
Open-Source Search Engines in the Cloud

Khaled Nagi(&)

Faculty of Engineering, Department of Computer and Systems Engineering,
Alexandria University, Alexandria, Egypt

khaled.nagi@alexu.edu.eg

Abstract. The key to the success of the analysis of petabytes of textual data
available at our fingertips is to do it in the cloud. Today, several extensions exist
that bring Lucene, the open-source de facto standard of textual search engine
libraries, to the cloud. These extensions come in three main directions: imple-
menting scalable distribution of the indices over the file system, storing them in
NoSQL databases, and porting them to inherently distributed ecosystems. In this
work, we evaluate the existing efforts in terms of distribution, high availability,
fault tolerance, manageability, and high performance. We are committed to
using common open-source technology only. So, we restrict our evaluation to
publicly available open-source libraries and eventually fix their bugs. For each
system under investigation, we build a benchmarking system by indexing the
whole Wikipedia content and submitting hundreds of simultaneous search
requests. By measuring the performance of both indexing and searching oper-
ations, we report of the most favorable constellation of open-source libraries that
can be installed in the cloud.

Keywords: Full-text searching � Indexing � Distributed ecosystems � NoSQL �
Cloud

1 Introduction

Since the early 2010s, search engines took over the job of performing intelligent textual
analytics of petabytes of data. The most prominent open-source projects in this area are
Solr [29] and Elasticsearch [14]. While Solr seems to be more commonly used in
information retrieval domains, Elasticsearch is gaining more popularity in the area of
data analysis due to its data visualization tool Kibana [9]. Both have Lucene [19] at
their heart. Lucene is the de-facto standard search engine library. It is based on research
dating back to 1990 [5].

The first attempt to scale Lucene beyond the classical file system is presented in
[20]. Lucene storage classes are extended to store the index to and traverse the index
from the relational database management systems, such as MySQL. Back then, the
storage API was not standardized and undergone many changes. After the wide-spread
of NoSQL database management systems and distributed BigData systems, such as
Hadoop, the mean-time standardized Lucene storage API is ported to these emerging
technologies in several open-source prototypes. A good overview of these efforts are
found in [11].

© Springer International Publishing AG 2016
A. Fred et al. (Eds.): IC3K 2015, CCIS 631, pp. 100–117, 2016.
DOI: 10.1007/978-3-319-52758-1_7

In this work, we investigate these open-source implementations as we believe that
the key to the success of any large-scale search engine will remain openness. We
explicitly refrain from adding any customized implementation to the off-the-shelf
open-source components. In the case of the presence of bugs in these publicly available
systems, we attempt to solve them. Other than fixing bugs, we apply only the tweaks
supplied by the official performance tuning recommendations from the providers.

Our contribution is the independent evaluation of the existing approaches in terms
of support for distribution. The main focus is the evaluation of the performance of both
indexing and searching of these systems. Moreover, a robust distributed search engine
must support data partitioning, replication and must be always consistent. So,
we investigate the effect of node failures. Furthermore, we take into consideration the
ease of management of the cluster.

The rest of the paper is organized as follows. In Sect. 2, we describe the properties
of a distributed highly-scalable search engine. We also give a background of the
technologies. In Sect. 3, we describe the architecture of each system under investiga-
tion. In Sect. 4, we present the performance evaluation based on the benchmarking
scenario that we constructed. Section 5 concludes the paper.

2 Background and Related Work

The following properties must be available in any cloud-based large-scale search
engine:

• Partitioning (sharding): It is splitting the index into several independent sections,
usually called shards. Each shard is a separate index and is usually indexed inde-
pendently. Depending on the sharding strategy, a search query is directed to the
corresponding shard(s) and each result is merged and returned to the user.

• Replication: It means storing various copies of the same data to increase the data
availability. On a system built over commodity hardware, such as Amazon EC2 [1]
or Microsoft Azure [3], replication protects against the loss of data. Additionally,
replication is also used to increase the throughput of index reads.

• Consistency: Depending on a relaxed definition of consistency, a newly indexed
document is not necessarily made available to the next search request. However, the
index data structure must be consistent under whatever storage model used to store
it. Consistency between the internal blocks of a single index must be guaranteed all
the time, whereas consistency across the independent shards is not a must.

• Fault-Tolerance: It means the absence of any Single Point of Failure (SPoF) in the
system. In case of the failure of a node, the whole search engine should not be go
offline.

• Manageability: The administration of the nodes of a cloud-based search engine must
be made easily: either through a Command Line Interface (CLI), programmatically
embeddable interface, e.g., JMX, or most preferably via web administration consoles.

• High Performance: It means that the response time for query processing should be
under a couple of seconds under a full load of concurrent search requests. Indexing
of new documents should be done in parallel.

Open-Source Search Engines in the Cloud 101

2.1 Lucene-Based Search Engines

A full text search index is usually a variation of the inverted index structure [5]. Indexing
begins with collecting the available set of documents by the crawler. A crawler consists
in general of several hundreds of data gathering threads. The parser in these threads
converts the collected documents to a stream of plain text. In the analysis phase, the
stream of data is tokenized according to predefined delimiters, such as blank, tab,
hyphen, etc. Then, all stop words are removed from the tokens. A stem analyzer usually
reduces the tokens to their roots to enable phonetic searches. Searching begins with
parsing the user query using the same parser used in the indexing process. This is a must
or else the matching documents will not be exactly the ones needed. The tokens have to
be analyzed by the same analyzer used for indexing as well. Then, the index is traversed
for possible matches. The fuzzy query processor is responsible for defining the match
criteria and the score of the hit according to a calculated distance vector.

Lucene [19] is at the heart of almost every full-text search engine. It provides
several useful features, such as ranked searching, fielded searching and sorting.
Searching is done through several query types including: phrase queries, wildcard
queries, proximity queries, range queries. It allows for simultaneous indexing and
searching by implementing a simple pessimistic locking algorithm [17].

An important internal feature of Lucene is that it uses a configurable storage engine.
It comes with a codec to store the index on the disc or maintain it in-memory for
smaller indices. The internal structure of the index file is public and is platform
independent [16]. This ensures its portability. Back in 2007, this concept was used to
store the index efficiently into Relational Database Management Systems [20]. The
same technique is used today to store the index in other NoSQL databases, such as
Cassandra [15] and mongoDB [23].

Apache Solr [29] is built on-top of Lucene. It is a web application that can be
deployed in any servlet container. It adds the following functionality to Lucene:

• XML/HTTP/JSON APIs,
• Hit highlighting,
• Faceted search and filtering,
• Range queries,
• Geospatial search,
• Caching,
• Near Real-Time (NRT) searching of newly indexed documents, and
• A web administration interface.

SolrCloud [29] was released in 2012. It allows for both sharding and replication of
the Lucene indexes. The management of this distribution is seamlessly integrated into
an intuitive web administration console. Figure 1 illustrates the configuration of one of
our setups in the web administration console.

Elasticsearch [14] evolved almost in parallel to Solr and SolrCloud. Both bring the
same set of features. Both are very performant. Both are open-source and use a different
combination of open-source libraries. At their hearts, both have Lucene. In general,
Solr seems to be slightly more popular than Elasticsearch in information retrieval
domains; whereas Elasticsearch is expanding more in the direction of data analytics.

102 K. Nagi

2.2 NoSQL Databases

The main strength of NoSQL databases comes from their ability to manage extremely
large volumes of data. For this type of applications, ACID transaction properties are too
restrictive. More relaxed models emerged such as the CAP theory or eventually con-
sistent emerged [4]. It means that any large-scale distributed DBMS can guarantee for
two of three aspects: Consistency, Availability, and Partition tolerance. In order to
solve the conflicts of the CAP theory, the BASE consistency model (BAsically, Soft
state, Eventually consistent) is defined for modern applications [4]. This principle goes
well with information retrieval systems, where intelligent searching is more important
than consistent ones.

A good overview of existing NoSQL database management systems can be found
in [8]. Mainly, NoSQL database systems fall into four categories:

• graph databases,
• key-value systems,
• column-family systems, and
• document stores.

Graph databases concentrate on providing new algorithms for storing and pro-
cessing very large and distributed graphs. They are often faster for associative data sets.
They can scale more naturally to large data sets as they do not require expensive join
operations. Neo4j [21] is a typical example of a graph databases.

Key-value systems use associative arrays (maps) as their fundamental data structure.
More complicated data structures are often implemented on top of the maps. Redis [25]
is a good example of a basic key-value systems.

The data model of column-family systems provides a structured key-value store
where columns are added only to specified keys. Different keys can have different
number of columns in any given family. A prominent member of the column
family stores is Cassandra [15]. Apache Cassandra is a second generation of
distributed key value stores; developed at Facebook. It is designed to handle very large
amounts of data spread across many commodity servers without a single point of

Fig. 1. Screenshot of the web administration console.

Open-Source Search Engines in the Cloud 103

failure. Replication is done even across multiple data centers. Nodes can be added to
cluster without downtime.

Document-oriented databases are also a subclass of key-value stores. The difference
lies in the way the data is processed. A document-oriented system relies on internal
structure in the document order to extract metadata that the data-base engine uses for
further optimization. Document databases are schema-less and store all related infor-
mation together. Documents are addressed in the database via a unique key. Typically,
the database constructs an index on the key and all kinds of metadata. mongoDB [23],
first developed in 2007, is considered to be the most popular NoSQL nowadays [6].
mongoDB provides high availability with replica sets.

In all attempts to store Lucene index files in NoSQL databases, the contributors
take the logical index file as starting point. The set of logical files are broken into
logical blocks that are stored in the database. It is therefore clear that plain key-value
data stores and graph databases are not suitable for storing a Lucene index. On the other
hand, document stores, such as mongoDB, are ideal stores for Lucene indices. One
Lucene logical file maps easily to a mongoDB document. Similarly, the Lucene logical
directory (files) is mapped to a Cassandra column family (rows), which is captured
using an inherited implementation of the abstract Lucene Directory class. The files
of the directory are broken down into blocks (whose sizes are capped). Each block is
stored as the value of a column in the corresponding row.

2.3 Highly Distributed Ecosystems

After the release of [7], Doug Cutting worked on a Java-based MapReduce imple-
mentation to solve scalability issues on Nutch [13]; which is an open-source web
crawler software project to feed the indexer of the search engine with textual content.
This was the base for the Hadoop open source project; which became a top-level
Apache Foundation project. Currently, the main Hadoop project includes four modules:

• Hadoop Common: It supports the other Hadoop modules.
• Hadoop Distributed File System (HDFS): A distributed file system.
• Hadoop YARN: A job scheduler and cluster resource management.
• Hadoop MapReduce: A YARN-based system for parallel processing of large data

sets.

Each Hadoop task (Map or Reduce) works on the small subset of the data it has
been assigned so that the load is spread across the cluster. The map tasks generally
load, parse, transform, and filter data. Each reduce task is responsible for handling a
subset of the map task output. Intermediate data is then copied from mapper tasks by
the reducer tasks in order to group and aggregate the data. It is definitely appealing to
use the MapReduce framework in order to construct the Lucene index using several
nodes of a Hadoop cluster.

The input to a MapReduce job is a set of files that are spread over the Hadoop
Distributed File System (HDFS). In the end of the MapReduce operations, the data is
written back to HDFS. HDFS is a distributed, scalable, and portable file system.
A Hadoop cluster has one namenode and a set of datanodes. Each datanode serves up

104 K. Nagi

blocks of data over the network using a block protocol. HDFS achieves reliability by
replicating the data across multiple hosts. Hadoop recommends a replication factor of
3. Since the release of Hadoop 2.0 in 2012, several high-availability capabilities, such
as providing automatic failover of the namenode, are implemented. This way, HDFS
comes with no single point of failure. HDFS was designed for mostly immutable files
[22] and may not be suitable for systems requiring concurrent write-operations. Since
the default storage codec for Solr is append-only, it matches HDFS. With the extreme
scalability, robustness and widespread of Hadoop clusters, it offers the perfect store for
Solr in Cloud-based environments.

Additionally, there are three ecosystems that can be used in building distributed
search engines: Katta, Blur and Storm.

Katta [12] brings Apache Hadoop and Solr together. It brings search across a
completely distributed MapReduce-based cluster. Katta is an open-source project that
uses the underlying Hadoop HDFS for storing the indices and providing access to
them. Unfortunately, the development of Katta has been stopped. The main reason is
the inclusion of several of the Katta features within the SolrCloud project.

Apache Blur [2] is a distributed search engine that can work with Apache
Hadoop. It is different from the traditional big data systems in that it provides a
relational data model-like storage on top of HDFS. Apache Blur does not use Apache
Solr; however, it consumes Apache Lucene APIs. Blur provides data indexing using
MapReduce and advanced search features; such as a faceted search, fuzzy, pagination,
and a wildcard search. Blur shard server is responsible for managing shards. For
Synchronization, it uses Apache ZooKeeper [32]. Blur is still in the apache incubator
status. The current release version 0.2.3 works with Hadoop 1.x and is not validated
using the scalability features coming with Hadoop 2.x.

The third project Storm [30] is also in its incubator state at Apache. Storm is a real
time distributed computation framework. It processes huge data in real time. Apache
Storm processes massive streams of data in a distributed manner. So, it would be a
perfect candidate to build Lucene indices over large repositories of documents once it is
reaches the release state. Apache Storm uses the concept of Spout and Bolts. Spouts are
data inputs; this is where data arrives in the Storm cluster. Bolts process the streams
that get piped into it. They can be fed data from spouts or other bolts. The bolts can
form a chain of processing, with each bolt performing a unit task in a concept similar to
MapReduce.

3 Systems Under Investigation

3.1 Solr on Cassandra

Solandra is an open-source project that uses Cassandra, the column-based NoSQL
database, instead of the file system for storing indices in the Lucene index format [16].
The project is very stable. Unfortunately, the last commit dates back to 2010. The
current Solandra version available for download uses Apache Solr 3.4 and Cassandra
0.8.6. Solandra does not use SolrCloud since it was not present at the time of the
development of the open-source project. The Cassandra-based distributed data storage

Open-Source Search Engines in the Cloud 105

is implemented behind the Façade CassandraDirectory. Solandra uses its own
index reader called SolandraIndexReaderFactory by overriding the default
index reader.

In the Solandra project, Solr and Cassandra run both within the same JVM.
However, with change in the configuration and the source code, we run a Cassandra
cluster instead of the single database. In a small implementation, the Cassandra cluster
spreads over 3 nodes as illustrated in Fig. 2. The larger cluster contains 7 nodes. On
Cassandra, each node exchanges information across the cluster every second. This
value can be change in its configuration file to match the hardware requirement.
A sequentially written commit log on each node captures write activity to ensure data
durability. Data is then indexed and written to an in-memory structure. Once the
memory structure is full, the data is written to disk in the SSTable data file. All writes
are automatically partitioned and replicated throughout the cluster. A cluster is arranged
as a ring of nodes. Clients send read/write requests to any node in the ring; that takes on
the role of coordinator node, and forwards the request to the node responsible for
servicing it. A partitioner decides which nodes store which rows.

Both sharding and replication are automatically made available by the Casandra
cluster. Cassandra also guarantees the consistency of the blocks read by its various
nodes. Although fault-tolerance is a strong feature of Cassandra, Solr itself is the single
point of failure in this implementation, due to the absence of the integration with
SolrCloud. Unfortunately, Solandra does not support the administration console of
Solr. The only management option is through the Cassandra CLI.

3.2 Lucene on mongoDB

Another open-source NoSQL-based project is LuMongo [18]. LuMongo is a simple
JAVA library that implements Lucene APIs and stores the index in mongoDB. All
data, including indices and documents, is stored in mongoDB. mongoDB supports
sharding and replication out of the box. LuMongo itself operates as another indepen-
dent cluster. On error, clients can fail to another cluster node. The exchange of the

Fig. 2. Our Solandra installation.

106 K. Nagi

cluster management information is done through an in-memory database called
Hazelcast. Nodes in the cluster can be added and removed dynamically through a
simple CLI command. Using the CLI, the user can perform the following operations:

• query the health status of cluster,
• list available indices, get their counts,
• submit simple queries, and
• fetch documents.

For example, the following CLI command registers a node in the cluster:

bash clusteradmin.sh --command registerNode --mongoConfig
mongo.properties --nodeConfig node.properties

--address 10.0.0.10

The following command starts a node:

bash startnode.sh --mongoConfig mongo.properties --
address 10.0.0.10 --hazelcastPort 5702

LuMongo indices are broken down into shards called segments. Each segment is an
independent Lucene standard index. A hash of the document’s unique identifier
determines which segment a document’s indexed fields will be stored into. In our
smaller implementation, illustrated in Fig. 3, the segments are stored in a 3 � 3
mongoDB cluster for the small setup and 7 shards and 3 replicas for the larger setup to
match the number of LuMongo servers; which is 3 and 7 respectively.

Fig. 3. Our LuMongo implementation.

Open-Source Search Engines in the Cloud 107

In this setup, sharding is implemented in both LuMongo and mongoDB. The
mongoDB takes care of partitioning seamlessly. mongoDB guarantees the consistency
of the index store, while LuMongo guarantees the consistency of the search result.
There is no single point of failure in mongoDB and LuMongo.

While running our experiments under heavy load of concurrent search requests, we
discover a memory leak within the LuMongo code. The problem causes the LuMongo
node to crash at approx. 60 concurrent search per node. On the positive side, the whole
distributed system does not fail. Load is distributed evenly among the available nodes.
However, the cost is degrading the performance. We track down the problem to be in
fetching the content of the documents after returning the document ids from the search
engine. Consequently, we fix the problem and deploy a patched LuMongo to our
experiments to eliminate this malefaction.

3.3 Solrcloud

SolrCloud [29] contains a cluster of Solr nodes. Each node runs one or more collec-
tions. A collection holds one or more shards. Each shard can be replicated among the
nodes. Apache ZooKeeper [32] is responsible for maintaining coordination among
various nodes, similar to Hazelcast in the LuMongo project. It provides load-balancing
and failover to the Solr cluster. Synchronization of status information of the nodes is
done in-memory for speed and is persisted on the disk at fixed checkpoints. Addi-
tionally, the ZooKeeper maintains configuration information of the index; such as
schema information and Solr configuration parameters. Together, they build a Zoo-
keeper ensemble. When the cluster is started, one of the Zookeeper nodes is elected as a
leader. Although distributed in reality, all Solr nodes retrieve their configuration
parameters in a central manner through the Zookeeper ensemble. Usually, there are
more than one Zookeeper for redundancy. All Zookeeper IPs are stored in a config-
uration file that is given to each Solr node at startup.

The following commands start ZooKeeper and Solr nodes respectively:

./bin/zkServer.sh start conf/zoo.cfg

./bin/solr restart -cloud -z
196.204.178.62:2181,196.204.178.63:2181,196.204.178.65:21
81 -p 9120 -s example/cloud/node2/solr -m 5g

SolrCloud distributes search across multiple shards transparently. The request gets
executed on all leaders of every shard involved. Search is possible with near-real time
(NRT); i.e., after a document is committed. Figure 4 illustrates our small cluster
implementation. We build the cluster using a Zookeeper ensemble consisting of 3
nodes. We install 3 SolrCloud instances on three different machines, define 3 shards
and replicate them 3 times. In the larger cluster, we extend the Zookeeper ensemble to
spread 7 machines. We use 7 SolrCloud instance to master 7 shards while keeping the
replication factor at 3.

108 K. Nagi

3.4 Solrcloud on Hadoop

Building SolrCloud on Hadoop is an extension to the implementation described in
Sect. 3.3. The same Zookeeper ensemble and SolrCloud instances are used. Solr is then
configured to read and write indices in the HDFS of Hadoop by implementing an
HdfsDirectoryFactory and implementing a lock type based on HDFS. Both the
directory factory and the lock implementation come with the current stable version of
Solr [26]. The following command starts SolrCloud with Hadoop as its storage
backend.

./bin/solr start -cloud -z 196.204.178.62:2181,
196.204.178.63:2181, 196.204.178.65:2181 -p 9152 -m 5g
-Dsolr.directoryFactory=HdfsDirectoryFactory
-Dsolr.lock.type=hdfs
-Dsolr.hdfs.home=hdfs://196.204.178.66:9161/user/nagi/62

Figure 5 illustrates our small cluster implementation. We leave replication to the
HDFS. We set the replication factor on HDFS to 3 to be consistent with the rest of the
setups. For the small cluster, we also use a 3 node Hadoop installation. For the large
cluster, we use a 7 node cluster.

Solr provides indexing using MapReduce in two ways. In the first way, the
indexing is done at the map side [27]. Each Apache Hadoop mapper transforms the
input records into a set of (key, value) pairs, which then get transformed into
SolrInputDocument. The Mapper task then creates an index from
SolrInputDocument. The Reducer performs de-duplication of different indices
and merges them if needed. In the second way, the indices are generated in the reduce

Fig. 4. Our SolrCloud implementation.

Open-Source Search Engines in the Cloud 109

phase [28]. Once the indices are created using either ways, they can be loaded by
SolrCloud from HDFS and used in searching. We use the first way and employ 20
nodes in the indexing process.

3.5 Functional Comparison

Table 1 summarizes the functional differences between all 4 systems under
investigation.

Fig. 5. Our SolrCloud implementation over Hadoop.

Table 1. Functional comparison of the systems under investigation.

Solr on
Cassandra

Lucene on
mongoDB

SolrCloud SolrCloud on
Hadoop

Sharding Done by
Cassandra

Done by
mongoDB

Done by Solr Done by Solr

Replication Done by
Cassandra

Done by
mongoDB

Sync. on the level of the
file system under to
coordination of Zookeeper

Done by HDFS

Consistency Guaranteed
by
Cassandra

Guaranteed by
LuMungo and
mongonDB

Done by Solr and managed
by Zookeeper

Guaranteed by
HDFS, Solr and
Zookeeper

Fault-tolerance Solr is
SPoF

No SPoF No SPoF No SPoF

Manageability CLI CLI Web Web for
Solr + web for
Hadoop

110 K. Nagi

4 Benchmarking

We build a full text search engine of the English Wikipedia [31] to evaluate the
performance of the system described in the previous Section. The index is built over
49 GB of textual content. We develop a benchmarking platform on top of each search
engine under investigation as illustrated in Fig. 6.

The searching workload generator composes queries of single terms, which are
randomly extracted from a long list of common English words. It submits them in
parallel to the application. The indexing workload generator parses the Wikipedia
dump and sends the page title, the timestamp, and most important the content to the
benchmarking platform workers. They pass them to the search engine cluster to be
indexed, thus simulating a web crawler. The benchmarking platform manages two
connection pools of worker threads. The first pool consists of several hundreds of
searching workers threads that process the search queries coming from the searching
workload generator. The second pool consists of indexing workers threads that process
the updated content coming from the indexing workload generator. Both worker types
submit their requests over http to the search engine cluster under investigation. The
performance of the system including that of the search engine cluster is monitored
using the performance monitor unit.

4.1 Input Parameters and Performance Metrics

We choose the maximum number of fetched hits to be 50. This is a realistic assumption
taking into consideration that no more than 25 hits are usually displayed on a web page.

Fig. 6. Components of the benchmarking platform.

Open-Source Search Engines in the Cloud 111

We choose to read the content of these 50 hits and not only the title while fetching the
resultset. This exaggerated implementation is intended to artificially stress test the
search engines clusters under investigation. The number of search threads is varied
from 32 to 320 to match the size of connection pool for the searching worker threads.
By relaxing the requirement of prefetching all the pages of the resultset, the number of
concurrent searching threads can be increased enormously. In case of high load, the
workload generator distributes its searching search threads over 4 physical machines to
avoid throttling the requests by the hosting client. Due to locking restrictions inherent
in Lucene, we restrict our experiments to maximum one indexing worker per node in
the search engine cluster.

In all our experiments, we monitor the response time of the search operations from
the moment of submitting the request till receiving the overall result. We also monitor
the system throughput in terms of:

• searches per second, and
• index inserts per hour.

Additionally, the performance monitor constantly monitors CPU and memory
usages of the machines running the search engine cluster.

4.2 System Configuration

In order to neutralize the effect of using virtualized nodes in globalized data cloud
centers, we conduct our experiments in an isolated cluster available at the Internet
Archive of the Bibliotheca Alexandrina [10]. The Bibliotheca Alexandrina possesses a
huge dedicated computer center for archiving the Internet, digitizing material at Bib-
liotheca Alexandrina and other digital collections.

The Internet Archive at the Bibliotheca Alexandrina has about 35 racks each rack is
comprised of 30 to 40 nodes and a gigabit switch connecting them. The 35 racks are
connected also with a gigabit switch. The nodes are based on commodity servers with a
total capacity of 7000 TB.

The Bibliotheca Alexandrina dedicated one rack with 20 nodes to our research for
approx. one month. The nodes are connected with a gigabit switch and are isolated
from the activities of the Internet Archive during the period of our experiments. Each
node has an Intel i5 CPU 2.6 GHz, 8 GB RAM, 4 SATA hard disks 3 TB each.

For each search engine cluster, we construct a small version and a larger one as
described in Sect. 3. The small cluster consists of three nodes each containing a shard
(a portion of the index) while the larger one is built over 7 nodes. In all installations
have a replication factor of 3.

4.3 Indexing

Indexing speed varies largely with the number of nodes involved in the index building
operation. Lucene; and hence Solr; employs a pessimistic locking mechanism while
inserting data into the index. This locking mechanism is being kept for all backend

112 K. Nagi

implementations. From our current experiments and from previous ones [20], we
conclude that there is no benefit in having more than one indexing thread per Lucene
index (or Solr shard).

This means that the increase in number of shards and their dedicated indexing
Lucene/Solr yields to a proportional increase in the speed of indexing. The increase is
also linear for all systems under investigation. In other words, the indexing speed of a 3
nodes cluster is 3 times that’s of a cluster consisting of a single node. Respectively, the
indexing speed of a 7 nodes cluster is 2.3 times that’s of a cluster consisting of 3 nodes.
A clear winner in this contest is SolrCloud on Hadoop that employs MapReduce in
indexing. Using all 20 nodes available in the MapReduce operation increases the speed
by factor of 18. A minimum overhead is wasted later on in merging the indices into 3
and 7 nodes, respectively.

In order to normalize a comparison between all systems, we plot the throughput of
using one indexing thread on a 3 shards, 3 replica cluster in Fig. 7. These numbers are
roughly multiplied by the number of nodes involved to get the overall indexing speed.

On the normalized scale, NoSQL backends bring very different results. Casandra
has by far the fastest rate of insertion (60% faster than SolrCloud). This experiment
confirms the results reported by [24] proving the high throughput of Cassandra as
compared to other NoSQL databases. On the other hand, mongoDB-based storage is
the slowest. SolrCloud brings very good results on the file system. The overhead of
storage on HDFS is about 26% which is very acceptable taking into consideration the
advantages of storing data on Hadoop clusters in cloud environments and the huge
speed-ups due to the use of MapReduce in indexing.

4.4 Searching

Searching is more important than indexing. We repeat the search experiments with the
number of search threads varying from 32 to 320. The duration of each experiment is
set to 15 min to eliminate any transient effect.

Fig. 7. Normalized indexing speed.

Open-Source Search Engines in the Cloud 113

The set of experiments is repeated for both the small cluster and the large cluster. The
response time for the small cluster is illustrated in Fig. 8 and the large cluster in Fig. 9.
The throughput in terms of number of searches per second versus the number of searching
threads is plotted in Fig. 10 for the small cluster and in Fig. 11 for the larger one.

The bad news is that the response time of the single Solr on the Cassandra cluster is
far higher than the other systems (>10 s). So, we dropped plotting its values for both
clusters. The same applies to the throughput, which was much lower than its coun-
terparts (<50 searches/second). Again this matches the findings in [24], where the high
throughput of Cassandra comes at the cost of read latency.

The good news is that the response time for the other systems is very much below
the usual 3 s threshold tolerated by a searching user. The maximum search time
measured on the small cluster is below 1.8 s and 1.4 s for the larger cluster. The curves

Fig. 8. Search time on the small cluster.

Fig. 9. Search time on the large cluster.

114 K. Nagi

also show that the response time of the larger cluster is better than the smaller cluster
under all settings. This means that the performance of the system is enhanced by the
increase of the number of nodes. The system did not achieve its saturation yet.

The figures also illustrate the impact of HDFS on the response time and the overall
throughput of the search. Although the search time is increased by almost 40% and the
throughput is almost halved, the absolute values remain far below the user threshold of
3 s by retrieving the hits and the contents of each hit for a result-set size of 50 in less
than 2 s.

Another important remark is that the performance of all systems degrade gracefully
including LuMongo after fixing the memory leak problem found in the original
implementation.

The throughput curves, Figs. 10 and 11, illustrate that the throughput saturates after
a certain number of concurrent search threads. In the small cluster, Fig. 10, the three
setups saturate at 64 concurrent threads. On the large cluster, Fig. 11, this number
increases to 128.

Fig. 10. Throughput of the small cluster.

Fig. 11. Throughput of the large cluster.

Open-Source Search Engines in the Cloud 115

5 Conclusion

In this paper, we investigate the available options for building large-scale search
engines that we deploy in a private Cloud. We restrict ourselves to open-source
libraries and do not add extra implementation other that publicly available. Never-
theless, we allow ourselves to fix bugs that we encounter in the available code. We
investigate each variation, in terms of scalability through data partitioning, redundancy
through replication, consistency, and the ease of management. We build a bench-
marking platform on top of the systems under investigation. For each variation, we
construct a small and a large cluster. The results of the experiments show that the
combination of Solr and Hadoop provide the best tradeoff in terms of scalability,
stability and manageability. Search engines based on NoSQL databases offer either a
superior indexing speed, or fast searching times, which seem to be mutually exclusive
in our settings.

Acknowledgements. We Would like to Thank the Bibliotheca Alexandrina for Providing Us
with the Necessary Hardware for Conducting the Benchmarking Experiments.

References

1. Akioka, S., Muraoka, Y.: HPC Benchmarks on Amazon EC2. In: IEEE 24th International
Conference on Advanced Information Networking and Applications Workshops (2010)

2. Blur (Incubating) Home. https://incubator.apache.org/blur/. Accessed Jan (2016)
3. Bojanova, I., Samba, A.: Analysis of cloud computing delivery architecture models. In:

IEEE Workshops of International Conference on Advanced Information Networking and
Applications (2011)

4. Brewer, E.: Towards robust distributed systems. In: ACM Symposium on Principles of
Distributed Computing (2000)

5. Cutting, D., Pedersen, J.: Optimizations for dynamic inverted index maintenance. In: SIGIR
1990 (1990)

6. DB-Engines - Knowledge Base of Relational and NoSQL Database Management Systems.
http://db-engines.com/en/ranking. Accessed Jan (2016)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

8. Edlich, S., Friedland, A., Hampe, J., Brauer, B.: NoSQL: Introduction to the World of
Non-relational Web 2.0 Databases (In German) NoSQL: Einstieg in die Welt nichtrela-
tionaler Web 2.0 Datenbanken. Hanser Verlag, Munich (2010)

9. Gupta, Y.: Kibana Essentials. Packt Publishing, Birmingham (2015)
10. Internet Archive at Bibliotheca Alexandrina. http://www.bibalex.org/en/project/details?

documetid=283. Accessed Jan (2016)
11. Karambelkar, H.V.: Scaling Big Data with Hadoop and Solr, 2nd edn. Packt Publishing,

Birmingham (2015)
12. Katta. http://katta.sourceforge.net/. Accessed Jan (2016)
13. Khare, R., et al.: Nutch: a flexible and scalable open-source web search engine. Technical

report. Oregon State University, pp. 32–32 (2004)

116 K. Nagi

https://incubator.apache.org/blur/
http://db-engines.com/en/ranking
http://www.bibalex.org/en/project/details?documetid=283
http://www.bibalex.org/en/project/details?documetid=283
http://katta.sourceforge.net/

14. Kuc, R., Rogozinski, M.: Mastering Elasticsearch, 2nd edn. Packt Publishing, Birmingham
(2015)

15. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44(2), 35–40 (2010)

16. Lucene - Index File Formats. https://lucene.apache.org/core/3_0_3/fileformats.html. Acces-
sed Jan (2016)

17. Lucene – LockFactory. http://lucene.apache.org/core/4_8_0/core/org/apache/lucene/store/
LockFactory.html. Accessed Jan (2016)

18. LuMongo Realtime Time Distributed Search. http://lumongo.org/. Accessed Jan (2016)
19. McCandless, M., Hatcher, E., Gospodnetiæ, O.: Lucene in Action, 2nd edn. Manning,

Greenwich (2010)
20. Nagi, K.: Bringing information retrieval back to database management systems. In:

International Conference on Information and Knowledge Engineering, IKE 2007 (2007)
21. Neo4j. http://www.neo4j.org. Accessed Jan (2016)
22. Pessach, Y.: Distributed Storage: Concepts, Algorithms, and Implementations. CreateSpace

Independent Publishing Platform (2013)
23. Plugge, E., Hawkins, D., Membrey, P.: The Definitive Guide to mongoDB: The NoSQL

Database for Cloud and Desktop Computing. Apress, Berkeley (2010)
24. Rabl, T., et al.: Solving big data challenges for enterprise application performance

management. VLDB Endow. 5(12), 1724–1735 (2012)
25. Redis. http://redis.io/. Accessed Jan (2016)
26. Solr - Apache Lucene - The Apache Software Foundation! http://lucene.apache.org/solr/.

Accessed Jan (2016)
27. Solr-1045, Build Solr index using Hadoop MapReduce. https://issues.apache.org/jira/

browse/SOLR-1045. Accessed Jan (2016)
28. Solr-1301, Add a Solr contrib that allows for building Solr indices via Hadoop’s

Map-Reduce. https://issues.apache.org/jira/browse/SOLR-1301. Accessed Jan (2016)
29. Smiley, D., Pugh, E., Parisa, K., Mitchell, M.: Apache Solr Enterprise Search Server, 3rd

edn. Packt Publishing, Birmingham (2015)
30. Storm - The Apache Software Foundation. https://storm.apache.org/. Accessed Jan (2016)
31. Wikipedia article dump. https://dumps.wikimedia.org/enwiki/. Accessed Jan (2016)
32. Zookeeper. https://zookeeper.apache.org/. Accessed Jan (2016)

Open-Source Search Engines in the Cloud 117

https://lucene.apache.org/core/3_0_3/fileformats.html
http://lucene.apache.org/core/4_8_0/core/org/apache/lucene/store/LockFactory.html
http://lucene.apache.org/core/4_8_0/core/org/apache/lucene/store/LockFactory.html
http://lumongo.org/
http://www.neo4j.org
http://redis.io/
http://lucene.apache.org/solr/
https://issues.apache.org/jira/browse/SOLR-1045
https://issues.apache.org/jira/browse/SOLR-1045
https://issues.apache.org/jira/browse/SOLR-1301
https://storm.apache.org/
https://dumps.wikimedia.org/enwiki/
https://zookeeper.apache.org/

	Open-Source Search Engines in the Cloud
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Lucene-Based Search Engines
	2.2 NoSQL Databases
	2.3 Highly Distributed Ecosystems

	3 Systems Under Investigation
	3.1 Solr on Cassandra
	3.2 Lucene on mongoDB
	3.3 Solrcloud
	3.4 Solrcloud on Hadoop
	3.5 Functional Comparison

	4 Benchmarking
	4.1 Input Parameters and Performance Metrics
	4.2 System Configuration
	4.3 Indexing
	4.4 Searching

	5 Conclusion
	Acknowledgements
	References

