotropic properties in elasticity as well as higher-order
effects in conduction phenomenon. However, all these developments, based on
rigorous asymptotic analysis, are indeed mathematically complicated. In summary,
the conventional surface stress model is generally referred to as “generalized Young-
Laplace (YL) equation,” “Gurtin-Murdoch model,” or “an O(hN) interface model
with ND 1” (Benveniste 2006a, b), i.e., “first-order interface condition” where h is
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Fig. 5.1 Surface stress along the interface can be modeled by a thin interphase degenerated into
an infinitesimal thickness

the thickness of the interphase layer. Interface or surface stresses incorporating high-
order effects may be designated as “an O(hN) interface model with N > 2” in which
N is an integer. Other relevant researches in this category include Shuttleworth
(1950), Bövik (1994), Benveniste and Baum (2007), Ting (2007), and Benveniste
and Berdichevsky (2010).

In the following, we introduce some analysis and other aspects of applications
related to one-dimensional mechanics problems within the generalized YL model.
Nanowires are typical and important nanostructures in sensors, actuators, opto-
electronics, and nanoelectromechanical systems (Wang 2009). The size-dependent
overall mechanical behavior of NWs has been experimentally observed (Song et
al. 2005; Jing et al. 2006; Ni and Li 2006; Ji et al. 2007; Young et al. 2007;
Zhu et al. 2009) and theoretically demonstrated based on the Gurtin-Murdoch
model (Wang and Feng 2007; He and Lilley 2008a, b; Wang and Feng 2009a, b;
Abbasion et al. 2009; Wang and Feng 2010; Jiang and Yan 2010; Farshi et al.
2010; Wang and Yang 2011; Wang and Wang 2011; Yan and Jiang 2011a, b; He
and Lilley 2012; Samaei et al. 2012; Zhang et al. 2013; Gao 2015). Considering
the first-order interface condition, the stress jump

�

 ij across an interface surface

is associated with the curvature tensor �˛ˇ of the surface by the relationship
4
ijninj D 
 s

˛ˇ�˛ˇ (i,jD 1 , 2 , 3; ˛ , ˇD 1 , 2) in which ni is the unit vector
normal to the interface surface and 
 s

˛ˇ is the interface (surface) stress tensor. In one-

dimensional problems, the surface constitutive relation 
 s
˛ˇ D �0˛ˇCS˛ˇ�ı"s

˛ˇ can be

simplified as 
 sD �0CEs"
s within the framework of Gurtin-Murdoch model, where


 s is the surface stress, "s is the surface strain, Es is the effective surface Young’s
modulus, and �0 is the constant residual surface tension. For the developments in
this line, Wang and Feng (2007) examined the natural frequency of microbeams
with surface effect. Wang and Feng (2009a) derived the analytical relation for the
axial buckling force of a nanowire under consideration of surface elasticity and
residual surface tension effects. The dependence of the surface effects on the overall
Young’s modulus of bending nanowires in static and resonance has been studied
by He and Lilley (2008a, b) for three different boundary conditions. In addition
to Euler-Bernoulli beam theory, Timoshenko beam model has also been utilized to
investigate the surface effects on the buckling (Wang and Feng 2009b) and free
vibration behavior of a nanowire (Wang and Feng 2009b; Abbasion et al. 2009).
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Recently, Jiang and Yan (2010) derived explicit solutions for studying the combined
effects of shear deformation, surface elasticity, and residual surface tension on
the effective stiffness via Timoshenko beam theory as well. It was found that the
derivations in some of the above-mentioned one-dimensional researches agree with
the experimental measurements well (Lachut and Sader 2007).

5.3 High-Order Surface Stresses in Two-Dimensional
Configuration

A refined surface stress model, referred to as high-order surface stress model, was
recently proposed by the authors (Chen and Chiu 2011). A schematic diagram for
the difference between the higher-order interface stress model and the conventional
surface stress model is illustrated in Fig. 5.2. For convenience, the concept is
illustrated for a two-dimensional configuration. For the conventional surface stress
model, only the in-plane surface/interface stress 
 s

˛ is considered in the force
balance consideration. While for the high-order surface stress model, in addition
to in-plane surface/interface stress 
 s

˛ , the surface moment ms
˛ is considered at the

same time. The surface moment can be viewed as the effect of nonuniformity of the
in-plane surface/interface stress across the thickness h1 of the interphase (Fig. 5.2).
The approach to introduce 
 s

˛ and ms
˛ into the continuum framework is somewhat

akin to the classical theories of beams, thin plates, and shells. As shown in Fig. 5.2,

Fig. 5.2 A schematic illustration of two different surface stress models in two-dimensional
configurations: high-order surface stress model and Gurtin-Murdoch model
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the stresses 
˛ along the in-plane direction (˛-direction) of the layer are replaced
by statically equivalent stress resultants and stress moments through the relations

 s
˛ D

R h1=2
�h1=2


˛˛ d� , ms
˛ D

R h1=2
�h1=2


˛˛� d� , and then they are interpreted as surface
stress 
 s

˛ and surface moment ms
˛ , respectively. Of course, when only the in-place

surface stress is considered and the effect of ms
˛ is omitted from the beginning, this

will reduce to the conventional surface stress model based on the membrane theory
(generalized YL equation) (Chen et al. 2006).

For the kinematic deformation of the infinitesimally thin layer, based on the
Kirchhoff-Love theory of thin shell, the relations were constructed as 
 s

˛ D Es"
0
˛,

ms
˛ D �Ds�

0
˛. We mention that "0˛ and �0˛ are, respectively, the strain and the change

in curvature on the middle surface of the thin layer. Es is the surface Young’s
modulus, defined as EsDEch1/(1� �c

2) here. It is equivalent to the material
parameters�sC 2�s defined in Chen et al. (2007a, b). Note that h1, Ec, and �c are the
thickness, Young’s modulus, and Poisson’s ratio of the thin layer, respectively. On
the other hand, Ds is the flexure rigidity of the thin surface/interface layer, defined
as Ds D Ech31=12=

�
1 � �c

2
�
.

When the thin layer has a high stiffness compared to its neighboring phases,
the effective behavior of the layer can be viewed as a stiff interface. When the
stiffness of the thin layer is with magnitudes of high orders O(h�N), various kinds
of interface conditions can be developed. In addition to the continuity condition for

the displacements, u.i/˛
ˇ
ˇ
ˇ
�
D u.m/˛

ˇ
ˇ
ˇ
�

and u.f /�
ˇ
ˇ
ˇ
�
D u.m/�

ˇ
ˇ
ˇ
�

, the jump conditions in

traction would characterize different degrees of stiff interfaces. These include four
types of interface conditions (Benveniste and Miloh 2001; Chen and Chiu 2011).

I. Perfectly bonded interfaces

�

�˛


�
D �
��


�
D 0: (5.1)

II. Membrane type interface (the generalized YL equation)

�

�˛


�
D �

�
@
 s

˛

@s

	

�

;
�

��


�
D �

�

 s
˛

R

	

�

: (5.2)

III. Inextensible membrane type

"0˛ D @u0˛
@s �

u0�
R

ˇ
ˇ̌
ˇ
�

D 0;
�

�˛


�
� @

@s

˚
R
�

��


�

� D 0:
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IV. Inextensible classical shell type
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We mention that Type I is the classical perfectly bonded condition and Type II
is the conventional surface stress model, or the so-called Gurtin-Murdoch model.
Types III and IV represent the stiff interface deduced from the high-order surface
stress. It is noted that the inextensible condition "0˛ D 0 exists in both Type III and
IV. These four kinds of interface conditions demonstrate the mathematical behavior
of thin interphase layer between two neighboring media

Benveniste and Miloh (2001) derived the generalized interface conditions using
an asymptotic expansion method. With the rigorous approach, Types I–IV here and
the rigid type interface condition are termed stiff interfaces. In addition, they also
derived two different types of soft interfaces.

5.3.1 Boundary Value Problem: A Circular Inclusion
in an Infinite Matrix

We now illustrate the high-order surface effect by considering the boundary
value problem of a circular inclusion in an infinite matrix under a transverse
shear deformation applied at the remote boundary. The effect of high-order sur-
face stresses is compared with that of simple surface stress model to exemplify
the significance of high-order effects in certain situations. We will also see
that the surface stress model and the high-order surface stress model both will
have size-dependent behavior, depending on the geometric size of the inclusion.
In Fig. 5.3, we suppose that the radius of the circular fiber is denoted by a. The
effects of various types of interface conditions described in Eqs. (5.1)–(5.4) will be
considered along the interface between the fiber and the matrix. It was noted that for
high-order interface stresses, namely, Types III and IV, the “inextensible” interface
condition needs to prevail (Chen and Chiu 2011). Thus, only the asymmetric
deformation mode will be considered to examine the effect of high-order interface

matrix

a
r

O
θ

surface layer

Fig. 5.3 Schematic illustration of a composite medium composed of the matrix containing circular
cavity with radius a under the surface effects resulting from thin surface layer
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stresses. The circular cylindrical coordinate is adapted within the mathematical
continuum framework. The coordinate variables in Eqs. (5.1)–(5.4) are replaced
with ˛D � and � D r. Also, in the substitutions of @sD r@� and 1/RD � 1/r, we
can obtain the corresponding interface conditions in circular cylindrical coordinate
for the present boundary value problem.

As an illustration for high-order interface stress effects, the configuration of a
circular cavity in an unbounded isotropic matrix subjected to a remote transverse
shear 
m

x

ˇ
ˇ
r!1 D �
m

y

ˇ
ˇ

r!1 D 
0 was studied by Chen and Chiu (2011). The
stress concentration factor around the cavity surface was examined. The concen-
tration factor is defined as the ratio of hoop stress on the cavity surface versus the
applied stress 
0 for the four different types of interfaces. The results were derived
in explicit closed forms as

Type I W 
�

0

ˇ
ˇ
ˇ
r!a
D �4 cos 2�; (5.5)

Type II W 
�

0

ˇ
ˇ
ˇ
r!a
D � 4kmC .Es=a/ .k �m/

kmC .Es=2a/ .2kCm/
cos 2�; (5.6)

Type III W 
�

0

ˇ
ˇ
ˇ
r!a
D �2 .k � m/

2kC m
cos 2�; (5.7)

Type IV W 
�

0

ˇ
ˇ
ˇ
r!a
D �2m .k �m/C 12 �Ds=a3

�
.k �m/

m .2kC m/C 6 .Ds=a3/ .kC 2m/
cos 2�: (5.8)

We mention that the stress concentration factor for Type I is exactly the result
of perfectly bonded interface given in Timoshenko and Goodier (1970) and that
of Type II is identical with the surface stress model previously derived by Chen
et al. (2007a). When letting Es/a! 0 in (5.6), Eq. (5.6) for Type II will reduce
to the classical elasticity solution with a concentration factor of �4. On the other
hand, when Es/a is a relatively large quantity compared with the orders of k and m,
then the concentration factor of Eq. (5.6) will approach to Eq. (5.7) for Type III. In
addition, in Eq. (5.8), when one has Ds/a3! 0, the concentration factor will reduce
to that of Eq. (5.7) for Type III. Also, when Ds/a3 is a large quantity compared with
other terms in the numerator and denominator of Eq. (5.8), the expression of Eq.
(5.8) will reduce to the result of an infinite medium containing a rigid inclusion.
We mention that these four types of interface conditions characterize the degree of
“stiffness” from the ideal situation (Type I) to the nearly rigid interface (Type IV) in
a successive manner (Chen and Chiu 2011).

The stress concentration factor for stress components 
 r and 
 r� of an infinite
medium containing a circular cavity under different types of interface conditions
can also be derived as
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Type I W 
r


0

ˇ
ˇ
ˇ
r!a
D 0; (5.9)

Type II W 
r


0

ˇ
ˇ
ˇ
r!a
D � .Es=a/ .kC m/

kmC .Es=2a/ .2kC m/
cos 2�; (5.10)

Type III W 
r


0

ˇ
ˇ
ˇ
r!a
D �2 .kC m/

2kC m
cos 2�; (5.11)

Type IV W 
r


0

ˇ
ˇ
ˇ
r!a
D �2m .kCm/C 12 �Ds=a3

�
.kC m/

m .2kC m/C 6 .Ds=a3/ .kC 2m/
cos 2�; (5.12)

rigid inclusion W 
r


0

ˇ
ˇ
ˇ
r!a
D 2 .kC m/

kC 2m
cos 2�; (5.13)

for the radial stress 
 r and

Type I W 
r�


0

ˇ
ˇ
ˇ
r!a
D 0; (5.14)

Type II W 
r�


0

ˇ
ˇ
ˇ
r!a
D � 2 .Es=a/ .kC m/

kmC .Es=2a/ .2kC m/
sin 2�; (5.15)

Type III W 
r�


0

ˇ
ˇ̌
r!a
D �4 .kC m/

2kC m
sin 2�; (5.16)

Type IV W 
r�


0

ˇ
ˇ̌
r!a
D �4m .kC m/C 12 �Ds=a3

�
.kC m/

m .2kC m/C 6 .Ds=a3/ .kC 2m/
sin 2�; (5.17)

rigid inclusion W 
r�


0

ˇ
ˇ̌
r!a
D �2 .kC m/

kC 2m
sin 2�; (5.18)

for the shear stress 
 r� . As in the hoop stress 
� , we see that Eqs. (5.9)–(5.13) for 
 r

and Eqs. (5.14)–(5.18) for 
 r� also show that these four types of interface conditions
characterize the degree of “stiffness” from the ideal situation (Type I) to the nearly
rigid interface (Type IV) in a successive manner. Note that here km and mm have
been written simply by k and m for simplicity.

5.4 High-Order Surface Stresses in Nanowires

In this section, we present the high-order surface stress effect on the mechanical
behavior of nanowires. Specifically, the high-order surface stress model developed
in Sect. 5.3 was implemented for the static bending and buckling behavior of NWs.
In line with the previous related references (Wang and Feng 2007; He and Lilley
2008a, b; Wang and Feng 2009a, b), the effect of surface elasticity as well as the
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Fig. 5.4 Cross sections of
circular and rectangular
nanowires with a surface
layer and bending in the x - y
plane with equivalent
distributed transverse load
q(x) resulting from surface
moments as well as in-plane
surface stresses
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effect of residual surface tension will be examined. We compare the present results
with previous studies based on the Gurtin-Murdoch model and with the existing
experimental data. It is demonstrated that the high-order surface stress effect can be
significantly pronounced when the dimension is in a few nanometers.

5.4.1 Mechanical Behavior of NWs Based on Euler-Bernoulli
Beam Theory

In the consideration of residual surface tension �0, the linear relations between
the surface stress and strain and between the surface moment and curvature can
be expressed as 
 s

˛ D �0 C Es"
0
˛ and ms

˛ D �Ds�
0
˛. We mention that Es is

the surface Young’s modulus with the dimensions of N/m and Ds is the surface
bending stiffness with the dimensions of Nm. Two different cross-sectional shapes,
rectangular and circular cross sections, of NWs were considered (Fig. 5.4). The
effect of surface stress, based on the Gurtin-Murdoch model, was simulated by an
equivalent distributed transverse force q(x) that acts on the NW in bending (Wang
and Feng 2007).

Here, the stress jump for high-order surface stress effect also results in a dis-
tributed transverse force (Chiu and Chen 2011a). But the surface stress and surface
moment will contribute to different terms in the governing differential equation.
For bending NWs in the y direction under small deformation with v being the NW
transverse displacement (Fig. 5.4), the distributed transverse load for NWs with the
high-order surface stress effect could be derived as q.x/ D Hv00 � Kv.4/(Chiu and
Chen 2011a), where v00 D d2v=dx2 and v.4/ D d4v=dx4. The definitions of H and
K can be found in Equation (9) of Chiu and Chen (2011a). For a deformed NW
subjected to a compressive force P acting in the longitudinal x direction (Fig. 5.4),
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the jump condition resulting from high-order surface stress effect will also give
rise to a distributed transverse load q(x) along the NW longitudinal direction. The
governing equations based on the high-order surface stress model can be derived as

�
.EI/� C K

 d4v

dx4
� H0

d2v

dx2
D 0 (5.19)

for static bending (Chiu and Chen 2011a) and

�
.EI/� C K

 d4v

dx4
C .P �H0/

d2v

dx2
D 0: (5.20)

for buckling (Chiu and Chen 2012a). We mention that when neglecting the high-
order effect (i.e., KD 0), the governing equations in Eqs. (5.19) and (5.20) can
be reduced to the corresponding case of static bending (He and Lilley 2008a) and
buckling (Wang and Feng 2009a) based on the Gurtin-Murdoch model. Also, when
neglecting the surface stress effects (i.e., KDH0D 0), the results will recover the
governing equation of classical beam-column theory (Timoshenko and Gere 1961).

5.4.2 Mechanical Behavior of NWs Based on Timoshenko
Beam Theory

In this section, we will examine the Timoshenko beam (TB) theory incorporating
the high-order surface stress effect, in which the shearing deformation could be
taken into account. Based on Timoshenko beam theory, the researchers showed
that the effect of surface stress within the Gurtin-Murdoch model on the static
bending (Jiang and Yan 2010) and buckling (Wang and Feng 2009b) behavior of
NWs. Continuing their investigations, the size-dependent buckling (Chiu and Chen
2012b) and static bending (Chiu and Chen 2013) behaviors for NWs based on the
high-order surface stress model have been studied. For demonstrations, we record
the nondimensional critical compression force (Chiu and Chen 2012b)

Pcr

P0cr

D ƒ
�
1C 6Es

Eh
C 2Es

Ew
C 24Ds

Eh3

	
C 24

�2
�0

Eh

�
L

h

	2
; (5.21)

for rectangular sections,

Pcr

P0cr

D ƒ
�
1C 8Es

Ed
C 128Ds

�Ed3

	
C 128

�3
�0

Ed

�
L

d

	2
; (5.22)

for circular sections, and the size-dependent effective Young’s modulus Eeff, based
on TB theory was found as
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Eeff D ƒ
�
.EI/� C K



I
C H0L2

�2I
: (5.23)

Here the definition of the nondimensional parameterƒ is (Chiu and Chen 2012b)

ƒ � ˛sGA

˛sGAC  .�2=L2/
�
.EI/� C K

 ; (5.24)

where G is the shear modulus, A is the cross-sectional area of NWs, and  is a
constant depending on the boundary conditions. It is noted that when neglecting
shear deformation (G!1) and thus the parameter ƒ! 1, Eqs. (5.21)–(5.23) will
recover the corresponding results of NWs accounting for the high-order surface
stress effects based on Euler-Bernoulli beam (EB) theory.

5.5 Results and Discussion

5.5.1 The Stress Concentration Factor for a Circular Cavity
in an Infinite Matrix

In numerical illustrations, we present analytic solutions for the stress concentration
factor in Sect. 5.3. Figure 5.5 shows the maximum value of stress concentration
factor for hoop stress 
� for different types of interfaces versus the radius a of cavity.
Note that the scale of y-axis in the curves of Type I and Type II is different from that
of Type III, Type IV, and rigid inclusion. The matrix material is assumed aluminums
with the isotropic bulk modulus KD 75.2GPa and shear modulus �D 34.7GPa
(Duan et al. 2005b). Note that the relations between elastic constants (K, �) and
Hill’s moduli (k, m) are kDKC�/3 and mD� (Hill 1964).

In Figs. 5.6 and 5.7, we also present the maximum value of stress concentration
factor for radial stress 
 r and shear stress 
 r� shown in Sect. 5.3 versus the radius a
of cavities under different types of interfaces. For the numerical calculations in Figs.
5.5, 5.6, and 5.7, the surface material properties for Type II interface conditions
on the basis of Gurtin-Murdoch model are considered in two kinds of different
free surface properties, EsD � 8.9465 N/m for surface A and EsD 6.091 N/m for
surface B (Chen et al. 2007a).

For the material parameter Ds of Type IV interface condition which accounts for
the high-order surface stress effect, as explained in Chen and Chiu (2011), moderate
and reasonable estimated values ranging from 102� (10�18Nm) to 104� (10�18Nm)
are adapted for the numerical illustrations.

In Fig. 5.5, we have checked that the numerical results for Type II are the same
as that of Chen et al. (2007a), which utilized the Gurtin-Murdoch model based on
the variational method to solve this problem. Obviously, we see that the maximum
value is size dependent for Type II and Type IV, but not for Type I and Type III. It is
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Fig. 5.5 Maximum value of
stress concentration factor for
hoop stress 
� in different
types of interfaces versus the
radius a of cavities
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interesting to note that the size-dependent behavior for cavity with larger diameter
(say a > 15 nm) would be still pronounced with the incorporation of high-order
surface stress effect (Type IV), while the Type II interface condition has become
nearly no size effect.

5.5.2 Mechanical Behavior of NWs

Figure 5.8 shows the size-dependent effective Young’s modulus Eeff numerically.
The calculation is based on EB theory incorporating the high-order surface stress
effects within the buckling analysis (Chiu and Chen 2012a). We see that the
numerical prediction by the theoretical calculation based on the Gurtin-Murdoch
model will not be able to capture the general trend of the experimental data,
especially when d� 40 nm. In contrast, the high-order surface stress model will
produce a good agreement with the experimental data. This comparison with the
experimental data suggests that the effect of surface moments could be crucial in the
modeling for mechanical behavior of NWs. In Fig. 5.8, the experimental sample was
silicon NWs with fixed-fixed end conditions (Zhu et al. 2009). The surface Young’s
modulus and residual surface tension were adapted as EsD�10.655N/m and
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Fig. 5.6 Maximum value of
stress concentration factor for
stress component 
 r in
different types of interfaces
versus the radius a of cavity
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�0D0.6056N/m, respectively (Miller and Shenoy 2000). The high-order material
parameter Ds was selected as DsD�7� 104� (10�18Nm), which has been examined
by Chiu and Chen (2012a).

In Fig. 5.9, we demonstrate that the shear deformation of larger NWs, accounting
for the framework of TB theory, should not be underestimated. Under the consider-
ation of high-order surface stresses, the size-dependent effective Young’s modulus
Eeff was theoretically resolved on the basis of static bending analysis (Chiu and
Chen 2013). Figure 5.9 presents the numerical solutions of Eeff versus the diameter
d for circular NWs. The experimental data in Fig. 5.9 was adapted from Jing et
al. (2006), in which fixed-fixed silver NWs were used for observation. We see that
when the diameter increases, the solutions considering the shearing effect based
on TB theory within the high-order surface stress model will predict more accurate
results in comparison with the experimental data than those by EB theory, especially
when d�70 nm. We mention that the material parameter of high-order effect is used
as DsD5� 104� (10�18Nm), which was numerically examined by Chiu and Chen
(2013).
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Fig. 5.7 Maximum value of
stress concentration factor for
stress component 
 r� in
different types of interfaces
versus the radius a of cavity
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Fig. 5.8 The size-dependent
effective Young’s moduli
based on the high-order
surface stress model and
Gurtin-Murdoch model with
respect to the diameter d of
circular NWs
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Fig. 5.9 The difference among three continuum frameworks for the predictions on size depen-
dence of effective Young’s modulus. Note that TB theory signifies Timoshenko beam theory and
EB theory denotes Euler-Bernoulli beam theory

5.6 Conclusions

In this chapter, we have introduced the high-order surface stress model for two-
dimensional configurations. Analogous to the classical thin shell theory, this con-
tinuum theoretical framework incorporates the in-plane stresses as well as surface
moments. The surface moments result in high-order surface effects. We mention that
present approach to construct the high-order interface/surface conditions through
the classical continuum mechanics and graphical interpretation is mathematically
simple. The formulation allows that the in-plane surface stresses could be varying
across the thin layer thickness and thus, effectively, it is equivalent to consider
an average strain as well as curvature along the interface. In two dimensions, the
behavior of interfaces can be grouped into four different types based on the degree
of stiffness for the thin layer. We illustrate graphically how these four types of
interfaces will influence the stress concentration factor in a successive manner for
the boundary value problem of an infinite matrix containing a circular cavity.

In addition, the mechanical behaviors of NWs have been studied based on
the high-order surface stress model. Both Timoshenko beam theory and Euler-
Bernoulli beam theory have been adopted to incorporate the high-order surface
stress effects. We compare the difference between the classical solutions (without
surface effects), the calculations based on the high-order surface stress model and
conventional surface stress model (Gurtin-Murdoch model). The size-dependent
effective Young’s modulus of NWs has also been derived. From the investigation
of the theoretical calculations and the existing experimental data for the effective
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Young’s modulus, the effects of higher-order interface stresses between two differ-
ent materials could be important, especially when the characteristic length is in a few
nanometers. Our theoretical framework based on classical continuum mechanics
might provide a more direct and simple approach to simulate the mechanical
behavior of nanostructures.

We mention that some further studies might be envisaged for engineering appli-
cations. The thermal stress effects could be important and sensitive for nanoscaled
components and structures. The issue of thermal effects on nanocomposites (Chen
1993; He and Benveniste 2004; Quang and He 2007; Chen et al. 2007b; Quang and
He 2009) could be considered using the high-order interface stress model. Another
possible extension of the present research can be directed to the subject of mechanics
of wrinkling. Andreussi and Gurtin (1977) studied the wrinkling of a free surface
and showed that a compressive residual surface tension or negative surface stiffness
will result in this behavior. Kornev and Srolovitz (2004) discussed surface stress-
driven wrinkling of a free film based on thermodynamics. The ordered patterns of
wrinkling in metal thin films deposited on elastomeric polymer can be observed due
to thermal effects (Bowden et al. 1998; Huck et al. 2000; Kwon and Lee 2005).
Huang (2005) also investigated the wrinkling of a conductive thin film subjected to
electric field.

Finally, we note that the high-order interface/surface stress model could be used
to examine other related subjects, which have been investigated based on the Gurtin-
Murdoch model, such as piezoelectric effects on nanosized structures (Chen 2008;
Wang and Feng 2010; Li et al. 2011; Xiao et al. 2011; Yan and Jiang 2011a, b;
Samaei et al. 2012; Yan and Jiang 2012; Hadjesfandiari 2013; Dai and Park 2013;
Xiao et al. 2013), wave propagation in nanoscaled system (Gurtin and Murdoch
1976; Murdoch 1976; Chakraborty 2010; Li and Lee 2010; Ou and Lee 2012; Liu et
al. 2013; Ru et al. 2013), and photonic band structures (Kushwaha et al. 1993; Chen
and Wang 2011; Zhen et al. 2012; Liu et al. 2012).
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Chapter 6
The Design of Nano-Inhomogeneities
with Uniform Internal Strain in Anti-Plane
Shear Deformations of Composite Solids

Ming Dai and Peter Schiavone

Abstract In the micromechanical analysis of composite materials, the objective
is to predict the overall behavior of the composite from known properties of its
individual constituents. When applied to fibrous composites, stress distributions
in a composite material subjected to applied stresses can be modelled using
inhomogeneity-matrix systems in which the fibers are represented by inhomo-
geneities embedded in a foreign matrix material. One of the most important
challenges associated with inhomogeneity-matrix systems is concerned with the
design of inhomogeneities in which the interior strain distribution remains uniform.
The primary motivation for the interest in this class of problems lies in the optimal
nature of an interior uniform strain field in that such a field does not give rise to stress
peaks within the inhomogeneity and also effectively reduces the stress concentration
in the surrounding matrix (it is well known that stress peaks are usually responsible
for the mechanical failure of the inhomogeneity-matrix system). The main focus in
addressing this challenge has been on designing the shape of the inhomogeneity
and the properties of the material interface between the inhomogeneity and its
surrounding matrix to achieve the desired uniform strain distribution inside the
inhomogeneity. In the emerging area of nanocomposites, however, the presence
of appreciable interface energy (known also as the “interface effect”) presents
formidable challenges in the design of corresponding nano-inhomogeneities with
uniform internal strain distributions. In this chapter, we present some new results
in this area for anti-plane shear deformations of composite solids. In particular, we
demonstrate the existence of a single nano-inhomogeneity with uniform internal
strain distribution induced by a screw dislocation as well as that of periodic nano-
inhomogeneities with uniform internal strain distributions when the composite is
subjected to uniform remote (anti-plane shear) loading. Our method involves the

M. Dai
School of Mechanical Engineering, Changzhou University, Changzhou 213164, China

P. Schiavone (�)
Department of Mechanical Engineering, University of Alberta, Edmonton,
AB T6G 1H9, Canada
e-mail: P.Schiavone@ualberta.ca

© Springer International Publishing AG 2018
S.A. Meguid, G.J. Weng (eds.), Micromechanics and Nanomechanics
of Composite Solids, DOI 10.1007/978-3-319-52794-9_6

179

mailto:P.Schiavone@ualberta.ca


180 M. Dai and P. Schiavone

identification of the corresponding unknown shape of the desired inhomogeneity
via a conformal mapping whose unknown coefficients are determined from a
system of nonlinear equations. Extensive numerical examples are given to verify the
correctness of our method and to illustrate the size dependence of the shapes of the
inhomogeneities. It is anticipated that these results will find extensive application in
the optimal design of fibrous nanocomposites.

6.1 Introduction

In the micromechanics of composite materials, it is well known that “stress peaks”
inside material inhomogeneities are a significant factor contributing to the possible
failure of the composite. To address this problem, researchers have focused on the
design of inhomogeneities which achieve uniform internal stress distributions. Such
inhomogeneities not only eliminate the possibility of internal stress peaks but are
also known to effectively reduce the existing stress concentration in the surrounding
matrix.

In early studies, Eshelby (1957) showed that a uniform internal stress distribution
can be achieved inside a two-dimensional elliptical inhomogeneity or a three-
dimensional ellipsoidal inhomogeneity when the surrounding matrix is subjected
to any uniform remote elastic loading. Eshelby’s results are the main reason why
so many researchers in the mechanics of composites have focused primarily on the
study of elliptical and ellipsoidal inhomogeneities. Subsequently, Eshelby (1961)
conjectured that the converse of his result is also true, that is, that if the field inside an
inhomogeneity is uniform for all uniform remote loadings, then the inhomogeneity
must be of elliptical (two dimensions) or ellipsoidal (three dimensions) shape (see
also Horgan (1995) for the case of anti-plane shear deformations). The latter is
commonly referred to in the literature as the “Eshelby conjecture” and has evoked
much discussion among researchers. For example, Mura and his co-workers (Mura
1997; Mura et al. 1994) claimed they had found a counterexample to Eshelby’s
conjecture by identifying a star-shaped inhomogeneity enclosing a uniform stress
distribution. Unfortunately, Rodin (1996) (see also Markenscoff 1997) disproved
Mura’s claim by pointing out that no polygonal inhomogeneity can ever achieve
a uniform internal stress distribution under Eshelby’s conditions. In fact, through
the use of complex variable methods, a stronger version of Eshelby’s conjecture
has been proved by Sendeckyj (1970) in the case of plane elasticity and by Ru and
Schiavone (1996) for anti-plane shear elasticity: if the field inside an inhomogeneity
is uniform for a single uniform remote loading, then the inhomogeneity must
be elliptical. Subsequent discussion of Eshelby’s conjecture in the literature has
consequently led to two different interpretations of the conjecture:

Weak Eshelby’s conjecture: If the stress is uniform inside for all uniform
remote loadings, then the inhomogeneity is an ellipse (2D) or an ellipsoid (3D).
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Strong Eshelby’s conjecture: If the stress is uniform inside for a single uniform
remote loading, then the inhomogeneity is an ellipse (2D) or an ellipsoid (3D).

Of course, the strong form of Eshelby’s conjecture implies the weak form.
Kang and Milton (2008) and Liu (2008) have proved a weak version of the

conjecture, while Ammari et al. (2010) proved a somewhat “medium version” of
the conjecture lying somewhere between the weak and strong versions. Although
the strong Eshelby’s conjecture in three-dimensional elasticity has not yet been
completely resolved, Liu (2008) has shown that a similar strong conjecture in three-
dimensional thermal conductivity fails to be true.

It is important to note that the original Eshelby’s conjecture was established
for only a single inhomogeneity. In reality, however, composite materials contain
a variety of multiple inhomogeneities and the effect of interaction between these
inhomogeneities on the mechanical properties of the composite cannot be ignored.
In fact, it is unrealistic to expect that elliptical or ellipsoidal inhomogeneities
will continue to exhibit the remarkable property of uniform internal fields in
the presence of such interactions. Consequently, there has been much interest in
the question of existence and construction of multiple (not necessarily elliptical)
inhomogeneities enclosing uniform stress fields. Vigdergauz (1994) found that a
two-dimensional microstructure consisting of a double-periodic array of inhomo-
geneities with uniform internal stress fields can achieve a particular optimal elastic
property among all other structures with given inhomogeneity volume fraction.
Grabovsky and Kohn (1995) gave an explicit formula to construct the “Vigdergauz
microstructure” based on the method proposed by Cherepanov (1974) to establish
“equally strong” holes. Most recently, the existence of multiple inhomogeneities
with uniform internal fields has been further verified and several distinct methods
have been dedicated to their design. For example, Liu and his co-workers (Liu
et al. 2007; Liu 2008) identified special shapes of multiple inhomogeneities with
uniform internal stress or magnetic fields in three dimensions based on a variational
inequality. Using the Weierstrass zeta function and Schwarz–Christoffel formula,
Kang et al. (2008) established an inhomogeneity pair enclosing uniform internal
stress and further revealed an interesting fact that when the internal stress field inside
a single inhomogeneity tends towards uniformity, the corresponding shape of the
inhomogeneity need not converge to that of an ellipse (such a single inhomogeneity
is constructed by adding an extremely narrow bridge between the components of
the inhomogeneity pair with uniform internal stress). Wang (2012) introduced a
specific mapping function to construct an inhomogeneity pair with uniform internal
stress in anti-plane shear piezoelectricity and finite plane elasticity, respectively. Dai
et al. (2015a, 2017) derived specific conditions imposed on the uniform internal
stress fields, material constants, and remote loadings to guarantee the existence
of multiple symmetrical and rotationally symmetric inhomogeneities enclosing
uniform stress fields.

The interaction between inhomogeneities is not the only factor which must be
taken into account when designing inhomogeneities in the context of Eshelby’s
result: the interaction between an inhomogeneity and the edge of the surrounding
matrix has also great impact on the corresponding shape of the inhomogeneity.
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The model of a half plane containing multiple inhomogeneities is widely used
to study the interaction between inhomogeneities and the edge of a surrounding
matrix. It then becomes natural to ask whether there exist single or multiple
inhomogeneities enclosing uniform fields in an elastic half plane with traction-
free surface. In fact, the symmetrical inhomogeneity pair constructed in Liu (2008),
Kang et al. (2008), Wang (2012), and Dai et al. (2015a, 2017) indeed implies the
existence of a single inhomogeneity with uniform internal stress field in a solid
subjected to anti-plane shear deformations. As an extension of the results in Dai
et al. (2015a, 2017), Dai et al. (2015b) have undertaken a systematic investigation
of the construction of single and multiple inhomogeneities with uniform internal
stress fields in an elastic half plane and further verified the corresponding existence
of multiple inhomogeneities with distinct uniform internal stress distributions. In
particular, the symmetrical inhomogeneity pairs established in Dai et al. (2015b)
reveal the existence of a single inhomogeneity enclosing uniform internal stress
inside a quarter plane with two mutually perpendicular traction-free surfaces. It is
worth noting that the results of Dai et al. (2015b) are restricted to anti-plane shear
deformations. A complete solution to the analogous but more challenging problem
of the existence of inhomogeneities with uniform internal stress field in an elastic
half plane subjected to plane deformations remains unresolved.

From the micromechanical analysis of composite materials has emerged the most
recent and perhaps most exciting topic of the analysis of nanocomposites. The latter
are known to have unique mechanical and multifunctional properties which have
led to a wide variety of fascinating applications in engineering and applied science.
In the modelling of nanocomposites, material inhomogeneities are considered at the
nanoscale where surface to volume ratios become significantly larger and the so-
called surface or interface effects can no longer be ignored. Consequently, interface
energy and interface tension (here subsequently referred to as “interface effects”—
usually neglected at the micro—or higher length scales) can play a significant role
in the model of deformation so that the stress field in the vicinity of inhomogeneities
exhibits significant size dependence (see, e.g. Sharma et al. 2003). Gurtin and his
co-workers (Gurtin and Murdoch 1975; Gurtin et al. 1998) developed a general
framework to account for interface effects by modelling the interface as a separate
elastic membrane, perfectly bonded to the surrounding bulk material but having
distinct material properties. In the context of the Gurtin–Murdoch model, it turns
out that the displacement in the bulk material is continuous across the interface
while the traction is discontinuous with jump across the interface related to its
curvature and the strain gradient of the bulk material at the interface. Based on
the Gurtin–Murdoch model, it has been shown that in the presence of interface
effects, a general elliptical inhomogeneity can no longer achieve a uniform internal
stress field in either anti-plane shear deformations or plane deformations (see Tian
and Rajapakse 2007a; Luo and Wang 2009). Interestingly enough, the circular
inhomogeneity does continue to admit a uniform internal stress field in the presence
of interface effects (see Sharma and Ganti 2004; Fang and Liu 2006; Tian and
Rajapakse 2007b). Sharma and Ganti (2004) further asserted that only circular
and spherical inhomogeneities can enjoy the property of uniform internal stress in
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the presence of interface effects. In sharp contrast to Sharma and Ganti (2004),
however, Dai and Gao (2016) have recently identified noncircular shapes of a single
inhomogeneity which continues to achieve uniform internal stress in the presence of
interface effects when the composite is subjected to anti-plane shear deformations.

In this chapter, the word nano-inhomogeneity (an inhomogeneity at the
nanoscale) will be taken to be synonymous with a material inhomogeneity
in the presence of interface effects. Many significant problems in the area of
continuum-based modelling and analysis of nanocomposites remain unresolved.
This can be attributed directly to the formidable mathematical difficulties associated
with the introduction of interface effects into the model of deformation. In this
chapter, we present some new results in this area, in particular, concerning nano-
inhomogeneities with uniform stress fields in which interface effects are fully
incorporated into the model of deformation.

The chapter is organized as follows. In Sect. 6.2, we present the basic equations
for an inhomogeneity-matrix system which incorporates interface effects in a com-
posite subjected to anti-plane shear deformations. Based on the method developed
by Dai and Gao (2016), in Sect. 6.3 we identify distinct shapes of a single nano-
inhomogeneity achieving uniform internal fields induced by a screw dislocation.
In Sect. 6.4, we develop a new method to verify the existence of periodic nano-
inhomogeneities which enclose uniform internal stress fields in anti-plane shear
deformations of the nanocomposite.

6.2 Basic Equations

We refer to the (x1, x2) Cartesian coordinate system and consider an inhomogeneity
embedded in a foreign matrix subjected to anti-plane shear deformations. We incor-
porate interface effects into the inhomogeneity-matrix system so that our analysis
accommodates the behavior of nano-inhomogeneities as defined in Sect. 6.1. The
notations S0 and S1 will be used to denote the regions occupied by the matrix and
the inhomogeneity, respectively, while the curve L represents the interface between
the inhomogeneity and the matrix. Based on the Gurtin–Murdoch theory (see Gurtin
and Murdoch 1975; Gurtin et al. 1998), the out-of-plane displacement w and the
anti-plane shear stresses (
13, 
23) within the inhomogeneity and matrix satisfy

@2w.j/

@x21
C @2w.j/

@x22
D 0; j D 0; 1I (6.1)



.j/
13 D Gj

@w.j/

@x1
; 


.j/
23 D Gj

@w.j/

@x2
; j D 0; 1; (6.2)

where G refers to the shear modulus and the use of the subscript j D 0,1 or
superscript (j) D 0,1 denotes the respective quantity in S0 and S1. Despite the
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presence of interface effects, the displacement w remains continuous across the
interface, i.e.,

w.1/ D w.0/; on L; (6.3)

but the shear traction 
n3 becomes discontinuous with jump across the interface
described by



.1/
n3 � 
.0/n3 D Gs

d
.S/t3

ds
; on L; (6.4)

where 
.S/t3 denotes the interfacial shear stress (the subscript t is used here to denote
the direction of the tangent to the curve L), ds is the arc length of an infinitesimal
element of the curve L along its tangent, and Gs is the (interface) shear modulus
on L. In the Gurtin–Murdoch model, the elastic interfacial region is assumed to be
perfectly bonded to the surrounding bulk material so that the interfacial shear stress


.S/
t3 can be represented as



.S/
t3 D Gs

dw.1/

ds
; on L: (6.5)

The general solution to Eqs. (6.1) and (6.2) can be written in the form (see
Muskhelishvili 1975)

w.j/ D Im
�
fj.z/


; j D 0; 1I (6.6)



.j/
23 C i
.j/13 D Gjf

0
j .z/; j D 0; 1; (6.7)

where fj(z) (zD x1 C ix2, j D 0,1) denote complex potentials defined in the regions
Sj (j D 0,1), respectively, and the symbol i denotes the usual imaginary unit. In

particular, the shear traction 
.j/n3 (jD 0,1) on the interface L can be written in terms
of fj(z) (j D 0,1) as



.j/
n3 D �GjRe

�
fj

0.t/
dt

ds

�
; t 2 L; j D 0; 1; (6.8)

where dt is an infinitesimal element of the curve L along its tangent and ds is the arc
length of dt. Using Eqs. (6.6) and (6.8), the interface conditions (6.3) and (6.4) with
(6.5) become

Im Œf0.t/� D Im Œf1.t/� ; t 2 L; (6.9)

G0Re Œf0.t/� � G1Re Œf1.t/� D GsIm

�
f 0
1.t/

dt

ds

�
; t 2 L: (6.10)



6 The Design of Nano-Inhomogeneities with Uniform Internal Strain in Anti-Plane: : : 185

Fig. 6.1 An inhomogeneity
interacting with a screw
dislocation in an infinite
matrix

Combining Eqs. (6.9) and (6.10) yields

f0.t/ D 1C G1=G0

2
f1.t/C G1=G0 � 1

2
f1.t/C Gs

G0

Im

�
f 0
1.t/

dt

ds

�
; t 2 L: (6.11)

In what follows, the integrated form (6.11) of the interface condition will be
utilized in the design of inhomogeneities which achieve uniform internal strain fields
in the presence of interface effects.

6.3 Single Inhomogeneity with Interface Effects
that Achieves Uniform Internal Strain Induced
by a Screw Dislocation

As shown in Fig. 6.1, we consider a single inhomogeneity interacting with a screw
dislocation (at the point (x10, x20)) embedded in an infinite matrix. Most recently,
Wang and Schiavone (2016) verified the existence of inhomogeneities with uniform
internal strain fields induced by screw dislocations in the absence of interface effects
(i.e., in the case of a perfectly bonded interface). The analogous problem in the
presence of interface effects, however, remains unresolved. We address this issue
here by deriving and solving a system of equations with respect to the parameters
which define the unknown shape of the inhomogeneity.

6.3.1 Analysis

Consider an elastic inhomogeneity with prescribed uniform internal strain field
embedded in an infinite matrix interacting with a screw dislocation (with Burgers
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vector bz located at the point (x10, x20)) (see Fig. 6.1). The corresponding complex
potentials f0(z) and f1(z) take the form

f0.z/ D bz

2�
log .z � z0/C g0.z/; z0 D x10 C ix20; (6.12)

f1.z/ D �1z; (6.13)

where �1 is a known complex constant determined by the prescribed uniform
internal strain field and g0(z) is an unknown holomorphic function defined in the
infinite region S0. Substituting Eqs. (6.12) and (6.13) into Eq. (6.11), we obtain

g0.t/ D AtC BtC Gs

G0

Im

�
�1

dt

ds

�
� bz

2�
log .t � z0/ ; t 2 L; (6.14)

with

A D .1C G1=G0/ �1=2;B D .G1=G0 � 1/ � 1=2: (6.15)

Introduce a conformal mapping from the infinite region S0 in the z-plane to the
exterior of the unit circle in the �-plane (Muskhelishvili 1975),

z D ! .�/ D R

0

@� C
C1X

jD1
aj�

�j

1

A ; j�j � 1; (6.16)

which, in particular, associates the shape L of the inhomogeneity in the z-plane
with the unit circle (denoted by 
 D ei� , 0� � � 2�) in the �-plane. In the mapping
(6.16), the real constant R characterizes the size of the inhomogeneity and is
prescribed in advance leaving the complex coefficients aj (j D 1 : : :C1), which
determine the actual shape of the inhomogeneity, as the only remaining unknowns.
In the context of mapping (6.16), noting that

t D ! .
/ ; dt

ds
D i
!0 .
/
j!0 .
/j ; .t 2 L/ (6.17)

it follows from Eq. (6.14) that

g0 .! .
// D A! .
/C B! .
/C Gs

G0

Re

�
�1

!0 .
/
j!0 .
/j

�
� bz

2�
log Œ! .
/ � z0� :

(6.18)

In order to ensure the existence of the function g0(z) holomorphic in the infinite
region S0 (which is equivalent to ensuring the existence of the function g0(!(�))
holomorphic outside the unit circle in the �-plane), the boundary value g0(!(
))
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(see Eq. (6.18)) of the function g0(!(�)) on the unit circle in the �-plane should
satisfy the following necessary and sufficient condition (Muskhelishvili 1975):

1

2�

Z 2�

0

g0 .! .
// 

�kd� D 0; 
 D ei� ; k D 1; 2; :::: (6.19)

Using Eq. (6.16) and defining

bk D 1

2�

Z 2�

0

Re

�
�1

!0 .
/
j!0 .
/j

�

�kd�; 
 D eI� ; k D 1; 2; ::: (6.20)

dk D 1

4�2

Z 2�

0

log Œ! .
/ � z0� 

�kd�; 
 D ei� ; k D 1; 2; ::: (6.21)

the condition (6.19) results in

Aı1k C Bak C �bk � bz

R
dk D 0; k D 1; 2; ::: (6.22)

with

� D Gs

G0R
; (6.23)

ı1k D
�

1; k D 1
0; k D 2; 3; ::: (6.24)

in which the parameters A, B, � , R, and bz are all known while the unknown
coefficients aj (jD 1 : : : C1) introduced from the mapping (6.16) will determine
the actual shape of the inhomogeneity. Here, it should be noted that each step
in the derivation leading to Eq. (6.22) is necessary and sufficient so that we can
state categorically that once Eq. (6.22) admits a solution for the coefficients aj

(j D 1 : : : C 1) introduced from the mapping (6.16), the resulting shape of
the inhomogeneity is the one which achieves the corresponding uniform internal
strain field as a result of the influence of the corresponding dislocation. Instead
of examining analytically whether Eq. (6.22) admits a solution, we employ the
Newton–Raphson method to solve the truncated form of Eq. (6.22). In fact, we can
truncate the infinite series from the mapping (6.16) to a finite order polynomial in
N unknown coefficients aj (j D 1 : : : N), which can be obtained numerically from
the corresponding truncated nonlinear Eq. (6.22) for k D 1 : : : N. In particular, the
Jacobi matrix in the corresponding Newton–Raphson iteration can be obtained using
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D R

�j
�j�1j!0.
/j2Cj!0.
/ReŒ
 jC1!0.
/�
j!0.
/j3 ;

d

�
!0.
/

j!0.
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dIm.aj/
D R

�ij
�j�1j!0.
/j2Cj!0.
/ImŒ
 jC1!0.
/�
j!0.
/j3 ;

9
>>>=

>>>;

j D 1:::N; (6.25)

d logŒ!.
/�z0�

dRe.aj/
D R
�j

!.
/�z0
;

d logŒ!.
/�z0�

dIm.aj/
D iR
�j

!.
/�z0
;

9
=

;
j D 1:::N; (6.26)

with detailed implementation of the Newton–Raphson iteration scheme available in
Dai and Gao (2016). We proceed with the assertion that if the Newton–Raphson
method always results in convergent solutions (shapes of desired inhomogeneities)
with increasing values of N, then the original Eq. (6.22) (not truncated) indeed
admits solutions which, in turn, identify inhomogeneities with the desired property,
i.e., which achieve uniform internal strain fields in the presence of interface effects
when subjected to the influence of a screw dislocation.

It is expected that the values of A and B (determined by the prescribed uniform
internal strain field �1, see Eq. (6.15)) greatly influence the existence of solutions
to Eq. (6.22). Consequently, the uniform internal strain field prescribed inside the
inhomogeneity should be chosen judiciously. However, since there are no known
standard shapes of inhomogeneity capable of achieving uniform internal fields in the
presence of interface effects, we proceed by simply prescribing the uniform internal
strain field inside the unknown inhomogeneity using the average internal strain field
(induced by a screw dislocation) inside, for example, a circular inhomogeneity. In
this case, the average internal strain field is obtained as (based on Fang and Liu
(2006))

�
average
1 D �bz

�z0 .1CG1=G0 C �/ ; (6.27)

where � is given by Eq. (6.23) with R representing the radius of the circular
inhomogeneity. The prescribed uniform internal strain field inside the unknown
inhomogeneity is then defined by introducing a perturbation into Eq. (6.27) as
follows:

�1 D � average
1 .1C / D �bz .1C /

�z0 .1C G1=G0 C �/ ; (6.28)

where  is a complex parameter. In particular, we can see from Eqs. (6.20)–
(6.22) that the actual shape (ignoring the orientation) of the inhomogeneity with
prescribed uniform internal strain field defined by Eq. (6.28) is determined by
only the parameter � corresponding to the size-dependent interface effects (see
Eq. (6.23)), the perturbation parameter  (see Eq. (6.28)), and the relative distance
jz0j/R between the dislocation and the inhomogeneity itself. Consequently, in the
following numerical examples, for the sake of convenience, the dislocation will
always occupy a position on the positive x-axis.
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Fig. 6.2 Effect of dislocation on the shape of an inhomogeneity with interface effects that achieves
a uniform internal strain field for real  with increasing size of the inhomogeneity

6.3.2 Numerical Examples

Previous studies have shown that the interfacial shear modulus Gs is of the order of
1 N/m (see Ruud et al. 1993; Josell et al. 1999) and may take positive or negative
values depending on the crystallographic orientation (see Miller and Shenoy 2000;
Shenoy 2005), while the shear modulus G0 of the matrix is of the order of 10 GPa.
Consequently, the parameter Gs/G0 is of the order of 10�10 m and we can see
from the parameter � defined in Eq. (6.23) that incorporation of interface effects
will impact the shape of the inhomogeneity with uniform internal strain field only
when the inhomogeneity size R decreases towards the nanoscale. In the following
examples, we adopt the dimensionless parameters � , , and z0/R to identify the shape
of the desired inhomogeneity with interface effects which achieves a prescribed
uniform internal strain field under the influence of a screw dislocation.

The size-dependent phenomenon of the elastic field inside a nano-inhomogeneity
with interface effect is well reported in the literature. Here, our numerical results
will show that the shape of a nano-inhomogeneity which achieves a uniform internal
strain field under the influence of a dislocation is also size dependent. Figures 6.2
and 6.3 illustrate this size dependence when the inhomogeneity increases in size
from the nanoscale to the macroscale.

Note that the shapes shown in Figs. 6.2 and 6.3 for different sizes of inhomogene-
ity are normalized by their respective inhomogeneity size to facilitate comparisons.
In Figs. 6.2 and 6.3, all of the inhomogeneities of different sizes are able to achieve
the same uniform internal strain field under the same relative distance between
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Fig. 6.3 Effect of dislocation on the shape of an inhomogeneity with interface effects that achieves
a uniform internal strain field for complex  with increasing size of the inhomogeneity

inhomogeneity and dislocation. It follows that the clear size dependence of the
shape of the inhomogeneity is due mainly to the size-dependent interface effects
determined by � (see Eq. (6.23)). It is interesting to note from Figs. 6.2 and 6.3 that
soft and hard inhomogeneities seem to be repelled and attracted, respectively, by the
dislocation to achieve a uniform internal strain field.

It is clear that the distance between the inhomogeneity and the dislocation has
a significant impact on the shape of an inhomogeneity able to sustain a uniform
internal strain field. It is of particular interest, therefore, to examine the effect of
the dislocation on the shape of the inhomogeneity in terms of the convergence of
related procedures with increasing distance between the inhomogeneity and the
dislocation. Shown in Figs. 6.4 and 6.5 is the convergence of the shape of the
nano-inhomogeneity that achieves a uniform internal strain field when the distance
between the inhomogeneity and the dislocation increases.

In Fig. 6.4, we can see that the shape of the nano-inhomogeneity which achieves
a uniform internal strain field for D 0 converges to a circle with increasing distance
between the inhomogeneity and the dislocation. This is actually not surprising given
that (as shown by Fang and Liu (2006)) the internal strain field inside a circular
nano-inhomogeneity induced by a dislocation tends towards a uniform field (given
by the average internal strain field (6.27)) with increasing distance between the
inhomogeneity and the dislocation. The general reason why the inhomogeneity
shape achieving a uniform internal strain field converges when the distance between
the inhomogeneity and dislocation increases can perhaps be explained as follows.
For a sufficiently large distance between the inhomogeneity and the dislocation, the
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logarithmic term related to the dislocation in the boundary condition (6.14) has the
following first-order asymptotic form:

log .t � z0/ D log .�z0/�
C1X

jD1

tj

jzj
0

� log .�z0/� t

z0
; jz0j � jtj : (6.29)

From Eq. (6.29), we see that, with increasing distance between the inhomo-
geneity and the dislocation, the effect of the dislocation on the shape of the
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Fig. 6.6 Convergence of the shape of an inhomogeneity without interface effect which achieves
a uniform internal strain field with increasing distance between the dislocation and the
inhomogeneity

inhomogeneity approximates the equivalent effect of a uniform remote loading on
the shape of the inhomogeneity. Consequently, we can see in Fig. 6.5 that the shape
of a nano-inhomogeneity with uniform internal strain field induced by a screw
dislocation is indeed consistent with that of a nano-inhomogeneity with the same
uniform internal strain field under uniform remote anti-plane shear loadings (see Dai
and Gao 2016) when the distance between the inhomogeneity and the dislocation
is sufficiently large. Here, an additional example (in which interface effects are
ignored—see Fig. 6.6) is given to verify this reasoning.

It is seen quite clearly that when the distance between the inhomogeneity and
the dislocation increases, the non-elliptical inhomogeneity that achieves a uniform
internal strain field under the influence of a dislocation, in the absence of interface
effects, does indeed converge to the corresponding case of an equivalent elliptical
inhomogeneity subjected to the corresponding uniform remote strain field �bz

2�z0
.

Moreover, by comparing Figs. 6.5 and 6.6, it is found that for a given margin of
relative error, the presence of interface effects will accelerate the convergence of the
shape of the inhomogeneity.

6.4 Periodic Inhomogeneities with Interface Effects
That Achieve Uniform Internal Strain Fields

In the presence of interface effects, the design of a single inhomogeneity with uni-
form internal strain field in anti-plane shear deformations has been well studied by
Dai and Gao (2016). In a real composite with relatively high inhomogeneity volume
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Fig. 6.7 Periodic inhomogeneities with interface effects embedded in an infinite matrix under a
uniform remote anti-plane shear loading

fraction, however, the interaction among inhomogeneities cannot be neglected so
that the optimal shapes constructed by Dai and Gao (2016) are no longer relevant in
this context. In this section, we develop a new method to construct optimal shapes of
periodic inhomogeneities with uniform internal strain fields. As shown in Fig. 6.7a,
we consider a composite containing an array of elastic inhomogeneities periodically
distributed along the x2-direction under uniform remote anti-plane shear loadings

1
13 and 
1

23 . The composite is subjected to anti-plane shear deformations and the
interface between each inhomogeneity and its surrounding matrix is assumed to
incorporate interface effects as described earlier. Our objective is again to determine
the shape of the inhomogeneities enclosing uniform internal strain fields prescribed
within a certain admissible range leaving the shape of the inhomogeneities as the
only remaining unknown. To illustrate this investigation, we consider a represen-
tative strip of the composite which contains a single inhomogeneity as shown in
Fig. 6.7b. In Fig. 6.7b, we denote the lower and upper edges of the strip parallel to
the x2-axis by �L and �U, respectively, the inhomogeneity–matrix interface is again
denoted by L, and the regions occupied by the matrix and the inhomogeneity by S0

and S1, respectively.

6.4.1 Solution Procedure

The complex potentials for the matrix and inhomogeneity (with uniform internal
strain) in the strip (defined in S0 and S1, respectively) take the form
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f0.z/ D �0zC g0.z/; �0 D 
1
23 C i
1

13

G0

; (6.30)

f1.z/ D �1z; (6.31)

where g0(z) is an unknown holomorphic function in S0 while the uniform internal
strain given by �1/2 can be prescribed within a certain admissible range to guarantee
the existence of the desired shape of inhomogeneity. Substituting Eqs. (6.30) and
(6.31) into Eq. (6.11), we obtain

g0.t/ D AtC BtC Gs

G0

Im

�
�1

dt

ds

�
; t 2 L; (6.32)

with

A D .1C G1=G0/ �1=2 � �0;B D .G1=G0 � 1/ � 1=2: (6.33)

In addition to the interface condition (6.32) on L, the periodicity of stress on the
edges �L and �U of the strip requires

g0 .tL/ D g0 .tU/ ; .tL D tU; tL 2 �L; tU 2 �U/ : (6.34)

Here, we mention that the holomorphic function g0(z) can take the boundary
values (6.32) and (6.34) only for very specific curves L. In what follows, we deter-
mine these particular curves L by demonstrating the existence of g0(z) satisfying the
boundary conditions (6.32) on L and (6.34) on the edges �L and �U.

First, we introduce two mappings as (see Dai et al. 2016a)

z D 	 ./ D b0 log 

�
� ib0; (6.35)

 D ! .�/ D 0 C R

0

@� C
C1X

jD1
aj�

�j

1

A ; j�j � 1: (6.36)

As shown in Fig. 6.8, Eq. (6.35) maps the region S0 in the z-plane to the region S
in the -plane (b0 is the semi-height of the strip in the physical plane, see Fig. 6.7b)
and, in particular, it associates the edges �L and �U of the strip in the z-plane with
the upper and lower limits of the ray � in the -plane, respectively. Consequently,
in the context of the mapping (6.35), it follows from the boundary condition (6.34)
that the function g0(	()) defined in the region S is continuous across the ray � in
the -plane so that the existence of the holomorphic function g0(z) in the region S0

satisfying boundary conditions (6.32) and (6.34) is now equivalent to the existence
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Fig. 6.8 Particular conformal mappings from the physical strip to imaginary planes

of the holomorphic function g0(	()) in the region S with the following boundary
value:

g0 .	 .// D b0
�
A log C Blog 

�

�
C Gs

G0

Im

�
�1

d=

jd=j
�
C i .B � A/ b0;  2 L:

(6.37)

We again note that Eq. (6.36) maps the region S in the -plane to the exterior
of the unit circle (denoted by 
 D ei� , 0� � � 2�) in the �-plane (Muskhelishvili
1975) as shown in Fig. 6.8. In Eq. (6.36), the point 0 surrounded by the curve L,
the real constant R, and the complex coefficients aj (jD 1 : : : C1) determines the
overall location and the size and shape of the curve L in the -plane, respectively.
Here, the mapping (6.36) implies that the existence of the holomorphic function
g0(	()) in the region S with boundary value (6.37) is equivalent to the existence
of the holomorphic function g0(	(!(�))) outside the unit circle in the �-plane with
the following boundary value on the unit circle:

g0 .	 .! .
/// D b0.A log!.
/CBlog!.
//
�

C �b0Im Œi�1
W= jWj�C i .B � A/ b0;
(6.38)

with

� D Gs

G0b0
;W D !0 .
/

! .
/
: (6.39)
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In order to ensure the existence of the holomorphic function g0(	(!(�))) outside
the unit circle in the �-plane, its boundary value (6.38) on the unit circle should
satisfy the following necessary and sufficient condition (Muskhelishvili 1975):

1

2�

Z 2�

0

g0 .	 .! .
/// 

�kd� D 0; 
 D ei� ; k D 1; 2; :::: (6.40)

Introducing

Pk D 1

2�

Z 2�

0

log Œ! .
/� 
�kd�; k D 1; 2; ::: (6.41)

Qk D 1

2�

Z 2�

0

log Œ! .
/�
�kd�; k D 1; 2; ::: (6.42)

Tk D 1

2�

Z 2�

0

Im Œi�1
W= jWj� 
�kd�; k D 1; 2; ::: (6.43)

it follows from Eq. (6.40) that

A

B
Pk C Qk C ��

B
Tk D 0; k D 1; 2; :::: (6.44)

Here, we note that Eq. (6.44) is a system of nonlinear equations with respect to
the coefficients aj (j D 1 : : : C 1) introduced in the mapping (6.36). In what
follows, we first prescribe the parameters 0 and R in the mapping (6.36) and
truncate the mapping into a polynomial involving a finite number of coefficients
aj (j D 1 : : : N), which are then determined from the truncated Eq. (6.44) for i D 1
: : : N using the Newton–Raphson method. This then determines the actual shape L
of the inhomogeneity in the physical plane. Using the formulae

d log! .
/

daj
D R
�j

! .
/
; j D 1:::N; (6.45)

d.W=jWj/
dRe.aj/

D DjjWj�WRe.WDj/=jWj
jWj2 ;

d.W=jWj/
dIm.aj/

D i�DjjWj�WIm.WDj/=jWj
jWj2 ;

Dj D R �j
�j�1!.
/�
�j!0.
/

.!.
//2
;

9
>>>=

>>>;

j D 1:::N; (6.46)

it is relatively straightforward to calculate the Jacobi matrix in the Newton–Raphson
iteration of the truncated Eq. (6.44) (for details on the implementation of the
Newton–Raphson iteration in this context, we refer the reader to Dai and Gao
(2016)). In addition, it follows from Eqs. (6.35), (6.36), and (6.41)–(6.44) that the
final shapes of the periodic inhomogeneities with interface effects achieving uniform
internal strain fields in the physical plane are determined by only the remote loading,
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the ratio of shear moduli G1/G0, the ratio A/B (see Eq. (6.33)), the parameter �
characterizing the interface effects (see Eq. (6.39)), and the ratio j0j/R (see Eq.
(6.36)).

6.4.2 Numerical Examples

In each of the following examples, we use the parameters

g D A=B; ˛ D j0j =R; � D Gs

G0b0
; (6.47)

to identify the shapes of the desired periodic inhomogeneities. Here, for most
composites with periodic nanostructures, the corresponding parameters � in Eq.
(6.47) have order 10�2 (see Ruud et al. 1993; Josell et al. 1999). In particular, the
uniform internal strain field inside the inhomogeneities appears to be associated
with the parameter g in Eq. (6.47) by (Dai et al. 2017)

�1 D 2.1C G1=G0/ �0 C g .G1=G0 � 1/ � 0

.1CG1=G0/
2 � jgj2.G1=G0 � 1/2

: (6.48)

Figures 6.9 and 6.10 show the variation of the shape of the desired periodic
inhomogeneities (enclosing uniform internal strain fields in the presence of interface
effects) with increasing size of the inhomogeneities. In Figs. 6.9 and 6.10, we
maintain unchanged the ratio of the period (given by 2b0) of the composite to the
inhomogeneity size (in the x2-direction) to demonstrate the clear size dependence
of interface effects on the shape of the inhomogeneity. Consequently, the increasing
size of the inhomogeneities in Figures 6.9 and 6.10 is determined by the decreasing
parameter j�j (see Eq. (6.47)).

It can be seen quite clearly in Figs. 6.9 and 6.10 that the presence of interface
effects induces a significant impact on the shape of periodic inhomogeneities with
uniform internal strain fields. In the absence of interface effects, Dai et al. (2016a)
have shown that the shape of periodic inhomogeneities with uniform internal strain
fields is independent of the remote loading, whereas in the presence of interface
effects, Figs. 6.9a and 6.10a show that such inhomogeneity shapes become strongly
dependent on the remote loading. In addition, the accuracy of our present method is
verified in Figs. 6.9 and 6.10 by the fact that the shapes obtained in the presence of
interface effects using our method for a relatively large size (around a few hundreds
of nanometers corresponding to � of the order of 10�3) of inhomogeneity are
consistent with the shapes identified in the simpler case (Cherepanov 1974; Dai
et al. 2016a) when the inhomogeneity–matrix interfaces are perfectly bonded.

In addition to the size-dependent shape of periodic inhomogeneities achieving
uniform internal strain in the presence of interface effects, it is also of particular
interest to see the variation of the shape of such inhomogeneities when the period



198 M. Dai and P. Schiavone

-0.65 0.00 0.65
-0.50

0.15

0.80

-0.65 0.00 0.65
-0.50

0.15

0.80

Cherepanov (1974)

13 23

1 0

: 1: 0, 0
0.3, 1.05

g
G G

∞ ∞ = =
= =

(b)

2

0

x
b

1 0x b

present solution
=0.05
=0.02
=0.001

(a)

13 23

1 0

: 1:1, 0.1
0.5, 1.05

g i
G G

∞ ∞ = =
= =

Dai, Schiavone & Gao (2016a)

1 0x b

2

0

x
b

present solution
=0.05
=0.03
=0.002

Fig. 6.9 Periodic soft inhomogeneities with interface effects that achieve uniform internal strain
fields with increasing size

-0.8 0.0 0.8
-0.6

0.2

1.0

-0.4 0.2 0.8
-0.6

0.0

0.6

Cherepanov (1974)

13 23

1 0

: 0 :1, 0.1
2.5, 0.95

g
G G

∞ ∞ = =
= =

(b)

2

0

x
b

1 0x b

present solution
= -0.04
= -0.02
= -0.003

(a)

13 23

1 0

: 1: 1
1.5

0.3 0.4
0.92

G G
g i

∞ ∞ = −
=

= −
=

Dai, Schiavone & Gao (2016a)

1 0x b

2

0

x
b

present solution
= -0.04

= -0.02
= -0.003
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fields with increasing size

of the composite increases. Figures 6.11 and 6.12 show the convergence of the
shape of such periodic inhomogeneities with increasing period of the composite.
In particular, in Figs. 6.11 and 6.12, we maintain the size of the inhomogeneities (in
the x2-direction) unchanged overall when the period of the composite increases.

It is shown in Figs. 6.11 and 6.12 that the convergent shape of the corresponding
periodic inhomogeneities which achieve uniform internal fields in the presence
of interface effects with increasing period of the composite is typically non-
elliptical. This verifies the fact that in the presence of the interface effect, a single
inhomogeneity with uniform internal strain field exists but is no longer elliptical
(see also Dai and Gao 2016). Moreover, we note in Figs. 6.11 and 6.12 that
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fields with increasing period of the composite
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Fig. 6.12 Periodic hard inhomogeneities with interface effects that achieve uniform internal strain
fields with increasing period of the composite

the shape of periodic inhomogeneities with uniform internal strain fields can be
treated approximately as that of a single inhomogeneity with the same uniform
internal strain field using identical remote loading and identical bulk and interface
parameters when the period of the composite exceeds roughly seven times the size
of the inhomogeneities.

Since the shape of the periodic inhomogeneities has to change to maintain the
prescribed uniform internal strain field as the inhomogeneity size and the period of
the composite vary, it is expected that the stress field inside the matrix will also vary
with increasing inhomogeneity size and period of the composite. The effects of the
size of periodic inhomogeneities (with interface effects) enclosing a given uniform
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Fig. 6.13 Size-dependent resultant interfacial shear stresses in the matrix surrounding periodic
inhomogeneities with interface effects and given uniform internal strain field
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Fig. 6.14 Influence of the period of the composite on resultant interfacial shear stresses in the
matrix surrounding periodic inhomogeneities with interface effects and given uniform internal
strain field

strain field and the period of the composite on the resultant interfacial stress in
the matrix are shown in Figs. 6.13 and 6.14. In Figs. 6.13 and 6.14, the resultant
interfacial stress 
 (0) and the resultant remote stress 
1 are defined by


.0/ D
r




.0/
13

�2 C




.0/
23

�2
; 
1 D

q�

1
13

�2 C �
1
23

�2
; (6.49)

and the abscissa � refers to the amplitude of a certain point on the unit circle
(denoted by 
) in the �-plane (here, the entire unit circle corresponds to the entire
interface in the physical plane—see mappings (6.35) and (6.36)). We can see in
Figs. 6.13 and 6.14 that, compared with the period of the composite, the size of
the inhomogeneity plays a dominant role in the interfacial stress concentration in
the matrix. In particular, the results shown in Fig. 6.14 suggest that for nanocom-
posites with periodic inhomogeneities, it is possible to maintain the prescribed
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uniform stress field inside the inhomogeneities and the bounds of the stress field
inside the matrix by changing only the shape of the inhomogeneities when the period
of the composite decreases and therefore the interaction among the inhomogeneities
themselves becomes stronger.

6.5 Conclusions

We incorporate interface effects to examine the existence of a single inhomogeneity
able to achieve uniform internal strain under the influence of a screw dislocation
as well as the existence of periodic inhomogeneities capable of sustaining uniform
internal strain fields when subjected to uniform remote anti-plane shear loadings.
We transform the original problem of the existence of such inhomogeneities into an
equivalent problem of the existence of a holomorphic function defined in an infinite
plane with hole(s) occupying the same position(s) as those of the corresponding
inhomogeneities. We define the shape of the inhomogeneities using a conformal
mapping with unknown coefficients from which we derive a system of nonlinear
equations with respect to these coefficients which are subsequently determined
numerically. We present a variety of examples to demonstrate our method and
illustrate the shapes of such inhomogeneities. We summarize the main findings as
follows:

1. Whether or not interface effects are included in the model of deformation, we
have demonstrated the existence of a single inhomogeneity which achieves a
uniform internal strain field induced by a screw dislocation in an infinite elastic
solid subjected to anti-plane shear deformations. In particular, the shape of such
an inhomogeneity is dependent on the inhomogeneity size (in the case of an
inhomogeneity with interface effects) and the specific uniform internal strain
field.

2. When the distance between the inhomogeneity and the dislocation increases, our
method continues to converge to the shape of an inhomogeneity (with or without
interface effects) which achieves a uniform internal strain field. When interface
effects are absent, we obtain clear convergence to the corresponding elliptical
inhomogeneity.

3. A consequence of the above conclusion (2) is that there indeed exist noncircular
nano-inhomogeneities (as defined above) that achieve uniform internal strain
fields in an elastic solid subjected to uniform remote anti-plane shear.

4. In anti-plane shear deformations, there indeed exist periodic inhomogeneities
incorporating interface effects able to achieve uniform internal strain fields under
uniform remote (anti-plane shear) loadings.

5. In the presence of interface effects, the shapes of periodic inhomogeneities with
uniform internal strain fields are strongly dependent on the inhomogeneity size
(especially at the nanoscale) and the remote loading.

6. When the period of the inhomogeneity-matrix system is roughly larger than seven
times the size of the inhomogeneities, the shapes of periodic inhomogeneities
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with uniform internal strain fields can be treated essentially in the same way as
that of a single inhomogeneity with the same uniform strain field using identical
inhomogeneity size, bulk and interface constants, and remote loading.

7. The shape of periodic inhomogeneities with interface effects can be varied to
maintain both the prescribed uniform stress field inside the inhomogeneities and
the upper and lower bounds of the stress field inside the matrix when the period
of the inhomogeneity-matrix system decreases.

We conclude by noting that the analogous investigations in plane elasticity
(incorporating interface effects) present formidable challenges and are currently part
of the authors’ subsequent investigations in this area. Finally, the authors would like
to mention that the results in Sects. 6.3 and 6.4 of this chapter form the basis of two
papers recently submitted for publication (see Dai et al. 2016b, c).
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Chapter 7
Ballistic Performance of Bimodal
Nanostructured and Nanotwin-Strengthened
Metals

Xiang Guo, Guang Yang, George J. Weng, Linli L. Zhu, and Jian Lu

Abstract Bimodal nanostructured (NS) metals and coarse-grained (CG) metals
strengthened by nanotwinned (NT) regions are two kinds of novel NS metals with
high strength and good ductility. They are potential candidates for bullet-proof
material. In this work, numerical simulations based on the strain gradient plasticity
model and the Johnson–Cook failure criterion are conducted to investigate the
effects of microstructural attributes on their ballistic performance. We find that
microstructures can significantly affect limit velocity and maximum displacement
of the specimens and that regular distribution of the second phase is helpful to
improve the overall performance. For the bimodal NS metals, it is found that,
under the condition of same distribution, the second phase needs to have a longer
projection perpendicular to the impact direction to achieve better performance.
For the CG metals strengthened by NT regions, it is found that microstructures
with array arrangement of NT regions have higher limit velocities and smaller
relative displacements. It is believed that this study could provide insights into the
development of advanced NS metals for ballistic protection.

X. Guo (�)
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

Tianjin Key Laboratory of Nonlinear Dynamics and Control, Tianjin 300072, China
e-mail: xiangguo@tju.edu.cn

G. Yang
School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

G.J. Weng
Department of Mechanical and Aerospace Engineering, Rutgers University,
New Brunswick, NJ 08903, USA
e-mail: gjweng@soe.rutgers.edu

L.L. Zhu
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang
University, Hangzhou 310027, Zhejiang, China

J. Lu
Department of Mechanical and Biomedical Engineering, City University of Hong Kong,
Kowloon Tong, Hong Kong

© Springer International Publishing AG 2018
S.A. Meguid, G.J. Weng (eds.), Micromechanics and Nanomechanics
of Composite Solids, DOI 10.1007/978-3-319-52794-9_7

205

mailto:xiangguo@tju.edu.cn
mailto:gjweng@soe.rutgers.edu


206 X. Guo et al.

7.1 Introduction

The study of target-plate materials has attracted much attention in recent years.
Several categories of structural materials including ceramics, Kevlar/epoxy com-
posite, Kevlar fiber and Al2O3 powder-reinforced composites, and carbon nanotube-
based composites have been studied and optimized for target-plate applications
(Kaufmann et al. 2003; Kumar et al. 2010; Talib et al. 2012; Kulkarni et al. 2013).
Besides them, several others are also appealing. A category of potential candidates is
nanostructured (NS) metals. NS metals have been a hot topic due to their excellent
mechanical properties. Strengthening effect by grain refinement can be described
by the Hall–Petch relation (Hall 1951; Petch 1953). However, with their strength
increasing, a drawback is that the overall ductility tends to deteriorate (Dao et al.
2007; Jerusalem and Radovitzky 2009). For bullet-proof performance, both high
strength and good ductility are necessary (Zhang et al. 2007). Improving the strength
of NS metals without markedly losing their ductility remains a challenge. Two
strategies corresponding to two different kinds of novel NS metals are available
to bypass this restriction.

The first is bimodal NS metals, which have nano-grained (NG) phase as the
matrix and coarse-grained (CG) inclusions as the toughening phase. They exhibit
high strength and also good ductility (Tellkamp et al. 2001; Wang et al. 2002; Witkin
et al. 2003; Yang et al. 2010). Some experimental investigations further revealed
their good ballistic performance (Newbery et al. 2006). Ballistic performance is
closely correlated to fracture behavior and toughening mechanisms. The enhanced
ductility and fracture toughness of various bimodal NS metals could be attributed to
two mechanisms: (1) crack blunting, crack bridging, and debonding and (2) strain
hardening in the CG inclusions (Zhang et al. 2007). But experiments alone have their
inevitable intrinsic limitations because exact distribution and shape of the second
phase are difficult to reproduce during fabrication. The overall mechanical responses
are tricky to predict (Ma 2006). This makes an accompanied numerical study an
urgent need.

The second is CG metals strengthened by nanotwinned (NT) regions. They
are fabricated by a novel combination of dynamic plastic deformation (DPD)
and thermal annealing. The DPD process is preferable for face-centered cubic
metals to form nanotwins. Subsequent annealing recrystallizes the nano-grains and
dislocation structures into coarse grains, while the NT regions remain. As a result,
a CG structure with NT regions is fabricated. The composite with NT regions
embedded in the CG metals can achieve excellent combination of strength and
ductility (Li et al. 2008b; Xiao et al. 2011; Yan et al. 2012). In general, the presence
of NT regions contributes to the overall high strength, while good ductility is
attributed to the recrystallized coarse grains. However, few reports can be found on
the ballistic performance of NT metals. Among these limited studies, Frontan et al.
(2012) reported inferior energy absorption but better deformation resistance for an
NT ultrafine crystal steel versus the CG steel. Other than this, no studies appear to
be available in the literature.
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Indeed much needs to be known for the ballistic performance of the above two
kinds of novel NS metals. This is especially so since the effects of microstructural
attributes such as the distribution and shape of the second phase remain unclear.
This is the goal of this chapter. Here, the strain gradient plasticity model will be
adopted to describe the constitutive relations of the NG and NT phases, and the
Johnson–Cook plasticity model together with the Johnson–Cook failure criterion
will be employed to study their performance. Our interest is on the microstructural
dependence of their ballistic performance. We will use the finite-element calculation
to reveal the details of the simulations.

7.2 Specimen Configuration and Idealized Microstructures

Specimens with a length L and a thickness 0.06 mm are subjected to a ballistic
impact. The bullet with a diameter 0.1 mm impacts the central zone of the specimen
along the negative direction of Y axis, as shown in Fig. 7.1. Linear reduced-
integration elements with characteristic size 5 �m are used for the bullet. Condition
of plane strain is assumed to prevail. For a bimodal NS Cu specimen, L is 1.5 mm.
The left is clamped and the right is also clamped except that its movement along the
X direction is free. Triangular elements with characteristic size 1�m are used for the
central zone and 3 �m for the other zones. For a CG Cu specimen strengthened by
NT regions, L is 2.9 mm. Both edges of the specimen are free. The central zone
consists of three repeated microstructures and the other zones are homogenized
phase. Triangular elements with characteristic size 0.5 �m are used for the central
zone and 10 �m for the other zones.

To study the influences of microstructural attributes, 12 microstructures in
Fig. 7.2 are used, with the matrix phase in green and the second phase in red. They
have the same volume fraction (	21%) but different distribution and shape of the

Fig. 7.1 Specimen configuration and a sampled microstructure under impact
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Fig. 7.2 12 microstructures (Guo et al. 2014a)

second phase. They are divided into three groups (Guo et al. 2014a). The first one
includes (a)–(d), which are named microstructures A, B, C, and D, respectively.
Microstructure A (Fig. 7.2a) consists of arrays of uniform inclusions, while B
(Fig. 7.2b) has a staggered distribution. Both microstructures C and D (Fig. 7.2c
and d) have randomly distributed circular inclusions but the size is smaller in C.
The circular inclusions in A, B, and C have a radius of 5 �m, and those in D a
radius of 10 �m. They will be called circular particle series. Replacing each circular
inclusion in microstructures A, B, C, and D with a square inclusion in situ, we
have Fig. 7.2e–h. These four configurations are named microstructures AR, BR,
CR, and DR, respectively, and they will be called series R. Rotating each square
inclusion in microstructures AR, BR, CR, and DR by 45ı, we obtain microstructures
in Fig. 7.2i–l. These are named AR-45, BR-45, CR-45, and DR-45, respectively,
and they will be called series R-45. We call microstructures A, AR, and AR-45
series A; microstructures B, BR, and BR-45 series B; microstructures C, CR, and
CR-45 series C; and microstructures D, DR, and DR-45 series D. Microstructure
with regularly distributed CG inclusions refers to that in series A and B. For the
bimodal NS Cu, the matrix in green is the NG Cu, while the second phase (the
toughening phase) in red is the CG Cu. For the CG Cu strengthened by NT regions,
the matrix in green is the CG Cu, while the second phase (the strengthening phase)
in red is the NT Cu.

7.3 Constitutive Relations and Failure Criterion of the NG
and NT Phases

In the bimodal NS metals, the influence of grain boundaries (GBs) should be
considered since its volume fraction increases significantly in the NG phase. The
geometrically necessary dislocations (GNDs) are mainly stored in the regions near
the GBs. Similarly, in the CG metals strengthened by NT regions, the GNDs usually
pile up along the twin boundaries (TBs) and GBs as illustrated in Fig. 7.3. Thus the
dislocation pile-up zones (DPZ) near the internal boundaries with prominent strain
gradients appear in the NT regions. Therefore, the mechanism-based strain gradient



7 Ballistic Performance of Bimodal Nanostructured. . . 209

plasticity model is adopted to consider the contribution of the GNDs in either phase
(Zhu et al. 2011; Zhu and Lu 2012).

The strain rate tensor P© can be decomposed into elastic and plastic parts:

P© D P©eCP©p: (7.1)

P©e can be expressed by the elastic compliance tensor M and the stress rate P¢ as

P©e DM W P¢: (7.2)

P©p is proportional to the deviatoric stress ¢ 0 according to the J2-plasticity flow rule:

P©p D 3P©p
e

2
e
¢

0

; (7.3)

where 

0

ij D 
ij � 
kkıij=3 (i, jD 1, 2, 3), 
e D
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0

ij=2 is von Mises stress, and
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e D

q
2 P"p

ij P"p
ij=3, the equivalent plastic strain rate. P©p

e can be determined by a power

law (Huang et al. 2004)

P©p
eD P©e

�
¢e

¢flow

�m0

; (7.4)

where P©e D
q
2P©0ijP©0ij=3 is the equivalent strain rate, P©0ij D P©ij � P©kk•ij=3, m0 is the

strain rate-sensitivity parameter, and ¢flow the flow stress of the NG or NT phase.

Fig. 7.3 Hierarchical structure of CG Cu strengthened by NT regions
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7.3.1 Flow Stress and Johnson–Cook Plasticity Model
and Failure Criterion of the NG Phase

The dislocation density due to the GBDPZ near grain boundaries, 	GB, is used to
consider the contribution of the GB on the flow stress in Taylor’s model, as (Nix
and Gao 1998)


flow D M˛�b
p
	I C 	GB: (7.5)

Here, M, ˛, �, and b are the Taylor factor, the Taylor constant, shear modulus, and
the Burgers vector, respectively, and 	I is the dislocation density due to dislocations
in the nano-grain interior. By a balance between the athermal storage and the
annihilation of dislocations, 	I can be formulated into (Kocks and Mecking 2003)

@	I

@©
p
e
D M

�
k

dG
C k1
p
	I � k2	I

	
; (7.6)

where ©p
e is the equivalent plastic strain, kD 1/b; dG the nano-grain size, k1D /b;  

a coefficient, k2 D k
0

2



P©p

e=P©0

0

��1=n0
; k

0

2 a constant; P©0

0 a reference strain rate; and n0 a

dynamic recovery constant. On the other hand, 	GB can be formulated by GB—the
strain gradient due to the GBDPZ as

	GB D kGB 
GB

b
; (7.7)

where kGBD 6dGBDPZ/dG with dGBDPZ the GBDPZ thickness. Young’s modulus of
the NG Cu is taken to be the same as that of the CG Cu (Chen et al. 2003; Li et al.
2008a). We can obtain 
flow numerically.

Johnson and Cook (1983) described a competition among strain hardening, strain
rate hardening, and thermal softening as


e D
�
AC B

�
©p

e

�n
�
1C C ln

� P©p
e

P©0
	��

1 �
�

T � Tr

Tm � Tr

	m�
.Tr � T � Tm/ ;

(7.8)

where A, B, C, m, and n are material parameters, P©0 a reference strain rate, T the
temperature, Tr the room temperature, and Tm the melting temperature of Cu. Using
the strain gradient plasticity model with the calibrated parameters, we can obtain
the constitutive relation of the NG Cu with dG 23 nm at the reference plastic strain
rate and under the room temperature. Therefore, a relation 
e

�P©p
eD P©0;T D Tr

� D
A C B

�
©

p
e
�n

is used to fit it, and the fitting results are listed in Guo et al. (2014b).
This fitting equation, which is also known as the modified Ludwik equation, is also
adopted to describe the constitutive relation of the CG phase.
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Johnson and Cook (1985) related a damage parameter D with the equivalent
plastic strain increment d©p

e in a linear incremental fashion as

D D
Z
1

©f
d©pe D

Z �h
d1 C d2e

d3
p

e

i �
1C d4 ln

� P©p
e

P©0
	��

1C d5
T � Tr

Tm � Tr

���1
d©p

e ;

(7.9)

where "f is the failure strain, d1 to d5 are material constants, and p is the hydrostatic
pressure. An element is taken to fail when D reaches 1. If loading state does not
change too abruptly, d2D d3D 0 is considered as a good approximation (Dabboussi
and Nemes 2005; Frontan et al. 2012). Then d1 in Eq. (7.9) can be interpreted as
the failure strain at the reference plastic strain rate and under the room temperature.
Therefore, d1 is taken as 0.13 for the NG Cu with dG 23 nm (Guduru et al. 2007).
d4 is taken as 0.014 and d5 as 1.12. Due to the high strain rate, the deformation can
be assumed adiabatic.

7.3.2 Flow Stress and Johnson–Cook Plasticity Model
and Failure Criterion of NT Phase

Based on the Taylor’s model, the flow stress of the NT Cu can be expressed as (Nix
and Gao 1998)


flow D M˛�b
p
	I C 	GB C 	TB; (7.10)

where 	TB denotes the dislocation density due to the TBDPZ near twin boundaries.
The strain gradient due to the full and partial dislocations in the TBDPZ can be
expressed as (Zhu et al. 2011)

TB D
�TB



nTB

F C nTB
P =
p
3
�

b

dTBDPZdG
; (7.11)

where dTBDPZ the TBDPZ thickness, �TB a geometric factor, nTB
F the number of full

dislocations, and nTB
P that of partial dislocations. The density of full dislocations due

to the TBDPZ in the unit cell is formulated into (Zhu et al. 2011)

	TB D 12N0
�d2G

C 12nTB
Pp

3�dG

1

dTW
�
p
3�0

�

1

d2TW

; (7.12)

where N0 is the maximum number of full dislocations in the grain and independent
of twin spacing (dTW), and �0 is another geometric parameter. When dTW decreases
below a critical value, the third term on the right-hand side of Eq. (7.12) will



212 X. Guo et al.

dominate so that the softening will occur. For the ultrafine-grains, the intragrain
dislocation-mediated interaction dominates. According to Kocks and Mecking
(2003), 	I obeys an evolution law described by Eq. (7.6). On the other hand,
according to Eq. (7.7), the dislocation density due to the GBDPZ is related to the
associated strain gradient (Zhu et al. 2011).

By comparing (1) the predictions of the above strain gradient plasticity model
for the NT Cu with (2) the experiments of the NT Cu with dG 500 nm and six dTW

(Lu et al. 2009), dGBDPZ, dTBDPZ, and GB can be calibrated (Zhu et al. 2011). With
the calibrated results, the constitutive relations of the NT phase at the reference
strain rate and under the room temperature can be obtained. Therefore, a similar
fitting technique can be used to obtain constitutive parameters of the NT phase in
the Johnson–Cook plasticity model in Eq. (7.8) (Guo et al. 2014a). One can find
that the model can capture the trend of the yield strength that it increases with dTW

decreasing from 96 to 15 nm and then decreases with dTW decreasing from 15 to
4 nm.

Similarly, the Johnson–Cook failure criterion, Eq. (7.9), is employed to relate
the damage parameter with the equivalent plastic strain increment. d2D d3D 0 is
accepted so d1 can be extracted from the experiments of Lu et al. (2009). Here, d4

is taken as 0.014 and d5 as 1.12 for the NT Cu. The deformation is also assumed
adiabatic.

7.4 Results and Discussion

The above numerical framework, combining the strain gradient plasticity model
with the Johnson–Cook failure criterion, is applied to study the ballistic performance
of the bimodal NS Cu and the CG Cu strengthened by NT regions. The 12
microstructures in Fig. 7.2 and the constitutive and failure parameters obtained in
Sect. 3 are used.

7.4.1 Ballistic Performance of the Bimodal NS Cu

7.4.1.1 Effects of Microstructure

Microstructures are subjected to an impact by a bullet at a velocity of 180 m/s. After
a microstructure is impacted, it will reach a maximum displacement d and then
rebound. The whole process of microstructure displacement from zero to d includes
four stages: i) first impact, ii) separation of the bullet and the microstructure, iii)
second impact, and iv) bullet velocity reduction till zero (Guo et al. 2015).

We first examine the influence of distribution of CG inclusions. Figure 7.4a–d
illustrates von Mises stress contours in microstructures A, B, C, and D, respectively.
In microstructure A, the microcrack is arrested by a CG inclusion in the 2nd row
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and another crack initiates at the bottom of the CG inclusion. Maximum stress
occurs between adjacent CG inclusions. The CG phase separates the NG phase
uniformly, leading to uniformly distributed intense stress regions. Furthermore,
CG inclusions do not exhibit large plastic deformation and remain almost circular,
implying its ability to bear a more severe impact. In microstructure B, intense stress
distributes around the diamond edges. Since it has fewer CG inclusions along the
impact direction compared with microstructure A, the area of zones distributing
intense stress is smaller and its ability to resist the impact is weaker. Furthermore,
small plastic deformation occurs in the CG inclusions, indicating that it can also
withstand severe impact. In microstructure C, with its deflection increasing, the CG
inclusions near its bottom are stretched until they fail. The microcrack is arrested
by a CG inclusion in the middle of the specimen when its displacement reaches
d and all other CG inclusions along the impact direction fail. As the microcrack
penetrates CG inclusions, they resist its rapid propagation and play a bridging role.
This bridging process improves the ductility and is the main source of enhanced
performance. However, due to the random distribution of CG inclusions, the high
strength of the NG phase cannot be fully exploited, and thus its performance is
reduced. In microstructure D, a microcrack is blocked by two larger CG inclusions,
and its length is shorter than that in microstructure C. Intense stress only occurs
at the phase boundaries. CG inclusions are greatly stretched and large plastic
deformation occurs. The CG inclusions also play a bridging role. Because of the
larger size of CG inclusions, its performance is better than microstructure C. Both
microstructures C and D do not fully exploit the good properties of the constituent
phases, so their performances are inferior to those of microstructures A and B.
Figure 7.4e–h shows stress contours in microstructures AR, BR, CR, and DR,
respectively. Each CG inclusion is square. Figure 7.4i–l illustrates stress contours in
microstructures AR-45, BR-45, CR-45, and DR-45, respectively. Each CG inclusion
is oblique square. The detailed analyses on the distribution of intensive stress
regions and propagation of microcracks have been conducted in Guo et al. (2015).
Generally, microstructures AR-45 and BR-45 with regularly distributed inclusions
are better than CR-45 and DR-45 with randomly distributed inclusions.

To examine the shape effects, we return to Fig. 7.4a, e, and i, which illustrate
stress contours in microstructures A, AR, and AR-45, respectively. These 3
microstructures in series A have the same regular distribution but different shapes
of CG inclusions. During the impact, the duration of withstanding intense stress
without failure is longest in microstructure AR-45, followed by A and then AR.
The NG region can effectively distribute intense stress in microstructure AR-45,
which makes the microcrack arrested by 2nd row of the CG inclusions and implies
its excellent performance. Microstructure A is weaker than AR-45, because its
slightly poorer ability to distribute intense stress, which leads to partially broken
CG inclusion in the 2nd row and the initiation of a microcrack at the bottom of
the CG inclusion. In microstructure AR, CG inclusions in the 2nd row are sheared
and microcrack propagates. Another microcrack takes a shorter time to penetrate an
entire CG inclusion from the bottom and is blocked by a CG inclusion in the third
row. Figure 7.4b, f, and j illustrates stress contours in microstructures B, BR, and
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Fig. 7.4 Stress contours in 12 microstructures with displacement reaching their d (stress in Pa)
(Guo et al. 2015)

BR-45, respectively. The ballistic performance of microstructures BR, B, and BR-45
increases monotonically. This shows that microstructures with the same distribution
but various shapes of CG inclusions have significantly different performance. A
microstructure with oblique square CG inclusions is the best, followed by that
with circular ones and then that with square ones. In the direction perpendicular
to the impact, the projection of each CG inclusion decreases in the order of oblique
square, circle, and square. Therefore, not only the area of zones distributing intense
stress is the largest but also the duration to resist the rapid crack propagation is
the longest in microstructure with oblique square CG inclusions. Microstructure
with square CG inclusions is the opposite. Figure 7.4c, g, and k illustrates stress
contours in microstructures C, CR, and CR-45, respectively. Figure 7.4d, h, and l
shows stress contours in microstructures D, DR, and DR-45, respectively. The CG
inclusions with larger deformation deviate from the impact direction. Consequently,
the projection of the CG inclusion is not dominant, and microstructure DR is the
best while DR-45 the worst. It can also be found that series D is better than series C
because it has larger CG inclusions and thus bridging is dominant in Series D (Guo
et al. 2015).

7.4.1.2 Multiple Ballistic Indexes

To further study the intrinsic mechanisms, quantitative analyses are presented, and
the impact velocity is still 180 m/s.

The smaller the d is, the better ballistic performance of the microstructure is.
The displacements of microstructures in circular particle series, with CG inclusions
the same shape but different distribution, are illustrated in Fig. 7.5. It is noted that
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Fig. 7.5 Microstructure
displacements for circular
particle series

Fig. 7.6 History of bullet
velocity for circular particle
series

dA<dB < dD<dC. We can calculate the average of d for each series. It is the smallest
in series R-45 and the largest in series R, further indicating that series R-45 is
better than R. The displacements of microstructures with CG inclusions the same
distribution but different shape can also be obtained. We find that dAR-45<dA < dAR,
dBR-45<dB < dBR, dCR-45<dCR < dC, and dDR<dD < dDR-45. Series A has the smallest
average of d, followed by series B, D, and series C; thus the performance decreases
correspondingly.

The velocity of the bullet has a large reduction after the 1st impact, suggesting it
is the main stage to consume the kinetic energy of the bullet. Therefore, its residual
velocity after the 1st impact, VR, can well characterize the ballistic performance
of microstructure. Furthermore, the shorter the duration to reduce velocity of the
bullet to zero, the better the performance of microstructure. Figure 7.6 shows
history of bullet velocity in case of circular particle series. After the 1st impact,
VR for microstructures A, B, and D almost coincide and are smaller than that for
microstructure C, which indicates its worst performance. The overall duration to



216 X. Guo et al.

7.4.2 Ballistic Performance of CG Metals Strengthened
by NT Regions

7.4.2.1 Effects of Microstructure

The failure pattern of microstructure changes significantly with twin spacing dTW.
It relies on the contrast of mechanical properties between two phases. When dTW is
small (�15 nm), the NT phase has higher strength and better ductility. Microcrack
initiates in CG matrix first and propagates continuously, eventually leading to the

Fig. 7.7 Limit velocities of 12 microstructures

reduce velocity of the bullet increases in the order of microstructures A, B, D, and C,
implying that microstructure A is the optimal and C the worst. We can also obtain
the history of the bullet velocity for microstructures with CG inclusions of the same
distribution but different shape. History of the bullet velocity almost coincides in the
1st and 2nd stages and deviates in the third and fourth stages in case of series A and
B. Velocity of the bullet reduces till zero at a highest rate for microstructures AR-
45 and BR-45, contrary to that for microstructures AR and BR in series A and B,
respectively. In series C, microstructure CR-45 is still the best. History of the bullet
velocity for series D differs from that for the other three series, i.e., microstructure
DR is the best.

Limit velocity of the specimen is defined as the minimum impact velocity
of the bullet rendering microstructure fail in the 1st bending and bouncing. The
higher the limit velocity, the better the ballistic performance of the microstructure.
The limit velocity of the single phase—NG structure with the same computa-
tional configuration—is also calculated. Figure 7.7 shows that limit velocity of
the NG structure (190 m/s) is lower than that of the bimodal microstructures,
which indicates that the bimodal microstructures can enhance the performance.
Limit velocities of microstructures in series A and B are higher than those of
microstructures in series C and D. In the cases of series A, B, and C, the highest
limit velocity occurs in microstructures AR-45, BR-45, and CR-45, respectively.
Why the limit velocity of microstructure DR-45 is lowest in series D is relevant to
the larger area of the single CG inclusion (Guo et al. 2015).
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Fig. 7.8 Failure process of microstructure B (stress in Pa)

failure of the microstructure. However, intense stress occurs in the NT phase only.
Therefore, matrix failure is the main failure pattern in these cases. When dTW is
larger (�35 nm), both the strength and ductility of the NT phase are relatively
poor. Microcracks initiate at the interfaces and propagate continuously along them.
For some NT regions, the entire interface almost debonds, making strengthening
effect of the NT phase negligible. In the impact zone, the material essentially
behaves as a porous CG Cu as though the NT regions do not exist. Microcrack
initiation, coalescence, and propagation at adjacent interfaces lead to the failure of
microstructure. Therefore, interface debonding is the main failure pattern in these
cases. The above two failure patterns are similar with those when the specimen is
subjected to uniaxial tension (Guo et al. 2014a). Figure 7.8 illustrates the failure
processes of microstructure B when dTW is 4 and 96 nm, and the impact velocities
are 325 and 240 m/s, respectively. It shows two totally different failure processes.
Interface debonding can cause more severe damage than matrix failure. It lies in the
fact that once large-scale interface debonding occurs, more microcracks initiate, so
microcracks coalescence and rapid propagation is prone to occur, making the overall
performance deteriorate dramatically.

During the impact, the specimen dissipates a part of kinetic energy of the bullet
and obtains the kinetic energy at the same time. Eventually, the bullet has a residual
kinetic energy. The energy balance tells that (Yang et al. 2015)

1

2
mbV2

i D Ei D 1

2
mbV2

r C Ed C Ek C Ep (7.13a)

and

K D Ek C 1

2
mbV2

r (7.13b)
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Fig. 7.9 Limit velocities of CG structure and 12 microstructures

where mb, Vi, and Vr are the mass, the initial velocity, and the residual velocity of the
bullet, respectively. Ei and K are the initial and residual kinetic energy of the system,
respectively. Ed and Ep are the dissipated and absorbed energies by the specimen
and bullet, respectively. Ek is the kinetic energy transferred to the specimen and
the debris. Here, Ek is relatively small and Ep is negligible generally, so Ed can be
expressed as:

Ed D Ei � K (7.14)

Limit velocity of the specimen, VL, is defined as the minimum impact
velocity of the bullet rendering specimen completely fail. All limit velocities
of 12 microstructures with 6 dTW are illustrated in Fig. 7.9. We can find that,
when dTW�15 nm, VL of microstructures A and AR-45 is in the range of
340–355 m/s. For microstructures AR and BR, VL is the highest when dTWD 4 nm.
For microstructures B, BR-45, C, CR-45, and DR-45, VL is the highest when
dTWD 15 nm. For microstructure CR, VL is the highest when dTW is 8 and 10 nm.
For microstructures D and DR, VL is the highest when dTWD 35 nm. In general,
all limit velocities are the lowest when dTWD 96 nm, originating from the fact that
both the strength and ductility of NT region are the worst in this case. Generally,
all microstructures have the highest limit velocity when dTW�35 nm. 35 nm is the
critical dTW where the failure pattern changes. It indicates that the effect of dTW on
the ballistic performance is essentially that on the failure pattern of microstructure.
Interface debonding can cause more severe damage than matrix failure, and thus
smaller twin spacing is conducive to the promotion of performance.

We select circular particle series with dTW D 4 nm to investigate the effect of
the distribution of NT regions. Figure 7.10 shows initial impact velocities versus
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Fig. 7.10 The residual
velocity of bullet in the cases
of microstructures in circular
particle series

Fig. 7.11 The average of VL

in series A, B, C, and D

residual velocities of the bullet. The difference between the initial impact velocity
and the residual velocity of the bullet is defined as Vd, namely, Vd D Vi � Vr.
From Fig. 7.10, it is noticeable that microstructure A has the highest limit velocity,
followed by microstructures B, D, and C. In addition, four curves have the same
trend, and with the increase of the impact velocity, the slope of each curve gradually
reduces. In a smaller range of impact velocity (close to VL) for a microstructure,
Vd is relatively high when Vi D VL, and it increases with Vi. This indicates that
the dependence of Vd on the impact velocity is prominent. Under the same impact
velocity, the residual velocity of the bullet in the case of microstructure A is the
lowest, followed by that in the cases of microstructures B, D, and C. Therefore,
more impact energy is dissipated by microstructure A, which further indicates that
A is the best while C and D are the worst (Yang et al. 2015).

Figure 7.11 illustrates the average of VL (
�
VL) in series A, B, C, and D with 6

dTW. It is found that all
�
VL in series A are the highest and prominently larger than

those in other series when dTW�15 nm. All
�
VL in series B are the highest when

dTW�35 nm. All of the maximum
�
VL occur in the series whose microstructures have
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the regular distribution of NT regions.
�
VL in series C and D is lower. Especially in

series D,
�
VL is the lowest except the case with dTW D 35 nm. On the one hand,

under the condition of the same volume fraction, the smaller the NT regions is, the
more uniform the distribution is. Therefore, microstructure C is more ductile than
D (Guo et al. 2014a). When the abrasion effect of the target plate on the bullet
is neglected, its ballistic performance depends heavily on its ductility (Guo et al.
2015). On the other hand, smaller particles lead to greater strengthening effect (Suh
et al. 2009). Since the NT regions is smaller in series A, B, and C than that in series
D, the former is stronger than the latter. Microstructures in series D are affected by
the distribution and size of NT regions. Both the poor ductility and strength lead to
their worse performance.

7.4.2.2 Comparison with Single Phase CG Structure

We also calculate VL of the single phase CG structure with the same configuration
as 340 m/s. Due to its better ductility, its limit velocity is higher than limit velocities
of 12 microstructures except those in series A. All structures are impacted by a
bullet at a velocity of 240 m/s (Ei D 1.761 J/m). The energy dissipation capacities
of the specimens obtained by Eq. (7.14), are shown in Fig. 7.12. It is found that
the CG structure dissipates more energy than other microstructures. Frontan et al.
(2012) investigated nanocrystalline and nanotwinned ultrafine steels experimentally
and found that they exhibited a lower energy dissipation capacity than their CG
counterpart. Our results agree with their findings. In addition, for each dTW, the
microstructures in series A dissipate the most energy. Each microstructure dissipates
the most energy when dTW D 4 or 8 nm.

Fig. 7.12 The dissipated energy by the specimens
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Fig. 7.13 The relative displacements for microstructures in (a) series A and B, and (b) series C
and D

After impacted by a bullet at a velocity of 240 m/s, each structure bends
without complete failure. The central zone of the specimen has a higher velocity,
while the ends have a lower velocity, which makes the specimen obtain a relative
displacement, dr. Figure 7.13 illustrates their dr when dTWD 15 nm. The curves
almost coincide first, but as bending increases, the dr of 12 microstructures differs
from that of the CG structure. The dr of microstructures in series A, B, and D
are less than that of the CG structure gradually. For microstructures in series C,
the dr of microstructure C and the CG structure are almost same. However, dr of
microstructures CR and CR-45 is smaller and larger than that of the CG structure,
respectively.

We obtain the relative displacements of the 12 microstructures with dTW D 4, 8,
10, and 35 nm when Vi D 240 m/s. It is found that with the specimen bending,
the dr of microstructures in series B, C, and D are larger than that of the CG
structure. For microstructures in series A, all of their dr are smaller than that of
the CG structure except when dTW D 35 nm. The differences of the dr between
microstructures in series A and the CG structure are at least larger than the thickness
of the specimen when t D 30 �s. Some study pointed out the importance of the
clearance between helmet and skull (Sarron et al. 2004). In addition, limit velocities
of the microstructures in series A with the above 4 dTW are higher than that of the
CG structure. Although the energy dissipation capacities of the microstructures in
series A are lower than that of the CG structure, their smaller relative displacements
make them suitable for helmets and other personal protective equipments.

7.5 Conclusions

In this chapter, numerical simulations via the strain gradient plasticity model and
the Johnson–Cook failure criterion have been carried out to study the effects of
microstructural attributes on the ballistic performance of two kinds of NS metals. It
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is found that a regular distribution of the second phase can lead to a better overall
performance than a random distribution.

In case of the bimodal NS metals, under the condition of same distribution of CG
inclusions, the longer the projection perpendicular to the impact direction, the better
the ballistic performance. Therefore, series R-45 is better than circular particle series
and series R. For the microstructures with randomly distributed CG inclusions, the
bridging effect is more prominent in series D with larger CG inclusions, so series D
is better than series C with smaller CG inclusions.

In case of the CG metals strengthened by NT regions, most microstructures
have better ballistic performance when dTW < 35 nm. Microstructures with array
arrangement of the NT regions (series A) have higher limit velocities and smaller
relative displacements, making them attractive for target-plate applications such as
helmets and other personal protective equipments.

Relations between microstructural attributes and ballistic performance have been
established. Insights have been provided in the selection of the NS metals and the
design of novel NS metals with tailored ballistic performance.
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Chapter 8
Full-Field Micromechanics of Precipitated
Shape Memory Alloys

T. Baxevanis, A. Solomou, I. Karaman, and D.C. Lagoudas

Abstract A full-field micromechanics approach is developed to predict the
effective thermomechanical response of precipitation-hardened near-equiatomic
Ni-rich NiTi alloys on the basis of composition and heat treatment. The microscale-
informed model takes into account the structural effects of the precipitates
(precipitate volume fraction, elastic properties, and coherency stresses due to
the lattice mismatch between the precipitates and the matrix) on the reversible
martensitic transformation under load as well as the chemical effects resulting
from the Ni depletion of the matrix during precipitate growth. The post-aging
thermomechanical response is predicted based on finite element simulations on
representative microstructures, using the response of the solutionized material and
time–temperature–martensitic transformation temperature maps. The predictions
are compared with experiments for materials of different initial compositions
and heat treatments and reasonably good agreement is demonstrated. The
proposed methodology can be in principle extended to predict the post-aging
thermomechanical response of other shape memory alloy systems as well.
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8.1 Introduction

Shape Memory Alloys (SMAs) are used in many engineering and biomedical
applications, as they can recover deformations of approximately 10%, due to their
capacity to undergo thermal and/or stress-induced martensitic phase transforma-
tions (Lagoudas, 2008). The ability of SMAs to recover this deformation at high
stresses marks them as superb high-work-density actuators (Benefan et al., 2014)
and makes them desirable for applications involving devices such as couplers and
vibration dampeners in the aerospace (Hartl and Lagoudas, 2007; Calkins and
Mabe, 2010), civil (Ozbulut et al., 2011; Song et al., 2006; Dong et al., 2011),
and petroleum (Anderson et al., 1999) industries and in MEMS (Bellouard, 2008)
and biomedical devices such as stents (Machado and Savi, 2003; Duerig et al., 1999;
Morgan, 2004) and implants (Bansiddhi et al., 2008; Elahinia et al., 2012). The
unique SMA properties are the result of a reversible martensitic transformation from
a high-temperature/low-stress austenitic phase to a low-temperature/high-stress
martensitic phase. As the austenite phase has a higher-symmetry crystallographic
structure (typically cubic) and martensite exhibits a lower-symmetry structure (e.g.,
monoclinic or tetragonal) the resulting phase transformation is accompanied by the
aforementioned inelastic deformations.

Different applications have their own requirements for material properties as the
environments and loading conditions may differ; however, in many applications,
emphasis is primarily placed upon phase transition temperatures and attainable
transformation strain. In this respect, the ability to create material systems which
result in material properties tailored to meet specific, application-driven require-
ments is desirable. As pointed out by Ashby and Bréchet (2003) the development
of tailored material systems is usually accomplished in one of the two ways. First
is the identification and manufacture of distinctly new alloys or material systems.
The second approach is the creation of hybrid or composite materials that combine
the properties of the two (or more) existing materials. With respect to SMAs, this
second methodology has been heavily investigated since the late 1980s and has led
to the production of a wide set of polymer, metal, and ceramic matrix composites—
SMA composites that cover a large application space. A recent review by Lester
et al. (2015) discusses the various composites that have been developed as well as
some of the modeling approaches undertaken to investigate these materials. In terms
of the former approach, shape memory polymers (Ratna and Karger-Kocsis, 2008;
Leng et al., 2011), magnetic shape memory alloys (Pons et al., 2008; Karaca et al.,
2009), and high-temperature SMAs (Firstov et al., 2006; Ma et al., 2010) have been
shown to cover engineering design spaces traditional SMAs cannot reach.

Although, the various aforementioned efforts have created a set of material
systems that operate in conditions in which traditional SMAs are not suited, often,
however, designing materials to meet application needs requires more subtle tuning
and tailoring of the response characteristics. One way of accomplishing this is
by controlling the formation of precipitates in macroscopically homogenous SMA
material systems. Aging of Ni-rich NiTi SMAs can be used to achieve a range
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of phase transition temperatures and improve thermomechanical cyclic stability
through the precipitation of mostly Ni4Ti3 particles, depleting Ni from the NiTi
matrix. The corresponding changes in microstructure drastically alter the material’s
thermomechanical response (Zarinejad et al., 2009; Allafi et al., 2002; Karaca et al.,
2013; Sehitoglu et al., 2000, 2001a,b; Karaman et al., 2005). Originally character-
ized by Nishida et al. (1986) and Saburi et al. (1986), such precipitates are known to
reduce transformation-induced plasticity (TRIP) and quickly stabilize the actuation
response after a few cycles (Eggeler et al., 2004) as opposed to hundreds of cycles
for many homogenous materials. Their transformation temperatures are known to
shift dramatically, and their transformation strain decreases with small changes in Ni
content for Ni-rich stoichiometries (Otsuka, 2002; Tang, 1997; Frenzel et al., 2010).
Such material parameters are key design targets for applications and are therefore
considered important components of the final characterized response.

Currently, there is no way to accurately predict how the thermomechanical
response of such materials will change after precipitation heat treatments, necessi-
tating that if a material is subjected to a new heat treatment, it must be characterized
again to determine its new properties. Presently, precipitation-hardened SMA
material properties are only known for a few initial compositions and aging paths
due to the high cost and preparation time required to produce and characterize
the materials. Therefore, numerical models able to predict changes in the material
behavior brought about by precipitation without requiring lengthy and costly
processing and experimental procedures are highly desirable.

Precipitation in Ni-Rich NiTi SMAs—the evolution of precipitates in a supersat-
urated solution during aging can be divided into two different regimes: nucleation
and coarsening. During the initial stages of aging, the precipitate evolution is
nucleation dominated, and the formation of new precipitates continuously decreases
the mean distance between precipitates. During the subsequent coarsening regime,
Ostwald ripening becomes the dominant process during which smaller particles are
consumed by larger ones. During coarsening, the volume fraction and composition
of the matrix remain relatively constant (Geng et al., 2015; Madras and McCoy,
2004), which means that after coarsening, the mean interparticle distance becomes
larger.

The formation of Ni4Ti3 particles via precipitation heat treatments in a Ni-rich
NiTi alloy is known to affect the transformation behavior through a variety of
mechanisms, which are summarized in the following:

• The transformation temperatures are highly dependent on the Ni content (Frenzel
et al., 2010) and can be changed by up to 100 °C with a 1 at.% change in
Ni content on the Ni-rich side of the stoichiometry. The formation of Ni-rich
precipitates depletes the Ni content of the matrix, resulting in compositional
inhomogeneity that leads to local differences in the phase transition temperatures
(Stroz et al., 1988). The Ni content immediately surrounding the precipitates
is lower than that of the matrix, and thus these regions transform at higher
temperatures (Allafi et al., 2002).
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• Coherent precipitates exist in a local stress field arising from the lattice mismatch
with the surrounding matrix; these local stresses can increase the transformation
temperatures of the matrix relative to the precipitate-free regions (Bataillard
et al., 1998).

• Coherent non-transforming precipitates experience shear loading during the
transformation of the matrix. As a result, elastic energy is stored in the precipi-
tates and the transformation temperatures are decreased (Hornbogen, 1985).

• The fraction of compound twins to type I and II twins in martensite changes
with interparticle distance. In solutionized materials and overaged materials with
large interparticle distances, the elastic shear can be accommodated solely by
type I and II twinning. However, as the interparticle distance decreases, the
density of compound (001) twins increases, and eventually only compound twins
are observed (Nishida et al., 1988). Since compound twins are highly dense
in comparison to type I and II twins, with a greater surface area, the energy
barrier associated with the formation and motion of compound twins is higher
than that of type I and II twins. This corresponds to an increase in hysteresis
and a decrease in the temperature needed to begin austenitic to martensitic
transformation (Panchenko et al., 2008).

Modeling precipitation effects in NiTi SMAs—Micromechanics-based simula-
tions can be used to complement experimental efforts in exploring the influence
of precipitation on the thermomechanical response and structural behavior of
SMA material systems, thereby accelerating their development cycle for specific
applications. There are two prominent methodologies which may be utilized to
approach the problem, termed mean-field and full-field methods. Both methods
use particle volume fraction, aspect ratio, and orientations as their main defining
geometric factors, and since particle size is not used directly, size effects are not
captured through these methods except in the description of the material consti-
tutive behaviors. Methodologies considering only the phase-averaged response of
the various constituents are defined to be mean-field approaches while full-field
methods are those in which the position-dependent field values are determined and
then averaged for the effective macroscopic response. The mean-field approaches
typically draw on the seminal result of Eshelby (1957) to account for the presence
of multiple inhomogeneities while the latter category utilizes numerical techniques
like the finite element method to solve representative computational domains—unit
cells (UC) for periodic materials and representative volume elements (RVEs) for
statistically homogeneous materials (Pindera et al., 2009). The latter approach is
gaining in popularity as the level of available computational power and utilization
of distributed computing methods continue to increase. Such analyses are able
to simulate the effect of microstructural processes on the effective macroscopic
response that may not be fully captured by mean-field approaches, such as the effect
of Ni depletion during precipitation in Ni-rich NiTi SMAs.

There are various RVE definitions used in the mechanics of random heteroge-
neous materials (Hill, 1963; Huet, 1999; Kanit et al., 2003; Drugan and Willis,
1996). The classical RVE is defined as the smallest material volume of which the
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response does not depend on the applied boundary conditions (Hill, 1963; Huet,
1999). In another definition, based on the knowledge of the statistical nature of
the microstructure, the RVE can be regarded as a volume V sufficiently large
to be statistically representative of the material, i.e., it includes a sampling of
all microstructural heterogeneities that occur in the material (Kanit et al., 2003).
Drugan and Willis (1996) defined an RVE as “the smallest material volume
element of the composite for which the usual spatially constant (overall modulus)
macroscopic constitutive representation is a sufficiently accurate model to represent
mean constitutive response.” Therefore, it can be concluded that there is, a priori,
no systematic quantification of the RVE sizes and that results will depend on many
combinations of factors (material structure, volume fraction of heterogeneities, etc.).
The intrinsic difficulty of simultaneously satisfying homogeneous displacement
and traction boundary conditions, necessary in fulfilling the RVE requirement for
subvolumes with random microstructures, has led to the concept of periodization
of random media. Numerical estimates of the effective properties of random
heterogeneous materials are more accurate when periodic boundary conditions are
applied than when homogeneous strain or stress boundary conditions are considered
(Kanit et al., 2003).

Proposed model—in this chapter, a full-field micromechanics methodology to
predict changes in an SMA’s thermomechanical response due to the aging of Ni-rich
NiTi material systems is described (Baxevanis et al., 2014). Moreover, predictions
of actuation responses obtained from the proposed methodology are compared to
experimentally produced and characterized material (50.8 at.% Ni). Comparisons
are made for two aging paths to determine the model’s accuracy.

The employed model takes into account chemical changes due to the depletion
of Ni from the matrix associated with Ni4Ti3 precipitate formation and growth that
may not be fully captured by mean-field approaches, in contrast to the works of
Collard et al. (2008) and Collard and Ben Zineb (2012), as well as the structural
changes associated with the precipitation process. The RVEs contain randomly
distributed non-overlapping precipitates, which are assumed to have reached their
equilibrium size, shape, and resulting volume fraction. The precipitates are assumed
to behave as linear elastic isotropic solids, while for the matrix material, isotropic
elastic and transformation constitutive behavior appropriate for polycrystalline
materials is assumed as a result of random texture. The constitutive behavior of
the matrix does not account for TRIP (Bo and Lagoudas, 1999a; Arghavani et al.,
2010), minor loops (Bo and Lagoudas, 1999b), thermomechanical coupling (Morin
et al., 2011), or reorientation (Popov and Lagoudas, 2007; Auricchio et al., 2014;
Arghavani et al., 2010), that are outside the scope of the present study. More
representative of the actual microstructure, RVEs would consist of polycrystalline
ensembles with random texturing and populations of precipitates within each of
the crystals oriented in four different orientations with respect to the orientation of
the crystal (Zhou et al., 2010). A point-wise representation of the Ni concentration
fields surrounding distinct precipitates in a finite element polycrystalline ensemble
requires large RVEs and subgranular constitutive models (Patoor et al., 2006;
Manchiraju and Anderson, 2010; Yu et al., 2013, 2014; Cisse et al., 2016) with a
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heavy computational burden that inhibits extensive study of multiple realizations
of the microstructure. Moreover, such polycrystalline averaging makes decoupling
the texture and precipitate effects on the effective response difficult. It should also
be noted that the present work mainly focuses on the NiTi concentrations and heat
treatments that solely form Ni4Ti3 precipitates. Ni-rich NiTi SMAs may also form
Ni3Ti2 and Ni3Ti precipitates, which are usually not as beneficial as the Ni4Ti3
precipitates in terms of stabilizing the shape memory response.

8.2 Modeling Approach

8.2.1 Computational Procedure

In this subsection, the key components of the numerical calculations are described:
the method for creating the heterogeneous microstructure using precipitate infor-
mation; the approach used to determine the coherency fields induced adjacent to the
precipitates to replicate lattice coherency; the procedure used to obtain the resulting
Ni concentration fields due to Ni-depletion from the matrix during precipitation;
and finally the details of the finite element analyses for modeling the macroscopic
response under specific thermomechanical loading paths.

8.2.1.1 Microstructure Generation

The RVEs are cubes of dimensions L � L � L, which contain a dispersion of non-
overlapping identical precipitates. The precipitates are assumed to have fully grown
into the matrix and reached an equilibrium state, taking up their final observed
volume fraction in the NiTi matrix, which is dependent on the heat-treatment
conditions. The grown precipitates are oblate spheroids with a specified major to
minor axis ratio, �. Given a total precipitate volume fraction, v, and number of
precipitates, N, the radius of the major ellipsoid axis, r, may be calculated as
r D L Œv3�=.4�N/�1=3. Although precipitates are known to form in 4 orientations
along the [111] habit planes in NiTi SMAs, the random grain orientations of the
polycrystalline ensemble are assumed to smear out such directionality. Thus, the
precipitates are randomly placed and oriented in the matrix, minimizing directional
dependence on effective properties. To place the precipitates, translation vectors
and rotation angles are randomly generated and then geometries are tested for
precipitate—precipitate overlap using coordinate rotation matrices and a volume
query feature in Abaqus. A new precipitate is accepted if it falls within the
cube’s boundary and the distance between its surface and all previously generated
precipitates is greater than 0:05r. Enforcing such a minimum distance allows for an
adequate finite element discretization of the space between neighboring inclusions.
This condition, also checked for the distance between the surface of the new
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Fig. 8.1 “Spheroids in box”
morphology showing a
periodic cubic cell containing
a random distribution of 12
oblate spheroids. The volume
fraction of the spheroids is
2% and the precipitate major
to minor axis ratio, �, is equal
to 8

precipitate and the cube’s surfaces, prevents some clustering effects, as the average
stress within an inclusion is influenced by the minimal distance between inclusions.
If any of these conditions are not met, new center translation vectors and rotation
angles are generated, and the process is repeated. When the predetermined volume
fraction of precipitates is reached, placement is stopped. A resulting “spheroids in
box” morphology is shown in Fig. 8.1.

8.2.1.2 Coherency Fields

Eigenstrains, "Ni4Ti3
ij , corresponding to the lattice mismatch between the precipitates

and austenitic phase are introduced into the precipitates to develop the coherency
stress and strain fields. These eigenstrains are introduced into the precipitates by
assuming an additive decomposition of strains into elastic and stress-free strains
of the form "

Ni4Ti3
ij �t, where �t is a parameter that changes continuously in the

numerical calculations from its initial value 0 to its final value 1. The initial shape
and volume fraction of the precipitates is such that the precipitates assume their
observed shape and volume fraction at the end of the simulation process, in which
periodic boundary conditions are used:

ui.x1; x2; 0/� u3i D ui.x1; x2;L/;

ui.x1; 0; x3/� u2i D ui.x1;L; x3/; (8.1)

ui.0; x2; x3/� u1i D ui.L; x2; x3/;

where ui stands for the displacement vector in the different RVE faces and the
vectors u3i , u2i , and u1i depend on the loading applied to the cell. These conditions
are applied using an Abaqus plug-in developed by Lejeunes and Bourgeois (2011),
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which takes a periodic mesh and, given the two faces to be paired as well as the
vector of periodicity, creates appropriate equation constraints in Abaqus for each
minimally interdependent set of nodes in the manner described in Li and Wongsto
(2004).

8.2.1.3 Ni Concentration Fields

The Ni concentration, c, in the RVE is given by

c D vcNi4Ti3 C .1� v/cA; (8.2)

where cNi4Ti3 and cA represent the Ni concentrations of the precipitates and austenitic
matrix, respectively. Since cNi4Ti3 is constant, only diffusion in the austenitic matrix
needs to be considered. Initially, the matrix material is set to the homogeneous
concentration before precipitation, and the development of the Ni concentration field
is simulated using Fick’s approximation:

PcA D DAr2cA; (8.3)

where the dot denotes differentiation with respect to time and DA, the temperature-
dependent diffusivity coefficient.

Periodic boundary conditions are used on the RVE faces for solving the diffusion
equation (8.3):

cA.x1; x2; 0/ D cA.x1; x2;L/;

cA.x1; 0; x3/ D cA.x1;L; x3/; (8.4)

cA.0; x2; x3/ D cA.L; x2; x3/;

handled as described in Sect. 8.2.1.2, while cA is set equal to its equilibrium value
for a given aging temperature on the precipitate boundaries.

8.2.1.4 Simulations of the Effective Thermomechanical Response

The macroscopic actuation response is obtained by subjecting the RVEs to a thermal
cycle under a constant uniaxial load (see Fig. 8.2), i.e., the diffused material with
coherent precipitates is loaded uniaxially to a predetermined level and subsequently
thermally cycled to induce forward and reverse phase transformation, from austenite
to martensite and back, in order to obtain its actuation response.

Periodic boundary conditions are applied in all cases through equation con-
straints in Abaqus, as is done for the finite element calculations determining
the coherency stress and Ni concentration fields. The effective thermomechanical
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Fig. 8.2 Stress-temperature
phase diagram. The blue
arrows represent a loading
path, a thermal cycle under
constant mechanical load.
The nomenclature used in the
figure is explained in the
Appendix
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response of the RVEs is presented in terms of the volume average stress and total
strain over the RVE, defined, respectively, as

†ij D 1

�

Z

�


ijdV; Eij D 1

�

Z

�

"ijdV; (8.5)

where 
ij and "ij are the Cartesian components of the stress and strain and �
is the RVE volume. Note that the effective elastic and transformation strains
are not necessarily the volume averages of the corresponding local strains. In
the calculations, these strains are resolved from the boundary displacements that
correspond to the volume average of the total strains.

A standard RVE is discretized with 	55,000 quadratic 10-node tetrahedral
elements with integration at four Gauss points and hourglass control (C3D10M
in Abaqus 2009). This tetrahedron exhibits minimal volumetric locking during
transformation and captures strain gradients in the matrix better than the standard
10-node tetrahedron due to its three extra internal degrees of freedom. The high-
performance computing cluster EOS at Texas A&M University was used to run the
majority of the simulations. The appropriateness of the simulations’ mesh density
was checked by discretizing one model using 	150,000 elements and comparing
the overall strain–temperature response with the one obtained with the standard
discretization.

The accuracy of the numerical simulations is checked by generating RVEs
of various particle numbers and examining their actuation response for different
dispersions of the precipitates in each case. Kanit et al. (2003) showed that the
effective physical properties of a heterogeneous material can be determined either
by a few measurements on large RVE volumes (large number of particles for a
given volume fraction) or by many realizations for small volumes of material. The
number of realizations needed for a given RVE volume is less for periodic boundary
conditions than for homogeneous stress or strain boundary conditions. However,
the mean values computed on small RVE volumes may not represent the effective
response for the composite material even when using periodic boundary conditions
and a sufficient number of realizations. Here, the average thermomechanical



234 T. Baxevanis et al.

Table 8.1 Constitutive
model parameters for
solutionized Ni50:8Ti material

Parameter Value Parameter Value

EA [GPa] 68 Hsat 0:051

EM [GPa] 43 k [MPa�1] 0:05

�A D �M 0:33 CA [MPa K�1] 6:0

CM [MPa K�1] 6:0

n1 D n::: D n4 0:3

response of microstructures obtained from 5 different dispersions of 12 precipitates
is considered below as representative of the material-at-large (Baxevanis et al.,
2014).

8.2.2 Insight into the Computational Results

In the numerical results below, the precipitates are assumed elastic, while
the Lagoudas et al. (2012) constitutive model is used to simulate the response
of the matrix (see Appendix). The values of the precipitates’ Young’s modulus,
Ep D 107GPa, and Poisson’s ratio, �p D 0:39, are extracted from the first principle
calculations presented in Wagner and Windl (2009). The parameters describing
the constitutive response of the matrix are given in Table 8.1. The phase transition
temperatures that are further needed as input in the matrix constitutive model
are assumed to vary with Ni content. Once the Ni content distribution in the
matrix is evaluated, phase transition temperatures are individually assigned to each
integration station in the matrix by using a least square fit of the experimental data
in Table 8.2 relating the Ni content in unprecipitated NiTi material systems to phase
transition temperatures. The Ni concentration in the precipitates is cNi4Ti3 D 56:8%

at. and the diffusivity coefficient is DA D 5:48 � 10�9 exp

�103;000 J=mol

RT

�
m2 s�1

between temperatures T D 773K and T D 1173K (Zhou et al., 2010). The
eigenstrains corresponding to the lattice mismatch between the precipitates and
austenitic phase imposed into the precipitates are given as

"
Ni4Ti3
ij D

2

4
�0:00417 0 0

0 �0:00417 0

0 0 �0:0257

3

5 ; (8.6)

with respect to local coordinate systems .x0
1; x

0
2; x

0
3/ taken such that their origins are

located at the center of the precipitates, where the coordinate axis x0
3 is extending

along the direction of the minor axis, and x0
1 and x0

2 lie in the plane perpendicular
to x0

3 (Fig. 8.1). The values of the eigenstrains are determined using experimental
data on the lattice constants of the austenitic-B2 and Ni3Ti4-rhombohedral unit cells
(Zhou et al., 2010).
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Table 8.2 Characteristic
martensitic phase transition
temperatures of the
solutionized NiTi alloys with
different compositions
(Frenzel et al., 2010)

cNi Ms (K) Mf (K) As (K) Af (K)

49:99 338:7 311:7 352:1 380:2

50:19 325:8 296:1 337:1 365:8

50:39 302:1 275:9 319:4 339:3

50:59 290:2 263:4 302:0 324:6

50:80 272:1 245:3 284:2 308:3

50:86 266:0 237:9 277:9 301:3

51:0 246:1 222:4 245:5 268:0

51:10 226:9 207:5 240:9 254:0

51:21 210:9 181:4 226:4 242:0

8.2.2.1 Coherency Stress, Ni concentration, and Mechanical Fields

The coherency stress field in an RVE with 2% precipitate volume fraction, resulting
by introducing the eigenstrains given in (8.6) into the precipitates with a major to
minor axis ratio, � D 8, is shown in Fig. 8.3. All RVE figures show a section cut
of the inside of the cube for illustration purposes. Note that the values of the von
Mises stress get as high as 480 MPa adjacent to the precipitates. In Fig. 8.4, the
Ni concentration profile for the same RVE is shown. Although the variation of
Ni concentration in the matrix caused by the presence of precipitates is relatively
small, it may have a significant effect on the martensitic transformations, since a
0.1% at. difference in Ni-rich NiTi alloys can lead up to a 20 K change in the
phase transition temperatures, Mf , Ms, As, and Af (Table 8.2). Above 50% at. Ni,
the phase transition temperatures fall down drastically with increasing Ni content.
Under 50% at. Ni, there is no relation between Ni concentration and transformation
transition temperatures, and constant values of the phase transition temperatures
are observed. A comparison between the Ni concentration surrounding a single
precipitate and experimental measurements reported in Schryvers et al. (2006) is
presented in Fig. 8.5. These concentration values are obtained by taking a precipitate
relatively away from the others and measuring the Ni content radially outward along
the minor axis of the ellipsoid. It is seen that although simplifications were made
for simulating the diffusion process, including the calculation of Ni concentration
without accounting for the elastic energy or sub-granular anisotropy, the simulated
results are in reasonable agreement with the experimental ones. The phase transition
temperature distributions resulting from assigning phase transition temperatures to
each integration station in the matrix using a least square fit of the experimental data
in Table 8.2 are also presented in Fig. 8.4.

The martensite volume fraction and von Mises effective stress field during
forward transformation (cooling) under a constant uniaxial load of 200 MPa are
shown in Fig. 8.6. The heterogeneity of transformation and stress is clearly visible
in these figures. Microstructural stress concentrations and low levels of Ni content
around precipitates lead to the formation of martensite earlier than in matrix regions
away from precipitates (Fig. 8.6a). Martensitic regions first grow in between Ni4Ti3
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Fig. 8.3 von Mises
coherency stress field [MPa].
The volume fraction of
precipitates is 2% and the
precipitate major to minor
axis ratio, �, is equal to 8

Fig. 8.4 Distribution of phase transition temperatures Mf , Ms, As, and Af [K] and Ni concentration
(% at.) field for the SMA matrix material. The volume fraction of precipitates is 2% and the
precipitate major to minor axis ratio, �, is equal to 8. The different colors represent sets (Mf ,
Ms, As, Af , Ni content %at.) of phase transition temperature values

precipitates before the cross spreading of martensite occurs in line with the results
of Kröger et al. (2008). The process of phase transformation relaxes stresses
near precipitates (Fig. 8.6b) until the majority of transformation completes. Then
precipitates become stress concentrators due to their higher Young’s modulus as
before the initiation of phase transformation. During heating under constant load,
at equal levels of effective strain, the martensite volume fraction and von Mises
effective stress fields are very similar to the ones presented in Fig. 8.6.

8.2.2.2 Effective Thermomechanical Response

The effects of precipitation on the thermomechanical response obtained from the
model during a thermal cycle under constant uniaxial load are examined next.
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Fig. 8.5 Ni content close to a
precipitate as measured
experimentally (Schryvers
et al., 2006) with simulation
results overlaid

Fig. 8.6 Mechanical fields
during forward phase
transformation (cooling)
under constant uniaxial load.
The volume fraction of
precipitates is 2% and the
precipitate major to minor
axis ratio, �, is equal to 8. The
periodic boundary conditions
result in martensitic islands
and stress relaxation in
regions of the RVE opposite
from precipitates.
(a) Martensite volume
fraction. (b) von Mises stress
ŒMpa�
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Fig. 8.7 Comparison of the
effective strain vs temperature
responses of 0%, 2%, 4%,
and 6% volume fraction
precipitated materials for a
thermal cycle under a
constant uniaxial loading at
200 MPa. The precipitate
major to minor axis ratio is
equal to 8. (a) Effective strain
in the direction of loading vs
temperature response.
(b) Effective strain in the
transverse to loading
direction vs temperature
response

Precipitate volume fraction—As shown in Fig. 8.7, which displays the effective
strain–temperature response of thermally cycled material systems with different
precipitate volume fractions, the formation of elastic precipitates at the expense
of transformable material decreases the maximum transformation strain. Moreover,
the heterogeneous nature of the precipitated microstructure is shown to significantly
alter the effective strain–temperature hysteresis loop by shifting the phase transition
temperatures to higher values. Additionally, a more gradual or “smooth” transition
from the elastic response to the transformation response (and vice versa) is evident
and in accordance to experimental observations. Also, from Fig. 8.7, it is shown
that the higher the volume fraction of precipitation, the more pronounced the
aforementioned effects. For instance, the 6% case results in smaller maximum
transformation strains, a more gradual transition between the elastic and the trans-
formation response, and higher martensitic-start and austenitic-finish temperatures
than the 4 and 2% cases.
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Fig. 8.8 Comparison of the
effective strain vs temperature
responses for precipitated
materials with precipitate
major to minor axis ratio
� D 2; 4; 6, and 8 for a
thermal cycle under a
constant uniaxial loading at
200 MPa. The precipitate
volume fraction is 2%.
(a) Effective strain in the
direction of loading vs
temperature response.
(b) Effective strain in the
transverse to loading
direction vs temperature
response

Coherency stresses and precipitate volume fraction—In Fig. 8.8, which displays
the effective strain–temperature response of thermally cycled material systems with
different precipitate major to minor axis ratios, �, for a precipitate volume fraction
equal to 4%, � has a second-order effect on the thermomechanical response of
the precipitated microstructures which becomes negligible for precipitate volume
fractions below 2%. Similarly, the effect of coherency stresses arising at the
interface between the precipitates and the austenitic matrix due to their lattice
mismatch on the effective thermomechanical response is negligible, the reason being
that it is the low Ni content close to the precipitates that drives the martensitic
transformation which in turn relaxes the coherency stresses (Fig. 8.9).
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Fig. 8.9 Comparison of the
effective strain vs temperature
responses for precipitated
materials with and without
accounting for the coherency
stresses due to the lattice
mismatch between
precipitates and B2 matrix for
a thermal cycle under a
constant uniaxial loading at
200 MPa. The precipitate
volume fraction is 4% and the
precipitate major to minor
axis ratio, �, is equal to 8.
(a) Effective strain in the
direction of loading vs
temperature response.
(b) Effective strain in the
transverse to loading
direction vs temperature
response

8.3 Prediction of the Effective Response of Precipitated NiTi

In this section, the model described in the preceding sections is used to predict
the effective thermomechanical response of precipitated NiTi knowing only the
homogenized parameters and aging path. First, the experimental characterization
of the materials1 is briefly presented.

To test the ability of the developed model to predict the effect of precipitation,
NiTi specimens with a nominal composition of Ni50:8Ti were prepared via vacuum
induction melting. The initial homogenized, nominally precipitate-free specimens
were produced via solution treating at 800 °C for 1 h and water quenching. Speci-
mens for both digital scanning calorimetry (DSC) and tensile testing were prepared
and then subjected to a variety of additional aging treatments to characterize the
impact of precipitate formation. Specifically, to construct the TTT diagram of

1The authors would like to acknowledge and thank Brian Franco and the other members of the
Microstructural Engineering of Structural and Active Materials (MESAM) Research Group at
Texas A & M University for preparing and characterizing the experimental specimens.
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Fig. 8.10 Contour plot showing the effect of aging time and aging temperature on martensitic
transformation start temperature (TTT diagram) in Ni50:8Ti. Each contour represents a line of
constant Ms. Individual data points are measured from systematic DSC experiments, after which
Voronoi interpolation is used to produce the contour lines

interest, separate DSC specimens were aged for between 30 min and 100 h at
temperature increments of 200 and 500 °C. The martensitic-start temperatures were
then measured and correlated with the processing conditions to construct the TTT
diagram (Fig. 8.10).

To predict the effective thermomechanical responses of precipitated NiTi (1) the
calibrated response of the solutionized (matrix) material and (2) a representation
of the material microstructure are needed. With respect to the former, the ther-
momechanical response of the solutionized material is used to calibrate the SMA
constitutive model. These parameters are summarized in Table 8.1. A comparison
between model calibration and the experimental data of the response of Ni50:8Ti
solutionized material subjected to thermal actuation under constant bias loads
is presented in Fig. 8.11. The dashed curves represent experimental data at a
given bias load, while the solid ones represent the simulations. Good agreement
between the results can be noted supporting the proposition that this model can
be used for the response of the matrix material. Regarding the representation
of the microstructure, an estimate of the precipitate volume fraction is needed.
This estimate is obtained using relations between transformation temperatures and
atomic composition obtained from highly pure NiTi materials given in Frenzel et al.
(2010) and listed in Table 8.2. Specifically, the martensitic-start temperature, Ms,
of the aged material system is approximated on the basis of heat treatment using
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Fig. 8.11 Strain vs temperature plots for Ni50:8Ti solutionized material subjected to thermal cycle
under constant bias loads. Dashed curves represent experimental data at a given bias load (given
in MPa), while solid ones represent the simulations

time–temperature–martensite transformation (TTT) maps such as those in Fig. 8.10
and used for providing an estimate of the Ni content of the matrix material after
precipitation heat treatment. The estimate is based on the assumption that the
average Ni content of the matrix material would be equal to the Ni content of a
solutionized material with the same martensitic-start temperature. The difference
between the Ni content of the initial solutionized material and estimated average
Ni content of the matrix in the aged material reveals how much Ni is consumed
to form the precipitates. Then, it is a simple matter of algebraic manipulation to
obtain the precipitate volume fraction in the material, as the Ni content of the Ni4Ti3
precipitates is a known constant. The expression for the precipitate volume fraction
is given as follows:

v D .csm � cam/=.cNi4Ti3 � cam/ (8.7)

where csm is the concentration of Ni in the solutionized material, and cam is the
average Ni content in the aged material matrix. In the following comparison of
model predictions against experimental data, the value � D 6 is adopted for the
calculations. As discussed in Sect. 8.2.2.2, the precipitate major to minor axis ratio,
�, has a second-order effect on the thermomechanical response of the precipitated
microstructures.
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Table 8.3 Ni-rich NiTi SMA sample conditions, studied in this work, with detailed initial
compositions, processing conditions, and estimation of final precipitate volume fraction

Initial composition Aging temp. Aging time Estimated precipitate VF
ŒNiat:%� Œ°C� Œh� Œ%�

50:8 300 100 1:7

50:8 500 24 4:2

Fig. 8.12 TEM micrographs of the Ni50:8Ti material. The apparent precipitate size in the material
aged at 500 °C for 24 h is on the order of 1�m. Since Ostwald ripening is a diffusional process,
the lower aging temperature (300 °C vs 500 °C) delays the onset of coarsening, leading to the
small precipitate size and interparticle distance shown in Figure 8.12b (Madras and McCoy, 2004).
(a) Aged at 500 °C for 24 h. (b) Aged at 300 °C for 100 h. Note the image-scale difference between
the two images

The model predictions are compared to the experimental results for two dif-
ferently heat-treated materials. These material systems are subjected to thermal
cycles with bias loads of 200 MPa and below in order to minimize the effects
of TRIP which heavily influence transformation responses above this load level.
The compositions of the materials tested and their processing conditions are
listed in Table 8.3 along with their estimated precipitate volume fractions, while
their microstructures are shown in Fig. 8.12. The experimental data regarding the
thermomechanical response reveals that the heterogeneous nature of the precipitated
microstructure decreases the maximum transformation strain, alters significantly
the effective strain–temperature hysteresis loops, and shifts the phase transition
temperatures to higher values versus the solutionized response, as seen in the
Figs. 8.14 through 8.15.
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Fig. 8.13 Computational procedure

The computational procedure is reviewed in Fig. 8.13. The predictions of the
strain–temperature response of the thermally cycled Ni50:8Ti material aged at 300 °C
for 100 h subject to bias loads of 100, 150, and 200 MPa are compared against
experimental data in Fig. 8.14. The predictions are able to reproduce quantitatively
all the aforementioned precipitation-induced changes in the thermomechanical
response. These include changes in transformation temperature due to matrix
compositional change and applied stress, increases in the width of transformation
intervals (i.e., Ms �Mf ), and reduction in transformation strain. The model does not
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Fig. 8.14 Comparison of the
predicted and experimental
results of the material with an
initial composition of Ni50:8Ti
aged at 300 °C for 100 h. The
estimated volume fraction of
the precipitates is about 1.7%.
(a) 200 MPa; (b) 150 MPa;
(c) 100 MPa
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predict the transition region at the onset of martensitic transformation that is caused
by the R phase transformation. Since the transformation strain associated with the
R-phase is relatively small, the details of such transformations are neglected in the
present modeling effort for the sake of simplicity. In the case of thermally cycled
Ni50:8Ti material aged at 500 °C for 24 h (Fig. 8.15), the predicted transformation
strain is in good agreement with experiments, while the predicted austenitic-start
and -finish temperatures, As and Af , respectively, are overestimated, the martensitic-
start, Ms, and -finish, Mf , temperatures are underestimated, and consequently the
strain–temperature slopes are underestimated as well.

8.4 Discussion

As already mentioned, the model in its present form can only capture volume
fraction, aspect ratio, and orientations as the main precipitate defining geometric
quantities, i.e., to the extent that the constructed RVEs are truly representative
of the material microstructure, but not microstructural size effects. Size effects
arise mostly from the interparticle distance and the surface to volume fraction
ratio of the precipitates. Small interparticle distance between the precipitates can
reduce the martensitic transformation temperatures and sometimes fully suppress
transformation (Hornbogen, 1985) and also enlarge the transformation hysteresis
(Franco, 2014). However, the role of microstructural size effects on martensitic
transformation and its energetics are currently not fully understood at a level that can
be incorporated into micromechanics and continuum-level materials modeling. In
addition, the model does not capture the transition from type I and type II martensite
twin formation in the solutionized NiTi SMAs to mostly (001)M-type compound
twin formation and thus the associated changes in the thermomechanical responses
in precipitation-hardened NiTi SMAs. For example, compound twins in martensite
via the B2-R-B190 transformation sequence, as observed here, lead to lower
transformation strains than type II twins formed in the B2-B190 transformation
(Sehitoglu et al., 2001c).

In general, the model underestimates austenitic-start and -finish temperatures and
overestimates the martensitic-start and -finish ones, the transformation hardening,
and attainable maximum transformation strain. Overall, the effective thermome-
chanical response is shown to be in good agreement with experiments, although,
it seems that a single-parameter (that of martensite volume fraction) description of
phase transformation cannot fully capture the structural and compositional effects
of precipitates on the complexity of the martensitic microstructures formed (e.g.,
type and number of active martensitic variants, detwinning, etc.) and the observable
macroscopic thermomechanical response. As mentioned above, the type of twins
formed in martensite significantly influences the transformation strain. However, the
model assumes the same twinning type, transformation sequence, and transforma-
tion strain in the matrix of precipitation-hardened NiTi and the solution-treated NiTi
samples, overestimating the attainable transformation strain in comparison with the
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Fig. 8.15 Comparison of the
predicted and experimental
results of the material with an
initial composition of Ni50:8Ti
aged at 500 °C for 24 h. The
estimated volume fraction of
the precipitates is about 4.2%.
(a) 200 MPa; (b) 150 MPa;
(c) 100 MPa
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experiments. The model seems to capture well the phase transition temperatures and
thus the hysteresis for relatively small interparticle distances (Fig. 8.14); however,
there is a deviation between predictions and the experimental data for relatively large
interparticle distances (Fig. 8.15). The differences in the experimentally observed
transformation hysteresis under stress between the two processing conditions should
be attributed partly to size effects. Size effects are known to impact the dissipated
energy due to phase transformation that in turn impacts the widening of the
thermal hysteresis and the reverse transformation interval (Franco, 2014; Hamilton
et al., 2004). Moreover, in almost all cases, the slopes of the predicted strain–
temperature curves are lower than the experimentally observed ones, i.e., the
predicted transformation hardening is higher than the measured one, irrespective of
the interparticle distance and precipitate volume fraction. The observed discrepancy
can be attributed again to the differences in the detwinning behavior of compound
twins and type II twins in martensite. In overaged cases, where the Ostwald ripening
drastically reduces the precipitate surface to volume fraction ratio, the effect of
compositional gradients becomes less prevalent and the matrix can be considered
to be essentially homogeneously transforming in a very small temperature interval.

In summary, despite its shortcomings, the current modeling framework can
provide an, at least first-order, approximation of the thermomechanical response
of virtually heat-treated Ni-rich NiTi SMAs, without actually performing the heat-
treatment experiments and associated thermomechanical characterization. Accord-
ing to the results, smaller approximated precipitate volume fractions yield better
predictions. For precipitate volume fractions up to about 2% that can still alter
the thermomechanical response substantially, the predictions are almost as good as
simulations of a model that has been calibrated from the response of the specific
microstructure. Moreover, with the effective response of the RVEs described, a
homogenized SMA material can be determined by calibrating the same SMA model
used previously for the matrix material based on the RVE effective response. Such
a homogenized constitutive model is necessary, and critical, for predicting the
structural response of SMA components with such precipitated materials. In this
way, the influences of the microstructure may be brought up to the structural scale.

Continuing efforts may focus on three distinct areas. The first is associated
with the modeling of the precipitate formation. Efforts may be directed towards
phase field simulations for estimating the precipitate volume fraction and shape
for specific heat treatments, an estimation which now relies on precipitation time–
temperature–martensitic transformation temperature maps. Such simulations will
also estimate the shape of precipitates that are currently assumed to be oblate
spheroids with an a priori specified major to minor axis ratio irrespective of the
aging process. The second area is associated with a higher-fidelity modeling capable
of addressing spatial correlations and complex interactions occurring at different
length scales. Multiscale micromechanical computational research capable of incor-
porating more detailed physics and potentially non-local interactions stemming
from microstructural features of different sizes, such as precipitate and grains, and
compositional gradients is needed to investigate these interactions. Although com-
putational resources continue to come online, making increasingly large problems
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tractable, the third effort could be in developing multiscale mean-field approaches
or surrogate models that can be utilized in addressing the inverse problem of
application-driven design of processing conditions to determine optimized material
responses.

Acknowledgements This material is based upon work supported by the Air Force Office of
Scientific Research under Grant No. FA9550-12-1-0218. The authors would like to acknowledge
the crucial work of Austin Cox in developing and implementing the predictive model presented in
this chapter.

Appendix: Constitutive Law for Polycrystalline SMAs

The model is developed within the framework of continuum thermodynamics and
adopts the classical rate-independent small-strain flow theory for the evolution
equations of the transformation strains (Lagoudas et al., 1996, 2012; Lagoudas,
2008). This model is used to describe the response of both precipitated and
unprecipitated polycrystalline SMAs.

By utilizing infinitesimal strains and assuming an additive strain rate decompo-
sition, the increments of the total strain tensor components, d"ij, are given as

d"ij D Sijkld
kl C dSijkl
kl C d"t
ij; (8.8)

where 
ij and "t
ij are the Cartesian components of the stress and transformation

strain tensor, respectively, and Sijkl represents the “current” compliance tensor.
Standard Einstein notation is used with summation over repeated indices assumed.
The “current” compliance tensor varies with the martensite volume fraction, �,
as Sijkl D .1 � �/SA

ijkl C �SM
ijkl, where SA

ijkl and SM
ijkl are the components of

the compliance tensor of the polycrystalline SMA material in the austenitic and
martensitic phase, respectively. The assumption of elastic isotropy for both the
austenitic and martensitic phases results in S˛ijkl D 1C�˛

2E˛
.ıilıjk C ıikıjl/ � �˛

E˛
ıijıkl,

where the index ˛ stands for A and M in the cases of pure austenite and martensite,
respectively. The Young’s modulus and Poisson’s ratios of the SMA’s two phases
are denoted E˛ and �˛ , respectively, and ıij is Kronecker’s delta.

An evolution equation of the transformation strain is defined so that it is related
to the evolution of martensite volume fraction �,

d"t
ij D ƒijd�; ƒij D

(
ƒ

fwd
ij ; d� > 0;

ƒrev
ij ; d� < 0;

(8.9)
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where,ƒij, the components of the direction tensor, are defined as

ƒ
fwd
ij D

3

2

Hcur




 0

ij; ƒ
rev
ij D

"t
ij

�
: (8.10)

Here, Hcur is the uniaxial transformation strain magnitude for complete trans-

formation, 
 D
q

3
2

 0

ij

0
ij is the Mises equivalent effective stress, and 
 0

ij D

ij � 
kkıij=3 are the stress deviator components. Forward transformation generates
transformation strain in the direction of the deviatoric stress, which motivates the
selected J2 form of the direction tensor. During reverse phase transformation, it is
assumed that the direction and magnitude of the transformation strain recovery is
governed by the average orientation of martensite at transformation reversal (the
cessation of forward transformation, be it partial or full). This definition ensures a
zero transformation strain for every state with a null martensite volume fraction.

During transformation, the stress tensor components should remain on the
transformation surface:

ˆ D 0; ˆ D
(
ˆfwd D � fwd � Y0; d� > 0;

ˆrev D ��rev � Y0; d� < 0;
(8.11)

with � fwd, �rev being the thermodynamic driving forces for forward and reverse
transformation, respectively, and Y0 being the critical value of the thermodynamic
force to both initiate and sustain forward and reverse phase transformation.

The thermodynamic driving force for forward transformation is written as

� fwd D 
ijƒ
fwd
ij C

1

2
�Sijkl
ij
kl C 	�s0T � 	�u0 � f fwd; (8.12)

and for reverse transformation

�rev D 
ijƒ
rev
ij C

1

2
�Sijkl
ij
kl C 	�s0T � 	�u0 � f rev: (8.13)

f fwd and f rev are functions describing the transformation hardening behavior during
forward and reverse phase transformation, respectively. s0 and u0 are the specific
entropy and internal energy, respectively, 	 is the density, and � denotes the
difference in property between the martensitic and the austenitic states.

Variation of the Transformation Strain Magnitude

The transformation strain magnitude, Hcur, is a function of the stress state since
precipitated polycrystalline SMA materials do not exhibit a constant maximum
attainable transformation strain at all stress levels (Bo and Lagoudas, 1999c; Bo
et al., 1999). A saturated value of maximum attainable transformation strain, Hsat,
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is reached at a high-stress level, which is dependent on the SMA material and
the processing conditions. Following this observation, Hcur is represented by the
following decaying exponential function:

Hcur.
/ D Hsat
�
1 � e�k


�
: (8.14)

The parameter k controls the rate at which Hcur exponentially evolves from 0 to Hsat.

Description of a “Smooth” Thermomechanical Response

In precipitated polycrystalline SMAs, local transformation initiates in a non-
uniform manner, resulting in an experimentally observed gradual transition from
the elastic to transformation response and vice versa. To capture the gradual
transformation initiation and completion response, the hardening functions are given
as general power laws in terms of � with real components:

f fwd.�/ D 1

2
˛1 Œ1C �n1 � .1 � �/n2 �C ˛3; (8.15)

f rev.�/ D 1

2
˛2 Œ1C �n3 � .1 � �/n4 � � ˛3; (8.16)

where, ˛i .i D 1; 2; 3/ are coefficients that assume real number values and
ni .i D 1; 2; 3/ are exponents that assume real numbers in the interval .0; 1�. If n1
and/or n3 take values less than 1, the forward and/or reverse phase transformations,
respectively, are initiated in a “smooth” gradual fashion. Similarly, if n2 and/or
n4 take values less than 1, the forward and/or reverse phase transformations,
respectively, are completed in a “smooth” gradual fashion.

Calibration of the Model

Given the above constitutive relations, the following model parameters must be
calibrated: (1) the elastic parameters of the precipitated polycrystalline SMA in the
austenitic and martensitic states, (2) parameters contained in the functional form of
the maximum transformation strain Hcur.
/, and (3) six model parameters (	�s0,
	�u0, ˛1, ˛2, ˛3, Y0) that are characteristic of the martensitic transformation. The
common material properties that are used to calibrate the model are EA, EM, �A,
�M , Hsat, Ms, Mf , As, Af , CM , and CA. Ms, Mf , As, and Af are the martensitic-start,
martensitic-finish, austenitic-start, and austenitic-finish temperatures at zero load,
respectively, and CM and CA are the forward and reverse transformation slopes in the
stress-temperature phase diagram, respectively (Fig. 8.2). The elastic constants can
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be calculated directly from nominally isothermal stress–strain curves where loads
are applied at temperatures outside the transformation regions. The parameters for
Hcur.
/ can be calibrated directly from material testing under thermal variations
at a constant applied load, where the value of k in particular is chosen to best fit
the experimental trend. The remaining six parameters are calibrated by considering
the conditions under which forward transformation begins and ends in the stress-
temperature space (Lagoudas, 2008). The hardening coefficients n1�n4 do not have
an associated material property but are directly chosen to best fit the four corners of
the transformation hysteresis plots.
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Chapter 9
Micromechanics of Ferroic Functional Materials

John E. Huber

Abstract This chapter introduces a range of ferroic functional materials including
ferroelectrics, ferroelastics, and ferromagnets. Coupling among the different types
of ferroic order results in multiferroic behavior that is of importance in transducers
and memory devices. The physical laws governing each type of material are
compared, noting the closely analogous governing equations. However, attention
is also given to the differences in behavior that can necessitate distinct model-
ing approaches. The general form of the Eshelby tensor for coupled ferroics is
introduced, and the methods for estimating the properties of composites, including
self-consistent and Mori–Tanaka schemes, are briefly described. The chapter then
focuses on the analysis of a commonly encountered arrangement of microstructure:
a composite laminate comprising distinct crystal variants of the same physical
phase. Rules are presented for determining how laminates can form with a minimum
energy arrangement of layers, and methods are described for estimating the resulting
material properties of the composite. An application to the microstructure of
freestanding polycrystalline thin films is described.

9.1 Introduction

Ferroics are materials that exhibit any one or more of the properties of ferro-
electricity, ferroelasticity, or ferromagnetism (Aizu 1970; Schmid 1994). They
are of importance in the development of smart material systems and functional
devices. Included in this class of materials are ferroelectrics that possess a remanent
polarization, which can be reversed by the application of electric field. Also included
are the ferroelastic materials that possess distinct, symmetry-related crystal variants
with differing states of stress-free strain. These materials can be deformed by
converting one crystal variant into another and the process may be reversed allowing
cyclic straining. The resulting effect is named ferroelasticity by analogy with
ferroelectricity and ferromagnetism. Ferromagnetic materials possess a remanent
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magnetization that can be reversed by the application of magnetic field. Each of
the aforementioned material types has the capacity to be ordered in a way that
stores a permanent state—a polarization, strain, or magnetization—and for that
state to be altered by the application of external fields. This leads to applications
in switching and memory devices. Ferroic order is sometimes taken to include
other orderings, such as ferrimagnetism or ferrielectricity, wherein the presence
of positive and negative magnetization or polarization produces a partial balance,
and antiferromagnetism or antiferroelectricity, where there is complete balance
eliminating the macroscopic magnetization or polarization. Ferrotoroidicity, the
possession of a circulation of magnetization, has been ascribed as a further form
of ferroic order (Van Aken et al. 2007). However, as this ordering is relatively rare,
this chapter will focus on the three main types of ferroic order and relations between
them.

Where more than one ferroic order is present, and especially where there is
coupling between ferroic orders, a material may be called multiferroic. The term
is sometimes reserved for materials exhibiting both ferroelectricity and ferromag-
netism, coupled through the magnetoelectric effect, such that electric fields can
induce magnetization and magnetic fields can induce polarization. However, the
broader definition involves the pairing of any two or more ferroic orders. Using this
broader definition of multiferroicity, most ferroelectrics are multiferroic since they
typically display both ferroelectricity and ferroelasticity. Similarly, magnetic shape
memory alloys display both conventional ferromagnetic behavior and ferroelasticity
in the form of shape memory. These materials are intrinsically multiferroic: multiple
ferroic orders are present in a single phase. However, strong coupling between
ferroelectricity and ferromagnetism in a single phase is relatively rare (Eerenstein
et al. 2006). Instead, composites of ferroelectric and ferromagnetic materials can
achieve strong magnetoelectric coupling mediated by continuity of displacement
at the interface between phases (Nan et al. 2008). Effectively, application of a
magnetic field can cause magnetization and strain in the ferromagnetic phase, and
the coupling of strain into the ferroelectric phase can modify polarization. This
composite route to strong magnetoelectric coupling is important because of the
potential applications in memory devices where combinations of electrical and
magnetic read–write operations may be desirable.

Returning to the main ferroic orders, their interrelations are shown in Fig. 9.1.
Commonly, the presence of a ferroic order implies symmetry that allows useful
coupled effects. Hence, ferroelectrics are typically piezoelectric (though not all
piezoelectrics are ferroelectric) and so forth. The strong couplings give rise to appli-
cations where transduction between electrical, magnetic and mechanical energy
occurs. Then the primary role of the material is not structural and these materials
are referred to as functional. This chapter deals with ferroic functional materials,
which display ferroic order and coupling that may be used for applications such
as sensing, actuation, transduction, memory devices, and others. In each case, the
ferroic order results from a symmetry breaking phase transition, normally a high-
temperature symmetric phase with no ferroic order transforming upon cooling into
a low-symmetry phase with ferroic order. In both ferroelectrics and ferromagnetics,
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Fig. 9.1 The main ferroic
orders and relations among
them

Ferroelectric
(Electric field E,

Electric displacement D)

Ferroelastic
(Stress s, Strain ε)

Ferromagnetic
(Magnetic induction B,

Magnetic field H)

magnetoelectric

the transition temperature is called the Curie temperature TC. The corresponding
transition in shape memory alloys is an austenite–martensite transformation, pro-
ducing a low-temperature martensite phase with several symmetry-related crystal
variants.

As well as introducing the three main ferroic orders, Fig. 9.1 also introduces the
field variables associated with each type of ferroic material at uniform and constant
temperature. In ferroelasticity, the key variables are mechanical stress 
 and strain
"; ferroic ordering allows for a remanent strain "Rto be present. The corresponding
variables in ferroelectricity are electric field E and electric displacement D with
remanent polarization PR being an electric displacement at zero electric field due
to ordering. In ferromagnets, magnetic induction B (also called magnetic flux) and
magnetic field H are the field variables, with a remanent magnetization M describing
the state when applied fields are absent.

9.2 Governing Equations, Constitutive Equations,
and Material Description

Let us first consider the physical laws that govern ferroic materials and the specific
forms of these laws relevant to quasi-static conditions. Mechanical equilibrium and
Gauss’ law for electric and magnetic fields provide closely analogous equations for
the divergence of stress, electric displacement, and magnetic induction:


ij;j D �bi (9.1)

Di;i D q (9.2)

Bi;i D 0 (9.3)
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Here bi is the body force density including inertial forces and q is the free
charge density. Indicial notation is used to indicate Cartesian tensors, with commas
indicating spatial derivatives. In the absence of free charge and body forces,
Eqs. (9.1)–(9.3) become equivalent except for the second-order tensorial nature of
stress contrasting with electric displacement and magnetic induction, which are
vectors. It should be noted that while ferroelectrics are always insulators, or at
best weakly semiconducting, ferromagnets and ferroelastic shape memory alloys
are commonly conducting. Therefore, care should be taken in the treatment of
free charge in composites containing these materials. Theories of magneto-electro-
elastic materials nevertheless often neglect free charge as this provides a convenient
formulation.

Further relations allow the conjugate quantities (", D, H) to be expressed as
gradients, defining strain as the symmetrized gradient of displacement ui,

"ij D
�
ui;j C uj;i

�
=2 (9.4)

and noting that for quasi-static conditions both electric and magnetic fields are
irrotational, in consequence of Maxwell’s equations:

Ei D ��;i (9.5)

Hi D �';i (9.6)

Here � is the electric potential and ® the magnetic potential. So far, the
mechanical, electrical, and magnetic equations are closely analogous. We next turn
to the definitions of the remanent quantities associated with ferroic order. These
variables indicate the material state in the absence of external loads. Here it is
desirable to decompose the strain into a reversible part "rev

ij due to the application
of loads (which may be mechanical, electrical, or magnetic loads) and a remanent
part due to ferroelastic ordering. Then

"ij D "rev
ij C "R

ij (9.7)

The analogous gradient variable in ferroelectricity is the electric field as defined
in Eq. (9.5). However, ferroic ordering does not provide a permanent electric
field, but instead a polarization that is the moment of charge resulting from
structural displacement of ions and polarization of individual ions. The polarization
contributes to the total electric displacement. Hence, naming the reversible part of
electric displacement Drev

i , we could write

Di D Drev
i C PR

i (9.8)
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However, the conventional concept of material polarization includes all of the
electric displacement that is due to the presence of the material, excepting only that
part which would be present in vacuum with the same electric field; thus,

Di D "0Ei C Pi (9.9)

where "0 is the permittivity of free space. The polarization so defined includes both
the remanent part of polarization, PR

i , and that part of Drev
i due to the presence of the

material itself—that is, all except the part due to the permittivity of free space.
For magnetic materials, it is conventional to make a similar division with

magnetic field and magnetization, in the form

Bi D �0 .Hi CMi/ (9.10)

where �0 is the permeability of free space. However, there is no analogous
expression for stress and strain because they are unrelated (or undefined) in free
space.

Constitutive relations for the materials may be developed by considering energy.
An increment of internal energy U is produced when external loads do work on the
material:

dU D 
ijd"ij C EidDi C HidBi (9.11)

Notice that positive work increments are driven not only by stress (which
is divergence free) changing the strain (which is a gradient variable) but also
by electric field and magnetic field (both are gradient variables) changing the
electric displacement and magnetic induction (divergence free). This positive work
description thus produces a mixture of gradient terms and divergence-free terms
as the independent variables which is inconvenient for solving boundary value
problems. A commonly used alternative (Alshits et al. 1992) is achieved through
the Legendre transform

‰ D U � EiDi � HiBi (9.12)

such that

d‰ D 
ijd"ij �DidEi � BidHi (9.13)

Taking ‰, known as the electromagnetic enthalpy (Soh and Liu 2005), to be a
function of "ij, Ei, and Hi, the stress, electric displacement, and magnetic induction
may be derived as


ij D @‰

@"ij
I Di D �@‰

@Ei
I Bi D � @‰

@Hi
(9.14)
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Expanding‰ as a power series and showing second-order terms gives

‰ D 1

2
Cijkl"ij"kl C 1

2
�ijEiEj C 1

2
�ijHiHj � eiklEi"kl � qiklHi"kl � �ikEiHk C � � �

(9.15)

The linear material coefficients are Cijkl, the elastic modulus; � ij, the dielectric
permittivity tensor; �ij, the magnetic permeability tensor; eikl, the piezoelectric
tensor; qikl, the piezomagnetic tensor; and �ik, the magnetoelectric tensor.

For small changes in "ij, Ei and Hi about a reference state, linear constitutive
equations can be derived from Eq. (9.15):


ij D Cijkl"kl � ekijEk � qkijHk (9.16)

Di D eikl"kl C �ikEk C �ikHk (9.17)

Bi D qikl"kl C �ikEk C �ikHk (9.18)

The appearance of minus signs in Eq. (9.15) is somewhat arbitrary but the non-
symmetric form of Eqs. (9.16)–(9.18) is not. However, expressing the electric and
magnetic fields as gradients produces a symmetrized form that can be represented
by the compact notation

†iJ D LiJKlZKl .i; l D 1 : : : 3I J;K D 1 : : : 5/ (9.19)

where †iJ contains the elements of 
 ij for JD 1 , 2 , 3, Di for JD 4, and Bi when
JD 5. Similarly, ZKl contains the elements of "kl for KD 1 , 2 , 3, � ,l for KD 4,
and ®,l when KD 5. Summation over the indices is conducted for i , lD 1 : : : 3
and J , KD 1 : : : 5. Then LiJKl is symmetric and contains the various material
coefficients.

9.3 Eshelby Tensor and Estimates of Composite Properties

The Eshelby tensor (Eshelby 1957) relates the transformation strain of a trans-
forming ellipsoidal inclusion to the strain experienced by the inclusion when
constrained by surrounding matrix material. Thus, for an elastic, transforming
medium undergoing a stress-free transformation strain (or eigenstrain) "T

ij , the
total strain experienced by a transforming ellipsoidal inclusion embedded in a
surrounding matrix of the same material is

"ij D Sijkl"
T
kl (9.20)
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Eshelby showed that the strain is uniform within the inclusion. The coupled
problem including electrical terms (Wang 1992; Dunn and Taya 1993) and magnetic
terms (Li and Dunn 1998; Li 2000) is analogous, allowing a fully coupled Eshelby
tensor to be defined in the form

ZKl D SMEE
KlMn ZT

Mn (9.21)

where the superscript MEE identifies the Eshelby tensor for magneto-electro-elastic
materials. Methods for computing the components of SMEE

KlMn and applications have
given by several authors, following procedures analogous to those of Eshelby
(Huang and Kuo 1997; Huang et al. 1998).

The significance of the Eshelby tensor for estimating the properties of composites
arises because by varying the material properties and proportions of the ellipsoid, the
interaction of diverse forms of composite phases with the surrounding medium can
be estimated. Cylindrical fibers, spherical inclusions, and laminar platelets are all
special cases of ellipsoidal inclusions. Hence, the average properties of composites
can be estimated.

A simple but powerful means of estimating composite properties is provided
by the self-consistent estimate (Hill 1965). In the case of composites of ferroic or
multiferroic phases, the self-consistent estimate arises by treating each phase of the
composite as an inclusion embedded in a matrix that has the average properties of
the overall composite. Each individual phase (or inclusion) has its own moduli, so
that locally

†iJ D LiJKlZKl (9.22)

while denoting volume averages over the whole composite with an overbar and the
overall properties of the composite by Lo

iJKl:

†iJ D Lo
iJKlZKl (9.23)

Any deviation†iJ�†iJ in the local fields is related to the corresponding deviation
ZKl � ZKl using the Eshelby inclusion model. This prescribes that for ellipsoidal
inclusions in a matrix with overall properties Lo

iJKl,

†iJ �†iJ D �Lo
iJKl



IiJKl �

�
So

KlMn

��1� �
ZKl � ZKl

� D �L�
iJKl

�
ZKl � ZKl

�
(9.24)

where IiJKl is a collection of identity tensors defined such that LID ILDL and the
inverse

�
So

KlMn

��1
is chosen such that S�1SDSS�1D I. Equation (9.24) also defines

the constraint tensor L�
iJKl. Combining Eqs. (9.22)–(9.24) provides the relationship

�
LC L��Z D �Lo C L��Z (9.25)
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where indices have been omitted for brevity. Hence,

† D L
�
LC L���1 �Lo C L��Z (9.26)

Averaging over all inclusions and hence over the entire volume of the composite
gives

† D



L.LC L�/�1 .Lo C L�/
�

Z (9.27)

Thus, the overall properties Loof the composite could be estimated by the average

Lo D L.LC L�/�1 .Lo C L�/ (9.28)

but for the inconvenient fact that both Lo itself and L� , which depends on Lo through
the Eshelby tensor, appear on the right-hand side. All is not lost as Lo can still be
computed by using a simple first guess such as L and iteration of Eq. (9.28) until
a consistent set of moduli for the composite is found. This self-consistent estimate
works well under a wide range of conditions.

An alternative approach, also based on the mean stress and strain fields in the
composite and valued for its close relationship with bounds derived from variational
approaches, is the mean field method of Mori and Tanaka (Mori and Tanaka,
1973; Weng 1990). The application to ferroic materials with magneto-electro-elastic
coupling has been explored by several authors (Huang and Kuo 1997; Lee et al.
2005). The Mori–Tanaka method is generally developed for composites with an
identifiable matrix within which there is a volume fraction f of inhomogeneities that
modify the mean fields. Consideration of the disturbance to the mean field caused
by inhomogeneities leads to the estimate

Lo D Lm
�
IC f V�1 .L � Lm/

�
(9.29)

where Lo is the overall tensor of moduli of the composite, Lm and L are the
corresponding moduli in the matrix and inhomogeneities, respectively, and V is
given by (Huang and Kuo 1997)

V D .1 � f / .L � Lm/ SC Lm (9.30)

The Mori–Tanaka method has the advantage of providing explicit expressions
for the moduli of the composite and has been shown to agree well with generalized
self-consistent methods and variational bounds for a range of material properties
and inclusion geometries (Christensen 1990).

The estimates of the linear properties of composites discussed so far are of
use for a wide range of ferroic materials and indicate, for example, that strong
magnetoelectric coupling can be produced in certain composites, even when none
of the individual phases has such coupling. However, these methods do not deal
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with the remanent states produced by the symmetry-related ferroic crystal variants,
which will be considered in the remaining sections.

9.4 Ferroic Crystal Variants and Domains

In a typical ferroic material, the transformation from a high-symmetry state to a
lower-symmetry state with multiple, symmetry-related crystal variants produces
the ferroic properties. For example, the ferroelectric barium titanate, BaTiO3, has
cubic perovskite crystal structure above the Curie temperature but has tetragonal
structure immediately below the Curie temperature. The tetragonal state has a
spontaneous polarization of each unit cell, along the crystallographic c-axis, in the
absence of externally applied electric fields. Similarly, the magnetic shape memory
alloy Ni2MnGa transforms from cubic to tetragonal and develops spontaneous
magnetization along the c-axis. While several shape memory alloys exhibit cubic–
tetragonal transformations, a wide variety of other crystal systems are found (James
and Hane 2000). Among the most widely used shape memory alloys are the nickel-
titanium alloys exhibiting a cubic–monoclinic transformation. Nevertheless, the
tetragonal system is instructive and relatively easy to study and so will be used
in examples here.

In most general terms, we can consider a ferroic material with magneto-electro-
elastic linear properties and capability for all three ferroic orders, resulting in
spontaneous strain, polarization, and magnetization. Pure single-phase materials
with all of these properties are rare, but by developing the theory most generally
the relations between the different types of materials found in practice will become
evident. Let the low-symmetry phase have N distinct variants, ID 1 : : : N, each
with its own spontaneous strain ©I , spontaneous polarization PI , and magnetization
MI . Then in a region of material comprising the Ith variant, the linear constitutive
equations, Eqs. (9.16)–(9.18), can be modified to read


ij D Cijkl
�
"kl � "I

kl

� � ekijEk � qkijHk (9.31)

Di � PI
i D eikl

�
"kl � "I

kl

�C �ikEk C �ikHk (9.32)

Bi � �ikMI
k D qikl

�
"kl � "I

kl

�C �ikEk C �ikHk (9.33)

At first sight, it may appear that the crystal variants could be randomly distributed
over the volume of a ferroic crystal with free variation from unit cell to unit
cell. Such a balanced distribution of spontaneous states could reduce energy by
avoiding the generation of a macroscopic strain, polarization, or magnetization.
However, ferroic ordering arises when, as is commonly the case, there is also
an energy penalty associated with adjacent cells having different values of the
spontaneous state. This energy penalty is due to elastic energy in the ferroelastic
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Fig. 9.2 The interface
between a pair of ferroic
domains domain 1

1 1 1, ,P Mε

domain 2

normal n

2 2 2, ,P Mε

case, dipole–dipole interaction energy for ferroelectrics, and exchange energy in
magnetic materials. There is then competition between a macroscopic driving force
towards a balanced average and a microscopic driving force towards uniformity.
The result is the formation of domains that are regions of uniform spontaneous
strain, polarization, or magnetization (Tagantsev et al. 2010). The size and form
of these domains are determined by energetic considerations and vary greatly, but
the appearance of domain patterns is so widespread as to be considered a defining
feature of ferroics (Van Aken et al. 2007). Since the domains can comprise distinct
crystal variants, a ferroic material can be thought of as a composite of domains.

It is instructive to consider the conditions that pertain to the interfaces between
adjacent domains. These interfaces are known as domain walls when they separate
domains within a single phase. Figure 9.2 shows an interface, which may generally
be curved, with local normal direction n, separating domains numbered 1 and 2.
Then, in the absence of body forces or charges, the governing equations, Eqs. (9.1)–
(9.3), imply that the local stress, electric displacement, and magnetic induction must
have no jump in normal component:

�
†1iJ �†2iJ

�
ni D 0 (9.34)

Similarly, the irrotational nature of the gradient terms requires that

�
Z1Kl � Z2Kl

�
tl D 0 (9.35)

where tl is any vector tangent to the interface, such that nltlD 0. Equations (9.34) and
(9.35) can be used to specify compatibility conditions for the interface in terms of the
spontaneous state of the crystal variants (©I ,PI ,MI) for minimum energy. The pair
of crystal variants meets with a minimum energy arrangement if the elastic stress,
electric field, and magnetic field are zero in both variants. Using this condition and
Eqs. (9.31)–(9.33) results in

© D ©I (9.36)

D D PI (9.37)



9 Micromechanics of Ferroic Functional Materials 267

B D �MI (9.38)

meaning that each variant adopts one of the N undisturbed spontaneous states.
Of course, the zero-field condition may not be possible in the presence of external

loading, or there may be no spatial arrangement of the crystal variants that can
achieve this condition. However, in the absence of applied loading and given that
there are many possible arrangements the material might adopt, it is reasonable
to suppose that Eqs. (9.36)–(9.38) may hold pointwise if there is an arrangement
which allows it. This is to treat the mixture of crystal variants as a minimizer of
energy. Using Eqs. (9.34) and (9.35), the consequences of Eqs. (9.36)–(9.38) may
be written as

�
©1 � ©2� � t D 0 (9.39)

�
P1 � P2

� � n D 0 (9.40)

�
M1 �M2

� � n D 0 (9.41)

In Eq. (9.41), it has been assumed that the magnetic permeability tensor � is
the same in both domains; more generally, it is the product �M whose normal
component is continuous. Equation (9.39) can conveniently be rewritten in terms
of the interface normal n as

©1 � ©2 D n˝ aC a˝ n (9.42)

where a can be chosen as any vector to satisfy the equation and n˝ a indicates
the outer product niaj. Equation (9.42) is the well-known Hadamard condition
for continuity of displacement at an interface, and Eqs. (9.40)–(9.42) collectively
provide compatibility conditions for an interface between low-energy domains in
ferroic materials. The consequences of these conditions have been widely explored
in the various types of ferroic material (Ball and James 1987; Bhattacharya 2003;
Shu and Bhattacharya 2001; Tsou and Huber 2010; De Simone and James 2002).

It is worth noting that, in the presence of stress, electric field, and magnetic field,
the invariants and principal directions of both the strain and polarization can be
modified. This arises because both quantities are structural in nature, being affected
by the location and arrangement of atoms or ions. Magnetization, however, typically
has a fixed or very nearly fixed magnitude, determined by spin states. Then only the
direction of magnetization can be varied away from one of the spontaneous states at
an energy cost known as the magnetocrystalline anisotropy energy.

Suppose that the spontaneous states of the crystal variants are known. Then,
for a particular pair of crystal variants meeting at an interface, Eqs. (9.40)–(9.42)
specify conditions for an interface orientation that can give minimum energy of the
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domains. Taking into account the symmetry of the strain tensor, Eqs. (9.40)–(9.42)
provide 12 equations for the 3 components of n, and so the problem of finding a low-
energy interface is strongly overdetermined: at first sight, it may seem unlikely that
any such interface can form. However, in most ferroic phases, the symmetry-related
crystal variants do admit low-energy domain arrangements. It has been shown (Ball
and James 1987) that Eq. (9.42) may have no solutions, or at most two distinct
solutions for n. It very often arises that one of these solutions will satisfy Eq. (9.40)
or (9.41). Thus, it is often the case that ferroic domains in materials with ferroelastic
ordering are separated by planar domain walls with a well-defined orientation. The
case where ©1D ©2, such that Eq. (9.42) is trivially satisfied for any n, is also
of importance in ferromagnetic and ferroelectric materials. Then the domain wall
orientation is constrained only by Eq. (9.40) or (9.41) which is easily satisfied,
giving rise to a continuous set of solutions for n in the plane normal to P1�P2

or M1 �M2. The resulting domain walls are wavy, developable surfaces commonly
found in both ferroelectric and ferromagnetic materials.

The domain walls themselves comprise narrow regions of material with steep
gradients in some combination of strain, electrical polarization, and magnetization.
They have finite width, again determined by energetic considerations. In ferroelastic
and ferroelectric materials, domain walls can be almost atomically sharp and widths
less than 10 nm are common. Ferromagnetic domain walls are usually thicker, 10–
100 nm being typical. Provided that the domain size is much greater than this, it is
common to neglect the domain wall energy, so that Eqs. (9.40)–(9.42) can be treated
as the main constraint on the formation of domain patterns.

The presence of domain pairs whose domain walls have unique orientation in
ferroics has far-reaching consequences. A mixture of such domains can then take on
only one form, namely, alternating layers of the two crystal variants in the form of
a laminate. Closer consideration of such laminates is given in Sects. 9.5 and 9.6.

For the moment, let us explore further the consequences of the kind of field-free
minimum energy patterns of domains for which Eqs. (9.36)–(9.38) hold. Consider
now deforming the outer surface of a body of ferroic material occupying a volume
V into a shape consistent with uniform straining. That is, for each point x on the
surface, the displacement u(x) should be

ui .x/ D "o
ijxj (9.43)

for some overall imposed strain "o
ij. It is easy to show that the pointwise strain then

averages to "o
ij, that is,

"ij D 1

V

Z

V

"ij .x/ dV D "o
ij (9.44)

Thus, an average strain can be imposed by controlling surface displacements.
Similar arguments apply to electric field, which can be controlled using surface volt-
ages. However, it is not straightforward to impose an average electric displacement
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or magnetic induction; care must then be taken into account for the space outside
V. In the case of electric displacement, a uniform Do

i can be compensated at the
boundary of V by placing free charge on the boundary with density Do

i nV
i where

nV
i is the outward surface normal of V. The external electric displacement is then

zero. However, imposing this charge density on the surface of V does not guarantee
Di D Do

i because there could be electric fields both internal and external to V. This
contrasts with the mechanical case, where external stresses can often be assumed
to be zero. If the material can adopt a polarization state that matches Do

i at no cost
in energy, then this state minimizes energy overall by eliminating electric field. The
magnetic case is less straightforward as there is no magnetic analogue for charge. An
external magnetic field Ho

i can be imposed outside V. Once again, if the material can
adopt a magnetization state aligned with Ho

i , this can minimize energy. There thus
arises the question of what states of average strain, polarization, and magnetization
can be achieved by mixtures of the crystal variants within V. If Eqs. (9.36)–(9.38)
hold, and neglecting inhomogeneity in �, the macroscopic strain, polarization, and
magnetization are given by simple volume averages. Then, regardless of the detailed
arrangement of the crystal variants, it is only their overall volume fractions f I that
affect the average, giving

©o D
NX

ID1
f I©I (9.45)

Po D
NX

ID1
f IPI (9.46)

Mo D
NX

ID1
f IMI (9.47)

To make the discussion more concrete, take the example of the magnetic shape
memory alloy Ni2MnGa. The martensitic phase has tetragonal structure with c < a
and magnetization aligned with the ˙c axis (Webster et al. 1984; Pons et al. 2000;
Kiefer and Lagoudas 2005). The variants are thus 6 in number with the spontaneous
magnetization states

M1 D m0e1I M2 D �m0e1I M3 D m0e2I
M4 D �m0e2I M5 D m0e3I M6 D m0e3 (9.48)

where m0 is the magnitude of spontaneous magnetization and e1 , e2 , e3 are unit
vectors along the crystallographic axes. The corresponding spontaneous strain
states are

©1 D ©2 D I"a C ."c � "a/ .e1 ˝ e1/ (9.49)
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Fig. 9.3 Tetragonal
martensite variants with
magnetization aligned to the
c-axis

1M

2e

3e
2M

3M

4M

6M

5M

1e

©3 D ©4 D I"a C ."c � "a/ .e2 ˝ e2/ (9.50)

©5 D ©6 D I"a C ."c � "a/ .e3 ˝ e3/ (9.51)

where I is the 3 � 3 identity matrix, "a is the (positive) a-axis strain, and "c is the
(negative) c-axis strain. The alloy is not ferroelectric. The six variants are illustrated
schematically in Fig. 9.3.

Given a macroscopic magnetization Mo and strain ©o, is there a set of volume
fractions f I of the 6 variants that will achieve this average by a composite of
domains? This is a constrained linear algebra problem. Due to the symmetry of
strain, Eq. (9.45) provides 6 linear equations and Eq. (9.47) provides a further 3.
Additionally,

X
f I D 1 (9.52)

as the volume fractions must sum to unity, providing one further equation. Since, in
the tetragonal case, the strain matrices are all diagonal in form, any off-axis terms in
©o must be zero. Furthermore, the variants each have the same volume of unit cell,
so that "o

11C "o
22C "o

33 D "cC 2"a is required. Assuming that these conditions on ©o

are satisfied, there remain only two independent equations derived from Eq. (9.45),
so that there are in total 6 equations for the 6 unknown f I :



9 Micromechanics of Ferroic Functional Materials 271

2

6
6
6
6
6
66
4

"c "c "a "a "a "a

"a "a "c "c "a "a

m0 �m0 0 0 0 0

0 0 m0 �m0 0 0

0 0 0 0 m0 �m0

1 1 1 1 1 1

3

7
7
7
7
7
77
5

2

6
6
6
6
6
66
4

f 1

f 2

f 3

f 4

f 5

f 6

3

7
7
7
7
7
77
5

D

2

6
6
6
6
6
66
4

"o
11

"o
22

Mo
1

Mo
2

Mo
3

1

3

7
7
7
7
7
77
5

(9.53)

The constraint f I � 0 must be added. The resulting system of equations has
solutions provided that the prescribed macroscopic state (Mo, ©o) lies within the
convex hull determined by the spontaneous states of the set of variants. In the case
illustrated by Eq. (9.53), a unique set of f I can be found for a given (Mo, ©o), but
more generally the f I may not be unique, so that a prescribed macroscopic state
could be achieved with different volume fractions (see Tsou and Huber (2010) for
further discussion). Of course, if (Mo, ©o) is outside the convex hull, there is no
solution.

What can be said about the linear elastic, electrical, and magnetic properties of
the composite of domains? Knowledge of the volume fractions will provide only
bounds on the various moduli, and these may be far apart; estimates could also
be made using the self-consistent or Mori–Tanaka schemes. However, a specific
evaluation of the moduli would require knowledge of how the domains were
arranged. So we may ask: once the volume fractions are known, is there a specific
arrangement of domains that satisfies the compatibility conditions? This question is
discussed further in Sect. 9.5.

9.5 Laminates of Ferroic Crystal Variants

A mixture of two crystal variants with a unique orientation of interface normal, as
shown in Fig. 9.4, is a laminate. This pattern of microstructure is widespread in
ferroics, and there have been many studies of the properties of ferroic laminates
(Kessler and Balke 2001; Weng and Wong 2009; Li and Liu 2004; Li and Ma 2008;
De Simone and James 2002; Tsou et al. 2013) including estimates of the elastic,
electrical, and magnetic moduli.

Next, following a procedure similar to that of Li and Liu (2004), consider the
magneto-electro-elastic moduli of such a composite of domains. The laminate struc-
ture enforces continuity of stress, electric displacement, and magnetic induction
components normal to the interfaces, as well as strain, electric field, and magnetic
field components tangential to the interfaces. This allows a straightforward and
exact evaluation of the moduli of the composite. First, rotate coordinates into a
system where the x3 coordinate axis is normal to the interface. In this coordinate
system, the linear constitutive equation, Eq. (9.19), for each crystal variant, and for
the composite of layers, can be rewritten in the form

�
†?
†k

�
D
�

P Q
QT R

� �
Z?
Zk
�

(9.54)
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Fig. 9.4 A laminate
comprising alternating layers
of two crystal variants

1ε
1P

1M
2ε

2P
2M

where †?D [
31, 
32,
33, D3, B3]T contains the components of †iJ which are
continuous across the interface and thus uniform in the laminate. Meanwhile,
†k contains the remaining components of †iJ , which may be discontinuous at
the interface. Similarly, ZkD ["11, "22, "12,�E1,�E2,�H1,�H2]T contains those
components of ZKl which are continuous across the interface and thus uniform in
the laminate. The remaining components of ZKl are contained in Z?. The various
components of LiJKl are arranged into the sub-matrices P, Q, and R, which thus
contain the material moduli for a crystal variant in the rotated coordinate system.
We seek corresponding moduli Po, Qo, and Ro for the laminate. Let superscript 1
or 2 indicate the field variables in the first or second layer, respectively. Now, since
†?1D†?2D†? and Zk1DZk2DZk, it can easily be shown that

Z? D P�1†? � P�1QZk (9.55)

and

†k D QTP�1†? C R �QTP�1QZk (9.56)

Overbars indicate volume averaging over the two variants in the laminate.
Inverting Eq. (9.55) gives

†? D



P�1
��1

Z? C



P�1
��1

P�1QZk (9.57)

And substituting into Eq. (9.56) gives

†k D QTP�1



P�1
��1

Z? C
�

QTP�1



P�1
��1

P�1QC R �QTP�1Q
	

Zk

(9.58)

From Eqs. (9.57) and (9.58), the overall properties of the laminate can be
identified as

Po D



P�1
��1

(9.59)
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Fig. 9.5 Laminates of (a)
rank-2 and (b) rank-3. Colors
indicate distinct crystal
variants

Qo D



P�1
��1

P�1Q (9.60)

Ro D QTP�1



P�1
��1

P�1QC R �QTP�1Q (9.61)

Once Po, Qo, and Ro are found, it is a straightforward matter to reassemble Lo
iJKl

in the rotated coordinate system and then rotate back into global coordinates.
A remarkable feature of many ferroic crystals is that the material can form

higher-rank laminates by layering together regions of simple laminate. Examples
of such higher-rank laminates are illustrated in Fig. 9.5. In Fig. 9.5a, the laminate
is of rank-2 and is formed by layering together two simple laminates. The more
complicated example in Fig. 9.5b is of rank-3, formed by layering together two
distinct laminates, each of rank-2. A cube-shaped section of the rank-3 lamination
is illustrated in perspective to show the complicated three-dimensional arrangement
of the layers. Using a hierarchical framework, arbitrarily complicated laminates can
be analyzed mathematically. However, it is rare in practice to find laminations of
rank greater than 3 in real materials.

The laminates in Fig. 9.5 show fairly coarse sub-layers within each layer for the
purpose of illustration. However, the sub-layers can be much finer. If the sub-layers
are many times finer than their resulting composite layers, each composite layer
can be treated as a homogenized medium for the purposes of estimating overall
properties. Equations (9.59)–(9.61) can then be used in a hierarchical procedure:
First, an estimate is made of the homogenized properties of a lamination made of
individual crystal variants. Then, several such layers are each treated as the laminae
building up a more complicated lamination. In this way, it is possible to estimate
the moduli of an arbitrarily complex laminate. Note that the results are now only
approximate: the sub-layers would need to be of vanishing thickness to make the
estimate exact.

In the context of the more complicated laminates of the kind shown in Fig.
9.5, it is of interest to explore whether the compatibility equations, Eqs. (9.40)–
(9.42), can be satisfied at the many interfaces that form. By construction, it can be
shown that for every macroscopic state (©o,Po,Mo) that can be reached through Eqs.
(9.45)–(9.47) with all volume fractions f I satisfying

P
f ID 1 and f I � 0 (i.e., for
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any macroscopic state in the convex hull of the spontaneous states of the variants),
there is a pattern of lamination satisfying the compatibility conditions in at least an
approximate, layer-wise manner. Specifically, the compatibility conditions will be
satisfied for every interface in the finest laminations, and then layer to layer, treating
each composite layer as a homogenized medium with an average state (©,P,M). A
construction that achieves compatibility in this way has been given for ferroelastic
martensites by Bhattacharya (1993) and readily extends to ferroelectrics (Li and
Liu 2004) and ferromagnetics (De Simone and James 2002). However, the problem
of finding the set of macroscopic states that can be achieved while satisfying the
compatibility conditions exactly at every interface remains unsolved.

9.6 Applications in Polycrystalline Films

In this section, a brief discussion is given of the application of the theory of
compatibility to relaxed states in freestanding polycrystalline thin films of ferroic
materials. Previous sections have dealt with composites of ferroic domains with
a common crystallographic orientation. In a polycrystal, the grain boundaries
introduce interfaces that can have arbitrary orientation relative to the adjacent crystal
lattices and also allow arbitrary relative rotations of crystal axes between grains.
Typically, the compatibility constraints on grains in random polycrystals are so
severe that stress-free states are unlikely and complex energy-minimizing patterns
form (Bhattacharya 1993). However, in polycrystalline thin films and lamellae,
the out-of-plane constraints can be relaxed, giving the material greater freedom
to adopt a stress-free configuration (Shu 2000). For simplicity, the example given
here neglects constraint imposed by a substrate, consistent with the situation of a
freestanding, unconstrained region of thin film. The methods are readily extended
to other cases. Consider, then, the problem of finding a stress-free state in a ferroic
lamella extracted as a section from a polycrystalline material. The theory will be
developed here with reference to ferroelastic martensite.

First, examine a junction of grains in a ferroelastic lamina. A group of N such
grains, iD 1 � � � N, fit together around a junction in this thin lamella that is taken to
lie in the x� y plane. The grain boundary between pairs of grains (i, j) has vector
normal direction nij and tangential direction tij in the plane of the lamella. Here
subscripts label only the grain numbers and are not tensorial indices—summation
over repeated indices will not be implied unless stated explicitly. Each grain has
its crystallographic axes rotated relative to reference (x, y, z) coordinates by rotation
matrix Ri and undergoes a transformation strain ©i belonging to the set of stress-free
spontaneous states, or mixtures of such martensitic variants. Figure 9.6 illustrates
such an arrangement of grains, with reference coordinates in grain number 1. Can
the resulting group of grains fit together without stress? How will the individual
grains organize their microstructure to minimize energy?

Suppose that the polycrystal is initially formed above the transformation temper-
ature, but on cooling each grain undergoes a transformation strain that is uniform
on the scale of the grain (though not on finer scales), with the grain comprising a
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Fig. 9.6 Configuration of
grains around a junction
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mixture of the stress-free transformation strains that correspond to the spontaneous
states of individual crystal variants. Then the transformation strain may be written,
in the local coordinates of the grain, as

©0
i D

X

k

fik©
0
k (9.62)

where ©0k is the transformation strain of the kth crystal variant and fik is the volume
fraction of that variant in the ith grain. In reference coordinates, this becomes

©i D
X

k

fikRi©
0
kRT

i (9.63)

Where adjacent grains meet, the compatibility condition given by Eq. (9.42),

©i � ©j D aij ˝ nij C nij ˝ aij (9.64)

can be used to ensure continuity of displacement. For materials that exhibit ferro-
electricity or ferromagnetism, Eqs. (9.40) and (9.41) would also apply. Out-of-plane
components of the electric displacement and magnetization may also be constrained
depending on the surface conditions, or external conditions. If Eq. (9.64) is satisfied
for some choice of vector aij, then the grain boundary is a compatible interface in the
stress-free state. While Eq. (9.64) is suitable for full three-dimensional constraint,
the case of a thin lamella is less constrained provided that the grains are much
larger than the lamellar thickness. This is because out-of-plane displacements are
unconstrained. In fact, only a single displacement component is of relevance in the
lamellar case: displacement in the plane of the lamella and in the direction along the
grain boundary. Continuity requires no jump of displacement along the boundary as
it is crossed. A condition for matching displacement components along the boundary
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is achieved by considering Eq. (9.64) resolved in the tij direction:

tij �
�
©i � ©j

� � tij D tij �
�
aij ˝ nij C nij ˝ aij

� � tij D 0 (9.65)

The compatibility conditions for the grains of the lamella become a set of N
equations of the form

t12 � ©1 � t12 � t12 � ©2 � t12 D 0 (9.66)

Defining scalar lijk as the linear strain in grain i along the boundary with grain j
due to the kth crystal variant,

lijk D tij �
�
Ri©

0
kRT

i

� � tij (9.67)

The N compatibility conditions then take the form

X

k

fiklijk � fjkljik D 0 (9.68)

where only the N pairings (i, j) for which grain boundaries exist are included in the
sum. Note that the formulation is readily extended to consider the more general
problem of a group of grains in a polycrystalline lamella by allowing all (i, j)
pairings that represent grain boundaries present in the polycrystal. For the present
problem, the equations entailed by Eqn. (9.68) form a closed chain of connections
between adjacent grains around a single junction and ignore any constraint external
to that group. Equation (9.68) expresses the compatibility conditions explicitly in
terms of the volume fractions of the crystal variants, and the following additional
constraints apply:

X

k

fik D 1 (9.69)

and

fik � 0 (9.70)

Equation (9.69) produces N linear equations, and Eq. (9.70) is a set of mN
inequalities in a system with m crystal variants and N grains. Equations (9.68) and
(9.69) provide 2N linear relations for the mN volume fractions in the individual
grains. Thus, the system of linear equations is underdetermined except in the case
mD 2. For tetragonal martensite, mD 3, and so there exists a space of solutions of
the form
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fik D
NX

jD0
˛jf j

ik (9.71)

with ˛0D 1, f 0ik a particular solution, and the f j
ik .j > 0/ comprising a basis for

the solution space. The ˛j (jD 1 : : : N) are arbitrary and provide the N degrees
of freedom of the solution. By further imposing the inequality constraints, Eq.
(9.70), the ˛j values may be restricted to those that give feasible volume fractions.
Uniqueness of solutions is not guaranteed and indeed is unlikely in practical
examples. Note that additional closure conditions on the relative rotations of the
grains have been neglected: on making a complete circuit of the central junction of
grains, the final grain must meet the initial grain at the fixed initial boundary. This
condition is likely to be of importance in fully three-dimensional examples such as
films with grain diameter less than the film thickness, or bulk polycrystals. In a thin,
unconstrained lamina, small mismatches may be accommodated by out-of-plane
bending at relatively low energetic cost.

For computation, it is convenient to prepare the linear algebra problem in the
form

Lf D kI f � 0 (9.72)

where L is the 2N �mN matrix of coefficients
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(9.73)

while f and k are column matrices of length mN and 2N, respectively, given by

f D
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f1m

f21
:::

fNm

3

7
7
77
7
7
7
77
7
7
5

; k D
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(9.74)
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The first N rows of Eq. (9.72) provide the compatibility equations, while rows
NC 1 � � � 2N ensure that the volume fractions sum to unity in each grain. Inverting
this system of equations, including the inequalities in Eq. (9.72), is readily achieved
using active set methods.

Calculation of example cases indicates that, for a single junction of grains and
a ferroic material with more than two variants, it is normally possible to find a
stress-free state. Extending this to a polycrystal with J junctions, each surrounded
by, on average, N grains, and with G grains in total, the linear equations number
JNCG for the mG unknown volume fractions. In a large region of polycrystalline
lamina, let the average number of sides on each grain be s such that J	Gs/N and
N	 2s/(s� 2) on average. Then there are approximately (sC 1)/m equations per
unknown. For realistic values of s and tetragonal martensite, mD 3, the problem
is overdetermined. Thus, stress-free states in which the microstructure is uniform
within each grain are unlikely. The situation is worse in bulk polycrystals, where
grains may typically have 14 neighbors. An energy-minimizing solution will then
involve more complicated microstructure, wherein grains break up into regions
with differing mixtures of crystal variants and hence different average states of
spontaneous strain. It is commonly observed that grains in ferroic polycrystals show
such microstructure, with several sub-grain regions in which bundles of domains
form laminated patterns.

9.7 Conclusion

This chapter has presented several models of ferroic materials, treating these materi-
als as composites comprising individual ferroic phases or crystal variants. The close
analogy between the divergence-free field variables (stress, electric displacement,
magnetic induction) and irrotational variables (strain, electric field, magnetic field)
allows several methods from the theory of composites to be generalized easily
to multiferroic materials. However, some care is needed in recognizing aspects
of the ferroic orders that need distinct modeling approaches. Applications in
energy-minimizing laminated composites have been described, including the exact
evaluation of the moduli of hierarchical laminates and the compatibility conditions
that pertain to crystals and polycrystals of ferroic materials. The methods provide a
starting point for the analysis of ferroic composites and their properties.
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Chapter 10
Micromechanics of Bone Modeled
as a Composite Material

Iwona Jasiuk

Abstract In this chapter, we present an overview of modeling of bone as a com-
posite material. First, we describe bone’s complex hierarchical structure spanning
from the nanoscale to macroscale and summarize bone’s mechanical properties and
biological characteristics which include self-healing, adaptation, and regeneration.
Then, we summarize nanomechanics and micromechanics modeling of bone.
Effective medium theories such as Mori–Tanaka, self-consistent, and generalized
self-consistent methods are used to model the elastic response of bone, while a
finite element method is used to more precisely account for bone architecture
and to simulate inelastic effects. Challenges in bone modeling include bone’s
composite and hierarchical structure, lack of scale separations, scale and size effects,
interfaces, porosity spanning across structural scales, and complex constitutive
laws (anisotropic, nonlinear, Cosserat, time dependent, piezoelectric, poroelastic).
Variability in bone properties due to the anatomic location, species, age, gender,
and method of storage makes validation of theoretical models challenging. Finally,
lessons learned from nature on bone structure–property relations can be applied to
design stiff, strong, tough, and lightweight bioinspired materials.

10.1 Introduction

10.1.1 Characteristics of Biological Materials

Engineers have traditionally studied materials such as metals, ceramics, polymers,
and their composites. Natural, including biological, materials are another class of
materials which offer new opportunities for analysis and discovery (Fratzl and
Weinkamer 2007; Chen et al. 2008; Meyers et al. 2008; Meyers et al. 2011; Meyers
et al. 2013). Examples of biological materials are bone, cartilage, muscle, tendon,
ligament, skin, brain tissue, enamel, dentin, and others. General characteristics of
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biological materials are that they self-assemble and self-organize from atomic level
into complex hierarchical, composite, often porous, and fluid-filled structures (Cui
et al. 2007; Bar-On and Wagner 2013). They are multifunctional, adapt to the
environment, and can often self-heal (Meyers et al. 2008; Weinkamer and Fratzl
2011). They range from soft and highly deformable tissues such as skin to hard
mineralized materials such as bone. Knowledge of biological materials is needed
for various medical applications and to design new bioinspired synthetic materials
(Munch et al. 2008; Studart 2012; Mirkhalaf et al. 2013; Libonati et al. 2014;
Naleway et al. 2015).

10.1.2 Hierarchical Composite Structure of Bone

In this chapter, we focus on the mechanics of bone. Bone is a multifunctional
biological material, which has a structural role in the body by providing the
frame, facilitating movement, and protecting organs. In addition, it stores minerals,
manufactures blood, maintains PH of blood, and detoxifies the body. As a structural
material, bone has excellent mechanical properties when healthy as it is stiff, strong,
tough, and lightweight (Rho et al. 1998; Weiner and Wagner 1998; Launey et al.
2010; Ural and Vashishth 2014). In addition, by being a biological material, bone is
in a constant state of remodeling as old or damaged tissues are being continuously
replaced by a new bone. This allows bone to continuously change to adapt to its
environment (stronger bone is built when subjected to exercise) and to self-heal
(e.g., healing of bone fractures) (Weinkamer and Fratzl 2011; Zimmermann and
Ritchie 2015).

The superior mechanical properties of bone are due to bone’s composite and
hierarchical structure (Weiner and Traub 1992; Lakes 1993; Rho et al. 1998; Olszta
et al. 2007; Hamed et al. 2010, 2012a, b). Bone consists of a soft organic phase
with collagen type I and non-collagenous proteins, 33–43% by volume (vol%), a
stiff inorganic phase with hydroxyapatite crystals, 32–44 vol%, and water-filled
pores, 15–25 vol%. Collagen and water provide bone its ductility and toughness,
and minerals give it high stiffness and strength, while porosity makes it lightweight.

Bone self-assembles from atoms into a complex hierarchical structure up to a
whole bone level, as shown in Fig. 10.1. In this paper, we distinguish six structural
levels: macroscale, mesoscale, microscale, sub-microscale, nanoscale, and sub-
nanoscale following (Rho et al. 1998; Hamed et al. 2010). These choices are
not unique and other choices have been proposed in the literature (Weiner and
Traub 1992; Katz et al. 2007). This is due to the fact that bone structure changes
continuously with length scale, i.e., bone does not have clear scale separations.

At the macroscale, bone is made of dense cortical (also called compact) bone
which forms an outer shell of whole bone and a spongy trabecular (also called
cancellous) bone which fills ends of bone. Cortical bone, in the form of a hollow
shaft, provides stiffness and strength and superior bending and torsion resistance
while trabecular bone absorbs energy. Such structure achieves optimal structural
performance while being lightweight.
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Fig. 10.1 Hierarchical structure of bone (Hamed and Jasiuk 2013)
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At the mesoscale, cortical bone (with 5–10% porosity) consists of concentric
hollow cylinders, called osteons, embedded in an interstitial bone which is made
of old osteons. The outer shell of cortical bone is made of softer periosteum and
circumferential bone. Trabecular bone, present mainly at bone’s ends, has a highly
porous structure (20–95% porosity) with porosity increasing in the direction away
from the cortical bone giving it a functionally graded structure. Its architecture
consists of randomly arranged rodlike or platelike struts, called trabeculae, which
give it a foamlike appearance.

At the microscale level, bone is made of lamellar structures, resembling those of
laminated composite materials. These include osteonal, interstitial, and circumfer-
ential bone types in cortical bone and trabecular pockets forming trabecular struts
in trabecular bone.

At the sub-microscale, a single lamella, which is few microns thick, is made of
preferentially oriented mineralized collagen fibrils.

At the nanoscale, the mineralized collagen fibril consists of tropocollagen
molecules and nanosized minerals. It is considered a basic building block of
bone. The tropocollagen molecules, which have a triple-helix structure, about one
nanometer (nm) in diameter and 300 nm in length, are crosslinked with each other
and arranged in a staggered way with gap and overlap zones and assembled into
collagen fibrils which are 50–100 nm in diameters and microns in length. The gap
and overlap zones in collagen fibrils result in a characteristic banded pattern which
is visible under a transmission electron microscope. The minerals are in the shape
of platelets and they are about 25 nm by 50–100 nm and few nanometers thick.
Crystals are believed to be infused within the gaps, to fit between collagen molecules
(intrafibrillar crystals) and to form cores outside the collagen fibrils (extrafibrillar
crystals). There is still a lack of consensus on the percentages of minerals within
and outside the collagen fibrils and their precise arrangements. Also, the role of
non-collagenous proteins is not fully understood, but it is believed that they reside
at collagen–crystal and crystal–crystal interfaces. Most of the models of bone at
the nanoscale assume the matrix-fiber geometry with collagen being a matrix and
crystals being inclusions (Fratzl et al. 2004). More recent studies observed that bone
with organic phase removed still has a self-standing structure, which implies that
crystals form a continuous phase (Chen et al. 2011; Hamed et al. 2015).

10.1.3 Overview on Modeling of Bone

Thus, bone is a complex natural nanocomposite material having distinct features
at different structural scales. There are several geometric models proposed to
represent bone at the nanoscale. Most popular is a matrix-inclusion model
which assumes that isolated minerals are embedded in a collagen matrix (Fratzl
et al. 2004). More recent propositions involve assumptions of bi-continuous
collagen–mineral phases (Chen et al. 2011). At the sub-microscale, a single
lamella can be represented as a collection of preferentially aligned fibers
(mineralized collagen fibrils) and extrafibrillar minerals and pores (osteocytes
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and canaliculi canals). At the microscale, bone resembles a laminated composite
material forming various lamellar structures (osteonal, interstitial, and circumferen-
tial bone) and trabecular struts. At the mesoscale, cortical bone can be considered as
a hybrid composite material consisting of osteons and resorption cavities embedded
in an interstitial bone, while trabecular bone can be modeled as a random or periodic
foam.

Various computational approaches have been proposed to model bone. They
can be classified into the following four categories: (a) approximate analytical
models based on strength of materials theories, (b) analytical models based on
micromechanics theories, (c) computational models using mainly a finite element
method, and (d) atomic level simulations utilizing molecular dynamics (Hamed and
Jasiuk 2012; Sabet et al. 2016).

Each approach has its advantages and limitations. Strength of materials models
are approximate and they can provide quick estimates. Micromechanical approaches
involve more rigorous mechanics formulations but they also utilize simplified
geometric models. They have been used to estimate the elastic properties of
bone. Computational models have addressed more complex geometries and have
been used to model damage, plasticity, and fracture of bone. In particular, the
finite element models, using images obtained by computed and micro-computed
tomography (CT and micro-CT), provide a powerful tool to account precisely for
bone’s complex geometries and architectures. Molecular dynamics simulations have
been used to predict the mechanical properties of bone’s main constituents (collagen
and crystals) and to provide insights on interfaces between them.

Numerous models have been proposed for modeling of bone at different struc-
tural scales. For a review of the literature on characterization and elastic modeling of
bone, the reader is referred to a recent review paper (Novitskaya et al. 2011). Elastic
modeling of bone at the nanoscale is summarized in Hamed and Jasiuk (2012).
Modeling of bone fracture and strength at different structural scales is summarized
in Sabet et al. (2016).

In the next section, we present a hierarchical approach for modeling the elastic
properties of bone. It involves successive steps spanning from the nanoscale to the
mesoscale. Effective elastic properties are computed analytically at each structural
level by using a “bottom-up” approach in which the effective properties computed
at a lower level serve as the inputs for a next higher up level. In the analysis, we
employ micromechanics theories and a classical lamination theory. C andˆ denote,
respectively, a stiffness tensor and a volume fraction of phases. The analysis follows
our formulations presented in Hamed et al. (2010, 2012a, b, 2015).

10.2 Elastic Hierarchical Modeling of Bone

In this section, we present a representative approach to model the elastic properties
of bone in order to illustrate how micromechanics methods can be used to study this
biological material. This example also provides a framework for modeling other
mineralized tissues. Note that scale definitions are not unique, effective medium
choices are not unique, and there are various assumptions made on bone geometry
at the defined length scales. Different modeling steps are summarized in Fig. 10.2.
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10.2.1 Nanoscale

At the nanoscale, the mineralized collagen fibril is modeled as a bi-continuous
composite material, following (Chen et al. 2011). We use a self-consistent method
(Hill 1963; Budiansky 1965) to account for the two interpenetrating phases: collagen
fibrils and hydroxyapatite crystals. In this model, there is no matrix and both phases
are represented as inclusions. For simplicity, we assume that the bone constituents
are linear elastic and isotropic. The properties used in the analysis and their volume
fractions are given in Table 10.1. Note that there are a wide range of values reported
in the literature as summarized in Table 1 in Hamed et al. (2010), so input choices
are not unique.

Collagen fibrils are modeled as cylinders with an aspect ratio of 1000:1:1
following the dimensions reported in the literature 100 �m length and 100 nm
diameter of collagen fibrils (Olszta et al. 2007; Hang and Barber 2011), while
platelet-like crystals are represented as ellipsoidal inclusions with an aspect ratio
of 50:25:3 (Robinson 1952) which are aligned in the direction of a long axis of the
collagen fibril. Again, these aspect ratios reflect representative values. The effective
stiffness tensor of a mineralized collagen fibril, Cfib, is computed in terms of stiffness
tensors of wet collagen, Cwcol, and hydroxyapatite, CwHA, as follows:

Cfib D
(

ˆwcolCwcol W
h
IC Scyl

fib W C�1
fib W

�
Cwcol �Cfib

�i�1

CˆwHACwHA W
h
IC Sellipse

fib W C�1
fib W

�
CwHA �Cfib

�i�1
)

W
(

ˆwcol

�
ICScyl

fib W C�1
fib W

�
Cwcol�Cfib

���1

CˆwHA

�
ICSellipse

fib W C�1
fib W

�
CwHA�Cfib

���1) �1
;

(10.1)

Table 10.1 Elastic properties and volume fractions of bone constituents used in modeling

Material Young’s modulus (GPa) Poisson’s ratio Volume fraction (%)

Collagen 1.5 (Hall 1951; Currey 1969) 0.28 (Nikolov and
Raabe 2008)

41

Hydroxyapatite
(HA)

114 (Katz and Ukraincik 1971;
Gilmore and Katz 1982)

0.23 (Snyders et al.
2007)

42

Non-
collagenous
proteins (NCPs)

1 (Nikolov and Raabe 2008) 0.45 (Nikolov and
Raabe 2008)

4

Bulk modulus (GPa) Poisson’s ratio Volume fraction (%)
Water 2.3 0.49 13
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where the expressions for Cwcol and CwHA are given in the next paragraph.
Subscripts in Eq. (10.1), “wcol,” “HA,” and “fib,” represent, respectively, the wet
collagen, interfibrillar hydroxyapatite, and mineralized collagen fibril. The fourth-
order Eshelby tensor (Eshelby 1959) Sr

0 accounts for the shape of phase r in a matrix
with a stiffness tensor C0, with 0 being a generic subscript.

Furthermore, the superscripts “cyl” and “ellipse” refer to the cylindrical and
ellipsoidal shapes of collagen fibrils and hydroxyapatite crystals, respectively. Note
that the effective stiffness tensor of the mineralized collagen fibril, Cfib, is not
isotropic since hydroxyapatite crystals are assumed to be aligned in the direction
of collagen fibrils. Thus, the components of the Eshelby tensor need to be evaluated
numerically by considering the problem of an ellipsoidal inclusion embedded in
an anisotropic matrix using the approach of Gavazzi and Lagoudas (1990). Cfib is
computed by solving Eq. (10.1) iteratively, with the Eshelby tensors Scyl

fib and Sellipse
fib

being updated at each iteration.
Water and non-collagenous proteins (NCPs) also influence the mechanical

properties of bone, and solid phases are immersed in fluid (Yoon and Cowin 2008).
Thus, in Eq. (10.1), we use the properties of wet collagen while the minerals are
represented as a porous HA foam filled with water and NCPs (Fritsch and Hellmich
2007).

We compute the effective elastic properties of wet collagen, Cwcol, following
the approach of Fritsch and Hellmich (2007). More specifically, we use the Mori–
Tanaka scheme (Mori and Tanaka 1973; Benveniste 1987), with the crosslinked
collagen molecules modeled as a matrix and the voids (filled with water and NCPs)
represented as inclusions as shown in Fig. 10.2b

Cwcol D Ccol Cˆw

�
.Cw � Ccol/ W

h
IC Ssph

col W Ccol
�1 W .Cw � Ccol/

i�1� W
�
ˆcolICˆw

h
IC Ssph

col W Ccol
�1 W .Cw � Ccol/

i�1��1
:

(10.2)

Secondly, we obtain the stiffness of the interfibrillar hydroxyapatite, CwHA, using
the Mori-Tanaka method, as follows

CwHA D CHA Cˆw

n
.Cw � CHA/ W

h
IC Ssph

HA W CHA
�1 W .Cw �CHA/

i�1o W
n
ˆHAICˆw

h
IC Ssph

HA W CHA
�1 W .Cw �CHA/

i�1o�1
:

(10.3)

In Eqs. (10.3) and (10.4), the subscripts “col,” “w,” and “HA” denote, respec-
tively, the dry collagen, water and NCPs, and hydroxyapatite crystals. The super-
script “sph” refers to the spherical shape of voids. Furthermore, we assume equal
water volume fractions in wet collagen composite and hydroxyapatite foam. In
addition, 75% of the total hydroxyapatite crystals are taken as interfibrillar and the
remaining 25% are extrafibrillar (Hamed et al. 2010). Again, these choices are not
unique, as there is still no clear consensus on these percentages.



288 I. Jasiuk

The nanoscale model, presented in this section and captured in Fig. 10.2b–c,
applies to both cortical and trabecular bone. Alternatively, one can use molecular
dynamics, finite element method, or other micromechanics theories. A comprehen-
sive review of literature on elastic modeling of bone at the nanoscale is presented in
Hamed and Jasiuk (2012).

10.2.2 Sub-microscale

At the sub-microstructural level, we use two modeling steps: (1) mineralized
collagen fibrils interacting with an extrafibrillar hydroxyapatite matrix and (2) the
matrix of step 1 combined with lacunar cavities to form a single lamella, following
(Hamed et al. 2010).

Several experimental studies reported on the presence of extrafibrillar hydrox-
yapatite crystals on the outer surface of mineralized collagen fibrils (Katz and Li
1973; Prostak and Lees 1996; Sasaki and Sudoh 1997; Sasaki et al. 2002) and
noted that these crystals are randomly dispersed (Lees et al. 1994; Fratzl et al. 1996;
Benezra Rosen et al. 2002) (Fig. 10.3). Therefore, the extrafibrillar hydroxyapatite is
modeled here as a HA foam with intercrystalline pores, filled with water and NCPs
(Hellmich et al. 2004; Fritsch et al. 2006; Fritsch and Hellmich 2007; Fritsch et al.
2009). The effective stiffness tensor of this extrafibrillar foam, CEfoam, was evaluated
using the self-consistent scheme with two interpenetrating phases, HA crystals and
pores, as

CEfoam D
n
ˆwCw W

h
IC Ssph

Ifoam W C�1
Ifoam W

�
Cw � CEfoam

�i�1

CˆHACHA W
h
IC Ssph

Ifoam W C�1
Ifoam W

�
CHA � CEfoam

�i�1o

W
n
ˆw

h
IC Ssph

Efoam W C�1
Efoam W

�
Cw � CEfoam

�i�1

CˆHA

h
IC Ssph

Efoam W C�1
Efoam W

�
CHA �CEfoam

�i�1o�1
;

(10.4)

where the subscript “Efoam” denotes the extrafibrillar HA foam. The resulting
stiffness tensor is isotropic due to the random arrangement of extrafibrillar HA
crystals in the foam. Also, for simplicity, both phases, HA crystals and voids, are
assumed to be spherical in shape, following (Hellmich and Ulm 2002).
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Fig. 10.2 Homogenization steps used in modeling the elastic properties of cortical bone following
Hamed et al. (2010)
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Fig. 10.3 Scanning electron microscopy images of bone at the nanoscale and sub-microscale.
(a) The nanoscale with a mineralized collagen fibril (length bar is 125 nm) and (b) the sub-
microscale with single lamella with preferentially aligned mineralized collagen fibrils and a lacuna
cavity which houses a bone sensing cell (osteocyte)

Mineralized collagen fibrils, with the elastic properties obtained in Eq. (10.2),
and the extrafibrillar HA foam, with the elastic properties obtained in Eq. (10.5),
form two bi-continuous phases, resulting in coated fibrils. The self-consistent
method is used to predict the effective elastic stiffness tensor of coated fibrils,
Ccfib, as

Ccfib D
n
ˆfibCfib W

h
IC Scyl

cfib W C�1
cfib W

�
Cfib � Ccfib

�i�1

CˆEfoamCEfoam W
h
IC Ssph

cfib W C�1
cfib W

�
CEfoam � Ccfib

�i�1o

W
n
ˆfib

h
IC Scyl

cfib W C�1
cfib W

�
Cfib � Ccfib

�i�1

CˆEfoam

h
IC Ssph

cfib W C�1
cfib W

�
CEfoam �Ccfib

�i�1o�1
:

(10.5)

In Eq. (10.6), the subscript “cfib” denotes the coated fibrils consisting of
mineralized collagen fibrils coated with the extrafibrillar HA foam. The superscripts
“cyl” and “sph” denote, respectively, the cylindrical shape of fibrils and spherical
shape of voids in extrafibrillar HA foam. Here again, two bi-continuous phases are
assumed, modeled as two different types of inclusions and no matrix.

A single lamella is represented as a material with coated fibrils as a matrix, with
properties given in Eq. (10.6), containing ellipsoidal cavities, lacunae, which house
bone cells osteocytes. The subscript “lac” denotes the ellipsoidal lacunae, with an
aspect ratio of 5:2:1 following their approximate 25 � 10 � 5 �m3 dimension
(Remaggi et al. 1998; Yoon and Cowin 2008). The osteocytes are stimuli sensing
cells in bone which play a key role in bone remodeling. The major axes of lacunae
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are assumed to be oriented along the long axis of bone. The effective elastic stiffness
tensor of a single lamella, Clamella, is computed by using the Mori–Tanaka scheme as

Clamella D Ccfib Cˆlac

��
Clac �Ccfib

� W
h
IC Sellipse

cfib W C�1
cfib W

�
Clac � Ccfib

�i�1� W
�
ˆcfibICˆlac

h
IC Sellipse

cfib W C�1
cfib W

�
Clac � Ccfib

�i�1��1
:

(10.6)

In our model, the effect of canaliculi on elastic properties of the single lamella
is neglected. Canaliculi are canals, about 50–100 nm in diameter, which connect
lacunae and form an intricate network. They transport nutrients and waste in bone.

Again, the presented model applies to cortical and trabecular bones. Other
models of bone at the sub-microscale have been reported in the literature but they
are rather limited. They include predictions obtained using other micromechanics
approaches (Yoon and Cowin 2008), finite element models (Hamed and Jasiuk
2013), and finite element beam network method (Jasiuk and Ostoja-Starzewski
2004). They are summarized in our review paper (Novitskaya et al. 2011) and in
our more recent study (Hamed et al. 2015).

In Jasiuk and Ostoja-Starzewski (2004), mineralized collagen fibrils were rep-
resented as three-dimensional Timoshenko beam finite elements as shown in Fig.
10.4a. The inputs included dimensions of rectangular cross sections of fibrils and
their lengths, the fiber volume fraction, and fiber orientations. Rigid or flexible
connections were assumed at fiber contacts as shown in Fig. 10.4b, and the boundary
value problem was solved under displacement boundary conditions. The elastic
stiffness tensor was computed by equating the elastic strain energy stored in a
discrete fiber network and the energy of the approximating homogeneous medium.

Fig. 10.4 Finite element beam network approach to model a single lamella in bone. (a) Randomly
oriented fibers with preferential orientation shown in black with fiber connections shown by red
dots and (b) detail of the fiber–fiber connection (rigid or flexible)
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Anisotropic stiffness tensor was obtained as a function of fiber volume fraction,
aspect ratio, and orientation.

10.2.3 Microscale

At the microscale level, the lamellae in bone are arranged in orthogonal, rotated,
or twisted plywood-like patterns (Weiner and Wagner 1998). In our model, we
consider a twisted pattern which involves continuous rotation of lamellae and use the
properties obtained in Eq. (10.7). There is still no consensus in the literature on the
number of lamellae and their orientations in osteons and other lamellar bone types.
Also, those orientations vary spatially. In our analysis, we choose the 0ı starting
angle for the innermost layer and we assume that the mineralized collagen fibrils
complete a 180ı turn from the innermost to the outermost layer. It was reported
that if the layers are not orthogonal to each other, then the angle change between
successive layers does not significantly influence the results (Cheng et al. 2008).

The elastic stiffness tensor of osteonal lamella is obtained using a composite
laminate theory following the approach of Sun and Li (1988) developed for
laminated composite materials. Details on applying this method to an osteonal
lamella are given in Hamed et al. (2010).

The properties of an interstitial lamella are obtained using the same approach as
for the osteonal lamella. The interstitial bone is more mineralized than the osteons
and thus more stiff (Burr et al. 1988; Guo et al. 1998). To capture such behavior,
one can use a higher mineral content for an interstitial lamella as compared to an
osteonal lamella (Hamed et al. 2010).

Similar approach can be used to obtain the elastic properties of lamellar bone in
trabecular bone forming trabecular pockets as discussed in Hamed et al. (2012a).

Next, we compute the effective properties of an osteon forming a basic building
block of cortical bone. The osteon is modeled as a hollow cylinder with the osteonal
lamella being a solid part and the Haversian canal being a cylindrical void. The
osteon has an outer diameter of about 250�m and is approximately 1 cm long, while
the inner diameter (Haversian canal) is approximately 50 �m (Cowin 2001). The
volume fraction of the Haversian canals is about 4%. Using the elastic properties of
an osteonal lamella, a generalized self-consistent method (Christensen and Lo 1979)
is used to calculate the effective elastic constants of an osteon, Cost, following the
approach of Dong and Guo (2006).

10.2.4 Mesoscale Level

The mesoscale level represents cortical and trabecular bone levels. Here again, one
can use micromechanics analysis or finite element models to model these two bone
types.
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First, focus on the modeling of cortical bone. The hybrid Mori–Tanaka scheme
(Taya and Chou 1981), with an interstitial lamellar bone being a matrix and osteons
and resorption cavities being two different types of inclusions, is used to compute
the elastic stiffness tensor of cortical bone. The osteons and the resorption sites
are assumed to be cylindrical in shape with an aspect ratio of 4:1:1, following the
1 cm length and 250 �m diameter of osteons (Cowin 2001), and aligned along
the long axis of the bone. The volume fraction of osteons is assumed to be 70%.
Resorption cavities form during bone remodeling process and in time new osteons
are built in their place. The subscripts “inters,” “ost,” and “v” denote, respectively,
the interstitial lamella, the osteons, and the voids.

Then, the transversely isotropic effective stiffness tensor of the cortical bone,
Cbone, is computed as

Cbone D
n
ˆintersCinters CˆostCost W

h
IC Scyl

inters W C�1
inters W .Cost �Cinters/

i�1

CˆvCv W
h
IC Scyl

inters W C�1
inters W .Cv �Cinters/

i�1o W
n
ˆinters Cˆost

h
IC Scyl

inters W C�1
inters W .Cost �Cinters/

i�1

Cˆv
h
IC Scyl

inters W C�1
inters W .Cv � Cinters/

i�1o�1
:

(10.7)

Trabecular bone has a random and highly porous structure with porosity ranging
from 20 to over 90 vol%. Effective medium theories in general do not provide
reliable estimates for materials with high porosity. Thus, alternate simplified
strength of materials-based approaches have been used. For example, trabecular
bone has been modeled as an idealized open-cell foam. Among other models, a
simple anisotropic cell, which has a length of l in x1 and x2 directions and a height
of h in the x3 direction, has been used. The degree of anisotropy in such a model is
defined as DD h/l. Young’s modulus of trabecular bone in the x3 direction, E3, was
obtained by Huber and Gibson (1988) as

E3
Etrabecula

D CD

�
	bone

	trabecula

	
(10.8)

where Etrabecula is Young’s modulus of a single trabecula as obtained at the
microscale, 	bone and 	trabecula are, respectively, densities of trabecular bone and
solid trabeculae, and C is a constant of proportionality. Gibson (1985) proposed
two types of models for trabecular bone: an open cell (with rodlike elements) at
relative densities smaller than 0.2 and a closed cell (with platelike elements) at
relative densities greater than 0.2. The power n D 2 for an open cell and n D 3
for a closed cell (Gibson 1985). The relative density, 	bone/	trabecula, is equal to the
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Fig. 10.5 Finite element model of trabecular bone: (a) finite element mesh and (b) strain energy
density (Hamed et al. 2012a)

bone volume fraction. Young’s modulus of trabecular bone in the direction x1 or x2,
E1 D E2, was determined as (Huber and Gibson 1988)

E1
E3
D 1C 1=D3

2D2
: (10.9)

The modeling results obtained at this scale, namely, E1 and E3, represent the
elastic moduli of trabecular bone. We utilized this approach for simplicity in Hamed
et al. (2015).

However, the mechanical properties of trabecular bone are dependent not only on
relative density but also on its architecture. Micro-computed tomography (micro-
CT) is a powerful technique that can capture trabecular bone structure. This
technique gave rise to micro-CT-based finite element modeling of trabecular bone.
Elastic and inelastic properties have been obtained using this approach (Gross et al.
2012; Hambli 2013; Park et al. 2013; Panyasantisuk et al. 2015; Baumann et al.
2016; Gong et al. 2016; Schwiedrzik et al. 2016). An illustration of such an approach
is given in Fig. 10.5 with more details in Hamed et al. (2012a).

Numerical results on effective elastic properties of bone, using a similar
approach, were reported for cortical bone in Hamed et al. (2010, 2012b) and
for trabecular bone in Hamed et al. (2012a, 2015). Very good agreement was found
with measurements on bovine bone using experimentally obtained inputs. Cortical
bone properties range from 15 to 25 GPa, depending on age, species, and anatomical
location, while trabecular bone properties are much lower, ranging from 200 MPa
to 1 GPa, depending on porosity.

In this section, we illustrated how micromechanics theories can be used to model
the elastic properties of bone. Effective medium theories choices, selected scales,
and geometric models used at each scale as well as materials inputs, which are
not fully known, they all make this problem computationally and experimentally
challenging.



10 Micromechanics of Bone Modeled as a Composite Material 295

10.3 Trabecular Bone Anisotropy

An important issue to consider when modeling trabecular bone is to account for
its anisotropy. Trabecular bone is considered to be orthotropic. Cowin (1985)
introduced a fabric tensor (second-order tensor) to capture the characteristics of
microstructure of porous materials. In the formulation, it is assumed that the
base material is isotropic and the anisotropy arises from the pore architecture.
Cowin showed that the cases of three, two, and one distinct eigenvalues of the
fabric tensor correspond to orthotropy, transverse isotropy, and isotropy of the
material, respectively. This concept has been successfully applied to trabecular
bone. Computation of fabric tensor allows to determine orthogonal symmetrical
planes in trabecular bone. By determining those directions, the problem becomes
simpler for computations as only nine elastic constants are needed to define
trabecular bone properties. Fabric tensor has been incorporated in computational
models of elastic stiffness tensor of bone (VanRietbergen et al. 1996; Odgaard et al.
1997; Zysset et al. 1998; Kabel et al. 1999; Homminga et al. 2003; Maquer et al.
2015; Moreno et al. 2016) and has been used to construct anisotropic yield/failure
criteria in bone (Pietruszczak et al. 1999; Doblare et al. 2001; Garcia et al. 2009;
Charlebois et al. 2010).

10.4 Modeling of Plasticity, Damage, and Fracture of Bone

Predictions of bone fracture and strength are of high scientific and clinical interest.
In Sect. 10.2, we focused on the elastic properties of bone (stiffness). As men-
tioned in the “Introduction,” bone is also strong and tough. These properties are
again due to bone’s composite and hierarchical structure, which includes complex
architecture, various interfaces, and hierarchical porosity. There are a number of
comprehensive reviews that have addressed the underlying mechanisms of bone
fracture toughness and strength (Ritchie et al. 2005, 2006; Gao 2006; Gupta and
Zioupos 2008; Launey et al. 2010; Ural and Vashishth 2014; Zimmermann et al.
2015).

Following Launey et al. (2010), high toughness of bone results from a mutual
competition between intrinsic (local damage and plasticity) and extrinsic (crack-tip
shielding) toughening mechanisms as shown in Fig. 10.6. At the sub-nanoscale,
the molecular uncoiling and intermolecular sliding of tropocollagen molecules
are present, and at the nanoscale, slipping at interfaces and microcracking of
collagen take place within the mineralized collagen fibrils. At the sub-microscale
(single lamella level), microcracking and fibrillar sliding are observed in the fibril
arrays. Also, breaking of sacrificial bonds formed by non-collagenous proteins
contributes to increasing the energy dissipation capacity of bone at the interface
of fibril arrays, together with crack bridging by collagen fibrils. At larger length
scales (the microscale and higher), the primary sources of toughening are extrinsic
and they result from extensive crack deflections due to lamellar layering and
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Fig. 10.6 Bone toughness mechanism at different structural scales (Launey et al. 2010)
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interfaces between them (such as cement lines around osteons) and crack bridging
by uncracked ligaments. It is important to note that damage zones filled with
microcracks stimulate bone remodeling, resulting in damaged bone being replaced
by a newly formed bone. Such a continuous process of bone resorption and
formation allows bone to adapt to new loads and create thicker bone when loads
are increased. When the applied force is too large and/or bone remodeling process
does not have enough time to replace new bone, the macrocracks will form resulting
in the whole bone fracture.

Various models have been proposed to model bone damage, plasticity, and
fracture. A comprehensive literature review on various modeling approaches applied
at different structural scales is given in our recent review paper (Sabet et al. 2016).
The open issues are as follows. Most of the models address only one or two
structural scales, while bone fracture is a multiscale phenomenon. Also, no compre-
hensive multiscale models exist that address the fracture processes in bone across
scales. Many studies considered idealized, two-dimensional representations of bone.
Since crack initiation and growth are sensitive to microstructures, three-dimensional
models would provide more accurate predictions. Also, spatial inhomogeneity and
randomness are rarely accounted for, while fracture is a stochastic phenomenon. The
bone structure and properties are still not fully characterized especially at smaller
scales (nanoscale and below) in both healthy and diseased bone. Open issues remain
on the collagen–HA crystal arrangements and interfaces. Most models assume
isotropic properties for collagen and HA crystals, while these constituents are
anisotropic. One reason is simplicity and the other is that the anisotropic properties
are not readily available in the literature. Also, accurate constitutive laws of bone’s
constituents and bone at different scales up to failure are needed. Finally, insights
gained from theoretical and experimental studies on bone fracture and strength
should be more closely linked to clinical practice, as they have potential to provide
more accurate predictions of bone fracture risk in patients. The key challenge is to
be able to incorporate clinically measured parameters in the computational models.
There are some exciting advances which involve patient-specific models computed
using tomography images in a finite element method to predict bone stiffness and
strength (Giambini et al. 2016; Rossman et al. 2016).

There are several other challenges that will be discussed next. The transition
between different structural scales is continuous rather than discrete. Do we have
a representative volume element (RVE) at each structural scale? Studies on the
effects of scale and boundary conditions on bone properties, in particular fracture
and strength, are needed.

10.5 Apparent Properties

In the micromechanics analyses, described in Sect. 10.2, we assumed the existence
of a representative volume element (RVE). The RVE is defined as a represen-
tative region such that it is much larger than the microstructural dimensions
(inclusions) and the predicted properties are independent of applied uniform
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boundary conditions. However, in bone in general, we do not have an RVE. For
example, at the nanoscale level, the mineralized collagen fibril is about 50–200 nm
in diameter, while the size of mineral crystals is on average 50 � 25 � 3 nm3.
Thus, these dimensions are of comparable size. This is also visible in Fig. 10.2,
which illustrates collagen fibrils and HA crystals (which are the irregular shapes
on collagen fibers). Another example is a trabecular bone at the mesoscale level.
Trabecular bone has a spatially changing structure and porosity so only a relatively
small region can be selected with constant porosity for testing or computations.
Also, the trabecular bone region is limited in size. The typical dimensions of studied
trabecular bone compression specimens are 2–4 mm in diameter and about twice
that in height, while the voids in trabecular bone may reach up to 0.5 mm. Thus,
specimen’s dimensions are of comparable sizes to microstructural features (pores)
and the samples are smaller than the RVE.

When the size of a specimen is smaller than the RVE size, then experimental
results depend on boundary conditions and the so-called apparent properties will
be measured. Similarly, computationally, when the size of a region used for
computations is smaller than the RVE, then the computed results will depend
on boundary conditions unless one models a periodic microstructure and applies
periodic boundary conditions. However, trabecular bone, for example, has a highly
irregular structure, and thus periodic boundary conditions cannot be used. One can
follow the approach of Huet (1990), who showed that when the size of the specimen
is smaller than the RVE, the effective properties of composite are bound from above
by the properties obtained by applying kinematic (displacement with uniform strain)
boundary conditions and are bound from below by the properties obtained using
static (tractions with uniform stress) boundary conditions. When the size of the
specimen increases, these bounds will come closer and the results will converge
when the RVE size is reached.

These findings of Huet (1990) can be described mathematically as follows. The
apparent elastic properties are dependent on the size of a window (or specimen size)
and boundary conditions which give rise to a hierarchy of bounds

CR � �SR
��1 � ˝St

1

˛�1 � ˝St
ı0

˛�1 � ˝St
ı

˛�1 � Ceff � ˝Cd
ı

˛ � ˝Cd
ı0

˛ � ˝Cd
1

˛ � CV

(10.10)

where 8ı 0 < ı, ı D d/L denotes the relative size of the window, d is the size of the
microstructure, L is the size of the window, and hidenotes ensemble averages. The
inequality between any two tensors implies

C � D () .C � D/ W a W a � 0; for any tensor aij ¤ 0

In Eq. (10.10), C is the fourth-order stiffness tensor Cijkl and S is the compliance
tensor Sijkl, where S�1DC. The superscripts R and V denote Voigt and Reuss
bounds, respectively, while the superscripts t and d imply traction and displacement
boundary conditions, respectively. Following Eq. (10.10), the effective properties
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are bounded from above and below by the apparent elastic moduli obtained using
displacement and traction boundary conditions, respectively. The larger is the
window size ı, the closer are the bounds. When ı reaches the size of the RVE,
the bounds merge and the effective properties are obtained.

Mixed boundary conditions (combination of displacements and tractions) will
give apparent properties which are between the two bounds but will not give
effective properties until the RVE size is reached:

˝
Stt
ı

˛�1 � ˝Cdt
ı

˛ � ˝Cdd
ı

˛
(10.11)

Several studies addressed the apparent properties of trabecular bone both exper-
imentally and computationally. They include experimental studies of BeVill et al.
(2007) and Chevalier et al. (2007) and computational studies of Yeni and Fyhrie
(2001), Wang et al. (2009), Gross et al. (2012), Park et al. (2013), Panyasantisuk
et al. (2015), and Gong et al. (2016), among others.

In our exploratory computational study (Wang et al. 2009), we modeled tra-
becular bone, for simplicity, as two- and three-dimensional periodic networks and
calculated the apparent orthotropic elastic properties of such idealized models as a
function of boundary conditions (displacement, traction, and mixed), window size,
and choice of a unit cell. We also obtained effective elastic moduli by applying
periodic boundary conditions to obtain effective elastic stiffness tensor. We found
that effective results are bound from above by the apparent elastic properties
obtained using displacement boundary conditions and from below by apparent
properties computed using traction boundary conditions as expected and apparent
elastic mixed boundary conditions were very close to effective ones. In addition,
we found that for materials like bone, which has one hard phase and one very soft
phase (bone marrow, which is often modeled as void), these bounds are far apart and
converge slowly. Also, the rate of convergence depends on a choice of the periodic
unit cell. These results point out to challenges in obtaining effective properties of
trabecular bone.

More advanced studies addressing the effects of window size and boundary
conditions on apparent properties of bone, accounting for actual trabecular bone
geometries, were done by Yeni and Fyhrie (2001) and Panyasantisuk et al. (2015).

10.6 Bone as a Cosserat Material

The concept of apparent properties which arises due to the fact that the size of
tested samples or region used for computations may be smaller than the RVE
was discussed in Sect. 10.5. In this section, we address a related problem. When
dimensions of materials are comparable in size to the length of the microstructural
features, such as pores in trabecular bone, then higher-order effects are present.
Classical continuum mechanics theories do not include intrinsic length scales and



300 I. Jasiuk

give first-order approximations for materials behavior. Higher-order continuum
theories such as micropolar, strain gradient, or non-local theories aim to account
for such phenomena. Micropolar theory, also called the Cosserat theory, is a
generalized continuum theory in which not only a force-stress is defined (from
force vector) but also a couple-stress (from moment vector) is defined. In terms
of kinematics, at a point, not only a translation but also a rotation is defined. Such
enriched constitutive equations allow to better capture the mechanical behavior of
heterogeneous materials like bone.

First experimental evidence of bone behaving like a Cosserat material is due to
Lakes and his coworkers. These experiments on bone showed a stiffening effect in
bending and torsion in bone (Lakes 1982; Yang and Lakes 1982; Park and Lakes
1986), and tougher notched bone than predicted by classical fracture mechanics
theory (Nakamura and Lakes 1988; Lakes et al. 1990).

Several more recent studies aimed to predict Cosserat or couple-stress (special
case of Cosserat theory) constants of trabecular bone. They include studies of Yoo
and Jasiuk (2006), Tekoglu and Onck (2008), Fatemi et al. (2002), Onck (2002), and
Fatemi et al. (2003).

10.7 Bone as a Viscoelastic Material

Bone is also a viscoelastic material. Characteristics of viscoelastic materials include
an increase in strain with time under a constant stress (creep), a decrease in stress
with time under a constant strain (relaxation), when properties depend on rate of
application of the load and when hysteresis occurs under cyclic load, when acoustic
waves experience attenuation, and rebound of an object following an impact is less
than 100%. The viscoelastic constitutive law accounting for time effect is given as


ij.t/ D
tZ

0

Cijkl .t � �/ @"kt

@�
d� (10.12)

Viscoelastic constants involve storage and loss moduli. In bone viscoelastic
damping, tan •, exhibits a broad minimum at frequencies 1 to 100 Hz which are
associated with normal activities. Thus, viscoelasticity is not a shock-absorbing
mechanism. Interestingly, bone exhibits substantial damping at low frequencies and
substantial creep at high frequencies. Tan • has an intermediate value between that of
polymers and metals (• is 0.01 at 1–10 Hz). Viscoelasticity of bone has been studied
by a number of researchers both experimentally and theoretically. These studies date
back to early works of Lakes and Katz (1974a, b), and Lakes et al. (1979) as well
as more recent studies (Garner et al. 2000; Buechner and Lakes 2003; Ojanen et al.
2015). Most of these papers focus on the overall viscoelastic response of bone rather
than micromechanics analyses of bone. An interesting micromechanics study of
viscoelasticity of fluid-filled materials like bone or concrete was done by Hellmich
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and his coworkers (Eberhardsteiner et al. 2014; Shahidi et al. 2014). These studies
addressed the effects of fluid-filled interfaces on viscoelastic properties of materials.
In Sandino et al. (2015), they reported that “interface results in exponentially
decaying macroscopic viscoelastic phenomena, with both creep and relaxation times
increasing with increasing interface size and viscosity, as well as with decreasing
elastic stiffness of the solid matrix; while only the relaxation time decreases with
increasing interface density.”

10.8 Conclusions

In this study, we presented an overview on micromechanics modeling of bone. This
subject is broad so this study only captures selected topics in this area. Bone is a
highly complex composite material, with numerous challenges to model it. There
are still many open topics for mechanicians to explore.
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Chapter 11
Linear Elastic Composites with Statistically
Oriented Spheroidal Inclusions

Salvatore Federico and Alfio Grillo

Abstract The purpose of this chapter is to critically review some results that our
groups obtained in previous works, which were devoted to the investigation of the
elastic properties of composite materials with a statistical distribution of spheroidal
inclusions. These studies were motivated by our interest in the description of
mechanical properties of fibre-reinforced biological tissues (such as articular car-
tilage), starting from the internal structure of these tissues. After an introduction to
tensor algebra, which defines the notation and clarifies the mathematical framework
adopted in the chapter, we present, in a covariant setting inspired by Differential
Geometry, Walpole’s representation of isotropic and transversely isotropic second-
and fourth-order tensors, along with its properties. Hence, starting from Eshelby’s
seminal work on the problem of an inclusion in an infinite matrix, we briefly review
the theories developed by Hill, Walpole and Weng for the determination of the
overall elasticity tensor of materials with one or more inclusion phases. Then, we
discuss in detail the cases of composite materials with aligned spheroidal inclusions
and with statistically oriented spheroidal inclusions. Emphasis is put on extending
Walpole’s formula to the case of inclusions aligned according to some probability
density of orientation, both in the transversely isotropic and the isotropic case.
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11.1 Introduction

From the 1950s to the 1970s, Eshelby published several papers (e.g., Eshelby, 1951,
1957, 1975) that turned out to be of fundamental importance in the development of
the theory of materials with defects or inclusions. In this chapter, we are particularly
interested in his work on the ellipsoidal inclusion (Eshelby, 1957), which is at the
basis of the theory of materials reinforced by one or more phases of ellipsoidal
inclusions, whose shape ranges from flat discs (which could represent cracks, if
assigned a null elasticity tensor) to spherical inclusions to fibre-like inclusions.

The theory for the determination of the elasticity tensor of a composite material
with inclusions has been developed by, among others, Hill (1963, 1965), Hashin
(1963) and Walpole (1966a,b, 1969). The case of aligned inclusions has been
thoroughly studied by Weng and his group (Weng, 1984, 1990; Qiu and Weng,
1990). A few cases of composites with non-aligned inclusions have been studied
in the 1980s. The first work we are aware of is that by Chou and Nomura (1981),
who studied a short-fibre composite in which the directions of alignment of the
fibres lay on the surface of a cone. Tandon and Weng (1986), Weng (1990) and Qiu
and Weng (1990) studied the case of randomly oriented spheroidal inclusions.

In this chapter, we report our method of solution for the general case of
statistically oriented inclusions and, in particular, for the case of probability density
being transversely isotropic with respect to a given direction. This is the core of one
of our first works (Federico et al., 2004), which here we would like to present from a
more mature point of view (12 years are not so few. . . ) and in a more general setting.
Furthermore, we take this chance to correct a few imprecisions in our original work
and in some subsequent ones.

Originally, we were motivated by our interest in modelling articular cartilage
as a composite comprised of a proteoglycan matrix with spheroidal inclusions,
representing the chondrocytes (i.e., cartilage cells) and collagen fibres (Federico
et al., 2005). This method was able to predict the elastic behaviour of articular
cartilage only for a given type of deformation (i.e., either in compression or in
tension). Indeed, the method had been conceived to model “pure” linear elasticity
rather than to capture the tension-compression asymmetry caused by the fact that
the collagen fibres bear load when extended but almost no load when contracted.
Such non-linear effect was highlighted by Soltz and Ateshian (2000), who modelled
cartilage by means of the conewise linear elastic model developed by Curnier
et al. (1995), which adopts different elasticity tensors in tension and compression.
However, considering the sign of deformation explicitly in the original paper
(Federico et al., 2004) and its application to articular cartilage (Federico et al., 2005)
would have prevented direct averaging integration of the elasticity tensors over all
possible directions. In fact, this difficulty emerged also in our subsequent non-linear
works (see Federico, 2015, and the references therein). Despite the limitations of our
early paper (Federico et al., 2004), its methods have served as the basis for several
other projects in our research groups, both in the linear and non-linear settings (see,
again, Federico, 2015, for an account of all works in this “family”).
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11.2 Theoretical Background

We shall exclusively deal with the theory of small deformations, and therefore
we shall make no distinction between reference and current configuration of a
deformable body, which we shall simply regard as an open subset B of the physical
space S. Consequently, we shall not make distinction between uppercase and
lowercase symbols as typically done in modern continuum mechanics (see, e.g.,
Marsden and Hughes, 1983) and shall exclusively use lowercase indices. However,
we decided to keep the distinction between vector and covector quantities, which is
reflected in the distinction between contravariant and covariant indices, respectively.
The rationale for this choice is twofold. First, we believe that, even when Cartesian
coordinates are used and the difference between vectors and covectors fades under
orthogonal transformations (and exclusively under orthogonal transformations), it
is good practice to keep the distinction, from a didactical point of view. Second,
the theory of composite materials has traditionally been developed under the tacit
assumption of Cartesian coordinates, and our own past work is no exception; thus,
we found appealing the idea of attempting to systematically employ a covariant
formalism instead.

We start by presenting the description of the physical space S as an affine space.
Then, we introduce our general notation for tensors and tensor spaces, the metric
tensor and contractions of tensors. We continue by introducing the symmetries
of second- and fourth-order tensors and the material symmetries of isotropy and
transverse isotropy, along with the corresponding representations of second- and
fourth-order tensors satisfying these symmetries. In particular, we present Walpole’s
formalism for the representation of transversely isotropic fourth-order tensors.
Finally, we briefly recall some key relations from the theory of linear elasticity.

11.2.1 Affine Spaces, Open Subsets and Tangent Spaces

We cannot but agree with, e.g., Marsden and Hughes (1983) or Epstein (2010), when
they say that differentiable manifolds are the most general and most appropriate
setting for the description of mechanics. However, in many cases, the much simpler
structure of affine space is sufficient for a reasonably rigorous presentation. An
affine space is in fact a trivial differentiable manifold (i.e., a differentiable manifold
that can be covered by a single chart) and is the minimal structure that allows to
develop differential calculus and to attach vectors and tensors at any point in space.

An affine space consists of a set S, called the point space; a vector space V , called
the modelling space; and a map F W S � S ! V that, for every pair of points x; y in
S, yields a vector in V denoted F.x; y/ D y � x D w, called the oriented segment
from x to y. The map F must be anti-commutative, i.e., Œx� y� D �Œy� x�, and must
satisfy the triangle rule, i.e., y � x D Œy � z� C Œz � x�, and the axiom of arbitrary
origin, i.e., for every x 2 S and w 2 V there exists one, and only one, y 2 S, such
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x
Γ

B ⊂ S

wx

x = Γ(s0)

Γ(s0 + h)

Γ([a, b]) ⊂ S

Fig. 11.1 Left: The geometrical definition of tangent vector at a point x in the affine space S as the
tangent at x to a curve passing by x, obtained as the limit of the secant passing by x. Right: A body
B is an open subset of the physical space S , which is considered as an affine space. Considering
all regular curves � passing by x 2 B, the tangent space TxB is the set of the tangent vectors wx

that are each tangent at x to one of the curves �

that y � x D w. At every point x 2 S, the set of all vectors emanating from x is
defined by

TxS D fwx D y � x W y 2 Sg; (11.1)

where the notation wx means that “w is attached at x”. The space TxS is a vector
space called tangent space of S at point x. The tangent bundle of S, denoted by TS,
is defined as the disjoint union of all tangent spaces TxS for all x 2 S.

The definition of tangent space given in Eq. (11.1), however, applies exclusively
to affine spaces and not to subsets of an affine space. This is crucial because
deformable bodies are often seen as open subsets B � S. The problem for the
case of a subset is that, if x 2 B, there exist tangent vectors wx 2 Tx B such that
y D x C wx does not belong to B, i.e., the “tip of the arrow” lies outside B (see
the example in Fig. 11.1, right). Therefore, in order to properly define the tangent
space TxB at a point x 2 B, we need to use the definition inherited from differential
geometry. In this definition, the tangent space TxS is the set of all vectors that are
tangent at x to all possible regular curves � W Œa; b� ! S W s 7! �.s/ such that
�.s0/ D x, with s0 2�a; bŒ, i.e., the vectors

wx D lim
h!0

�.s0 C h/� �.s0/
h

D � 0.s0/ 2 TxS; (11.2)

in which the numerator of the limit is the difference between point �.s0 C h/ and
�.s0/, which is a vector secant to � , and the limit is precisely the tangent at x
(Fig. 11.1, left). For the case of an affine space S, this definition of tangent space
TxS coincides with that in Eq. (11.1). However, although the definition in Eq. (11.1)
does not make sense for an open subset B, that in Eq. (11.2) can be automatically
inherited by TxB just by saying that x 2 B and the curves � are such that
� W Œa; b�! B W s 7! �.s/, with �.s0/ D x, and s0 2�a; bŒ.
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Usually, the affine space of classical mechanics is constructed by assuming that
both the point space and the modelling space are R

3 and is often denoted by E
3.

Here, we shall assume that S � E
3.

11.2.2 Tensors

For our purposes, we shall refer to tensors on the tangent bundle TB of a material
bodyB, but these definitions are completely general and could be used in the tangent
bundle TS of the physical space S or even in a generic vector space V of dimension
n. Whenever we give examples, we use second- or fourth-order tensors, which are
the types of tensors that are relevant in the subsequent sections of this chapter. This
section is largely based on a previous work on non-linear elasticity (Federico, 2015)
and is adapted to the setting of the small-displacement theory.

A covector, or linear form, or one-form is a linear map

' W TB ! R W u 7! ' u � '.u/; (11.3)

where we use simple juxtaposition to indicate the action of the covector ' on the
vector u. The space of all covectors on the tangent bundle TB is the dual of TB and
is denoted T?B and called cotangent bundle. If one looks at a point x 2 B, the dual
of the tangent space TxB is the cotangent space T?x B. It is possible to prove that,
given a basis feig3iD1 in TB, the covectors feig3iD1, defined by

ei u � ei.u/ D ui; (11.4)

constitute a basis for the cotangent bundle T?B. The basis feig3iD1 is called the
dual basis of feig3iD1. Each of the basis covectors ei has a very precise geometrical
meaning, as it associates, with every vector u, the i-th component ui of u with respect
to the vector basis feig3iD1, and, for this reason, the basis covectors ei are often called
projections. The definition in Eq. (11.4) implies

ei ej � ei.ej/ D ıi
j; (11.5)

where ıi
j is the Kronecker symbol. If, in the definition (11.3) of covector, we express

vector u in the basis feig3iD1, we have

' u D '.ui ei/ D ui ' ei D ui 'i (11.6)

where

'i D ' ei � '.ei/: (11.7)
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Using the definition of basis covector, it follows that the covector ' can be
decomposed as a linear combination of the basis covectors feig3iD1, i.e., as

' D 'i ei; (11.8)

where the coefficients 'i take the meaning of components of ' with respect to
feig3iD1.

In finite dimension, which is the case we are interested in, the relation between
a vector space and its dual is symmetric in the sense that TB can be identified with
the bi-dual space T??B (the set of all linear maps from T?B into R). Therefore, the
vectors of TB can be made to act on the covectors of T?B as linear forms, and the
action of a vector u on a covector ' is identical to that of ' on u

' u D 'i ui D ui'i D u': (11.9)

Consequently, the basis vectors feig3iD1 are the projections in T?B, i.e.,

ei ' D ' ei D 'i: (11.10)

We also say that the expression ' u D u' D ui 'i is the contraction of ' and u.
A tensor of order rC s D m on the tangent bundle TB is a multilinear form, i.e.,

a map of the type

T W T?B � : : : � T?B„ ƒ‚ …
r times

�TB � : : : � TB„ ƒ‚ …
s times

! R; (11.11a)

T W .'1; : : :'r;u1; : : : us/ 7! T.'1; : : :'r;u1; : : : us/; (11.11b)

that is linear in each of the r C s arguments separately. The space of all tensors of
the type in Eq. (11.11) is denoted ŒTB�rs, a notation that will be justified later on
[Eq. (11.17)].

The tensor product of the r vectors v1; : : : ; vr in TB and the s covectors
 1; : : : ; s in T?B is the tensor v1 ˝ : : : ˝ vr ˝  1 ˝ : : : ˝  s in ŒTB�rs such
that, for every '1; : : : ;'r in T?B and for every u1; : : : ;us in TB,

Œv1 ˝ : : :˝ vr ˝ 1 ˝ : : :˝ s�.'1; : : : ;'r ; u1; : : : ; us/ D v1.'
1/ : : : vr.'

r/  1.u1/ : : :  s.us/:

(11.12)

The tensor v1 ˝ : : : ˝ vr ˝  1 ˝ : : :˝  s is said to have r vector legs v1; : : : ; vr

and s covector legs  1; : : : ; s.
With the definition of tensor product of vectors and covectors, and using

multilinearity, we can derive the component expression of any tensor T in ŒTB�rs

with respect to a given basis feigniD1 and dual basis feigniD1. Indeed, we have
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T.'1; : : : ;'r;u1; : : : ;us/ D T.'1i1 ei1 ; : : : ; 'r
ir eir ; uj1

1 ej1 ; : : : ; u
js
s ejs/

D '1i1 : : : 'r
ir uj1

1 : : : ujs
s T.ei1 ; : : : ; eir ; ej1 ; : : : ; ejs/

D '1i1 : : : 'r
ir uj1

1 : : : ujs
s Ti1 ::: ir

j1 ::: js ; (11.13)

where

Ti1 ::: ir
j1 ::: js D T.ei1 ; : : : ; eir ; ej1 ; : : : ; ejs/ (11.14)

are the components of T. By analogy with the indices of vectors and covectors,
the indices i1 : : : ir are called contravariant and the indices j1 : : : js are called
covariant. Using Eqs. (11.4), (11.10) and (11.12), we obtain

T.'1; : : : ;'r;u1; : : : ;us/

D '1i1 : : : 'r
ir uj1

1 : : : ujs
s Ti1 ::: ir

j1 ::: js

D ei1 .'
1/ : : : eir.'

r/ ej1 .u1/ : : : ejs.us/Ti1 ::: ir
j1 ::: js

D Ti1 ::: ir
j1 ::: js Œei1 ˝ : : :˝ eir ˝ ej1 ˝ : : :˝ ejs �.'1; : : : ;'r;u1; : : : ;us/: (11.15)

By dropping the arguments '1; : : : ;'r;u1; : : : ;us on both sides of Eq. (11.15), we
obtain the component representation of T in the tensor basis fei1 ˝ : : : ˝ eir ˝ ej1

˝ : : :˝ ejsgni1;:::;ir ;j1;:::jsD1 of the tensor space ŒTB�rs as

T D Ti1 ::: ir
j1 ::: js ei1 ˝ : : :˝ eir ˝ ej1 ˝ : : :˝ ejs : (11.16)

A tensor T in ŒTB�rs is said to have r vector legs and s covector legs, and ŒTB�rs can
be represented as the tensor product of spaces (Bishop and Goldberg, 1968)

ŒTB�rs D TB ˝ : : :˝ TB„ ƒ‚ …
r times

˝T?B ˝ : : :˝ T?B„ ƒ‚ …
s times

: (11.17)

With a widely accepted abuse of terminology, we shall often refer to a tensor in
ŒTB�rs as being “r times contravariant and s times covariant” although, rigorously
speaking, the adjectives contravariant and covariant refer to tensor indices and tensor
components.

Since a tensor leg can be a vector or a covector, there are 2m possible spaces
of tensors of order m. For instance, there is only one type of space of zero-order
tensors (scalars in ŒTB�00 � R), two types of spaces of first-order tensors (vectors
in ŒTB�10 � TB and covectors in ŒTB�01 � T?B), four types of spaces of second-
order tensors and sixteen types of spaces of fourth-order tensors. The table below
summarises the situation and reports some examples of the 16 types of fourth-order
tensors. Here, we shall exclusively deal with the first four types of fourth-order
tensors.
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Order Types Spaces Components Notes

0 20 ŒTB�00 � R a Scalars

1 21 ŒTB�10 � TB ai Vectors

ŒTB�01 � T?B ai Covectors

2 22 ŒTB�20 aij “Contravariant”

ŒTB�02 aij “Covariant”

ŒTB�11 ai
j “Mixed”

ŒTB�11 ai
j “Mixed”

4 24 ŒTB�40 Aijkl “Contravariant”

ŒTB�04 Aijkl “Covariant”

ŒTB�22 Aij
kl “Mixed”

ŒTB�22 Aij
kl “Mixed”

. . . . . .

ŒTB�1111 Ai
j
k

l

ŒTB�1111 Ai
j
k

l

. . . . . .

11.2.3 Tensor Contractions and Tensor as Linear Maps

So far, we have seen tensors as multilinear maps, whose legs are all contracted at the
same time with vectors or covector arguments, as appropriate. However, one could
contract part of the legs of a tensor with all or part of the legs of another tensor. In
this work, we are going to see single and double contractions.

Given a tensor whose last leg is a vector and another tensor whose first leg is
a covector, or vice versa, we call single contraction the contraction of the last leg
of the first tensor with the first leg of the second tensor and denote it by simple
juxtaposition. For instance, for a “contravariant” second-order tensor a in ŒTB�20 and
a “covariant” second-order tensor c in ŒTB�02, the contraction a c has components
aijcjk. The same type of contraction occurs between, e.g., a “mixed” tensor l in
ŒTB�11 and a vector u in TB, and the single contraction is the usual l u with
components lij uj.

The double contraction of two tensors works similarly to the simple contraction,
except that one contracts the last two legs of the first tensor and the first two legs
of the second tensor. As with the single contraction, the contracting legs must be of
opposite type. Double contraction is denoted by a colon. For example, for a fourth-
order tensorT in ŒTB�22 and a second-order tensor a in ŒTB�20, the double contraction
T W a has components Tij

klakl.
Tensors can also be regarded as linear maps between tensor spaces. For instance,

a “mixed” second-order tensor, i.e., a tensor l in ŒTB�11 could be seen as the linear
map l W TB ! TB W u 7! l u (in components, lij uj). Similarly, a “contravariant”
fourth-order tensor T in ŒTB�40 could be regarded as the linear map T W ŒTB�02 !
ŒTB�20 W c 7! T W c (in components, Tijklckl). Rigorously speaking, a tensor
seen as a linear map between two tensor spaces should be somehow notationally
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distinguished from its multilinear form counterpart. However, since context and,
above all, index notation prevent any possible confusion, the customary practice is
to use the same symbol T for the tensor employed in both manners.

11.2.4 Metric Tensor and Scalar Products

The physical space S is assumed to be equipped with a metric tensor g, which is
inherited by the body B. A metric tensor is a symmetric and positive definite tensor
in ŒTB�02, such that, for every pair of vectors u and v in TB,

g.u; v/ � u g v � hu; vi � u:v D ui gij v
j: (11.18)

Symmetry means that hu; vi D hv;ui, and positive definiteness means that, for
every u ¤ 0, hu;ui > 0. The equivalent notations g.u; v/ � u g v � hu; vi � u:v
denote the scalar product of the vectors u and v. The metric tensor induces the
Euclidean norm kuk D pg.u;u/ �phu;ui. A basis feig3iD1 is called orthonormal
with respect to g if g.ei; ej/ � hei; eji D ıij, i.e., if the matrix representation of the
metric tensor is the identity. Positive definiteness of g also implies invertibility, and
the inverse is the tensor g�1 valued in ŒTB�20 such that, for every pair of covectors '
and  in T?B,

g�1.'; / � ' g�1 � h'; i � ': D 'i .g�1/ij  j: (11.19)

When considered as a linear map g W TB! T?B, the metric tensor g is said to be
used to “lower contravariant indices”, by mapping the vector u into the associated
covector u[ D g u, with components ui D gijuj. Analogously, the inverse metric
tensor g�1, seen as the linear map g�1 W T?B ! TB, is said to “raise covariant
indices”, by mapping the covector ' into the associated vector '] D g�1', with
components ' i D .g�1/ij'j. The metric tensor and its inverse can be used to lower
and rise, respectively, the indices of tensors of any order. For instance, given the
“contravariant” fourth-order tensor T in ŒTB�40, its “covariant” associated tensor is
denoted T

[ and has components Tijkl D gip gjq gkr gls Tpqrs. In particular, if we raise
the indices of the metric tensor g itself by means of the inverse metric tensor g�1,
we have the important identity

g] D g�1g g�1 D g�1; gil D .g�1/ij gjk .g�1/kl D .g�1/il: (11.20)

The scalar product induced by the metric tensor g can be extended to pairs of ten-
sors of the same type of any order, by contracting each pair of homologous indices
by means of the metric tensor or its inverse, as appropriate. For instance, given two
tensors T and Z in ŒTB�1111, their scalar product is hT;Zi D Ti

j
k

l gip gjq gkr gls Zp
q

r
s.

Finally, we use a single low dot to indicate that the metric tensor (or its inverse)
is involved in the contraction of two tensors such that the last leg of the first tensor
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and the first leg of the second tensor are of the same type. For instance, given two
“contravariant” tensors a; b in ŒTB�20, the expression a:b stands for a g b, which has
components .a:b/il D aij gjk bkl.

11.2.5 Symmetries of Second- and Fourth-Order Tensors

For a “covariant” second-order tensor c in ŒTB�02, the transpose is defined as the
tensor cT in ŒTB�02 such that, for every pair of vectors u; v in TB, u c v D v cTu,
which in components reads ui cij v

j D vj .cT/ji ui, implying .cT/ji D cij. The
transpose of a “contravariant” second-order tensor is defined analogously. For the
case of a “mixed” tensor a in ŒTB�11, the transpose is the tensor aT in ŒTB�11 such
that, for every vector v in TB and every covector ' in T?B, ' a v D v aT', which
in components reads 'i ai

j v
j D vj .aT/j

i ui, implying .aT/j
i D ai

j. Note that, while
a “covariant” and its transpose, or a “contravariant” tensor and its transpose, belong
to the same space, a “mixed” tensor and its transpose belong to different spaces.

A “covariant” second-order tensor c in ŒTB�02 is called symmetric if c D cT ,
which, in components, means cij D cji. The symmetry of a “contravariant” tensor
a in ŒTB�20 is defined analogously. For the case of a “mixed” tensor, speaking
about equality of the tensor and its transpose has no meaning, as they belong to
different spaces. Thus, symmetry of a “mixed” tensor l in ŒTB�11 is defined in terms
of the symmetry of its “covariant” counterpart l[ D g l or, equivalently, in terms of
the symmetry of its “contravariant” counterpart l] D l g�1; indeed, we have that l]

is symmetric if and only if l[ is such.
When a fourth-order tensor is viewed as a linear map between spaces of second-

order tensors, its transpose can be defined in a way similar to that of a second-
order tensor. For the purposes of our presentation, let us restrict our attention to
“covariant” tensors in ŒTB�04, “contravariant” tensors in ŒTB�40 and “mixed” tensors
in ŒTB�22 and ŒTB�22 (actually, the transpose of fourth-order tensors of any other
type is defined exactly in the same way, but we do not need these tensors here). For
instance, the transpose of A in ŒTB�40 is defined as the tensor AT in ŒTB�40 such that,
for every c; d in ŒTB�02, the identity c W A W d D d W AT W c holds. In components, this
reads cij Aijkl dkl D dkl ŒA

T �klij cij, i.e., ŒAT �klij D Aijkl.
Fourth-order tensors admit a variety of symmetries. Here we are interested in

those called major and minor symmetry. A “contravariant” fourth-order tensor A in
ŒTB�40 is said to have major symmetry (or diagonal symmetry) if AT D A. The same
definition holds for a “covariant” tensorB in ŒTB�04. The case of “mixed” tensors is of
course a little more complicated. We are interested in the case of a “mixed” tensor T
in ŒTB�22 or in ŒTB�22. The major symmetry of such tensor is checked by looking at
the major symmetry of either its “contravariant” counterpart T] or of its “covariant”
counterpart T[, as T

] is major-symmetric if, and only if, T[ is major-symmetric.
Another important symmetry of fourth-order tensors is called minor symmetry (or
pair symmetry), and it is straightforward to define for tensors in which the two legs
(indices) within the first pair and within the second pair are of the same type, i.e., for
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tensors in ŒTB�40, ŒTB�04, ŒTB�22 and ŒTB�22. For instance, a tensor A in ŒTB�40 is said
to possess minor symmetry on the first pair of legs (indices) if, for every c in ŒTB�02,
one has c W A D cT W A, and on the second pair of legs (indices) if A W c D A W cT .
In components, these symmetries read Aijkl D Ajikl and Aijkl D Aijlk, respectively.
If a tensor enjoys minor symmetry on both the first and the second pair of legs, we
simply say that it “enjoys minor symmetry”. When there is no danger of confusion,
we say that a fourth-order tensor is symmetric if it enjoys both major and minor
symmetry.1

11.2.6 Isotropic Second- and Fourth-Order Tensors

Isotropy is the invariance of a material property under any arbitrary rotation.
A “mixed” second-order tensor l in ŒTB�11 is isotropic if, and only if, it is
proportional to the identity tensor i, i.e., if l D l i (in components, lij D l ıi

j).
A “contravariant” tensor a in ŒTB�20 is said to be isotropic if the associated “mixed”
tensor a g is isotropic, which implies that a D a g�1 (i.e., aij D a gij). Similarly,
a “covariant” tensor c in ŒTB�02 is said to be isotropic if such is the associated
“mixed” tensor g�1c, from which c D c g (i.e., cij D c gij). We remark that, as a
consequence of the definition of isotropic second-order tensor, it follows that any
isotropic second-order tensor is symmetric.

Let us consider the subspace .ŒTB�22;Sym/ of ŒTB�22 of all tensors with major
and minor symmetry. Since tensors in ŒTB�22 are “mixed”, major symmetry of a
tensor T is understood in the sense of Sect. 11.2.5, i.e., in relation to the symmetry of
the “contravariant” counterpartT] or of the symmetry of the “covariant” counterpart
T
[. The symmetric identity in .ŒTB�22;Sym/ is defined with the help of the special

tensor products ˝ and ˝ introduced by Curnier et al. (1995) as

I D 1
2
.i ˝ iC i ˝ i/; Iij

kl D 1
2
.ıi

kı
j
l C ıi

lı
j
k/; (11.21)

where i, with components ıi
j, is the identity second-order tensor in ŒTB�11. Since I

is the identity, it is invariant under rotations and is therefore clearly isotropic. The
symmetric identity is such that, for every symmetric second-order tensor a in ŒTB�20,
I W a D a.

The tensor basis of the subspace .ŒTB�22;Sym; Iso/ of the symmetric and
isotropic tensors is found by decomposing the symmetric identity into (Walpole,
1981, 1984; Federico, 2012)

I D KCM; (11.22)

1In our past works, we have called a fourth-order tensor with both major and minor (diagonal-
and pair-) symmetry “fully symmetric”, but we are not going to use this nomenclature here, as it
can be confusing. Indeed, what is normally called fully or completely symmetric is a tensor that is
invariant under any permutation of the indices.
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where

K D 1
3

g�1˝ g; Kij
kl D 1

3
gijgkl; (11.23a)

MD I �K; Mij
klD 1

2
.ıi

kı
j
l C ıi

lı
j
k/ � 1

3
gijgkl; (11.23b)

are the spherical operator and the deviatoric operator, such that, for every
symmetric tensor a in ŒTB�20, K W a D 1

3
tr.a/ g�1 is the spherical part of a, and

M W a D a � 1
3

tr.a/ g�1 is the deviatoric part of a, where tr. � / is the natural trace
operator, such that tr.a/ D g W a D gij aij. The tensors fK;Mg constitute the basis
of the space .ŒTB�22;Sym; Iso/ of the symmetric and isotropic tensors. We remark
that all isotropic fourth-order tensors enjoy minor symmetry (Jog, 2006) and that
there exist isotropic fourth-order tensors which do not enjoy major symmetry (the
additional basis tensor is the skew-symmetriser W D 1

2
.i ˝ i � i ˝ i/; see Jog,

2006).
The bases of the spaces .ŒTB�40;Sym; Iso/ and .ŒTB�04;Sym; Iso/ are obtained by

raising and lowering, respectively, the indices of fK;Mg, or by decomposing the
“contravariant” symmetric identity I

] and the “covariant” symmetric identity I
[,

respectively. The resulting tensors are (Federico, 2012)

I
] D 1

2
.g�1 ˝ g�1 C g�1 ˝ g�1/; Iijkl D 1

2
.gikgjl C gilgjk/; (11.24a)

K
] D 1

3
g�1˝ g�1; Kijkl D 1

3
gijgkl; (11.24b)

M
]D I

] �K
]; MijklD 1

2
.gikgjl C gilgjk/ � 1

3
gijgkl; (11.24c)

and

I
[ D 1

2
.g˝ gC g˝ g/; Iijkl D 1

2
.gikgjl C gilgjk/; (11.25a)

K
[ D 1

3
g˝ g; Kijkl D 1

3
gijgkl; (11.25b)

M
[D I

[ �K
[; MijklD 1

2
.gikgjl C gilgjk/� 1

3
gijgkl: (11.25c)

The tensors fK];M]g and fK[;M[g constitute the bases of the spaces
.ŒTB�40;Sym; Iso/ and .ŒTB�04;Sym; Iso/, respectively. It is important to recall how
to obtain the representation of a symmetric isotropic tensor, and we show this in the
case that is most important for our purposes, i.e., that of a “contravariant” tensor.
A symmetric isotropic tensor T in .ŒTB�40;Sym; Iso/ can be shown to admit the
representation (Walpole, 1981, 1984)

T D hT;K]iK] C 1
5
hT;M]iM]; (11.26)

where

hT;K]i D Tijkl gip gjq gkr gls
�
1
3

gpq grs
� D 1

3
Ti

i
k

k; (11.27a)

hT;M]i D Tijkl gip gjq gkr gls
�
1
2
.gpr gqs C gps gqr/� 1

3
gpq grs

� D Tij
ij � 1

3
Ti

i
k

k:

(11.27b)
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Note that, in the second of Eq. (11.27), we obtain a term 1
2
.Tij

ij C Tij
ji/, which

reduces to Tij
ij because of the minor symmetry of T. We remark that, if T is

a generic, not necessarily symmetric and isotropic tensor in ŒTB�40, the right-
hand side of Eq. (11.26) yields the projection of T onto the isotropic subspace
.ŒTB�40;Sym; Iso/ of ŒTB�40, i.e.,

Tiso D hT;K]iK] C 1
5
hT;M]iM] ¤ T; (11.28)

where the coefficients on the right-hand side are found in precisely the same way as
in Eq. (11.27).

A thorough analysis of the properties of idempotence and orthogonality
(Walpole, 1981, 1984) enjoyed by the tensors of each of the bases fK;Mg, fK];M]g
and fK[;M[g is discussed in a previous work (Federico, 2012), in the same covariant
formalism used here. The idempotence and orthogonality of isotropic basis tensors
implies that multiplication and inversion of isotropic tensors are performed by
multiplying and inverting the individual scalars of the decomposition (11.26).

11.2.7 Transversely Isotropic Second- and Fourth-Order
Tensors

The set

S
2B D fm 2 TB W kmk D 1g; (11.29)

where kmk D pm:m is the Euclidean norm of vector m, is the subset of all unit
vectors in the tangent bundle TB and is called the (bundle) unit sphere in the body
B. When the point x is fixed, one speaks about the unit sphere S

2
xB D fm 2 TxB W

kmk D 1g at x. Transverse isotropy with respect to m is defined as the symmetry
(i.e., the invariance) with respect to rotations about m. The direction identified by m
is called symmetry axis, and the class of equivalence of the planes orthogonal to m
is called transverse plane.

The subspace of ŒTB�20 of all second-order “contravariant” symmetric tensors
with transverse isotropy with respect to a direction m is denoted .ŒTB�20;m/. The
basis of .ŒTB�20;m/ is given by (Walpole, 1981, 1984; Federico, 2012)

a D m˝m; (11.30a)

t D g�1 � a; (11.30b)

where t is the complement of tensor a to g�1, which serves as the “contravariant
identity” in ŒTB�20. Evidently, both a and t are invariant under reflections m 7! �m,
i.e., the sense of m is irrelevant. Tensors a and t take the geometrical meaning of
axial projection operator and transverse projection operator, respectively. Indeed,
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contraction of a and t, by means of the metric tensor g, with a vector v in TB yields
the axial and transverse vectorial components of v, respectively, as2

vk D a:v D .m:v/m; (11.31a)

v?D t :v D v � .m:v/m: (11.31b)

In the jargon of composite and fibre-reinforced materials, tensor a is often called
the structure tensor or fabric tensor of direction m. Tensor t is often simply called
projector (Bonet and Wood, 2008; Gurtin et al., 2010). It is sometimes convenient
to explicitly indicate the dependence of a and t on the direction m, in which case
we say that fa.m/; t.m/g is the basis of the space .ŒTB�20;m/. As seen in the case of
isotropy, transversely isotropic second-order tensors are necessarily symmetric.

The basis of the subspace of ŒTB�40 of all tensors with transverse isotropy with
respect to direction m, denoted .ŒTB�40;m/, has been obtained in two different
versions by Walpole (1981, 1984). Initially, Walpole (1981) used a tensor basis
allowing for a representation in the form of a 6�1 array, which has been extensively
used by other authors (Weng, 1990; Qiu and Weng, 1990; Bhattacharyya and Weng,
1994; Wu and Herzog, 2002; Federico et al., 2004, 2005). Later, Walpole (1984)
perfected the representation, with new normalisation constants for the basis tensors,
which allows for an extremely convenient representation in an array constituted by a
2�2matrix and 2 scalars (Walpole (1984) has also provided similar representations
for all other symmetry groups). This later representation (Walpole, 1984) has been
used in more recent works (Federico, 2015; Federico et al., 2015), developed within
a covariant framework, and we do so in this chapter too.

The basis of .ŒTB�40;m/ proposed by Walpole (1984) is obtained (similarly to that
proposed in the older work; Walpole, 1981) by means of suitable tensor products,
as

U11 D a ˝ a; .U11/
ijkl D aij akl; (11.32a)

U12 D
p

2

2
a ˝ t; .U12/

ijkl D
p

2

2
aij tkl; (11.32b)

U21 D
p

2

2
t ˝ a; .U21/

ijkl D
p

2

2
tij akl; (11.32c)

U22 D 1
2

t ˝ t; .U22/
ijkl D 1

2
tij tkl; (11.32d)

V1 D 1
2
.t ˝ t C t ˝ t � t ˝ t/; .V1/

ijkl D 1
2
.tik tjl C til tjk � tij tkl/; (11.32e)

V2 D 1
2
.a ˝ t C a ˝ t C t ˝ a C t ˝ a/; .V2/

ijkl D 1
2
.aik tjl C ail tjk C tik ajl C til ajk/:

(11.32f)

The transversely isotropic basis in Eq. (11.32) is denoted fU˛ˇ;V� g2˛;ˇ;�D1 and,
when it is convenient to explicitly indicate the dependence of the basis tensors

2In two of our past works [Eq. (2.8) in Federico and Grillo (2012), and Eq. (96) in Federico (2015)],
we regrettably forgot to set the font in bold for the parallel and transverse components of a vector v
with respect to a direction m, and we may have therefore given the misleading impression that we
were referring to scalar components when, in fact, we meant to speak about vectorial components.
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on the direction m, one says that fU˛ˇ.m/;V� .m/g2˛;ˇ;�D1 is the basis of the space

.ŒTB�40;m/. A tensor T in .ŒTB�40;m/ is expressed as

T D T
˛ˇ
U˛ˇ C T

�
V� ; (11.33)

where Einstein’s summation convention is understood for ˛; ˇ; � 2 f1; 2g and the
components T˛ˇ and T

� are obtained by the scalar product of T with each of the
basis tensors, with some normalisation constants3:

T
˛ˇ D hT;U˛ˇi; T

� D 1
2
hT;V� i: (11.34)

In the basis of Eq. (11.32) the tensors U˛ˇ constitute an algebra isomorphic to
that of 2 � 2 matrices (Walpole, 1984), which allows for grouping the Walpole
components T˛ˇ and T

� of Eq. (11.34) into the array

T D
��

T
11

T
12

T
21

T
22

�
;T1; T2

�
D fŒT˛ˇ�;T�g; (11.35)

which we call Walpole array representation of tensor T. Note the compact notation
T D fŒT˛ˇ�;T�g.

It is precisely for the form of the array in Eq. (11.35) that we find Walpole’s
formalism (Walpole, 1984) to be very convenient. Indeed, all operations on
transversely isotropic tensors in .ŒTB�40;m/ can be performed by working on the 2�2
matrix and the two scalars of the Walpole array of each tensor. Linear combination
of tensors in .ŒTB�40;m/ can be obtained via the linear combination of the matrices
and the individual scalars. Given a tensor T with Walpole array T D fŒT˛ˇ�;T�g,
the Walpole array of the transpose T is obtained by simply transposing the 2 � 2
matrix, i.e., TT D T

T D fŒT˛ˇ�T ;T�g. Moreover, since UT
12 D U21, major (diagonal)

symmetry of a tensor T is attained if T
12 D T

21, in which case T has only 5
independent components, rather than the 6 independent components of the general
case.4 We also remark that positive definiteness of a tensor T in .ŒTB�40;m/ can be
checked extremely simply: T is positive definite if, and only if, the 2 � 2 matrix
ŒT˛ˇ� is positive definite and the two scalars T� are strictly positive. We remark that

3In some previous works (Federico, 2010a,b), we used the normalisation constants of the later
work by Walpole (1984) but kept the formalism with the 6 � 1 array formalism of the earlier
work by Walpole (1981). We candidly admit that this was an infelicitous choice on our part. Also,
because of an incautious copy-and-paste operation from the definitions of the basis tensors, we
reported (see Appendices in Federico, 2010a,b) the wrong coefficients for the scalar products in
Eq. (11.34).
4In our original work (see text immediately following Eq. (20) in Federico et al., 2004), we had
stated that U11, U22, V1 and V2 (called B2, B1, B3 and B4, respectively, in Federico et al., 2004)
span the whole space of major- and minor-symmetric (transversely isotropic) tensors, which is of
course incorrect, as we should have added also 1

2
.U12 C U21/ (corresponding to 1

2
.B5 C B6/ in

Federico et al., 2004).
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all transversely isotropic fourth-order tensors [i.e., tensors of the space .ŒTB�40;m/,
spanned by the basis in Eq. (11.32)] enjoy minor symmetry.

At this point, one may wonder how to treat transversely isotropic fourth-order
tensors of type other than those in .ŒTB�40;m/, for instance, the tensors in .ŒTB�04;m/,
among which there are the inverses (when they exist) of those in .ŒTB�40;m/.
Fortunately, the representation with Walpole’s array of Eq. (11.39) is independent
of the type of fourth-order tensor at hand. For instance, if we transform a tensor T
in .ŒTB�40;m/ into its “covariant” counterpart T[ in .ŒTB�04;m/, we have

T D T
˛ˇ
U˛ˇ C T

�
V� 7! T

[ D T
˛ˇ
U
[
˛ˇ C T

�
V
[
� ; (11.36)

i.e., the transformation takes place on the basis tensors, leaving the Walpole com-
ponents untouched. Thus, the double contraction of, e.g., a tensor T in .ŒTB�22;m/
and a tensor Z in .ŒTB�40;m/ is obtained by keeping in mind that the resulting tensor
belongs to .ŒTB�40;m/, and by performing the ordinary row-by-column product of
the two matrices, and the multiplication of the homologous scalars, i.e.,

T W Z D
��

T
11

T
12

T
21

T
22

� �
Z
11

Z
12

Z
21

Z
22

�
;T1Z1; T2Z2

�
: (11.37)

Also, it is now clear how to represent the inverse (when it exists) of a tensor T in
.ŒTB�40;m/. Indeed, the inverse of an invertible tensor T in .ŒTB�40;m/ is the tensor
T

�1 in .ŒTB�04;m/ such that T W T�1 D I and T
�1 W T D I

T , and has Walpole array
representation

T�1 � T
�1 D

(�
T
11

T
12

T
21

T
22

��1
;
1

T1
;
1

T2

)

: (11.38)

In an orthonormal basis feig3iD1, such that e1 D m, the components of the Walpole
array T D fŒT˛ˇ�;T�g of a tensor T are related to the conventional components Tijkl

by

T D
��

T1111
p
2T1122p

2T2211 2T2222 � 2T2323

�
; 2T2323; 2T1212

�
: (11.39)

Since an isotropic tensor is transversely isotropic with respect to any direction m,
it is possible to express it in Walpole’s transversely isotropic representation. In
particular, the “contravariant” fourth-order identity and the spherical and deviatoric
operators in ŒTB�40, defined in Eq. (11.24), have Walpole array representations

I] D
��
1 0

0 1

�
; 1; 1

�
; (11.40a)
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K] D
("

1
3

p
2
3p

2
3

2
3

#

; 0; 0

)

; (11.40b)

M] D
("

2
3
�

p
2
3

�
p
2
3

1
3

#

; 1; 1

)

: (11.40c)

Thus, a generic symmetric isotropic tensor T in .ŒTB�40;Sym; Iso/, which is written
as

T D 3 kK] C 2mM
]; (11.41)

in the symmetric isotropic basis fK];M]g admits the representation

T D
��

kC 4
3

m
p
2 .k � 2

3
m/p

2 .k � 2
3

m/ 2 .kC 4
3

m/� 2m

�
; 2m; 2m

�
; (11.42)

where the coefficients 3 k and 2m in Eq. (11.41) echo those typical of isotropic linear
elasticity [see Eq. (11.54)] and are found as shown in Eq. (11.26).

11.2.8 Basic Relations of the Theory of Linear Elasticity

Linear elasticity can be developed as an independent branch of Mathematical
Physics (see, e.g., the text by Gurtin, 1972), or can be retrieved by linearising the
general Theory of (Non-Linear) Elasticity (a covariant procedure is presented in
the text by Marsden and Hughes, 1983). Linear Elasticity has a strong pedagogical
character. Indeed, it often allows to find either analytical solutions or solutions in
closed form to many problems of engineering relevance. Moreover, in many circum-
stances, it suffices to determine first-order approximations that, with relatively low
computational costs, provide solutions to real-world problems even in the cases in
which engineering materials undergo finite deformations. Perhaps because of these
advantages, Linear Elasticity is what is usually taught to the vast majority of the
students in structural/mechanical Engineering or Physics during their undergraduate
studies. Linear Elasticity is so diffused that some call it “Classical Elasticity” and
that, still today, quite many understand “Linear Elasticity”, when they hear the word
“Elasticity”. One can choose to present the linear theory of elasticity either, and
equivalently, by starting from stress or from energy. We choose the latter and we
present this approach after having briefly introduced displacement, strain and stress.

In a body B, the displacement is the vector field

u W B! TB W x 7! u.x/ 2 TxB; (11.43)
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whose gradient (also called covariant derivative) is called displacement gradient,

h D grad u; hi
j D uijj; (11.44)

where the vertical bar denotes covariant differentiation.5 The infinitesimal strain is
the “covariant” second-order tensor field

� W B! ŒTB�02 W x 7! �.x/ 2 ŒTxB�02; (11.45)

defined as the symmetric part of the “covariant” displacement gradient tensor h[ D
g h (with components hij D giphp

j), i.e.,

� D 1
2
.h[ C h[T/; �ij D 1

2
.hij C hji/: (11.46)

The Cauchy stress is defined as a “contravariant” second-order tensor field6

� W B! ŒTB�20 W x 7! � .x/ 2 ŒTxB�20: (11.47)

In the absence of external body forces and neglecting inertia, the balance of linear
momentum reduces to the vanishing of the divergence of the Cauchy stress, i.e.,

div � D 0; 
 ij jj D 0: (11.48)

Often, the balance of angular momentum is invoked to obtain the condition of
symmetry of the Cauchy stress:

� D � T ; 
 ij D 
 ji: (11.49)

Balance of linear and angular momentum constitute a system of 6 equations in
12 unknowns (the 3 components of the displacement and the 9 components of the
Cauchy stress) or, equivalently, of 3 independent equations in 9 unknowns (the 3
components of the displacement and the 6 independent components of the Cauchy
stress). In order to be able to close the system, the need arises for 6 additional
relations, called constitutive laws, expressing the stress tensor as a function of the
strain tensor.

5In Cartesian coordinates, covariant differentiation of a vector or tensor field reduces to the regular
partial derivative and one writes, e.g., for a vector field, ui

;j.
6In the general, large-deformation setting of continuum mechanics, the Cauchy stress is defined
as a spatial tensor field, valued in ŒTS�20. In the small-deformation theory, however, the distinction
between reference configuration (or body B) and current configuration fades out, and it is legitimate
to define also tensors, which by their nature would be spatial, in the body B rather than in the space
S . In contrast, it is natural to define the infinitesimal strain � as a tensor field valued in ŒTB�02, since
it can be thought of as the linearisation of the material Green-Lagrange strain E.
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A material is said to obey a linear elastic constitutive law if there exists a
quadratic function of the infinitesimal strain,

W.x/ D OW.�.x/; x/ D 1
2
�.x/ W L.x/ W �.x/ D 1

2
�ij.x/Lijkl.x/ �kl.x/; (11.50)

called (quadratic) elastic potential (W W B ! R W x 7! W.x/ denotes the scalar
field, while OW denotes the corresponding constitutive function), such that the stress
can be obtained as the derivative of OW with respect to the strain, i.e.,

� .x/ D @ OW
@�
.�.x/; x/ D L.x/ W �.x/; 
 ij.x/ D @ OW

@�ij
.�.x/; x/ D Lijkl.x/ �kl.x/:

(11.51)

The “contravariant” fourth-order tensor field

L W B! ŒTB�40 W x 7! L.x/ 2 ŒTxB�40 (11.52)

is called the linear elasticity tensor and does not depend on x if the body is
homogeneous. Equation (11.50) and the symmetry of � imply that the elasticity
tensor L enjoys both major and minor symmetry. In order to guarantee the
positiveness of the elastic potential, which implies the positivity of the internal
work (or deformation work), one normally requires the positive definiteness of the
elasticity tensor L. The positive definiteness of L in turn implies its invertibility.
Note that the inverse of the “contravariant” elasticity tensor L, which is also called
stiffness elasticity tensor, is the “covariant” compliance elasticity tensor L�1, which
is a tensor field valued in ŒTB�04.

For a transversely isotropic elasticity tensor L, Walpole’s representation takes the
form [see Eq. (11.39)]

L D
��

n
p
2 `p

2 ` 2 c

�
; 2 �t; 2 �a

�
; (11.53)

where (see Hill, 1964) n is the modulus in uniaxial strain (also called p-wave
modulus or also, in the literature on articular cartilage, aggregate modulus: see
Holmes and Mow, 1990), c is the plane-strain bulk modulus (in the transverse plane
of transverse isotropy), ` is the cross modulus (transversely isotropic analogue of
the first Lamé’s constant � D � � 2

3
� of isotropic linear elasticity: see Spencer,

1984), �t is the shear modulus in the transverse plane, and �a is the shear modulus
in any plane containing the axis of symmetry m of transverse isotropy.

An isotropic elasticity tensor L can be represented in the basis fK];M]g of
symmetric isotropic tensors in ŒTB�40 as [see Eq. (11.41)]

L D 3 �K] C 2�M
]; (11.54)
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where � and � are the bulk modulus and shear modulus, respectively. Using
Eq. (11.42) for the expression of an isotropic tensor in Walpole’s transversely
isotropic array, we can represent the isotropic elasticity tensor of Eq. (11.54) as

L D
��

� C 4
3
�

p
2 .� � 2

3
�/p

2 .� � 2
3
�/ 2 .� C 4

3
�/ � 2�

�
; 2 �; 2 �

�
; (11.55)

in which it is possible to recognise the first Lamé’s constant � D � � 2
3
� and the

modulus in uniaxial strain n D � C 4
3
� D �C 2�. In terms of the Lamé’s moduli

� and �, the Walpole array reads

L D
��
�C 2� p

2�p
2� 2.�C 2�/� 2�

�
; 2 �; 2 �

�
; (11.56)

where .� C 2�/ � � D � C � is the isotropic equivalent of the plane-strain bulk
modulus c of transverse isotropy [Eq. (11.53)].

11.3 Composite Materials with Aligned Inclusions

We first recall the definitions of Eshelby’s fourth-order tensor S introduced by
Eshelby (1957) and of the closely related strain concentration tensor A, which
arises in the case of inclusions with material properties different from those of the
matrix. Finally, we introduce composite materials with inclusions as described by
the works of Hill (1963, 1965) and Walpole (1966a,b, 1969) and focus on the case
of aligned inclusions.

11.3.1 Eshelby’s Inclusion and Fourth-Order Tensor

Eshelby (1957) studied the problem of an inclusion in an infinite matrix, and in
particular the case of an ellipsoidal inclusion. Eshelby constructed the inclusion
problem in several steps (Eshelby, 1957, last paragraph of page 376), which we
report in our own words, following a previous work (Alhasadi and Federico,
2017):

1. A cavity is cut in a body B and a transformation strain �� is applied to the
geometry of the region D occupied by the cavity, which is thus mapped into the
new region D�; the remaining region M D B nD is called matrix.

2. The transformed region D� is now “filled” with a material, which could be
the same as that of the matrix, with elasticity tensor L0, or another one, with
elasticity tensor L1. The transformed region D�, now assigned with certain
elastic properties, constitutes the inclusion, which no longer fits the original
cavity D.
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3. In order to make the inclusion occupying the transformed regionD� fit again into
the original cavity D, tractions are applied on the boundary of the inclusion, so
that it attains a strain ���, and then it is put back into the cavity.

4. Once the inclusion is back in place, the tractions on the boundary are removed,
and so the inclusion and the surrounding matrix relax, causing a cancelling
strain or constrained strain �c, which is discontinuous across the boundary of
the inclusion.

At the end of this sequence of operations, and in the absence of external tractions
applied on the boundary of the body B, the residual strain due to the geometrical
misfit is

�b D �c; in M; (11.57a)

�b D �c � ��; in D; (11.57b)

where we emphasise again that the cancelling strain �c is discontinuous across the
boundary of D and thus must be studied and described piecewise.

In the absence of the inclusion, i.e., if the body B were perfectly homogeneous
(elasticity tensor equal to L0 everywhere) and without any region with geometrical
misfit (identically vanishing transformation strain ��), the cancelling strain would
vanish identically, and the application of traction forces on the boundary of B would
cause a stress state described by the continuous field � a everywhere in B, which in
turn would cause the continuous strain field

�a D L
�1
0 W � a; everywhere in B: (11.58)

In the presence of both inclusion and external tractions, the linearity of the problem
allows to write the total strain as the superposition of that in Eq. (11.57), which
was obtained in the absence of external applied tractions, and of that in Eq. (11.58),
which was obtained in the absence of inclusion, as

� D �a C �b D �a C �c; in M; (11.59a)

� D �a C �b D �a C �c � �� in D: (11.59b)

For the case of an ellipsoidal inclusion, it is clear that it remains an ellipsoid if,
and only if, the transformation strain �� is uniform (Eshelby, 1957). In this case,
also the cancelling strain �c in the inclusion is uniform, and it is possible to relate it
to the transformation strain �� by means of the relation (Eshelby, 1957)

�c D S W ��; in D; (11.60)

where the tensor S in ŒTB�22 is the fourth-order Eshelby tensor, which depends on
ratios of the elastic constants of the matrix and on the geometry of the inclusion.
For an isotropic matrix, there is only one independent ratio of elastic constants,
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which is usually chosen to be the Poisson’s ratio �0 (e.g., Qiu and Weng, 1990). For
the case of spheroidal inclusions, i.e., revolution ellipsoids, the only independent
geometrical ratio is that of the major to the minor semi-axis (e.g., Qiu and Weng,
1990). Note that the fourth-order Eshelby tensor can be seen as the linear operator
S W ŒTB�02 ! ŒTB�02 mapping the transformation strain into the cancelling strain. In
components, Eq. (11.60) reads

�c
ij D Sij

kl ��
kl; in D: (11.61)

We remark that the Eshelby tensor S has minor symmetry on each pair of legs, but
it lacks major symmetry (i.e., its “contravariant” counterpart S], with components
.S]/ijkl � Sijkl D gip gjq Spq

kl, and its “covariant” counterpart S[, with compo-
nents .S[/ijkl � Sijkl D Sij

rs grk gsl, lack major symmetry). Therefore, assuming
an isotropic matrix, for the case of an ellipsoidal inclusion with three distinct
semi-axes, S is a non-major-symmetric orthotropic tensor with 12 independent
components and, for the case of a spheroidal inclusion with two equal semi-axes
(i.e., a revolution ellipsoid), it is a non-major-symmetric transversely isotropic
tensor with 6 independent components.

There are three possible inclusion problems:

• The “homogeneous inclusion”, with geometrical misfit caused by a transfor-
mation strain ��, but material properties identical to those of the matrix, i.e.,
L0 D L1;

• The “inhomogeneous inclusion”, with no geometrical misfit, i.e., �� D 0, but
material properties different from those of matrix, i.e., L0 ¤ L1;

• The “general inclusion”, with both geometrical misfit, i.e., �� ¤ 0, and material
properties different from those of matrix, i.e., L0 ¤ L1.

The “homogeneous” case is the fundamental one, and indeed the “inhomogeneous”
and the “general” cases are solved by reducing the effect of the different material
properties to an equivalent transformation strain (Eshelby, 1957; Mura, 1987;
Alhasadi and Federico, 2017). In this work, we shall restrict our attention to the
“inhomogeneous” case. Thus, we shall exclusively deal with inclusions with no
geometrical misfit with the matrix but with material properties different from those
of the matrix.

11.3.2 Strain Concentration Tensor

The strain concentration tensor arises in the cases of the “inhomogeneous”
inclusion and “general” inclusion and is the object that captures the difference
in material properties between matrix and inclusion within the method of the
equivalent transformation strain, which is that fictitious transformation strain that
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has the same effect on the stress and strain fields that the mismatch in material
properties has. This method is, again, described in detail by Eshelby (1957), and we
also mention the classical book by Mura (1987).

The standard derivation of the strain concentration tensor is done in the case of
the “inhomogeneous inclusion”, and we report its expression (for the details, see,
e.g., Weng, 1984, 1990; Alhasadi and Federico, 2017)

A D �IT C S W ŒL�1
0 W L1 � I

T �
�1

; in D; (11.62)

which clearly depends on the Eshelby tensor, S, and the elasticity tensors of matrix
and inclusion, L0 and L1. Like S, tensor A is in ŒTB�22 and is endowed with minor,
but not major, symmetry. Its component expression is

.A�1/ijkl D .IT/ij
kl C Sij

pq Œ.L�1
0 /pqrs .L1/

rskl � .IT/pq
kl�; in D: (11.63)

Note the use of the transpose of the symmetric identity I. Indeed, since the
symmetric identity I belongs to ŒTB�22, it is necessary here to use its transpose
I

T , which belongs to ŒTB�22, in order to be able to sum it to the other tensors. This
distinction is unnecessary in Cartesian coordinates, and indeed in all papers and
books we are aware of, including our own past works, one finds the expression in
Eq. (11.62) written with I.

The strain concentration tensor gives the cancelling strain in the inclusion as

�c D �A � I
T
� W �a; in D; (11.64)

with components

�c
ij D

�
Aij

kl � .IT /ij
kl
�
�a

kl; in D: (11.65)

It is important to note the structural similarity between Eqs. (11.60) and (11.64).
However, it is even more important to emphasise that, while in the case of
the “homogeneous inclusion” [Eq. (11.60)], the cancelling strain �c is a constant
once the transformation strain �� is assigned, in the case of the “inhomogeneous
inclusion”, the cancelling strain �c is linearly related to the applied strain �a. Indeed,
since there is no geometrical misfit (�� D 0), the cancelling strain �c is identically
zero when no tractions are applied, i.e., when the applied strain �a is zero.

By adding the applied strain �a to either side of Eq. (11.64), we obtain the total
strain in the “inhomogeneous” inclusion as

� D �a C �c D A W �a; in D; (11.66)

with component expression

�ij D �a
ij C �c

ij D Aij
kl �a

kl; in D: (11.67)
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Equation (11.66) gives A in ŒTB�22 its physical meaning of strain concentration
tensor: it can indeed be seen as the linear operator A W ŒTB�02 ! ŒTB�02 that maps the
applied strain �a that would be attained in the absence of inclusion into the strain �
actually attained by the inclusion.

11.3.3 Composites with Spheroidal Inclusions and the Aligned
Case

In the 1960s, Hill (1963, 1965), Hashin (1963) and Walpole (1966a,b, 1969) gave
fundamental contributions to the development of techniques for the evaluation of
the overall elasticity tensor (overall elastic moduli, in the terminology of the time)
of a composite starting from the elasticity tensors of the individual constituents of
the composite. A composite differs from the system of Eshelby’s inclusion problem
in that an inclusion is no longer a solitary singularity in an infinite matrix, but is one
of many other inclusions, which could be of the same or of different type.

The problem of the evaluation of the overall elasticity tensor for a composite with
one or more families of inclusions is therefore tackled by means of the concept of
representative element of volume or, with the customary acronym, REV. The REV
could be defined as the smallest region whose material properties are equivalent to
those of the whole composite. We quote the definition of REV given by Hill (1963):

This phrase [representative element of volume] will be used when referring to a sample that
(a) is structurally entirely typical of the whole mixture on average, and (b) contains a suffi-
cient number of inclusions for the apparent overall moduli to be effectively independent of
the surface values of traction and displacement, so long as these values are “macroscopically
uniform”. That is, they fluctuate about a mean with a wavelength small compared with the
dimensions of the sample, and the effects of such fluctuations become insignificant within
a few wavelengths of the surface. The contribution of this surface layer to any average can
be made negligible by taking the sample large enough.

Thus, the REV that we consider must contain a sufficient number of inclusions for
the overall elasticity tensor (or the collection of the “apparent elastic moduli”, in
Hill’s words) to be representative of that of the whole composite.

The composite is assumed to be comprised of NC1 phases, with phase 0 referring
to the matrix and phases r 2 f1; : : : ;Ng referring to the r-th inclusion families. The
inclusions are assumed to be perfectly fitted (Walpole, 1966a) in the matrix, which,
in Eshelby’s terminology, means that they are “inhomogeneous inclusions”, i.e.,
inclusions with no geometrical misfit with the matrix, but with elastic properties
different from those of the matrix. It is important to emphasise that, in order to be
able to apply Eshelby’s theory as described in Sects. 11.3.1 and 11.3.2, which is
based on an inclusion in an infinite matrix, we must make sure that each inclusion
is far enough from its prime neighbours, and the interactions among inclusions can
be neglected. This is achieved by imposing a reasonably low volumetric fraction for
each of the inclusion phases. The volumetric fraction of each phase is defined as
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�r D �r

�
; (11.68)

where� is the volume of the REV, and �r is the volume of the portion of the REV
occupied by phase r. The volumetric fractions obey the constraint

XN

rD0 �r D 1: (11.69)

The strain concentration tensor seen in Sect. 11.3.2 has been extensively used
in the determination of the overall elastic properties of composite materials with
inclusions (see, e.g., Hill, 1963; Walpole, 1966a,b, 1969; Weng, 1984, 1990; Qiu
and Weng, 1990). In the formalism introduced by Walpole (1966a,b, 1969) and
Weng (1990), the overall elasticity tensor L reads

L D
hXN

rD0 �r Lr W Ar

i
W
hXN

rD0 �r Ar

i�1
; (11.70)

where Lr is the elasticity tensor of phase r and

Ar D
�
I

T C Sr W ŒL�1
0 W Lr � I

T �
�1

(11.71)

is the strain concentration tensor of the r-th phase, in which Sr is the Eshelby fourth-
order tensor relative to the r-th phase, depending on the shape of the inclusions of
phase r and the elastic constants of the matrix. Note that the strain concentration
tensor A0 of the matrix is identically equal to the transpose I

T of the symmetric
identity. Indeed, since the matrix is not an inclusion embedded in itself, from
Eq. (11.71) we have

A0 D
�
I

T C S0 W ŒL�1
0 W L0 � I

T �
�1 D �IT C S0 W O

�1 D I
T ; (11.72)

where O is the zero tensor, regardless of the value of the tensor S0.7

We remark that Eq. (11.70) is analogical to that of the centre of mass of a system
of particles, i.e.,

xG D
PN

rD0 mr xr
PN

rD0 mr

: (11.73)

7On one occasion, we had stated that S0 reduces to the identity I
T (paragraph following Eq. (35)

in Federico et al., 2004) and, on another occasion, that it reduces to the zero tensor O (paragraph
following Eq. (12) in Federico, 2010a). Both statements are incorrect, as this S0 is really arbitrary.
One can think to obtain A0 by imagining to have an inclusion with an arbitrary ellipsoidal shape
and an elasticity tensor L0

0, which defines a corresponding S0, and then by performing the limit
L

0

0 ! L0. This yields A0 ! I
T regardless of the value of S0 .
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In this analogy, Eq. (11.70) provides the “barycentric elasticity tensor” of a com-
posite, in which the “masses” are the products �r Ar and the “moment arms” are the
elasticity tensors Lr .

In principle, Eq. (11.70) applies to any composite with ellipsoidal inclusions.
However, for ellipsoidal inclusion families with different semi-axis ratios, different
alignment of the semi-axes and different alignment of the directions or planes of
material symmetry, the overall elasticity tensor could be completely anisotropic.
Equation (11.70) becomes immediately usable in the case of transverse isotropy
with respect to a given direction m0, which is obtained when:

(A1) The matrix is either isotropic or transversely isotropic with respect to
direction m0.

(A2) All inclusions in all families have their axis of symmetry oriented in direction
m0, are spheroidal (i.e., are revolution ellipsoids) and are either isotropic or
transversely isotropic with respect to m0.

When the two conditions (A1) and (A2) are satisfied, all tensors featuring in
Eq. (11.70) are transversely isotropic in direction m0 and can be represented using
Walpole’s formalism (Walpole, 1981, 1984) presented in Sect. 11.2.7. This is the
procedure followed by Weng (1990) and Qiu and Weng (1990), leading to the
Walpole array representation

L D
hXN

rD0 �r Lr W Ar

i hXN

rD0 �r Ar

i�1
: (11.74)

Qiu and Weng (1990) also noted that the lack of major symmetry of the strain
concentration tensors Ar causes in general the lack of major symmetry of the overall
elasticity tensor obtained via Eq. (11.70), except in the perfectly isotropic case
mentioned above and when the aligned inclusion phases have all the same shape.
Thus, the transversely isotropic overall elasticity tensor found from Eq. (11.70)
when the conditions (A1) and (A2) are satisfied has Walpole representation

L D
��

n
p
2 `p

2 `0 2 c

�
; 2 �t; 2 �a

�
; (11.75)

where, in contrast with Eq. (11.53), `0 ¤ `. A “brute force” solution to this problem
was proposed by Wu and Herzog (2002), who took the (major) symmetric part of
the overall elasticity tensor L of Eq. (11.75), i.e.,

Lsym D 1
2
.LC L

T/; .Lsym/
ijkl D 1

2
.Lijkl C Lklij/; (11.76)

which, in terms of the symmetrised cross modulus to be used in the Walpole
representation Lsym of Lsym, reads

`sym D 1
2
.`C `0/: (11.77)
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Finally, we note that, if the matrix is isotropic and all inclusions in all families are
spherical and isotropic, isotropy is retrieved as a trivial particular case of transverse
isotropy.

11.4 Composite Materials with Statistically Oriented
Inclusions

In this section, we report, in the more recent notation presented in Sect. 11.2
(Federico, 2010a, 2015; Federico et al., 2015), our results for the general case of a
composite with statistically oriented spheroidal inclusions, in which the orientation
obeys a given probability density (Federico et al., 2004).

11.4.1 Generalised Walpole’s Formula

In order to univocally identify the orientation of an ellipsoid, we need three
parameters, e.g., the three Euler angles. In the case of a spheroid, by virtue of the
rotational symmetry, only two parameters are required, and those could be, e.g., two
Euler angles or, equivalently, the unit vector describing the direction of the axis of
symmetry of the spheroid. We shall restrict our attention to the case of spheroidal
inclusions. A phase of statistically oriented spheroidal inclusions (i.e., inclusions all
sharing the same geometry and elastic properties, but having different orientations)
can be thought of as an infinity of phases, each oriented in a certain direction, so
that the summation in Eq. (11.70) becomes an integral on the unit sphere S

2B. In
this integral, at every point x in the body B, the weighing function is a probability
density

 W S2B! R
C
0 W m 7!  .m/; (11.78)

which describes the probability to find, at each point x in B, an inclusion oriented
in direction m. In the case of inhomogeneous bodies,  depends explicitly on the
point x in the body. In the present formulation, however, for the sake of a lighter
notation, this dependence is omitted but understood. The probability density must
be normalised over the sphere and must be invariant for reflections m 7! �m, i.e.,

Z

S2B
 .m/ D 1; (11.79a)

 .�m/ D  .m/: (11.79b)
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For any function f defined on the unit sphere S
2B and valued in a tensor space of

any order (including order zero, i.e., scalar functions), we denote by8

hhf ii D
Z

S2B
 .m/ f .m/ (11.80)

its directional average. Note that we do not explicitly indicate the area element
(more precisely, the area two-form; see Epstein, 2010; Segev, 2013) in the integral.
If the function f to be averaged enjoys the same symmetry as , i.e., f .�m/ D f .m/,
it is possible to restrict the integral to the north hemisphere, defined by

S
2CB D fm 2 S

2B W m:m0 � 0g; (11.81)

where m0 2 S
2B is the chosen polar direction. Naturally, since the integral is

performed on half the domain (the north hemisphere S
2CB is half of the sphere

S
2B), one has to take twice the value of the integral (alternatively, one could re-

normalise the probability density).
When the sum in Eq. (11.70) becomes an integral, we need to transform the

variables according to

�r 7! �1  .m/; (11.82a)

Lr 7! L1.m/; (11.82b)

Ar 7! A1.m/; (11.82c)

i.e., we can call the collection of all inclusions “phase 1” and identify all orientations
in S

2B by means of the probability density  . Equation (11.70) then becomes

L D Œ�0 L0 C �1hhL1 W A1ii� W
�
�0 I

T C �1hhA1ii
�1

; (11.83)

where the terms relative to the matrix account for the fact that the strain concentra-
tion tensor A0 reduces to the transpose I

T of the symmetric identity [Eq. (11.72)],
and we used the definition (11.80) of directional average in

hhL1 W A1ii D
Z

S2B
 .m/L1.m/ W A1.m/; (11.84)

hhA1ii D
Z

S2B
 .m/A1.m/: (11.85)

8Note that, in some previous works (Federico et al., 2004; Federico, 2010a), we used the symbol
hf i for the integral in Eq. (11.80) in the case of isotropic probability  .m/ D 1=4� and called hf i
the “average of f ” . We do not adopt this meaning of “average” here and, much more generally, we
use “directional average” for the integral in Eq. (11.80) with any probability density  .
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In the most general case, the composite is comprised of matrix (subscript 0), Na

inclusion phases, all aligned in a definite direction (subscript r 2 f1; : : :Nag), and
Np inclusion phases with statistical orientation (subscript r 2 f1; : : :Npg). Thus, the
overall elasticity tensor reads

L D
h
�0 L0 C

XNa

rD1 �r Lr W Ar C
XNp

sD1 �shhLs W Asii
i

W
h
�0 I

T C
XNa

rD1 �r Ar C
XNp

sD1 �shhAsii
i�1

; (11.86)

where, for each phase s,

hhLs W Asii D
Z

S2B
 s.m/Ls.m/ W As.m/; (11.87)

hhAsii D
Z

S2B
 s.m/As.m/ (11.88)

are the directional averages of the product Ls W As and of the strain concentration
tensor As, respectively, and  s is the probability density describing the orientation.

In both the case of Eq. (11.83) with one phase of statistically oriented inclusions
and the general case of Eq. (11.86), it is important to remark that all inclusions in
the same phase s have identical geometry and mechanical properties, which means
that, for every pair of directions m˛ and mˇ , there are suitable rotation tensors Q
and R (which coincide if the axes of geometrical symmetry coincide with the axes
of material symmetry) such that

Ls.m˛/ D .Q˝ Q/ W Ls.mˇ/ W .QT ˝ QT/; (11.89a)

As.m˛/ D .R�T ˝ R�T/ W As.mˇ/ W .RT ˝ RT/: (11.89b)

11.4.2 Transversely Isotropic Case: Preliminaries

In the general system with statistically oriented inclusions described by Eq. (11.86),
transverse isotropy in direction m0 is obtained with weaker conditions than those
of the aligned case seen in Sect. 11.3.3. Specifically, while condition (S1) below is
identical to condition (A1), condition (S2) below echoes (A2) but is valid only for
the aligned phases r 2 f1; : : : ;Nag, and a new condition (S3) must be stated for the
statistically oriented phases s 2 f1; : : : ;Npg:
(S1) The matrix is either isotropic or transversely isotropic with respect to m0.
(S2) All inclusions in all aligned families r 2 f1; : : : ;Nag have their axis of sym-

metry oriented in direction m0, are spheroidal (i.e., are revolution ellipsoids)
and are either isotropic or transversely isotropic with respect to m0.
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(S3) All inclusions in all statistically oriented families s 2 f1; : : : ;Npg are
spheroidal, are either isotropic or transversely isotropic with respect to
their axis of geometrical symmetry, and the probability densities  s are all
transversely isotropic with respect to direction m0, i.e.,  s.Qm/ D  s.m/,
where Q is an orthogonal tensor such that Qm0 D ˙m0.

Indeed, under the hypotheses (S1)–(S3), all elasticity tensors L0 and Lr, the
transpose I

T of the symmetric identity, all strain concentration tensors Ar and
all directional averages hhLs W Asii and hhAsii in Eq. (11.86) are transversely
isotropic with respect to m0, which implies the transverse isotropy of the over-
all elasticity tensor L. Thus, all tensors in Eq. (11.86) can be decomposed in
Walpole’s transversely isotropic basis of Eq. (11.32) relative to direction m0, i.e.,
fU˛ˇ.m0/;V� .m0/g2˛;ˇ;�D1, so that all tensor contractions and inversions can be
performed conveniently exploiting Walpole’s array formalism, in which Eq. (11.86)
takes the form

L D
h
�0 L0 C

XNa

rD1 �r Lr W Ar C
XNp

sD1 �shhLs W Asii
i

h
�0 IT C

XNa

rD1 �r Ar C
XNp

sD1 �shhAsii
i�1

; (11.90)

where the Walpole array IT is equal to I, identically.
The decomposition in the transversely isotropic basis fU˛ˇ.m0/;V� .m0/g2˛;ˇ;�D1

is straightforward for L0, IT , Lr and Ar, which are all transversely isotropic in
direction m0 by hypothesis, but requires some additional work for the directional
averages hhLs W Asii and hhAsii. Even though Eq. (11.90) requires the determination
of the Walpole components of hhAsii in ŒTB�22, we shall decompose its “contravari-
ant” counterpart hhA]sii in ŒTB�40, for which the formulae (11.34) are applied. This

can be done because, as seen in Sect. 11.4.3, hhA]sii and hhAsii have the same Walpole
array (see Sect. 11.2.7). We recall that hhA]sii is obtained from hhAsii by raising the
first pair of indices of As through I

] (the “contravariant” symmetric identity defined
in Eq. (11.24a)), i.e., by computing A

]
s D I

] W As, and averaging the resulting
expression: hhA]sii D hhI] W Asii D I

] W hhAsii D hhAsii]. Note that the equality
hhA]sii D hhAsii] stems from the fact that directional averaging and raising of indices
commute with each other.

The whole problem of inclusions oriented according to a given transversely
isotropic probability density reduces to the evaluation of the Walpole array of the
directional average of the 2 s tensors hhLs W Asii and hhAsii. This latter problem is
solved once we are able to evaluate the Walpole array of the directional average of
a generic tensor T, which is the topic of Sect. 11.4.3. We conclude this section by
noting that isotropy is retrieved if the inclusions in the “aligned” phases are spherical
and isotropic, and if the probability density is imposed to be isotropic, which means
that the inclusions of the statistical phases are oriented randomly. Under this latter
hypothesis, the inclusions of the statistically oriented phases are allowed to be of
spheroidal shape and either isotropic or transversely isotropic with respect to the
direction of their axis of geometrical symmetry.
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11.4.3 Transversely Isotropic Case: Average
of a Function of the Direction

Let

T W S2B! ŒTB�40 W m 7! Ts.m/ 2 .ŒTB�40;m/; (11.91)

be a .ŒTB�40;m/-valued function, m0 a direction in S
2B and  a probability density

with transverse isotropy with respect to m0. Our purpose is to study the directional
average

hhTii D
Z

S2B
 .m/T.m/: (11.92)

First, we note that, since the probability density  is transversely isotropic with
respect to m0, then hhTii belongs to .ŒTB�40;m0/, and we have the identity

hhTii D hhTii˛ˇ U˛ˇ.m0/C hhTii� V� .m0/; (11.93)

where fU˛ˇ.m0/;V� .m0/g2˛;ˇ;�D1 is the basis of .ŒTB�40;m0/, and

hhTii˛ˇ D hhhTii;U˛ˇ.m0/i; hhTii� D 1
2
hhhTii;V�.m0/i; (11.94)

according to Eq. (11.34). Second, if we decompose T.m/ in the basis
fU��.m/;V�.m/g2�;�;�D1 of the space .ŒTB�40;m/ of transversely isotropic tensors
with respect to m, the directional average in Eq. (11.92) becomes

hhTii D
Z

S2B
 .m/

�
T
��

U��.m/C T
�
V�.m/



D T
��

Z

S2B
 .m/U��.m/C T

�

Z

S2B
 .m/V�.m/

D T
�� hhU��ii C T

� hhV�ii; (11.95)

where the Walpole components T�� and T
� do not depend on the direction m and

can be therefore factorised out of the integral.
Now, we note that the directional averages hhU��ii and hhV�ii are of the same type

as the average hhTii in Eq. (11.92) and thus are transversely isotropic in direction m0.
Therefore, we can use Eq. (11.93) to write hhU��ii and hhV�ii as

hhU��iiD hhU��ii˛ˇ U˛ˇ.m0/ChhU��ii� V� .m0/; (11.96a)

hhV�ii D hhV�ii˛ˇ U˛ˇ.m0/ChhV�ii� V� .m0/: (11.96b)
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In this way, the problem of evaluating the directional average hhTii of the tensor-
valued function T.m/ is reduced to finding the averages hhU��ii and hhV�ii of
U��.m/ and V�.m/. Since the scalar product by a tensor that is independent of
the direction m and integration over all directions m commute, we have

hhU��ii˛ˇD
� �Z

S2B
 .m/U��.m/

	
; U˛ˇ.m0/

�
D

Z

S2B
 .m/ hU��.m/ ; U˛ˇ.m0/i;

(11.97a)

hhU��ii� D 1
2

� �Z

S2B
 .m/U��.m/

	
; V� .m0/

�
D 1
2

Z

S2B
 .m/ hU��.m/ ; V� .m0/i;

(11.97b)

hhV�ii˛ˇ D
� �Z

S2B
 .m/V� .m/

	
; U˛ˇ.m0/

�
D

Z

S2B
 .m/ hV� .m/ ; U˛ˇ.m0/i;

(11.97c)

hhV�ii� D 1
2

� �Z

S2B
 .m/V� .m/

	
; V� .m0/

�
D 1
2

Z

S2B
 .m/ hV� .m/ ; V� .m0/i:

(11.97d)

This procedure reduces the number of integrals to be evaluated from 6 � 81 D 486
[indeed, each of the 6 tensors hhU��ii, hhV�ii, with �; �; � 2 f1; 2g, has 81
components] to 6 � 6 D 36 (or 16 C 8 C 8 C 4 D 36, if one looks at the
four equations (11.97)), i.e., 6 independent components for each of the 6 averages
fhhU��ii; hhV�iig2���D1. Moreover, this procedure eliminates many integrals, which
vanish because of the transverse isotropy of the system with respect to m0 and
could give numerical problems as they could be highly oscillatory (Federico et al.,
2004). As we shall show in Sect. 11.4.4, these integrals can be expressed in spherical
coordinates as a function of the co-latitude and longitude angles taken from a
reference frame in which the polar axis is the overall direction of symmetry m0.

Using Eqs. (11.93), (11.95) and (11.96), we obtain the expression of the direc-
tional average hhTii in the basis fU˛ˇ.m0/;V� .m0/g2˛;ˇ;�D1 as

hhTii D T
��


hhU��ii˛ˇ U˛ˇ.m0/C hhU��ii� V� .m0/

�

C T
�


hhV�ii˛ˇ U˛ˇ.m0/C hhV�ii� V� .m0/

�
; (11.98)

which can be rearranged into the final expression

hhTii D


T
��hhU��ii˛ˇ C T

�hhV�ii˛ˇ
�
U˛ˇ.m0/C



T
��hhU��ii� C T

�hhV�ii�
�
V� .m0/:

(11.99)
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The Walpole array form of Eq. (11.99) is

hhTii D
nh
T
��hhU��ii˛ˇ C T

�hhV�ii˛ˇ
i
;T��hhU��ii� C T

�hhV�ii�
o
: (11.100)

11.4.4 Transversely Isotropic Case: Solution in the Polar
Parametrisation

Assuming that the symmetry axis m0 of the transverse isotropy coincides with vector
e1 of an orthonormal basis feig3iD1, the generic direction m can be expressed as a
function

m.�; '/ D cos � e1 C sin � cos' e2 C sin � sin' e3; (11.101)

where � is the co-latitude, measured from the polar direction m0 � e1, and ' is the
longitude, measured from the plane spanned by e1 and e2 (see Fig. 11.2). Using the
polar parametrisation of the sphere, the probability density  can be written as

%.�/ D  .m.�; '//; (11.102)

where the new function % does not depend on the latitude angle ' because
of the transverse isotropy of  . In the polar parametrisation, the directional
average (11.80) of a generic function f becomes

hhf ii D
Z 2�

0

�Z �

0

%.�/ f .m.�; '// sin � d�

�
d': (11.103)

We recall the symmetry of  for reflections m 7! �m and note that it is inherited by
% as a symmetry in � about the value �=2, i.e., %.�/ D %.���/. Thus, for functions
f invariant under reflections m 7! �m (such as all our fourth-order tensors, which
depend on m via the structure tensor a D m˝m), we can also write

hhf ii D 2
Z 2�

0

"Z �=2

0

%.�/ f .m.�; '// sin � d�

#

d'; (11.104)

which is equivalent to integrating  over the north hemisphere S
2CB as in

Eq. (11.81). For our purposes, the generic function f has to be replaced by the
integrands in Eq. (11.97).
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e2

e3

e′
3

e′
2

e′
1 ≡ m θ

θ

ϕ

m0 ≡ e1

Fig. 11.2 Representation of the generic direction e0

1 � m of the axis of symmetry of a spheroidal
inclusion in terms of the co-latitude angle � and the longitude angle '. The co-latitude � is
calculated from the global direction of symmetry e1 � m0, and the longitude ' is calculated
from the plane spanned by e1 and e2

11.4.5 Some Relevant Particular Cases

The most “classical” particular cases of transversely isotropic probability density  
are the case of probability density converging to the Dirac delta, describing orienta-
tion in one direction; the case of in-plane random orientation, in which all directions
within the same plane are equally probable; and the case of random orientation,
yielding an isotropic solution. In the solutions that we report below, in order to
minimise the possibility of making mistakes with the tedious integrals (11.97), we
employed Wolfram Mathematica.

The case of alignment in one definite direction can be tackled by means of a
parametric probability density peaked at � D 0, which can be made to converge,
in the sense of distributions (see, e.g., Kolmogorov and Fomin, 1999), to a Dirac
delta, which is the approach we used in the past (Federico et al., 2004). However,
quite trivially, one can directly say that, if all inclusions are oriented in the same
direction, Eq. (11.86) reduces to the Walpole solution (11.70) which Weng (1990)
and Qiu and Weng (1990) used for aligned inclusions [and which we reported in the
form of a Walpole array in Eq. (11.74)].

The case of random orientation in a plane can also be solved with a parametric
probability density peaked at � D �=2 that converges, in the sense of distributions,
to a Dirac delta (Federico et al., 2004). However, we can follow a simpler
method. Rather than averaging the function f .m. � ; � // with values f .m.�; '// of
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Eq. (11.103) on the whole unit sphere S
2B, we average the function f .m.�=2; � //

with values f .m.�=2; '// on the equatorial unit circumference .S1B;m0/, i.e., the
circumference laying on the plane orthogonal to the direction of overall symmetry
m0 (which is the plane spanned by e2 and e3 in Fig. 11.2). This boils down to
transforming the integral in Eq. (11.103) into

hhf ii D
Z 2�

0

1

2�
f .m.�=2; '// sin.�=2/ d' D 1

2�

Z 2�

0

f .m.�=2; '// d';

(11.105)

where 1=2� is the constant value of the probability density on the equatorial
unit circumference .S1B;m0/ and equals the reciprocal of the amplitude of the
interval Œ0; 2�� within which the longitude ' varies. Considering Eq. (11.105), the
components of the directional averages hhU��ii and hhV�ii in Eq. (11.97) can be
obtained and represented via the Walpole arrays
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0 4

�
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�
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For the case of random orientation, we follow the approach we used in the past
(Federico et al., 2004), with some minor notational and procedural differences.
When the probability density is given by  .m.�; '// D %.�; '/ D 1=4� (random
orientation), the integral in Eq. (11.92) must coincide with its isotropic projection
[see Eq. (11.28)], i.e., must necessarily be isotropic. Thus, we have the identity

hhTii D
Z

S2B
 .m/T.m/ �

�Z

S2B
 .m/T.m/

�

iso
D hhTiiiso: (11.107)

Since the operation of isotropic projection (11.28) and the averaging integral
commute, we can also write

hhTii D
Z

S2B
 .m/T.m/ �

Z

S2B
 .m/ ŒT.m/�iso D hhTisoii: (11.108)

Moreover, the dependence on m in ŒT.m/�iso must disappear, as ŒT.m/�iso is
isotropic. Thus, we can replace ŒT.m/�iso by ŒT.m0/�iso, where m0 is an arbitrary
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direction, and factorise ŒT.m0/�iso outside of the integral sign to obtain the final
expression

hhTii D ŒT.m0/�iso ; (11.109)

where we used the normalisation to one of the probability densities. Since T.m0/ D
T
˛ˇ

U˛ˇ.m0/C T
�
V� .m0/, we can use linearity and write

hhTii D T
˛ˇ
�
U˛ˇ.m0/


iso C T

�
�
V� .m0/


iso : (11.110)

The isotropic projections
�
U˛ˇ.m0/


iso and

�
V� .m0/


iso can be written either in the

isotropic basis fK];M]g or in Walpole’s transversely isotropic representation as seen
in Eq. (11.42). In the former case, we have
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and, in the latter, we have
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11.5 Discussion

In this chapter, we summarised and discussed in detail some selected results
from previous studies of ours, with the purpose of rephrasing in a more efficient,
consequent, and formally correct way the linear elastic formulation of our picture
of composite materials with statistically oriented spheroidal inclusions.
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After presenting the covariant formulation of the linear algebra of isotropic
and transversely isotropic second- and fourth-order tensors, we addressed some
fundamental aspects of composite materials with aligned inclusions, which required
to review Eshelby’s inclusion problem, Eshelby’s fourth-order tensor S and the
strain concentration tensor A. Within this framework, we discussed the conditions,
pertaining the geometry of the inclusions and their orientation as well as the material
symmetries of the matrix, which lead to a globally transversely isotropic (or, in
some special cases, isotropic) composite. Then, we considered composite materials
with statistically oriented inclusions. To this end, we introduced the probability
density describing the probability that the symmetry axis of an inclusion is in
a given direction and generalised Walpole’s formula (11.70) (Walpole, 1966a,b,
1969; Weng, 1990) to the case of transversely isotropic materials with respect to
a symmetry axis m0 [cf. Eq. (11.99)]. In order to achieve this and to minimise the
number of integrals to be performed, we translated the directional averaging of
tensor functions depending on the direction into Walpole’s formalism and obtained
Eq. (11.100), which determines the Walpole array of the directional average of a
given fourth-order tensor T. Finally, we showed some explicit calculations for the
relevant cases of isotropy and transverse isotropy.

It is important to emphasise the difference in terms of conditions necessary to
obtain transverse isotropy between Walpole’s original formula and the generalised
one. Walpole’s original formula (11.70) necessitates only the two conditions (A1)
and (A2) seen in Sect. 11.3.3 to be applicable to transversely isotropic materials,
in the Walpole array form of Eq. (11.74). In contrast, the generalised Walpole’s
formula (11.86) considers Na families of aligned inclusions and Np families of
statistically oriented fibres, and the three conditions (S1)–(S3) of Sect. 11.4.2 are
needed. While condition (S1) is identical to the “old” condition (A1), and (S2)
echoes condition (A2), but only for the Na aligned phases, a new condition (S3)
needs to be stated for the Np statistically oriented families (i.e., the Np probability
densities  s must be transversely isotropic with respect to m0).

The theory of composite materials with statistical orientation of the inclusions
is a rich research field in which very diverse scientific interests converge. The
trigger of our studies has been the mechanical characterisation of soft biological
tissues. These are highly organised media, endowed with a complex internal
structure, whose mechanical properties are vastly influenced by the presence and
orientation of collagen fibres. Tendons and ligaments are typical examples of tissues
in which the collagen fibres are aligned, and blood vessels and articular cartilage are
examples of tissues in which the collagen fibres have statistical orientation. Collagen
fibres can indeed be viewed as inclusions that provide structural reinforcement to
the non-fibrous extracellular matrix and modulate several important bio-chemo-
mechanical processes, which involve, for instance, the flow of interstitial fluids
as well as the diffusive-reactive dynamics of the chemical species populating the
tissues (nutrients and outputs of chemical reactions). These processes are associated
with both second- and fourth-order tensor quantities that, depending on the (either
statistical or not) arrangement of the fibres, can be represented by using the methods
outlined in Sects. 11.3 and 11.4. In the case of statistical orientation, the directional
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average defined in Eq. (11.92) takes a tensor describing how a given quantity is
associated with the spatial direction m of local fibre alignment and returns the
overall tensor quantity defined in one point of the tissue. This allows for obtaining
microstructurally based constitutive laws and puts in evidence how the evolution
of the tissue’s internal structure yields an evolution of the averaged tensor quantity
hhTii associated with the considered material property.

In two previous papers of ours (Grillo et al., 2012, 2015), we proposed a theory
of remodelling in fibre-reinforced materials, where by “remodelling” we mean here
the structural reorganisation of a body, be it a tissue or a non-biological material.
In this theory, the evolution of the internal structure of a given medium was
described by the time change of the probability density  featuring in the averaging
integral (11.92). Under the hypothesis that the evolution of  does not modify the
transverse isotropy of the material with respect to the direction m0 (in fact, this
requires to evolve by maintaining itself transversely isotropic, i.e., by maintaining
itself independent of the longitude angle, in the spherical coordinate setting of
Sect. 11.4.4), the use of Walpole’s notation in Eq. (11.100) makes it possible to
isolate the effect of remodelling on the averaged tensor quantity hhTii, expressed
in terms of the array hhTii. Indeed, while the averaged tensors of the Walpole’s
basis for transverse isotropy with respect to the generic direction m, i.e., hhU��ii and
hhV�ii, evolve in time as they are driven by the time change of  , the components
T
�� and T

� do not. In turn, since the direction m0 is assumed to be preserved
by the considered remodelling process, only the arrays fŒhhU��ii˛ˇ�; hhU��ii�g,
fŒhhV�ii˛ˇ�; hhV�ii�g vary in time. In conclusion, by adopting Walpole’s arrays, it
is possible to study the influence of remodelling on a global property, expressed by
the averaged fourth-order tensor hhTii (e.g., the fourth-order elasticity tensor of the
considered medium), by looking at the evolution of the components of the averages
of the Walpole’s basis tensors U�� and V� . This subject is among the topics of our
current investigations.
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Chapter 12
A Time-Incremental Eshelby-Based
Homogenization Scheme for Viscoelastic
Heterogeneous Materials

Stéphane Berbenni and Hafid Sabar

Abstract A time-incremental Eshelby-based homogenization scheme for
Maxwellian heterogeneous materials is proposed and discussed. This is based
on the exact solution of the heterogeneous Eshelby ellipsoidal inclusion problem
obtained in the time domain. In contrast with hereditary methods, the effective
behavior and the evolution laws of the averaged stresses per phase are solved
incrementally in the time domain without the need of inverse Laplace or Laplace–
Carson transforms. This is made through a time differential equation to exactly
solve a volume term in the integral equation that was generally approximated in
previous internal variable methods. The present formulation works for any arbitrary
anisotropic ellipsoidal Maxwellian inclusion embedded in an isotropic Maxwellian
matrix without any other restrictive assumptions. In order to show the interest of the
present approach, a Mori–Tanaka homogenization scheme is applied to two-phase
composites using the developed strain rate concentration equations. The results
are reported and discussed in comparisons with other existing methods, including
hereditary approaches and more recent internal variable approaches, in order to
show the efficiency of the present time-incremental homogenization scheme.

12.1 Introduction

Materials like composites, metals, or polymers exhibit time-dependent behaviors
which, from the homogenization point of view, may require the use of linear
viscoelastic properties (Christensen, 1969; Laws and McLaughlin, 1978). Generally,
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the coupling between elastic and inelastic deformations renders micromechanical
homogenization schemes particularly complex even in the case of linear viscoelastic
heterogeneous materials. For instance, it was highlighted that the overall behavior
of aggregates with Maxwellian constituents is no longer Maxwellian (Suquet, 1987;
Rougier et al., 1993; Li and Weng, 1994). This is due to the differential nature of
constitutive equations which involves different orders of time-derivation mechanical
fields. In past decades, several approaches were proposed to solve linear viscoelastic
problems.

Riemann–Stieltjes integral-based “hereditary” homogenization approaches using
Laplace–Carson transforms and the correspondence principle (see, e.g., Mandel
1966) were first developed in the case of non-aging linear viscoelastic materials.
The inclusion problem was first solved (Hashin, 1969; Laws and McLaughlin,
1978) and further introduced in different homogenization schemes: Mori–Tanaka
(Wang and Weng, 1992; Li and Weng, 1994, 1997; Brinson and Lin, 1998; Pierard
and Doghri, 2006), Hashin–Shtrickman (DeBotton and Tevet-Deree, 2004), or self-
consistent (Laws and McLaughlin, 1978; Weng, 1993; Turner and Tomé, 1993;
Rougier et al., 1993, 1994; Masson and Zaoui, 1999; Brenner et al., 2002) estimates,
among others. The overall properties of composites in the time domain are then
obtained by the Laplace or Laplace–Carson inversion either analytically in simple
cases (Hashin, 1969; Rougier et al., 1993; Wang and Weng, 1992; Li and Weng,
1994), or, numerically in major cases (Laws and McLaughlin, 1978; Levesque et al.,
2007) which demands large CPU time and memory.

A more efficient homogenization strategy is based on “incremental internal
variables approaches,” whereby the stress history is recorded through the inelastic
strains of the individual constituents. The hereditary approaches give the solution
in the transformed (Laplace or Laplace–Carson) domain, whereas the internal
variables formulations directly provide the solution in the time domain. Time is
implicitly present in these formulations through the inelastic strains. Thus, these
fields are defined as “internal variables.” One of the main advantages of developing
such approaches in addition to CPU time and memory lies in examining complex
loading paths in time domains and aging behaviors.

First, internal variables self-consistent and Mori–Tanaka approximations for
heterogeneous linear and non-linear viscoelastic materials were developed in Weng
(1981), Kouddane et al. (1993), Molinari et al. (1997), Paquin et al. (1999), Sabar
et al. (2002), and Molinari (2002). The first developments were carried out by Weng
(1981) in the 1980s who adapted Kröner’s (1961) elastoplastic self-consistent model
to the case of elasto-viscoplasticity. However, similarly to the original proposition
of Kröner’s (1961), internal stresses are overestimated with this method. In the
1990s, an “additive” interaction law for the Eshelby’s inclusion problem was derived
for Maxwellian local viscoelastic behavior by Molinari et al. (Kouddane et al.,
1993; Molinari et al., 1997; Molinari, 2002). This interaction law was written in
terms of strain rates and was postulated as the superposition of elastic and inelastic
interaction laws. It was applied to the non-linear elasto-viscoplastic Eshelby’s
inclusion problem using a “tangent” formulation with some applications to the
Mori–Tanaka and self-consistent estimates in Mercier and Molinari (2009). The
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“translated fields” method was developed for linear and non-linear viscoelasticity
in Paquin et al. (1999) and in Sabar et al. (2002) starting from the integral equation
of the heterogeneous elasto-viscoplastic problem. Good predictions were found in
Paquin et al. (1999) in comparison with the exact “1-site” self-consistent solution
of Rougier et al. (1994). The “translated fields” approach of Paquin et al. (1999)
was recently extended to treat linear viscoelastic composites with the Mori–Tanaka
scheme in Mercier et al. (2012), where it was compared to the “additive” interaction
law and Fast Fourier Transform (FFT) calculations. A very rich but complex
interaction law was obtained with the “translated fields” method in Mercier et al.
(2012). The extensions of the “translated fields” method to non-linear viscoelastic
composites and polycrystals with an “affine” formulation were recently reported by
Berbenni and Capolungo (2015) and by Mareau and Berbenni (2015), respectively.
The results of this extended “translated fields” method were successfully compared
to the ones obtained by the “affine” hereditary approach developed by Masson and
Zaoui (1999) for the same non-linear polycrystal Mareau and Berbenni (2015).
Another approach based on a “sequential” linearization technique was recently
developed by Kowalczyk-Gajewska and Petryk (2011). This technique is based on
the sequential resolution of purely elastic and purely viscoplastic interaction laws.
Different “variants” of the technique were proposed for sequential linearization,
and the aforementioned “additive” interaction law was retrieved as a specific
“variant.” Lastly, a self-consistent internal variables approach for two-phase linear
isotropic viscoelastic composites was also proposed by Coulibaly and Sabar (2011)
and successfully compared to the exact results of Hashin (1969) and Rougier
et al. (1994) for two-phase composites. Variational approaches were developed
by Lahellec and Suquet (2007a,b) and by Brassard et al. (2012). An incremental
internal variables approach was first developed in linear viscoelasticity by Lahellec
and Suquet (2007a) and extended to non-linear viscoelasticity also by Lahellec
and Suquet (2007b). These authors used two potentials (free energy density and
dissipation potential) with an implicit time discretization scheme based on a
variational method. Their theory was applied to both Maxwell and Kelvin–Voigt
rheological models. The FFT technique was also reported in Lahellec and Suquet
(2007a,b) as “exact” reference solutions to assess the variational approach. Recently,
another variational approach was developed in Brassard et al. (2012) for non-linear
two-phase elasto-viscoplastic composites using a “secant” linearization scheme and
a Mori–Tanaka approximation. A method inspired from the collocation method
was first developed by Ricaud and Masson (2009). Interestingly, this approach is
based on an equivalence between the collocation method and an internal variables
formulation to obtain the exact effective behavior for a two-phase microstructure
in the cases of Voigt, Reuss, and Mori–Tanaka estimates. Exact analytical results
were provided in Ricaud and Masson (2009) in the case of two-phase elastically
homogeneous Maxwellian linear viscoelastic composites. These solutions will be
used in the sequel to assess the present internal variables formulation with a Mori–
Tanaka estimate. The extension of Ricaud and Masson (2009) method to the case
of linear viscoelastic polycrystals with a self-consistent procedure was recently
reported in Masson et al. (2012). It is noteworthy that Ricaud and Masson (2009)
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homogenization scheme was also applied to aging linear viscoelasticity. A different
homogenization scheme for aging linear viscoelastic matrix-inclusion composite
materials using the Volterra operator and working in the time domain was developed
by Sanahuja (2013) for isotropic phases and spherical inclusions. This scheme was
recently extended by Lavergne et al. (2016) to ellipsoidal inclusions and assuming
isotropic aging viscoelastic matrices with time-independent Poisson ratio.

The objective of this chapter is to present and discuss a recent internal variables
approach first introduced by Berbenni et al. (2015) based on an incremental
Eshelby-based homogenization scheme for viscoelastic heterogeneous materials
operating in the time domain. Section 12.2 introduces the constitutive equations
and the exact time-incremental internal variables formulation in the case of micro-
heterogeneous linear viscoelastic Maxwellian behavior. The integral equation can be
simplified by considering isotropic viscoelastic properties for the reference medium
without other more restrictive assumptions. Then, the incremental internal variables
approach is set up through a time differential equation related to the “volume” term
in the integral equation. In Sect. 12.3, the viscoelastic Eshelby’s inclusion problem
is exactly solved through incremental strain rate concentration laws and through
incremental interaction laws that do not contain any approximation. Based on the
strain rate concentration equations of the Eshelby problem, a time-incremental
internal variables homogenization Mori–Tanaka scheme is derived in Sect. 12.4 for
linear viscoelastic two-phase composites and an isotropic distribution of phases.
Then, this homogenization scheme is applied to different cases, including compar-
isons with other Mori–Tanaka homogenization schemes for two-phase Maxwellian
composites: (1) the exact analytical derivations from Li and Weng (1994) using
a hereditary approach and Laplace transform inversion, (2) Ricaud and Masson
(2009) exact formulation for compressible viscoelastic phases with homogeneous
elasticity, and (3) the approximate models based on the “translated fields” method
(Paquin et al., 1999; Berbenni and Capolungo, 2015; Mareau and Berbenni, 2015)
or based on the “additive” interaction law (Kouddane et al., 1993; Molinari et al.,
1997; Molinari, 2002; Mercier and Molinari, 2009).

12.2 Time-Incremental Formulation

12.2.1 Constitutive Equations

A heterogeneous linear viscoelastic medium V with boundary @V is considered with
Maxwellian constituents characterized by linear elastic moduli c� (elastic compli-

ances s� D c�
�1) and linear inelastic moduli b� (inelastic compliances m� D b�

�1).
For linear viscoelasticity, m� and b� are constant (i.e., time independent). Here, non-

linear viscoelasticity, where m� and b� are time- and stress-dependent, is disregarded.

The problem is treated within the framework of quasi-static equilibrium with
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infinitesimal strains and no volume forces. Thus, for a given applied homogeneous
strain rate P"�

0, field equations of the linear viscoelastic (Maxwellian) problem are

given by


� D b� W


P"� � s� W P
�

�
or P
� D c� W



P"� � m� W 
�

�

div P
� D 0
div
� D 0
P"� D r

s Pu

Pud D P"�
0 � x on @V

(12.1)

where P"� is the total strain rate with linearized kinematics, 
� is the Cauchy stress, and

P"�
e D s� W P
� (resp. P"�

v D m� W 
�) is the elastic (resp. inelastic) strain rate. In Eq. (12.1),

u is the unknown displacement field, rs denotes the symmetrized gradient operator,
div denotes the divergence operator, and the symbols “.” and “:” denote simple and
contracted products, respectively.

The heterogeneous elastic moduli c� (resp. compliances s�) and the heterogeneous

viscous moduli b� (resp. compliances m�) can be written in terms of spatial fluctua-

tions ıc� (resp. ıs� ) and ıb� (resp. ım� ) as follows:

c� D c�
0 C ıc� I s� D s�

0 C ıs� Ib� D b�
0 C ıb� Im� D m�

0 C ım� (12.2)

where c�
0, s�

0, b�
0, and m�

0 denote the elastic moduli, elastic compliances, viscous

moduli, and viscous compliances of the homogeneous reference medium. Using the
classic Green’s function technique and previous constitutive equations yields

P"� D P"�
0 C ��

c0 ? c�
0 W R�C ��

c0 ? c�
0 W m�

0 W 
� (12.3)

or

P"� D P"�
0 C ��

b0 ? b�
0 W R�C ��

b0 ? b�
0 W s�

0 W P
� (12.4)

where ? denotes spatial convolution and R� contains the fluctuations of both elastic

and inelastic compliances and is given by

R� D ıs� W P
�C ım� W 
� (12.5)
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The fourth-order tensor ��
c0 (resp. ��

b0 ) is the modified Green tensor associated

with c�
0 (resp. b�

0) as defined in Kröner (1990):

� �
ijkl.x � x0/ D �1

2

�
G�

ik;jl.x � x0/C G�
jk;il.x � x0/

�
(12.6)

where G�
� is the Green tensor (see Mura 1987) associated with  D c0 and  D b0,

and x and x0 are position vectors.

12.2.2 Time-Incremental Internal Variables Formulation

For the rest of the paper, we assume the case of a homogeneous reference medium
with isotropic elastic and viscous properties, where k0 and kv0 are the elastic and
inelastic bulk moduli of the reference medium, and �0 and �v0 are its elastic and
inelastic shear moduli, such that

c�
0 W m�

0 W 
� D
�

k0

kv0
� �0

�v0

	

mı�C

�0

�v0

�

b�
0 W s�

0 W P
� D
�

kv0

k0
� �v

0

�0

	
P
mı�C

�v
0

�0
P
�

(12.7)

where 
m is the spherical part of 
� (i.e., hydrostatic pressure 
m D 1

3

kk).

For any statically admissible stress field verifying, Eq. (12.1), traction vector
continuity at perfectly bonded interfaces and homogeneous boundary conditions,
the modified Green operators associated with the homogeneous reference elastic
and viscous media have the following property (Kunin, 1983; Kröner, 1990):

��
c0 ? 
� D 0 and ��

b0 ? P
� D 0 (12.8)

Using Eqs. (12.7) and (12.8), Eq. (12.3) can be recast:

P"� D P"�
0 C ��

c0 ? c�
0 W R�C ˇ
�

� (12.9)

with

ˇ D 3

3k0 C 4�0
�

k0

kv0
� �0

�v0

	
(12.10)

and Eq. (12.4) simplifies to

P"� D P"�
0 C ��

b0 ? b�
0 W R�C � P
�

� (12.11)
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with

� D 3

3kv0 C 4�v0
�

kv0

k0
� �v

0

�0

	
(12.12)

and where


�
ij .x/ D �

1

4�

Z

V

�
1

jx � x0j
	

;ij


m
�
x0� dV 0 (12.13)

with 
�
ij .x/! 0 when jxj ! 1.

In Eq. (12.13), 
�
� is a volume term that is difficult to solve using only the

integral form described in Eq. (12.9) or Eq. (12.11). Therefore, an incremental
time differential equation is now proposed to solve 
�

�. Then, 
�
� is incrementally

computed using Eq. (12.13) as follows:

P
�
ij .x/ D �

1

4�

Z

V0

�
1

jx � x0j
	

;ij

P
m
�
x0� dV 0 (12.14)

In Eq. (12.14), the rate of 
m .x/ is obtained using the first constitutive laws
in Eq. (12.1) together with Eq. (12.9) or Eq. (12.11), and using Eq. (12.13) (see
Berbenni et al. (2015) for details). Finally, the following time differential equation
is obtained for 
�

�:

P
�
ij .x/ D �

˛c0

4�

Z

V

ˇ
ˇx � x0ˇˇ

;ijkl Rkl
�
x0/
�

dV 0

C 3˛c0

2�

Z

V

�
1

jx � x0j
	

;ij

Rm
�
x0� dV 0 � ˛

c0

˛b0

�

ij .x/

(12.15)

where

˛c0 D 3k0�0

3k0 C 4�0 (12.16)

˛b0 D 3kv0�v0

3kv0 C 4�v0
(12.17)

Equation (12.15) together with Eq. (12.9) or Eq. (12.11) represents the two exact
equations of the present incremental internal variables approach that are to be
solved simultaneously in a given time step. In the following, the Eshelby’s inclusion
problem is solved in the context of arbitrary anisotropic ellipsoidal Maxwellian
inclusion embedded in an infinite isotropic Maxwellian matrix.
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12.3 Viscoelastic Ellipsoidal Eshelby Inclusion

12.3.1 Strain Rate Concentration Equations

Here, we consider the whole volume V constituted of an ellipsoidal inclusion I with
volume VI embedded in an infinite matrix (here considered as the homogeneous
reference medium) subjected to P"�

0 at remote boundaries. The inclusion and the

matrix follow a Maxwellian behavior with uniform respective linear elastic c�
I , c�

0

and inelastic b�
I , b�

0 moduli (and conversely uniform respective linear elastic s�
I , s�

0

and inelastic m�
I , m�

0 compliances). In the following, only the infinite homogeneous

reference medium (0) is restricted to be isotropic. Thus, the spatial fluctuations of
elastic and linear inelastic properties are given by ıc�

I D c�
I � c�

0, ıs�
I D s�

I � s�
0,

ıb�
I D b�

I � b�
0, and ım�

I D m�
I �m�

0.

By denoting P"�
I the spatial average of P"� over the ellipsoidal inclusion VI , P"�

I is

obtained from Eq. (12.9):

P"�
I D P"�

0 C T�
c0

I W c�
0 W RI

� C ˇ
�
�I (12.18)

or from Eq. (12.11),

P"�
I D P"�

0 C T�
b0

I W b�
0 W RI

� C � P
�
�I (12.19)

where for any x 2 VI , the fourth-order tensors T�
c0

I

and T�
b0

I

defined as

T�
c0

I D
Z

VI

��
c0
�
x � x0� dV 0

T�
b0

I D
Z

VI

��
b0
�
x � x0� dV 0

(12.20)

are uniform tensors due to the Eshelby’s property for ellipsoidal inclusions (Eshelby,
1957). In Eqs. (12.18) and (12.19), 
�

�I is the spatial average of 
�
� over VI and RI

� is

given by

RI

� D ıs�
I W P
�

I C ım�
I W 
�

I (12.21)

where 
�
I is the spatial average of 
� over VI .
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Using Eq. (12.21) together with the constitutive laws in Eq. (12.1), Eq. (12.18)
can be rewritten as

P"�
I D A�

c0
I W P"�

0 C A�
c0

I W T�
c0

I W



c�
I W m�

I � c�
0 W m�

0
�
W 
�

I C ˇA�
c0

I W 
�
�I (12.22)

and Eq. (12.19) can be rewritten as

P"�
I D A�

b0
I W P"�

0 C A�
b0

I W T�
b0

I W



b�
I W s�

I � b�
0 W s�

0
�
W P
�

I C �A�
b0

I W P
�
�I (12.23)

The strain rate concentration tensors A�
c0

I

and A�
b0

I

are given by

A�
c0

I D



I�C T�
c0

I W ıc�
I
��1

A�
b0

I D



I�C T�
b0

I W ıb�
I
��1 (12.24)

Using Eq. (12.15), 
�
�I is the solution of the following time differential equation:

P
�I
ij D �

˛c0

4�
 I
;ijklR

I
kl C 3˛c0

2�
�I
;ijRm

I � ˛
c0

˛b0

�I

ij (12.25)

In Eq. (12.25), �I and I are harmonic and bi-harmonic potential functions (Ferrers,
1877; Dyson, 1891; Eshelby, 1957) related to the ellipsoidal inclusion VI . �I

;ij and
 I
;ijkl are given by Eq. 11.35 (p. 85) in Mura (1987):

�I
;ij D

Z

VI

�
1

jx � x0j
	

;ij

dV 0  I
;ijkl D

Z

VI

ˇ
ˇx � x0ˇˇ

;ijkl dV 0
(12.26)

which are uniform when x 2 VI . The expressions of �I
;ij and  I

;ijkl for a general
ellipsoidal inclusion are given in classic books in micromechanics (Mura, 1987).

�I
;ij and  I

;ijkl are contained in T�
c0

I

, resp. T�
b0

I

, as follows:

Tc0
I

ijkl D �
1

8��0

�
�I
;jlıik C �I

;ilıjk
�C 3k0 C �0

8��0 .3k0 C 4�0/ 
I
;ijkl (12.27)

Tb0
I

ijkl D �
1

8��v0

�
�I
;jlıik C �I

;ilıjk
�C 3kv0 C �v0

8��v0
�
3kv0 C 4�v0

� I
;ijkl (12.28)

Furthermore, the elastic (resp. inelastic) Eshelby tensors S�
c0 (resp. S�

b0) for elas-

tic (resp. inelastic) reference media are defined as S�
c0

I D T�
c0

I W c�
0 and

S�
b0

I D T�
b0

I W b�
0.
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12.3.2 Interaction Laws

The interaction law for an arbitrary anisotropic and ellipsoidal inclusion VI embed-
ded in an infinite matrix can be obtained from Eq. (12.18) or from Eq. (12.19) and
by using the constitutive law in Eq. (12.1). Using Eq. (12.1), and after algebraic
manipulations, RI

� defined in Eq. (12.21) can also be rewritten as follows:

RI

� D P"�
I � P"�

0 � s�
0 W


P
�

I � P
�
0
�
�m�

0 W



�

I � 
�
0
�

(12.29)

Thus, using Eq. (12.18) together with Eq. (12.29) leads to a first form of the
interaction law for the linear viscoelastic Eshelby problem:

P
�
I� P
�

0 D
�

c�
0 �



T�

c0
I��1	

W


P"�

I � P"�
0
�
� c�

0 W m�
0 W



�

I � 
�
0
�
Cˇ



T�

c0
I��1

W 
�
�I

(12.30)

where 
�
0 is the uniform remote stress at the boundaries. Using Eq. (12.19) together

with Eq. (12.29), a second form of the interaction law can be written for the linear
viscoelastic Eshelby problem as follows:


�
I �
�

0 D
�

b�
0 �



T�

b0
I��1	

W


P"�

I � P"�
0
�
� b�

0 W s�
0 W


P
�

I � P
�
0
�
C�



T�

b0
I��1

W P
�
�I

(12.31)

Equations (12.30) and (12.31) are two forms for the interaction law that are
written for the same Maxwellian linear viscoelastic inclusion problem where all
the averaged terms are exactly defined. In both equations, the third terms in the
second members are new in comparison with other previous approximations starting
from the same constitutive equations as Eq. (12.1) and using the Green’s function
technique as in Kouddane et al. (1993), Molinari et al. (1997), Paquin et al. (1999),
Molinari (2002), Mercier and Molinari (2009), Mercier et al. (2012), Berbenni
and Capolungo (2015), and Mareau and Berbenni (2015). These terms describe
the complex spatio temporal integral nature of elastic–inelastic accommodations
within the heterogeneous viscoelastic material. Here, they are fully defined through
isotropic elastic and inelastic constants of the matrix and the evolution of 
�

�I . Note

that only the viscoelastic properties of the infinite matrix are isotropic, not the ones
related to the inclusion. In Berbenni et al. (2015), the exactness of the interaction
law was shown for an arbitrary anisotropic and ellipsoidal inclusion VI embedded in
an infinite matrix with isotropic properties in comparison with the exact hereditary
approach obtained with the Riemann–Stieltjes integral-based technique (Laws and
McLaughlin, 1978).
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12.4 Homogenization and Results for Two-Phase
Composite Materials

12.4.1 Homogenization for Two-Phase Composite Materials

In the case of two-phase composite materials, the Representative Volume Element
(RVE) is constituted of several inclusions (phase I) with volume fraction f embed-
ded in a matrix phase M with volume fraction .1 � f /. The RVE is subjected at its
boundary @V to the homogeneous macroscopic strain rate here denoted PE� satisfying

f P"�
I C .1 � f / P"�

M D PE� (12.32)

The Mori–Tanaka scheme (Mori and Tanaka, 1973; Weng, 1984; Benveniste, 1987)
is based on choosing the infinite homogeneous reference medium 0 as the matrix
phase M (i.e., 0 D M). This popular scheme is very well suited to estimate
the effective properties of two-phase composites with an isotropic distribution of
phases, provided the volume fraction f of inclusions is not too large (generally not
larger than 0.2). Based on Eq. (12.22), the strain rate in the phase I is given by

P"�
I D A�

cMI W P"�
M C A�

cM I W T�
cM I W



c�

I W m�
I � c�

M W m�
M
�
W 
�

I C ˇA�
cM I W 
�

�I (12.33)

where from Eq. (12.25), 
�
�I is the solution of the following time differential

equation:

P
�I
ij D �

˛cM

4�
 I
;ijklR

I
kl C 3˛cM

2�
�I
;ijRm

I � ˛
cM

˛bM 

�I
ij (12.34)

and from Eq. (12.24),

A�
cM I D



I�C T�

cMI W ıc�
I
��1

(12.35)

with ıc�
I D c�

I � c�
M . Using Eq. (12.33) together with Eq. (12.32) gives the strain

rate in the matrix phase M:

P"�
M D B�

cMI W PE� � f B�
cM I W A�

cM I W T�
cM I W



c�

I W m�
I � c�

M W m�
M
�
W 
�

I

� fˇB�
cM I W A�

cM I W 
�
�I

(12.36)

where B�
cM I

is defined as

B�
cM I D

h
.1 � f / I�C f A�

cM Ii�1
(12.37)
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In the case of spherical inclusions, T�
cMI

is given by

T�
cMI D 1

3kM C 4�M
J�C

3
�
kM C 2�M

�

5�M .3kM C 4�M/
K� (12.38)

and the expressions of �I
;ij and  I

;ijkl [Eq. (12.26)] are simplified to the following
expressions (Walpole, 1981; Mura, 1987):

�I
;ij D �

4�

3
ıij  I

;ijkl D �
8�

15

�
ıijıkl C ıikıjl C ıilıjk

�
(12.39)

Therefore, the explicit forms of A�
cM I

and B�
cMI

follow from Eq. (12.38) together

with Eq. (12.35) and Eq. (12.37), respectively. Furthermore, Eq. (12.34) for spheri-
cal inclusions simplifies to

P
�I
ij D

4

15
˛cM �

Rij
I � 6Rm

Iıij
�� ˛

cM

˛bM 

�I
ij (12.40)

Therefore, the average stress rates in each phase P
�
I and P
�

M are obtained from

Eqs. (12.33) and (12.36) and from the constitutive laws [Eq. (12.1)]. Lastly, the
overall stress †� of the composite is incrementally obtained from the stress rate

averaging rule:

P†� D f P
�
I C .1 � f / P
�

M (12.41)

In the following applications and for simplicity, both phases (inclusions and matrix)
will have isotropic properties and the inclusions will be supposed to be spherical.

12.4.2 Results and Discussion

12.4.2.1 Comparison with a Hereditary Approach

A first type of application is to show that the present time-incremental Eshelby-
based homogenization scheme is able to easily retrieve the same results as the ones
obtained from hereditary approaches using the correspondence principle and inverse
Laplace or Laplace–Carson transforms. One of the main shortcomings of these
approaches compared to the present approach derived in the time domain is that
simple analytical solutions remain limited to particular cases even for a composite
constituted of two phases with a Maxwellian behavior and isotropic properties. As
an example, let us consider the case developed by Li and Weng (1994) who used a
Mori–Tanaka scheme for two-phase composites under constant strain rate loading
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in the case where the spherical inclusions with a volume fraction f D 0:2 are elastic,
and the inelastic (viscous) behavior of the matrix phase is supposed to be pressure
independent. Starting from the effective bulk and shear moduli in the transformed
Laplace domain, Eqs. 5.5 and 5.6 in Li and Weng (1994) were obtained by Laplace
inversion. By considering Eqs. (12.32) to (12.41) of the present model, the exact
solutions for purely hydrostatic and purely deviatoric loadings are easily retrieved.
As an illustration for the application of the present exact time-incremental approach
to this specific case, the materials parameters used for this comparison are reported
in Table 12.1. Figure 12.1a shows the evolution of the overall hydrostatic stress †kk

as a function of the overall dilatational strain Ekk, whereas Fig. 12.1b displays the
evolution of the overall (deviatoric) shear stress†12 as a function of the overall shear
strain Ekk, for both applied PEkk and PE12 equal to 10�4 s�1. The different asymptotic
states at large times were also checked to be consistent with the expressions given
by Li and Weng (1994) (see their Eqs. 5.7 and 5.8). For large times or large strains,
the shear stress tends to a saturation stress whereas the dilatational stress response
is characterized by a constant tangent modulus equal to the effective elastic bulk
modulus of the composite.

12.4.2.2 Comparison with Another Exact Internal Variable Approach

In the case of linear Maxwellian compressible two-phase composites with homo-
geneous elastic properties, exact solutions were recently derived by Ricaud and
Masson (2009) using a Mori–Tanaka homogenization scheme. Their approach is
based on an internal variable formulation inspired from the collocation method. The
evolution laws of the average stresses in both phases were obtained with inverse
Laplace–Carson transforms in Ricaud and Masson (2009), knowing the overall
behavior from the internal variables evolutions. For comparison, in the present
method, the average phase behaviors and the effective behavior are directly obtained
from Eqs. (12.32) to (12.41) in the time domain without the need of Laplace–
Carson inversions. The inclusions are assumed spherical with a volume fraction of
f D 0:2. In order to assess the present model in comparison with Ricaud and Masson
(2009) solutions, four cases are considered as reported in Table 12.2. The common
parameters in all cases are the elastic shear moduli �I D �M D 50;000MPa and
the inelastic shear modulus of the matrix �vM D 10;000MPa s. Both phases have
the same elastic properties like in Ricaud and Masson (2009). The inclusions are
also considered with mechanical contrasts 100 (cases 1 and 2), resp 1=100 (cases
3 and 4), with respect to the matrix on the bulk/shear elastic/inelastic moduli.
In “case 1” and “case 3,” the phase behaviors are assumed compressible elastic
(uniform elastic Poisson ratio: �e D0.05) and incompressible inelastic (uniform
inelastic Poisson ratio �v 	 0.5). In the “case 2 ” and the “case 4,” a full compressible
viscoelasticity in both phases is assumed with constants �e D 0:05 and �v D 0:3.
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Fig. 12.1 Overall stress–strain responses of a two-phase composite with spherical elastic inclu-
sions of volume fraction f D 0:2 and with a matrix phase exhibiting a Maxwell behavior such that
the bulk viscoelastic modulus is restricted to the bulk elastic modulus (see Table 12.1). (a) Overall
hydrostatic stress †kk as a function of Ekk for an applied dilatational strain rate PEkk D 10�4 s�1,
(b) Overall shear stress †12 as a function of E12 for an applied shear strain rate PE12 D 10�4 s�1.
The present model exactly matches the Li and Weng (1994)’s analytical solutions which are
superimposed to the present’s model responses

Table 12.2 Materials parameters introduced for the first illustrations (comparisons with Ricaud
and Masson (2009) approach): compressible elasticity/incompressible inelasticity (cases 1 and 3),
compressible elasticity/inelasticity (cases 2 and 4)

Case kI D kM (MPa) kv
M (MPa s) kv

I (MPa s) �v
I (MPa s)

Case 1 38,890 1 1 1,000,000

Case 2 38,890 21,666.66 2,166,666 1,000,000

Case 3 38,890 1 1 100

Case 4 38,890 21,666.66 216.6666 100

A uniaxial tension–compression test is simulated with the following prescribed

macroscopic strain rate, PE� D PE11
0

@
1 0 0

0 �0:5 0

0 0 �0:5

1

A, with PE11 D 10�4 s�1 for tension

and PE11 D �10�4 s�1 for compression. For comparisons of the overall responses
given by the present internal variables approach with the Ricaud and Masson (2009)
solutions, Eqs. 10 and 18 and Table 1 in Ricaud and Masson (2009) are used.

Figure 12.2 shows the overall stress †11 cyclic responses up to t D 20 s for
cases 1 and 2 (high mechanical contrast of 100 with the matrix) as functions
of E11 (Fig. 12.2a) and physical time t (Fig. 12.2b). It was checked that both
present and Ricaud and Masson (2009) models give the same responses (the
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Fig. 12.2 Cases 1 and 2 (see Table 12.2 for materials parameters): overall tension–compression
uniaxial stress †11 responses predicted by the present linear homogenization Mori–Tanaka
approach based on the exact interaction law for Eshelby’s inclusion problem [Eqs. (12.32)–(12.41)]
or by Ricaud and Masson (2009) Mori–Tanaka approach, as functions of applied macroscopic
strain E11 (a) and physical time t (b). The present model exactly matches Ricaud and Masson
(2009) solutions which are superimposed to the present’s model responses

curves for both models are superimposed) regarding the transient regimes between
overall elastic and inelastic states and the asymptotic state during tension and
compression. In particular, the differences between compressible elasticity only and
fully compressible viscoelasticity are well captured by the present model, especially
when the loading changes from tension to compression.

For cases 3 and 4 (high mechanical contrast of 1/100 with respect to the
matrix), Fig. 12.3 verifies that both present and Ricaud and Masson (2009) models
also give the same responses up to t D 10 s (the curves for both models are
superimposed) regarding the transient regimes between overall elastic and inelastic
states and the (inelastic) asymptotic states during tension and compression. As a
function of materials properties, the composite responses have different transient
and asymptotic states which are observable in Figs. 12.2 and 12.3. The effect of
elastic or viscoelastic compressibility is observed in the same way with both models.
The present formulation also well captures the stress history due to materials
properties in the transient effective behavior during the reverse compression loading
that are more important than during the first tensile stage.

In order to refine the analysis, the time evolutions of the uniaxial phase average
stresses 
 I

11 and 
M
11 corresponding to cases 1 to 4 are reported in Figs. 12.4 and 12.5
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Fig. 12.3 Cases 3 and 4 (see Table 12.2 for materials parameters): overall tension–compression
uniaxial stress †11 responses predicted by the present linear homogenization Mori–Tanaka
approach based on the exact interaction law for Eshelby’s inclusion problem [Eqs. (12.32)–(12.41)]
or by Ricaud and Masson (2009) Mori–Tanaka approach, as functions of applied macroscopic
strain E11 (a) and physical time t (b). The present model matches exactly Ricaud and Masson
(2009) solutions which are superimposed to the present’s model responses

to see the differences due to two different mechanical contrasts on the phase
responses, i.e., 100 in Figs. 12.4a and 12.5a and 1=100 in Figs. 12.4b and 12.5b.

12.4.2.3 Comparisons with the “Translated Fields” Method
and the “Additive Law”

For comparisons with previous internal variable models containing approximations
like the “translated fields” method (Paquin et al., 1999; Mercier et al., 2012;
Berbenni and Capolungo, 2015) and the “additive interaction” law (Kouddane
et al., 1993; Molinari et al., 1997; Molinari, 2002), a third application of the
present time-incremental Eshelby-based model is now focused on heterogeneous
and compressible elasticity in addition to heterogeneous incompressible inelasticity
for inclusions stiffer than the matrix (case A) or the matrix stiffer than the inclusions
(case B). Interestingly, such a case was recently treated by Kowalczyk-Gajewska
and Petryk (2011) with different approximate models (see their Fig. 4) and using
inverse Laplace–Carson to find the exact time evolution of the strain rate in
the spherical inclusion. This application can be performed assuming a diluted
concentration of Eshelby inclusions, i.e., in the limiting case where f ! 0 using the
present Mori–Tanaka homogenization scheme. The common materials properties
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Fig. 12.4 Tension–compression simulations in case 1 (a) and in case 3 (b) (see Table 12.2 for
materials parameters): time evolution of uniaxial overall stress †11 and phase average stress 
11
responses predicted by the homogenization Mori–Tanaka approach based on the exact interaction
law [Eqs. (12.32)–(12.41)]

describe elastic compressible properties for the matrix and inclusions with the same
elastic Poisson ratios �e

I D �e
M D0.05, an elastic Young’s modulus for the matrix

of EM D 200MPa, and an incompressible inelasticity for the matrix given by
�v

M D 1=3MPa s. The other parameters are introduced to account for different
mechanical contrasts. More specifically, two different elastic Young’s moduli and
inelastic shear moduli ratios are considered in Table 12.3.

Following Kowalczyk-Gajewska and Petryk (2011), a uniaxial tension–
compression test is simulated with the following applied strain rate PE� D

PE11
0

@
1 0 0

0 �0:5 0

0 0 �0:5

1

A with PE11 D 1 s�1 for tension and PE11 D �1 s�1 for

compression. Figure 12.6 reports the axial strain rate P"I
11 evolution in the inclusion

along the tension–compression axis as a function of time t obtained with the
present model for “case A” (Fig. 12.5a) and for “case B” (Fig. 12.6b) according
to the parameters given in Table 12.3. By comparing such evolutions with the
exact solutions obtained by the correspondence principle and Laplace–Carson
inversion, both approaches give the same results. In particular, for “case B,”
Fig. 12.6b displays a peak strain rate at the onset of the tensile and compression
stages with the present exact solution which is not really captured by the “translated
fields” method and by the “additive interaction” law (see Fig. 12.6b). As reported
in Kowalczyk-Gajewska and Petryk (2011), the “translated fields” method and the
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Fig. 12.5 Tension–compression simulations in case 2 (a) and in case 4 (b) (see Table 12.2 for
materials parameters): time evolution of uniaxial overall stress †11 and phase average stress 
11
responses predicted by the homogenization Mori–Tanaka approach based on the exact interaction
law [Eqs. (12.32)–(12.41)]

Table 12.3 Materials parameters introduced for the third application for comparisons with
approximate models

Case EI=EM �v
I=�v

M

Case A: inclusions stiffer than matrix 3 10

Case B: matrix stiffer than inclusions 1=3 1=10

“additive interaction” law were the best approximate models for this application.
This application demonstrates the advantage of the present model to obtain the exact
strain rate evolution in the inclusion without the need of Laplace–Carson inversion.
The present approach also improves the predictions of previous approximate models
that were seen to be unable to match the exact solutions.

12.5 Conclusions

A time-incremental internal variables homogenization scheme for Maxwellian
linear viscoelastic heterogeneous materials has been presented. The formulation is
based on isotropic elastic and inelastic homogeneous reference media associated
with the strain rate integral equation. The complete solution is obtained through the
introduction of the variable 
�

�, which reflects a volume term in the integral equation
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Fig. 12.6 Time evolution of axial strain rate P"I
11 in the inclusion along the tension–compression

axis predicted by the present linear homogenization Mori–Tanaka approach based on the exact
interaction law for Eshelby’s inclusion problem [Eqs. (12.32)–(12.41)] in “case A” (a) and in
“case B” (b). For both cases, the present model (solid lines) matches exactly the inverse Laplace–
Carson solutions reported in Kowalczyk-Gajewska and Petryk (2011). For comparisons, the time
evolutions of P"I

11 given by the approximate “translated fields” method (dashed lines) and “additive
interaction” law (points) are reported

of the heterogeneous viscoelastic problem. This variable is exactly solved by a time
differential equation. The major advantage of the present internal variables formula-
tion compared to previous internal variables approaches containing approximations
is the derivation of the exact interaction laws for the Eshelby ellipsoidal inclusion
problem. In the case of a homogenization Mori–Tanaka scheme for an isotropic
distribution of phases, the present internal variables formulation may be considered
as another alternative way to fasten some numerical calculations in structures made
of linear viscoelastic composites. The present time-incremental internal variables
approach can be applied to aging linear viscoelastic behaviors without any major
difficulty in contrast with Riemann–Stieltjes integral-based hereditary homogeniza-
tion approaches. The extensions to more refined homogenization schemes taking
into account ellipsoidal distributions of phases (Ponte Castañeda and Willis, 1995;
Zheng, 2001) are left for future work. Furthermore, the present framework can
be extended to other types of rheological models in linear viscoelasticity, such as
Kelvin–Voigt, Burgers, and Generalized Maxwell models.
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Chapter 13
Effects of Local Spin on Overall Properties
of Granule Materials

Muneo Hori, Jian Chen, Supprasert Sument, Lalith Wijerathne,
and Tsuyoshi Ichimura

Abstract This paper proposes continuumnization of a set of rigid body spherical
particles which are regularly arranged and connected by springs. Continuumnization
converts translation and spin of all particles to spatially varying functions, together
with derivation of material properties from spring constants. It is shown that a
function of particles’ spin tends to vanish in the limit as the radius of the particles
goes to zero. The governing equations of the functions of translation and spin are
studied for a symmetric assembly of rigid body particles. The characteristic equation
of the governing equations shows the presence of high-frequency modes of spin, as
well as waves which correspond to P- and S-waves of ordinary continuum.

13.1 Introduction

Soil is a typical granular material, as it consists of particles of various sizes and con-
figurations (Sahimi and Arbabi, 1992). Each particle behaves like a rigid body, but
the assembly of the particles exhibits complicated behavior. For instance, damping
property of soil is unique as it does not depend on the frequency; while most of
materials show linear dependence of the damping parameter on the frequency, the
damping parameter of soil is little sensitive to the frequency. Accounting for this
property is an essential element in accurately analyzing amplification processes of
seismic waves in surface ground layers.
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Besides for phenomenological investigation, it is of interest to study the mech-
anism that induces complicated material properties such as damping, paying an
attention to the fact that soil is an assembly of rigid body particles. A fundamental
question is

why does a material of such simple microstructures exhibit complicated material properties?

We focus on spin of a particle to answer this question. As a rigid body, each
particle has translation and spin. Particles’ translation induces deformation of the
assembly as the configuration of the assembly changes. However, the effects of
particles’ spin a on the assembly deformation are not observable as each particle
appears to stand still when it just spins around its center; see Fig. 13.1. When
neighboring particles spin, a certain frictional work is made on the interface and
some portion of the energy stored in the assembly is consumed. Therefore, we
can expect that there ought to be certain effects of particles’ spin on the overall
properties, even though particles’ spin does not induce observable deformation.

In this paper, we investigate the effects of particles’ spin on overall behaviors of
the particle assembly. An ordinary method of micromechanics might not be suitable
for this investigation, because the particles’ spin does not induce deformation of the

spherical rigid body particle

spin of particlestranslation of particles

no observable deformation of particle assemblyobservable deformation of particle assembly

Fig. 13.1 Observable and no observable deformation of particle assembly in case of particles’
translation and spin
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assembly. We thus introduce a new approach which considers the limiting case as
the particle size goes to zero and converts particles’ motion to spatially varying
functions. The limit of the particle assembly is regarded as a continuum. This
approach is called continuumnization in this paper (Hori et al., 2016).

The objective of this paper is to provide basic formulation of continuumnization
of a particle assembly for the estimation of overall properties of the assembly. The
contents of this paper are organized as follows: First, we make a brief literature
survey on microstructure models which use a particle assembly in Sect. 13.2. We
formulate continuumnization in Sect. 13.3, converting particles’ translation and
spin to smooth functions and deriving governing equations for the functions. In
Sects. 13.4 and 13.5, respectively, the natures of the continuumnized functions and
the material properties that appear in the governing equations are studied; vanishing
of continuumnized spin in the limit as the particle radius goes to zero is shown in
Sect. 13.5. Finally, the characteristic equation of the governing equations is studied
in Sect. 13.6, to derive the material properties which include wave velocity and to
analyze damping of the particle assembly due to spin.

13.2 Literature Survey

An assembly of rigid body particles is used as a model of microstructure of granular
materials such as soil (Sahimi and Arbabi, 1992) and damaged rock (Cundall and
Strack, 1979; Potyondy and Cundall, 2004). It is intuitively clear to use this model
for the granular materials as the assembly resembles a set of granules. Regarding
the effects of granules’ spin on the material properties, there are a few researches
(Chang and Ma, 1992); considering spin often results in the model of micro-polar
materials (Mindlin and Tiersten, 1962; Eringen, 1978; Kunin, 1982; Kuhn, 2003),
which presumes the presence of nonsymmetric stress, coupled stress, or local torque.

We should mention the Cosserat theory (Cosserat and Cosserat, 1909) which has
been used for the micro-polar materials; this theory is relevant to local torque. In
the particle assembly, the presence of local torque must be taken for granted as it
is induced by the corresponding spin of the particles; see also (Kroner and Datta,
1970; Nowacki, 1974; Mustoe, 1992). However, we have to point out that the spin
vanishes in the limit as the size of particles goes to zero. This implies that the local
torque vanishes as well, if it is induced by the spin.

Although it is not a granular material, concrete employs a particle assembly
as a material model; concrete is a composite of mortar and aggregates of various
sizes, but an assembly of irregularly shaped particles is used as a material model
when concrete is separated by numerous micro-cracks which are initiated in mortar
(Lilliu and van Mier, 2003; Liu et al., 2007). The major concern of concrete
is to treat micro-cracks which reduce the concrete strength and induce large
deformation (Zubelewicz and Bazant, 1987; Cusatis et al., 2003; Kozicki and
Tejchman, 2008). It is thus natural to use a particle assembly in which particles
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of irregular configuration are connected by nonlinear and nonhomogeneous springs.
Failure analysis of concrete using the particle assembly is found in literature (Kawai,
1978; Schlangen and Garboczi, 1997).

The research achievements mentioned above share the mathematical treatment
called homogenization. For a material with microstructure, homogenization studies
the relation among the volume average of strain and stress in order to estimate
the overall material properties. The volume integral that is used to compute the
volume average of strain and stress is converted to surface integral of displacement
and force, respectively, and homogenization could be regarded as mathematical
abstraction of material sample experiment in which material properties are measured
as the relation between displacement and force which are measured on the sample
surface.

In closing this section, we point out that there are various works which use
a particle assembly or a lattice model in modern physics (Buxton et al., 2001).
The target of such works (Lemieux et al., 1985; Ray and Chakrabarti, 1985) is a
disordered system which is a model of microstructure of a heterogeneous material.
Although it does not provide a practical solution to engineering problems, the lattice
model (Sahimi and Goddard, 1986; Beale and Srolovitz, 1988; Curtin and Scher,
1990; Monette and Anderson, 1994; Ostoja-Starzewski et al., 1996; Karihaloo
et al., 2003) is used to study elasticity as well as local failure of composites and
polycrystals.

13.3 Continuumnization for Rigid Body Grid

13.3.1 Motion and Force of Particle Assembly

We start from a simple particle assembly, which is called a rigid body grid (Hori
et al., 2016). The grid consists of spherical rigid body particles of identical radius
which are regularly arranged; see Fig. 13.2; Walton studied the case for randomly
packed spheres (Walton, 1987). We denote by P˛ and x˛, respectively, the ˛th
particle and its center. There is an infinitesimally short spring that connects one
particle to another neighboring particle. Since the grid consists of regularly arranged
spheres, the number of the spring directions is finite, and a set of the spring
directions is denoted by fnIg. The two tangential directions associated with nI are
denoted by tI and sI , and .nI ; tI; sI/ forms a right-hand triad. We assume that all
springs share the same normal and tangential spring constants, k and h, respectively;
the spring constant in the nI-direction is k and that in the tI- or sI-direction is h.
Recall that the spring constants are rigorously computed (Walton, 1987) for two
contacting spheres of the same radius if the spheres are linearly and isotropically
elastic.



13 Effects of Local Spin on Overall Properties of Granule Materials 375

spherical rigid body

1st layer

2nd layer

Fig. 13.2 Rigid body grid

, , 

, 

Fig. 13.3 Neighboring particles of P˛ and P˛˙

A particle P˛ is connected to two particles by the spring in the nI-direction. We
denote them by P˛˙; the superscript C or � stands for the positive or negative
nI-direction, respectively; see Fig. 13.3. We introduce translation and spin of P˛ ,
denoted by u˛.t/ and �˛.t/ with t being time, respectively. We assume that u˛ and
�˛ are infinitesimally small and that the axis of rotation always passes x˛ . Denoting
by u˛C and �˛C translation and spin of P˛C, we calculate the relative displacement
of P˛ and P˛C at their contacting point, x˛ C anI , as

�u˛C D u˛C � u˛ C �˛C � .�anI/� �˛ � .anI/I

�˛ � .anI/ gives displacement due to spin, since �˛ is infinitesimally small; see
Fig. 13.4. We rewrite �uC as

�u˛C D u˛C � u˛ � .�˛C C �˛/ � .anI/: (13.1)
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Fig. 13.4 Relative displacement due to spin, � and �C, of neighboring particles of P˛ and P˛C

Similarly, we calculate the relative displacement of P˛� and P˛ at their contacting
point as

�u˛� D u˛� � u˛ C .�˛� C �˛/ � .an/: (13.2)

Note that the sign of the second term in the right side isC.
Since .nI; tI; sI/ forms a right-hand triad, an outer product of �˛ � nI satisfies

.�˛ � nI/ � nI D 0; .�˛ � nI/ � tI D �˛ � sI ; .�˛ � nI/ � sI D ��˛ � tI:

The force provided by the spring that connects P˛ and P˛C is computed as

f˛C D k .�u˛C � nI/nI C h
�
.�u˛C � tI/tI C .�u˛C � sI/sI

�

or

f˛C D k


.u˛C � u˛/ � nI

�
nI C h



.u˛C � u˛/ � tI � a.�˛C C �˛/ � sI

�
tI

C h


.u˛C � u˛/ � sI C a.�˛C C �˛/ � tI

�
sI: (13.3)

Similarly, the spring that connects P˛ and P˛� provides the following force:

f˛� D k


.u˛� � u˛/ � nI

�
nI C h



.u˛� � u˛/ � tI C a.�˛� C �˛/ � sI

�
tI

C h


.u˛� � u˛/ � sI � a.�˛� C �˛/ � tI

�
sI : (13.4)

13.3.2 Equation of Motion and Euler’s Momentum Equation

As explained, the ˛th particle P˛ has a pair of springs in the nI-direction at x˛ C
.anI/ and x˛ ˙ .anI/, and P˛ is subjected to the springs’ forces of f˙ of Eqs. (13.3)
and (13.4). The equation of motion of P˛ is thus expressed as

M Ru˛ D
X

I

f˛C C f˛�; (13.5)
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where dot stands for temporal derivative ( Ru˛ D @2u˛

@t2
) and M is the mass of P˛ .

Recall that f˛˙ is the force provided by the springs in the nI-direction, although the
superscript I is omitted. Similarly, Euler’s momentum equation of P˛ is

I R�˛ D
X

I

.anI/ � f˛C C .�anI/ � f˛�; (13.6)

where I is the momentum of inertia of P˛.
Substituting Eqs. (13.3) and (13.4) into Eqs. (13.5) and (13.6), we have

M Ru˛ D
X

k


.u˛C � 2u˛ C u˛�/ � nI

�
nI

C h


.u˛C � 2u˛ C u˛�/ � tI � a.�˛C � �˛�/ � sI

�
tI

C h


.u˛C � 2u˛ C u˛�/ � sI C a.�˛C � �˛�/ � t

�
sI ; (13.7)

and

I R�˛ D
X

ah


.u˛C � 2u˛ C u˛�/ � tI � a.�˛C C 2�˛ C �˛�/ � sI

�
sI

� ah

�
.u˛C � u˛/C .u˛� � u˛/

� � sI C a.�˛C C 2�˛ C �˛�/ � tI
�

tI:

(13.8)

Equations (13.7) and (13.8) form a set of ordinary differential equations for
fu˛;�˛g.

13.3.3 Continuumnization of Translation and Spin

We consider a smooth function, u.x; t/, which satisfies

u.x; t/ D u˛.t/ at x D x˛:

We approximate u˛C � u˛ using this smooth function as

u˛C.t/ � u˛.t/ � .2an/ � .ru.x˛; t//;

whereru is the gradient of u. In a Cartesian coordinate .x1; x2; x3/, the components1

of the gradient are .ru/ij D @uj

@xi
. By definition, n � r is interpreted as the derivative

of u in the n-direction; r � n is expressed as
P

i ni
@
@xi

. In the limit as the spherical

1Note that while the ordinary definition of the gradient is .r u/ij D @ui
@xj

, we define the gradient

component in this way in order to make the expression of r � n consistent.
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particle radius a goes to 0, the error of the above approximation tends to vanish. We
call this u.x; t/ a continuumnized displacement of fu˛.t/g.

In a similar manner, we introduce a continuumnized spin, �.x; t/, which satisfies

�.x; t/ D �˛.t/ at x D x˛:

Unlike translation, a continuumnized spin vanishes at a D 0, which will be shown in
Sect. 13.5. However, for a nonzero value of a, it is possible to assume the presence
of �.x; t/ that is associated with f�˛g, and �˛C � �˛ is approximated as

�˛C.t/ � �˛�.t/ � .4an/ � .r�.x˛; t//:
Again, the error of this approximation tends to vanish in the limit as a goes to 0; as
will be shown in Sect. 13.5, � itself vanishes in this limit, though.

In terms of the continuumnized u and � , Eqs. (13.7) and (13.8) are approximately
expressed as

M Ru.x; t/ � a3
�r � .c W ru.x; t//C qt W r�.x; t/�; (13.9)

and

I R�.x; t/ � �a3
�
r � �.x; t/C q W ru.x; t/

�
; (13.10)

where

c D
X k

a
nI ˝ nI ˝ nI ˝ nI C h

a

�
nI ˝ tI ˝ nI ˝ tI C nI ˝ sI ˝ nI ˝ sI

�
;

q D
X h

a

�
tI ˝ nI ˝ sI � sI ˝ nI ˝ tI

�
;

r D
X h

a

�
tI ˝ tI C sI ˝ sI

�
: (13.11)

As is seen, c, q, or r is a fourth-, third-, or second-order tensor that is determined
in terms of k and h, respectively; the superscript t stands for transpose (qt

ijk D
qkji). The identical equations hold for all x˛’s of the rigid body grid. That is,
continuumnization derives coupled partial differential equations for u.x; t/ and
�.x; t/ from a set of ordinary differential equations of fu˛.t/g and f�˛.t/g. In
Fig. 13.5, we present a schematic view of continuumnization of a rigid body grid; a
schematic view of homogenization that considers the volume average of strain and
stress is presented for the comparison with continuumnization.

13.4 Nature of Material Properties for Continuumnized
Functions

The three tensors .c;q; r/ of Eq. (13.11) are regarded as material properties as they
relate translation and spin (or their derivative) to stress or local torque. We seek to
interpret these three tensors.
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set of rigid body particles

homogenized body

integration

b)

set of rigid body particles

limit of vanishing radius

smaller

a)

homogenized body

Fig. 13.5 Schematic view of continuumnization of motion. (a) Continuumnization and (b)
homogenization

First, we study c, decomposing it into two parts which include k and h, i.e.,
c D ck C ch with

ck D
X k

a
n˝ nI ˝ n˝ n;

ch D
X h

a

�
n˝ t˝ n˝ tC n˝ s˝ n˝ s

�
:
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Here, for simplicity, the superscript I is omitted. The components of ck in the
Cartesian coordinate system satisfy ck

ijkl D ck
jikl D ck

ijlk D ck
klij, but those of ch satisfy

only ch
ijkl D ch

klij. Hence, ck is regarded as an ordinary elasticity tensor in the sense
that it operates the symmetric part of ru and produces a symmetric second-order
tensor, while ch operates the whole ru and produces a nonsymmetric second-order
tensor. Whether symmetric or nonsymmetric, the second-order tensor produced by
ck;h is regarded as stress in the sense that its divergence (r � .ck;h W ru/) appears in
the equation of motion.

Next, we study r, which relates spin � to local torque. Precisely speaking, I R� is
linearly related to �r � � in Eq. (13.10), which means that r � � works to decrease
R� . By definition of Eq. (13.11), r includes only shear spring constant, h, in it. The
shear springs that are connected to the particle resist the spin of the particle, and r
corresponds to this resistance.

Finally, we study q which appears in both Eqs. (13.9) and (13.10); this q provides
coupling effects between u and � . In Eq. (13.9), the components of the term that
includes q are written as

X

j;k

a3 qikj
@�k

@xj
D
X

j

a3
@

@xj

 
X

k

qikj�k

!

for i D 1; 2; 3:

Hence,
P

qikj�k is regarded as stress (of second-order tensor) in the sense that its
divergence appears in the equation of motion. In Eq. (13.10), the components of the
term that includes q are written as

X

k;l

qikl
@ul

@xk
D
X

p;q

"ipq

X

k;l

ch
pqkl

@ul

@xk
for i D 1; 2; 3;

where "ipq is permutation symbol. As is seen, this term is local torque that is
produced by the antisymmetric part of ru via ch.

It is shown that the three tensors .c;q; r/ are regarded as material property in the
sense that they relate ru and � to stress and local torque; stress is not symmetric,
and the antisymmetric part influences spin. The stress and local torque are derived
as continuumnization of the spring force, f˛˙, of Eqs. (13.3) and (13.4). That is, we
can assume the presence of � .x; t/ which satisfies

˙nI � � .x˙ anI; t/ D f˛˙.t/ at x D x˛:

This � is related to ru and � via c and q, respectively. We introduce local torque,
�, as

�.x; t/ D
X

.anI/ � f˛C.t/C .�anI/ � f˛�.t/ .at x D x˛/:

Note that the antisymmetric part of ch W ru contributes local torque, too, where ch

changes its form to be q.
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We can provide more transparent presentation of .c;q; r/ using a Lagrangian of
a rigid body grid. Denoting this Lagrangian by L, we define L as

LŒfu˛g; f�˛g� D
X

˛

1

2
M j Pu˛j2 C 1

2
I j P�˛j2

�1
4

k
�
.�uC � n/2 C .�u� � n/2�

C1
4

h
�
.�uC � t/2 C .�uC � s/2 C .�u� � t/2 C .�u� � s/2� : (13.12)

Note that the energy stored in a spring is divided by 2, because it is shared by
two neighboring particles. If continuumnized u and � are used, the right side of
Eq. (13.12) is replaced by the volume integration, and L becomes

LŒu;� � D
Z
1

2

M

a3
j Puj2 C 1

2

I

a3
j P�j2 � 1

2
ru W c W ru � � � q W ru � 1

2
� � r � � dv:

(13.13)

Energy stored in the springs is replaced by an energy density which is computed by
ru and � .

13.5 Vanishing of Spin

As pointed out in preceding sections, it is not natural to introduce a field of spin,
�.x; t/, which is not considered in continuum mechanics. In view of kinematics,
local spin inevitably produces discontinuity everywhere, and hence the presence
of local spin is not acceptable. In view of dynamics, vanishing of local angular
momentum, or symmetry of stress, is proved by considering equilibrium; for
instance, when a cube of edge length a is considered, the angular momentum
vanishes as the speed of a5, while the torque caused by traction on the opposite faces
vanishes as the speed of a3, and this leads to vanishing of local angular momentum.

In Sect. 13.3, applying the same mathematical procedure of associating particle
displacement, fu˛.t/g, to the continuumnized displacement, u.x; t/, we can asso-
ciate particle spin, f�˛.t/g, to the continuumnized spin, �.x; t/. We need to show
that �.x; t/ vanishes in the limit as a goes to 0, so that the continuumnized fields are
consistent with continuum mechanics.

First, we examine the limit of Eq. (13.8) as a goes to 0. Dropping the third term
that includes � , we write this equation as

M

a3
Ru.x; t/ D r � .c W ru.x; t//:

By definition, the physical dimensions of M=a3 and c are density and elasticity,
respectively. This equation is regarded as a wave equation that uses two constant M

a3
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and c. In the limit as a goes to 0, M=a3 remains finite. Hence, we can assume that c
remains finite, so that the solution of this wave equation is not trivial.

Next, we examine the limit of Eq. (13.10). Dropping the second term that
includes u, we write this equation as

I

a5
I R�.x; t/ D � 1

a2
r � �.x; t/: (13.14)

The physical dimensions of I
a5

and r are density and elasticity, respectively. Just like
M
a3

, I
a5

remains finite in the limit as a goes to 0, and r remains finite since c remains

finite. If �=a2 remains finite, R� is finite but � vanishes. That is,

lim
a!0

�.x; t/ D 0:

If � remains finite, the right side of Eq. (13.14) diverges as the speed of a�2, and
hence the left side or �.x; t/ tends to vibrate at an increasing frequency. The average
of such high-frequency vibration vanishes if the average is taken with respect to
time. That is,

lim
a!0

1

T

Z T

0

�.x; t/ dt D 0

for a fixed T. Therefore, we can conclude that � vanishes in the limit as a goes to 0,
except for components which vibrate at high frequencies and have zero average in
time.

The vanishing of �.x; t/ in the limit a goes to 0 implies that the second term in the
right side of Eq. (13.10), q W ru.x; t/, vanishes as well. Indeed, this is true since q W
ru.x; t/ equals the antisymmetric part of c W ru, as shown in the preceding section.
This is well understood; as mentioned, stress in continuum mechanics is symmetric
so that local torque vanishes. In the limit as a goes to 0, Euler’s momentum equation,
Eq. (13.10), becomes trivial in the sense that all the terms in the equation vanish.

13.6 Characteristic Equation of Continuumnized Function

We consider a three-dimensional rigid body grid. As shown in Fig. 13.6, this grid
has six spring directions, fnIg for I D 1, � � � , 6. We take a Cartesian coordinate,
.x1; x2; x3/, so that fn1;n2;n3g lie on the x1; x2-plane. Two tangential directions, tI

and sI , which are associated with nI are suitably chosen. To simplify notation, we
define

	M D M

a3
; 	I D I

a5
; k0 D k

a
and h0 D h

a
I

the physical dimension of 	M and 	I is density and that of k0 and h0 is elasticity.
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9 neighboring particles:
• 6 particles on the same plane
• 3 particles above

3 springs connecting to 
particles on the same plane

3 springs connecting 
to particles above

Fig. 13.6 Six springs connecting particles

The three tensors defined in Eq. (13.11) are readily computable. The fourth-order
tensor c has an isotropic part as

4.k0 � h0/
25

I1 C 4.2k0 C 3h0/
25

I2;

where the components of I1;2 in the Cartesian coordinate are I1ijkl D ıijıkl and I2ijkl D
1
2
.ıikıjl C ıilıjk/, with ıij being Kronecker’s delta. The remaining part, denoted by

c�, is

4h0

5
I3;

where the components of I3 are I3ijkl D 1
2
.ıikıjl � ıilıjk/; note that I2 and I3

are an identity tensor for a second-order symmetric tensor and a second-order
antisymmetric tensor, respectively. The third-order tensor q and the second-order
tensor r are isotropic, as their components are

qijk D 2h0"jik and rij D 4h0ıij .for i; j D 1; 2; 3/:
Recall that "ijk and ıij are the permutation symbol and Kronecker’s delta, respec-
tively.
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We rewrite the coupled partial differential equations of u and � , Eqs. (13.9)
and (13.10), applying Fourier transform with the kernel of exp.{.� � x � !t// to
u and � . The resulting equations are given as

�
!2ŒM�C ŒK�� ŒU� D Œ0� (13.15)

where ŒU� is a six-dimensional vector, consisting of the Fourier transformation of
Œu1; u2; u3; �1; �2; �3�T , ŒM� is a six-by-six diagonal matrix of

ŒM� D

2

6
66
6
6
6
6
4

	M 0 0 0 0 0

0 	M 0 0 0 0

0 0 	M 0 0 0

0 0 0 	I 0 0

0 0 0 0 	I 0

0 0 0 0 0 	I

3

7
77
7
7
7
7
5

; (13.16)

and ŒK� is a six-by-six matrix of

ŒK� D

2

6
6
6
6
66
6
4

4.3k0C2h0/

25
.�22 C �23 / 8.k0�h0/

25
�1�2

8.k0�h0/

25
�1�3

8.k0�h0/

25
�2�1

4.3k0C2h0/

25
.�23 C �21 / 8.k0�h0/

25
�2�3

8.k0�h0/

25
�3�1

8.k0�h0/

25
�3�2

4.3k0C2h0/

25
.�21 C �22 /

0 �2{h0�3 2{h0�2
2{h0�3 0 �2{h0�2
�2{h0�2 2{h0�1 0

0 2{h0�3 �2{h0�2
�2{h0�3 0 2{h0�1
2{h0�2 �2{h0�1 0

�4h0 0 0

0 �4h0 0

0 0 �4h0

3

7
7
7
7
77
7
5

: (13.17)

Note that ŒK� is symmetric; recall that the governing equations can be derived from
the Lagrangian of Eq. (13.13).

13.6.1 Characteristic Equation

Now, we study the characteristic equation of Eq. (13.15), which is given as vanishing
of the determinant of !2ŒM�C ŒK�. That is,

.25	M!2�4.3k0C2h0/�2/.	I!2C4h0 1
a2
/

�
25	M	IC4.25	Mh0 1

a2
�	I.k0C4h0/�2/!2C4h0.4k0�9h0/�2 1

a2

�2 D 0: (13.18)

This is a polynomial equation of ! for a given �.
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The first solution of Eq. (13.18) is given as

!2 D 4.3k0C 2h0/
25	M

�2: (13.19)

This solution accompanies an eigenvector of Œ�1; �2; �3; 0; 0; 0�T , which is a trans-
lation wave (or spin-free wave) parallel to the wave number vector, �. The wave
velocity of this translation wave is independent from the wave number and given
as 4.3k0C2h0/

25	M . Therefore, this translation wave corresponds to a P-wave of a material
which is linearly isotropically elastic. We have to emphasize that continuumnization
enables us to compute a wave velocity for a rigid body grid; it is not possible to
compute wave velocity for such a discrete system in which spring transfers stress
without causing any delay.

For the second solution of Eq. (13.18),

!2 D � 4h0

	Ia2
; (13.20)

the accompanied eigenvector is Œ0; 0; 0; �1; �2; �3�T , which is a spin wave (or
translation-free wave) parallel to �. This ! does not depend on � but depends on 1

a2
.

This spin wave is the one that is discussed in the preceding section, which vibrates at
increasing frequency when a goes to 0. Furthermore, since ! is a purely imaginary
number, this spin wave vanishes exponentially. It is concluded that the spin wave of
!2 D � 4h0

	I a2
is local and vibrates at high frequency for small a.

The remaining solutions of Eq. (13.18) accompany eigenvectors in which trans-
lation and spin are mixed. If we set � as Œ�1; �2; �3� D Œ�; 0; 0�, we can derive the
following four-by-four matrix from !2ŒM� C ŒK� that correspond to the remaining
solution of Eq. (13.18):

det

2

6
6
6
6
4

	M!2 � 4.k0C4h0/

25
�2 0 0 �2{h0�

0 	M!2 � 4.k0C4h0/

25
�2 �2{h0� 0

0 2{h0� 4h0 C 	Ia2!2 0

�2{h0� 0 0 4h0 C 	Ia2!2

3

7
7
7
7
5
D 0I

note that this matrix is for a four-dimensional vector of Œu2; u3; �2; �3�T . The four
solutions are

!2 D 2.k0 C 4h0/
25	M

�2�2h0

	I
a2˙

s

.
2.k0C4h0/
25	M

/2�4C4h0.2k0�17h0/
25	M	I

�2a�2C.2h0

	I
/2a�4:

(13.21)



386 M. Hori et al.

The accompanied eigenvectors are of the following form:

2

6
6
4

u2
u3
�2
�3

3

7
7
5 D

2

6
6
6
6
4

1

0

0

� 2{h0�
4h0 C 	Ia2!2

3

7
7
7
7
5

or

2

6
6
6
6
4

0

1
2{h0�

4h0 C 	Ia2!2

0

3

7
7
7
7
5
:

Note that for a satisfying a� 
 1, Eq. (13.21) yields

!2 � 2.k0 C 4h0/
25	M

�2 and
h0.9h0 � 4k0/
.k0 C 4h0/	I

a�2:

The first solution has a wave velocity 2.k0C4h0/

25	M that is independent from the wave
number and corresponds to a S-wave of linearly isotropic elastic material. The
ratio of the spin component to the translation component of the corresponding

eigenvectors is 2̧
4h0
�. Hence, spin components do not vanish for these four solutions

even in the limit as a goes to 0.
In Table 13.1, we summarize the characteristics of the four kinds of the

solutions of the characteristic equations, Eq. (13.18), in the limit as a goes to 0.
As shown, if the wave length is sufficiently compared with the particle radius, the
continuumnized fields produce both P- and S-waves. While the P-wave is spin free,
the S-wave accompanies spin and the amplitude could be large. The large amplitude
of spin exceeds the assumption of infinitesimally small deformation or we have to
treat spin and displacement more rigorously as explained in Sect. 13.5.

Table 13.1 Four kinds of solutions of characteristic equation in the limit as a goes to 0

!2 Eigenvector Characteristics

1 4.3k0
C2h0/

25	M �2 [1,0,0,0,0,0]t Corresponds to P-wave

Has a wave velocity of
4.3k0

C2h0/

25	M

2 � 4h0

	I
1
a2 [0,0,0,1,0,0]t Increases at a speed of 1

a2 w.r.t.
a

Independent from wave length

Decays exponentially

3 2.k0
C4h0/

25	M �2
�
0; 1; 0; 0; 0;� �

2
�
t

Coupling of translation and spin

Corresponds to S-wave

Has a wave velocity of 2.k0
C4h0/

25	M

4 h0.9h0
�4k0/

.k0
C4h0/	I

1
a2

h
0; 1; 0; 0; 0

2.k0
C4h0/�

25h0
�
it

Coupling of translation and spin

Increases at a speed of 1
a2 w.r.t. a

Independent from wave length
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13.6.2 Remaining of Local Torque in the Limit as a Goes to 0

It is interesting to note that c�, the remaining of c subtracted by the fourth-order
isotropic part, maps rotation, or the antisymmetric part of displacement gradient, to
the antisymmetric part of stress. That is, defining by

!ij D 1

2

�
@u2
@x1
� @u1
@x2

	

c� maps this ! to 2h0

5
!; recall that c� is isotropic in the present case. The

antisymmetric part of stress is produced by the spin, � , via q. Denoting the
antisymmetric part by �, we thus have its nonzero components as

�ij D 2h0

5
!ij C

X

k

2h0"ijk�k for i; j D 1; 2; 3: (13.22)

The gradient of this m appears in the equation of motion, Eq. (13.9), while
4h0�iCPk;j 2h0"jki!ij appears in Euler’s momentum equation, Eq. (13.10); this term
corresponds to local torque.

As mentioned in the preceding section, � vanishes in the limit as a goes to 0.
However, the rotation, !, does not vanish, because it is the antisymmetric part
of the displacement gradient. Local torque or the antisymmetric part of stress
that is produced by the continuumnized fields remains nonzero in the limit, even
though local torque due to spin vanishes. Remaining of local torque in the limit is
contracting to continuum mechanics in which stress is proved to be symmetric and
to have no antisymmetric part.

We should not make any extra condition for u so that ! vanishes. A possible
solution of making � vanish is to consider a certain set of admissible springs which
make c� so that c� W ! vanishes in the limit. We should emphasize that the spring set
shown in Fig. 13.2 is not admissible. Indeed, it is not easy to find such an admissible
spring set for a rigid body grid which has regularly arranged particles of identical
radius. We may thus have to consider an assembly of heterogeneous spherical rigid
body particles to find an admissible spring set.

13.7 Concluding Remarks

In this paper, we present continuumnization of a rigid body grid, which consists
of regularly arranged particles. Continuumnization results in a set of smooth
functions of displacement and spin that correspond to particles’ translation and
spin, respectively. Assuming that spin is infinitesimally small, we derive a set
of coupled differential equations for these continuumnized functions. The wave
velocity of the rigid body grid can be computed by solving these equations. It is
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shown that continuumnized spin function vanishes in the limit as the particle radius
goes to zero, as expected. Also, it is shown that for nonzero value of particle radius,
the continuumnized spin plays a role of damping for translation wave due to its
nonlinearity.

The above remarks are made based on the study of a two-dimensional rigid body
grid. Further studies are essential to clarify the vanishing of the continuumnized
spin in the limit as the particles’ radius goes to 0 in a general 3D setting. Also,
more rigorous treatment of spin is needed to clarify the nonlinear effects of spin on
translation, which is interpreted as damping in the present study.

In closing this paper, we point out a possibility of continuumnization as a
new tool of analyzing a microstructure model, which could be an alternative of
conventional tool of homogenization. The idea of taking the limit as the size of
microconstituents might be interesting and worth being investigated. In mathemati-
cal viewpoint, the procedure of continuumnization, generating differential equations
from a set of discretized equations, is opposite to finite difference that generates a
set of discretized equations from differential equations.
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Chapter 14
The Parametric HFGMC Micromechanics

Rami Haj-Ali and Jacob Aboudi

Abstract The parametric high-fidelity generalized method of cells (HFGMC) is
thoroughly developed and reviewed starting from the HFGMC formulation with
regular array of subcells. The HFGMC is shown to be an effective micromechanical
analysis method for linear, nonlinear, and multi-physics problems involving hetero-
geneous materials with periodic microstructure. This chapter deals with two (2D)
and three-dimensional (3D) HFGMC applied for multiphase periodic composites
suited for nonlinear and evolving damage. A new average virtual work formulation
is also introduced in order to generate a symmetric stiffness matrix formulation
for the nonlinear iterative solution of the HFGMC system of equations. This
approach allows the application of classical direct iterative solution techniques
and tremendously enhances the computational efficiency. A review of noteworthy
recent HFGMC applications for composite materials is also given. The HFGMC
micromechanics is well suited for integrating the nonlinear and damage response of
composites and predicting the fiber-matrix spatial local fields including progressive
damage effects.

14.1 Introduction

The high-fidelity generalized method of cells (HFGMC) is a micromechanical
model that is capable to predict the behavior of composites which poses periodic
microstructure. This periodicity character enables the identification of a repeating
unit cell (RUC) on which the micromechanics analysis is performed. The HFGMC
developed from the method of cells (MOC) in which the repeating unit cell of the
composite is divided into four subcells. Aboudi (1982) is the first article in which
MOC has been presented, and a comprehensive treatment and a host of applications
can be found in the monograph (Aboudi, 1991). The MOC was followed by the
generalized method of cells (GMC) (Paley and Aboudi, 1992), where an arbitrary

R. Haj-Ali (�) • J. Aboudi
Faculty of Engineering, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
e-mail: rami98@tau.ac.il; aboudi@eng.tau.ac.il

© Springer International Publishing AG 2018
S.A. Meguid, G.J. Weng (eds.), Micromechanics and Nanomechanics
of Composite Solids, DOI 10.1007/978-3-319-52794-9_14

391

mailto:rami98@tau.ac.il
mailto:aboudi@eng.tau.ac.il


392 R. Haj-Ali and J. Aboudi

number of cells can be used to model the RUC. In both MOC and GMC, the
displacement vector field is based on a linear expansion. This is generalized to
a second-order expansion (Aboudi et al., 2001; Aboudi, 2001), which explains
the term HFGMC as a subsequent extension to its predecessors, MOC and GMC.
A detailed presentation of these three methods together with many applications can
be found in Aboudi et al. (2013) where their applications on thermoelastic, inelastic,
viscoelastic, and smart materials, including analysis at finite strain, are presented,
including multiscale implementations.

Several extensions of the HFGMC have been conducted. Thus, Haj-Ali and
Aboudi (2009) provided total and incremental formulation of the HFGMC for the
micromechanical analysis of nonlinear multiphase materials. An iterative procedure
has been developed to minimize the residual error and satisfy the HFGMC
governing equations in their total form. In addition, the overall system of algebraic
equations has been assembled in a compact matrix form utilizing the relevant
equations for a set of two feed-forward interfaces sweeping the entire array of
subcells resulting in enhanced computational efficiency.

The original HFGMC formulations have been performed in conjunction with
orthogonal array of subcells used to depict the geometry of the phases (regular
array). This limitation requires a relatively large number of subcells if the objective
is to accurately capture refined geometrical features and the spatial variations of
the local solution fields. Despite this limitation, the previous applications have
demonstrated the effectiveness of the method to generate the local solution fields by
using a sufficiently large number of rectangular subcells. It should be emphasized
that a small number of rectangular subcells is sufficient to generate the effective
linear and nonlinear response for the overall composite with high accuracy. In
fact, this is one of the advantages of using the HFGMC in a multiscale (local–
global) analysis of composite structures with selective geometrical refinement for
the microstructure.

A natural extension that overcomes the limitations of the regular orthogonal array
is to employ a parametric mapping. This is a common practice, which has been used
in many science and engineering fields; it involves the solution of the governing
equations using classical coordinate transformation in conjunction with the well-
known Jacobian of the transformation. To this end, Haj-Ali and Aboudi (2010)
used linear geometrical mapping of the subcells to map the geometry of the phases
of a composite with doubly periodic microstructure. This linear and parametric
geometric mapping can be applied for a unit cell with general phase geometry
using arbitrary quadrilateral cell shapes that are transformed to an auxiliary uniform
square shape (parent coordinates). In Haj-Ali and Aboudi (2013), this parametric
HFGMC has been generalized to the analysis of composites with triply periodic
microstructure. Haj-Ali and Aboudi (2013) showed that the average displacement
vectors at the edges (or faces) of the subcell can be expressed in terms of the
expansion coefficients to form an independent subset of the subcell’s face-based
variables. In addition, the bilinear polynomial terms were related to the quadratic
coefficients of the displacements. Thus, there was no need for the additional moment
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of equilibrium relation suggested in Haj-Ali and Aboudi (2010). The parametric
HFGMC follows the same physical assumptions and variables as the original
formulation and the regular array HFGMC which can be obtained as a special case
of the parametric formulation.

In a recent publication (Haj-Ali and Aboudi 2016), a new average virtual work
integral form is proposed for the HFGMC method which allows for the definition of
a generalized internal resisting force vector along with its corresponding symmetric
stiffness matrix. Unlike the nodal displacement-based finite element, this proposed
HFGMC and its weak form have been cast in terms of the work-conjugate average
displacement and traction vectors, defined on the surfaces (faces) of the subcells.
This allowed direct interface continuity relations between the hexahedral subcells.
The resulting symmetric stiffness matrix forms a great advantage of this parametric
HFGMC formulation since for symmetric matrices, well-established incremental
solution techniques exist.

This chapter is organized as follows. In Sect. 14.2, the doubly periodic HFGMC
for nonlinear composites with regular array is presented in which an iterative
procedure is developed to minimize the residual error and satisfy the HFGMC
governing equations in their total form. In Sect. 14.3, the doubly periodic parametric
HFGMC is discussed, followed in Sect. 14.4 by a full generalization to the triply
periodic HFGMC parametric micromechanical model. A new average virtual work
multilevel formulation of the HFGMC model is presented in Sect. 14.5. This average
virtual work formulation enables significant computational advantages. This chapter
is concluded by an application section where references to several implementations
and examples are given.

14.2 Nonlinear Doubly Periodic HFGMC Formulation:
Regular Array

The principal HFGMC micromechanical framework for periodic multiphase com-
posites has been fully described by Aboudi et al. (2013). In this section, we present
a different version suitable for the analysis of nonlinear and inelastic composites.
Towards that end, an iterative incremental formulation is presented along with
stress correction and update. This leads to satisfying the overall HFGMC nonlinear
equations by minimizing the residual error vector.

The HFGMC framework is based on the homogenization technique of com-
posites with periodic microstructure as shown in Fig. 14.1 for the 2D case. The
repeating unit volume of such a composite, Fig. 14.2, is divided into an arbitrary
number of rectangular cells, labeled by the indices .ˇ�/, each of which may contain
a distinct nonlinear homogeneous material. The dimensions of the cell along the 2
and 3 axes are denoted by hˇ and l� , respectively. In the present doubly periodic

case of continuous fibers, a local coordinate system .y.ˇ/2 ; y.�/3 / is introduced in each
cell whose origin is located at its center (see Fig. 14.2).
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Fig. 14.1 Schematic illustration of a unidirectional periodic array in the global x2 � x3 plane of
multiphase composite media with its repeating unit cell (RUC), defined with respect to its y2 � y3
local coordinate system

The displacement vector in the subcell .ˇ�/ is given , e.g., Aboudi et al. (2013),
by the quadratic higher-order polynomial form

u.ˇ�/ D N� � xCW.ˇ�/

.00/ C y.ˇ/2 W.ˇ�/

.10/ C y.�/3 W.ˇ�/

.01/

C 1

2
.3y.ˇ/22 � h2ˇ

4
/W.ˇ�/

.20/ C
1

2
.3y.�/23 � l2�

4
/W.ˇ�/

.02/ (14.1)

where N� is the remote applied average strain. The microvariable vectors, W.ˇ�/

.mn/, rep-
resent the surface-averaged displacement in the case of m D n D 0, which together
with the additional higher-order unknown microvariables should be determined.

The spatial strain vector at each subcell can be easily brought in the form

�.ˇ�/ � f�11; �22; �33; 2�12; 2�13; 2�23g.ˇ�/ (14.2)

After some algebraic manipulations, it is possible to represent the strain vector in
the form

�.ˇ�/ D N�C P.10/W
.ˇ�/

.10/ C P.01/W
.ˇ�/

.01/ C P.20/W
.ˇ�/

.20/ y.ˇ/2 C P.02/W
.ˇ�/

.02/ y.�/3 (14.3)

After some algebraic manipulations, it is possible to establish the matrix coefficients
of the spatial expansion of the strain vectors, where
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Fig. 14.2 General arrangement of cells and their geometry and coordinate systems for the
HFGMC-RUC model. Mirrored cells–interfaces are illustrated to enforce the periodic boundary
conditions
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2

66
6
6
6
6
6
4
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0 1 0
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7
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5

; P.01/ D

2

66
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6
6
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6
4

0 0 0

0 1 0

0 0 0

1 0 0

0 0 0

0 0 1

3

77
7
7
7
7
7
5

(14.4)

and P.20/ D 3P.10/, P.02/ D 3P.01/.
The volume average of the strain in the subcell .ˇ�/ can be consequently

represented by

N�.ˇ�/ D N�C P.10/W
.ˇ�/

.10/ C P.01/W
.ˇ�/

.01/ (14.5)
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The strain concentration matrix B.ˇ�/ of the subcell, which relates the subcell strain
average to the externally applied strain, can be expressed in an incremental form by

�N�.ˇ�/ � B.ˇ�/�N� D
�

IC P.10/ OD.ˇ�/

.10/ C P.01/ OD.ˇ�/

.01/

�
�N� (14.6)

with I being the identity matrix. Furthermore, one can easily identify

OD.ˇ�/

.10/ �N� D �W.ˇ�/

.10/ ;
OD.ˇ�/

.01/ �N� D �W.ˇ�/

.01/ (14.7)

where OD.ˇ�/

.mn/ are dependent on the solution of the overall governing equations of
the RUC.

The spatial form of the stress vector can be expected to be a linear polynomial
order. Thus, it is possible to express the stress as follows:

� .ˇ�/ D N� .ˇ�/ C � .ˇ�/.10/ y.ˇ/2 C � .ˇ�/.01/ y.�/3 (14.8)

where N� .ˇ�/ is the average stress in the subcell .ˇ�/ and � .ˇ�/.mn/ are higher-order
stresses which can be directly expressed in terms of the stress moments defined by

S.ˇ�/.mn/ D
1

hˇl�

Z hˇ=2

�hˇ=2

Z l� =2

�l� =2
� .ˇ�/.y.ˇ/2 /m.y.�/3 /

n dy.ˇ/2 dy.�/3 (14.9)

These moments were first employed in the original derivation of the HFGMC (see
Aboudi et al. 2013). Hence, the present form of the stress vector is equivalent to the
original derivation:

�
.ˇ�/

.10/ D
12

h2ˇ
S.ˇ�/.10/ ; �

.ˇ�/

.01/ D
12

l2�
S.ˇ�/.01/ (14.10)

The strong form of the equilibrium equations r � � D 0 is satisfied in an average
volumetric sense:

L2�
.ˇ�/

.10/ C L3�
.ˇ�/

.01/ D 0 (14.11)

where L2 and L3 are given by the Boolean matrices:

L2 D
2

4
0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

3

5 ; L3 D
2

4
0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

3

5 (14.12)

For the general case of a nonlinear material in the subcell .ˇ�/, the incremental
form of its constitutive relation is given by

�� .ˇ�/ D C.ˇ�/��.ˇ�/ (14.13)

where C.ˇ�/ is the instantaneous fourth-order tangent stiffness tensor that is defined
based on the specific nonlinear material within the subcell.



14 The Parametric HFGMC Micromechanics 397

The increment of the spatial stress polynomial is

�� .ˇ�/ D � N� .ˇ�/ C�� .ˇ�/.10/ y.ˇ/2 C�� .ˇ�/.01/ y.�/3 (14.14)

The above incremental stress form can be expressed by the incremental strain
given by Eq. (14.3). The last two relations can be identified by comparison with
Eq. (14.14). Thus,

� N� .ˇ�/ D C.ˇ�/�N�C C.ˇ�/P.10/�W.ˇ�/

.10/ C C.ˇ�/P.01/�W.ˇ�/

.01/

��
.ˇ�/

.10/ D C.ˇ�/P.20/�W.ˇ�/

.20/

��
.ˇ�/

.01/ D C.ˇ�/P.02/�W.ˇ�/

.02/ (14.15)

where � N� .ˇ�/ is the incremental average stress in the subcell. These relations are
employed in the equilibrium equations, Eq. (14.11), resulting into

L2C.ˇ�/P.20/�W.ˇ�/

.20/ C L3C.ˇ�/P.02/�W.ˇ�/

.02/ D 0 (14.16)

An alternate compact form of the above equation can be written as

A.ˇ�/2.20/�W.ˇ�/

.20/ C A.ˇ�/3.02/�W.ˇ�/

.02/ D 0 (14.17)

where

A.ˇ�/i.mn/ � LiC.ˇ�/P.mn/; .mn/ ¤ .00/ (14.18)

and

A.ˇ�/i.00/ � LiC.ˇ�/ (14.19)

Next, the traction and displacement continuity are imposed on an integral basis
over the interfaces. Consider the two interfaces between the neighboring cells .ˇ�/
and .ˇ1�/, and .ˇ�/ and .ˇ�1/, where ˇ1 D ˇC1 and �1 D �C1; the displacement
continuity conditions are given by

Z l� =2

�l� =2

�
u.ˇ�/j

y
.ˇ/
2 D�hˇ=2

� u.ˇ1�/j
y
.ˇ1/
2 Dhˇ1 =2

�
dy.�/3 D 0 (14.20)

with ˇ D 1; : : : ;Nˇ � 1 and � D 1; : : : ;N� . Similarly, the displacement continuity
at the interface whose normal is in the y3-direction is

Z hˇ=2

�hˇ=2

�
u.ˇ�/j

y
.�/
3 Dl� =2

� u.ˇ�1/j
y
.�1/
3 D�l�1 =2

�
dy.ˇ/2 D 0 (14.21)
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with ˇ D 1; : : : ;Nˇ and � D 1; : : : ;N� � 1. The needed displacement periodicity
conditions are

Z l� =2

�l� =2

�
u.1�/j

y
.1/
2 Dh1=2

� u.Nˇ�/j
y
.Nˇ/

2 D�hNˇ=2

�
dy.�/3 D 0 (14.22)

with � D 1; : : : ;N� .

Z hˇ=2

�hˇ=2

�
u.ˇ1/j

y
.1/
3 D�l1=2

� u.ˇN� /j
y
.N� /
3 DlN� =2

�
dy.ˇ/2 D 0 (14.23)

with ˇ D 1; : : : ;Nˇ .
The two traction continuity conditions are

Z l� =2

�l� =2

�
L2�

.ˇ�/j
y
.ˇ/
2 D�hˇ=2

� L2�
.ˇ1�/j

y
.ˇ1/
2 Dhˇ1 =2

�
dy.�/3 D 0 (14.24)

with ˇ D 1; : : : ;Nˇ � 1 and � D 1; : : : ;N� .

Z hˇ=2

�hˇ=2

�
L3�

.ˇ�/j
y
.�/
3 Dl� =2

� L3�
.ˇ�1/j

y
.�1/
3 D�l�1 =2

�
dy.ˇ/2 D 0 (14.25)

with ˇ D 1; : : : ;Nˇ and � D 1; : : : ;N� � 1. The average traction periodicity
conditions are

Z l� =2

�l� =2

�
L2�

.1�/j
y
.1/
2 Dh1=2

� L2�
.Nˇ�/j

y
.Nˇ/

2 D�hNˇ=2

�
dy.�/3 D 0 (14.26)

with � D 1; : : : ;N� .

Z hˇ=2

�hˇ=2

�
L3�

.ˇ1/j
y
.1/
3 D�l1=2

� L3�
.ˇN� /j

y
.N� /
3 DlN� =2

�
dy.ˇ/2 D 0 (14.27)

with ˇ D 1; : : : ;Nˇ . It should be emphasized that the periodicity relations,
Eqs. (14.22)–(14.23) and (14.26)–(14.27), are satisfied by mirroring and extending
the cells near the periodic interfaces as shown in Fig. 14.2. Therefore, Eqs. (14.20)–
(14.21) and (14.24)–(14.25) are equivalent to the periodic relations by using the
proposed mirroring technique. For example, the continuity equations can be applied
to satisfy the periodicity conditions by simply performing the shifting operation:
.ˇ D Nˇ C 1; �/ H) .1; �/. Thus, Eqs. (14.20)–(14.21) and Eqs. (14.24)–(14.25)
can be applied using the outlined mirroring procedure to enforce the periodicity
conditions as well.

The resulting four incremental displacement and traction continuity conditions,
Eqs. (14.20)–(14.21) and Eqs. (14.24)–(14.25), can be expressed as
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�
�W.ˇ�/

.00/ �
hˇ
2
�W.ˇ�/

.10/ C
h2ˇ
4
�W.ˇ�/

.20/

�

�
�
�W.ˇ1�/

.00/ C
hˇ1
2
�W.ˇ1�/

.10/ C
h2ˇ1
4
�W.ˇ1�/

.20/

�
D 0 (14.28)

�
�W.ˇ�/

.00/ C
l�
2
�W.ˇ�/

.01/ C
l2�
4
�W.ˇ�/

.02/

�

�
�
�W.ˇ�1/

.00/ �
l�1
2
�W.ˇ�1/

.01/ C
l2�1
4
�W.ˇ�1/

.02/

�
D 0 (14.29)

�
A.ˇ�/

2.10/�W.ˇ�/

.10/ CA.ˇ�/

2.01/�W.ˇ�/

.01/ �
hˇ
2

A.ˇ�/

2.20/�W.ˇ�/

.20/

�

�
�

A.ˇ1�/

2.10/�W.ˇ1�/

.10/ C A.ˇ1�/

2.01/�W.ˇ1�/

.01/ C
hˇ1
2

A.ˇ1�/

2.20/�W.ˇ1�/

.20/

�

D
�

A.ˇ1�/

2.00/ �A.ˇ�/

2.00/

�
�N� (14.30)

�
A.ˇ�/

3.10/�W.ˇ�/

.10/ C A.ˇ�/

3.01/�W.ˇ�/

.01/ C
l�
2

A.ˇ�/

3.02/�W.ˇ�/

.02/

�

�
�

A.ˇ�1/

3.10/�W.ˇ�1/

.10/ C A.ˇ�1/

3.01/�W.ˇ�1/

.01/ �
l�1
2

A.ˇ�1/

3.02/�W.ˇ�1/

.02/

�

D
�

A.ˇ�1/

3.00/ � A.ˇ�/

3.00/

�
�N� (14.31)

The overall vector of incremental variables of each .ˇ�/ subcell can be ordered as

�X.ˇ�/ �
�
�W.10/; �W.01/; �W.00/; �W.20/; �W.02/

� .ˇ�/
(14.32)

Figure 14.3 illustrates the common interfaces between a subcell .ˇ�/ and
its neighboring subcells. As previously discussed, it is sufficient to consider the
continuity conditions at the two interfaces y2 D hˇ=2 and y3 D l�=2 (illustrated
by bold lines in Fig. 14.3). Sweeping these two interfaces in the regular array of
subcells yields writing all interface and periodic conditions of the entire RUC.

The incremental formulation previously carried out is due to the nonlinearity
of the total form of the equations. This linearization procedure necessitates a
consistent definition of a residual vector R.ˇ�/ for the corresponding total form of
the governing equations. These are arranged in the following order: traction conti-
nuity, Eqs. (14.30)–(14.31), internal equilibrium equations for the cell, Eq. (14.17),
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Fig. 14.3 One-cell configuration with its neighboring cells showing its two primary “feed-
forward” interfaces along with the location for the stress integration points

followed by the displacement continuity, Eqs. (14.28)–(14.29). The increment of the
residual vector can be written for the above principal two interfaces in the form

�R.ˇ�/ �
�
�R
 ; �RE; �Ru

� .ˇ�/

D T.ˇ�/1 �X.ˇ�/ C T.ˇ1�/2 �X.ˇ1�/ C T.ˇ�1/3 �X.ˇ�1/

� D.ˇ�/
1 �N� � D.ˇ1�/

2 �N� �D.ˇ�1/
3 �N� (14.33)

The matrix T.ˇ�/1 operates on the incremental microvariable vector �X.ˇ�/ and
provides the incremental traction and displacement at the two interfaces within the
cell .ˇ�/. Its structure is given by

T.ˇ�/1 D

2

66
6
6
6
6
4

A2.10/ A2.01/ 0 � hˇ
2

A2.20/ 0
A3.10/ A3.01/ 0 0 l�

2
A3.02/

0 0 0 A2.20/ A3.02/

� hˇ
2

I 0 I
h2ˇ
4

I 0

0 l�
2

I I 0
l2�
4

I

3

77
7
7
7
7
5

.ˇ�/

(14.34)
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Similarly, the matrices T.ˇ1�/2 and T.ˇ�1/3 operate on the incremental microvariable
vectors �X.ˇ1�/ and �X.ˇ�1/ of the adjacent subcells, respectively. They provide
the incremental traction and displacement on the other side of the two interfaces.
The matrix T.ˇ�1/3 defines the incremental displacement and stress within the subcell
.ˇ�1/ needed to complete the continuity conditions at the common interface of the
adjacent subcell .ˇ�/. These two matrices are of the form

T.ˇ1�/2 D

2

6
6
66
6
4

�A2.10/ �A2.01/ 0 � hˇ
2

A2.20/ 0
0 0 0 0 0
0 0 0 0 0

� hˇ
2

I 0 �I � h2ˇ
4

I 0
0 0 0 0 0

3

7
7
77
7
5

.ˇ1�/

(14.35)

T.ˇ�1/3 D

2

6
6
6
6
6
4

0 0 0 0 0
�A3.10/ �A3.01/ 0 0 l�1

2
A3.02/

0 0 0 0 0
0 0 0 0 0

0 l�1
2

I �I 0 � l2�
4

I

3

7
7
7
7
7
5

.ˇ�1/

(14.36)

The Di matrices provide the contribution of the applied global strain field to the
local stress differences of the adjacent subcells that are connected to the two
corresponding interfaces. The structures of the Di matrices are given by

D.ˇ�/
1 D

2

6
6
6
66
6
6
4

�A2.00/

�A3.00/

0

0

0

0

3

7
7
7
77
7
7
5

.ˇ�/

D.ˇ1�/
2 D

2

6
6
6
66
6
6
4

A2.00/

0

0

0

0

0

3

7
7
7
77
7
7
5

.ˇ1�/

D.ˇ�1/
3 D

2

6
6
6
66
6
6
4

0

A3.00/

0

0

0

0

3

7
7
7
77
7
7
5

.ˇ�1/

(14.37)

internal equilibrium equations for the cell, followed by the displacement continuity,
Eqs. (14.28)–(14.29).

The incremental displacement continuity, Eqs. (14.28)–(14.29), and the equilib-
rium equations, Eq. (14.17), expressed in terms of the microvariables resulted in
a set of homogeneous algebraic equations. This fact is useful for condensation
purposes of the overall system of equations as will be shown later. The system
of the incremental (tangential) governing equations is obtained by assembling the
contributions of the repeated two-interface conditions from all the subcells. This
is done by utilizing the derived forms given by Eq. (14.33). Figure 14.4 shows
the contribution from the subcell .ˇ�/ to the RUC incremental coupled system of
equations. The structure of the entire RUC vector of variables is
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Fig. 14.4 Overall tangential system of equations for the HFGMC-RUC model indicating the
contribution of cell .ˇ�/ to the system and showing a row of complete equations for this cell

�X D
�
�X.11/; �X.12/; : : : ; �X.NˇN� /

�
(14.38)

Alternatively, it is possible to collect the two-interface contributions to the
governing system of equations (assembly) on a subcell-by-subcell basis. In this
case, all indicted matrices will be solely computed from the subcells’ stiffnesses
and assembled on a column basis.

A dramatic reduction of the computational effort can be achieved by employing a
local condensation procedure. To this end, the homogeneous and nonhomogeneous
equations at the subcell level can be grouped into homogeneous and nonhomoge-
neous parts. This repartitioned system has the form

�
A

 A
u

Au
 Auu

� �
�X


�Xu

�
D
�

D
0

�
f�N� g (14.39)

The matrix A

 is involved in the lumped traction continuity and the equilibrium
equations. The matrix Auu in Eq. (14.39) is part of the displacement continuity
(homogeneous equations). On the other hand, the off-diagonal mixed terms A
u and
Au
 emerge from repartitioning the system of equations. The vector of variables can
then be partitioned into two corresponding parts: �X
 and �Xu.
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The solution for the entire RUC system can be represented symbolically as

�X D A�1D�N� � OD�N� (14.40)

where the above left-hand-side square matrix A has the dimension 15NˇN� �
15NˇN� in a non-condensed form, i.e., with no microvariable equivalences per-
formed between adjacent interfaces for problem size reduction. Alternately, by
performing a simple condensation procedure, the dimension of the reduced system
is 6NˇN� � 6NˇN� .

The RUC effective tangential stiffness matrix for the periodic composite medium
defines the effective incremental stress–strain relation � N� D C��N�. It can be
obtained from the RUC solution for the microvariables in Eq. (14.39). This solution,
in turn, allows determining the influence matrices B.ˇ�/ for each subcell that relate
the incremental form of Eqs. (14.5)–(14.7). The needed matrices OD.ˇ�/

.10/ and OD.ˇ�/

.01/

can be identified from OD in Eq. (14.40) which can be partitioned as follows:

OD.ˇ�/ D

2

6
66
6
6
4

OD.10/

OD.01/

OD.00/

OD.20/

OD.02/

3

7
77
7
7
5

.ˇ�/

(14.41)

Consequently, the effective tangential stiffness of the composite at each strain level
can be readily evaluated as follows:

C� D 1

HL

NˇX

ˇD1

N�X

�D1
hˇl�C.ˇ�/B.ˇ�/ �

NˇX

ˇD1

N�X

�D1
hˇl�BT.ˇ�/CT.ˇ�/ (14.42)

which shows the symmetry of the stiffness of the composite.
The contribution to the overall RUC residual vector from a characteristic subcell

.ˇ�/ needs to be defined. This is an important aspect of any nonlinear iterative
solution method of the RUC nonlinear system of equations. The residual vector
is composed from the total (rather than incremental) interfacial displacements,
equilibrium, and traction conditions. It is evaluated at each iteration from the trial
microvariables. These field variables are evaluated at both sides of the neighboring
cells as illustrated in Fig. 14.3. The locations of the numerical integration points are
indicated by the solid circles. It should be noted that the displacement residuals are
explicitly zero and can be used for condensation of the microvariables (unknowns).
The contribution to the residual vector from subcell .ˇ�/ is given by

R.ˇ�/ D

2

66
6
6
6
4

R
ŒL2� .ˇ�/ � L2� .ˇ1�/�dy.�/3R
ŒL3� .ˇ�/ � L3� .ˇ�1/�dy.ˇ/2

L2�
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0

0

3

77
7
7
7
5
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66
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6
4

L2� .ˇ�/1 � L2� .ˇ1�/3

L3� .ˇ�/2 � L3� .ˇ�1/4

L2�
.ˇ�/

.10/ � L3�
.ˇ�/

.01/

0

0

3

77
7
7
7
5

(14.43)
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where the first two rows define the traction continuities in a total form, whereas the
third row stands for the total form of the equilibrium equations in the subcell. The
last equality of Eq. (14.43) expresses the transition from the mathematical definition
of the residual vector to its numerical form. The higher-order stress terms are derived
from the total stresses evaluated at the numerical integration points:

�
.ˇ�/

.10/ D
1

hˇ

�
� .ˇ�/3 � � .ˇ�/2

	
I �

.ˇ�/

.01/ D
1

l�

�
� .ˇ�/2 � � .ˇ�/4

	
(14.44)

The subcell’s contribution to the residual vector, R.ˇ�/, is used in the process of
assembling the overall residual vector of the HFGMC-RUC model RHFGMC given by

RHFGMC D
�

R.11/; ::;R.ˇ�/; ::;R.NˇN� /

�
(14.45)

The iterative solution technique (e.g., Newton–Raphson) aims to minimize the
residual vector where the exact solution should yield each term to zero. This is
numerically satisfied by requiring that residual norm to be sufficiently small. In
addition, another cycle of iterations may be needed in the case where a mixed
remote stress and strain combination is applied (e.g., a uniaxial transverse loading
defined by N�22 ¤ 0 and N
ij D 0 for all other components). In this case, an
additional global residual vector, RG, must be introduced (for the above uniaxial
transverse loading, RG D fN
11; N
33; N
23; N
13; N
12g). Thus, two separate conditions for
the residual vectors, RG D 0 and RHFGMC D 0, should be satisfied simultaneously
at each incremental loading.

14.3 Nonlinear Doubly Periodic Parametric HFGMC
Formulation

In this section, the governing equations of doubly periodic parametric HFGMC are
presented (Levi-Sasson et al. 2015). They form a special case of the general triply
periodic equations that are presented in the next section.

Consider a doubly periodic composite described with respect to global coordi-
nates x2 and x3 (see Fig. 14.5a). A RUC is identified which is described with respect
to local coordinates y2 and y3 as shown in Fig. 14.5b. The RUC is discretized into
an arbitrary number of subcells as illustrated in Fig. 14.5c. The micromechanical
analysis of triply periodic composites has been presented by Haj-Ali and Aboudi
(2013). Presently, the corresponding analysis for doubly periodic composites is
summarized in the following. A characteristic subcell is shown in Fig. 14.5d. The
parametric doubly periodic HFGMC-2D is formulated in the parent .r; s/ domain,
Fig. 14.5e, in which a subcell is represented by a square shape with boundaries
located between �1 � r; s � 1. A linear transformation from the parent domain
.r; s/ to the physical domain (y2; y3) can be selected to define this mapping:
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Fig. 14.5 Schematic representation of doubly periodic composite. (a) A RUC can be identified
and (b) isolated. (c) A RUC is divided into subcells. The mapping of a subcell from the physical
to the parametrical coordinate system is illustrated in (d), and (e) NTi andbni are the traction applied
on face i and its normal vector, respectively

yi.r; s/ D
4X

kD1
Hk.r; s/y

.k/
i (14.46)

H1 D 1

4
.1� r/.1 � s/; H2 D 1

4
.1C r/.1 � s/

H3 D 1

4
.1C r/.1C s/; H4 D 1

4
.1� r/.1C s/

where k indicates a corner of a subcell, r and s are the uniform parametric coordinate
system of the parent domain, and y.k/i is the coordinate of the kth corner in the
physical domain. The Jacobian is defined by

J D

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

@y2
@r

@y3
@r

@y2
@s

@y3
@s

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

(14.47)
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While a 2D geometry of the doubly periodic medium is used, a three-dimensional
displacement polynomial is defined for each subcell as follows (Haj-Ali and Aboudi
2013):

u D �0 � xCW0 C 1

2
.W2 �W4/rC 1

2
.W3 �W1/s

C 1

4
.W2 CW4 � 2W0/.3r2 C rs � 1/

C 1

4
.W1 CW3 � 2W0/.3s2 C rs � 1/

(14.48)

where Wi are micromechanical unknowns to be determined in the following. In this
equation, the expression for the displacement �0 � x includes the remote strain field
applied on the composite, W0 can be associated with a center microvariable, and
Wi .i D 1; 2; 3; 4/ are directly related to the average displacement of the ith subcell
face. It should be emphasized that the micromechanical unknowns (microvariables)
are related to the faces of the subcells. This allows, in part, to reduce the computing
effort of solving the resulting set of equations.

The HFGMC enforces displacement and traction continuity in an average manner
on the faces between adjacent subcells. To that goal, the displacement and traction
are averaged on each face in every subcell. These averages are determined by
integration over a face path. Thus, the average displacement Nu.ˇk/ of the kth face
in subcell ˇ is given by

Nu.ˇk/ D 1

lk

Z

lk

u.ˇ/.y/dlk D 1

2

Z 1

�1
u.ˇ/.�k/d�k; k D 1; 2; 3; 4 (14.49)

where lk indicates the path of the kth face in the physical domain and �k denotes
the integration variable along the kth face in the parent domain. By performing this
integration, the following relations are obtained:

Nu.ˇ1/ DW.ˇ/
1 ; Nu.ˇ2/ DW.ˇ/

2

Nu.ˇ3/ DW.ˇ/
3 ; Nu.ˇ4/ DW.ˇ/

4 (14.50)

The expression for the average traction NT.ˇk/ on the kth face of a subcell ˇ,
following from the definition of the traction T D � � n, is

NT.ˇk/ D 1

lk

Z

lk

� .ˇ/.y/ � n.ˇk/dlk D 1

2

Z 1

�1
� .ˇ/.r; s/ � n.ˇk/d�k; k D 1; 2; 3; 4

(14.51)

where � .ˇ/ is the stress field within subcell ˇ and n.ˇk/ is the normal vector to the kth
face. Traction vectors and normal vectors are schematically illustrated in Fig. 14.5d.
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The strain components in a subcell are given as a sum of the remote strain �0ij
applied on the RUC and local strains:

�
.ˇ/
ij .y.r; s// D �0ij C

1

2

�
@ui

@yj
C @uj

@yi

	
(14.52)

Substituting Eq. (14.48) into (14.52) results in

�.ˇ/ D �0 C A.ˇ/W.ˇ/ (14.53)

where W.ˇ/ is the vector of the micromechanical unknowns of subcell ˇ, also termed
as microvariables. By applying contracted notation, the dimensions of �.ˇ/, �.0/,
W.ˇ/, and A.ˇ/ are 6 � 1, 6 � 1, 15 � 1, and 6 � 15, respectively. It should be noted
that the coefficient matrix A.ˇ/ includes data about the geometry and the elements
of the Jacobian of the transformation.

The linear stress–strain relation for a material within a subcell is governed by
Hooke’s law � .ˇ/ D C.ˇ/�.ˇ/, with C.ˇ/ being the stiffness matrix of the material. It
follows from Eqs. (14.53) and (14.51) that the average traction can be expressed in
the form

NT.ˇk/D1
2

Z 1

�1
N.ˇk/C.ˇ/

h
�0CA.ˇ/W.ˇ/

i
d�kDN.ˇk/C.ˇ/

h
�0CNA.ˇk/W.ˇ/

i
(14.54)

where the matrix N.ˇk/ is composed of the components of the normal to the kth face
of subcell ˇ which is given as follows:

N.ˇk/ D
2

4
0 0 0 0 n3 n2
0 n2 0 n3 0 0

0 0 n3 n2 0 0

3

5

.ˇk/

(14.55)

and NA.ˇk/ is defined by

NA.ˇk/ D 1

2

Z 1

�1
A.ˇ/d�k (14.56)

The displacement and traction continuity conditions are imposed in an average
manner along the interface of adjacent subcells. As to the periodicity of displace-
ment and traction, they are implemented at two matched subcells at the opposite
sides of the RUC. Thus, the continuity and periodicity equations are given by

Nu.ˇk/ D Nu.�m/

NT.ˇk/ D NT.�m/ (14.57)

In the current parametric implementation, imposing the periodicity conditions
requires identical distribution of subcells along the opposite sides of the RUC.
This requirement is not a limitation since periodicity is an inherent property of the
HFGMC due to the periodic microstructure character of the composite.
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Another set of equations is obtained by enforcing the equilibrium equations in
the average sense, on each subcell, which yield

Z

S
r � � .ˇ/dS D

Z

l
� .ˇ/ � ndl D

4X

kD1

Z

lk

N.ˇk/� .ˇ/dlk D
4X

kD1
lk NT.ˇk/ D 0 (14.58)

The total number of unknown components in W is 15 times the number of
subcells Nsc. For each subcell, only two faces contribute independent sets of
equations. Therefore, displacement, traction continuity, and periodicity provide
2�3Nsc equations. The equilibrium equations provide 3Nsc independent relations. In
summary, the total number of equations is 15Nsc and it is equal to the total number
of unknowns for the general case where no static condensation of the microvariables
is carried out.

The overall set of equations can be represented in the form

AW D D�0 (14.59)

where A is a sparse matrix of size 15Nsc�15Nsc and D is a matrix of size of 15Nsc�6
that relate the external remote strain to the traction and equilibrium equations.

Equation (14.59) can be arranged as follows:
2

6
4
Nu.ˇk/ � Nu.�m/

NT.ˇk/ � NT.�m/

r � � .ˇ/

3

7
5

8
<̂

:̂

W1

:::

WNsc

9
>=

>;
D
2

4
0

Dtrac

Deq

3

5 �0 (14.60)

where Dtrac and Deq are the appropriate decomposition of D. In this formulation,
the part with the homogeneous equations expresses the interface displacement
continuity. A further look at Eqs. (14.50) and (14.57) allows the static condensation
of the face displacement microvariables’ continuity on both sides of the shared
faces. Therefore, the reduced number of unknowns is decreased to 9Nsc which
significantly decreases the computational effort.

Once the set of equations of the HFGMC is solved for the microvariables, the
strain concentration tensor G.ˇ/ can be readily established. This concentration tensor
relates the external remote strain �0, applied on the composite, to the local average
strain N�.ˇ/ within subcell ˇ:

N�.ˇ/ D 1

Sˇ

Z

Sˇ

�.y/dS D �0 C 1

2Sˇ

Z

Sˇ

�ryuC ury
�

dS

D �0 C 1

2Sˇ

Z

l
.u˝ nC n˝ u/ dl D �0 C 1

2Sˇ

4X

kD1
lk . Nu˝ nC n˝ Nu/.ˇk/

� G.ˇ/ W �0 (14.61)

where Sˇ is the surface area of subcell ˇ, u is the displacement field, and n is the
normal to the perimeter l.
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The effective RUC stiffness matrix C� that relates between the global average stress
and strain can be determined from

C� D 1

Stotal

NscX

ˇD1
SˇC.ˇ/G.ˇ/ (14.62)

where Stotal is the total area of the RUC and C.ˇ/ is the local stiffness matrix of
subcell ˇ.

14.4 Nonlinear Triply Periodic Parametric HFGMC
Formulation

The parametric HFGMC method is cast herein in its most general 3D form with
nonlinear formulation. The previous doubly periodic parametric HFGMC can be
shown to be a special case of the current generalization. The parametric HFGMC
presently developed is well suited for nonlinear and damage behaviors as shown
by Haj-Ali and Aboudi (2016). Figure 14.6 is used to schematically illustrate
a general triply periodic multiphase heterogeneous material. A global Cartesian
coordinate system .x1; x2; x3/ is used for the periodic composite. A 3D repeating
unit cell (RUC) can be identified and described by using the local coordinate system
.y1; y2; y3/. In the parametric HFGMC theory, the RUC can be divided into an
arbitrary 3D array of hexahedral cells, often denoted as subcells. Figure 14.6 shows
the RUC domain which is discretized into a general assembly of hexahedral subcells
to represent the different phase geometries. The current formulation extends the
linear parametric HFGMC formulation (Haj-Ali and Aboudi, 2010, 2013) to analyze
nonlinear RUC of triply periodic composites. Figure 14.7 shows a one general
hexahedral subcell isolated in its physical coordinates .y1; y2; y3/. This subcell is
mapped to a uniform parametric coordinate system .r; s; t/:

yi.r; s; t/ D
8X

kD1
Hk.r; s; t/yki; i D 1; 2; 3 (14.63)

where yi, i D 1; 2; 3, are the coordinates of a general point within the subcell .ˇ/
mapped from the parent parametric coordinates to the physical RUC coordinates.
The coordinates yki are located at the corners (vertices) of the subcell. The paramet-
ric geometric transformation is considered independent from the displacement field
and can be linear or quadratic.
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Fig. 14.6 Schematic illustration of a triply periodic array in the global .X1;X2;X3/ space of
a multiphase composite with its repeating unit cell (RUC) having arbitrary-shaped hexahedral
subcells, defined with respect to its .y1; y2; y3/ local coordinate system

In the present HFGMC-3D formulation, the complete quadratic form of the
displacement expansion in the subcell is given by

u D u0 CW000 CW100rCW010sCW001tCW110rsCW101rt CW011st

C 1

2
W200.3r2 � 1/C 1

2
W020.3s2 � 1/C 1

2
W002.3t2 � 1/ (14.64)

where the applied remote global-scale displacement field is given by u0 � �0 � x or
u0 � u0i;j � x.

This full quadratic expansion was initially used by Haj-Ali and Aboudi (2010) in
the case of a general parametric HFGMC for doubly periodic composites. Knowing
that the bilinear terms did not contribute to the subcell average displacements at
the surfaces, Haj-Ali and Aboudi (2010) treated these bilinear terms as internal
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Fig. 14.7 A hexahedral-
shaped subcell in its physical
and natural coordinates. The
numbering for the faces are
shown. The average traction
and displacement vectors for
each face are illustrated

subcell variables that can be determined with the help of average moments of
equilibrium equations. Later, Haj-Ali and Aboudi (2013) defined the bilinear
terms as internal dependent variables by two alternate solution cases, the first by
completely eliminating these terms from the polynomial expansion, denoted as the
trivial case:

W110 D W011 D W101 D 0 (14.65)

The second nontrivial solution case can also be obtained to preserve the
polynomial symmetry and frame indifference, yet retaining the complete quadratic
expansion. Consequently, this nontrivial case is expressed by

W110 D 1

2
.W200 CW020/

W011 D 1

2
.W020 CW002/

W101 D 1

2
.W200 CW002/ (14.66)



412 R. Haj-Ali and J. Aboudi

Therefore, the displacement expansion of the parametric HFGMC in the general 3D
case has the form

u D u0 CW0 C 1

2
.W4 �W6/ rC 1

2
.W5 �W3/ sC 1

2
.W2 �W1/ t

C 1

4
.W4 CW6 � 2W0/

�
3r2 C rsC rt � 1�

C 1

4
.W3 CW5 � 2W0/

�
3s2 C rsC st � 1�

C 1

4
.W1 CW2 � 2W0/

�
3t2 C rtC st � 1�

(14.67)

The above form can be exclusively expressed in terms of the face-average
displacement vectors at the six subcell faces, Wk; k D 1::6, and one internal
displacement variable, W0 (see Haj-Ali and Aboudi 2013, 2016). Hence, Eq. (14.67)
is derived from Eq. (14.64) by using Eq. (14.66) and

W000 D W7

W100 D 1

2
.W4 �W6/

W010 D 1

2
.W5 �W3/

W001 D 1

2
.W2 �W4/

W200 D 1

2
.W4 CW6 � 2W7/

W020 D 1

2
.W3 CW5 � 2W7/

W002 D 1

2
.W1 CW2 � 2W7/ (14.68)

The six subcell face-average total displacement vectors are expressed by

Nu.ˇk/ � 1

Ak

Z

Ak

u.ˇ/.y/dAk

D 1

4

Z 1

�1

Z 1

�1
u.ˇ/.�k; k/d�kdk D Nu0;.ˇk/ CWk; k D 1; 2; ::; 6 (14.69)

where (�k,k) are the surface parametric integration variables of the kth edge,
denoted by (ˇk).
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In order to establish expressions for the spatial displacement gradients and the
strain or stress components, the displacement gradients with respect to the physical
coordinates y are derived using the inverse Jacobian of the parametric geometry,
Eq. (14.63), defined by

J � @ .y1; y2; y3/

@ .r; s; t/
D

2

66
6
6
6
6
4

@y1
@r

@y2
@r

@y3
@r

@y1
@s

@y2
@s

@y3
@s

@y1
@t

@y2
@t

@y3
@t

3

77
7
7
7
7
5

(14.70)

Its inverse is denoted by OJ � J�1 D @ .r; s; t/=@ .y1; y2; y3/ and used to relate the
micro-displacement derivatives as

d.ˇ/W.9�1/ �
8
<

:

u;y1
u;y2
u;y3

9
=

;

.ˇ/

D
h OJ
i.ˇ/

8
<

:

u;r
u;s
u;t

9
=

;

.ˇ/

(14.71)

The right-hand-side vector can be simply obtained using the displacement form,
Eq. (14.67). It is important to emphasize that the Jacobian depends on the shape
functions used for the parametric mapping in Eq. (14.63). Thus, the proposed
parametric HFGMC is general and can have linear (subparametric) or quadratic
mapping in the case where a higher accurate geometry is needed. Other parametric
reconstruction attempts of the original HFGMC with orthogonal subcells (see
discussions by Haj-Ali and Aboudi 2012, 2013) have proposed a linear 2D mapping
with constant average Jacobian. This may introduce significant errors and restrict
the discretization of the RUC to be performed with subcell geometries close to
paralleloid or rectangular shapes. The 2D and 3D parametric HFGMC (Haj-Ali and
Aboudi 2010, 2013, 2016) have no restrictions on the Jacobian and currently employ
linear transformation using general quadrilateral 2D or hexahedral 3D shapes.

Similar to the displacement gradients with respect to .yi/ in Eq. (14.71), at
this stage, we also treat the global displacement gradients over the subcell (ˇ) as
independent, even though these are usually prescribed uniformly for all the subcells.
The vector form of the subcell global gradients is expressed as

d.ˇ/U.9�1/ �
8
<

:

u0;x1
u0;x2
u0;x3

9
=

;

.ˇ/

D
8
<

:

u0i;1

u0i;2

u0i;3

9
=

;

.ˇ/

� U0
.ˇ/

.9�1/ (14.72)

The full displacement gradient vector, d.ˇ/, is a linear combination of the local
and global counterparts, i.e.,

d.ˇ/ D dU
.ˇ/ C dW

.ˇ/ � I.9�9/U0
.ˇ/

.9�1/ C AW
.ˇ/

.9�21/W.ˇ/
.21�1/ (14.73)
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The nonzero terms of the AW
.ˇ/ matrix are listed in the appendix in terms of

the Jacobian inverse matrix, OJ. These are given for an .r; s; t/ point in the parent
coordinates. The matrix is evaluated numerically for the needed integral forms at
select integration points.

The total vector of the displacement microvariables for each subcell can be
organized in the order

W.ˇ/;T D fW1i;W2i;W3i;W4i;W5i;W6i;W0ig.ˇ/.1�21/ i D 1; 2; 3 (14.74)

The small strain tensor in a given subcell .ˇ/ is defined by

�
.ˇ/
ij .y.r; s; t// D �0ij C

1

2

�
@ui

@yj
C @uj

@yi

	
(14.75)

The corresponding strain vector form is expressed as

�.ˇ/ D IBU0
.ˇ/ C IBAW

.ˇ/W.ˇ/ � IBU0
.ˇ/ C BWW.ˇ/ (14.76)

where the strain vector notation � is defined by

�T � f�11; �22; �33; 2�12; 2�13; 2�23g (14.77)

Therefore, the matrix IB has the Boolean structure

IB D

2

66
6
6
6
6
6
4

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0

3

77
7
7
7
7
7
5

(14.78)

and BW
.ˇ/ is the matrix that relates the spatial strain components to the displacement

microvariables and the IB takes the form of a direct global strain-gradient matrix.
The combined size of the two vectors, W.ˇ/ and U0

.ˇ/, includes all 30 displacement
variables of each subcell .ˇ/.

The average traction vector NT.ˇk/ on the six faces (sides) of the hexahedral subcell
is given by

NT.ˇk/ D 1

Ak

Z

Sk

� .ˇ/.y/ � n.ˇk/dSk D 1

4

Z 1

�1

Z 1

�1
� .ˇ/.r; s; t/ � n.ˇk/d�kdk;

k D 1; 2; ::; 6 (14.79)
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where n.ˇk/ is the unit normal vector to the kth side of subcell .ˇ/. The stress field,
� .ˇ/, is given by

� .ˇ/ D C.ˇ/ W �.ˇ/ (14.80)

assuming a tangential or linear stress–strain relation of the subcell, with C.ˇ/ being
the stiffness of the material in the subcell. Since the current geometry is interpolated
using linear mapping, the normal vector n.ˇk/ to each of the six faces is constant.
The established spatial strains in the subcell are used to obtain the corresponding
stresses. The latter are used in the expression for the average tractions, Eq. (14.79).
This provides

NT.ˇk/ D 1

4

Z 1

�1

Z 1

�1
N.ˇk/C.ˇ/

h
IBU.ˇ/

0 C BW
.ˇ/W.ˇ/

i
d�kdk

D N.ˇk/C.ˇ/
h
IBU.ˇ/

0 C NB.ˇk/

W W.ˇ/
i

(14.81)

with

N.ˇk/ D
2

4
n1 0 0 0 n3 n2
0 n2 0 n3 0 n1
0 0 n3 n2 n1 0

3

5

.ˇk/

(14.82)

and

NB.ˇk/

W D 1

4
IB

Z 1

�1

Z 1

�1
A.ˇ/d�kdk (14.83)

As mentioned above, in the linear parametric mapping case, the N.ˇk/ matrix is
constant.

Following the original HFGMC formulation, we impose the displacement and
traction continuity between the subcells. These conditions are enforced in an
average integral sense. In addition, periodicity conditions are imposed between the
boundary subcells of the RUC by requiring that the displacements and tractions
be equal at these mirrored interfaces. The third major requirement of the HFGMC
method is the intra-subcell equilibrium applied in a volumetric average form. In
the following, the above transformed expressions for the average displacements and
tractions, Eqs. (14.69) and (14.81), respectively, can be used to impose the HFGMC
equations. The displacement and traction continuity conditions can be written as

Nu.ˇk/ D Wk
.ˇ/ D Nu.�m/ D Wm

.�/; NT.ˇk/ D NT.�m/ (14.84)

where .ˇk/ denotes the kth interface (side) of subcell .ˇ/ and .�m/ is the neigh-
boring mth interface side of subcell .�/. The displacement and traction periodicity
conditions are imposed as in Eq. (14.84) but with subcells .ˇ/ and .�/ located on
the opposite sides of the RUC.
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The equilibrium equations for each subcell are imposed in an average volumetric
sense in conjunction with the divergence theorem. This allows to utilize the
previously derived expressions for the average tractions as follows:

Z

V
r � �dV D

Z

S
� � ndS D

6X

kD1

Z

Sk

N.ˇk/� .ˇ/dSk D
6X

kD1
Ak NT.ˇk/ D 0 (14.85)

where V and S are the volume and surface of the .ˇ/ subcell, respectively, and Ak is
the area of the kth side.

The above formulation completes the nonlinear theoretical derivation of the gen-
eral three-dimensional parametric HFGMC micromechanical method. The assem-
bly of the derived 21 � Nc HFGMC governing equations of the RUC is solved to
obtain the unknown 21microvariables for each cell. This is assuming that the global
displacement gradients are known U0

.ˇ/ D U0 and no static condensation, i.e., all
the microvariables of the subcells are retained as independent variables. In general,
the equations can be symbolically grouped into three parts:

2

66
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<̂

:̂

0

0

0

9
>=

>;
(14.86)

where the first part (row) represents the average continuity and periodicity of the
displacements, the second represents the continuity of the tractions in a similar
fashion, and the third part represents the equilibrium equations for all the subcells.
The above system of equations is solved for a given externally applied strain,
�0 D IBU0, to obtain the cell microvariables. See Haj-Ali and Aboudi (2013, 2016)
for more discussions of the solution approach for the above equations in the linear
and nonlinear cases, respectively, and how to obtain the effective elastic properties
of the multiphase composite.

14.5 HFGMC with Average Virtual Work Formulation

A new average virtual work is derived with associated generalized residuals and a
symmetric stiffness for the RUC system needed for the nonlinear iterative solution.
This is a new alternate solution approach to the one presented in the previous
section. The aim herein is to replace the above direct HFGMC nonsymmetric system
of equations, Eqs. (14.84)–(14.86), with a symmetric incremental system and its
associated residual error vector. To that end, we define an average virtual work,
expressed at the local level in terms of the subcell face-average virtual displacement
microvariables associated with the average face tractions. At the overall global level,
we use the average virtual work defined through the remote virtual strains and their
associated average stresses. The subcell external and internal average virtual work
balance is expressed by
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ıU0
.ˇ/;T fU

.ˇ/ C ıW.ˇ/;T fW
.ˇ/ D

Z

V
ı�.ˇ/;T� .ˇ/dV

D
Z

V
.ıU0

.ˇ/;TIB
.ˇ/;T C ıW.ˇ/;TBW

.ˇ/;T/� .ˇ/dV

(14.87)

The generalized internal resisting force vector of the subcell can be identified with
its two parts as

fU
.ˇ/ D

Z

V
IB
.ˇ/;T� .ˇ/dV I fW

.ˇ/ D
Z

V
BW

.ˇ/;T� .ˇ/dV (14.88)

It is interesting to note that the part of the internal resisting vector fU
.ˇ/ is the

contribution of the subcell to the RUC average overall stress, which is also a work
conjugate to the global displacement gradients, while the fW

.ˇ/ part is a work-
conjugate force to the local average micro-displacement vectors at the interfaces
of the subcell. We use Eqs. (14.76) and (14.80) substituted in (14.84) and take the
derivatives of the generalized internal force vectors with respect to the subcell’s
variables in order to obtain the stiffness matrix. The results are written by dropping
the .ˇ/ symbol since the following derived expressions apply to one or the entire
number of RUC subcells (by assembly). Hence,

fU D
Z

V
IT

BC.IBU0 C BWW/dV I fW D
Z

V
BT

WC.IBU0 C BWW/dV (14.89)

The resulting stiffness matrix that relates the overall generalized force vector, f D
.fW; fU/, and the overall variables of the subcells (RUC), .W;U0/, is symbolically
expressed by

K D
"R

V BW
TCBWdV

R
V BW

TCIBdV
R

V IB
TCBWdV

R
V IB

TCIBdV

#

(14.90)

The stiffness matrix of the HFGMC is symmetric. In the case of nonlinear
material response, the incremental derivation of the above generalized average
virtual work is straightforward. The equilibrium residual of the entire RUC system
can be expressed in a general manner, with imposing the interface continuity and
periodicity on the displacement microvariables, by

R � P � f D
(

PW

PU

)

�
( R

V BW
T�

R
V IB

T�

)

D ˚0 � (14.91)

The solution for the overall system equilibrium equations for the RUC in the
nonlinear case can follow one of the classical Newton methods in computational
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mechanics to solve Eq. (14.91) incrementally and in an iterative manner. In general,
the PW is not directly prescribed in a typical RUC because the external surfaces
are usually occupied using periodicity conditions over the conjugate microvariables
W, unless it has free internal surfaces with pressure-type loading. The applied
generalized force PU is equal to the average RUC stress with a unit volume. The
incremental system of equations at time t is

"R
V BW

TCtBWdV
R

V BW
TCtIBdV

R
V IB

TCtBWdV
R

V IB
TCtIBdV

#.t/ (
�W

�U0

) .tC�t/

D ˚R
�.tC�t/

(14.92)

The use of incremental nonlinear HFGMC equilibrium-based formulation,
Eq. (14.92), with the generalized internal resisting vector, Eq. (14.89), instead
of the average traction continuity relations and average equilibrium, Eq. (14.86),
respectively, provides an enhanced computational advantage. This is manifested
by using the symmetric stiffness matrix and well-established incremental solution
techniques for the overall nonlinear system of equations.

The HFGMC linear geometric mapping and quadratic displacement interpolation
(subparametric formulation) have been proposed, e.g., Haj-Ali and Aboudi (2010,
2013, 2016). The current nonlinear formulation simplifies the numerical integration
and puts the HFGMC at an equal footing in terms of the computational effort
compared to the nodal displacement-based FE. Both the FE and the parametric
HFGMC require similar computational efforts expressed by symmetric stiffness
assembly and iterative direct solution of the overall system of equations. Therefore,
it is possible for the first time to give an exact answer to the computational time
required for the HFGMC solution compared to the FE analysis. The classical FE
quadratic brick (hexahedral) element is usually composed of 20 nodes with a total
of 60 degrees of freedom (variables). The HFGMC employs a quadratic subcell
with a maximum of 30 variables including the micro-displacements and the average
displacement gradients (having them as independent even though these prescribed
variables can be statically condensed). Therefore, one would accurately estimate
that the required HFGMC computational time will not exceed 50% of the FE
computations.

It is important to draw the distinctions between the proposed parametric HFGMC
and the classical displacement-based finite element (FE) method, where a common
misconception has been to link the HFGMC to FE. In the FE formulation, the
displacement continuity between two adjacent and connected elements is satisfied
in a pointwise manner by sharing the same nodal degrees of freedom at both sides.
However, the HFGMC quadratic displacement expansion is nonconforming and
the displacement continuity is only satisfied in an average sense between adjacent
subcells. The latter is an approximation that allows the HFGMC to explicitly use
additional stress variables in the formulation and directly apply average traction
continuity. This approach can facilitate cohesive damage modeling that can be
easily implemented (see Haj-Ali and Aboudi 2010). In addition, the remote fields
in the HFGMC are directly tied to the micromechanical formulation by using



14 The Parametric HFGMC Micromechanics 419

both the remote average strain and local displacement microvariables. This allows
additional advantage in applying direct periodicity conditions over global and local
microvariables (and their conjugates) of the RUC, where in the FE formulation
is imposed only through displacement total variables. The latter differences are
illustrated in comparing the HFGMC to the FE for the analysis of a relatively
wide range of cases (see Haj-Ali and Aboudi 2013). The current nonlinear solution
formulation of the overall system of equations, however, is very analogous to that
in FE method, realized by defining the stiffness assembly and generalized internal
resisting forces.

14.6 Applications

Many applications of the HFGMC with regular array have been presented in Aboudi
et al. (2013). These include applications on elastic, inelastic, smart composites,
and finite strain HFGMC micromechanical analysis. Further implementation of the
HFGMC method for composites with nonlinear effects has been presented by Haj-
Ali and Aboudi (2009, 2010). The later implicit formulation developed iterative
procedure to minimize the residual error that satisfies the HFGMC governing
equations suitable for applied finite strain increments.

The HFGMC model has been applied by Gilat and Aboudi (2013) for the
prediction of the inelastic behavior of periodic microstructural auxetic arrays that
can generate negative values of Poisson’s ratios. Experimental evaluation of the
mechanical properties of reinforced carbon nanotubes and comparisons by the
HFGMC predictions has been presented by Ben David et al. (2013).

The effects of fiber misalignment (Bednarcyk et al. 2014) and clustering
(Bednarcyk et al. 2015) have been investigated by employing the HFGMC model.
The damping properties of unidirectional, laminated, and woven composites by
employing a multiscale HFGMC micromechanics have been recently presented by
Bednarcyk et al. (2016). In Levi-Sasson et al. (2015), failure envelopes for laminated
composites have been predicted by the parametric HFGMC, in conjunction with
continuum damage implemented separately for the fiber and matrix subcells. The
predicted failure envelopes compared well with results available in the literature
and with well-known anisotropic failure criteria.

The microplane constitutive modeling theory has been integrated within the
parametric HFGMC by Haj-Ali and Aboudi (2016) to represent the nonlinear and
strain softening of the matrix subcells. To this end, the nonlinear micromechanical
formulation of both the HFGMC and the microplane theories has been both
developed and integrated in a nested fashion.

Smart Composites The HFGMC has also been implemented for the prediction of
the behavior of smart composites. Thus, piezoresistive composites which are capa-
ble of measuring the changes in electrical resistance caused by the application of
mechanical deformation have been analyzed by Haj-Ali et al. (2014) by employing
the HFGMC micromechanics model.
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Magnetostrictive materials are capable of generating elastic strain as result of
the application of magnetic field. In Aboudi et al. (2014), the HFGMC analysis has
been formulated for the analysis of magnetostrictive composites in which one of
the phases behaves as a magnetostrictive material whose constitutive response is
nonlinear.

Multiferroic materials exhibit magnetoelectric effect such that the application of
a magnetic field induces an electric polarization, whereas the application of electric
field induces magnetization. The induced mechanical deformation can be utilized
for sensing and actuation.

The HFGMC micromechanics has been implemented by Jin and Aboudi (2015)
for the prediction of the macroscopic behavior of multiferroic composites. These
composites consist of a magnetostrictive and piezoelectric phases.

A new class of thermoelectric (TE) composite materials and devices has been
recently introduced as a promising technology for harvesting a large number of
otherwise wasted thermal heat sources into electric energy. These material systems
are based on the application of thermal gradient in order to produce a flow of
electrical current to be utilized in practice. The micromechanical HFGMC has
been extended by Aboudi and Haj-Ali (2016) to account for the three-way coupled
thermal-electrical-mechanical effects that include the Seebeck, Peltier, and Joule
heat.

Finite Strain HFGMC Composite materials that are subjected to large deformations
have been analyzed by generalizing the HFGMC formulation to finite strain. Such
a finite strain HFGMC analysis has been recently presented by Aboudi (2015) for
the modeling and prediction of the effective behavior of dielectric elastomers with
embedded dielectric particles.

The concept of an energy limiter, according to which the amount of energy
that can be accumulated by the material during deformation is finite, has been
introduced by Volokh (see, e.g., Volokh 2013).This concept has been incorporated
with the constitutive relation itself which has been designated for the description
of the material response. As a result, enhanced finite strain constitutive equations
are obtained which provide the critical values of the strain energy at which failure
of the material occurs and at which its static stability is lost. This approach has
been recently utilized by Aboudi and Volokh (2015) by developing a finite strain
HFGMC micromechanical analysis for composites undergoing large deformations
that is capable of the prediction of the occurrence of the loss of its static stability.

Aneurysms are abnormal dilatation of vessels in the vascular system that are
prone to rupture. The latter approach for the micromechanical determination by
HFGMC of loss of initial failure of composites undergoing large deformations has
been utilized by Volokh and Aboudi (2016) for the prediction of aneurysm rupture.
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Appendix

In this appendix, the nonzero components of the matrix relating the spatial micro-
displacement gradients to the displacement microvariables are listed. The terms are

AW.1; 1/ D 1=4 OJ1;1tC 1=4 OJ1;2t � 1=2 OJ1;3 C 1=4 OJ1;3rC 1=4 OJ1;3sC 3=2 OJ1;3t
AW.1; 4/ D 1=4 OJ1;1tC 1=4 OJ1;2tC 1=2 OJ1;3 C 1=4 OJ1;3rC 1=4 OJ1;3sC 3=2 OJ1;3t
AW.1; 7/ D 1=4 OJ1;1s � 1=2 OJ1;2 C 1=4 OJ1;2rC 3=2 OJ1;2sC 1=4 OJ1;2tC 1=4 OJ1;3s

AW.1; 10/ D 1=2 OJ1;1 C 3=2 OJ1;1rC 1=4 OJ1;1sC 1=4 OJ1;1tC 1=4 OJ1;2rC 1=4 OJ1;3r
AW.1; 13/ D 1=4 OJ1;1sC 1=2 OJ1;2 C 1=4 OJ1;2rC 3=2 OJ1;2sC 1=4 OJ1;2tC 1=4 OJ1;3s
AW.1; 16/ D �1=2 OJ1;1 C 3=2 OJ1;1rC 1=4 OJ1;1sC 1=4 OJ1;1tC 1=4 OJ1;2rC 1=4 OJ1;3r
AW.1; 19/ D �3 OJ1;1r� OJ1;2r� OJ1;3r� OJ1;1s � 3 OJ1;2s� OJ1;3s� OJ1;1t � OJ1;2t � 3 OJ1;3t
AW.2; 2/ D 1=4 OJ1;1tC 1=4 OJ1;2t � 1=2 OJ1;3 C 1=4 OJ1;3rC 1=4 OJ1;3sC 3=2 OJ1;3t
AW.2; 5/ D 1=4 OJ1;1tC 1=4 OJ1;2tC 1=2 OJ1;3 C 1=4 OJ1;3rC 1=4 OJ1;3sC 3=2 OJ1;3t
AW.2; 8/ D 1=4 OJ1;1s � 1=2 OJ1;2 C 1=4 OJ1;2rC 3=2 OJ1;2sC 1=4 OJ1;2tC 1=4 OJ1;3s

AW.2; 11/ D 1=2 OJ1;1 C 3=2 OJ1;1rC 1=4 OJ1;1sC 1=4 OJ1;1tC 1=4 OJ1;2rC 1=4 OJ1;3r
AW.2; 14/ D 1=4 OJ1;1sC 1=2 OJ1;2 C 1=4 OJ1;2rC 3=2 OJ1;2sC 1=4 OJ1;2tC 1=4 OJ1;3s
AW.2; 17/ D �1=2 OJ1;1 C 3=2 OJ1;1rC 1=4 OJ1;1sC 1=4 OJ1;1tC 1=4 OJ1;2rC 1=4 OJ1;3r
AW.2; 20/ D �3 OJ1;1r� OJ1;2r� OJ1;3r� OJ1;1s � 3 OJ1;2s� OJ1;3s� OJ1;1t � OJ1;2t � 3 OJ1;3t

AW.3; 3/ D 1=4 OJ1;1tC 1=4 OJ1;2t � 1=2 OJ1;3 C 1=4 OJ1;3rC 1=4 OJ1;3sC 3=2 OJ1;3t
AW.3; 6/ D 1=4 OJ1;1tC 1=4 OJ1;2tC 1=2 OJ1;3 C 1=4 OJ1;3rC 1=4 OJ1;3sC 3=2 OJ1;3t
AW.3; 9/ D 1=4 OJ1;1s � 1=2 OJ1;2 C 1=4 OJ1;2rC 3=2 OJ1;2sC 1=4 OJ1;2tC 1=4 OJ1;3s

AW.3; 12/ D 1=2 OJ1;1 C 3=2 OJ1;1rC 1=4 OJ1;1sC 1=4 OJ1;1tC 1=4 OJ1;2rC 1=4 OJ1;3r
AW.3; 15/ D 1=4 OJ1;1sC 1=2 OJ1;2 C 1=4 OJ1;2rC 3=2 OJ1;2sC 1=4 OJ1;2tC 1=4 OJ1;3s
AW.3; 18/ D �1=2 OJ1;1 C 3=2 OJ1;1rC 1=4 OJ1;1sC 1=4 OJ1;1tC 1=4 OJ1;2rC 1=4 OJ1;3r
AW.3; 21/ D �3 OJ1;1r� OJ1;2r� OJ1;3r� OJ1;1s � 3 OJ1;2s� OJ1;3s� OJ1;1t � OJ1;2t � 3 OJ1;3t
AW.4; 1/ D 1=4 OJ2;1tC 1=4 OJ2;2t � 1=2 OJ2;3 C 1=4 OJ2;3rC 1=4 OJ2;3sC 3=2 OJ2;3t
AW.4; 4/ D 1=4 OJ2;1tC 1=4 OJ2;2tC 1=2 OJ2;3 C 1=4 OJ2;3rC 1=4 OJ2;3sC 3=2 OJ2;3t
AW.4; 7/ D 1=4 OJ2;1s � 1=2 OJ2;2 C 1=4 OJ2;2rC 3=2 OJ2;2sC 1=4 OJ2;2tC 1=4 OJ2;3s

AW.4; 10/ D 1=2 OJ2;1 C 3=2 OJ2;1rC 1=4 OJ2;1sC 1=4 OJ2;1tC 1=4 OJ2;2rC 1=4 OJ2;3r
AW.4; 13/ D 1=4 OJ2;1sC 1=2 OJ2;2 C 1=4 OJ2;2rC 3=2 OJ2;2sC 1=4 OJ2;2tC 1=4 OJ2;3s
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AW.4; 16/ D �1=2 OJ2;1 C 3=2 OJ2;1rC 1=4 OJ2;1sC 1=4 OJ2;1tC 1=4 OJ2;2rC 1=4 OJ2;3r
AW.4; 19/ D �3 OJ2;1r� OJ2;2r� OJ2;3r� OJ2;1s � 3 OJ2;2s� OJ2;3s� OJ2;1t � OJ2;2t � 3 OJ2;3t

AW.5; 2/ D 1=4 OJ2;1tC 1=4 OJ2;2t � 1=2 OJ2;3 C 1=4 OJ2;3rC 1=4 OJ2;3sC 3=2 OJ2;3t
AW.5; 5/ D 1=4 OJ2;1tC 1=4 OJ2;2tC 1=2 OJ2;3 C 1=4 OJ2;3rC 1=4 OJ2;3sC 3=2 OJ2;3t
AW.5; 8/ D 1=4 OJ2;1s � 1=2 OJ2;2 C 1=4 OJ2;2rC 3=2 OJ2;2sC 1=4 OJ2;2tC 1=4 OJ2;3s

AW.5; 11/ D 1=2 OJ2;1 C 3=2 OJ2;1rC 1=4 OJ2;1sC 1=4 OJ2;1tC 1=4 OJ2;2rC 1=4 OJ2;3r
AW.5; 14/ D 1=4 OJ2;1sC 1=2 OJ2;2 C 1=4 OJ2;2rC 3=2 OJ2;2sC 1=4 OJ2;2tC 1=4 OJ2;3s
AW.5; 17/ D �1=2 OJ2;1 C 3=2 OJ2;1rC 1=4 OJ2;1sC 1=4 OJ2;1tC 1=4 OJ2;2rC 1=4 OJ2;3r
AW.5; 20/ D �3 OJ2;1r� OJ2;2r� OJ2;3r� OJ2;1s � 3 OJ2;2s� OJ2;3s� OJ2;1t� OJ2;2t � 3 OJ2;3t

AW.6; 3/ D 1=4 OJ2;1tC 1=4 OJ2;2t � 1=2 OJ2;3 C 1=4 OJ2;3rC 1=4 OJ2;3sC 3=2 OJ2;3t
AW.6; 6/ D 1=4 OJ2;1tC 1=4 OJ2;2tC 1=2 OJ2;3 C 1=4 OJ2;3rC 1=4 OJ2;3sC 3=2 OJ2;3t
AW.6; 9/ D 1=4 OJ2;1s � 1=2 OJ2;2 C 1=4 OJ2;2rC 3=2 OJ2;2sC 1=4 OJ2;2tC 1=4 OJ2;3s

AW.6; 12/ D 1=2 OJ2;1 C 3=2 OJ2;1rC 1=4 OJ2;1sC 1=4 OJ2;1tC 1=4 OJ2;2rC 1=4 OJ2;3r
AW.6; 15/ D 1=4 OJ2;1sC 1=2 OJ2;2 C 1=4 OJ2;2rC 3=2 OJ2;2sC 1=4 OJ2;2tC 1=4 OJ2;3s
AW.6; 18/ D �1=2 OJ2;1 C 3=2 OJ2;1rC 1=4 OJ2;1sC 1=4 OJ2;1tC 1=4 OJ2;2rC 1=4 OJ2;3r
AW.6; 21/ D �3 OJ2;1r� OJ2;2r� OJ2;3r� OJ2;1s � 3 OJ2;2s� OJ2;3s� OJ2;1t� OJ2;2t � 3 OJ2;3t

AW.7; 1/ D 1=4 OJ3;1tC 1=4 OJ3;2t � 1=2 OJ3;3 C 1=4 OJ3;3rC 1=4 OJ3;3sC 3=2 OJ3;3t
AW.7; 4/ D 1=4 OJ3;1tC 1=4 OJ3;2tC 1=2 OJ3;3 C 1=4 OJ3;3rC 1=4 OJ3;3sC 3=2 OJ3;3t
AW.7; 7/ D 1=4 OJ3;1s � 1=2 OJ3;2 C 1=4 OJ3;2rC 3=2 OJ3;2sC 1=4 OJ3;2tC 1=4 OJ3;3s

AW.7; 10/ D 1=2 OJ3;1 C 3=2 OJ3;1rC 1=4 OJ3;1sC 1=4 OJ3;1tC 1=4 OJ3;2rC 1=4 OJ3;3r
AW.7; 13/ D 1=4 OJ3;1sC 1=2 OJ3;2 C 1=4 OJ3;2rC 3=2 OJ3;2sC 1=4 OJ3;2tC 1=4 OJ3;3s
AW.7; 16/ D �1=2 OJ3;1 C 3=2 OJ3;1rC 1=4 OJ3;1sC 1=4 OJ3;1tC 1=4 OJ3;2rC 1=4 OJ3;3r
AW.7; 19/ D �3 OJ3;1r� OJ3;2r� OJ3;3r� OJ3;1s � 3 OJ3;2s� OJ3;3s� OJ3;1t� OJ3;2t � 3 OJ3;3t
AW.8; 2/ D 1=4 OJ3;1tC 1=4 OJ3;2t � 1=2 OJ3;3 C 1=4 OJ3;3rC 1=4 OJ3;3sC 3=2 OJ3;3t
AW.8; 5/ D 1=4 OJ3;1tC 1=4 OJ3;2tC 1=2 OJ3;3 C 1=4 OJ3;3rC 1=4 OJ3;3sC 3=2 OJ3;3t
AW.8; 8/ D 1=4 OJ3;1s � 1=2 OJ3;2 C 1=4 OJ3;2rC 3=2 OJ3;2sC 1=4 OJ3;2tC 1=4 OJ3;3s

AW.8; 11/ D 1=2 OJ3;1 C 3=2 OJ3;1rC 1=4 OJ3;1sC 1=4 OJ3;1tC 1=4 OJ3;2rC 1=4 OJ3;3r
AW.8; 14/ D 1=4 OJ3;1sC 1=2 OJ3;2 C 1=4 OJ3;2rC 3=2 OJ3;2sC 1=4 OJ3;2tC 1=4 OJ3;3s
AW.8; 17/ D �1=2 OJ3;1 C 3=2 OJ3;1rC 1=4 OJ3;1sC 1=4 OJ3;1tC 1=4 OJ3;2rC 1=4 OJ3;3r
AW.8; 20/ D �3 OJ3;1r � OJ3;2r � OJ3;3r � OJ3;1s� 3 OJ3;2s� OJ3;3s � OJ3;1t � OJ3;2t � 3 OJ3;3t
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AW.9; 3/ D 1=4 OJ3;1tC 1=4 OJ3;2t � 1=2 OJ3;3 C 1=4 OJ3;3rC 1=4 OJ3;3sC 3=2 OJ3;3t
AW.9; 6/ D 1=4 OJ3;1tC 1=4 OJ3;2tC 1=2 OJ3;3 C 1=4 OJ3;3rC 1=4 OJ3;3sC 3=2 OJ3;3t
AW.9; 9/ D 1=4 OJ3;1s � 1=2 OJ3;2 C 1=4 OJ3;2rC 3=2 OJ3;2sC 1=4 OJ3;2tC 1=4 OJ3;3s

AW.9; 12/ D 1=2 OJ3;1 C 3=2 OJ3;1rC 1=4 OJ3;1sC 1=4 OJ3;1tC 1=4 OJ3;2rC 1=4 OJ3;3r
AW.9; 15/ D 1=4 OJ3;1sC 1=2 OJ3;2 C 1=4 OJ3;2rC 3=2 OJ3;2sC 1=4 OJ3;2tC 1=4 OJ3;3s
AW.9; 18/ D �1=2 OJ3;1 C 3=2 OJ3;1rC 1=4 OJ3;1sC 1=4 OJ3;1tC 1=4 OJ3;2rC 1=4 OJ3;3r
AW.9; 21/ D �3 OJ3;1r� OJ3;2r� OJ3;3r� OJ3;1s � 3 OJ3;2s� OJ3;3s� OJ3;1t� OJ3;2t � 3 OJ3;3t
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Chapter 15
On Parameterization of the Reinforcement
Phase Distribution in Continuous
Fiber-Reinforced Composites

Piotr Wolszczak, Sylwester Samborski, and Tomasz Sadowski

Abstract This chapter discusses a problem of parameterization of irregular rein-
forcement distribution in uniaxial fiber-reinforced composites (CFRC) expressed as
an area ratio of the matrix surrounding a single fiber to its perimeter. The distribution
parameter, GAB, was applied in the analysis of possible relationships between the
microgeometry and mechanical properties of glass-epoxy composites with random
distribution of continuous fibers. Test specimens were made in a repeatable process
production of the girders of helicopter blades and were tested in bending during
the short beam shear tests (SBST), as well as their basic mechanical properties
(e.g., the flexural modulus Ef, taking into account shear effects) were determined.
The relationship between the SBST results and the theoretical topology of regular
CFRC structures was presented: the square (K) and the hexagonal (H) type. The K
theoretical model of fiber distribution corresponded with experimental results. It was
concluded that the measure of irregular reinforcement distribution (GAB) could be
used to estimate the flexural elastic modulus Ef of unidirectional CFRC composites.
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15.1 Introduction

The reinforcement distribution in continuous fiber-reinforced composites (CFRC)
can be highly anisotropic, which favors nonuniform stress distribution and can lead
to matrix cracking or delamination. This adverse property weakens the reliability
of such materials, despite their obvious merits from the engineering structures
design point of view, such as high strength-to-mass ratio and a possibility of
tailoring their mechanical characteristics. The mechanical properties of the CFRC
composites depend on relative volume, size, and shape of the composite components
(fibers). There is also an evidence that just the interface is largely responsible for
the strength of composites. The reason for this is high degree of cross-linking in
polymeric matrix. The uniformity of fiber distribution in unidirectional composites
is crucial for the strength of a composite due to the orientation mechanism of
the polymer. The technological irregularity of fiber distribution affects initiation
of microdefects and decreases the composite strength. The analysis of theoretical
models of reinforcement arrangement presented in the literature indicates that non-
normal distribution of the topological elements increases the risk of transverse crack
(delamination) onset and propagation inside the material subjected to mechanical
loading e.g. Banerjee and Sankar (2014), Bienias et al. (2011), Sadowski and
Samborski (2008), Postek and Sadowski (2011), Sadowski and Golewski (2008),
Birsan et al. (2012), Sadowski and Golewski (2012a,b).

The irregularities of fiber arrangement in unidirectional composites are a con-
sequence of manual treatment of the material during the manufacturing process.
In practice, the analysis of fiber distribution in manually molded composites, the
semi-empirical Halpin–Tsai approach, provides sufficient accuracy of the results
for typical shape of fiber cross-section. Development of composite technology
in nanoscale requires quality control for a weakly disordered system of fibers.
Every manual methods of composite fabrication technology can be developed with
the new distribution factors characterizing the irregularities of fiber arrangement
Bieniaś et al. (2012), Talreja (2014), Megnis and Varna (2003), Torquato (1997),
Jones(1999), Halpin and Kardos (1976), Bochenek and Pyrz (2004).

It seems to be important to examine the effect of the thickness of matrix
layer surrounding a single fiber in a composite. Basic geometrical and topological
parameters of fiber distribution should be considered and a representative measure
for characterizing of the composite’s fiber distribution should be established.
Next the obtained solution could be applied to an estimation of selected strength
characteristics. In the case of a moderately or strongly disordered system of fibers,
morphological parameters of the microstructure could be replaced by their equiv-
alent counterparts in the conjugated polygonal tessellation model. The topological
properties of fibers in the polygonal tessellation model are related to morphological
examination of the microstructure Pyrz (2000), Werwer et al. (1998), Banerjee and
Sankar (2014), Yazdanbakhsh et al. (2011), Grasley and Yazdanbakhsh (2011), Sun
et al. (2009), Pyrz and Bochenek (1998), Kurzydłowski and Ralph (1995), Wada
and Fukuda (1999), Raghavan and Ghosh (2005).
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The topological and the morphological properties of the unidirectional composite
microstructure can be characterized by:

• Neighbor distances and orientations in all points of the observed area of the
composite cross-section

• Areas of Dirichlet polygons conjugate to fibers
• Micromorphological parameters
• Degree of contiguity, etc.

In this chapter, a statistical analysis of several geometrical and topological
properties of microstructures is presented, which allow for the most important
composite microgeometry parameters substantially related to the overall mechanical
composite properties. In particular the flexural modulus, Ef, was determined in
shear strength experiments (SBST), whereas some new geometrical parameters
were selected by formulation of discriminant functions for the composite cross-
section. Namely, the geometrical parameters of microstructure were used for
comparing irregular fiber patterns of the real composite to the regular and
periodic microstructural models. Regular models were based on the K and the H
patterns. In general, the patterns can be applied to the description of a complex
nonhomogeneous internal structure, common in real composites Pyrz (2000),
Kurzydłowski and Ralph (1995), Yu et al. (2015).

15.2 Experiments

15.2.1 Specimens and Experimental Tests

The technology of specimens preparation consists of the E-glass fibers (10 �m
diameter) arrangement in the epoxy resin matrix and curing the molded composite
in environmental chamber at 60ıC for 5–6 h. The operations were made manually
in repeatable production conditions, the same as those for the girders of helicopter
blades, with the relative volume of the glass fibers varied among the specimens (the
average value was 51%).

The following tests were performed: three-point bending test (3-PBT), according
to the ISO 14125 Standard and the SBST, according to the ISO 14130. The tests
allowed to characterize mechanical properties of the analyzed composite. The tests
were destructive and gave the following characteristics: the force at yield point Fl,
the maximum force Fmax, the maximum elastic deformation in shear test L1, the
maximum deflection in shear test L2, and the beam deflection angle ®; the analysis
was, however, limited to the elastic response of the composites.

The value of modulus of elasticity Ef can be calculated with the following
equation:

Ef D FmaxL3

4BH3f
(15.1)
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Fig. 15.1 The maximum
force Fmax[N] values obtained
during the tests (SBST) for
two subgroups of specimens

where:

Fmax—the maximal force corresponding to the elastic limit measured in the SBST,
B, H, L—the width, the thickness, and the specimen length, respectively, and f —the
beam deflection at its midpoint with respect to its length.

The specimens used in the research constituted the homogeneous group of spec-
imens manufactured in the aircraft factory with respect to the volume fraction, as
well as the diameter distribution of glass fibers. After performing the strength tests,
from that homogeneous group of specimens two subgroups emerged in accordance
with the strength tests’ results (Fig. 15.1). These two subgroups (numbered I and II)
had similar glass fiber content, as well as the fiber diameter, but their strength was
different.

The authors aimed at answering the question, if the property that differentiated
the subgroups of specimens was the irregularity of the fiber arrangement and how
important were the design (glass fiber content, fiber diameter) and the technological
factors (number of flaws, e.g., fibers being in mutual contact or breaks in the
interface, delaminations, etc.).

15.2.2 Microscopic Photographing and Image Processing

The microscopic analysis was focused at the regions near the specimens’ edges,
where the mechanical load reached the highest value. Additionally, the irregular
distribution of fibers and their agglomeration caused local concentration of the
stress field. The cross-sectional analysis was performed with 40 photographs, and
the average viewing area was 3.67 mm2. The average cross-sectional area of the
specimen in the bending test was 45 mm2 (3 � 15 mm). The exemplary microscopic
fragment of cross-sections of the composite sample is presented in Fig. 15.2a. Figure
15.2 shows the processing steps of microstructure photographs analysis having
in target determination of tessellation and calculation of factors characterizing
distribution of fibers Wolszczak and Cechowicz (2011).
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Fig. 15.2 Processing steps in the microscopic analysis: the composite specimen cross-section
(a fragment of the photograph) (a), the geometry image with tessellation polygons (b), the way of
measurement of the thickness of matrix layer surrounding a fiber (c), the ring of matrix surrounding
the fiber (d), and the geometrical model of the composite with the fields of matrix surrounding
individual fibers, represented as the rings (e)

The microscopic analysis of the cross-section images allowed estimation of
all distribution kinds of the fibers reinforcing the composite. In order to detect
the edges of circle-shaped inclusions (fibers) and generation of the geometric
image of a composite cross-section, a special computer software was elaborated by
the first author. The software enables calculating all the measures characterizing
the distribution of reinforcement phase in the composite. The geometry image
(consisted of the coordinates and the diameters of circles) as well as the polygon
tessellation enables determination of the factors characterizing the shape of the
matrix sheath for each single fiber Chang et al. (2014), Samborski (2016).

15.2.3 Average Matrix Thickness of the Layer Surrounding
a Single Fiber as the Measure of Fiber Distribution

The surface area (Ao) of the matrix sheath surrounding any individual fiber was
extracted with the tessellation method and could be represented as an equivalent
of the area in the form of a ring of the thickness Gxx (Fig. 15.2d). The ring area
is the difference between the tessellation polygon and the circle area of the fiber
cross-section:

Ao D �

4

h�
Df C 2GXX

�2 � D2
f

i
(15.2)

where
Df—fiber diameter, and Gxx—thickness of the ring surrounding a fiber (the gray
ring in Fig. 15.2c).



430 P. Wolszczak et al.

A set of characteristic parameters for matrix sheath surrounding a single fiber
(see Fig. 15.2c) were defined, including:

• G1—the local thickness of the matrix measured on sections connecting the
centers of the neighboring fibers

• G2(�)—the local thickness of the matrix measured along the circumference of
the fiber at constant angular intervals (�� D 5ı)

• GAD—the average film thickness G2 calculated from the matrix area (Ao), derived
from the formula (15.2) and the fiber diameter (Df), according to the formula:

G2 � GAD D 1

2

 r

D2
f C 4

Ao

�
�Df

!

(15.3)

• GAB—the quotient of the separated matrix area Ao by the circuit fiber:

GAB D Ao

�Df
(15.4)

15.3 Statistical Analysis

15.3.1 Geometric Measures Influencing the Flexural Elastic
Modulus Ef

As a result of microscopic observations (Fig. 15.2a), the following measures
characterizing the structure of the composite were collected:

• The relative volume of glass fibers—Vf and the fiber diameter—Df, characteriz-
ing the macrostructure

• The relative volume of gas bubbles—Vgb

• The topological entropy—S and the minimum distance between the fibers—
G1min, characterizing the relative fiber position

• The matrix sheath thickness around the fibers—G2, GAB, GAD

• The ratio of the areas of the tessellation polygon Ac and the fiber Af, i.e., Ac/Af

• Additional set of variables containing the properties directly emerging from the
polygon tessellation, such as:

– The number of polygon sides—n
– The polygon perimeter—Bc

– The polygon area—Ac

for the calculation of the GAB and GAD measures and the topological entropy S.
In order to determine whether the properties of the composite microgeometry

were associated with the flexural modulus Ef or other strength parameters, the
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Fig. 15.3 Individual specimens of groups I and II located in the space specified with the average
values of Vf ,GAB, and G1min

calculation of basic statistics was performed. In particular, fitting the theoretical
parameter distributions to the experimental results and the Student’s t-test evaluating
variation of the mean values of the elastic modulus Ef were done.

For determination of the geometric characteristics of composite cross-sections
compatible with the results of the SBST tests, the discriminant analysis and
the regression analysis were performed. The calculations took into account 40
images for each specimen. The discriminant analysis had in target determination
of the geometrical measures responsible for the variability of the flexural strength
(related to Fmax), which enabled classification of the composite morphological
quality into two subgroups (I and II). The regression analysis allowed to determine
approximately linear relationship between the specified variables for estimation
of the flexural elastic modulus Ef value and for choosing the most substantive
characteristics.

Three characteristics (the averaged values GAB, G1min, and Vf ) were incorporated
into the model during the discriminant analysis. Location of the specimens in the
space formed by these three characteristics are shown in Fig. 15.3.

The discriminant function for the specimens from the subgroups I and II
characterized by the vectors [Vf, GAB, G1min] has the form:

D1 D 14; 357C 1; 649 GAB � 16; 944 G1min � 0; 396 Vf (15.5)

The chi-square test used to calculate the significance level of the discriminant
function gave the p-value below 0.0001 and the coefficient of canonical analysis, R,
reached a high value (0.915), which proved that there is a strong correlation of the
discriminant function with the separated subgroups of specimens.

When the specimens’ vector was used for calculation with the classification func-
tion (Eq. 15.5), the results confirmed the discriminant ability of the classification
function. The average percentage of the correct classification of the specimens to
the original subgroups I and II was over 93%. Also, the calculation of the individual
specimens’ distance from the groups’ centroids and the classification based on
probabilities of sample association with the respective subgroup were consistent
with the classification function. The standardized discriminant function coefficients
revealed the effect of geometrical characteristics on the diversity of two subgroups
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Table 15.1 Discriminant
function coefficients and
factorial structure’s
coefficients of geometrical
characteristics

GAB G1min Vf

Discriminant 5.515

function coefficients
0448 �0746 �0945

Factor structure 0837 0188 �0810
coefficients

Table 15.2 Discriminant
analysis results: coefficients
of linear regression and
standard error values

Characteristics Constant GAB G1min Vf

Estimated values 93.82 �20.52 77.74 �0.0076
Standard errors 115.4 13.7 50.9 1.69

(I and II). On the other hand, the values of the factorial structure’s coefficients
demonstrate the individual contribution of these variables to the development of
the discriminant function (Table 15.1).

As shown in Table 15.1, the coefficients of the standardized discriminant function
determined the effect of each variable on the diversity of the subgroups I and II.
The Vf parameter reached the highest value of the standardized coefficient equal
�0.945. Concurrently, the volume fraction of glass fiber (Vf) confirmed the theo-
retical correlation with GAB. Accordingly, the coefficient of GAB had opposite sign
to Vf, which meant that the contribution of the GAB variable was reduced by Vf.
Therefore the factorial structure’s coefficients were analyzed (Table 15.1). Although
the values of the discriminant function’s coefficients for GAB and Vf reached similar
values, the coefficient for GAB was bigger. The significant impact of the variability
of volume fraction of glass fiber Vf makes it difficult to analyze importance of
the fiber arrangement characteristics. A lack of any significant effect of the fiber
diameter is a confirmation of the experiment plan of receiving specimens of the
same fiber diameter.

Verification of effect of the three characteristics—G1min, GAB, Vf—on the value
of flexural modulus Ef was carried out using the multiple regression analysis (MRA)
method. The experimental results were compared with those obtained theoretically
for the function Ef (G1min, GAB, Vf). In Table 15.2, there are shown the coefficients
of linear regression and the respective standard errors calculated in discriminant
analysis.

On the base of the obtained discriminant function coefficients a cumulative
proportion values were calculated which explained 74% of the variance of the sub-
groups I and II, with the correlation coefficient R D 0.86. The significance of the
coefficients is consistent with the results of the discriminant analysis and is easy to
be interpreted.

It was observed that an increase in the value of the average thickness GAB of
the matrix sheath at the fibers in the composite causes a decrease of the flexural
elastic modulus Ef. It may be connected with a decrease of the volume fraction of
glass fibers Vf or an increase of the shrinkage areas (lower fiber content regions).
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The improvement of the elasticity of the composite expressed by Ef is caused by the
increase of the minimum distance between fibers G1min.

The analysis of influence of geometrical characteristics on the value of the
flexural elastic modulus Ef using the unidirectional composites produced in the fac-
tory allows the conclusion that the most important characteristics of the composite
microgeometry are the following:

• The contractual average matrix sheath thickness for a single fiber, GAB

• The minimum matrix sheath thickness for a single fiber, G1min

• The volume fraction of glass fiber, Vf

highlighted during statistical analysis of strength tests and microscopic measure-
ments’ results. These certainly should be complemented by:

• The fiber diameter, Df

• The standard deviation, SVGab, of the thickness GAB

The thickness GAB plays the most important role in the assessment of the flexural
modulus Ef, but it does not provide exact quantitative information about possible
composite microstructure inhomogeneities, such as the number of fibers being in
contact. The significance of the average minimum distance between neighboring
fibers, G1min, is probably due to the existence of local stress concentration regions,
where microdefects initiate at the advanced stage of the composite deformation.

15.3.2 Comparison of the Real Composite Cross-Sections
and the Theoretical Models

The authors investigated the applicability of two base regular micromechanical
models: K (square arrangement of fibers) and H (hexagonal arrangement of fibers)
for estimation of mechanical properties of CFRC composites. Figure 15.4 presents
an implementation of both models with a constant fiber diameter (Df D const.) and a
constant distance (aD const.) between the fibers. It was assumed that the maximum
fiber volume fraction Vfmax (when GAB! min) was 79% for the K fiber distribution
model and 91% for H type structure.

The experimental data (average fiber diameter Df D 10�m) were compared with
theoretical models (Df D 10 �m D const). Figure 15.5a presents the correlation of
averaged matrix sheath thicknesses GAB and GAD, divided by the fiber diameter
Df for each individual fiber versus the local glass fiber volume fraction, Vf. The
theoretical square model, K outcomes (continuous lines) quite precisely replicate
the characteristics of real fibers with their surroundings. Figure 15.5b shows the
correlation of the matrix sheath thickness as a function of the matrix surface area,
Ao, enclosed in the tessellation polygon. One can conclude that the increase of Ao

induces the increase of the spacing between fibers (a). The values of thickness GAB

are higher than GAD and G1min with increasing the area Ao. The relationship between
the thickness GAB and the area Ao is linear, while the dependency of G1min, G2max,
and GAD thicknesses are nonlinear.
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Fig. 15.4 Theoretical arrangements of fibers: the K (square) model (a) and the H (hexagonal)
model (b)

Fig. 15.5 Relationship between experimental results and theoretical square model (K): (a)Vf vs
GAB/Df and GAD/Df in a single tessellation polygon, as experimental results and theoretical models
of K (square—continuous lines) and H (hexagonal—dotted line) types. (b) The dependency of the
matrix thickness surrounding a single fiber (calculated with different methods) and area of matrix
for the regular K (square) and H (hexagonal) models

Figure 15.6 shows the distribution of thicknesses GAB and GAD in function of
the matrix area Ao determined for any single fiber for the real specimens and the
adequate curves obtained with the regular model K. The function approximated
by the least squares (LS) method of experimental thickness GAB to Ao (the
continuous line) is localized near a theoretical curve. It represented the regular
square model (K). The microgeometrical characteristics G1min and G2max plotted for
the theoretical square model create the upper and lower limits for experimentally
obtained thicknesses GAB and GAD.

15.4 Summary and Conclusions

The chapter presents microscopic observations of polymer-matrix composite cross-
section specimens obtained from industrial process production and their mechanical
shear testing in bending (SBST). For characterizing the composite’s microgeometry,
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Fig. 15.6 Dependency of the matrix sheath at a single fiber (calculated with different methods) on
the area Ao in experiment and theoretical square model (Ktype)

the new measures were proposed. The performed experiment led to the following
findings:

The unidirectional composite material can be classified to different classes of
strength characterized by the flexural elastic modulus Ef using geometric features of
the microstructure, including: the average fiber diameter Df, matrix sheath thickness
average GAB and its standard deviation SVGab, the minimum matrix thickness G1min,
and the volume fraction of the glass fibers Vf.

The fiber distribution uniformity proved to be the most important and was
best represented by the GAB parameter. In the range of variation of the variables
considered in the experiment, the set of three characteristics form a linear function
that allows to predict the flexural elastic modulus Ef.

The real thickness of matrix sheath surrounding a fiber, separated by tessellation,
was consistent (assuming DfD const.) with the values calculated with the theoretical
square model (K).
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Chapter 16
Micromechanical Modeling of Polymeric
Composite Materials with Moisture Absorption

Yihui Pan and Zheng Zhong

Abstract Natural fiber reinforced composites and wood cell wall are two typical
polymeric composite materials that can uptake large amounts of water in the humid
environment. This chapter presents a micromechanical scheme to study the mechan-
ical degradation of these polymeric composites induced by moisture absorption that
takes place in the matrix and/or the reinforcing phase. The moisture absorption and
the mechanical degradation are two thermodynamic processes correlated with each
other. Taking both processes into consideration, a modified Mori–Tanaka method
with introduced damage variables is proposed. The moisture absorption and the
mechanical degradation are, respectively, described by eigenstrains and damage
variables. After specifying this model with different inclusion shapes, the overall
swelling deformation and the mechanical degradation of the randomly oriented
and the unidirectional straight fiber reinforced polymeric composites are studied.
The theoretical predictions are compared with the experimental results from other
literature and a good agreement is obtained.

16.1 Introduction

The micromechanical framework based on the inclusion method has been suc-
cessfully used in predicting effective properties of composite materials (Aboudi
1991; Milton 2002; Nemat-Nasser and Hori 1999; Torquato 2002; Watt et al. 1976).
Accompanying the development of micromechanical models, more and more spe-
cific characteristics of materials and structures can be analyzed and interpreted from
a microscopic level, such as imperfect interfaces between the inhomogeneity and the
matrix (Benveniste and Miloh 2001; Qu 1993; Zheng et al. 2000; Zhong and Meguid
1997). In recent years, with increasing environmental awareness from the general
public, numerous efforts have been devoted to natural fiber reinforced composites
(NFRCs) (Dhakal et al. 2007). For the current micromechanical framework, it comes
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to a new challenge to predict the material properties of NFRCs since the material
properties and the stress state of NFRCs dynamically evolve with the swelling
strain in the humid environment. The similar phenomena of moisture absorption
and mechanical degradation can also been found in the wood cell wall which is the
microstructure of natural fibers (Smith 2003). Hence, in this chapter, we attempt
to establish a novel micromechanical framework to take both moisture absorption
and mechanical degradation into consideration, before which such hydrophilic
polymeric materials as wood cell wall and NFRCs will be introduced briefly below.

There are three constituent materials in the wood cell wall: cellulose microfibril
(CMF, 40� 50 wt%), hemicellulose (25 wt%), and lignin (20� 30 wt%) (Smith
2003). The CMFs, with tensile modulus along longitudinal direction as high as
120� 170 GPa, show little affinity to moisture absorption in its crystal region and
almost maintain its original mechanical properties in a humid environment above
fiber saturation point (FSP) (Kojima and Yamamoto 2005; Tashiro and Kobayashi
1991). By contrast, the hemicellulose with elastic modulus as low as 2 GPa is
strongly hydrophilic which has remarkable softening effects on its mechanical
properties. Such softening phenomenon becomes more obvious after more water
uptake. For instance, the elastic modulus of hemicellulose decreases even to 20 MPa
when it is fully saturated (Salmén 2004).

The wood cell wall is the microstructure of the S2 layer of natural fibers.
Hence, the composites reinforced by natural fibers (NFRCs) also exhibit strong
hydrophilicity and remarkable mechanical degradation. In the humid environment,
the difference of the chemical potential of water inside and outside can motivate
the water to flow into or out of the composites. Moreover, microcracks and voids
destroy or reduce interface compatibility and further lead to the interface debonding
between natural fibers and matrix (Cheung et al. 2009; Hu et al. 2010; Sgriccia et al.
2008). Both fiber aging and interface damage induce the mechanical degradation of
NFRCs such as the reduction of elastic moduli (Song et al. 2011).

As is seen above, both wood cell wall and NFRCs can be treated as an
eigenstrain problem that is induced by moisture absorption. Meanwhile, such
moisture absorption further causes mechanical degradation of the composites. One
should especially note that in the wood cell wall, the CMFs as reinforcement with
circular cylindrical shape are enclosed by a matrix composed of hemicellulose
and lignin, so that they can be modeled as long fiber reinforced composites under
the micromechanical framework based on the inclusion method. For NFRCs, the
inhomogeneity (natural fiber) is hydrophilic and the matrix is usually hydrophobic
(Cheung et al. 2009). However, for wood cell wall, the difference is that the inho-
mogeneity (CMF) is hydrophobic while the matrix (hemicellulose) is hydrophilic.
For biodegradable polymer-natural fiber biocomposites, both the matrix and the
inhomogeneity uptake waters in the humid environment (Alvarez et al. 2004).
According to continuum damage mechanics (Chow and Wang 1987), the loss of
moduli in inhomogeneities and/or matrix can be treated as a damage process caused
by moisture absorption. Hence damage variables are introduced into the existing
micromechanical framework to describe the loss of moduli.
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To introduce damage mechanism into the classic Mori–Tanaka scheme is an
effective way to predict the overall properties of the composites undergoing damage.
The damage can occur in the reinforcement phase or matrix phase. Mochida
et al. (1991) treated the damaged particles (reinforcement phase) as voids to
describe the damage generation in the composites. Ravichandran and Liu (1995)
further introduced two damage variables into the Mori–Tanaka method to describe
the transition of particles into voids. In this case, the material properties of the
reinforcement phase changes with the evolution of damage variables. Another effort
on the Mori–Tanaka method considering damage is to study the degradation of the
matrix phase (Desrumaux et al. 2001; Meraghni and Benzeggagh 1995). However,
the existing damage mechanism contributes to the generation of voids or cracks
that are caused by mechanical loadings, rather than the initial eigenstrains (i.e.,
swelling strains considered in this chapter). In view of the correlated processes of
moisture absorption and mechanical degradation in polymeric composites, a novel
modified Mori–Tanaka scheme with damage variables is established in this chapter.
The evolutions of these damage variables depend on the swelling strain. And then
this model is applied to study the problem of biodegradable polymer-natural fiber
biocomposites, NFRCs, and wood cell wall.

The present chapter is organized as follows. A modified Mori–Tanaka scheme
with damage variables is established in Sect. 16.2, in which both matrix and
inhomogeneity uptake water and undergo mechanical degradation. In Sect. 16.3,
the randomly oriented straight natural fiber reinforced composites are studied and a
comparison between theoretical and experimental results of the sisal fiber reinforced
polypropylene matrix is given. In Sect. 16.4, the proposed micromechanical model
is employed to predict the modulus loss of wood cell wall, and the predicted tensile
moduli along the cell axis are compared with the available experimental results
under different MFAs and moisture contents. Finally in Sect. 16.5, we draw the
conclusions.

16.2 Micromechanical Framework

For composites, the reinforcing fibers or particles can be treated as inhomogeneities
(denoted as �) which are embedded in an infinite matrix (denoted as D��). Both
the inhomogeneity and the matrix are hydrophilic and free of any initial stress.
The inhomogeneity and the matrix are subject to free swelling strains, ©fs and
©ms, respectively, in a humid environment. The governing equations and boundary
conditions for this problem are given as

8
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
:

r � ¢ .i/ D 0 ©.i/ D 1
2

�ru.i/ C u.i/r� in D
¢.1/ D C.1/ W �©.1/ � ©fs

�
in �

¢.2/ D C.2/ W �©.2/ � ©ms
�

in D ���
¢.1/ � ¢ .2/ � n D 0 and u.1/ D u.2/ on @�
¢ .2/ D 0 x!1

(16.1)
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Fig. 16.1 The original problem and two decomposed sub-problems

where, and throughout the chapter, a colon between two tensors denotes a con-
traction (inner product) over two indices; ¢ (i), ©(i), u(i)

, and C(i)(iD 1, 2) are,
respectively, the stress, the strain, the displacement, and the stiffness of inhomo-
geneities (labeled by the superscript “1”) and the matrix (labeled by the superscript
“2”). @� denotes the interface between � and D��, n is the outward unit normal
on the interface, and r D im @

@xm
is the Hamilton operator with im being the unit

vector.
The initial eigenstrain is distributed differently in the inhomogeneities and the

matrix, so it is difficult to solve Eq. (16.1) directly by a classic eigenstrain problem.
Hence, the original problem described by Eq. (16.1) is further decomposed into
two sub-problems as illustrated in Fig. 16.1, which can be solved by employing the
Eshelby formula for the classic inclusion problem.

In sub-problem I, a swelling strain ©ms is uniformly distributed both in the
inhomogeneities and the matrix, without any other external mechanical loads, so
that the governing equations and boundary conditions for sub-problem I can be
written as

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

r � ¢.i/;I D 0 ©.i/;I D 1
2

�ru.i/;I C u.i/;Ir� in D
¢ .1/;I D C.1/ W �©.1/;I � ©ms

�
in �

¢ .2/;I D C.2/ W �©.2/;I � ©ms
�

in D ���
¢ .1/;I � ¢ .2/;I � n D 0 and u.1/;I D u.2/;I on @�
¢.2/;I D 0 x!1

(16.2)

where the superscript “I” stands for physical quantities in the sub-problem I.
Obviously, the stresses ¢ (1) , ID¢ (2) , ID 0 and the strains ©(1) , ID ©(2) , ID ©ms

satisfy all the governing equations and boundary conditions of sub-problem I.
As for sub-problem II, an initial eigenstrain ©fs � ©ms is imposed only in the

inhomogeneities, and the matrix is free of any external mechanical loads and initial
eigenstrains. Therefore, the governing equations and the boundary conditions for
sub-problem II are given as
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8
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where the superscript “II” denotes physical quantities in the sub-problem II.
Accordingly, the stress and the displacement of the original problem are the

superposition of those of sub-problems I and II, namely,

�
¢.1/ D ¢ .1/;I C ¢ .1/;II
¢ .2/ D ¢ .2/;I C ¢ .2/;II

�
u.1/ D u.1/;I C u.1/;II

u.2/ D u.2/;I C u.2/;II
(16.4)

It is difficult to obtain an exact solution for stress and strain fields in the inhomo-
geneities and the matrix in sub-problem II. Instead, some approximate models can
be used to estimate the average stress or strain in the inhomogeneity and the matrix
by considering in part the interaction between matrix and inhomogeneities. In this
chapter, based on the Mori–Tanaka method, the average stresses in the matrix and
the inhomogeneity (i.e., f¢ (1) , IIg and f¢ (2) , IIg) of sub-problem II can be derived from
an equivalent eigenstrain problem, as illustrated in Fig. 16.2. Here the denotation “
f•g ” denotes the volume average of any physical quantity “ • ”.

By means of the Mori–Tanaka method, the inhomogeneity with stiffness C(1)

is considered to be embedded in an infinite matrix with stiffness C(2), subject to a
remote stress field f¢ (2) , IIg. And the strain ©fs � ©ms illustrated in Fig. 16.2 can be
treated as an initial eigenstrain. Hence, the sub-problem II can be further decom-
posed into two sub-problems as shown in Fig. 16.2: (1) a homogeneous infinite
body with uniform stress field f¢ (2) , IIg, denoted as the sub-problem II1, and (2) an

Fig. 16.2 The equivalent inclusion method for sub-problem II
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infinite matrix containing an inclusion (both have stiffness C(2)) with an equivalent
eigenstrain ©� induced by the mismatch of the stiffness between fibers and matrix,
denoted as II2. The relevant treatments and solutions to sub-problem II have been
studied in our previous paper for moisture absorption only taking place in the
inhomogeneity (Pan and Zhong 2015) and only in the matrix (Pan and Zhong 2016).

Let us choose a representative volume element (RVE) of the composite for
consideration. The stresses in the matrix and the fiber do not vanish because of the
interaction between these two materials with mismatch properties under moisture
absorption, even though no other external loads exist. The average stress f¢ IIg in a
RVE of the composite for sub-problem II can be written as

˚
¢ II
� D f

˚
¢ .1/;II

�C .1 � f /
˚
¢ .2/;II

� D 0 (16.5)

where f is the volume fraction of the inhomogeneity. The real stress and strain in
the inhomogeneity are uniform for a uniform equivalent eigenstrain ©� , so that we
have ¢ (1) , IIDf¢ (1) , IIg and ©(1) , IIDf©(1) , IIg. Furthermore, if the inhomogeneities
are randomly oriented, the volume average f•g should be substituted by orientation
average h•i. It is noted that f¢ (1) , IIgD h¢ (1) , IIi if the fibers with the same geometry
are uniformly distributed in the matrix.

The stress in the inhomogeneity can be written as

¢ .1/;II D C.1/ W �©.1/;II � ©fs C ©ms
�

(16.6)

Based on the equivalent inclusion method as shown in Fig. 16.2, the stress in the
inhomogeneity can also be given as

¢ .1/;II D C.2/ W �©.1/;II � ©�� (16.7)

The equivalence between Eqs. (16.6) and (16.7) holds when

C.1/ W �©.1/;II � ©fs C ©ms
� D C.2/ W �©.1/;II � ©�� D C.2/ W �©.1/;II2 � ©��C ˚¢ .2/;II�

(16.8)

The real strain in the inhomogeneity for sub-problem II is related to the
equivalent eigenstrain ©� for ellipsoidal inclusions as (Eshelby 1957)

©.1/;II � �C.2/
�1 W ˚¢ .2/;II� D S W ©� or ©.1/;II2 D S W ©� (16.9)

where S is the Eshelby tensor whose explicit forms are presented for different shapes
of the inclusion in Mura’s monograph (Mura 1987).

Substituting Eqs. (16.7) and (16.9) into (16.5), we derive the average stresses in
the sub-problem II as

˚
¢.1/;II

� D .1 � f /C.2/ W .S� I/ W ©� (16.10)
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˚
¢ .2/;II

� D �f C.2/ W .S� I/ W ©� (16.11)

where I is the fourth-order identity tensor.
Further substituting Eqs. (16.9) and (16.11) into (16.8) leads to the equivalent

eigenstrain ©� as

©� D �C.1/ W .S � f SC f I/ � .1 � f /C.2/ W .S � I/
�1 W C.1/ W �©fs � ©ms

�
(16.12)

For the conventional micromechanical schemes of composite materials, the
material properties of each constituent material remain unchanged. However, this
is not true for the hydrophilic composites in the humid environment. The stiffness
of the fibers and the matrix may undergo significant mechanical degradation due to
water uptake, namely,

C.1/ D M�1 �©fs
� W C.1/

0 WM�T �©fs
�

(16.13)

C.2/ D M�1 .©ms/ W C.2/
0 WM�T .©ms/ (16.14)

where the subscript “0” denotes original physical quantities of the material without
moisture absorption, and the damage effect tensor of fourth-order M is here assumed
to depend on the swelling strain ©fs and ©ms due to moisture absorption. M�1 is the
inverse of M, and M�T is the transpose of M�1 with respect to the first pair and the
second pair of subscripts, i.e., (M�T)ijklD (M�1)klij.

Obviously, we have M(0)D I for the material will keep its virgin properties if no
swelling strain is exerted on it. As for NFRCs, the matrix shows a low capacity of
water uptake and little change of their mechanical properties (i.e., ©msD 0), but the
fibers will dramatically alter their mechanical properties. In the wood cell wall, the
inhomogeneities are almost hydrophobic (i.e., ©fsD 0), while the matrix composed
of hemicellulose is strongly hydrophilic. The above two problems can be regarded
as special cases of the present micromechanical framework.

Since the moisture absorption does not induce the shear components of ©fs and
©ms, the damage effect tensor is only related to the bulk inelastic strain "fs

kk and "ms
kk ,

i.e., M
�
©fs
� DM



"

fs
kk

�
. After the inhomogeneities and the matrix are fully saturated

with the equilibrium bulk strains "f 1
kk and "m1

kk achieving, the matrix and fibers are
considered to undergo fully mechanical degradation.

Substituting Eq. (16.11) into (16.9) yields

©.1/;II D .S � f SC f I/ W ©� (16.15)

By means of Eq. (16.11) and the relation f¢(2) , IIgDC(2) : f©(2) , IIg, the average
strain of the matrix for sub-problem II is derived as

˚
©.2/;II

� D �f .S � I/ W ©� (16.16)
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The real overall average strain f©g of the composites can be calculated from Eq.
(16.4), as follows:

f©g D ˚©I
�C ˚©II

� D ©ms C �f©.1/;II C .1� f /
˚
©.2/;II

�
(16.17)

Substituting Eqs. (16.12), (16.15), and (16.16) into (16.17), the average strain
f©g can be further written as

f©g D ©ms C �f .S� f SC f I/ W ©� � f .1 � f / .S� I/ W ©� D ©ms C f©� (16.18)

There are many micromechanical models for estimating overall properties of
a composite (Nemat-Nasser and Hori 1999). Here we employ the Mori–Tanaka
method (Mori and Tanaka 1973) because of its simplicity and accuracy even at
a high volume fraction of reinforcements (Shi et al. 2004). One may refer to
these literatures (Benveniste 1987; Chen et al. 1992; Karris 1989) for the detailed
applications of the Mori–Tanaka method in various composite materials. The
effective stiffness of a composite material based on the Mori–Tanaka method is
expressed as

C D �.1 � f /C.2/ C f
˝
C.1/ W A˛ W Œ.1 � f / IC f hAi��1 (16.19)

with the strain concentration tensor given as

A D IC S W �C.1/ W S� C.2/ W SC C.2/
��1 W �C.2/ �C.1/

�
(16.20)

where the notation “ h•i ” means the average of a physical quantity over all possible
orientations, which should not be confused with the volume average “ f•g ”.

Finally, from Eqs. (16.18) and (16.19), we can establish a relationship between
the macroscopic strain f©g and the effective stiffness C of the composite once ©� ,
C(1)

, and C(2) are all determined for any given ©fs and ©ms, which can be used
to evaluate the mechanical degradation of the composites since the macroscopic
deformation of the composite is more convenient to measure.

16.3 Modeling Moisture-Induced Damage in NFRCs
(Pan and Zhong 2015)

Natural fibers have such advantages over traditional glass fibers as high specific
strength and modulus, economic viability, low density, reduced tool wear, enhanced
energy recovery, reduced dermal and respiratory irritation, and good biodegradabil-
ity (Dhakal et al. 2007). Hence, NFRCs have gradually become promising engi-
neering materials in recent years, particularly in such fields as aerospace, leisure,
construction, sport, packaging, and automotive industries (Pandey et al. 2010).
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However, the hydrophilic nature of natural fibers causes fiber aging since their
internal structure exhibits remarkable changes by absorbing large amounts of water
when NFRCs are used in the humid environment (Arbelaiz et al. 2005).

For NFRCs, only natural fibers absorb water, while the matrix is resistant to the
water. Based on the general framework proposed in Sect. 16.2, we have

©ms D 0 and ©fs D ©s (16.21)

Then the solution to the sub-problem I is obtained as ¢ (1) , ID¢ (2) , ID 0 and
©(1) , ID ©(2) , ID 0. In the following subsection, the solution to the sub-problem II
is further determined by considering different shapes of inclusions.

16.3.1 Randomly Oriented Straight Inhomogeneity

To simulate the randomly oriented straight natural fiber reinforced composites,
the isotropic straight natural fibers (inhomogeneities) with random orientations are
considered to be embedded in an isotropic matrix. The traditional micromechanical
analyses of randomly oriented composites have been studied in detail in these
literatures (Qiu and Weng 1991; Tandon and Weng 1986), to which some key
conclusions are herein referred. The stiffness of each isotropic constituent material
can be expressed by two elastic constants (e.g., the shear modulus �(i) and the bulk
modulus �(i)), namely,

C.i/
mnpq D �.i/ımnıpq C �.i/

�
ımpınq C ımqınp � 2

3
ımnıpq

	
(16.22)

Here ımn is the Kronecker delta. The notation iD 1 , 2 represents the physical
quantities of the fiber and the matrix, respectively.

For the randomly oriented straight inhomogeneity, two Euler angles are intro-
duced to characterize its orientation, as illustrated in Fig. 16.3. In this case, the
strain concentration tensor A in Eq. (16.20) is a function of the Euler angles ˛ and ˇ,
i.e., ADA(˛,ˇ). If the inclusions have completely random orientations, the Mori–
Tanaka estimation (16.19) can be calculated by an average through the integration
over the two Euler angles, as follows (Shi et al. 2004):

h�i D 1

2�

Z 2�

0

Z �=2

0

.� � sin ˛/ d˛dˇ (16.23)

By using the Eshelby tensor of a circular cylindrical inclusion with infinite length
in an isotropic matrix, the Mori–Tanaka estimation of the bulk modulus � and the
shear modulus � can be derived from Eq. (16.19) with (16.23), as follows:
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Fig. 16.3 The orientation of
the randomly oriented straight
inhomogeneity represented
by two Euler angles

x1

x3
x3′

x2′

x1′

x2a
b

� D �.2/ C f
�
�.1/ � �.2/� �3�.2/ C �.1/ C 3�.2/�

3 .1 � f / �.1/ C 3f�.2/ C 3�.2/ C �.1/

� D �.2/ � f
�
�.1/ � �.2/� �4�.2/ı1 C 3�.1/ı2

�

3�.2/
�
�.1/ C �.2/� 1 � �.2/2 C 3�.1/ .3 � 4/

(16.24)

Equation (16.24) is derived under the condition that the inclusion is isotropic.
It can be reduced from the results of the papers (Qiu and Weng 1991; Shi et al.
2004; Tandon and Weng 1986), in which the inclusion is transversely isotopic.
Furthermore,

E D 9��

3� C � (16.25)

with

ı1D3�.2/
h
3
�
�.1/

�2C10�.1/�.2/C7��.2/�2
i

C2�.2/
h
9
�
�.1/

�2C23�.1/�.2/C8��.2/�2
i

ı2 D 3�.2/
h�
�.1/

�2C10�.1/�.2/C9��.2/�2
i

C�.2/
h
7
�
�.1/

�2C52�.1/�.2/C21��.2/�2
i

1 D 5 .f � 1/
�
�.1/

�2C4 .2f �5/�.1/�.2/� .15C13f /
�
�.2/

�2

2D � 35 .f �1/ ��.1/�3C .145�73f /
�
�.1/

�2
�.2/C .125C59f /�.1/

�
�.2/

�2C .15C49f /
�
�.2/

�3

3 D 3�.2/
�
�.1/C�.2/� �.�5C4f / �.1/ � .5C4f / �.2/



4 D �.2/
h
�7 .�5C4f /

�
�.1/

�2C4 .10C3f / �.1/�.2/C .5C16f /
�
�.2/

�2i
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For an isotropic elastic natural fiber with moisture absorption, we assume that the
damaged natural fiber is still isotopic after moisture absorption. Only natural fibers
absorb water (i.e., ©fsD ©s and ©msD 0), and thereby the damage effect tensor M for
natural fibers in Eq. (16.13) is an isotopic tensor taking the following form as

Mmnpq
�
"s

kk

� D
q

A
�
"s

kk

�

3
ımnıpq C

q
B
�
"s

kk

�

2

�
ımpınq C ımqınp � 2

3
ımnıpq

	

(16.26)

where A and B are two degradation parameters depending on the fiber swelling
expansion "s

kk induced by moisture absorption.
Substituting Eq. (16.26) into Eq. (16.22) and then into (16.13), the degradation

of the stiffness C(1) is obtained as

C.1/
mnpq D �

.1/
0

A
�
"s

kk

�ımnıpq C �
.1/
0

B
�
"s

kk

�
�
ımpınq C ımqınp � 2

3
ımnıpq

	

D �.1/ımnıpq C �.1/
�
ımpınq C ımqınp � 2

3
ımnıpq

	 (16.27)

where �.1/0 and �.1/0 are two initial moduli of the natural fiber. The degradation
parameters A and B are tentatively assumed to take power forms as A D �1C "s

kk

�˛

and B D �1C "s
kk

�ˇ
. Here ˛ and ˇ are two positive material constants of the natural

fiber.
Accordingly, the degraded bulk modulus and the shear modulus can be written as

�.1/ D �
.1/
0�

1C "s
kk

�˛ �.1/ D �
.1/
0�

1C "s
kk

�ˇ (16.28)

Obviously, �(1) and �(1) are monotonously decreasing functions of "s
kk. Note that

Eq. (16.28) satisfies the basic condition that there is no modulus loss when "s
kk D 0.

Furthermore, when ˛Dˇ, Poisson’s ratio ¤(1) is considered to keep constant since
�.1/=�

.1/
0 D �.1/=�.1/0 .

If the initial eigenstrain is assumed to be isotropic, then we have "s
11 D "s

22 D "s
33

and other components "s
ij D 0. Here the fiber direction is along the x3 axis. For a

straight circular cylindrical fiber with infinite length, the real strain ".1/33 equals to 0.
Decomposing the isotropic stiffness into the shear and the bulk parts, the following
equations can be deduced from Eq. (16.8):

�.1/


"
.1/
kk � "s

kk

�
D �.2/



"
.1/;II2
kk � "�

kk

�
C 1

3

n


.2/
kk

o
(16.29)

�.1/


"
.1/
kk � "s

kk

�
� 2�.1/"s

33 D �.2/


"
.1/;II2
kk � "�

kk

�
� 2�.2/"�

33 C
n


.2/
33

o
(16.30)

where �(i)D �(i) � 2�(i)/3 is the Lame elastic coefficient.
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By means of the Eshelby relation given by Eq. (16.9) for circular cylindrical
inclusions of infinite length embedded in an isotropic matrix, the following equa-
tions can be derived as:

"
.1/;II2
kk D "�

kk

2
�
1 � �.2/� C

�
2�.2/ � 1� "�

33

2
�
1 � �.2/� (16.31)

where ¤(2) is Poisson’s ratio of the matrix.
After the average operation by Eq. (16.23), the average matrix stress f¢(2)g is

calculated from Eq. (16.11) as

n


.2/
11

o
D
n


.2/
22

o
D
n


.2/
33

o
D f"s

11.3�
.1/C2�.1//.�.1/C3�.2//

3�.1/�.f �3/�.1/�3.f �1/�.2/

n


.2/
kk

o
D 3

n


.2/
33

o (16.32)

Once the swelling bulk strain "s
33 ("s

kk D 3"s
33) is given, the other nine unknowns

"�
kk, "�

33, "
.1/
kk , �(1),�(1), �, �,

n


.2/
kk

o
, and

n


.2/
33

o
can be completely determined from

Eqs. (16.24), (16.28), (16.29), (16.30), (16.31), and (16.32). Further making use
of Eqs. (16.18) and (16.19), a theoretical relationship between the overall elastic
modulus of the composite E and the average bulk strain f"kkg is established. In
order to validate this model, the theoretical prediction of E is compared with the
corresponding experimental results (Chow et al. 2007) of randomly oriented straight
sisal fiber (with the density 	f D 1.48 g/cm3) reinforced polypropylene (with the
density 	mD 0.81 g/cm3).

In the experiment (Chow et al. 2007), three composite samples with different
fiber contents were used: sample A (fiber content f1D 0.057), sample B (f2D 0.120),
and sample C (f3D 0.189). Before submerging these samples into water for moisture
absorption, the initial Young’s moduli E0 of the composite were measured and
the results are 2.65 GPa, 2.99 GPa, and 3.39 GPa for Sample A, Sample B, and
Sample C, respectively. Poisson’s ratio of the polypropylene matrix is taken as
�.2/ D �

.2/
0 D 0:33 (Garg 1982). Since Poisson’s ratio of sisal fibers, usually no

more than 0.35, has little effect on the mechanical behavior of the composites (José
da Silva et al. 2012), we take �.1/ D �

.1/
0 D 0:25 for theoretical computation. Here

we consider that the moisture absorption does not influence Poisson’s ratio of the
natural fiber, because its compositions: cellulose, hemicellulose, and lignin (Saheb
and Jog 1999) keep constant Poisson’s ratios under moisture absorption (Salmén
2004).

Fitting the experimental data of the initial Young’s modulus E0 of the composite
(as shown in Fig. 16.4) through Eqs. (16.24) and (16.25) based on the least
square method, we can derive E.1/0 D 15:03 GPa for natural fiber and E.2/0 D
E0 D 2:37 GPa for polypropylene matrix, see Appendix A. Accordingly, �.1/0 D
10:02 GPa, �.1/0 D 6:01 GPa, �.2/0 D �.2/ D 2:32 GPa, �.2/0 D �.2/ D 0:89 GPa.
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Fig. 16.4 The fitting results
of the initial elastic modulus
E0 of the composite

If the swelling of the composites is subject to no external loads, just as the

above experimental case, seven unknowns �(1), �(1), ".1/kk , "�
33, "

�
kk,

n


.2/
kk

o
, and

n


.2/
33

o
are obtained by solving Eqs. (16.28), (16.29), (16.30), (16.31), and (16.32)

simultaneously given the swelling bulk strain "s
kk. Furthermore, the bulk, shear, and

Young’s moduli �,�, and E of the composites are determined using Eqs. (16.24) and
(16.25). Owing to lack of experimental data to determine the material parameters ˛
and ˇ as introduced in Eq. (16.28), we try and error, and finally set ˛DˇD 11.5 in
the calculation of the modulus loss (E) varying with the bulk strain f"kkg for Sample
A, Sample B, and Sample C. As shown in Fig. 16.5, the theoretical predictions agree
well with the corresponding experimental results of modulus loss, which validates
the proposed micromechanical model. It can also be found that Young’s modulus
drops remarkably with the increase of moisture content measured by the bulk strain
f"kkg of the composites.

16.3.2 Unidirectional Circular Cylindrical Inhomogeneity

To simulate the unidirectional natural fiber reinforced composites, the isotropic
circular cylindrical natural fibers (inhomogeneities) with a uniform orientation are
considered to be embedded in an isotropic matrix with Young’s modulus E(2) and
Poisson’s ratio ¤(2). Young’s modulus and Poisson’s ratio of the natural fiber are
denoted by E(1) and ¤(1), respectively. Due to the unidirectional reinforcement, the
composite is transversely isotropic with respect to the reinforcing direction that is
assumed herein along the x3-axis. And then the corresponding overall stiffness C of
the composite can be expressed as
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Fig. 16.5 The comparison of Young’s modulus E of the composite between theoretical and
experimental results in the case of randomly oriented straight fibers; (a) Sample A, (b) Sample
B, (c) Sample C
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(16.33)

where k, l, m, n, and p are the Hill’s elastic moduli (Hill 1965); k is the plane-strain
bulk modulus normal to the fiber direction, n is the uniaxial tension modulus in the
reinforcing direction (x3 -axis), l is the associated cross modulus, m and p are the
shear moduli in planes normal and parallel to the reinforcing direction, respectively.

Based on the unidirectional inclusion of circular cylindrical shape, the Mori–
Tanaka estimation, Eq. (16.19), can be used to determine the five Hill’s elastic
moduli, among which three are given, as follows:

l D �.2/
�
.6 � 18f / �.1/ C 9 .f � 1/ �.2/ C 2�.1/ C 6f�.1/





� 3�
.2/
�
3�.1/ C �.1/ � 3f�.1/

�C 6 .f � 1/ ��.2/�2


(16.34)
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n D 12 .f � 1/ ��.2/�2 � 3�.1/ �3�.2/ � 9 .f � 1/ f
�
�.1/ � �.2/�C 4�.2/



� 3.1� 3f /2�.2/�.1/ � .1C 3f /
�
9 .f � 1/ �.2/ � 4�.1/�.2/



(16.35)

k D �3�
.2/
�
�.1/ C 3�.2/ � 3f�.2/

 � 3�.1/ �3�.2/ C �.2/ C 3f�.2/




� �
.2/
�
�.1/ C 3f�.1/ C 3�.2/ � 3f�.2/





(16.36)

with

 D 9 .f � 1/ �.1/ � 3 ��.1/ C 3�.2/ C f
�
3�.2/ � �.1/ C �.2/� (16.37)

Equations (16.34)–(16.37) can be reduced from the result from the papers (Qiu
and Weng 1990; Shi et al. 2004). Then the tensile modulus E3 of the composite in
the reinforcing direction can be obtained as (Hill 1965)

E3 D n � l2

k
(16.38)

If we assume the damaged natural fiber is still isotropic after moisture absorption,
the moisture absorption is considered not influenced by Poisson’s ratio of natural
fibers, as follows:

�.1/

�
.1/
0

D �.1/

�
.1/
0

D �.1/

�
.1/
0

(16.39)

which indicates that the two degradation parameters in Eq. (16.28) are identical, i.e.,
˛Dˇ.

Since the stress and the strain of every inhomogeneity are identical for unidi-
rectional natural fiber composites subject to no external loads except for moisture
absorption, the relations f©(1)gD ©(1) and f¢ (1)gD¢ (1) hold. Furthermore, we have
"
.1/
11 D "

.1/
22 and "

.1/
12 D "

.1/
23 D "

.1/
31 D "

.1/
33 D 0, such that Eq. (16.8) can

be particularized into two scalar equations:

2
�
�.1/ C �.1/�



"
.1/
11 � "s

11

�
� �.1/"s

33 D .1 � f /

�
2
�
�.2/ C �.2/�



"
.1/;II2
11 � "�

11

�

��.2/"�
33

�
(16.40)
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2�.1/
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.1/
11 � "s

11
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� ��.1/ C 2�.1/� "s

33 D .1 � f /

�
2�.2/



"
.1/;II2
11 � "�
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�

�
�.2/ C 2�.2/� "�

33

�
(16.41)

From the Eshelby relation (16.9), the real strain of the fiber can be expressed as

"
.1/;II2
11 D S1111"

�
11 C S1122"

�
22 C S1133"

�
33 (16.42)

Now that the relation "�
11 D "�

22 holds when the composite swells without external
loads, Eq. (16.42) can be further simplified by considering the circular cylindrical
shape as

"
.1/;II2
11 D "�

11

2
�
1 � �.2/� C

�.2/"�
33

2
�
1 � �.2/� (16.43)

Hence, the Hill’s moduli l, n, and k can be solved from Eqs. (16.34)–(16.36),
(16.39), (16.40), (16.41), and (16.43) when the free swelling strain "s

11 D "s
22 D "s

33

is given. In what follows, the tensile modulus E3 along the reinforcing direction
can be obtained through Eq. (16.38). To illustrate the degradation effect of moisture
absorption on the tensile modulus E3, a numerical example is given by comparing
E3 of the virgin composite with that of the swollen one. Particularly, the effects of
the matrix stiffness on the mechanical degradation of the composite are taken into
consideration by introducing the relative stiffness, namely,

� D E.1/0
E.2/
D
�
1C �.1/��.1/0�
1C �.2/��.2/ (16.44)

which takes the following values: 10 (stiff), 20 (moderate), and 30 (soft).
Given the initial eigenstrain "s

11 D "s
22 D "s

33 D 0:05, the material parameter

˛DˇD 9, the initial Young’s modulus E.1/0 D 50 GPa, and Poisson’s ratios �.1/ D
�
.1/
0 D 0:25, �.2/ D �

.2/
0 D 0:3, the tensile moduli of the virgin and the swollen

composites along the reinforcing direction are theoretically predicted under different
fiber contents and shown in Fig. 16.6. It can be seen that the tensile modulus E3, no
matter the virgin or the swollen composite, increases with the fiber content. A further
comparison reveals that E3 of the swollen composite is much smaller than that of
the virgin one and such difference is enlarged with the increase of fiber content.

Other than the mechanical degradation, the swelling deformation of composites
described by the lateral strain "11 is studied as well, and the corresponding results
are plotted in Fig. 16.7. One can find that "11 almost increases linearly with the fiber
content. It is also demonstrated that the soft matrix leads to a large real strain "11 of
the composite, from which it is concluded that the stiff matrix can effectively reduce
the moisture absorption of the composites.



16 Micromechanical Modeling of Polymeric Composite Materials. . . 453

Fig. 16.6 A comparison of
the elastic modulus E3 of the
composite between the virgin
and the fully swollen in the
different cases of � D 10, 20,
and 30.

Fig. 16.7 The strain "11 of
the composite as a function of
the fiber content in the
different cases of � D 10, 20,
and 30

16.4 Modeling Modulus Loss of the Wood Cell Wall
(Pan and Zhong 2016)

16.4.1 Backgrounds

The wood fiber has been used as reinforcement in various natural wood composites
since they are environment-friendly and have high specific modulus and strength.
Despite rather good knowledge about mechanical modeling of wood composites on
macroscopic scale (Hazarika et al. 2014; Okereke et al. 2014; Pan and Zhong 2014;
Qing and Mishnaevsky 2009; Srubar 2015), little effort is devoted to theoretical
analysis of the wood cell wall from a microscopic level. Existing researches on this
topic mainly focus on experimental studies (Eder et al. 2013; Kojima and Yamamoto
2005; Saavedra Flores et al. 2014). Therefore, a deep understanding of the wood cell
wall structure is of great importance in modeling the wood cell wall.
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In fact, other than the moisture content, the microfibril angle (MFA) defined
as the orientation of the specific microfibril with respect to the longitudinal cell
axis also plays an important role in mechanical properties of the wood cell wall
(Saavedra Flores et al. 2014). The cell wall structure usually consists of several
layers with different MFAs (Hofstetter et al. 2007), among which the S2 layer
occupying 80� 90% of the total volume of the wood cell wall is the thickest and
dominates its mechanical properties (Hofstetter et al. 2005).

There are several computational analyses of the wood cell wall structure, for
example, the finite element simulation of its extensibility (Saavedra Flores et al.
2014) and the multi-scale numerical model of its creep behavior (Saavedra Flores
et al. 2011). However, the moisture-dependent properties are rarely taken into
consideration in the existing theoretical or computational analyses.

Note that the analysis of moisture-dependent properties of the wood cell wall
is very similar to that of natural fiber composites, in which the inhomogeneity is
hydrophilic and the matrix is usually hydrophobic (Cheung et al. 2009). Hence,
general micromechanical framework presented in Sect. 16.2 can be further reduced
to study the case in which the matrix uptakes water. Further considering the
inhomogeneity is resistant to the water, we have

©ms D ©s and ©fs D 0 (16.45)

Then the solution to the sub-problem I is obtained as ¢ (1) , ID¢ (2) , ID 0 and
©(1) , ID ©(2) , ID ©s. In the following subsection, we further determine the solution
to the sub-problem II.

16.4.2 Unidirectional Circular Cylindrical Inhomogeneity

The microstructure of the wood cell wall is shown in Fig. 16.8, which is composed
of hemicellulose, lignin, and cellulose microfibril (CMF) aligned along a given
direction (x3 -axis). The microfibril angle (MFA) ' is defined as the angle between
x3 -axis and the cell axis (x’

3 -axis). The microstructure of the wood cell wall is
analog to that of a long fiber reinforced composite (Salmén 2004), so that the CMFs
can be treated as transversely isotropic inhomogeneities (denoted as �) of infinite
length. The inhomogeneities are orientated unidirectionally and embedded in an
infinite matrix (denoted as D��) that is composed of hemicellulose and lignin.
The inhomogeneities are assumed to be hydrophobic and free of any initial strain
and stress, while the matrix is strongly hydrophilic and subject to a swelling strain
©s in a humid environment.

In this subsection, the above theoretical model is applied to simulate the wood
cell wall that contains a large number of unidirectional CMFs embedded in the
matrix composed of hemicellulose and lignin. This microstructure is modeled by
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Fig. 16.8 The illustration of
the cell wall structure and the
plane problem described by
the global and local
coordinates

unidirectional circular cylindrical inhomogeneities (transversely isotropic) enclosed
by an infinite isotropic matrix. The reinforcing direction of the CMF is along the x0

3

-axis, so that the stiffness C(1) of the CMF can be expressed by Hill’s representation
(Hill 1965) in which k(1) is the plane-strain bulk modulus normal to the fiber
direction, n(1) is the uniaxial tensile modulus in the reinforcing direction (x0

3 -axis),
l(1) is the associated cross modulus, and m(1) and p(1) are the shear moduli in planes
normal and parallel to the reinforcing direction, respectively.

For experimental measurements, other five elastic coefficients are more conve-
nient in use, given as follows:

E.1/3 D �
�
l.1/
�2 � k.1/n.1/

k.1/
; E.1/1 D

4
h�

l.1/
�2

m.1/ � k.1/m.1/n.1/
i

�
l.1/
�2 � k.1/n.1/ �m.1/n.1/

; G.1/
13 D p.1/

�
.1/
12 D �

��l.1/�2 C k.1/n.1/ �m.1/n.1/
�
l.1/
�2 � k.1/n.1/ � m.1/n.1/

; �
.1/
13 D �

2l.1/m.1/

�
l.1/
�2 � k.1/n.1/ �m.1/n.1/

(16.46)

where E.1/3 , E.1/1 are, respectively, the tensile moduli along and transverse to the

reinforcing direction, �.1/12 and �.1/13 are two Poisson’s ratios, and G.1/
13 is the shear

modulus parallel to the reinforcing direction.
The stiffness of the isotropic matrix can be written in terms of the shear modulus

�(2) and the bulk modulus �(2):
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C.2/
mnpq D �.2/ımnıpq C �.2/

�
ımpınq C ımqınp � 2

3
ımnıpq

	
(16.47)

where ımn is the Kronecker delta.
The swelling expansion coefficients of the wood cell wall are different in three

orthogonal directions. The expansion coefficient along the CMF is smaller than
those along other two orthogonal directions (Jakob et al. 1996), so that we assume
"s
11 D "s

22 > 0, "s
33 D 	"s

11 > 0 (0� 	 < 1) and other "s
ij D 0. Accordingly, the

following two equations can be derived from Eq. (16.8):

2k.1/


"
.1/;II
11 C "s

11

�
C 	l.1/"s

11 D .1 � f /
h
2
�
�.2/ C �.2/�



"
.1/;II2
11 � "�

11

�
� �.2/"�

33

i

(16.48)

and

2l.1/


"
.1/;II
11 C "s

11

�
C 	n.1/"s

11 D .1 � f /
h
2�.2/



"
.1/;II2
11 � "�

11

�
� ��.2/ C 2�.2/� "�

33

i

(16.49)

If we further assume that the damage of the matrix induced by moisture
absorption is isotropic, then the damage effect tensor M in Eq. (16.14) can be written
as an isotopic tensor taking the following form (Pan and Zhong 2015)

Mmnpq
�
"s

kk

� D
q

A
�
"s

kk

�

3
ımnıpq C

q
B
�
"s

kk

�

2

�
ımpınq C ımqınp � 2

3
ımnıpq

	

(16.50)

where A and B are two degradation parameters depending on the swelling expansion
"s

kk induced by moisture absorption.
Substituting Eq. (16.26) into (16.22) and then into (16.47), the stiffness C(2) with

the effect of mechanical degradation is obtained as

C.2/
mnpq D �

.2/
0

A
�
"s

kk

�ımnıpq C �
.2/
0

B
�
"s

kk

�
�
ımpınq C ımqınp � 2

3
ımnıpq

	

D �.2/ımnıpq C �.2/
�
ımpınq C ımqınp � 2

3
ımnıpq

	
(16.51)

where �.2/0 and �.2/0 are two initial bulk and shear modulus of the matrix. We
adopt a power form to describe the mechanical degradation of these moduli, so that

degradation parameters are written as A D �
1C "s

kk

�˛
and B D �

1C "s
kk

�ˇ
. Here ˛

and ˇ are two positive material constants of the matrix, which should be derived or
fitted from experimental data.
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Equation (16.51) can be rewritten into a more compact form describing the
degradation of the bulk and the shear modulus as

�.2/

�
.2/
0

D 1
�
1C "s

kk

�˛
�.2/

�
.2/
0

D 1
�
1C "s

kk

�ˇ (16.52)

As can be seen, �(2) and �(2) are monotonously decreasing with the initial bulk
strain "s

kk. If "s
kk D 0, we have �.2/.0/ D �

.2/
0 and �.2/.0/ D �

.2/
0 , without any

modulus loss. Especially when ˛Dˇ, the Poisson’s ratio ¤(2) is considered to keep
constant since �.2/=�.2/0 D �.2/=�.2/0 .

By expanding the Eshelby relation (16.9), the real strain ".1/;II211 in sub-problem
II2 is expressed as

"
.1/;II2
11 D S1111"

�
11 C S1122"

�
22 C S1133"

�
33 (16.53)

When the external loads are absent, the swelling condition "s
11 D "s

22 leads to

"�
11 D "�

22 and ".1/;II11 D "
.1/;II
22 . By employing these relations and further substituting

the Eshelby tensor of circular cylindrical shape into Eq. (16.42), we derive

"
.1/;II2
11 D "�

11

2
�
1 � �.2/� C

�.2/"�
33

2
�
1 � �.2/� (16.54)

In Eqs. (16.48), (16.49), (16.52), and (16.54), the four unknowns ".1/;II11 , "�
11,

"�
33, and C(2) can be solved simultaneously, given the stiffness C(1) and C.2/

0 of
the constituent materials and the swelling strain "s

11. Thereafter, the overall average
strain "11 of the wood cell wall can be obtained from Eq. (16.18), as follows:

"11 D .1 � f /
�
C.2/

��1
11ij

C.1/
ijkl



"
.1/;II
kl C"s

kl

�
C .1�f / "�

11� .1�f / ".1/;II211 Cf ".1/;II11 C"s
11

(16.55)

Considering the unidirectional inclusions of circular cylindrical shape, the Mori–
Tanaka prediction of the overall stiffness of the wood cell wall given by Eq. (16.19)
can be expanded equivalently into five independent equations (Qiu and Weng 1990;
Shi et al. 2004) to yield the five Hill’s elastic moduli of the wood cell wall, as
follows:

l D
E.2/

n
2fl.1/ C .1 � f /

�
E.2/ C 2k.1/

�
�.2/ � 2 �fl.1/ � .1 � f / k.1/

 �
�.2/

�2o

�
1C �.2/� 

(16.56)
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n D
E.2/

n
2.1 � f /2k.1/

�
1 � �.2/�C f

�
n.1/

�
1C f � 2�.2/�C 4 .1� f / l.1/�.2/

o



C
2f .1 � f /

h
k.1/n.1/ � �l.1/�2

i �
1C �.2/�2 �1 � 2�.2/�

�
1C �.2/� 

C .1 � f /
�
E.2/

�2 �
1C f � .1 � f / �.2/



�
1C �.2/�  (16.57)

k D E.2/
˚
E.2/ .1 � f /C 2k.1/

�
1C �.2/� �1C f

�
1 � 2�.2/��

�
1C �.2/�  (16.58)

with

 D E.2/
�
1C f � 2�.2/�� 2 .1 � f / k.1/

h
�1C �.2/ C 2��.2/�2

i
(16.59)

The other five elastic coefficients of the wood cell wall, E1, E3, G31, ¤12, and ¤13,
can be calculated using Eq. (16.46).

16.4.3 Results and Discussions

In this subsection, the theoretically predicted tensile modulus E0
3 along the cell axis

of the wood cell wall is compared with available experimental data (Kojima and
Yamamoto 2005) to illustrate the practical application of the proposed microme-
chanical framework.

The wood cell wall has layer structures, in which the S2 layer is the thickest
and most influential on the mechanical behaviors of the wood cell wall (Saavedra
Flores et al. 2011). Hence the S2 layer is particularly studied, taken as a plane stress
problem. Two sets of plane coordinate systems are introduced: the local coordinate
system (x1� x3) and the global one (x0

1 � x0
3), with the x0

3 -axis lying along the cell
axis and the x3 -axis along the CMF direction of the S2 layer, as depicted in Fig.
16.8, so that the constitutive relation can be described, respectively, in these two
coordinate systems, as follows:

� Q© D QD � Q¢
Q©’ D QD’ � Q¢’

(16.60)

where Q¢ D f
33; 
11; 
31gT and Q© D f"33; "11; "31gT are stresses and strains in
the local coordinate system, while Q¢ 0 D ˚


 0
33; 


0
11; 


0
31

�T
and Q©0 D ˚

"0
33; "

0
11; "

0
31

�T

are stresses and strains in the global coordinate system. QD and QD’ are the plane
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compliance tensors defined, respectively, in the local and the global coordinate
systems. Here QD is given as

h QD
i
D

2

6
4

1
E3
� �13E1

0

� �31
E3

1
E1

0

0 0 1
G31

3

7
5 (16.61)

where E1, E3, G31, ¤13, ¤31 are, respectively, the tensile moduli along x1 and
x3 directions, the shear modulus, and two Poisson’s ratios. Note that the plane
compliance tensor QD is symmetric with the relation ¤13/E1D¤31/E3 held. After a
rotation operation of the local compliance tensor, the global compliance tensor is
derived as

QD’ D A � QD � R � A�1 � R�1 (16.62)

with the rotation tensor A and R given as

ŒA� D
2

4
cos2' sin2' � sin' cos'
sin2' cos2' sin ' cos'

2 sin' cos' �2 sin' cos' cos2' � sin2'

3

5 (16.63)

ŒR� D
2

4
1 0 0

0 1 0

0 0 2

3

5 (16.64)

Here R is called the Reuter matrix (Reddy 2004) taking into account the
relationship between the engineering strains �31 and the shear strain "31, namely,
�31D 2"31.

Hence the tensile modulus E0
3 along the cell axis is calculated from Eq. (16.62)

as

E0
3 D


 QD’
��1
11
D E1G31cos4' C E1 .E3 � 2G31v31/ cos2'sin2' C E3G31sin4'

E3E1G31

(16.65)

where the elastic coefficients E1, E3, G31, ¤31 are related to the Hill’s elastic
coefficients by Eq. (16.46). Furthermore, these Hill’s coefficients can be calculated
from the elastic coefficients of the constituents using Eqs. (16.56)–(16.59).

Since all the Poisson’s ratios of the CMF and the matrix remain constant (Salmén
2004) during moisture absorption, Eq. (16.52) is reduced to

E.2/

E.2/0
D 1
�
1C "s

kk

�˛ (16.66)

when ˛Dˇ. Here "s
kk D .2C 	/ "s

11 (0� 	 < 1).
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In the subsequent calculations, we set 	D 0 for simplicity and take the elastic
coefficients of the fiber (CMF) and the matrix (hemicelluloses) from the literature
(Salmén 2004): E.2/0 D 1:4 GPa, �.2/0 D 0:2, E.1/1 D 27:2 GPa, E.1/3 D 134 GPa,

G.1/
13 D 4:4 GPa, and �.1/12 D �.1/13 D 0:1.
Accordingly, by virtue of Eq. (16.65), the tensile modulus E0

3 can be obtained as
a function of the swelling bulk strain "s

kk, the MFA ', the CMF content f, and the
material parameter ˛, i.e.,

E0
3 D E0

3

�
"s

kkI'; f ; ˛
�

(16.67)

where ', f, and ˛ are three intrinsic parameters of the wood cell wall, which can
be derived from experimental measurements. Although the analytical expression of
Eq. (16.67) is too long to be presented here, it can be easily operated in the symbolic
computation software (e.g., Mathematica 7.0 used in the present chapter).

In the experiment conducted by Kojima and Yamamoto (2005), four samples
of wood cell wall were tested, with identical CMF content but different MFAs
('D 12.0ı, 20.4ı, 29.8ı, and 44.1ı). In their article, the moisture absorption of a
sample was described by the relative humidity (RH), � D 0, 0.76, and 1, rather than
the moisture content. However, this is not a problem because they are correlated with
each other. Furthermore, the RH can be equivalently represented by the swelling
bulk stain "s

kk because the samples with an identical RH have the same swelling bulk
strain "s

kk. Thus, the swelling strain "s
kk, rather than � , is employed in the subsequent

analysis. For each sample, the tensile modulus E0
3 was measured for different RHs

and listed in Table 16.1.
The CMF content f is obtained by fitting the experimental data according to Eq.

(16.67) when setting "s
kk D 0, as shown in Fig. 16.9. The theoretical prediction

is f D 0.83, a little bigger than that of previous estimation f D 0.65� 0.75 (Astley
and Donald 2001). The four experimental points in Fig. 16.9 are derived from
four samples in the case RHD 0, listed at the first row in Table 16.1. From Fig.
16.9, the tensile modulus E0

3 decreases with the increase of the MFA, confirming
the expectation that the reinforcing effect of CMF is gradually reduced when the
alignment of CMFs deviates from the cell axis.

Next the parameter ˛ will be determined. Since ˛ is identical for all four samples,
we try and error, and finally set ˛D 5.5 in the prediction of E0

3. For convenience, the
experimental data listed in Table 16.1 are denoted as E0

3

ˇ
ˇ
';�

. The swelling strain

Table 16.1 The
experimentally measured E0

3

with different MFAs and
moisture contents

'D 12.0ı 'D 20.4ı 'D 29.8ı 'D 44.1ı

E0

3 �D0 .GPa/ 46.2 13.9 14.1 7.3

E0

3 �D0 .GPa/ 22.0 9.7 5.8 4.1

E0

3 �D0 .GPa/ 18.9 6.2 3.6 2.0
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Fig. 16.9 The fitting result
of E0

3 varying with ' under
the condition � D 0

"s
kk

ˇ
ˇ
�

under a given � should be identical for all samples. Using Eq. (16.67) with
f D 0.83 , the swelling strain "s

kk is obtained when ', ˛, and E0
3 are given. For

example, for the case � D 0, given the experimental data E0
3

ˇ
ˇ
';�D0 of four samples,

the swelling strain "s
kk

ˇ
ˇ
';�D0 can be obtained. Due to model and experimental errors,

the four values of "s
kk

ˇ̌
';�D0 have a little difference. Hence, it is reasonable to use the

average value to determine the swelling strain "s
kk

ˇ
ˇ
�D0 at � D 0, namely,

"s
kk

ˇ
ˇ
�D0 D

1

4

�
"kkj'D12:0ı;�D0 C "kkj'D20:4ı;�D0 C "kkj'D29:8ı;�D0 C "kkj'D44:1ı;�D0

�

(16.68)

In the same way, other two swelling strains "s
kk

ˇ̌
�D0:76 and "s

kk

ˇ̌
�D1 can also

be determined. Substituting "s
kk

ˇ̌
�D0, "

s
kk

ˇ̌
�D0:76, and "s

kk

ˇ̌
�D1 into Eq. (16.55), the

average strain "11 of the wood cell wall with different moisture contents is derived as

"11j�D0 D 2:62 � 10�3 "11j�D0:76 D 1:45 � 10�2 "11j�D1 D 1:93 � 10�2

Then the tensile moduli E0
3 versus "11 of four samples are plotted as scatter points

in Fig. 16.10. It is seen that the tensile modulus E0
3 decreases with the increase of

the average strain "11 under a given MFA.
Now Eqs. (16.55) and (16.67) can be used together to predict the relation between

the tensile moduli of E0
3 and the strain "11 under a given '. As shown in Fig. 16.10,

the theoretical predictions agree well with the experimental results. Although there
are only three experimental points in each figure, one may still find that the proposed
model successfully captures the variation trends of E0

3. After comparing all four
figures, it is also found that E0

3 decreases with the increase of the MFA.
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Fig. 16.10 The theoretical predictions of E0

3 under: (a) 'D 12.0ı, (b) 'D 20.4ı, (c) 'D 29.8ı,
and (d) 'D 44.1ı

It is worthy to note that the properties of the wood cell will change remarkably
with the moisture content below FSP that is critical for the wood cell. The tensile
modulus E0

3 measured by Kojima and Yamamoto (2005) showed that the modulus
exhibits a remarkable change for the RH from 76% to 100% (see Table 16.1). This
implies that the RH corresponding to the FSP of the studied wood is in between 76
and 100%.

As expected, the proposed micromechanical model effectively predicts the
modulus loss of the wood cell wall induced by moisture absorption. For different
MFAs, the predicted tensile modulus decreases with the strain induced by moisture
content below FSP. This decreasing trend is remarkable at smaller strains, slows
down for bigger strains, and eventually goes to a stable state corresponding to the
FSP of the wood (see Fig. 16.10). Although the present model has been validated
through laboratory testing examples, it can be easily applied in real applications.

The present micromechanical approach also provides additional insights to the
mechanical behavior of the wood cell wall by establishing a relation between the
macro-scale tensile modulus and the microstructure parameter such as the MFA
(see Fig. 16.9).
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Table 16.2 A comparison between the present model and other models of the wood cell wall

Matrix Inhomogeneity
Random
distribution

Modulus
loss

Our model Hemicellulose
and lignin

CMF No Yes

Cave (1968, 1969) Hemicellulose
and lignin

CMF Yes No

Hofstetter et al. (2005, 2007) Polymer
network

Lignin,
hemicellulose, CMF,
and water

No No

Other theoretical models have been proposed to study the elastic properties (Cave
1968; Hofstetter et al. 2005), the visco-elastic properties (Kojima and Yamamoto
2004, 2005), and the hysteresis between loading and unloading cycles (Saavedra
Flores et al. 2011) of the wood cell wall. A rough comparison between these models
with the present micromechanical model elaborated on the modulus loss of the wood
cell wall due to moisture absorption is tabulated in Table 16.2.

More specifically, the hemicellulose and lignin is treated similarly as a matrix
with the reinforcing CMF in Cave’s model (Cave 1968, 1969). The difference from
our model is that the MFA ' in Cave’s model is assumed to have a Gaussian
distribution (Cave 1968, 1969)

g .'/ D 1

s
p
2�

exp

"

� .M � '/
2

2

#

(16.69)

where s and M are, respectively, the standard deviation and the mean value of
'. Although the Gaussian distribution of the MFA ' presents a more reasonable
distribution of the CMF in the wood cell wall, the difficulties rise from the
identification of two more parameters s and M.

Another micromechanical model was developed by Hofstetter et al. (2005, 2007)
based on a four-step homogenization scheme from nano-scale to macro-scale to
simulate the wood cell wall, the softwood, and the hardwood. This micromechanical
analysis is very complicated, which limits its practical use in the prediction of
material properties of the wood cell wall.

Unfortunately, neither Cave’s model nor the model proposed by Hofstetter et al.
considers the modulus loss induced by moisture absorption. However, the present
model introduces damage variables into the Mori–Tanaka micromechanical scheme
to deal with modulus loss of the wood cell wall induced by moisture absorption,
with which the hemicellulose and lignin is taken together as a matrix, while the
CMF is treated as the inhomogeneity.

Different from the Cave’s model and the model proposed by Hofstetter et al., our
micromechanical analysis is not based directly on the classic eigenstrain problem
(i.e., Eshelby inclusion problem). In order to study the eigenstrain occurring in the
matrix, two eigenstrain sub-problems were established. This analytical framework
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is newly developed in the micromechanical analysis of the wood cell wall. Last
but not least, the analytical prediction of the modulus loss in the wood cell wall
demonstrates more advantage in the practical applications than implementing finite
element analysis (Saavedra Flores et al. 2011).

16.5 Conclusions

A micromechanical model is established to study the overall mechanical degra-
dation of polymeric composites that absorb water both in the matrix and the
homogeneity. Damage variables are introduced into the Mori–Tanaka framework to
describe the mechanical degradation. The original problem of moisture absorption
is decomposed into two sub-problems in which an equivalent eigenstrain problem is
constructed. Based on the proposed modified Mori–Tanaka scheme, the moisture
absorption and the mechanical degradation of NFRCs and wood cell wall are
theoretically predicted. The analysis of NFRCs can be reduced from the proposed
micromechanical model with only inhomogeneity absorbing water, as well as only
matrix absorbing water for wood cell wall. Theoretical predictions are in good
agreement with experimental results of sisal fiber reinforced composites and wood
cell wall.
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Appendix A

The bulk and the shear moduli of natural fiber and matrix are, respectively,
expressed as

8
<

:

�.i/ D E.i/

3.1�2�.i//
�.i/ D E.i/

2.1C�.i//
.i D 1; 2/ (16.A.1)

In our theoretical predictions, Poison’s ratios are �.1/ D �
.1/
0 D 0:25 D 1=4 for

sisal fiber and �.2/ D �
.2/
0 D 0:33 � 1=3 for polypropylene matrix. Substituting

Eq. (16.A.1) into (16.24), we arrive at
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� D E.2/ C f
�
2E.1/=3� E.2/

� �
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�

2 .1 � f /E.1/ C 3fE.2/ C 9E.2/=8C 2E.1/=5

� D 3E.2/

8
� f

�
2E.1/=5 � 3E.2/=8

� �
3E.2/ı1=2C 2E.1/ı2

�

3E.2/
�
2E.1/=5C 3E.2/=8

�
1 � 3E.2/2=8C 2E.1/ .3 � 4/

(16.A.2)

As seen in Eq. (16.A.2), the bulk and shear moduli of the composite are expressed
by Young’s moduli of the fiber and the matrix (i.e., E(1) and E(2)).

By means of Eqs. (16.25) and (16.A.2), we can fit the experimental data of (E0, f )
(the scatter points in Fig. 16.4) by the commercial software Mathematica 7.0 with
the command FindFit to obtain the moduli E.1/0 D 15:03 GPa and E.2/0 D 2:37 GPa,
as shown in Fig. 16.4. The fitting procedure is based on the least square method.
The square of the residuals R between the results of theoretical predictions and
experimental data should be minimized such as

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂<

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:̂

R D
nX

iD1

h
E



E.1/0 ;E
.2/
0 ; f

�
� E0

i2

@R

@E.1/0
D 0

@R

@E.2/0
D 0

(16.A.3)

from which the two material parametersE.1/0 and E.2/0 are finally determined.
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Chapter 17
General Interface Integral Equations
in Elasticity of Random Structure Composites

Valeriy Buryachenko

Abstract One considers linearly elastic composite media, which consist of a
homogeneous matrix containing a statistically homogeneous random set of aligned
homogeneous heterogeneities of a noncanonical shape. The new general integral
equations connecting the stress and strain fields in the point being considered
with the stress and strain fields in the surrounding points are obtained for the
random fields of heterogeneities. The method is based on a recently developed
centering procedure where the notion of a perturbator is introduced in terms of
boundary interface integrals that makes it possible to reconsider basic concepts of
micromechanics such as effective field hypothesis, quasi-crystalline approximation,
and the hypothesis of “ellipsoidal symmetry.” The results of this reconsideration are
quantitatively estimated for some modeled composite reinforced by aligned homo-
geneous heterogeneities of a noncanonical shape. Some new effects are detected
that are impossible in the framework of a classical background of micromechanics.

17.1 Introduction

The prediction of the behavior of composite materials in terms of the mechan-
ical properties of constituents and their microstructure is a central problem of
micromechanics, which is evidently reduced to the estimation of stress fields in the
constituents. Appropriate, but by no means exhaustive, references for the estimation
of effective elastic moduli of statistically homogeneous media are provided by
the reviews Willis (1981), Mura (1987), Nemat-Nasser and Hori (1993), Torquato
(2002), Milton (2002), Buryachenko (2007), and Dvorak (2013). It appears today
that variants of the effective medium method (Kröner, 1958; Hill, 1965) and
the Mori-Tanaka method (MTM, see Mori and Tanaka 1973; Benveniste 1987) are
the most popular and widely used methods. Recently, a new method, namely the
multiparticle effective field method (MEFM), was put forward and developed (see
for references Buryachenko 2007). The MEFM is based on the theory of functions
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of random variables and Green’s functions. This way, the interaction of different
inclusions is taken into account.

The stress distributions inside a single (or a few) inclusion inside an infinite
matrix are assumed to be found and incorporated into one or another general frame-
work of analytical micromechanics for self-consistent estimations of a so-called
effective field (see for details Buryachenko 2007). However, all mentioned methods
are based on the effective field hypothesis (EFH H1, even if the term “effective field
hypothesis” was not indicated) according to which each inclusion is located inside a
homogeneous so-called effective field (see for references Buryachenko 2007). This
concept has directed a development of micromechanics over the last 60 years and
made a contribution to their progress incompatible with any another concept. The
idea of effective field dating back to Mossotti (1850) was added by the hypothesis of
“ellipsoidal symmetry” for the distribution of inclusions attributed to Willis (1977).
In the framework of a new background of micromechanics (NBM) proposed (see
for references Buryachenko 2014, 2015) and based on the new general integral
equations (GIEs), it was demonstrated that the effective field hypothesis H1 is a
central one and that other concepts play a satellite role in providing the conditions
for the application of the effective field hypothesis. Moreover, it was also proven
that all mentioned hypotheses are not particularly necessary and can be relaxed.

However, the NBM was formulated in terms of perturbations of the stress fields
introduced by the interacting inclusions, while these perturbations in both the inside
and the vicinity of the inclusions were estimated by either the finite element analysis
(FEA) or the volume integral equation method. Obtaining analytical solutions is
not feasible in general even for a finite number of interacting particles, so various
numerical methods have been developed, mostly based on the finite element analysis
(FEA, see, e.g., Zienkiewicz and Taylor 1994; Fish and Belytschko 2007) and
boundary integral equation (BIE, see, e.g., Brebbia et al. 1984; Balas et al. 1988;
Mukherjee and Liu 2013) technique. A distinct advantage of the BIE over the FEA
is that the BIEs require meshing only on the boundary surface of the computational
domain as opposed to the entire 3-D domain for FEA. In the BIE, singular forces
distributed, for example, on the surface of particles, depend on the external field,
thus yielding an integral equation for the singularity strengths.

It is interesting to develop some alternative so-called meshless methods (see
Fasshauer 2006, for an overview and historical background on the subject) of the
local boundary integral equation, boundary knot method, boundary collocation
method, nondimensional dynamic influence functions method, and method of
fundamental solutions (MFS proposed by Kupradze and Aleksidze 1964) belonging
to the BIE methods for solving boundary value problems, which can be recognized
as a discrete type of the indirect boundary element method with a concentrated
source instead of distribution (see for references Belytschko et al. 1996; Goldberg
and Chen 1998; Atluri 2004; Chen and Tanaka 2002). The MFS belonging to
the BIE technique shares the same advantages as the BIE methods over domain
discretization methods. Moreover, the MFS has certain attractive advantages over
the boundary element method (BEM), since it is truly meshless (which requires
neither domain nor boundary mesh structure), simple to program, and is able to
take into account sharp changes in geometry. The MFS and related methods over
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the last years have found extensive application in computing solutions to a broad
range of problems (Fairweather and Karageorghis, 1998; Chen et al., 2008). A few
disadvantages are that the positioning of the source points is preassigned and also
that the resulting system of algebraic equations is ill-conditioned, which leads to the
oscillation of the convergence curve of the numerical solution when a large number
of source points are used. In such a case, the Tikhonov regularization can be used to
mitigate the ill-conditioned effect (see Lin et al. 2011; Marin 2005).

Thus, the stress distributions inside a single inclusion inside an infinite matrix are
assumed to be found. This solution then is incorporated into the new GIE without
any additional assumptions such as some sort of “effective field hypothesis” H1 and
the hypothesis of “ellipsoidal symmetry” for the distribution of inclusions attributed
to Willis (1977).

The paper is organized as follows. In Sect. 17.2 we present the basic field
equations of linear elasticity, notations, and statistical description of the composite
microstructure as well as the Green functions used in the BIE and the volume inte-
gral equations (VIE) methods. A new concept of the interface polarization tensors
exploited in the effective properties representations is introduced in Sect. 17.3. The
new general integral equations (GIEs) are proposed in Sect. 17.4 for the case of
statistically homogeneous structures of composite materials. These equations are
obtained by a centering procedure of subtraction from both sides of a known initial
integral equation the statistical averages obtained without any auxiliary assumptions
such as EFH implicitly exploited in the known centering methods. In Sect. 17.5,
one presents the method of fundamental solution (MFS) adapted to the solution for
one homogeneous noncanonical inclusion inside the infinite homogeneous matrix.
Classical assumptions of micromechanics are reformulated in Sect. 17.6 in terms
of interface operators. In Sect. 17.7 the solutions of the GIEs are proposed and
expressed through the interface average variables. In particular, the GIE is solved in
the framework of the quasi-crystalline approximation but without basic hypotheses
of classical micromechanics such as both the old version of the EFH and ellipsoidal
symmetry assumption. In Sect. 17.8 we show the results of the implemented
numerical simulations and we analyze the improvements introduced by the new
approach with respect to the classic ones and demonstrate the corrections of popular
propositions obtained in the framework of the old background of micromechanics.

17.2 Preliminaries

17.2.1 Basic Equations

Let a linear elastic body occupy an open bounded domain w � Rd with a smooth
boundary �0 and with an indicator function W and space dimensionality d (d D
2 and d D 3 for 2-D and 3-D problems, respectively). The domain w contains
a homogeneous matrix v.0/ and a statistically homogeneous set X D .vi;Vi; xi/

of inclusions vi with indicator functions Vi and centers xi bounded by the closed
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smooth surfaces�i WD @vi .i D 1; 2; : : :/ defined by the relations�i.x/ D 0 (x 2 �i),
�i.x/ > 0 (x 2 vi), and �i.x/ < 0 (x 62 vi). It is assumed that the inclusions can be
grouped into component (phase) v.1/ D [vi (i D 1; 2; : : :) with identical mechanical
and geometrical properties (such as the shape, size, orientation, and microstructure
of inclusions). For the sake of definiteness, in the 2-D case we will consider a plane-
strain problem. At first, no restrictions are imposed on the elastic symmetry of the
phases or on the geometry of the inclusions.1

The problem is governed by the local equations of elastostatics of composites:

r� .x/ D 0; (17.1)

� .x/ D L.x/".x/; or ".x/ DM.x/� .x/; (17.2)

".x/ D r S˝ u; r � ".x/ � r D 0; (17.3)

where .:/> denotes transposition; ˝ and � are the tensor and vector products,
respectively; and the operator a

S˝ b represents the symmetric part of the second-
order tensor, that is a

S˝ b D .a˝ bC b˝ a/=2. L.x/ and M.x/ � L.x/�1 are the
known stiffness and compliance fourth-order tensors, and the common notation for
contracted products has been employed.

In particular, for isotropic constituents, the stiffness tensor L is given in terms
of the local bulk modulus k and the shear modulus �: L D .dk; 2�/ � dkN1 C
2�N2, N1 D ı ˝ ı=d; N2 D I �N1 .d D 2 or 3); ı and I are the unit second-
order and fourth-order tensors. For the fiber composites it is the plane-strain bulk
modulus kŒ2�—instead of the 3-D bulk modulus kŒ3�—that plays the significant role:
kŒ2� D kŒ3� C �Œ3�=3, �Œ2� D �Œ3�. The tensors g .g D L;M/ of material properties

are piecewise constant and decomposed as g � g.0/C g1.x/ D g.0/C g.1/1 .x/, where

g.0/ Dconst, g.x/ � g.0/ at x 2 v0 and g.1/1 .x/ � g.1/1 is a homogeneous function of
the x 2 v.1/:

L.1/1 .x/ D L.1/1 � const: at x 2 v.1/: (17.4)

The upper index .m/ indicates the components and the lower index i indicates the
individual inclusions; v.0/ D wnv, v � v.1/; V.x/ D V.1/ D P

Vi.x/, and V.1/.x/
and Vi.x/ are the indicator functions of v.1/ and vi, respectively.

The introduction of jumps of material properties allows one to define the stress
� and strain 	 polarization tensors by two equivalent ways .x 2 Rd):

�.x/ D L1.x/".x/; 	.x/ DM1.x/� .x/; � D �L.0/	; (17.5)

�.x/ D � .x/� L.0/".x/; 	.x/ D ".x/�M.0/� .x/; (17.6)

1It is known that for 2-D problems the plane-strain state is only possible for material symmetry no
lower than orthotropic (see, e.g., Lekhnitskii 1963) that will be assumed hereafter in 2-D case.
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which are simply a notational convenience and vanish inside the matrix �.x/ �
	.x/ � 0 (x 2 v.0/). It is interesting that the polarization tensors (17.5) (see, e.g.,
Willis 1981) are attributed to Hashin and Shtrikman (1962) and Hill (1963) who
introduced, in fact, these notions in the equivalent form (17.6). For both the local
and nonlocal elasticity theory, Eqs. (17.5) and (17.6) are also equivalent; however,
the form (17.6) is preferable for subsequent manipulation because Eq. (17.6) does
not explicitly use the constitutive equation (17.2) for the heterogeneities x 2 v.

We assume that the phases are perfectly bonded, so that the displacements and
the traction components are continuous across the interphase boundaries, that is,
ŒŒ�nint�� D 0 and ŒŒu�� D 0 on the interface boundary � D [�i (i D 1; 2; : : :)
where nint is the normal vector on � and ŒŒ.:/�� is the jump operator. The traction
t.x/ D � .x/n.x/ acting on any plane with the normal n.x/ through the point x can
be represented in terms of displacements t.x/ D Ot.n;r/u.x/, where Otik.n;r/ D
Lijklnj.x/@=@xl is the conormal derivative operator. The boundary conditions at the
interface boundaries will be considered together with the homogeneous boundary
conditions:

u�0 .x/ D "�0x; "�0 � const:; x 2 �0; (17.7)

t�0.x/ D � �0n�0 .x/; � �0 D const:; x 2 �0; (17.8)

where "�0.x/ D 1
2

�ru�0.x/ C .ru�0 .x//>

, x 2 �0, and � �0 are the given

constant symmetric tensors of the macroscopic strain and stress, respectively. We
will consider the interior problem when the body occupies the interior domain with
respect to the boundary �0.

17.2.2 Statistical Description of Random Structure Composites

It is assumed that the representative macrodomain w contains a statistically large
number of realizations ˛ of inclusions vi 2 v.1/ .i D 1; 2; : : :/ of the constituent
v.1/ (providing validity of the standard probability theory technique). A random
parameter ˛ belongs to a sample space A , over which a probability density p.˛/
is defined (see, e.g., Willis 1981). For any given ˛, any random function g.x; ˛/
(e.g., g D V; � ; ") is defined explicitly as one particular member, with label ˛, of
an ensemble realization. Then the mean, statistical (or ensemble) average is defined
by the angle brackets enclosing the quantity g:

hgi.x/ D
Z

A

g.x; ˛/p.˛/d˛: (17.9)

No confusion will arise below in the notation of the random quantity g.x; ˛/ if
the label ˛ is dropped for the compactness of expressions unless such indication
is necessary. One treats two material length scales (see, e.g., Torquato 2002): the
macroscopic scale L, characterizing the extent of w, and the microscopic scale a,
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related with the heterogeneities vi. Moreover, one supposes that the applied field
varies on a characteristic length scale ƒ. The limit of our interests for both the
material scales and field one is presented in an asymptotic sense:

L� ƒ � a; (17.10)

as the scale of microstructure a relative to the macroscale L tends to zero. All
the random quantities under discussion are described by statistically homogeneous
random fields. For the alternative description of the random structure of a composite
material, let us introduce a conditional probability density '.vi; xijv1; x1/, which is
a probability density to find the i-th heterogeneity with the center xi in the domain
vi with fixed heterogeneity v1 with the centers x1. The notation '.vi; xijI v1; x1/
denotes the case xi ¤ x1.

To prevent the overlapping of different inclusions, '.vi; xijI vm; xm/ D 0, for
values of xi lying inside the “excluded volumes,” [v0mi, where v0mi � vm, with
indicator function V0

mi as the “excluded volumes” of xi with respect to vm (it is
usually assumed that v0mi � v0m) and '.vi; xijI vm; xm/! '.vi; xi/ as jxi� xmj ! 1
(since no long-range order is assumed). '.vi; x/ is a number density, n.x/ D n
of component v 3 vi at the point x and c.1/ is the concentration, that is, the
volume fraction of the component vi 2 v: c.1/ D hVi D vin; vi D mes vi

.i D 1; 2; : : :/, c.0/.x/ D 1 � hVi: Hereafter, if the pair distribution function
g.xi � xm/ � '.vi; xijI vm; xm/=n.k/ depends on xm � xi only through jxm � xij,
it is called the radial distribution function (RDF, see for references and details
Buryachenko et al., 2012). The notations h.:/i.x/ and h.:/jv1; x1i.x/will be used for
the average and for the conditional average taken for the ensemble of a statistically
homogeneous field X D .vi/ at the point x, on the condition that there are inclusions
at the points x1. The notation h.f/ii.x/ of the variable f.x/ (e.g., f.x/ D � .x/; ".x/
defined in the domain at x 2 vi) means the statistical average over an ensemble
realization of surrounding inclusions at the fixed vi, whereas h.�/i.i/ indicates the
volume average over an inclusion vi in a single realization and h.:/ii � hh.:/i.i/i.
No confusion will arise from our use of the same notations h.f/i.i/ and h.f/ii for
the surface averages over the interfaces �i if the variable f.s/ (e.g., f.s/ D t.s// is
defined at the interface s 2 �i. The subdomains vi (i D 1; : : :) are called floating
subdomains if they do not touch the boundary �0. In such a case, the body w is
considered as one cut out from an infinite random medium and the inclusions vi

intersected with the boundary �0 are replaced by the matrix material.

17.2.3 Green’s Function and Related Tensors

One introduces the infinite body Green’s function G.k/ of the Navier equation with
homogeneous elastic modulus tensor L.k/, defined by

r ˚L.k/Œr ˝G.k/.x/�
� D �ıı.x/; (17.11)

of order O
� R jxj1�ddjxj� as jxj ! 1 and vanishing at infinity (jxj ! 1) in 3-D.
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We will use the tensors of the fundamental stresses, tractions (called also
Kupradze tensor), and strains

D.m/.x � s/ D L.m/rG.m/.x � s/; T.m/.x; s/ D �n� .x/D.m/.x � s/;

E .m/.x � s/ D rG.m/.x � s/; (17.12)

and S.m/.x; s/ D L.m/rT.m/>.x; s/. In particular, for an isotropic medium we
reproduce the compact representation of the mentioned Green functions valid for
both 2-D and 3-D cases (see also, e.g., Balas et al., 1989; Torquato, 2002):

Gij.r/ D Cr
�
.3� 4 N�/�.jxj/ıij C ninj


; (17.13)

Tij.x; s/ D �2�C
��
.1 � 2 N�/ıij C dninj

�
nkn�k .x/

C .1 � 2 N�/.nin
�
j .x/� njn

�
i .x//


; (17.14)

Dijk.r/ D �2�CŒ.1 � 2 N�/.ıiknj C ıjkni � ıijnk/C dninjnk�; (17.15)

Eijk.r/ D �CŒ.3 � 4 N�/ıijnk � ıiknj � ıjkni C dninjnk�; (17.16)

Sijk.x; s/ D 4�2C=r
n
d
�
.1 � 2 N�/ıijnk C N�.ıiknj C ıjkni/� .dC 2/ninjnk



� nmn�m.x/� .1 � 4 N�/ıijn
�
k .x/C d N�nkŒnin

�
j .x/

C njn
�
i .x/�C .1 � 2 N�/Œdninjn

�
k .x/C ıikn�j .x/C ıjkn�i .x/�

o
; (17.17)

respectively, where

�.r/ D
� �lnr for d D 2;

r�1 for d D 3; N� D
(

�; for 3-D and plane strain;
�

1C� ; for plane stress problems:
(17.18)

Here, C D Œ4!d�.1� N�/rd�1��1, !d is the surface area of the unit sphere in Rd, and
the tensors T.x; s/ and S.x; s/ are defined at the surface s 2 S with the unit outward
normal n� D .n�1 ; : : : ; n�d /> at s 2 S, r � jx� sj, r;i D ri=r D ni.

For an isolated ellipsoidal inclusion vi inside an infinite homogeneous matrix, we
will also exploit the Green tensors for the strains and stresses,

U.m/.x/ D rrG.x/; 
 .m/.x/ D �L.m/ŒIı.x/CrrG.x/L.m/�; (17.19)

respectively, related with the internal Si and external Si.x/ (x 62 vi) (Eshelby, 1957)
tensors for the inclusion vi:

Si D PiL.0/ � const:; Si.x/ D �
Z

U.x � y/Vi.y/dyL.0/; (17.20)

Si D I �M.0/Qi � const:; Si.x/ D ICM.0/

Z

 .x � y/Vi.y/dy; (17.21)

for x 2 vi and x 62 vi, respectively.
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17.3 Effective Properties and Interface polarization Tensors

For statistically homogeneous media and homogeneous boundary conditions, the
effective stiffness L� and effective compliance M� governed by the expectation of
Eq. (17.2),

h� i D L�h"i; h"i D M�h� i; (17.22)

are defined by general relations

L� D hLA�i; M� D hMB�i; (17.23)

where A�.x/ and B�.x/ are the local strain and stress concentrator factors,
respectively, obtained under pure mechanical loading ".x/ D A�.x/"� (17.7) and
� .x/ D B�.x/�� (17.8), respectively. By the use of the decomposition of the
material tensor g (g D L;M/, Eq. (17.23) can be recast in an equivalent form:

L� D L.0/ C hL1A�Vi; M� DM.0/ C hM1B�Vi: (17.24)

The effective properties (17.24) can also be expressed through the averaged
polarization concentration factors R��.x/ and R
�.x/,

L� D L.0/ C R��; R��.x/h"i D �.x/; (17.25)

M� D M.0/ C R
�; R
�.x/h� i D 	.x/ (17.26)

for the homogeneous boundary conditions (17.7) and (17.8), respectively.
The effective properties evaluations (17.25) and (17.26) are based on the

estimations of the average polarization tensors � (17.51) and 	 (17.52) averaged over
the inclusion volume v. However, the representations � (17.61) and 	 (17.62) allow
one to use only interface averages of some transformations of these tensors. So,
we introduce new notions of the stress �s.s/ and strain 	s.s/ interface polarization
tensors

�s.s/ D t.s/
S˝ s� L.0/Œu.s/˝ n.s/�; (17.27)

	s.s/ D u.s/
S˝ n.s/ �M.0/Œs˝ t.s/�; (17.28)

defining at the inclusion interface s 2 � . The volume averages of the strains and
stresses inside inclusions can be expressed through the averages over the inclusion
boundaries by the use of the Gauss’s theorem:

h"Vi D 1

Nw
Z

�

u.s/
S˝ n.s/ ds; (17.29)

h�Vi D 1

Nw
Z

�

t.s/
S˝ s ds; (17.30)
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where in Eq. (17.30) one used the equality r.s ˝ � / D � . Then the effective
properties (17.25) and (17.26) can be expressed through the boundary integrals

L� D L.0/ C S��; S��h"i WD 1

Nw
Z

�

�s.s/ds; (17.31)

M� D M.0/ C S
�; S
�h� i WD 1

Nw
Z

�

	s.s/ds; (17.32)

for the boundary conditions (17.7) and (17.8), respectively. The representa-
tion (17.31) for a particular case of the isotropic matrix is reduced to the
corresponding equation proposed in Russel and Acrivos (1972) and Chen and
Acrivos (1978).

A comparison of Eqs. (17.25) and (17.26) and Eqs. (17.31) and (17.32), respec-
tively, yields a conclusion that the averages of the volume polarization tensors
�.x/ (17.61) and 	.x/ (17.62) and the averages of the interface polarization tensors
�s.s/ (17.27) and 	s.s/ (17.28), respectively, are coincident with each other:

R�� D S��; R
� D S
�; (17.33)

although �.x/, 	.x/, and �s.s/, 	s.s/, respectively, cannot be compared directly
because of the different domains of definition. Equalities (17.33) define a phys-
ical meaning and injectivity of the notions of the interface polarization tensors
�s.s/ (17.27) and 	s.s/ (17.28).

17.4 General Integral Equations

17.4.1 Perturbators for a Single Inclusion Inside a
Macrodomain

For notational convenience, in parallel with Eqs. (17.1) and (17.2), we consider the
equivalent local boundary value problems

rŒL.k/ruk.x/� D 0 (17.34)

for the connected subdomains x 2 v.k/ .k D 0; 1) with the natural coupling
conditions (called transmission conditions) across all local coupling boundaries
s 2 �km:

uk.s/ D um.s/; tk.s/C tm.s/ D 0 for s 2 �km: (17.35)

Here, uk is the restriction of u to vk and nk is the outward normal to v.k/ (k;m D
0; 1). According to the essence of the boundary decomposition method reducing
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the solution of the original boundary value problem (17.2) to the solutions of local
boundary problems (17.34) and (17.35), we can use the different discretization
techniques for the solution of Eqs. (17.34) and (17.35) (see for details Toselli
and Widlund, 2005; Hsiao et al., 2002). The boundary decomposition method
assumes that each heterogeneity vk can be considered as embedded into the infinite
homogeneous matrix and subjected to the effective fields (formally considered as the
remote fields) u.x/ and � .x/ (x 2 vk) produced by all surrounding heterogeneities
X n vk and boundary conditions (no restrictions are imposed on the inhomogeneity
of these random effective fields).

Let us assume that the domain w contains one heterogeneity vk � w. We define
the perturbators L �

k .x � xk; �/ and L
�
k .x � xk;�/ as the perturbations of the

corresponding fields introduced by the heterogeneity vk subjected to the effective
fields #.x/ and �.x/, respectively:

L �
k .x � xk; �/ D L �

k .x � xk;#/ � #.x/� #.x/; (17.36)

L �
k .x � xk;�/ D L �

k .x � xk;�/ � �.x/� �.x/: (17.37)

Hereafter, for the contraction of calculations, we introduce the substitutions

."; � /$ # ; .�;	/$ �; (17.38)

indicating that for each duplet# D ", � D � and # D � , � D 	, Eq. (17.36) and the
subsequent equations with the variables # and � are reduced to the corresponding
equations for the strain field " and stress � . In a similar manner, one introduces a
duplet

.u; t/$ �; (17.39)

which is used in Eq. (17.37) for both variables u and t simultaneously. In so doing,
the perturbators L �

k .x � xk; �/ and L
�
k .x � xk;�/ are defined by the volume �.x/

(x 2 vi) and boundary �.s/ (s 2 �i) values of the corresponding fields. Strictly
speaking, the perturbatorsL �

k .x�xk; �/ (17.361) andL �
k .x�xk;�/ (17.371) are just

the notations of some problem which is destined to be solved, while the perturbators
L �

k .x�xk;#/ (17.362) and L
�
k .x�xk;�/ (17.372) are the solutions of this problem.

Let us consider the well-known integral representation formulae of the strains
and the stresses .x 2 Rd; y 2 vk):

".x/ D ".x/C
Z

U.x � y/�.y/dy;

� .x/ D � .x/C
Z

 .x � y/	.y/dy; (17.40)

where the Green’s functions U.x � y/ and 
 .x � y/ are defined by Eq. (17.20). In
such a case, the perturbators L �.x � xk;�/ and L 
 .x � xk;	/ can be expressed
through the Green’s functions:
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L �.x � xk;�/ D
Z

U.x � y/�.y/dy;

L 
 .x � xk;	/ D
Z

 .x � y/	.y/dy: (17.41)

The displacement and stress fields for the elastostatic problem inside and outside
the heterogeneity vk 2 v.1/ subjected to the remote fields u.x/, � .x/ (see, e.g.,
Parton and Perlin 1982; Balas et al. 1989) can also be expressed through the
boundary integrals [rather than the volume ones as in Eq. (17.40)]:

k.x/u.x/ D eu.x/C
Z

�k

h
G.m/.x� s/t.s/ � T.m/>.x; s/u.s/

i
ds; (17.42)

k.x/� .x/ D e� .x/C
Z

�k

h
D.m/.x � s/t.s/ � S.m/.x; s/u.s/

i
ds; (17.43)

for the external (e D 1; x 2 � �
k D �0k; m D 0) and internal (e D 0; x 2 � C

k D
�k0; m D 1) problems, respectively. Equation (17.43) for the stress components was
obtained by differentiating the integral representations of displacements (17.42) and
substituting them into Hooke’s law (17.2) that leads to the representations (17.12).
Hereafter, the superscripts � and C denote the limiting values of parameters involved
in the outside and inside of the inclusion vi, respectively, near the inclusion boundary
x 2 �k; k.x/ D .1 � e.x//ı for x 2 Rd n �k and k.x/ D ı=2 for x belonging to
the smooth boundary �k at point x 2 �k. Here the traction t.s/ acting on any plane
with the outward normal vector n.s/ on �i from vi through the point s 2 �i can
be represented in terms of displacements t.s/ D Ot.n;r/u.s/, where Otik.n;r/ D
L.k/ijklnj.x/@=@xl is the conormal derivative operator.

The interface perturbatorsL �.x�xk;�/ can be found from Eq. (17.43) in a sim-
ilar manner as the volume perturbators L � .x� xk; �/ were found from Eq. (17.40).
Namely, we introduce the single- and double-layer operatorsG ; T ; D , and S with
the kernels G.x� s/, T>.x; s/, D.x � s/, and S.x; s/, respectively (x 2 Rd):

.G t/.x/ D
Z

�k

G.x; s/t.s/ds; .T u/.x/ D
Z

�k

T>.x; s/u.s/ds; (17.44)

.Dt/.x/ D
Z

�k

D.x; s/t.s/ds; .S u/.x/ D
Z

�k

S>.x; s/u.s/ds: (17.45)

Then Eqs. (17.44) and (17.45) can be presented in the matrix operator form

�
ku
k�

	
�
�

eu
e�

	
D
��T .m/ G .m/

�S .m/ D .m/

	�
u
t

	
(17.46)

that leads to the obvious matric representation for the perturbator L �
i .x � xi;�/

found from the solution of the conventional BIE (17.42) presented for both the
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matrix and inclusion in the matrix forms by the substitution method (see, e.g., Dong
et al. 2003; Yao et al. 2004; Wang and Yao 2005). Construction of the perturbator
L

�
i .x � xi;�/ by the MFS will be performed in Sect. 17.5.
Analytical representations for the operators L �

k .x � xk;#/ and L
�
k .x � xk;�/

are only known for the particular canonical shapes of particle and specific effective
fields (see, e.g., Pozrikidis 2011; Parnell 2016). So, for a homogeneous effective
field (x 2 vi)

#.x/ � const: (17.47)

and the ellipsoidal homogeneous inclusion vk, the operators L �
k .x � xk; �/ and

L �
k .x � xk;#/ are reduced to the tensorial multiplication:

L �
k .x � xk; �/ D L �

k.x � xk/h�ii; L �
k .x � xk;#/ D L �

k .x � xk/# (17.48)

In particular, for # D � ; � D 	 (the case # D "; � D � can be considered in a
similar manner):

L
�
k.x � xk/ D T
k .x � xk/ � �.vi/

�1
(

Qi for x 2 vi;

Qi.x/ for x 62 vi;
; (17.49)

L �
k .x � xk/ D T
k .x � xk/R


i ; (17.50)

where R

i D NviM

.i/
1 .ICQiM

.i/
1 /

�1 and Qi D L.0/.I�Si/ and Qi.x/ D L.0/.I�Si.x//
are expressed in terms of both the internal Si and external Si.x/ (x 62 vi) (Eshelby,
1957) tensors (17.21) (see also for references and details Buryachenko 2007).

For the inhomogeneous loading #.x/ 6�const. and noncanonical shape (or
inhomogeneous structure) of the inclusion, the operator concentration factors for
the values � .x/ and 	.x/ (x 2 vk) can be expressed through the perturbator
L � .x � xk;#/ (# D � ; � D 	):

� .x/ D B

k .� /.x/; Nvk	.x/ D R


k .� /.x/; (17.51)

where

B

k .� /.x/ D L � .x � xk;#/C I� .x/; R


k .� /.x/ D NvkM.k/
1 B


k .� /.x/:

(17.52)

For the homogeneous effective field #.x/ �const. (17.47) and a general case of
the inclusion, in view of the linearity of the problem, there exist constant fourth- and
second-rank tensors Bi.x/; Ri.x/, such that (x 2 Rd)

� .x/ D Bi.x/� .xi/; L
i .x � xi/ D Bi.x/� I; Nvi	.x/ D Ri.x/� .xi/; (17.53)
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where vi � v.1/ and Ri.x/ D NviM
.1/
1 .x/Bi.x/. According to Eshelby’s (1957)

theorem for the ellipsoidal inclusion vi, there is the following relation between the
averaged tensors (17.53) Ri D viQ�1

i .I � Bi/; where gi � hg.x/i.i/ .g stands for
Bi;Ri/. For example, for the homogeneous ellipsoidal domain vi (17.4) we obtain
(x 2 vi)

Bi.x/ � Bi D



ICQiM
.i/
1

��1
; Ri D NviM

.i/
1 .ICQiM

.i/
1 /

�1: (17.54)

In the general case of coated inclusions vi, the tensors Bi.x/ can be found by the
transformation method by Dvorak and Benveniste (1992) (see for references and
details Buryachenko 2007).

The concentration operators for the interface variables �.s/ and 	s.s/ can be
expressed in a similar manner:

�.s/ D B�
k .�/.s/; Nvk	

s.s/ D R�
k .�/.s/; (17.55)

where B
�
k .�/.s/ D L �.x � xk;�/ C I�.s/. It should be mentioned that even for

the homogeneous volume effective fields (17.47), the interface effective fields �.s/
(s 2 vk) are inhomogeneous ones, for example, for the boundary condition � �
� � (17.8)

�.s/ D .M.0/� � .s � xk/; �
� n�k .s//>; (17.56)

and, therefore, the operators in the right-hand sides of Eq. (17.55) are not reduced
to the tensorial convolution with the interface effective field �.s/ as in their
counterpart (17.48) for the volume effective field � . However, homogeneity of the
volume field � in Eq. (17.56) allows one to get another version of splitting the
operator L �.x � xk;�/:

L �.x� xk;�/ D L�
 .x � xk/� (17.57)

with a similar splitting of the operators B�
k .�/.s/ and R

�
k .�/.s/ (17.55).

The estimation of the perturbators L �
k .x � xk;#/ (17.36) and L

�
k .x �

xk;�/ (17.37) can be done by any available numerical method, such as the volume
integral equation (VIE), boundary integral equation method (BIEM), FEM, hybrid
FEM-BIEM, multipole expansion method, complex potential method, and others
(see for references Buryachenko 2007; Ghosh 2011; Liu et al. 2011; Kushch 2013;
Sejnoha and Zeman 2013). Each method has advantages and disadvantages and it
is crucial for the analyst to be aware of their range of applications. In particular, the
VIE method for the ideal contact conditions enables one to restrict discretization
to the inclusions only (in contrast to the FEA), and an inhomogeneous structure
of inclusions (see, e.g., Chen et al. 1990; Jayaraman and Reifsnider 1992; You
et al. 2006) presents no problem in the framework of the same numerical scheme
(compared to the standard BIE methods). The VIE method (see Buryachenko



482 V. Buryachenko

2010b) has well-developed routines for the solution of integral equations (such
as the iteration method and the quadrature schemes) and allows one to analyze
arbitrary inhomogeneous fields "0.x/ and � 0.x/. However, the VIE method is quite
time-consuming and no optimized commercial software exists for its application.
From other side, the FEM is supported by well-developed commercial software
(see, e.g., ABAQUS 2001) and gives strong advantages in terms of CPU-time.
The FEA is especially effective for estimations of perturbators at the constant fields
"0; � 0 Dconst (see for references, e.g., Buryachenko 2014). In the current paper, one
will express the perturbatorsL �

k .x�xk; �/ (17.36) and L
�
k .x�xk;�/ (17.37) by the

use of MFS (Sect. 17.6), which have the advantages described in the Introduction.

17.4.2 General Integral Equation for a Microinhomogeneous
Infinite Medium

Let us consider an arbitrary random realization ˛ of inclusions in the domain
w described by an analog of Eq. (17.36) generalized to any number of inhomo-
geneities. Then the centering method (see for details Buryachenko 2014) subtracting
from both sides of the mentioned equation their statistical averages leads to the
general integral equation (GIE) (x 2 vi)

#.x; ˛/ D h#i.x/C
Z

w
ŒL �

k .x�xk; �/V
ı
k .xk; ˛/�hL �

k .x�xk; �/i.xk/�dxk: (17.58)

Equation (17.58) is only obtained at the internal points x 2 w of the macrodomain
w at a sufficient distance from the boundary:

a
 jx � sj; 8s 2 �0: (17.59)

For no long-range order assumed, the function '.vj; xjjI vi; xi/� '.vj; xj/ decays at
infinity sufficiently rapidly and guarantees an absolute convergence of the integral
involved. Therefore, for x 2 w far enough from the boundary �0 (17.59), the right-
hand side integral in (17.58) does not depend on the shape and size of the domain
w, and it can be replaced by the integrals over the whole space Rd; the domain
integration Rd, as well as the label ˛, will be omitted hereafter for simplicity of
notations.

In a similar manner, the GIE expressed through the perturbator L �
k .x � xk;�/

can be obtained. Indeed, the tensors u.x/ (17.37) and � .x/ can be defined by the
boundary integral equations (BIE, see, e.g., Brebbia et al. 1984; Balas et al. 1989)
on the boundary �0 of the domain w:

�
u
�

	
D
��T .m/ G .m/

�S .m/ D .m/

	�
u�0

t�0

	
(17.60)
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The representation (17.60) is valid for both the Dirichlet or the Neumann boundary
value problems as well as for mixed boundary-value problems. For simplicity, we
will consider only internal points x 2 w of the macrodomain w at a sufficient
distance from the boundary (17.59). The Cauchy data Œu�0 .s/; t�0.s/� at the smooth
surface s 2 �0 can be found, for example, from the conventional BIE taking the
limit x! �0,

k.s/u0.s/ D
Z

�0

h
G.s� �/t�0.�/� T>.s; �/u�0 .�/

i
d� CL u

k.s � xk;�/; (17.61)

at the boundary conditions (17.7) and (17.8); here, k.x/ is the free term coefficient
(see, e.g., Cruse 1974) and L u

k.s� xk;�/ is defined by Eq. (17.36) at # D u.
Let us consider an arbitrary random realization ˛ of inclusions in the domain w:

�.s; ˛/ D �0.s; ˛/C
Z

L
�
k .s� xk;�/V

ı
k .xk; ˛/dxk; (17.62)

where �0.s/ is defined analogously to Eq. (17.60) with the replacement .u; � /> !
�0.s/ where the Cauchy data .u�0 .s; ˛/; t�0 .s; ˛// at s 2 �0 depend on the total
impacts of all perturbators L u

k.s � xk; ˛/ [analogously to Eq. (17.61)] presented
in the form of the volume integrals similar to (17.41). For the sake of simplicity,
Eq. (17.62) was obtained for a particular case of floating heterogeneities with
�.s; ˛/;	.s; ˛/ � 0 .s 2 �0/; a general case of inclusion location '.vi; xi/ can
be analyzed analogously to Buryachenko (2014).

Now, we apply the centering method initially proposed in a particular form by
Shermergor (1977) for statistically homogeneous media subjected to homogeneous
boundary conditions. However, the centering method allows for generalization to
the statistically inhomogeneous cases describing by Eq. (17.62) by subtracting from
both sides of Eq. (17.62) their statistical averages that lead to

�.s; ˛/ D h�i.s; ˛/C
Z
ŒL

�
k .s � xk;�/V

ı
k .xk; ˛/ � hL �

k .s� xk;�/�dxk CL �0 :

(17.63)

On the right-hand side of Eq. (17.63), assuming traction boundary conditions (�0 �
�t) (17.10), the integrals L �0 WD .L �0

u ;L
�0
t /

> over the external surface �0,

L �0
u D �

Z

�0

h
T>.x � s/u�0 .s; ˛/ � hT>.x � s/u�0i.s/

i
ds; (17.64)

L �0
t D �

Z

�0

h
nS>.x � s/u�0 .s; ˛/ � hnS>.x � s/u�0i.s/

i
ds; (17.65)

vanish at the sufficient distance x (assumed hereafter) from the boundary�0 (17.59),
when the validity of separation of length scale Eq. (17.12) holds. The boundary
integral in Eqs. (17.64) and (17.65) can be different from zero in a “boundary
layer” region close to the surface s 2 �0 where boundary data Œu�0 .s/; t�0.s/� not
prescribed by the boundary conditions depend on perturbations introduced by all
inhomogeneities, and, therefore, u�0.x/ D u�0 .x; ˛/, t�0.x/ D t�0.x; ˛/.
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Let us consider the first integral in Eq. (17.64) (the integral (17.65) can be
estimated in a similar manner). If jx � sj, s 2 �0, is large enough, then at the
portion of the smooth surface ds � jx � sjd�1d!s with a small solid angle d!s, the
tensor T>.x� s/jx� sjd�1 depends only on the solid angle !s variables and slowly
varies on the portion of the surface ds; in this sense, the tensor T>.x � s/ is called
a “slow” variable of the solid angle !s while u�0.s; ˛/ in Eq. (17.64) is a rapidly
oscillating function on ds and is called a “fast” variable. Therefore, we can use a
rigorous theory of “separate” integration of “slow” and “fast” variables, according
to which (freely speaking) the operation of surface integration may be regarded
as averaging [see for details, e.g., Filatov and Sharov (1979) and its applications
Shermergor (1977)]. As a consequence of established separation of “slow” and
“fast” variables, no confusion arises in interpreting of estimations of averaged items
h.:/i.S/ depending on macrocoordinate S 2 �0, while the corresponding unaveraged
items depend on microcoordinates s 2 �0. Indeed, the slow variable T>.x � s/
can be consistent (after the first separation of the fast and slow variables) with
the macrocoordinate S 2 �0 as T>.x � S/, while the fast variable u�0 .s; ˛/ is in
agreement with the microcoordinate s 2 �0 that makes it possible to present the

integrand in the first integral (17.64) in the formal form T>.x � S/
h
u�0 .s; ˛/ �

hu�0i.S/
i
, leading (after additional separation of the fast and slow variables) to

the vanishing of an integral from the term in the square brackets for a statistically
large number of random events ˛. If there is no long-range order and the function
'.vj; xjjI vi; xi/�'.vj; xj/ decays at infinity (as jxi�xjj ! 1) sufficiently rapidly,2

then the first surface integral (17.64) becomes zero. The vanishing of other integral
in the representation (17.65) can be proven in a similar manner.

The volume integral in (17.63) converge absolutely for both the statistically
homogeneous and inhomogeneous random set X of heterogeneities. Indeed, even
for the the functional graded materials (FGMs), the integrand in the square brackets
in (17.63) is of order O.jx � yj�2dC1/ as jx � yj ! 1, and the integrals in
Eq. (17.63) converges absolutely. For no long-range order assumed, the function
'.vj; xjjI vi; xi/ � '.vj; xj/ decays at infinity sufficiently rapidly and guarantees an
absolute convergence of the integral involved. Therefore, for x 2 w far enough from
the boundary �0 (17.59) (that provides vanishing of the integral in Eq. (17.63)), the
right-hand side integral in (17.63) does not depend on the shape and size of the
domain w, and it can be replaced by the integral over the whole space Rd. With this
assumption Eq. (17.63) takes the form

�.s/ D h�i.s/C
Z
ŒL

�
k .s � xk;�/V

ı
k .xk/ � hL �

k .s� xk;�/i.xk/�dxk; (17.66)

where the domain integration Rd and the label ˛ are omitted hereafter for simplicity
of notation.

2Exponential decreasing of this function was obtained by Willis (1978) for spherical inclusions;
Hansen and McDonald (1986), Torquato and Lado (1992) proposed a faster decreasing function
for aligned fibers of circular cross-section.
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The term “general” is used with respect to Eqs. (17.58) and (17.66) in the
sense that we did not accept any assumptions related with either the estimation of
perturbators L �

k .x�xk; �/ (17.36) and L
�
k .x�xk;�/ (17.37) or the microstructure

of heterogeneous medium (such as statistical homogeneity). In so doing, we only
consider the physical phenomena described in Sect. 17.2.

17.4.3 Infinite Coupled System of General Integral Equations

Let the inclusions v1; : : : ; vn be fixed and we define two sorts of effective fields,
�i.x/ and e�1;:::;n.x/ .i D 1; : : : ; nI x 2 v1; : : : ; vn/, by the use of the rearrangement
of Eq. (17.60) in the following operator forms (an analogous case of this manipu-
lation approach for the perturbator L �

k .x � xk;#/ (17.36) is given in Buryachenko
2015a) (x 2 �i):

�.x/ D �i.x/CL
�
i .x� xi;�/;

�i.x/ D e�1;:::;n.x/C
nX

j¤i

L
�
j .x � xj;�/;

e�1;:::;n.x/ D h�i.x/C
Z
ŒL

�
k .x � xk;�/V

ı.xkjI v1; x1I : : : I vn; xn/

� hL �
k .x � xk;�/i.xk/�dxk; (17.67)

respectively, for x 2 �i; i D 1; 2; : : : ; n; here, Vı.xkjI v1; x1I : : : I vn; xn/ DP
m ı.xk�xm/�Pn

iD1 ı.xk�xi/ is a random delta function of heterogeneity centers
xm (m D 1; 2; : : :/ under the condition that xk 6D xi; xi ¤ xj if i ¤ j (i; j D 1; : : : ; n/.
The definitions of the effective fields �i.x/, e�1;2;:::;n.x/ as well as their statistical
averages h�ii.x/, he�1;2;:::;ni.x/ are nothing more than a notation convenience for
different terms of the infinite system (17.62).

Then, considering some conditional statistical averages of the GIE (17.60) leads
to an infinite system of integral equations (x 2 �j; j D 1; 2 : : : n):

h�jv1; x1I : : : I vn; xni.x/�
nX

iD1
hL �

i .x � xi;�/jv1; x1I : : : I vn; xnii

D h�i.x/C
Z ˚hL �

j .x � xj;�jI v1; x1I : : : I vn; xnij'.vj; xjjI v1; x1; : : : ; vn; xn/

� hL �
j .x � xj;�/i.xj/

�
dxj: (17.68)

Since x 2 �1; : : : ; �n in the n-th line of the system can take the values inside
the inclusion interfaces �1; : : : ; �n, the n-th line actually contains n equations.
Statistical averaging h.�/ii stands for the averaging over all the surrounding
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heterogeneities at the fixed vi, while the average h.�/i.xj/ implies the averaging
over all possible locations of vi with possible dependence of this average on the
macrocoordinate xi as for FGMs.

A comparison of Eqs. (17.68) and (17.37) shows that the operator L �
k .x� xk;�/

has the physical interpretation of perturbations introduced by a single heterogeneity
vk in the infinite homogeneous matrix (the infinite size of the matrix can be approx-
imated with the length of 40 inclusion diameters (see Chapter 4 in Buryachenko
2007) subjected to the effective field�k.x/, where at first no restrictions are imposed
on the inhomogeneities of effective fields.

The introduction of the effective field (17.37) makes it possible to define another
sort of the perturbators (17.372). In such a case, the GIEs (17.68) can be transformed
to the new GIEs in terms of effective fields (x 2 �k; j D 1; 2; : : : ; n):

h�jv1; x1I : : : I vn; xni.x/�
nX

i6Dk

hL �
i .x � xi;�/jv1; x1I : : : I vn; xnii

D h�i.x/C
Z ˚hL �

j .x � xj;�/jI v1; x1I : : : I vn; xnij'.vj; xjjI v1; x1; : : : ; vn; xn/

� hL �
j .x � xj;�/i.xj/

�
dxj: (17.69)

The GIEs (17.67), (17.68), and (17.69) can be considered as the general operator
equations where the operators L �

j .x � xj;�/ and L
�
j .x � xj;�/ can be found by

any available numerical method. It is implied that the variable � denotes the duplet
� D .u; t/> (17.39) of the displacement and traction used in the BIEs. However,
Eq. (17.69) holds also for�.s/ D u.s/ and�.s/ D t.s/ (s 2 @v) if the corresponding
perturbators are found (see, e.g., Sect. 17.4). Buryachenko (2010a, 2015) proved
the absolute convergence of GIE for the volume inclusion perturbators (17.36) that
holds also for the interface inclusion perturbators (17.37). Indeed, for the porous
materials (�.s/ D u.s/; s 2 @v) the integrand of Eq. (17.69) is of order O.jx �
xjj2d�1/ as jx � xjj ! 1, while for the composite materials (CMs) reinforced by
the rigid inclusions (�.s/ D t.s/; s 2 @v), the integrand of Eq. (17.69) tends to zero
with jx � xjj ! 1 as O.jx � xjj2d/.

17.5 Method of Fundamental Solutions (MFS)

17.5.1 The Scheme of the Method of Fundamental
Solutions (MFS)

The estimation of the effective properties (17.31) and (17.32) through the bound-
ary integrals over the inclusion interfaces �i is performed by substitutions of
the corresponding integrals for a single representative inclusion vi into one or
another micromechanical model (some of them will be considered in Sect. 17.8).
Any solution u of the homogeneous partial differential equations (17.1)–(17.3) is
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given for x 2 w by the representation formulae (17.44) and (17.45). The boundary
integral equations (17.44) and (17.45) can be regarded as a continuous form of the
discrete Method of Fundamental Solutions (MFS), which approximates the solution
within a given elastic domain v as a finite linear combination of fundamental
solutions generated by a set of virtual sources positioned outside the domain
(to avoid singularities). Through these equations, the strains and stresses at any
domain point can be easily obtained making use of classic elasticity equations.

Although an estimation of the operator L �
i .x � xi;�i/ for a single particle vi

can be performed by the different BIEMs, we consider the Method of Fundamental
Solutions (MFS), which is a straightforward method that allows one to approach the
solution of Eqs. (17.1)–(17.3) for the known fundamental solutions. The solution is
treated as a series of the fundamental solutions with singularities located outside
the computational domain of the problem under consideration. The unknown
coefficients of the series of the fundamental solutions are regarded as the strengths or
the densities of the corresponding fundamental solutions. Namely, let the domains
vi and Ov.1/i be open subsets in Rd separated by the smooth boundary �i (see, e.g.,

Smyrlis 2009). We say that Ov.1/i with the smooth pseudo-boundary O� .1/
i WD @ Ov.1/i

embraces vi if .vi [ �i/ � Ov.1/i . In a similar manner, one can define a pseudo-

boundary O� .0/
i WD @ Ov.0/i of an open subset Ov.0/i embracing the open domain

Rdn.vi [ �i/. So, the grey regions in Figs. 17.1a, b are the inclusion vi with the
boundary �i D @vi. The O� .1/

i and O� .0/
i are constructed from �i D @vi by a

homothetic transformation. (17.75) (Fig. 17.1a) and by a normal direction choice
for the source points (17.76) (Fig. 17.1b), which will be considered later.

We place m points of the admissible singularities (or sources) fyk
sgSsD1 corre-

sponding to the external (k D 0) and internal (k D 1) problems on the prescribed
pseudo-boundary surfaces O� .0/

i and O� .1/
i , respectively. A slight modification of

Alves and Silvestre (2004) (see also Martins and Rebelo 2013) results shows that it
is possible to approach the boundary conditions for the displacement approximated
by linear combinations of the corresponding fundamental solutions. Let the effective

( )

( )

( )
( )a)

b)

Fig. 17.1 The boundary �i D @vi and the pseudo-boundaries O� .0/
i and O� .1/

i constructed by Eqs.
(17.75) (a) and (17.76) (b), which will be considered later
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field u.x/ be prescribed in the collocation points fxjgSjD1 2 �i. Then the strength

of FSs f.k/i D .f.k/isj1; : : : ; f
.k/
isjd/

> (s D 1; : : : ; S) holds a dm � dm linear system of
equations (j D 1; : : : ; d; l D 1; : : : ; S):

SX

sD1

dX

qD1
f .1/isq G.1/

jq .r
1
ls/ D

SX

sD1

dX

qD1
f .0/isq G.0/

jq .r
0
ls/C uj.xl/; (17.70)

where rk
ls D .xl � yk

s/ and jrk
lsj is the distance between the collocation point (the

field point), xl, and the location of the FSs (the source point), yk
s 2 O� .k/

i (k D
0; 1). In a similar manner, the traction boundary conditions (17.352) can be obtained
directly by taking the summation of the traction FSs with the same strength f.k/i D
.f.k/isj1; : : : ; f

.k/
isjd/

> (17.70) over the source points yk
s 2 O� .k/

i outside the boundary �i

.j; q D 1; : : : ; dI s D 1; : : : ; SI k D 0; 1/:
SX

sD1

dX

qD1
f .1/isq T.1/jq .r

1
ls/ D

SX

sD1

dX

qD1
f .0/isq T.0/jq .r

0
ls/C tj.xl/; (17.71)

where t D �n�i.xl/. We assumed in the system (17.72) and (17.71) that the numbers
of both the field points fxlgSlD1 and source ones fyk

sgSsD1 (k D 0; 1) coincide. In
such a case, the strength of the FSs, fi, is determined uniquely, provided that the
corresponding coefficient matrix is nonsingular. If u.x/ is prescribed in more points
x1; : : : ; xn 2 �i, with n > S, the system (17.72) and (17.71) is overdetermined,
and the strength can be chosen by the discrete least-squares method (see Alves and
Silvestre 2004; Smyrlis 2009), which is not considered in more detail in the current
paper.

Once the strength of the FS, f.k/i , is found by solving the system (17.70)
and (17.71) at fxlgSlD1 2 �i, the displacement vector in both the inclusion vi and
matrix Rdnvi is then calculated straightforwardly by using the left-hand side and
right-hand side, respectively, of Eq. (17.72) with values of replaced radius-vectors
xl ! xs corresponding to the location of a point xs. All other field variables can
be obtained directly by taking the summation of the same strength f.k/i (17.72)

and (17.71) of the corresponding FSs over the source points yk
s 2 O� .k/

i (k D 0; 1)
outside the boundary �i, for example, the displacement, traction, and stress induced
by S FSs can be estimated by the equations .j; l D 1; : : : ; d/:

uj.xr/ D
SX

sD1

dX

qD1
f .k/isq G.k/

jq .r
k
rs/C uj.xr/ık0; (17.72)

tj.xr/ D
SX

sD1

dX

qD1
f .k/isq T.k/jq .r

k
rs/C tj.xr/ık0; (17.73)
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jl.xr/ D
SX

sD1

dX

qD1
f .k/isq D.k/

jlq .r
k
rs/C 
 jl.xr/ık0 (17.74)

for xs 2 vi .k D 1/ and xs 2 .Rdnvi/ .k D 0/, respectively.
A specific feature of the MFS is some freedom in choosing the source points

with respect to the accuracy of the numerical solution. Young et al. (2006) (see
also Alves and Silvestre 2004) estimated an excellent accuracy of the MFS for the
positions of the source points y in the computational domain through the field points
xl (l D 1; : : : ; S) by a homothety transformation:

yl D xi C b.xl � xi/; (17.75)

where xi is a homothetic center coinciding with the particle center. Once the
parameters 0 < b < 1 and 1 < b for k D 1 and k D 0, respectively, are chosen,
the distribution of the source points is determined. The pseudo-boundaries O� .0/

i and
O� .1/
i in Fig. 17.1a are obtained from the boundary O�i of the grey inclusion vi by the

homothety transformation (17.75).
However, for the thin inclusions with the thickness 2ha (e.g., for the triaxial

ellipsoid with distinct semiaxis lengths a1 > a2 � a3, ha D a3) the distances
D.yl; �i/ [defining the matrix coefficients G.k/

jq .r
1
ls/ (17.70) and T.k/jq .r

1
ls/ (17.71)] are

essentially differ one from another points xi. Here, D.yl; �i/ denotes the Euclidean
distance between yl and the boundary of vi, or in other words, the radius of the
largest inscribed sphere (or disk) with center yl. Because of this, for the thin
inclusions, the following allocations of the source points (k D 0; 1/

yk
l D xl C .2k � 1/dkn�i.xl/ (17.76)

with d D D.yl; �i/ D 10� 30%ha are preferable.
The algorithm of the normal direction choice for the source points (17.76)

proposed by Alves and Antunes (2005) was accomplished by so-called glocal choice
for the coefficient dk (k D 0; 1/ recently presented in Alves (2009). A simplest
choice of a constant dk is a non-optimal one that works in most cases. In such a
case, the pseudo-boundaries O� .1/ and O� .0/ can be presented as the boundaries of
Minkowski addition and subtraction,

Ov.1/ D vi ˚ b.0; d0/; Ov.0/ D vi � b.0; d1/;

respectively, of the domain vi, where b.0; dk/ (k D 0; 1) stands the ball of
radius dk centered at the origin 0. As an example, a grey cross section of a
spherocylinder (or a capsule) with the aspect ratio ˛ D R2=R1 is presented in
Fig. 17.1b. The pseudo-boundaries O� .0/

i and O� .1/
i in Fig. 17.1b are obtained from the

boundary O�i of the grey inclusion vi by the normal direction choice for the source
points (17.76) with d1 D R2=2 and d0 D R2=2, respectively. In so doing, the aspect
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ratios of the domains with the pseudo-boundaries O� .1/
i and O� .0/

i are .2˛ C 1/=3

and .2˛ � 1/, while the aspect ratios of the corresponding domains obtained by the
homothety transform (17.76) do not change and equal ˛.

Alves (2009) (see also Alves and Antunes 2005) analyzed the optimization
of more general stresslet allocation techniques for convex and concave regions.
However, a more detailed consideration of the optimization of FSs allocation
substantially reducing computational time for the elastic problem solution is beyond
the scope of the current study.

17.5.2 The Matrix Representation of the MFS

The construction and solution of the linear algebraic system (17.70) is straightfor-
ward (see, e.g., Young et al. 2006; Karageorghis and Smyrlis 2007). However, we
consider it in more detail for the 2-D domain vi. The singularities Y0s D .y0sj1; y

0
sj2/

and Y1s D .y1sj1; y1sj2/ (p D 1; : : : ;P) are fixed on the boundaries O� .0/
i of Ov.0/i and O� .1/

i

of Ov.1/i , respectively. A set of P collocation points Xs D .xsj1; xsj2/ (s D 1; : : : ; S) is
chosen on �i. Then the system (17.70) can be presented in the matrix form

Af D

0

B
B
B
@

A11 A1;2 : : : A1;S

A2;1 A2;2 : : : A2;S
:::

:::
: : :

:::

AS;1 AS;2 : : : AS;S

1

C
C
C
A

0

B
B
B
@

f1
f2
:::

fS

1

C
C
C
A
D

0

B
B
B
@

g1
g2
:::

gS

1

C
C
C
A
D g; (17.77)

where the 4P � 4P matrix A with the submatrices

A˛;ˇ D
 

A1;1
˛;ˇ A1;2

˛;ˇ

A2;1
˛;ˇ A2;2

˛;ˇ

!

(17.78)

are defined through the submatrices

A1;ıC1
˛;ˇ D .�1/ıC1G.ı/.jX˛ � Yıˇj/ 2 R2�2; (17.79)

A2;ıC1
˛;ˇ D .�1/ıC1T.ı/.jX˛ � Yıˇj/ 2 R2�2; (17.80)

and

fs D .f.0/s ; f
.1/
s /

> D .f .0/sj1 ; f
.0/

sj2 ; f
.1/

sj1 ; f
.1/

sj2 /
> 2 R4; (17.81)

gs D .g.0/s ; g
.1/
s /

> D .g.0/sj1; g
.0/

sj2; g
.1/

sj1 ; g
.1/

sj2/
> 2 R4; (17.82)

where f .ı/sjj D f .ı/sjj .Y
ı
s /, g.ı/sjj D usjjı0ı C tsjjı1ı, and j D 1; 2I s; ˛; ˇ D 1; : : : ; SI

ı D 0; 1. It is observed for d D 2; 3 that accurate numerical results could be
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obtained when the source points for the pseudo-boundary O� .0/
i of the submerged

stresslets are located off the boundary at about 70–90% (17.75) of the distance from
the center (see for details Young et al. 2006).

However, the MFS coefficient matrix A (17.77) of the system (17.70) and (17.71)
is often severely ill-conditioned and the system of linear algebraic equations (17.70)
and (17.71) cannot be solved by direct methods, such as the least-squares method,
producing a highly unstable solution, which increases dramatically as the number
of boundary collocation points S increases. Several regularization procedures have
been proposed to remedy the instability and accuracy loss in the solution of such ill-
conditioned matrix equations (see, e.g., Hansen 1998). However, we only consider
the Tikhonov regularization (TR) method (see, e.g., Tikhonov and Arsenin (1986)),
since it is simple and noniterative and provides an explicit solution. Namely, the TR
procedure consists of seeking a solution, which minimizes a criterion made up of
the sum of two summands. The first one is a possibly weighted least-square term,
while the second one is a quadratic penalty term on the solution, that is

minfjjAf� gjj22 C �jjIdSfjj22g; (17.83)

where jj.�/jj2 denotes the Euclidean norm, while for the zeroth order TR method,
IdS D diag.1; : : : ; 1/ 2 RdS�dS is the identity matrix. Formally, the TR procedure
provides an explicit solution of Eq. (17.77)

f D A g; A WD .A>AC �I/�1A>; (17.84)

where the partitioned matrix A can be expressed in the form (17.77) with the blocks
4 � 4 A ˛;ˇ presented as

A ˛;ˇ D .A u
˛;ˇ0/C .0A t

˛;ˇ/; (17.85)

where the 4 � 2 submatrices A u
˛;ˇ and A t

˛;ˇ , in its turn, can be expressed through

the blocks A 1;1
˛;ˇ , A 2;1

˛;ˇ and A 1;2
˛;ˇ , A 2;2

˛;ˇ , respectively, in much the same manner
as (17.78).

Substitution of the found solution f of the matrix Eq. (17.77) into Eqs. (17.72)–
(17.74) allows one to present all field variables in an arbitrary point x 2 �i;Rd in
symbolic matrix notations (k D 0; 1),

u.x/� u.x/ık0 D G .k/.A uu.x/CA
t
t.x//; (17.86)

".x/� ".x/ık0 D E .k/.A uu.x/CA
t
t.x//; (17.87)

t.x/� t.x/ık0 D T .k/.A uu.x/CA
t
t.x//; (17.88)

� .x/� � .x/ık0 D D .k/.A uu.x/CA
t
t.x//; (17.89)
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which can be considered as a representation of the boundary inclusion perturbations
L

�
i .x � xi;�/ defined at the pseudo-boundaries either O� .1/

i or O� .0/
i at k D 1 or

k D 0, respectively. Here, the blocks 4 � 2 A t
˛;ˇ D .A 1;2

˛;ˇ � ı˛;ˇı;A 2;2
˛;ˇ � ı˛;ˇı/>

of the partitioned matrix A
t

are defined through the blocks A 1;2
˛;ˇ , A 2;2

˛;ˇ , and ı is a
unite 2 � 2 matrix.

17.6 Some Classical Hypotheses and Approaches

The basic hypotheses of micromechanics were analyzed by Buryachenko (2015) in
the form adopted to the use of the volume inclusion perturbators L � .x�xk;#/. We
present in this section the same hypotheses in the forms which are most adopted for
the subsequent application of the boundary inclusion perturbators L �.x � xk;�/.

In order to approximately solve the exact system (17.69), we now apply the so-
called effective field hypothesis (EFH), which is the main approximate hypothesis
of many micromechanical methods:

Hypothesis H1a. Each heterogeneity vi is located in the field (# D "; � )

# i.y/ � #.xi/ .y 2 vi/; (17.90)

which is homogeneous over the heterogeneity vi.
For the boundary variables .s 2 �i), the hypothesis H1 can be presented in the

local coordinate systems connected with vi:

ui.s/ � ".xi/.s � xi/ ti.s/ � � .xi/n.s/; (17.91)

where n�i .s/ is unit outward normal at s 2 �i.
In some methods (such as the MEFM), this basic hypothesis H1a is comple-

mented by a satellite hypothesis presented in the form of the perturbator rather than
the Green’s function:

Hypothesis H1b. The boundary inclusion operator L �
k .x � xk; �/ of pertur-

bation generated by the heterogeneities vi at the point x … vk is reduced to the
decoupled tensorial multiplications

L �
k .x � xk; �/ D L�k.x � xk/h�i.k/: (17.92)

For the perturbator L �
k .x � xk; �/ expressed through the Green’s functions, the

assumption (17.92) is reduced to the known ones (see, e.g., Buryachenko 2007) with
the perturbator factors (17.49) presented in terms of both the internal Si and external
Si.x/ (Eshelby, 1957) tensors (see also, for references and details, Buryachenko
2007).



17 General Interface Integral Equations in Elasticity of Random Structure Composites 493

It should be mentioned that the popular formulation of the EFH (hypothesis H1)
is a combination of the hypotheses H1a and H1b.

Different methods can be employed to truncate the hierarchies (17.68)
and (17.69) (see for references, e.g., Hinch 1977; Buryachenko, 2007). Probably
the most formal closing assumption is the following (the corresponding assumption
for the fields # and # are formulated analogously).

Hypothesis H2a) For a sufficiently large n, the systems (17.68) and (17.69) are
completed by the equations

hL �
j .x � xj;�/ j I v1; x1I : : : I vq; xqI : : : ; vnC1; xnC1ij

D hL �
j .x � xj;�/jI v1; x1I : : : I vn; xnij;

hL �
j .x � xj;�/ j I v1; x1I : : : I vq; xqI : : : I vnC1; xnC1ij

D hL �
j .x � xj;�/jI v1; x1I : : : I vn; xnij; (17.93)

respectively, where the right-hand sides of these equalities don’t contain the index
q 6D j .j D 1; : : : ; nI q D 1; : : : ; nC 1I x 2 Rd).

In opposite to Eq. (17.68), the sum in the left-hand side of Eq. (17.69) does not
contain a summand with the index k. The truncated hierachies of equations (17.68)
and (17.69) are solved as the systems of coupled equations. One starts with the last
equation of the hierarchy which has the most inclusions held fixed, because this
equation does not depend on the previous ones. The obtained field gives the forcing
term in the previous equation of the hierarchy. One continues step by step up the
hierarchy until the first equations in the systems (17.68) and (17.69).

In the simple case n D 1, the closing effective field hypothesis is called “quasi-
crystalline approximation” by Lax (1952), which neglects direct interaction between
each pair of heterogeneities, although such an interaction takes place through the
effective field generated by all surrounding inclusions.

Hypothesis H2b, “quasi-crystalline” approximation. It is supposed that the
mean value of the effective field at a point x 2 vi does not depend on the stress field
inside surrounding heterogeneities vj 6D vi (x 2 vi; s 2 �i):

h# i.x/jI vj; xji D h# ii; h�i.s/jI vj; xji D h�ii: (17.94)

To make further progress, the hypothesis of “ellipsoidal symmetry” for the
distribution of inclusions attributed to Willis (1977) is widely used:

Hypothesis 3, H3, “ellipsoidal symmetry.” The conditional probability density
function '.vj; xj jI vi; xi/ depends on xj � xi only through the combination 	 D
j.a0ij/�1.xj � xi/j:

'.vj; xj jI vi; xi/ D h.	/; (17.95)

where the matrix .a0ij/
�1 .which is symmetric in the indexes i and j, a0ij D a0ji/ defines

the ellipsoid excluded volume v0ij D fx W j.a0ij/�1xj2 < 1g.
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Analyses of the classical counterparts of renormalizing terms hL �
k .x �

xk; �/i.xk/ (17.58) and hL �
k .x � xk; �/i.xk/ (17.59) are worthy of notice. These

counterparts were proposed in terms of Green functions by O’Brian (1979) (see for
references and details Buryachenko 2007). In particular, for the polarization tensors
�;	 in Eq. (17.58), the renormalizing terms can be considered as an asymptotic
representation of the hypothesis H1 at jx � xkj ! 1:

hL �
k.x� xk;�/i.xk/ D U.0/.x � xk/h�i.xk/; (17.96)

hL 

k .x � xk;	/i.xk/ D 
 .0/.x � xk/h	i.xk/: (17.97)

An analog of Eq. (17.66) for the interface variable � D .u; t/> was proposed in
the problem of slow flow of incompressible fluid (�.0/ D 0:5) through assemblages
of a random field of fixed solid particles, which is a basic one for processes involving
flow through porous media. Because the particles are rigid, there are no velocities
within the particle and, hence, the double-layer hydrodynamic potentials vanish for
rigid particles vk; � D t�k.s/ is the force density at the point s 2 �k on the surface of
the particle vk. Durlofsky et al. (1987) and Brady et al. (1988) proposed an extension
of the O’Brian (1979) result into the theory of the fluid mechanics in porous media
with a filtration counterpart of (17.97) .x 62 vk):

hL �
k .x � xk;�/i.xk/ D G.0/.x � xk/F�k ; (17.98)

where a drag force F�k WD nhtik is a total force exerted by the fluid on the particles.
A fundamental deficiency of Eqs. (17.96)–(17.98) is the dependence of the

renormalizing terms U.0/.x�xk/h�i.xk/, 

.0/.x�xk/h	i.xk/, and F�k , respectively,

[obtained in the framework of the asymptotic approximation of the hypothesis H1b]
only on the statistical averages h�i.xk/, h	i.xk/, and F�k , while the renormalizing
terms hL �

k .x�xk; �/i.xk/ (17.58) and hL �
k .x�xk; �/i.xk/ (17.59) explicitly depend

on distributions h�jvk; xki.y/ (y 2 vk) and h�jvk; xki.s/ (s 2 �k), respectively.
Because of this, even in the case of statistically homogeneous media subjected
to homogeneous boundary conditions, new effects have been found. The detected
difference of renormalizing terms allows us to abandon the hypothesis H1b whose
accuracy is questionable for inclusions of noncanonical shape.

17.7 Solution of GIEs

The solution of the GIEs in terms of the volume inclusion perturbators L �
k .x �

xk; �/ was performed by Buryachenko (2014) for the different selections of the
accepted hypotheses H1–H3. At first, we recast these approaches in terms of stress
concentrator factors found by the method of effective field (MEF, see for references
and details Buryachenko 2007) as well as by MTM. After that, the versions of the
NBM’s method were presented for both the volume perturbator factor L
q .x � xq/

and the interface Lt

q .s� xq/ one.
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17.7.1 Classical Approaches with Volume Effective Fields

Hypotheses H1–H3 allow one to obtain the explicit solution using the MEF for
the stress distribution (the strain field can be considered in a similar manner) for
identical aligned heterogeneities (vi D vj D v1; x 2 v1):

h� i1 D R�1
i YRih� i; (17.99)

h� i1.x/ D Bi.x/R�1
i YRih� i; (17.100)

M� D M.0/ C n.1/YRi; (17.101)

Y�1 D I� n.1/RiQ0
i ; (17.102)

where the matrix Y is determined by the action of the surrounding inclusions, and
for the sake of simplicity of the subsequent calculation, it is usually assumed that
the shape of “correlation hole” v0ij does not depend on the inclusion vj: v0ij D v0i and
Q0

ij D Q0
i � Q.v0i /.

As pointed out by Benveniste (1987), the essential assumption in the Mori and
Tanaka (1973) method (MTM) states that each inclusion vi behaves as an isolated
one in the infinite matrix and subject to some effective stress field � i coinciding
with the average stress in the matrix

h� ii D h� i.0/: (17.103)

Using Eq. (17.103) as the closing assumption and substituting the hypothesis H2
lead to the next representation for both the statistical average local stresses and
effective compliance:

h� ii.x/ D Bi.x/Œc.0/IC c.1/Bi�
�1h� i; (17.104)

M� D M.0/ C c.1/RiŒc
.0/IC c.1/Bi�

�1: (17.105)

For the identical ellipsoidal inhomogeneous heterogeneities vi homothetical to
v0i , equivalences of Eqs. (17.100), (17.101) and (17.104), (17.105), respectively,
are demonstrated in, for example, Buryachenko (2007). However, the representa-
tions (17.100), (17.101) and (17.104), (17.105), respectively, do not coincide even
for the identical aligned isotropic fibers if vi and v0i are not homothetic (in particular,
if vi is not an ellipsoid, see Buryachenko, 2007).

It should be mentioned that the effective compliances (17.101) and (17.102) are
traditionally expressed through the averages of the tensors Bi.x/ and Ri.x/ over
the inclusion volumes vi. However, these tensors can be also estimated through
the averages over the inclusion boundaries s 2 �i of the fields #.s/ (# D "; � )
corresponding to the homogeneous loading � �const. (c ! 0) of a single
inclusion vi:

Bi� D 1

vi

Z

�i

t.s/
S˝ s ds; (17.106)

Ri� D
Z

�i

	s.s/ds: (17.107)
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In such a case, the effective compliances M� (17.101) and (17.102) are estimated
through the boundary integrals as in Eqs. (17.106) and (17.107). In so doing, the
stress concentration tensor Bi.x/ in Eqs. (17.100) and (17.104) is estimated by
Eq. (17.88) at k D 1.

17.7.2 NBM’s Method in Terms of the Volume
Perturbator Factor

In order to simplify a counterpart of the exact systems (17.69) for the volume
effective field � .x/, we accept the hypotheses H1a and H2, while the hypotheses
H1b and H3 are not used. This leads to the following representation for the mean
of the effective fields in the fixed inhomogeneity x 2 vi:

h� ii.x/ D h� i C
Z

L
q .x� xq/h� qi.xq/Œ'.vq; xqjI vi; xi/ � n.q/�dxq: (17.108)

This allows one to obtain the explicit solution (called an initial approximation) for
identical aligned heterogeneities (vi D vq D v1; x 2 v1):

h� i1.x/ D bYh� i; (17.109)

h� i1.x/ D ŒL
1 .x � x1/C I�bYh� i; (17.110)

M� D M.0/ C n.1/R1
bY; (17.111)

bY�1 D I �
Z
hL
q .x � xq/i.i/Œ'.vq; xqjI vi; xi/ � n.q/�dxq: (17.112)

The average stress concentration factor and the effective compliance in
Eqs. (17.109)–(17.112) are expressed through the volume perturbator L
q .x � xq/,
which was estimated by the VIE method (see Buryachenko 2010b) and by the FEA
(see for references Buryachenko 2014).

17.7.3 NBM’s Method in Terms of the Interface
Perturbator Factor

In this section, we consider the GIE (17.67) for the interface variables �.s/ (s 2 � )
instead of the volume ones �.x/ (x 2 v) (17.58). In order to simplify the exact
systems for the interface effective fields �.s/ (s 2 �i) (17.69), we accept the
hypotheses H1a and H2, while the hypotheses H1b and H3 are not used. This leads
to the following representation for the mean of the interface effective fields at the
boundary s 2 �i of the fixed inhomogeneity:
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h�jvi; xii.s/ D h�i.s/C
Z
hL �

q .s�xq;�/iŒ'.vq; xqjI vi; xi/�n.xq/�dxq: (17.113)

Equation (17.113) holds true for the general cases of statistically inhomogeneous
CM loaded by an arbitrary inhomogeneous remote loading. However, for simplicity
of results obtained, one only considers hereafter the statistically homogeneous
media loaded by the homogeneous boundary conditions (17.8) (the conditions (17.7)
can be analyzed in a similar manner). Even in such a case, the statistical average
h�i.s/ (s 2 �i) is an inhomogeneous one:

h�i.s/ D .ŒM�h� i�.s � xi/; h� in�i .s//>; (17.114)

explicitly depending on both the placement of s at the interface �i and the effective
compliance M�.

Due to acceptance of the hypothesis H1a (17.912), a tensorial product of
Eq. (17.113) on s (s 2 �i) and their subsequent averaging over the interface �i

at � D t leads to (s 2 �i)

h� ii D h� i C
Z
hs S˝ Lt


q .s � xq/i.i/h� iiŒ'.vq; xqjI vi; xi/� n.xq/�dxq; (17.115)

where one used the equalities (17.30), (17.57), and hn�i .s/
S˝ si.i/ D I. Equa-

tion (17.115) allows one to obtain the explicit solution for identical aligned
heterogeneities (vi D vq D v1; x 2 v1):

h� i1.x/ D bYh� i; (17.116)

h� i1.x/ D B1.x/bYh� i; (17.117)

M� D M.0/ C n.1/R1
bY; (17.118)

bY�1 D I �
Z
hs S˝ Lt


q .s� xq/i.i/Œ'.vq; xqjI vi; xi/� n.q/�dxq: (17.119)

The representations for both the average stress concentration factor and the effective
compliance in Eqs. (17.116)–(17.119) are similar to Eqs. (17.109)–(17.112) with
replacement hL
q .x � xq/i.i/ ! hs S˝ Lt


q .s� xq/i.i/ used.
It should be mentioned that all equations in Sect. 7.2 and 7.3 were derived for

the perturbators expressed in both the general operator form and the boundary
integral equations. However, the final results (17.109)–(17.112) and (17.116)–
(17.119), respectively, are equivalent for both perturbator representations because
both approaches use the same selection of hypotheses H1a and H2b, while the
hypotheses H1b and H3 are not exploited. However, the BIE method has the well-
known advantage of reduction of dimension by one that can be crucial for the
analyst. From another side, the representations (17.109)–(17.112) can be easily
applied to CMs with inhomogeneous inclusions (M.x/ 6� const:, x 2 v.1/) that
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presents a real challenge to the BIE methods. Thus, each method (BIE or FEA) has
advantages and disadvantages and it is crucial for the analyst to be aware of their
range of applications.

17.8 Numerical Results

With the nonessential restriction on space dimensionality d and on the shape
of inhomogeneities, we will consider 2-D plane strain problems for composites
reinforced by aligned infinite fibers with noncircular cross section schematically
presented in Fig. 17.1 and described by the curve
(
.x � R1 C rs/

2 C .y � R2 C rs/
2 D r2s ; for fjxj > R1 � rsg \ fjyj > R2 � rsg;

.x � R1 C rs/
2 C .y � R2 C rs/

2 D r2s ; for fjxj > R1 � rsg \ fjyj > R2 � rsg;
(17.120)

which reduces to a circle and a rectangular in the limiting cases R1 D R2 D rs D a
and rs D 0, respectively.

We start our estimation from the evaluation of the stress perturbator L �
j .s �

xj;�/ (17.57) for one heterogeneity in an infinite matrix. In order to estimate the
approximations introduced by discretizations implemented in the MFS in Sect. 17.6
and for the evaluation of the solution (17.77), we compare numerical results with a
reference analytical solution for a single-circle inclusion inside the infinite matrix
in a plane strain problem subjected to the uniform remote loading � Dconst.,
and the isotropic constituents with the Young’s moduli E.1/ D 100, E.0/ D 1

and Poisson ratios �.1/ D 0:49, �.0/ D 0:45 (see also Buryachenko 2016). In
the following experiments, we consider uniformly spaced collocation points on
�i and the same number of source points on O� .1/

i and O� .0/
i when the source

sets prescribed by Eqs. (17.75) and (17.76) coincide. We consider a uniform
remote tension 
 ij � ıi1ıj1 Dconst. generating a homogeneous stress distribution
inside circle inclusion � .x/ D Bi.x/� (Bi.x/ � const:; x 2 vi/, which is
analytically estimated by means of the Eshelby tensor. The value Bij1111.x/ �
1:4587 analytically evaluated is compared with their numerical values Bij1111.x/
estimated by both the direct (least-squares) method of solution of Eq. (17.77) and
the pseudo-inverse TR procedure (17.84) in the vicinity of the inclusion boundary
Bij1111.s/ � lim Bij1111.x/ (x ! s; x 2 vi; s 2 �i/. In Fig. 17.2 the curves 1 and 2
are estimated by the direct method and the TR procedure, respectively, for S D 30,
d D 0:6 (17.76), and � D 10�5. The errors corresponding to the curves 1 and 2
equal 6.5% and 0.23%, respectively. Increasing the number of source points S D 60
leads to an increase in the accuracy of the TR procedure (17.84)
(curve 4 with the error 0.00068%) and to osculation of the direct solution (17.77)
(curve 3, the error 35%). A subsequent increase of the number of source points,
S D 200 with d D 0:1, provides the error 0.000016% of the stress distribution
Bij1111.s/ (s 2 �i) (17.84), while the approximative osculating solution (17.77)
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Fig. 17.2 Stress
concentration factor Bij1111.s/
vs a polar angle '=�
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takes the negative values (Bij1111.s/ < 0: at some x 2 �i) and loses a physical
meaning. Buryachenko (2016) also demonstrated an advantage of the allocation
scheme (17.76) with respect to the set (17.75) for the prolate elliptical hetero-
geneities with an aspect ratio 10.

An estimation of the perturbator L
�
j .x � xj;�/ (17.37) makes it possible to

turn our attention to the analysis of CM by the substitution of Lt

j .s � xj/ found

in Eq. (17.119). A domain v�i (see Sect. 7.3), where '.vq; xqjI vi; xi/ � n.q/ is not
negligible, is discretized by the square mesh �sq (p; k 2 Z1):

�sq WD
n
.x1; x2/

> j .p � 1/h < x1 < ph; .k � 1/h < x2 < kh
o
; (17.121)

where h is the discretization step and x1; x2 are local coordinates with origins at
the fiber centers, which will be exploited for stress assignment inside and outside
the fiber in Eq. (17.114) and estimated in the postprocessing of FEA. In order to
compute the integral in Eq. (17.114), the discretization (17.121) has been applied
considering the simple Simpson numerical integration rule on piecewise-constant
elements; this choice has been dictated by the simplicity of implementation also for
nonregular inclusion shapes even if it does not guarantee a very fast convergence
of the results with the discretization step h. It should be mentioned that the main
reason of the choice of the square mesh (17.121) is its double using for two different
problems. At first, this mesh is exploited for the estimation of the effective field
h�ii.x/ (17.114). Second, the same mesh (17.121) is used as the location of the
moving inclusion centers xq in Eq. (17.114). It gives an opportunity the use of the
solutions (17.86) and (17.88) for one heterogeneity in a sample in the nodes of just
one realization of the mesh (17.121), which is exploited as an “output” mesh for a
solution obtained on inhomogeneous sets of collocation and singular points placed



500 V. Buryachenko

at the boundary �i and the pseudo-boundaries O� .1/
i and O� .0/

i , respectively. However,
in the case of the immediate use of the inhomogeneous mesh inside and outside a
heterogeneity (which is more effective for the estimation of the perturbator factor
L 


q .x � xq/), we will need to estimate the stresses in the nodes of a new mesh
generated for each location xq of the moving inclusion vq. Therefore, the square
mesh (17.121) is optimal for the current problem. In so doing, the solutions of
Eqs. (17.86) and (17.88) (or alternatively, the matrix Eq. (17.77)) are performed at
the collocation points Xs.

We are coming now to the analysis of the conditional probability density
'.vk; xkjI vi; xi/. This function is well investigated only for identical spherical
(3-D and 2-D cases) inclusions with a radius a when the pair distribution function
g.xi � xm/ � '.vi; xijI vm; xm/=n.k/ depending only on jxm � xij is called the radial
distribution function (RDF). According to the author’s best knowledge, a systematic
quantitative investigation of the binary correlation function '.vk; xkjI vi; xi/ for the
noncanonical shape (and even for the nonspherical one) of inclusions is absent. Due
to the absence of '.vk; xkjI vi; xi/ for nonspherical inclusions vq; vi (xi D 0), we will
use a well-stirred approximation:

'.vk; xkjI vi; xi/ D .1 � V0
i .xk � xi//n

.k/: (17.122)

A large difference of results is obtained in the framework of the back-
grounds (17.99)–(17.102) and (17.116)–(17.119) for composites reinforced
by nonellipsoidal inclusions demonstrating essentially inhomogeneous stress
distribution inside inclusions even in the framework of the hypothesis H1a. In more
detail, we analyze the inclusion shape (17.120) with R2=R1 D 0:2 and rs=R1 D 0:1
(at c D 0, see Fig. 17.3).
The stress concentrator factors for an isolated inhomogeneity Bij1111.x1/ and
Bij2211.x2/ in the cross sections x D .x1=R1; 0/> and x D .0; x2=R2/> (see Fig. 17.3)

Fig. 17.3 Bij1111.x1/ (1) and
100 � Bij2211.x2/ (2) vs. x1=R1
and x2=R2, respectively
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Fig. 17.4 100 � B�

ij2211.x2/ vs.
x2=R2 estimated by the MEF
(17.99)–(17.102) (1) and
(17.116)–(17.119) (2)
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grow in both magnitude and variation with decrease of the ratio R2=R1. For CM,
the solution for a single inclusion (see Sect. 17.5 and Fig. 17.3) obtained by the
MFS was used in both the known MEF (17.99)–(17.102) and the new approach
(NA) (17.116)–(17.119). However, in the new approach (17.116)–(17.119), the
hypothesis H1b was not used while this hypothesis was exploited in the classical
MEF (17.99)–(17.102) with the aspect ratio v0i equal to R2=R1.

The largest difference between the classical (17.99)–(17.102) and new (17.116)–
(17.119) approaches is observed for the component B�

ij2211.x2/ in a cross section x D
.0; x2=R2/> (c D 0:7, see Fig. 17.4) where the predicted curves by the new and clas-
sical approaches are distinguished by a sign. Normalized effective Young’s moduli
E�
1 =E.0/ and E�

2 =E.0/ are presented in Figs. 17.5 and 17.6, respectively, as the func-
tions of the volume concentration c of inclusions at R2=R1 D 0:2. Curves labeled
1 and 2 are estimated by the new approach (17.116)–(17.119) and the classical one
(17.116)–(17.119), respectively, for the '.vq; xqjvi; xi/ (17.122) in both Figs. 17.5
and 17.6. The curves labeled 3 are predicted by the MEF for the homogeneous
ellipsoidal inclusions vi and v0i with the aspect ratio equal to R2=R1.

Figures 17.5 and 17.6 are estimated by the new approach (17.112)–(17.119) for
the '.vq; xqjvi; xi/ (17.122). The curves labeled 2 are predicted by the MEF (17.99)–
(17.102) accompanied by the MFS, respectively, which are invariant with respect to
the concrete form of g.r/, while the curves labeled 3 are evaluated by Eqs. (17.99)–
(17.102) for CM reinforced by the elliptical inclusions with the aspect ratio R2=R1.
As can be seen, the estimations carried out by the different methods are essentially
different at c > 0:6. In so doing, the difference between the curves 1 and 2
in Figs. 17.5 and 17.6 obtained by the NA and the old one, respectively, is not
dramatically different, although the local stress distributions can be different, by
a sign (see Fig. 17.4).
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17.9 Conclusion

We obtained a fundamental conclusion that both the effective properties and
effective concentration factors in general depend not only average stress distribution
inside the referred heterogeneity [describing by the tensor Bi] but also on the stresses
in the vicinity of heterogeneity, that is, the extension of Bi.x/ (x 2 v�i ) is necessary.
Then the size of the excluded volume v0i as well as the binary correlation function
will impact both the effective properties and effective concentration factors even
in the framework of hypothesis H2. In so doing, the concentration factors (see
Fig. 17.4) are significantly more sensitive values to the choice of the approach (either
NA or MEF) than effective properties (see Figs. 17.5 and 17.6, and Buryachenko and
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Brun 2013). Thus, we have proposed the new micromechanical model based on the
integral Eq. (17.119) for the interface traction, and we have introduced the concepts
of both the interface polarization tensors (17.27) and (17.28) and the perturbators
expressed through the interface boundary integral (17.57). It opens up the strong
possibilities for the systematic exploitation of the BIE methods (and, in particular,
the MFS), which have the well-known advantage of reduction of dimension by one
that can be crucial for the analysis.
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residual vector, 400, 403
RUC system, 403
spatial stress polynomial, 397
stiffness matrix, 409
strain components, 407
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High-fidelity generalized method of cells
(HFGMC) (cont.)

strain concentration matrix, 396
strain vectors, 394, 395
stress vector, 396
tangential system, 401, 402
3D-displacement polynomial, 406
traction and displacement continuity,

397–399
variable vector, 402

fiber misalignment and clustering, 419
finite strain, 420
GMC, 391–392
magnetostrictive materials, 420
multiferroic materials, 420
parametric mapping, 392
RUC, 391–392
thermoelectric materials, 420
triply periodic composites

average traction vector, 414
Boolean structure, 414
Cartesian coordinate system, 409, 410
displacement continuity condition, 415
displacement expansion, 412
displacement gradient vector, 413
equilibrium equations, 416
face-average displacement vectors, 412
hexahedral subcells, 409, 411
Jacobian inverse matrix, 413, 414
nonlinear theoretical derivation, 416
quadratic expansion, 410
strain vector, 414
stress field, 415
traction continuity condition, 415
trivial case and nontrivial case, 411

High-order surface stress model
boundary value problem, 163–165
conventional surface stress model, 161
Euler-Bernoulli beam theory, 166–167
inextensible classical shell type, 162
inextensible membrane type, 162
kinematic deformation, 162
perfectly bonded interfaces, 162
surface elasticity, 165–166
surface moment, 161–162
TB theory, 167–168

Homogeneous inclusion, 328, 329
Hydroxyapatite crystals, 286

I
Infinite coupled system, 485–486
Inhomogeneous inclusion, 328, 329
Interaction law, 356

Interface effects, 182–183
Interfacial resistance, 139–140
Interfacial shear strength (ISS)

ABC, 75–76
COMPASS forcefield, 75
Cox model, 74
energy minimization approach, 74
Kelly–Tyson model, 74
LJ cutoff distance, 76
molecular dynamics, 75
molecular mechanics, 74–75
MPa, 73, 75
MWCNTs, 72–74
oversimplified numerical models, 76–77
PMMA, 73
pull-out testing, 72
Raman spectroscopy, 72–73
RVE, 74–75
shear-lag model, 74
SWCNTs, 73–74
TEM study, 72
thermoset materials, 77
vdW interactions, 75

Isotropic fourth-order tensor, 318
Isotropic second-order tensor, 317

J
Johnson–Cook failure criterion

CG metals
average of VL, 219–220
bullet rendering specimen, 218–219
initial impact vs. residual velocities, 219
interface debonding, 217–218
microcrack, 217
residual kinetic energy, 218
vs. single phase structure, 221–222

microstructures, 208, 212–215
multiple ballistic indexes, 215–217
NG phase, 210–211
NT phase, 211–212

K
Kelly–Tyson model, 74, 80
Kronecker’s delta, 383

L
Lagrangian strain tensor, 15
Lame elastic coefficient, 447
Large-scale atomic/molecular massively

parallel simulator (LAMMPS),
81–82
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Lennard-Jones (LJ) cutoff distance, 76
Lennard-Jones potential, 48
Limit velocity, 216–217
Linear elastic composites

affine space, 309–311
aggregate modulus, 325
aligned inclusions

Eshelby’s inclusion, 326–328
spheroidal inclusions, 330–333
strain concentration tensor, 328–330

Cauchy stress, 324
constitutive laws, 324
definition, 323
deformation, 308
developement, 308
Dirac delta, 340
displacement, 323, 324
generalised Walpole’s formula, 333–335
infinitesimal strain, 324, 325
isotropic elasticity tensor, 325–326
Lamé’s constant, 326
open subset, 309–311
probability density, 340–342
stiffness elasticity tensor, 325
tangent spaces, 309–311
tensors

basis covector, 312
contractions and linear maps, 314–315
contravariant and covariant, 313
covector/linear form/one-form, 311
fourth-order tensor (see Fourth-order

tensor)
metric tensor, 315–316
multilinear form, 312
order, 313, 314
projections, 311
scalar products, 315–316
second-order tensor (see Second-order

tensor)
tangent bundle, 311
tensor product, 312–313

Linear elastic fracture mechanics (LEFM), 30

M
Magnetostrictive materials, 420
Materials Studio, 49
Mathematica 7.0, 460, 465
Maxwell’s equations, 260
Meshless methods, 470
Mesoscale level, 292–294
Method of cells (MOC). See High-fidelity

generalized method of cells
(HFGMC)

Method of fundamental solution (MFS),
470–471

convex and concave regions, 490
finite element, 488–489
fundamental solutions, 487
homothety transformation, 489
inclusion interfaces, 486–487
matrix representation, 490–492
Minkowski addition and subtraction,

489
pseudo-boundary surfaces, 487
source points, 489

Metric tensor, 315–316
Microscale level, 292
Modelling space, 309
Modified Eshelby’s tensor, 159
Molecular dynamics (MD) simulation

buckling behavior, 79
compressive force, 95
critical buckling strain, 93–94
end-shortening displacement, 95
force-displacement curves, 92–93
strain energy-strain curves, 92–93
SWCNTs, 94–95

compressive load simulation
CNT and RVE, 92
defects, 85–86
embedded SWCNTs, 112–115
freestanding and nanocomposite,

86–87, 109–110, 113, 116
symmetric and asymmetric vacancy,

115–116
vacancy defects, 109–112

ISS, 75
material constants

elastic constants, 15–17
specific heat and thermal expansion

coefficients, 18
thermal conductivity, 17

multiphysics
atomistic temperature, 10
Coulomb force, 3
Eringen definition, 9
fictitious forces, 11
general relativity, 12
Hamiltonian, material system, 7–8
interatomic force, 3
Lorentz force, 3
Maxwell’s equations, 3
Newton’s law, 3
Nosé-Hoover thermostat, reformulation

of, 4–7
scalar-valued isotropic function, 10
vector-valued isotropic function, 10
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Molecular dynamics (MD) simulation (cont.)
virial stress tensor, 11
Wang’s representative theorem, 10

nanoindentation
AIREBO potential, 48
canonical ensemble, 49
equipartition theory, 47
interatomic potentials/molecular

mechanics force fields, 47
isothermal-isobaric ensemble, 49
micro-canonical ensemble, 49
Newton’s equations of motion, 46
REBO potential, 48
Taylor series expansion, 46, 47
Verlet algorithm, 46

numerical simulation, 80–82
pull-out simulation

adatom defects, 102–104
CNT–matrix interaction energy, 90
cured vs. uncured polymer, 83–84
defects and functionalization, 82–83
distribution, 88–89
energy approach, 89–90
epoxy molecules, 95–96
equilibrium length and radius, 91
force approach, 89
interaction energy, 96–97
interfacial binding energy, 90
phenyl group functionalization,

106–109
potential energy, 90, 96–97
pull-out approach, 87–88
RVE, 84–85
spatially averaged concentration profiles

vs. distance, 97–98
SW defects, 104–106
vacancy defects, 98–102

Molecular mechanics (MM)
buckling behavior, 79
ISS, 75
numerical simulation, 80–82

Mori–Tanaka method (MTM), 264, 348–349,
439, 441, 444, 445, 463, 464

Multiferroic materials, 420
Multiparticle effective field method (MEFM)
Multiphysics, MD simulation

Coulomb force, 3
Hamiltonian, material system, 7–8
interatomic force, 3
Lorentz force, 3
Maxwell’s equations, 3
Newton’s law, 3
Nosé-Hoover thermostat, reformulation of,

4–7

objectivity
atomistic temperature, 10
Eringen definition, 9
fictitious forces, 11
general relativity, 12
scalar-valued isotropic function, 10
vector-valued isotropic function, 10
virial stress tensor, 11
Wang’s representative theorem, 10

Multiscale modeling theory
ABC and GC, concurrent multiscale

modeling
atomic region, 29
Cauchy stress, 29–31, 33, 35
CGMD simulation, 18
fatigue loading, 33
finite element mesh, 19, 29
interfacial conditions, 21–22
material constants, MD simulations,

25–28
multiple time scale algorithm, 22–24
Tecplot, 29–31
velocity Verlet method, 20
virial stress, 29–31, 33, 35
VMD plot, 30, 32–34

material constants, MD simulation
elastic constants, 15–17
specific heat and thermal expansion

coefficients, 18
thermal conductivity, 17

multiphysics, MD simulation
Coulomb force, 3
Hamiltonian, material system, 7–8
interatomic force, 3
Lorentz force, 3
Maxwell’s equations, 3
Newton’s law, 3
Nosé-Hoover thermostat, reformulation

of, 4–7
objectivity, 9–12

thermoelasticity, 12–14
Multi-walled CNTs (MWCNTs), 72–74

N
Nanocomposites, 81
Nanoengineer, 49
Nano-grained (NG) phase, 210–211
Nanoindentation

analytical modelling of, 42–44
atomistic modelling of, 44–45
experimental techniques in, 41–42
grid indentation, 42
material characterization, 40
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MD simulations
basic concepts, 46–49
graphene-reinforced nanocomposites

(see Graphene-reinforced
nanocomposites)

nanoscale multilayered systems, 40
Nanoscale model

collagen fibrils, 286–287
elastic properties and volume fractions, 286
homogenization, 288, 289
hydroxyapatite crystals, 286
water and NCPs, 287

Nanotwinned (NT) regions, 211–212
Nanowires (NWs)

high-order surface stress model
boundary value problem, 163–165
conventional surface stress model, 161
Euler-Bernoulli beam theory, 166–167
inextensible classical shell type, 162
inextensible membrane type, 162
kinematic deformation, 162
membrane type interface, 162
perfectly bonded interfaces, 162
surface elasticity, 165–166
surface moment, 161–162
TB theory, 167–168

mechanical behavior, 169–172
stress concentration factor, 168–171
surface/interface stress effects

equivalent interface conditions,
159–160

Euler-Bernoulli beam theory, 160
first-order interface condition, 160
generalized YL equation, 159
isotropic surface property, 158
modified Eshelby’s tensor, 159
residual tension, 158–160
three-dimensional thin interphase,

159–160
Timoshenko beam model, 160–161

Natural fiber reinforced composites (NFRCs).
See also Wood cell wall

boundary conditions, 439
damage generation, 439
Eshelby formula, 440
hydrophilicity, 438
mechanical degradation, 438, 439, 443,

444, 452, 456, 464
moisture absorption, 438, 439, 442, 443,

447, 448, 451, 452
Mori-Tanaka scheme, 439, 441, 444, 445,

463, 464
original problem, 440, 441
randomly oriented straight inhomogeneity

average matrix stress, 448
bulk and shear modulus, 445–447
Euler angles, 445, 446
isotopic tensor, 447
Lame elastic coefficient, 447
Poisson’s ratio, 447, 448
stiffness degradation, 447
Young’s modulus, 448–450

strain concentration tensor, 444
sub-problem I, 440
sub-problem II

average strain, 443–444
average stresses, 440–441
boundary conditions, 440–441
equivalent inclusion method, 441
RVE, 442
stress in inhomogeneity, 442

unidirectional circular cylindrical
inhomogeneity

Hill’s elastic moduli, 450–451
Poisson’s ratio, 451, 452
stiffness, 450, 452
strain, 452, 453
tensile modulus, 451
virgin vs. fully swollen composite, 452,

453
Young’s modulus, 449, 452

New background of micromechanics (NBM),
470

interface perturbator factor, 496–498
volume effective fields, 495–496

Non-collagenous proteins (NCPs), 287
Nonequilibrium Molecular Dynamics

(NEMD), 4
Nosé-Hoover thermostat, reformulation of

angular momentum, 5
nano material system, 4
NEMD, 4
temperature force, 6–7
thermal velocity, 5–7
upgraded Nosé-Hoover thermostat, 6

O
O.hN / interface model, 159–160
Oliver–Pharr method, 42–44

P
Packmol software, 49, 83
Percolation threshold

conductive network, 124–125
inclusion concentration, 134
non-negative value, 133
reciprocal aspect ratio, 133
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Periodic inhomogeneities
convergence, 198–199
interface effects, 197–198
mapping, 194–195
matrix, 193–194
parameters, 196–197
periodicity of stress, 194
resultant interfacial shear stresses, 200–201
unit circle, 195–196
volume fraction, 192–193

Perturbators
boundary decomposition method, 478
heterogeneity, 478
homogeneous effective field, 480–481
Hooke’s law, 479
interface perturbators, 479
interface variables, 481
matrix operator, 479
strains and stress, 478
tensorial multiplication, 480
transmission conditions, 477
VIE method, 481–482

Physical space, 309–311
Point space, 309
Poisson’s ratio, 25, 26
Polycrystalline films

compatibility conditions, 276
compatibility constraints, 274
configuration, 274, 275
ferroelastic lamina, 274
grain boundary, 274
linear equations, 276
matrix of coefficients, 277
out-of-plane displacements, 275
stress-free states, 278
transformation strain, 275

Polyethylene (PE) polymer, 55, 57–60
Polymeric composite materials

NFRCs (see Natural fiber reinforced
composites (NFRCs))

wood cell wall (see Wood cell wall)
Polymethyl methacrylate (PMMA), 73
Polyphenylacetylene (PPA), 108
Ponte Castañeda-Willis (PCW) model, 125

Q
Quantum mechanics (QM), 44

R
Radial distribution function (RDF), 500
Random structure composites

basic equations, 471–473

classical and new approaches, 501–502
effective properties, 476–477
EFH H1, 470
Eshelby tensor, 498
GIEs (see General integral equations

(GIEs))
Green’s function, 474–475
hypotheses, 492–494
inclusion shape, 500
interface polarization tensors, 476–477
MEFM, 469–470
meshless methods, 470
MFS, 470–471

convex and concave regions, 490
finite element, 488–489
fundamental solutions, 487
homothety transformation, 489
inclusion interfaces, 486–487
matrix representation, 490–492
Minkowski addition and subtraction,

489
pseudo-boundary surfaces, 487
source points, 489

NBM, 470
RDF, 500
square mesh, 499
statistical description, 473–474
stress concentration factor, 498–500
2-D plane strain problem, 498
well-stirred approximation, 500

Reactive empirical bond order (REBO)
potential, 48

Rectilinear acceleration force, 11
Refined surface stress model. See High-order

surface stress model
Reinforcement phase distribution

average matrix thickness, 429–430
experimental tests, 427–429
fiber arrangement, 426
flexural elastic modulus, 430–433
image processing, 428–429
microscopic photographing, 428–429
real composite cross-sections, 433–435
specimens preparation, 427–429
strength tests’ results, 428
theoretical models, 433–435
topological and morphological properties,

427
Repeating unit cell (RUC), 391
Representative element of volume (REV), 330
Representative volume element (RVE), 74–75,

84–85, 228–229
apparent properties, 297–299
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sub-problem II, 442
two-phase composites, 357

Reuter matrix, 459
Rigid body grid

equation of motion, 376–377
Euler’s momentum equation, 376–377
particle assembly, motion and force of,

374–376
translation and spin, 377–379

S
Schwarz–Christoffel formula, 181
Second-order tensor

isotropy, 317–319
symmetry, 316–317
transverse isotropy

basis tensors, 321
contravariant identity, 319
conventional components, 322
directional averages, 337–339
invertible tensor, 322
linear combination, 321
polar parametrisation, 339–340
preliminaries, 335–336
representation, 320
structure tensor/fabric tensor, 320
symmetric isotropic tensor, 323
transverse plane, 319
unit sphere, 319
vectorial components, 320
Walpole array, 321, 322

Self-consistent methods, 264, 290, 348–349
“Sequential” linearization technique, 349
Sequential multiscale modeling, 14

material constants, MD simulation
elastic constants, 15–17
specific heat and thermal expansion

coefficients, 18
thermal conductivity, 17
Voigt’s convention, 14

thermoelasticity, 12–14
Shape Memory Alloys (SMAs)

coherency fields, 231–232
coherency stress field, 235–237
constitutive law

forward and reverse phase
transformation, 250

gradual transformation, 251
martensite volume fraction, 249–250
model parameters, 251–252
Standard Einstein notation, 249
stress tensor components, 250

transformation strain magnitude,
250–251

constitutive response, 234
effective thermomechanical response

coherency stresses, 239–240
computational procedure, 244, 246
constant uniaxial load, 232, 236
DSC, 240–241
estimation, 243
microstructures, 243
numerical simulations, 233–234
periodic boundary conditions, 232–233
phase transition vs. solutionized

response, 243, 245, 247
precipitated NiTi, 235, 241–242
precipitate volume fraction, 238–240
tensile testing, 240–241

eigenstrains, 234–235
mechanical fields, 235–237
microstructure generation, 230–231
Ni concentration, 232, 235–237
Ni-Rich NiTi

actuation responses, 229
mean-field approaches, 229
precipitation, 227–229

phase transition temperature, 234–235
size effects, 246
transformation strain, 246, 248

Shear-lag model, 74, 80
Shear strength experiments (SBST), 427,

428
Single-walled CNTs (SWCNTs), 73–74
SMAs. See Shape Memory Alloys (SMAs)
Sneddon’s analysis, 42
Spherical operator, 318
Spin effect

characteristic equation
Fourier transformation, 384
P-and S-waves, 386
physical dimension, 382–383
six-by-six matrix, 384
spin wave, 385
spring directions, 382–383
tensors, 383
translation wave, 385
wave velocity, 386

local torque, 387
material properties

decomposition, 379
Lagrangian, 381
second-order tensor, 380
stress and local torque, 380

particles’ translation, 372
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Spin effect (cont.)
rigid body grid

equation of motion, 376–377
Euler’s momentum equation, 376–377
particle assembly, motion and force of,

374–376
translation and spin, 377–379

seismic waves, 371
survey, 373–374
vanishing, 381–382

Stillinger-Weber potential, 10
Stone–Wales (SW), 76
Strain gradient plasticity model

NG phase, 210–211
NT phase, 211–212

Symmetric identity, 317

T
Tangent bundle, 310
Tangent spaces, 309–311
Tensor contractions, 314–315
Tensor product, 312–313
Tensor spaces, 314–315
Tersoff potential, 10, 25, 48
Thermoelectric (TE) materials, 420
Three-point bending test (3-PBT), 427
Time-incremental Eshelby-based

homogenization scheme
“affine” hereditary approach, 349
constitutive equations, 350–352
elastic and inelastic shear moduli, 352
FFT technique, 349
homogeneous reference elastic and viscous

media, 352
Laplace–Carson transforms, 348
Mori–Tanaka approximations, 348–349
self-consistent model, 348–349
“sequential” linearization technique, 349
time differential equation, 353
two-phase composites

additive law, 363–366
elastic and inelastic asymptotic states,

362, 363
hereditary approach, 358–361
matrix phase, 357
phase I; 357
Ricaud and Masson solutions, 359, 360
RVE, 357
spherical inclusions, 358
stress rate averaging rule, 358
tension–compression simulations,

363–365

transient, 362
translated fields method, 363–366
uniaxial tension–compression test, 361,

362
viscoelastic ellipsoidal Eshelby inclusion

interaction law, 356
strain rate concentration equations,

354–355
Time–temperature–martensite transformation

(TTT) maps, 241–242
Timoshenko beam (TB) theory, 160–161,

167–168
Trabecular bone, 293, 295
Traction continuity conditions, 397–399
Transformation strain magnitude, 250–251
Translated fields method

vs. additive law, 363–366
developement, 348–349
linear and non-linear viscoelasticity, 349

Transmission electron microscopy (TEM)
study, 72

Triethylene tetramine (TETA), 83–84
Tunneling-assisted interfacial conductivity,

140–142
Twin boundaries (TBs), 208

U
Uniform internal strain fields

average internal strain field, 188
complex coefficients, 186
conformal mapping, 186
effect of dislocation, 189–190
first-order asymptotic form, 191–192
infinite matrix, 185–186
infinite region S0 , 186–187
nano-inhomogeneity, 190–192
Newton–Raphson method, 187–188
periodic inhomogeneities

convergence, 198–199
interface effects, 197–198
mapping, 194–195
matrix, 193–194
parameters, 196–197
periodicity of stress, 194
resultant interfacial shear stresses,

200–201
unit circle, 195–196
volume fraction, 192–193

perturbation parameter, 188
size dependence, 189–190
unknown holomorphic function, 186
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V
van der Waals (vdW) interactions, 75, 82
Velocity Verlet method, 20, 22–23
Vickers pyramidal indenter, 41, 43
Viscoelastic materials, 300–301. See also

Time-incremental Eshelby-based
homogenization scheme

Volume effective fields, 495–496
Volume integral equation (VIE), 481–482
Volume perturbator factor, 496

W
Walpole array representation, 321, 332
Weierstrass zeta function, 181
Wood cell wall. See also Natural fiber

reinforced composites (NFRCs)
analyses, 454
CMF, 453, 458–460
constituents, 438
mechanical degradation, 438

MFA, 454, 460–463
microstructure, 454, 455
moisture absorption, 459, 460, 462, 463
Reuter matrix, 459
rotation tensor, 459
S2 layer, 458
swelling strain, 461
tensile modulus, 458–462
unidirectional circular cylindrical

inhomogeneity
bulk and the shear modulus, 457
elastic coefficients, 455
Hill’s elastic moduli, 457–458
isotopic tensor, 456
isotropic matrix stiffness, 455, 456
strain, 457
swelling expansion coefficients, 456

Y
Young’s modulus, 25, 26, 45
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