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Abstract. Nowadays understanding people’s opinions is the way to suc-
cess, whatever the goal. Sentiment classification automates this task,
assigning a positive, negative or neutral polarity to free text concerning
services, products, TV programs, and so on. Learning accurate models
requires a considerable effort from human experts that have to prop-
erly label text data. To reduce this burden, cross-domain approaches are
advisable in real cases and transfer learning between source and target
domains is usually demanded due to language heterogeneity. This paper
introduces some variants of our previous work [1], where both transfer
learning and sentiment classification are performed by means of a Markov
model. While document splitting into sentences does not perform well
on common benchmark, using polarity-bearing terms to drive the classi-
fication process shows encouraging results, given that our Markov model
only considers single terms without further context information.
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1 Introduction

When an understanding is required of whether a plain text document has a pos-
itive, negative or neutral orientation, sentiment classification is involved. This
supervised approach learns a model from a training set of documents, labeled with
the categories (or classes) we are interested in, then applies it to the test set whose
sentiment orientation has to be discovered. Sentiment classification differs from
text categorization in the set of classes to be considered: whereas the former usu-
ally relies on the same labels (i.e. positive, negative and possibly neutral), in the
latter topics are typically what we are interested in and they can range from music
to games, to literature, to art, and so on and so forth. However, in both tasks the
classification accuracy depends on how much the test documents reproduce the
patterns emerged when learning the model on the training set.
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In order to achieve this goal, the most natural approach consists in con-
sidering as training set documents belonging to the same domain of those to
be classified. The just outlined course of action, referred in literature as in-
domain, is the most profitable in terms of accuracy, because documents within
a unique domain are likely to be lexically and semantically similar. Neverthe-
less, the implicit assumption in-domain classification relies on in order to build
a model, is to always have labeled documents from the same domain of the text
set whose sentiment orientation is required to be predicted. This is quite difficult
in practice due to some reasons: on the one hand real text sets, like for instance
Facebook posts, tweets, discussions in fora, are usually unlabeled. On the other
hand, labeling text sets is an onerous activity if manually performed by human
experts.

Therefore cross-domain approaches are attractive in real cases, because if
a model has been built on a certain domain, its reuse in a different domain
is definitely desirable due to the aforementioned reasons. For example, let us
suppose to have learned a model on a set of reviews about movies and now to be
interested in understanding people’s thoughts about kitchen appliances. Instead
of manually labeling a part of the kitchen appliances reviews and building a
different model from scratch, we would exploit the one we already have. However,
the test documents might not reflect the regularity of the training set because
of language heterogeneity. In fact if a movie review is set to include terms like
“amusing” or “boring”, a kitchen appliance review is more likely to contain
“clean” or “broken”. Hence, a transfer learning phase is typically demanded to
bridge the inter-domain gap.

Many methods have been proposed in literature to transfer knowledge across
domains, by either adapting source data to the target domain or representing
both in a common space, using approaches such as for example feature expansion
and clustering. Remarkable levels of accuracy are reported in experimental eval-
uations of these methods on topic [2-4] and sentiment classification [5-7]. Given
their complexity, these methods often have the drawback of requiring poten-
tially burdensome parameter tuning in order to yield good results in real use
cases: at this extent, [8] presents a more straightforward method which obtains
comparable experimental results with fixed parameter values.

In our previous work [1], transfer learning was performed along with senti-
ment classification by folding terms from both source and target domains into
the same graph, characterized by a vertex for each term and an edge among
terms occurring together in documents. It deserves to be noted that classes were
also included into our representation. In this way, since the graph can easily be
interpreted as a Markov chain, information flows step by step from source spe-
cific terms to target specific ones and reaches categories, allowing both transfer
learning and sentiment classification.

In this paper we extend the aforementioned approach with two variants,
namely, considering documents as aggregates of sentences rather than as a whole
block and using polarity-bearing terms in order to drive state transitions in the
Markov chain. The first proposal deals with the idea that not every sentence
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bears the same sentiment orientation of the document where it appears. Thus,
classification is performed sentence by sentence and then results are combined
in order to assign the final label to the document. Instead, the second variant
aims to classify document sentiment through polarity-bearing terms. Whereas
in the basic Markov chain method state transitions are only proportional to
the semantic relationships between terms, now they also are function of the
terms capability in predicting category. This means that polarity-bearing terms
actually are those that contribute the most to the classification process.

Experiments have been performed to compare the underlying variants with
the previous version of our Markov chain method. The same benchmark text sets
have been chosen to assess performance in 2-classes (i.e. positive and negative)
in-domain and cross-domain sentiment classification. On the one hand, results
obtained by splitting documents into sentences are unsatisfying; on the other
hand, the outcome with polarity-driven state transitions is comparable with both
our basic algorithm and other works. Besides preserving the same benefits of our
foregoing Markov method, the latter technique improves the way classification is
carried out, that is, by taking advantage of polarity-bearing terms. Results are
encouraging, especially if considering that the model currently takes only single
terms into account, without relying on any kind of context information.

The rest of the paper is organized as follows. Section 2 analyzes the literature
about transfer learning, sentiment classification and Markov chains. Section 3
first of all recaps our preceding Markov chain based approach, then explains
the variants we introduce in this paper. Section 4 describes the experiments and
compares the outcome with other works. Finally, Sect.5 sums results up and
outlines future work.

2 Related Work

Transfer learning generally entails learning knowledge from a source domain
and using it in a target domain. Specifically, cross-domain methods are used to
handle data of a target domain where labeled instances are only available in a
source domain, similar but not equal to the target one. While these methods are
used in image matching [9], genomic prediction [10] and many other contexts,
classification of text documents by either topic or sentiment is perhaps their
most common application. Two major approaches can be distinguished in cross-
domain classification [11]: instance-transfer directly adjusts source instances to
the target domain, while feature-representation-transfer maps features of both
domains to a different common space. In text categorization by topic, transfer
learning has been fulfilled in some ways, for example by clustering together
documents and words [2], by extending probabilistic latent semantic analysis also
to unlabeled instances [3], by extracting latent words and topics, both common
and domain specific [4], by iteratively refining target categories representation
without a burdensome parameter tuning [8,12].

Apart from the aforementioned, a number of different techniques have been
developed solely for sentiment classification. For example, [13] draw on informa-
tion retrieval methods for feature extraction and to build a scoring function based
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on words found in positive and negative reviews. In [5,6], a dictionary contain-
ing commonly used words in expressing sentiment is employed to label a portion
of informative examples from a given domain, in order to reduce the labeling
effort and to use the labeled documents as training set for a supervised classifier.
Further, lexical information about associations between words and classes can
be exploited and refined for specific domains by means of training examples to
enhance accuracy [7]. Finally, term weighting could foster sentiment classifica-
tion as well [14], just like it happens in other mining tasks, from the general
information retrieval to specific contexts, such as prediction of gene function
annotations in biology [15]. For this purpose, some researchers propose different
term weighting schemes: a variant of the well-known tf-idf [16], a supervised
scheme based on both the importance of a term in a document and the impor-
tance of a term in expressing sentiment [17], regularized entropy in combination
with singular term cutting and bias term in order to reduce the over-weighting
issue [18].

With reference to cross-domain setting, a bunch of methods has been
attempted to address the transfer learning issue. Following works are based on
some kind of supervision. In [19], some approaches are tried in order to customize
a classifier to a new target domain: training on a mixture of labeled data from
other domains where such data is available, possibly considering just the features
observed in target domain; using multiple classifiers trained on labeled data from
diverse domains; including a small amount of labeled data from target. [20] sug-
gest the adoption of a thesaurus containing labeled data from source domain and
unlabeled data from both source and target domains. [21] discover a measure
of domain similarity contributing to a better domain adaptation. [22] advance
a spectral feature alignment algorithm which aims to align words belonging to
different domains into same clusters, by means of domain-independent terms.
These clusters form a latent space which can be used to improve sentiment clas-
sification accuracy of target domain. [23] extend the joint sentiment-topic model
by adding prior words sentiment, thanks to the modification of the topic-word
Dirichlet priors. Feature and document expansion are performed through adding
polarity-bearing topics to align domains.

On the other hand, document sentiment classification may be performed
by using unsupervised methods as well. In this case, most features are words
commonly used in expressing sentiment. For instance, an algorithm is introduced
to basically evaluate mutual information between the given sentence and two
words taken as reference: “excellent” and “poor” [24]. Furthermore, in another
work not only a dictionary of words annotated with both their semantic polarity
and their weights is built, but it also includes intensification and negation [25].

Markov chain theory, whose a brief overview can be found in Sect. 3, has
been successfully applied in several text mining contexts, such as information
retrieval, sentiment analysis, text classification.

Markov chains are particularly suitable for modeling hypertexts, which in
turn can be seen as graphs, where pages or paragraphs represent states and
links represent state transitions. This helps in some information retrieval tasks,
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because it allows discovering the possible presence of patterns when humans
search for information in hypertexts [26], performing link prediction and path
analysis [27] or even defining a ranking of Web pages just dealing with their
hypertext structure, regardless information about page content [28].

Markov chains, in particular hidden Markov chains, have been also employed
to build information retrieval systems where firstly query, document or both are
expanded and secondly the most relevant documents with respect to a given
query are retrieved [29,30], possibly in a spoken document retrieval context [31]
or in the cross-lingual area [32]. Anyhow, to fulfil these purposes, Markov chains
are exploited to model term relationships. Specifically, they are used either in
a single-stage or in a multi-stage fashion, the latter just in case indirect word
relationships need to be modeled as well [33].

The idea of modeling word dependencies by means of Markov chains is also
pursued for sentiment analysis. In practice, hidden Markov models (HMMs) aim
to find out opinion words (i.e. words expressing sentiment) [34], possibly trying to
correlate them with particular topics [35,36]. Typically, transition probabilities
and output probabilities between states are estimated by using the Baum-Welch
algorithm, whereas the most likely sequence of topics and related sentiment is
computed through the Viterbi algorithm. The latter algorithm also helps in Part-
of-speech (POS) tagging, where Markov chain states not only model terms but
also tags [37,38]. In fact, when a tagging for a sequence of words is demanded,
the goal is to find the most likely sequence of tags for that sequence of words.

Following works are focused on text classification, where the most widespread
approach based on Markov models consists in building a HMM for each different
category. The idea is, for each given document, to evaluate the probability of
being generated by each HMM, finally assigning to that document the class
corresponding to the HMM maximizing this probability [39-41]. Beyond directly
using HMMs to perform text categorization, they can also be exploited to model
inter-cluster associations. For instance, words in documents can be clustered for
dimensionality reduction purposes and each cluster can be mapped to a different
Markov chain state [42]. Another interesting application is the classification of
multi-page documents where, modeling each page as a different bag-of-words, a
HMM can be exploited to mine correlation between documents to be classified
(i.e. pages) by linking concepts in different pages [43].

3 Method Description

This Section firstly recaps the method based on the Markov chain theory we
advanced in [1] to accomplish both in-domain and cross-domain sentiment clas-
sification. Then two variants of the underlying approach are proposed, which
can also be combined together.

In order for non-expert readers to have a complete understanding, we would
like to remind that a Markov chain is a mathematical model that is subject to
transitions from one state to another in a states space S. In particular, it is a
stochastic process characterized by the so called Markov property, namely, future
state only depends on current state, whereas it is independent of past states.
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3.1 Basic Approach

Before going into details, notice that the entire algorithm can be split into three
main stages, namely, the text pre-processing phase, the learning phase and the
classification phase. We argue that the learning phase and the classification phase
are the most innovative parts of the whole algorithm, because they accomplish
both transfer learning and sentiment classification by means of only one abstrac-
tion, that is, the Markov chain.

Text Pre-processing Phase. The initial stage of the algorithm is text pre-
processing. Starting from a corpus of documents written in natural language,
the goal is to transform them in a more manageable, structured format.

Firstly, standard techniques are applied to the plain text, such as word tok-
enization, punctuation removal, number removal, case folding, stopwords removal
and the Porter stemming algorithm [44]. Notice that stemming definitely helps
the sentiment classification process, because words having the same morpholog-
ical root are likely to be semantically similar.

The representation used for documents is the common bag-of-words, that is,
a term-document matrix where each document d is seen as a multiset (i.e. bag)
of words (or terms). Let 7 = {t1,ta,...,tx}, where k is the cardinality of 7, be
the dictionary of terms to be considered, which is typically composed of every
term appearing in any document in the corpus to be analyzed. In each document
d, each word t is associated to a weight w¢, usually independent of its position
inside d. More precisely, w{ only depends on term frequency f(t,d), that is, the
number of occurrences of ¢ in document d, and in particular, represents relative
frequency rf(t,d), computed as follows:

wf = rf(td) = S D 1)

> f(r,d)

TeT

After having built the bags of words, a feature selection process is performed
to fulfil a twofold goal: on the one hand, feature selection allows selecting only the
most profitable terms for the classification process. On the other hand, being k
higher the more the dataset to be analyzed is large, selecting only a small subset
of the whole terms cuts down the computational burden required to perform
both the learning phase and the classification phase.

Among the feature selection methods analyzed in [1], the one that performs
better was chi-square x?, defined as in [45], which is a supervised scoring function
able to find the most relevant features with respect to its ability to characterize
a certain category. The ranking obtained as output is used on the one hand to
select the best n features and on the other hand to change term weighting inside
documents. In fact, this score s(t) is a global value, stating the relevance of a
certain word, whereas relative frequency, introduced by Eq.1, is a local value
only measuring the relevance of a word inside a particular document. Therefore,
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these values can be combined into a different term weighting to be used for the
bag-of-words representation, so that the weight w¢ comes to be

wi =rf(t,d) - s(t) (2)

Thus, according to the Eq. 2, both factors (i.e. the global relevance and the
local relevance) may be taken into account.

Learning Phase. The learning phase is the second stage of our algorithm. As in
any categorization problem, the primary goal is to learn a model from a training
set, so that a test set can be accordingly classified. Though, the mechanism
should also allow transfer learning in cross-domain setting.

The basic idea consists in modeling term co-occurrences: the more words
co-occur in documents the more their connection should be stronger. We could
represent this scenario as a graph whose nodes represent words and whose edges
represent the strength of the connections between them. Considering a document
corpus D = {di,ds,...,dn} and a dictionary 7 = {t1,%2,...,tt}, A = {a;;} is
the set of connection weights between the term ¢; and the term ¢; and each a;
can be computed as follows:

N
aij = aji = Zwi . ’ng (3)
d=1

The same strategy could be followed to find the polarity of a certain word,
unless having an external knowledge base which states that a word is intrinsi-
cally positive, negative or neutral. Co-occurrences between words and classes are
modeled for each document whose polarity is given. Again, a graph whose nodes
are either terms or classes and whose edges represent the strength of the con-
nections between them is suitable to represent this relationship. In particular,
given that C = {c1, ¢z, ..., cam} is the set of categories and B = {b;;} is the set of
edges between a term ¢; and a class c;, the strength of the relationship between
a term ¢; and a class ¢; is augmented if ¢; occurs in documents belonging to the

set DI ={d €D :cq=c;}.
bij = Z wi (4)

deDi

Careful readers may have noticed that the graph representing both term co-
occurrences and term-class co-occurrences can be easily interpreted as a Markov
chain. In fact, graph vertices are simply mapped to Markov chain nodes and
graph edges are split into two directed edges (i.e. the edge linking states ¢; and
t; is split into one directed edge from ¢; to t; and another directed edge from ¢; to
t;). Moreover, for each state a normalization step of all outgoing arcs is enough
to satisfy the probability unitarity property. Finally, the Markov property surely
holds because each state only depends on directly linked states, since we evaluate
co-occurrences considering just two terms (or a term and a class) at a time.

After having explained again the basic idea behind our method, we recap how
the learning phase was performed in [1]. Basically, we relied on the assumption
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that there exist a subset of common terms between source and target domains
that can act as a bridge between domain specific terms, allowing and supporting
transfer learning. So, these common terms are the key to let information about
classes flow from source specific terms to target specific terms, exploiting term
co-occurrences, as shown in Fig. 1.

negative

kitchen appl.s @

Fig. 1. Transfer learning from book-specific terms to kitchen appliances-specific terms
through common terms.

We would like to point out that the just described transfer learning process
is not an additional step to be added in cross-domain problems; on the contrary,
it is implicit in the Markov chain mechanism and, as such, it is performed in
in-domain problems as well. Obviously, if both training set and test set are
extracted from the same domain, it is likely that most of the terms in test set
documents already have a polarity.

Apart from transfer learning, the Markov chain we propose also fulfils the
primary goal of the learning phase, that is, to build a model that can be sub-
sequently used in the classification phase. Markov chain can be represented as
a transition matrix (MCTM), composed of four logically distinct submatrices,
as shown in Table 1. It is a (k + M) x (k + M) matrix, having current states as
rows and future states as columns. Each entry represents a transition probabil-
ity, which is computed differently depending on the type of current and future
states (term or class), as described below.

Table 1. This table shows the structure of MCTM. It is composed of four submatrices,
representing the transition probability that, starting from a current state (i.e. row), a
future state (i.e. column) is reached. Both current states and future states can be either
terms or classes.

t1,...,tk | C1,...,CM
’ !

ti,...,ty A B
Cly...,CM E F
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Let Dirgin and Dieqr be the subsets of document corpus D chosen as training
set and test set respectively. The set A, whose each entry is defined by Eq. 3, is
rewritten as

0, 1=
Gij = Gj; = S wfi -wﬁ, 1#£ ] (5)
d€D4rainUDtest !

and the set B, whose each entry is defined by Eq. 4, is rewritten as

deD?

train

where D{’r'ain = {d € Dirain : ca = ¢;}. The submatrices A" and B’ are the
normalized forms of Eqgs. 5 and 6, computed so that each row of the Markov chain
satisfies the probability unitarity property. Instead, each entry of the submatrices

FE and F looks like as follows:

eij =0 (7)

_ 1, 1=y
f”_{o, i# ®)

Notice that ' and F' deal with the assumption that classes are absorbing
states, which can never be left once reached.

Classification Phase. The last step of the algorithm is the classification phase.
The aim is classifying test set documents by using the model learned in the
previous step. According to the bag-of-words representation, a document d; €
Diest to be classified can be expressed as follows:

d d
dy = (wi), ..., wl e1y. .. car) (9)
wfll‘, ey wf): is the probability distribution representing the initial state of the
Markov chain transition matrix, whereas cy,...,cys are trivially set to 0. We

initially hypothesize to be in many different states (i.e. every state ¢; so that
wff > 0) at the same time. Then, simulating a single step inside the Markov chain
transition matrix, we obtain a posterior probability distribution not only over
terms, but also over classes. In such a way, estimating the posterior probability
that d; belongs to a certain class ¢;, we could assign the most likely label ¢; € C to
d;. The posterior probability distribution after one step in the transition matrix,
starting from document d;, is:

df = (w . wl el chy) = di x MCTM (10)
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where d; is a column vector having size (k + M) and MCTM is the Markov
chain transition matrix, whose size is (k + M) x (k + M). At this point, the
category that will be assigned to d; is computed as follows:

€4, = arg maxc; (11)
i€eC*
where C* = {c],...,c},} is the posterior probability distribution over classes.

Computational Complexity. The computational complexity of our method
is the time required to perform both the learning phase and the classification
phase. Regarding the learning phase, the computational complexity overlaps the
time needed to build the Markov chain transition matrix, say time(MCTM),
which is

time(MCTM) = time(A) + time(B)
+time(A + B') + time(E) + time(F) (12)

Remember that A and B are the submatrices representing the state tran-
sitions having a term as current state. Similarly, £ and F' are the submatrices
representing the state transitions having a class as current state. time(A/ + B/)
is the temporal length of the normalization step, mandatory in order to observe
the probability unitarity property. On the other hand, E and F' are simply a null
and an identity matrix, requiring no computation. Thus, since time complexity
depends on these factors, all should be estimated.

The only assumption we can make is that in general |7| >> |C|. The time

needed to compute A is O(@ - (|Dtrain| + |Dtest])), which in turn is equal to
O(|IT12-(|Dtrain| +|Diest|))- Regarding transitions from terms to classes, building
the submatrix B requires O(|7| - |C| - |Dtrain|) time. In sentiment classification
problems we could also assume that |[D| >> |C| and, as a consequence, the
previous time becomes O(|7| - |Dirain|). The normalization step, which has to
be computed one time only for both A and B, is O(|T |- (|T|+|C])+|T|+|C]) =
O((IT|+1)-(|T|+C|)), which can be written as O(|7|?) given that [T| >> |C|.
Further, building the submatrix E requires O(]7|?) time, whereas for submatrix
F O(|T] - |C]) time is needed, which again can be written as O(|7]) given that
|7| >> |C|. Therefore, the overall complexity of the learning phase is

time(MCTM) ~ time(A)
= O(|T|2 : (|,Dtrain‘ + |Dtest|)) (13)
In the classification phase, two operations are performed for each document
to be categorized: the matrix product in Eq. 10, which requires time(M atProd),

and the maximum computation in Eq. 11, which requires time(Max). Hence, as
we can see below

time(CLASS) = time(MatProd) + time(Mazx) (14)
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the classification phase requires a time that depends on the previous mentioned
factors. The matrix product can be computed in O((|7] + |C|)? - [Diest|) time,
which can be written as O(|7 |?+| Dyest|) given that |7] >> |C|. On the other hand,
the maximum requires O(|C|-|Diest|) time. Since the assumption that |7] >> |C|
still holds, the complexity of the classification phase can be approximated by the
calculus of the matrix product.

Lastly, the overall complexity of our algorithm, say time(Algorithm), is as
follows:

time(Algorithm) = time(MCTM) + time(CLASS)
~ time(MCTM) = O(|T|* - (|Dtrain| + | Diest|)) (15)

This complexity is comparable with the best performing state of the art
methods.

3.2 Document Splitting into Sentences

The first variant we advance in this work consists in considering the sentence
granularity rather than the document granularity. In fact documents can be
composed of many sentences, possibly characterized by a different sentiment
orientation. It is not seldom to encounter documents expressing positive (resp.
negative) opinions about a list of aspects and ending with an overall opposite
sentiment summarized in few words. Examples of the underlying behavior are
“My car’s steering wheel always vibrates because of [...] The seat is not so com-
fortable [...] But in general I like my car.” or even “I read that book. Characters
are well described, their psychological profile is meticulously portrayed. However,
the plot is definitely boring and I always fall asleep while reading!”

During the text pre-processing phase, documents are split into sentences
using the set of characters Tok = {.,;,!,7} as tokenizers. In this process, we
should be careful of some exceptions that can occur and invalidate the splitting.
We only handle the most straightforward cases, like for example Ph.D., Dr.,
websites and emails. Anyway we are aware that, depending on the training set,
many nontrivial cases could negatively affect the splitting.

In this context, co-occurrences between terms are no longer to be evaluated
inside the same document, but within the same sentence. More formally, consid-

ering each document d, as a set of sentences d, = {pf,p3,...,p}}, Eq.3 can be
rewritten as follows:
Qjj = Qj; = Z Zwﬁ . U)fJ (16)
deD ped

Consequently, Eq. 5 becomes

0, i=j
A = Qj; = Z Z ,wtp7 . wfﬂ i 7&] (17)
d€D¢trainUDtest pEA ’
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Similarly, the transition from a term to a class in Eq.4 can be rewritten as

bij = Z Z wf: (18)

deD pied
where p? = {p; € d : ¢, = ¢;}. Likewise, Eq. 6 comes to be
i
S oo
d€D¢rain piE€d

In the classification phase, we modify Egs. 10 and 11 to label the single sen-
tences inside a document rather than the document itself:

pf:(wfl‘,...,wf:,cf,...,cjé,):ptxMC’TM (20)

= arg maxc; (21)
iecr

Cpt
where p; is a column vector having size (k + M).

The output labels for each sentence are finally combined by voting in order
to obtain the final category for the document to be classified:

cq = arg max|c?| (22)
ieC
where |c?| = |{p; € d : ¢, = ¢;}|. The computational complexity is now function

of the number of sentences in the corpus, rather than of the number of documents
as in the basic version.

3.3 Polarity-Driven State Transitions

A second alternative, orthogonal to the previous one, has been developed to
establish how much a term should be linked with the others and with classes.
To this purpose we have to take into account that the probability that the
current state has at time ¢t will be redistributed to the other states at time
t+ 1. So far this takes place based on co-occurrences, as stated by Egs. 5 and 6.
Although it might seem reasonable, it is not enough because the capability of
both the current state and the future state in discriminating among categories
is completely overlooked during state transitions. Some issues related to this
behavior could occur. For example, if the current state is not well polarized,
not only it will not be able to distinguish among classes, but it will likely be
connected to terms having conflicting sentiment. On the other hand, if a term
semantically related to the current state is not well polarized, it should not be
selected as future state because it will not be useful for classification.

In order to solve the just explained issues, we focus on what it should take
place during state transitions. The intuition is that the more the current state is
capable of discriminating among categories (i.e. it is polarity-bearing) the more
its probability will be given to classes. The remaining part will be distributed
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to the other terms in a proportional way not only to the semantic relationship
between the current state and the future state, but also to the capability of the
latter in distinguishing among classes. Everything we need to fulfil this twofold
goal already is in our basic version of the Markov chain. In fact, the capability
fi of a term ¢; in discriminating among categories can be defined as:

_ Jbiy —bi|

Ji bit + b

(23)
where b;; is what has been defined by Eq. 6 and we can notice that 0 < f; <1.1In
other words, f; is the portion of probability that t; will redistribute to classes in
a proportional way to the values computed by Eq.6. This means that polarity-
bearing terms are those that contribute the most to the classification process.
The remaining (1 — f;) will be split among terms according to the following
relation:

0, 1=17
= . 24
CL’L] f] Z wiwz‘i]7 Z#] ( )
d€DtrainUDtest

Notice that the transition probability depends not only on the semantic rela-
tionship among terms, but also on the capability of the destination term in
detecting categories.

We would like to remind that, according to Eq.9, when classifying a docu-
ment d; the initial state of the Markov chain was represented by wfl‘, . ,wf;.
Each weight wy, has to be multiplied by f; as well, since only polarity-bearing
terms should drive sentiment classification, spreading their probability when
performing a step in the Markov chain. The overall computational complexity is
aligned with that of the aforementioned basic approach.

4 Experiments

The Markov chain based methods have been implemented in a framework
entirely written in Java. Algorithms performance has been evaluated through
the comparison with Spectral feature alignment (SFA) by Pan et al. [22] and
Joint sentiment-topic model with polarity-bearing topics (PBT) by He et al.
[23], which, to the best of our knowledge, currently are the two best performing
approaches in cross-domain sentiment classification.

We used common benchmark datasets to be able to compare results, namely,
a collection of Amazon'® reviews about four domains: Book (B), DVD (D), Elec-
tronics (E) and Kitchen appliances (K). Each domain contains 1000 positive
and 1000 negative reviews written in English. The text pre-processing phase
described in Sect. 3.1 is applied to convert plain text into the bag-of-words rep-
resentation, possibly splitting documents into sentences when dealing with the
variant introduced in Sect. 3.2. Before the learning phase and the classification
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phase, we perform feature selection by means of y2, which turned out to be the
best performing technique for this purpose in [1].

Performance of every presented variant is shown below and compared with
the state of the art. Differently, the Kitchen domain is ruled out from the analysis,
in order for the results to be comparable with those reported in our previous
work.

4.1 Setup and Results

From now on we will use M Cg when referring to the Markov chain variant char-
acterized by splitting documents into sentences, M Cp for the polarity-driven
transitions one, M Cgp for the combination between them, whereas M Cg indi-
cates the basic approach.

In order to compare performance with M Cpg, we replicate the same experi-
ment that gave the best outcome in our previous work. Therefore, the training
set is composed of 1600 documents and the test set of 400 documents. The best
250 features are selected in the text pre-processing phase by means of x? scor-
ing function. The goodness of results is measured by accuracy, averaged over
10 random source-target splits and evaluated for each particular source-target
combination, namely B — D, D - B,B— FE, F— B, D — E, E — D, even
including in-domain configurations, such as B — B, D — D, E — E.

As we can notice in Fig.2, both the variants relying on sentence splitting
(i.e. MCg and MCgp) do not perform well. The reason for this outcome is to
be found in the learning phase, where the polarity of each sentence should be
taken into account, as stated by Eq. 18. However, in the Amazon corpus we are
only aware of the whole document polarity and not of the sentiment at sentence
level. Consequently we had to make the strong assumption that each sentence

UomcgluMcplinMCs  MCgp

80 79 79
T e 77 76
M 75 7475 — 75
73 73 ™ — 73 =
S 71 271 7170 i
(U 69
g 66 66 67
£ 65
§ 64 64
<
60 57

"B—-D D—-B B—-E E—B D—E E—D Average
Fig. 2. Cross-domain classification by comparing all the proposed Markov chain based
variants. The best 250 features are selected in accordance with the score output by x2.
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in a training set document has the same sentiment of the document itself, even
if this is definitely false in general. This could trivially bring to erroneously
consider sentiment at term level and, as a consequence, to bad performance.

On the other hand, looking at Fig.3 we can see a qualitative comparison
between MCp and MCpg. The reported examples show that polarity-driven
state transitions could be helpful for the classification process when there are
some polarity-bearing terms within the document to be classified. In fact, in such
cases M C'p classifier is much more confident with its prediction than M C'g. This
could also bring (as in example B) to correctly predict test instances failed by
the basic classifier.

Anyway even if M Cp is able to take advantage of polarity-bearing terms, its
accuracy does not outperform that of M Cp. This outcome could be explained
considering that there is no constraint that forces terms to redistribute their
probability to others having the same sentiment. Moreover, a document not con-

A) great 0.1
wast 0.1
book 0.1
disappoint 0.05 base (MC))
recommend 0.04 iction: iti
- prediction: positive
write 0.38 —
ion (pos/neg = 1.26)
book 0.25 psit> positive  0.558
beauti 0.23 negative  0.442
perfect 0.14 k
positive of % [perfect 0.7 geat 02
negative 0| %. | beaut 0.3 gift 01
actual class: 2 write 0.4 | ransition| recommend  0.05 polarity-driven (MC,)
ositive ' book 0.001 disappoint  0.03 prediction: positive
p . o (posineg = 4.81)
P ’ positive  0.828
9 negative 0.172
(B) wast 0.1
great 0.1
book 0.1
disappoint  0.05 base (MC,)
recommend  0.04 | prediction: positive
oor 0.4 ion os/neg = 1.012
P 057 ansit positive 0503 | "9 )
cast 0.23 negative  0.497
positive 0™ disappoint 0.2
negative 0] &, | cast 0.9 charact 0.1
[CR3 .
. &2, | poor 0.1 didn 0.1 i
actual class: %". classic 0.1 [ transition| better 0.1 polarity-driven (MC,)
negative great 0.04 | prediction: negative
positive 0 (posineg = 0.082)
negative 0 positive 0.076
negative 0.924

Fig. 3. Two examples of documents (A and B), represented as selected features with
associated weights, classified by using either MCp or MCp. Each of the rightmost
boxes only shows the 5 terms with the highest weights after the transition.
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taining most terms bearing its own polarity is likely to be misclassified because,
although terms are semantically related, they separately contribute to classi-
fication. This happens for example when a positive (resp. negative) document
expresses opposite opinions about some aspects before summarizing in few words
its overall polarity. Actually the context inside the document to be classified is
neglected, because the classification starts assuming to be in many different
states at the same time corresponding to the terms occurring in the document
itself. Then the step by step evolution of each state is independent of the others;
it is only determined by the semantic relationships between each term and the
others, learned when training the model.

Table 2 shows a comparison between our Markov chain based methods and
other works, namely SFA and PBT. Whereas MCg and MCgp are far away
from the state of the art, MCp and MCp achieve comparable results, despite
both SFA and PBT perform better on average. On the other side, we would like
to emphasize that our algorithms require much fewer features than the others,
i.e. 250 with respect to the 2000 needed by PBT and the more than 470000
needed by SFA. Therefore, since the computational complexity quadratically
grows with the number of features in all methods, the convergence of both MCpg
and M Cp is supposed to be dramatically faster than that of SFFA and PBT.

Lastly, we can see that similar considerations can be done in an in-domain
setting. Nothing needs to be changed in our methods to perform in-domain
sentiment classification, whereas other works use standard classifiers completely
bypassing the transfer learning phase.

Table 2. Performance of all the Markov chain based methods in both in-domain and
cross-domain sentiment classification, compared with other works. For each dataset,
the best accuracy is in bold.

Domain(s) | Other methods ‘ Markov chain method variants
SFA |PBT | MCs |MCsp |[MCp |MCp
Cross-domain experiments (source — target)

B—D 81.50% 81.00% |73.21% |70.92% | 76.92% | 77.95%
D— B 78.00% |79.00% | 72.91% 73.67% | 78.79% | 77.27%
B—FE 72.50% | 78.00 % | 66.24 % | 64.45% | 74.80 % | 72.68 %
E—B 75.00 % | 73.50% | 65.56 % | 63.52% | 71.65% | 71.13 %
D—E 77.00% |79.00% |70.54% 70.28% |79.21% | 76.58 %
E—D 77.50% 76.00% |65.15% | 57.32% | 73.91% | 74.68 %
Average |76.92% | 77.75% |68.94% | 66.69% | 75.88% | 75.05%
In-domain experiments
B — B 81.40% | 79.96 % | 73.72% | 72.45% | 76.77% | 77.78 %
D— D 82.55% | 81.32% |78.34% |79.60% | 83.50 % | 82.49 %
E—FE 84.60 % | 83.61% | 77.78 % | 78.54 % | 80.90 % | 79.55%
Average |82.85% |81.63% |76.61% | 76.86% |80.39% |79.94%
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5 Conclusions

In this work we presented some variants of the Markov chain based method
already advanced in [1] to accomplish sentiment classification in both in-domain
and cross-domain settings.

The first one consists in considering documents at the sentence granularity
instead of perceiving them as a whole. Results dealing with this expedient are
not good, probably because we made the strong assumption that, when learning
the model, sentences have the same polarity of the document including them.
A possible walk around is introducing a threshold parameter that establishes
the probability that a sentence has the same polarity of the document where
it appears. Another viable improvement consists in changing the way sentence
labels are folded together to output the final category for the test document.
Moreover, when a review is long, the final part usually bears the same sentiment
of the entire text, because it contains a summary of the author’s thought. On the
contrary when it is short, it is likely that the author immediately summarizes
his opinion without using terms bearing conflicting sentiment. In both cases,
taking only the last few sentences into account could be profitable. A further
alternative is using document splitting into sentences just to limit co-occurrences
among terms rather than to change the connection between terms and classes.

The second illustrated approach addresses the problem of steering the prob-
ability each state has at time ¢ to other states at time ¢ + 1 that are capable of
discriminating among categories. Although being comparable, this variant does
not outperform our basic Markov chain approach. The outcome is somewhat sur-
prising if we think that the classification is driven by polarity-bearing terms. The
reason is probably to be found in the fact that there is no constraint that forces
terms to redistribute their probability to others having the same sentiment. To
overcome this problem we might limit terms spreading their probability to others
in a way such that the more the current term is able in discriminating among
categories the more it should give its probability to other terms having the same
sentiment orientation.

Apart from the mentioned flaws, both the presented variants preserve all
the advantages of our basic Markov chain based method. Indeed, they not only
act as classifiers, but also allow transfer learning from source domain to target
domain in cross-domain problems. The polarity-driven state transitions variant
achieves comparable performance in terms of accuracy with the state of the art,
whereas the document splitting based ones are outperformed, perhaps due to
the strong assumption made. On the other side, all the introduced techniques
require lower parameter tuning than previous works. Furthermore, in spite of
having a comparable computational complexity, growing quadratically with the
number of features, much fewer terms are demanded to obtain good accuracy.

Future work should aim to improve the algorithm effectiveness. In addition to
the specific aspects proposed to enhance the particular variants, we believe that
the hypotheses we rely on should be better analyzed. For example, the algorithm
could suffer from the assumption to be in many different states at the same time,
made when a test document is required to be classified. In fact the step by step
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evolution of each state is independent of the others and consequently context
information ends up being overlooked. A possible way to walk could take into
account ngram features rather than just unigrams. Another option in order to
introduce context information is to consider grammatical relations among terms
for the sake of detecting patterns.

After having enhanced the algorithms accuracy, performance in a 3-classes
setting (i.e. adding the neutral category) could also be tested. On the other hand,
due to their generality, our methods might be applied as is in text categorization
problems. Finally, their applicability could be easily extended to other languages,
because they only depend on co-occurrences among terms.
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