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Abstract. In the research field of time series analysis and mining, the nearest
neighbor classifier (1NN) based on the dynamic time warping distance (DTW) is
well known for its high accuracy. However, the high computational complexity
of DTW can lead to the expensive time consumption of the classifier. An
effective solution is to compute DTW in the piecewise approximation space
(PA-DTW). However, most of the existing piecewise approximation methods
must predefine the segment length and focus on the simple statistical features,
which would influence the precision of PA-DTW. To address this problem, we
propose a novel piecewise factorization model (PCHA) for time series, where an
adaptive segment method is proposed and the Chebyshev coefficients of sub-
sequences are extracted as features. Based on PCHA, the corresponding
PA-DTW measure named ChebyDTW is proposed for the 1NN classifier, which
can capture the fluctuation information of time series for the similarity measure.
The comprehensive experimental evaluation shows that ChebyDTW can support
both accurate and fast 1NN classification.
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1 Introduction

Time series classification is an important topic in the research field of time series
analysis and mining. A plethora of classifiers have been developed for this topic [1, 2],
e.g., decision tree, nearest neighbor (1NN), naive Bayes, Bayesian network, random
forest, support vector machine, rotation forest, etc. However, the recent empirical
evidence [3–5] strongly suggests that, with the merits of robustness, high accuracy, and
free parameter, the simple 1NN classifier employing the generic time series similarity
measure is exceptionally difficult to beat. Besides, due to the high precision of dynamic
time warping distance (DTW), the 1NN classifier based on DTW has been found to
outperform an exhaustive list of alternatives [5], including decision trees, multi-scale
histograms, multi-layer perception neural networks, order logic rules with boosting, as
well as the 1NN classifiers based on many other similarity measures. However, the
computational complexity of DTW is quadratic to the time series length, i.e., O(n2),
and the 1NN classifier has to search the entire dataset to classify an object. As a result,
the 1NN classifier based on DTW is low efficient for the high-dimensional time series.
To address this problem, researchers have proposed to compute DTW in the alternative
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piecewise approximation space (PA-DTW) [6–9], which transforms the raw data
into the feature space based on segmentation, and extracts the discriminatory and
low-dimensional features for similarity measure. If the original time series with length
n is segmented into N(N << n) subsequences, the computational complexity of
PA-DTW will reduce to O(N2).

Many piecewise approximation methods have been proposed so far, e.g., piecewise
aggregation approximation (PAA) [6], piecewise linear approximation (PLA) [7, 10],
adaptive piecewise constant approximation (APCA) [8], derivative time series segment
approximation (DSA) [9], piecewise cloud approximation (PWCA) [11], etc. The most
prominent merit of piecewise approximation is the ability of capturing the local
characteristics of time series. However, most of the existing piecewise approximation
methods need to fix the segment length, which is hard to be predefined for the different
kinds of time series, and focus on the simple statistical features, which only capture the
aggregation characteristics of time series. For example, PAA and APCA extract the
mean values, PLA extracts the linear fitting slopes, and DSA extracts the mean values
of the derivative subsequences. If PA-DTW is computed on these methods, its preci-
sion would be influenced.

In this paper, we propose a novel piecewise factorization model for time series,
named piecewise Chebyshev approximation (PCHA), where a novel code-based seg-
ment method is proposed to adaptively segment time series. Rather than focusing on
the statistical features, we factorize the subsequences with Chebyshev polynomials, and
employ the Chebyshev coefficients as features to approximate the raw data. Besides,
the PA-DTW based on PCHA (ChebyDTW) is proposed for the 1NN classification.
Since the Chebyshev polynomials with the different degrees represent the fluctuation
components of time series, the local fluctuation information can be captured from time
series for the ChebyDTW measure. The comprehensive experimental results show that
ChebyDTW can support the accurate and fast 1NN classification.

The structure of this paper is as follows: The related work on data representation
and similarity measure for time series is reviewed in Sect. 2; Sect. 3 shows the pro-
posed methodology framework; the details of PCHA are presented in Sect. 4; Sect. 5
describes the ChebyDTW measure; Sect. 6 provides the comprehensive experiment
results and analysis; Sect. 7 concludes this paper.

2 Related Work

2.1 Data Representation

In many application fields, the high dimensionality of time series has limited the per-
formance of a myriad of algorithms. With this problem, a great number of data repre-
sentation methods have been proposed to reduce the dimensionality of time series [1, 2].
In these methods, the piecewise approximation methods are prevalent for their sim-
plicity and effectiveness. The first attempt is the PAA representation [6], which seg-
ments time series into the equal-length subsequences, and extracts the mean values of
the subsequences as features to approximate the raw data. However, the extracted single
sort of features only indicates the height of subsequences, which may cause the local
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information loss. Consecutively, an adaptive version of PAA named piecewise constant
approximation (APCA) [8] was proposed, which can segment time series into the
subsequences with adaptive lengths and thus can approximate time series with less error.
As well, a multi-resolution version of PAA namedMPAA [12] was proposed, which can
iteratively segment time series into 2i subsequences. However, both of the variations
inherit the poor expressivity of PAA. Another pioneer piecewise representation is the
PLA [7, 10], which extracts the linear fitting slopes of the subsequences as features to
approximate the raw data. However, the fitting slopes only reflect the movement trends
of the subsequences. For the time series fluctuating sharply with high frequency, the
effect of PLA on dimension reduction is not prominent. In addition, two novel piecewise
approximation methods were proposed recently. One is the DSA representation [9],
which takes the mean values of the derivative subsequences of time series as features.
However, it is sensitive to the small fluctuation caused by the noise. The other is the
PWCA representation [11], which employs the cloud models to fit the data distribution
of subsequences. However, the extracted features only reflect the data distribution
characteristics and cannot capture the fluctuation information of time series.

2.2 Similarity Measure

DTW [1, 2, 5] is one of the most prevalent similarity measures for time series, which is
computed by realigning the indices of time series. It is robust to the time warping and
phase-shift, and has high measure precision. However, it is computed by the dynamic
programming algorithm, and thus has the expensive O(n2) computational complexity,
which largely limits its application to the high dimensional time series [13]. To over-
come this shortcoming, the PA-DTWmeasures were proposed. The PAA representation
based PDTW [14] and the PLA representation based SDTW [10] are the early pioneers,
and the DSA representation based DSADTW [9] is the state-of-the-art method. Rather
than in the raw data space, they compute DTW in the PAA, PLA, and DSA spaces
respectively. Since the segment numbers are much less than the original time series
length, the PA-DTW methods can greatly decrease the computational complexity of the
original DTW. Nonetheless, the precision of PA-DTWs greatly depends on the used
piecewise approximation methods, where both the segment method and the extracted
features are crucial factors. As a result, with the weakness of the existing piecewise
approximation methods, the PA-DTWs cannot achieve the high precision. In our pro-
posed ChebyDTW, a novel adaptive segment method and the Chebyshev factorization
are used, which overcomes the drawback of the fixed segmentation, and can capture the
fluctuation information of time series for similarity measure.

3 Methodology Framework

Figure 1 shows the framework of the methods proposed in this paper, which consists of
two parts:

(a) Piecewise Chebyshev approximation (PCHA). The time series is first coded into
the binary sequence, and then segmented into the subsequences with adaptive
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lengths by matching the turning patterns. After that, the subsequences are fac-
torized with the Chebyshev polynomials and projected into the Chebyshev fac-
torization domain. The Chebyshev coefficients will be extracted as features to
approximate the raw data.

(b) ChebyDTW computation. DTW will be computed in the Chebyshev factorization
domain. Concretely, in the dynamic programming computation of DTW, the
subsequence matching over the Chebyshev features is taken as the subroutine,
where the squared Euclidean distance can be employed.

4 Piecewise Factorization

Without loss of generality, the relevant definitions are first given as follows.

Definition 1. (Time Series): The sample sequence of a variable X over n contiguous
time moments is called time series, denoted as T = {t1, t2, …, ti, …, tn}, where ti 2
R denotes the sample value of X on the i-th moment, and n is the length of T.

Definition 2. (Subsequence): Given a time series T = {t1, t2, …, ti, …, tn}, the subset
S of T that consists of the continuous samples {ti+1, ti+2, …, ti+l}, where 0 � i � n-l and
0 � l � n, is called the subsequence of T.

Fig. 1. The framework of the proposed methods.
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Definition 3. (Piecewise Approximation): Given a time series T = {t1, t2, …, ti, …,
tn}, which is segmented into the subsequence set S = {S1, S2, …, Sj, …, SN}, if 9 f:
Sj ! Vj = [v1, …, vm] 2 Rm, the set V = {V1, V2, …, Vj, …, VN} is called the
piecewise approximation of T.

4.1 Adaptive Segmentation

Inspired by the Marr’s theory of vision [15], we regard the turning points, where the
trend of time series changes, as a good choice to segment time series. However, the
practical time series is mixed with a mass of noise, which results in many trivial turning
points with small fluctuation. This problem can be simply solved by the efficient
moving average (MA) smoothing method [16].

In order to recognize the significant turning points, we first exhaustively enumerate
the location relationships of three adjacent samples t1–t3 with their mean l in time
series, as shown in Fig. 2. Six basic cell codes can be defined as Fig. 2(a), which is
composed by the binary codes d1–d3 of t1–t3, and denoted as U(t1, t2, t3) = (d1d2d3)b.
Six special relationships that one of t1–t3 equals to l are encoded as Fig. 2(b).

Based on the cell codes, all the minimum turning patterns (composed with two cell
codes) at the turning points can be enumerated as Fig. 3. Note that, the basic cell codes
010 and 101 per se are the turning patterns. Then, we employ a sliding window of
length 3 to scan the time series, and encode the samples within each window by Fig. 2.
In this process, all the significant turning points can be found by matching Fig. 3, with
which time series can be segmented into the subsequences with adaptive lengths.

However, the above segmentation is not perfect. Although the trivial turning points
can be removed with the MA, the “singular” turning patterns may exist, i.e., the turning
patterns appearing very close. As shown in Fig. 4, a Cricket time series from the UCR
time series archive [17] is segmented by the turning patterns (dash line), where the raw
data is first smoothed with the smooth degree 10 (sd = 10).
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Fig. 2. Three adjacent samples with the basic cell codes of (A) basic relationships, and
(B) specific relationships.
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Obviously, the dash lines can significantly segment time series, but the two black
dash lines are so close that the segment between them can be ignored. In view of this,
we introduce the segment threshold q that stipulates the minimum segment length. This
parameter can be set as the ratio to the time series length. Since the time series from a
specific field exhibit the same fluctuation characteristics, q is data-adaptive and can be
learned from the labeled dataset. Nevertheless, the segmentation is still primarily
established on the recognition of turning patterns, which determines the segment
number or lengths adaptively, and is essentially different from the principles of the
existing segmentation methods.

4.2 Chebyshev Factorization

At the beginning, it is necessary to z-normalize the obtained subsequences as a
pre-processing step. Rather than focusing on the statistical features, PCHA will fac-
torize each subsequence with the first kind of Chebyshev polynomials, and take the
Chebyshev coefficients as features. Since the Chebyshev polynomials with different
degrees represent the fluctuation components, the local fluctuation information of time
series can be captured in PCHA.

The first kind of Chebyshev polynomials are derived from the trigonometric
identity Tn(cos(h)) = cos(nh), which can be rewritten as a polynomial of variable t with
degree n, as Formula (1).

001 - 110 011 - 100 

100 - 011 

011 - 110 

110 - 001 

101 010 

100 - 001 

Fig. 3. The minimum turning patterns composed with two cell codes.

ρ

Fig. 4. Segmentation for the Cricket time series (sd = 10).
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TnðtÞ ¼
cosðn cos�1ðtÞÞ; t 2 ½�1; 1�
coshðn cosh�1ðtÞÞ; t� 1
ð�1Þn coshðn cosh�1ð�tÞÞ; t� � 1

8<
: ð1Þ

For the sake of consistent approximation, we only employ the first sub-expression
to factorize the subsequences, which is defined over the interval [−1, 1]. With the
Chebyshev polynomials, a function F(t) can be factorized as Formula (2).

FðtÞ ffi
Xn
i¼0

ciTiðtÞ ð2Þ

The approximation is exact if F(t) is a polynomial with the degree of less than or
equal to n. The coefficients ci can be calculated from the Gauss-Chebyshev Formula (3),
where k is 1 for c0 and 2 for the other ci, and tj is one of the n roots of Tn(t), which can be
get from the formula tj = cos[(j − 0.5)p/n].

ci ¼ k
n

Xn
j¼1

FðtjÞTiðtjÞ ð3Þ

However, the employed Chebyshev polynomials are defined over the interval [−1, 1].
If the subsequences are factorized with this “interval function”, they must be scaled
into the time interval [−1, 1]. Besides, the Chebyshev polynomials are defined every-
where in the interval, but time series is a discrete function, whose values are defined
only at the sample moments. To compute the Chebyshev coefficients, we would process
each subsequence with the method proposed in [18], which can extend time series into an
interval function. Given a scaled subsequence S = {(v1, t1), …, (vm, tm)}, where
−1 � t1 < … < tm � 1, we first divide the interval [−1, 1] into m disjoint subintervals
as follows:

Ii ¼
½�1; t1 þ t2

2 Þ; i ¼ 1
½ti�1;ti

2 ; ti þ tiþ 1
2 Þ; 2� i�m� 1

½tm�1 þ tm
2 ; 1�; i ¼ m

8<
:

Then, the original subsequence can be extended into a step function as Formula (4),
where each subinterval [ti, ti+1] is divided by the mid-point (ti + ti+1)/2. The first half
takes the value vi, and the second half takes vi+1.

FðtÞ ¼ vi; t 2 Ii; 1� i�m ð4Þ

After the above processing, the Chebyshev coefficients ci can be computed. For the
sake of dimension reduction, we only take the first several coefficients to approximate
the raw data, which can reflect the principal fluctuation components of time series.

Figure 5 shows the examples of (a) PAA, (b) APCA, (c) PLA, and (d) PCHA
representations for the stock time series of Google Inc. (symbol: GOOG) from
The NASDAQ Stock Market, which consists of the close prices at 800 consecutive
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trading days (2010/10/4-2013/12/5). As shown in Fig. 5(a), PAA extracts the mean
values of the subsequences with equal-length as features. In Fig. 5(b), APCA takes the
mean values and spans of the subsequences with adaptive-length as features, e.g.,
[−0.62, 134] for the first subsequence. In Fig. 5(c), PLA takes the linear fitting slopes
and spans of the subsequences with adaptive-length as features, e.g., [−0.0035, 96] for
the first subsequence. In Fig. 5(d), PCHA factorizes each subsequence and takes the
first four Chebyshev coefficients as features, e.g., [−3.8, 0.34, 3, −0.39] for the first
subsequence. It is obvious that the approximation of PCHA is different from the others,
which can well fit the local fluctuation characteristics of time series.

In the entire procedure, the time series only needs to be scanned once for the
adaptive segmentation and factorization. Thus, the computational complexity of PCHA
is O(kn), where k is the extracted Chebyshev coefficient number and much less than the
time series length n.

5 Similarity Measure

DTW is one of the most prevalent similarity measures for time series [5]. It exploits the
one-to-many aligning scheme to find the optimal alignment between time series, as
shown in Fig. 6. Thus, DTW can deal with the intractable basic shape variations, e.g.,
time warping and phase-shift, etc. Given a sample space F, time series T = {t1,
t2, …, ti, …, tm} and Q = {q1, q2, …, qj, …, qn}, ti, qj 2 F, a local distance measure
d: (x, y) ! R+ should be first set in DTW for measuring two samples. Then, a distance

(a) (b)

(c)     (d)

Fig. 5. PAA/APCA/PLA/PCHA representation examples.
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matrix C 2 Rm�n is computed, where each cell records the distance between each pair
of samples from T and Q respectively, i.e., C(i, j) = d(ti, qj). There is an optimal
warping path in C, which has the minimal sum of cells.

Definition 4. (Warping Path): Given the distance matrix C 2 Rm�n, if the sequence
p = {c1, …, cl, …, cL}, where cl = (al, bl) 2 [1: n] � [1: m] for l 2 [1: L], satisfies the
conditions that:

(i) c1 = (1, 1) and cL = (m, n);
(ii) cl+1 − cl 2 {(1, 0), (0, 1), (1, 1)} for l 2 [1: L − 1];
(iii) a1 � a2 � … � aL and b1 � b2 � … � bL;

Then, p is called warping path. The sum of cells in p is defined as Formula (5).

Up ¼ Cðc1ÞþCðc2Þþ � � � þCðcLÞ ð5Þ

Definition 5. (Dynamic Time Warping Distance): Given the distance matrix C 2 Rm�n

over time series T and Q, and its warping path set P = {p1, …, pi, …, px}, i, x 2 R+,
the minimal sum of cells in the warping paths Umin = {Un |Un � Uk, n, k 2 P} is
defined as the DTW distance between T and Q.

The computation of DTW performs with dynamic programming algorithm, which
would lead to the quadratic computational complexity to the time series length, i.e., O
(n2). Figure 7(a) shows the dynamic programming table with the optimal warping path
in DTW computation.

Based on PCHA, we propose a novel PA-DTW measure, named ChebyDTW,
which contains two layers: subsequence matching and dynamic programming com-
putation. Figure 7(b) shows the dynamic programming table with the optimal-aligned
path (red shadow) of ChebyDTW, where each cell records the subsequence matching
result over the Chebyshev coefficients. By the intuitive comparison with Fig. 7(a),
ChebyDTW would have much lower computational complexity than the original DTW.

With high computational efficiency, the squared Euclidean distance is a proper
measure for the subsequence matching. Given d Chebyshev coefficients are employed
in PCHA, for the subsequences S1 and S2, respectively approximated as C = [c1, …,
cd] and Ĉ = [ĉ1, …, ĉd], the squared Euclidean distance between them can be com-
puted as Formula (6).

T

Q

Fig. 6. One-to-many aligning scheme of DTW.
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DðC; ĈÞ ¼
Xd
i¼1

ðci � ĉiÞ2 ð6Þ

Over the subsequence matching, the dynamic programming computation performs.
Given that time series T with length m is segmented into M subsequences, and time
series Q with length n is segmented into N subsequences, ChebyDTW can be computed
as Formula (7). CT and CQ are the PCHA representations of T and Q respectively; C1

T

and C1
Q are the first coefficient vectors of CT and CQ respectively; rest(CT) means the

rest coefficient vectors of CT except for C1
T; the same meaning is taken for rest(CQ).

ChebyDTWðT ;QÞ ¼
0; if m ¼ n ¼ 0

1; if m ¼ 0 or n ¼ 0

DðCT
1 ;C

Q
1 Þþmin

ChebyDTW ½restðCTÞ;CQ�;
ChebyDTW ½CT ; restðCQÞ�;
ChebyDTW ½restðCTÞ; restðCQÞ�

8><
>:

9>=
>;

; otherwise

8>>>>>>>><
>>>>>>>>:

ð7Þ

6 Experiments

We evaluate the 1NN classifier based on ChebyDTW from the aspects of accuracy and
efficiency respectively. 12 real-world datasets provided by the UCR time series archive
[17] are employed, which come from the various application domains and are char-
acterized by the different series profiles and dimensionality. All the datasets have been

(a) (b)

Fig. 7. (a) Dynamic programming table with the optimal-aligned path (red shadow) of DTW,
(b) against that of ChebyDTW. (Color figure online)
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z-normalized and partitioned into the training and testing sets by the provider. Figure 8
shows the sample representative instances from each class of the datasets.

All parameters in the measures are learned on the training datasets by the DIRECT
global optimization algorithm [19], which is used to seek for the global minimum of
multivariate function within a constraint domain. The experiment environment is Intel
(R) Core(TM) i5-2400 CPU @ 3.10 GHz; 8G Memory; Windows 7 64-bit
OS; MATLAB 8.0_R2012b.

6.1 Classification Accuracy

Firstly, we take four PA-DTWs based on the statistical features as baselines, i.e.,
PDTW [14], SDTW [10], DTWAPCA [8], and DTWDSA [9], which are based on PAA,
PLA, APCA, and DSA representations respectively. Secondly, since PA-DTW is
computed over the approximate representation, its precision is regarded lower than the
measures computed on the raw data. To test this assumption, we also take 4 DTW
measures computed on the raw data as baselines, including the original DTW and its
variations, i.e., CDTW [3], CIDDTW [20], DDTW [21].

Tables 1 and 2 present the 1NN classification accuracy based on ChebyDTW and
the baselines respectively. The best results on each dataset are highlighted in bold. The
learned parameters are also presented, which could make each classifier achieve the
highest accuracy on each training dataset, including the segment threshold (q), the
smooth degree (sd), and the extracted Chebyshev coefficient number (h). For the sake of
dimension reduction, we learn the parameter h in the range of [1, 10] for ChebyDTW.

By the comparison, we find that, (1) the 1NN classifier based on ChebyDTW wins
all datasets over that based on the PA-DTW baselines. The superiority mainly derives
from the distinctive features extracted in ChebyDTW, which can capture the fluctuation
information for similarity measure. Concretely, as shown in Fig. 8, the practical time
series in the datasets have the relatively complicated fluctuation that can be transformed
into the wide Chebyshev domain, thus the difference between time series can be easily
captured by the Chebyshev coefficients. Whereas the statistical features extracted in the
baselines only focus on the aggregation characteristics of time series, which would
result in much fluctuation information loss.
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Fig. 8. Sample representative instances from each class of 12 datasets.
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(2) The classifier based on ChebyDTW has higher accuracy on more datasets than
the original DTW and its variations. The reason is apparent that, the noise mixed in the
time series can be filtered out by the Chebyshev factorization effectively, which is one
of the principal factors affecting the precision of similarity measures. Thus, the above
assumption that ChebyDTW has lower precision than the measures computed on the
raw data is not supported.

6.2 Computational Efficiency

The speedup of computational complexity gained by PA-DTW over the original DTW
is O(n2/w2), where n is the time series length and w is the segment number. It is
positively correlated with the data compression rate (DCR = n/w) of piecewise

Table 1. The accuracy of 1NN classifiers based on ChebyDTW and four PA-DTW baselines.

Dataset q sd h Cheby DTW PDTW SDTW DTWAPCA DTWDSA

Adiac 0.21 22 9 0.72 0.61 0.34 0.28 0.38
Beef 0.18 17 5 0.57 0.50 0.57 0.57 0.47
CBF 0.98 8 10 0.98 0.98 0.95 0.91 0.50
Chlorine. 0.73 25 8 0.65 0.60 0.55 0.56 0.62
CinC_ECG. 0.29 4 9 0.81 0.65 0.63 0.61 0.63
Coffee 0.51 14 9 0.89 0.79 0.75 0.82 0.61
ECG200 0.80 7 9 0.89 0.80 0.83 0.77 0.81
ECGFive. 0.73 17 9 0.91 0.79 0.68 0.68 0.57
FaceAll 0.51 29 10 0.73 0.63 0.50 0.63 0.71
FacesUCR 0.51 4 6 0.80 0.60 0.57 0.72 0.70
ItalyPower. 0.51 7 5 0.94 0.93 0.80 0.90 0.87
SonyAI. 0.95 25 6 0.80 0.76 0.73 0.76 0.70

Table 2. The accuracy of 1NN classifiers based on ChebyDTW and four DTW baselines.

Dataset Cheby DTW DTW CDTW CIDDTW DDTW

Adiac 0.72 0.60 0.61 0.61 0.47
Beef 0.57 0.50 0.53 0.50 0.47
CBF 0.98 1.00 1.00 1.00 0.54
Chlorine. 0.65 0.65 0.65 0.64 0.69
CinC_ECG. 0.81 0.65 0.93 0.70 0.66
Coffee 0.89 0.82 0.82 0.82 0.79
ECG200 0.89 0.77 0.88 0.81 0.80
ECGFive. 0.91 0.77 0.80 0.76 0.65
FaceAll 0.73 0.81 0.81 0.85 0.80
FacesUCR 0.80 0.90 0.91 0.83 0.76
ItalyPower. 0.94 0.91 0.91 0.88 0.96
SonyAI. 0.80 0.95 0.96 0.92 0.87
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approximation over the raw data. In Table 3, we present the segment numbers and the
DCRs of five PA-DTWs on all datasets. As above, the optimal segment numbers for the
1NN classifiers based on PDTW, SDTW, and DTWAPCA are learned on the training
datasets, while the average segment numbers on each dataset are computed for Che-
byDTW and DTWDSA.

As shown in Table 3, the DCRs of ChebyDTW are not only much larger than the
baselines on all datasets, but also robust to the time series length. Thus, it has the
highest computational efficiency among the five PA-DTWs. The efficiency superiority
of ChebyDTW mainly derives from the precise approximation of PCHA over the raw
data, and the data-adaptive segment method, which can segment time series into the
less number of subsequences with the adaptive lengths.

Table 3. The DCR results of five PA-DTWs.

Dataset n Cheby DTW PDTW SDTW DTWAPCA DTWDSA

w DCR w DCR w DCR w DCR w DCR

Adiac 176 3.99 44.13 36 4.89 13 13.54 43 4.10 70 2.51

Beef 470 5.18 90.68 61 7.70 10 47 61 7.70 192.32 2.44

CBF 128 1 128.0 30 4.27 27 4.74 15 8.53 46.19 2.77

Chlorine. 166 2 83.00 36 4.61 29 5.72 34 4.88 64.77 2.56

CinC. 1639 4 409.9 103 15.91 94 17.44 84 19.51 655.49 2.50

Coffee 286 2 143.0 60 4.77 33 8.67 40 7.15 117.34 2.44

ECG200 96 1.93 49.74 14 6.86 19 5.05 23 4.17 35.84 2.68

ECGFive. 136 1.61 84.43 9 15.11 9 15.11 5 27.20 48.24 2.82

FaceAll 131 2 65.50 32 4.09 32 4.09 32 4.09 53.96 2.43

FacesUCR 131 2 65.50 24 5.46 32 4.09 31 4.23 54.43 2.41

ItalyPower. 24 1.98 12.13 5 4.80 6 4.00 6 4.00 10.61 2.26

SonyAI. 70 1 70.00 13 5.38 9 7.78 8 8.75 27.41 2.55

Table 4. The average runtime of 1NN classification based on DTW and ChebyDTW (ms).

Dataset DTW ChebyDTW X

Adiac 172.21 5.36 32.11
Beef 105.02 0.54 194.95
CBF 9.34 0.37 25.40
Chlorine. 231.23 5.47 42.24
CinC_ECG 1721.93 0.79 2175.49
Coffee 38.17 0.40 96.05
ECG200 16.15 1.18 13.69
ECGFive. 6.89 0.29 23.60
FaceAll 169.94 8.26 20.57
FacesUCR 61.61 2.37 26.00
ItalyPower. 1.3 0.73 1.78
SonyAI. 2.1 0.25 8.38
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In addition, the average runtime of 1NN classification based on DTW and Che-
byDTW are presented in Table 4. According to the results, the efficiency speedup (X)
of ChebyDTW over DTW can achieve as much as 3 orders of magnitude.

7 Conclusions

We proposed a novel piecewise factorization model for time series, i.e., PCHA, where
a novel adaptive segment method was proposed, and the subsequences were factorized
with the Chebyshev polynomials. We employed the Chebyshev coefficients as features
for PA-DTW measure, and thus proposed the ChebyDTW for 1NN classification. The
comprehensive experimental results show that ChebyDTW can support the accurate
and fast 1NN classification.
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