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Abstract Let � and ! be locally finite positive Borel measures on R
n, let T˛

be a standard ˛-fractional Calderón-Zygmund operator on R
n with 0 � ˛ <

n, and assume as side conditions the A˛
2 conditions, punctured A˛2 conditions,

and certain ˛-energy conditions. Then the weak boundedness property associated
with the operator T˛ and the weight pair .�; !/, is ‘good-�’ controlled by the
testing conditions and the Muckenhoupt and energy conditions. As a consequence,
assuming the side conditions, we can eliminate the weak boundedness property
from Theorem 1 of Sawyer et al. (A two weight fractional singular integral theorem
with side conditions, energy and k-energy dispersed. arXiv:1603.04332v2) to obtain
that T˛ is bounded from L2 .�/ to L2 .!/ if and only if the testing conditions hold
for T˛ and its dual. As a corollary we give a simple derivation of a two weight
accretive global Tb theorem from a related T1 theorem. The role of two different
parameterizations of the family of dyadic grids, by scale and by translation, is
highlighted in simultaneously exploiting both goodness and NTV surgery with
families of grids that are common to both measures.
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1 Introduction

The theory of weighted norm inequalities burst into the general mathematical con-
sciousness with the celebrated theorem of Hunt et al. [5] that extended boundedness
of the Hilbert transform to measures more general than Lebesgue’s, namely showing
thatH was bounded on the weighted space L2 .RnIw/ if and only if the A2 condition
of Muckenhoupt,
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. 1 ;

holds when taken uniformly over all cubes Q in R
n. The ensuing thread of investi-

gation culminated in the theorem of Coifman and Fefferman [3] that characterized
those nonnegative weights w on R

n for which all of the ‘nicest’ of the L2 .Rn/

bounded singular integrals T above are bounded on weighted spaces L2 .RnIw/,
and does so in terms of the above A2 condition of Muckenhoupt.

Attention then turned to the corresponding two weight inequalities for singular
integrals, which turned out to be considerably more complicated. For example,
Cotlar and Sadosky gave a beautiful function theoretic characterization of the
weight pairs .�; !/ for which H is bounded from L2 .RI �/ to L2 .RI!/, namely
a two-weight extension of the Helson-Szegö theorem, which illuminated a deep
connection between two quite different function theoretic conditions, but failed
to shed much light on when either of them held.1 On the other hand, the two
weight inequality for positive fractional integrals, Poisson integrals and maximal
functions were characterized using testing conditions by one of us in [24] (see
also [6] for the Poisson inequality with ‘holes’) and [23], but relying in a very
strong way on the positivity of the kernel, something the Hilbert kernel lacks. In
a groundbreaking series of papers including [16, 18] and [19], Nazarov, Treil and
Volberg used weighted Haar decompositions with random grids, introduced their
‘pivotal’ condition, and proved that the Hilbert transform is bounded from L2 .RI �/
to L2 .RI!/ if and only if a variant of the A2 condition ‘on steroids’ held, and the
norm inequality and its dual held when tested locally over indicators of cubes—but
only under the side assumption that their pivotal conditions held.

The last dozen years have seen a resurgence in the investigation of two weight
inequalities for singular integrals, beginning with the aforementioned work of NTV,
and due in part to applications of the two weight T1 theorem in operator theory,
such as in [14], where embedding measures are characterized for model spaces
K� , where � is an inner function on the disk, and where norms of composition
operators are characterized that map K� into Hardy and Bergman spaces. A
T1 theorem could also have implications for a number of problems that are
higher dimensional analogues of those connected to the Hilbert transform (rank

1However, the testing conditions in Theorem 1 are subject to the same criticism due to the highly
unstable nature of singular integrals acting on measures.
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one perturbations [20, 32]; products of two densely defined Toeplitz operators;
subspaces of the Hardy space invariant under the inverse shift operator [15, 32];
orthogonal polynomials [21, 22, 33]; and quasiconformal theory [1, 2, 8, 11]), and
we refer the reader to [28] for more detail on these applications.

Following the groundbreaking work of Nazarov, Treil and Volberg, two of us,
Sawyer and Uriarte-Tuero, together with Lacey in [12], showed that the pivotal
conditions were not necessary in general, and introduced instead a necessary
‘energy’ condition as a substitute, along with a hybrid merging of these two
conditions that was shown to be sufficient for use as a side condition. The resurgence
was then capped along the way with a resolution—involving the work of Nazarov,
Treil and Volberg in [19], the authors and M. Lacey in the two part paper [9, 13] and
T. Hytönen in [6]—of the two weight Hilbert transform conjecture of Nazarov, Treil
and Volberg [32]:

Theorem 1 The Hilbert transform is bounded from L2 .RI �/ to L2 .RI!/, i.e.

kH . f�/kL2.RI!/ . k fkL2.RI�/ ; f 2 L2 .RI �/ ; (1)

if and only if the two weight A2 condition with holes holds,

jQj�
jQj

�
1

jQj
ˆ
RnQ

s2Qd! .x/
�

C
�
1

jQj
ˆ
RnQ

s2Qd� .x/
� jQj!

jQj . 1 ;

uniformly over all cubes Q, and the two testing conditions hold,
��1QH �1Q����L2.RI!/ . k1QkL2.RI�/ D pjQj� ;��1QH� �1Q!���L2.RI�/ . k1QkL2.RI!/ D pjQj! ;

uniformly over all cubes Q.

Here Hf .x/ D ´
R

f .y/
y�x dy is the Hilbert transform on the real line R, and � and !

are locally finite positive Borel measures on R. The two weight A2 condition with
holes is also a testing condition in disguise, in particular it follows from

��H �sQ����L2.RI!/ . ksQkL2.RI�/ ;

tested over all ‘indicators with tails’ sQ .x/ D `.Q/

`.Q/Cjx�cQj of intervalsQ in R. Below

we discuss the precise interpretation of the above inequalities involving the singular
integral H.

At this juncture, attention naturally turned to the analogous two weight inequal-
ities for higher dimensional singular integrals, as well as ˛-fractional singular
integrals such as the Cauchy transform in the plane. A variety of results were
obtained, e.g. [10, 14, 26] and [27], in which a T1 theorem was proved under certain
side conditions that implied the energy conditions. However, in [28], the authors
have recently shown that the energy conditions are not in general necessary for
elliptic singular integrals.
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The aforementioned higher dimensional results require refinements of the various
one-dimensional conditions associated with the norm inequalities, namely the A2
conditions, the testing conditions, the weak boundedness property and energy
conditions. The purpose of this paper is to prove in higher dimensions that the
weak boundedness constant WBPT˛ .�; !/ that is associated with an ˛-fractional
singular integral T˛ and a weight pair .�; !/ in R

n, is ‘good-�’ controlled by the
usual testing conditions TT˛ .�; !/, T�

T˛ .�; !/ and two side conditions on weight
pairs, namely the Muckenhoupt conditions A˛2 .�; !/ and the energy conditions
E strong
˛ .�; !/, E strong;�

˛ .�; !/: more precisely, for every 0 < � < 1
2
, we have the

Good-� Lemma:

WBPT˛ .�; !/ � C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C 4
p
�NT˛

�
:

The first instance of this type of conclusion appears in Lacey andWick in [10])—see
Remark 1 in Sect. 2.1 below.

Applications of the Good-� Lemma are then given to obtain both T1 and Tb
theorems for two weights. We now turn to a description of the higher dimensional
conditions appearing in the above display. As the Good-� Lemma, along with its
corollaries, hold in the more general setting of quasicubes, we describe them first.
But the reader interested only in cubes can safely ignore this largely cosmetic
generalization (but crucial for our ‘measure on a curve’ T1 theorem in [26]) by
simply deleting the prefix ‘quasi’ wherever it appears.

1.1 Quasicubes

We begin by recalling the notion of quasicube used in [27]—a special case of the
classical notion used in quasiconformal theory.

Definition 1 We say that a homeomorphism� W Rn ! R
n is a globally biLipschitz

map if

k�kLip � sup
x;y2Rn

k�.x/ ��.y/k
kx � yk < 1; (2)

and
����1��

Lip
< 1.

Notation 1 We define Pn to be the collection of half open, half closed cubes in
R

n with sides parallel to the coordinate axes. A half open, half closed cube Q

in R
n has the form Q D Q .c; `/ �

nY
kD1

�
ck � `

2
; ck C `

2

�
for some ` > 0 and

c D .c1; : : : ; cn/ 2 R
n. The cube Q .c; `/ is described as having center c and

sidelength `.
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Definition 2 Suppose that� W Rn ! R
n is a globally biLipschitz map.

(1) If E is a measurable subset of Rn, we define �E � f�.x/ W x 2 Eg to be the
image of E under the homeomorphism�.

(a) In the special case that E D Q is a cube in R
n, we will refer to �Q as a

quasicube (or�-quasicube if � is not clear from the context).
(b) We define the center c�Q D c .�Q/ of the quasicube �Q to be the point

�cQ where cQ D c .Q/ is the center of Q.
(c) We define the side length ` .�Q/ of the quasicube�Q to be the sidelength

` .Q/ of the cube Q.
(d) For r > 0 we define the ‘dilation’ r�Q of a quasicube �Q to be �rQ

where rQ is the usual ‘dilation’ of a cube in R
n that is concentric with Q

and having side length r` .Q/.

(2) If K is a collection of cubes in R
n, we define �K � f�Q W Q 2 Kg to be the

collection of quasicubes�Q as Q ranges over K.
(3) If F is a grid of cubes in Rn, we define the inherited quasigrid structure on�F

by declaring that �Q is a child of �Q0 in �F if Q is a child of Q0 in the grid
F .

Note that if �Q is a quasicube, then j�Qj 1n � jQj 1n D ` .Q/ D ` .�Q/.

For a quasicube J D �Q, we will generally use the expression jJj 1n in the
various estimates arising in the proofs below, but will often use ` .J/ when defining
collections of quasicubes. Moreover, there are constants Rbig and Rsmall such that we
have the comparability containments

Q C�xQ � Rbig�Q and Rsmall�Q � Q C�xQ :

Example 1 Quasicubes can be wildly shaped, as illustrated by the standard example
of a logarithmic spiral in the plane f" .z/ D z jzj2"i D zei" ln.zz/. Indeed, f" W C ! C is
a globally biLipschitz map with Lipschitz constant 1CC" since f�1

" .w/ D w jwj�2"i
and

rf" D
�
@f"
@z
;
@f"
@z

�
D
�

jzj2"i C i" jzj2"i ; i" z
z

jzj2"i
�
:

On the other hand, f" behaves wildly at the origin since the image of the closed unit
interval on the real line under f" is an infinite logarithmic spiral.

1.2 Standard Fractional Singular Integrals and the Norm
Inequality

Let 0 � ˛ < n. We define a standard ˛-fractional CZ kernel K˛.x; y/ to be a
real-valued function defined on Rn �R

n satisfying the following fractional size and
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smoothness conditions of order 1C ı for some ı > 0: For x ¤ y,

jK˛ .x; y/j � CCZ jx � yj˛�n and jrK˛ .x; y/j � CCZ jx � yj˛�n�1 ;

ˇ̌rK˛ .x; y/ � rK˛
�
x0; y

�ˇ̌ � CCZ

� jx � x0j
jx � yj

�ı
jx � yj˛�n�1 ; jx � x0j

jx � yj � 1

2
; (3)

and the last inequality also holds for the adjoint kernel in which x and y are
interchanged. We note that a more general definition of kernel has only order of
smoothness ı > 0, rather than 1 C ı, but the use of the Monotonicity and Energy
Lemmas in arguments below, which involve first order Taylor approximations to
the kernel functions K˛ .�; y/, requires order of smoothness more than 1 to handle
remainder terms.

1.2.1 Defining the Norm Inequality

We now turn to a precise definition of the weighted norm inequality

kT˛� fkL2.!/ � NT˛� k fkL2.�/ ; f 2 L2 .�/ : (4)

For this we introduce a family
n
�˛ı;R

o
0<ı<R<1 of nonnegative functions on Œ0;1/

so that the truncated kernels K˛ı;R .x; y/ D �˛ı;R .jx � yj/K˛ .x; y/ are bounded with
compact support for fixed x or y. Then the truncated operators

T˛�;ı;Rf .x/ �
ˆ
Rn

K˛ı;R .x; y/ f .y/ d� .y/ ; x 2 R
n;

are pointwise well-defined, and we will refer to the pair
�
K˛;

n
�˛ı;R

o
0<ı<R<1

	
as an ˛-fractional singular integral operator, which we typically denote by T˛ ,
suppressing the dependence on the truncations.

Definition 3 We say that an ˛-fractional singular integral operator T˛ D�
K˛;

n
�˛ı;R

o
0<ı<R<1

	
satisfies the norm inequality (4) provided

��T˛�;ı;Rf��L2.!/ � NT˛� k fkL2.�/ ; f 2 L2 .�/ ; 0 < ı < R < 1:

It turns out that, in the presence of Muckenhoupt conditions, the norm
inequality (4) is essentially independent of the choice of truncations used, and
we now explain this in some detail. A smooth truncation of T˛ has kernel
�ı;R .jx � yj/K˛ .x; y/ for a smooth function �ı;R compactly supported in .ı;R/,
0 < ı < R < 1, and satisfying standard CZ estimates. A typical example of an
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˛-fractional transform is the ˛-fractional Riesz vector of operators

R˛;n D ˚
R˛;n` W 1 � ` � n



; 0 � ˛ < n:

The Riesz transforms Rn;˛
` are convolution fractional singular integrals Rn;˛

` f �
Kn;˛
` 	 f with odd kernel defined by

K˛;n` .w/ � w`

jwjnC1�˛ � �` .w/

jwjn�˛ ; w D �
w1; : : : ;wn

�
:

However, in dealing with energy considerations, and in particular in the Mono-
tonicity Lemma below where first order Taylor approximations are made on the
truncated kernels, it is necessary to use the tangent line truncation of the Riesz
transform R˛;n` whose kernel is defined to be �` .w/  ˛ı;R .jwj/ where  ˛ı;R is
continuously differentiable on an interval .0; S/ with 0 < ı < R < S, and where
 ˛ı;R .r/ D r˛�n if ı � r � R, and has constant derivative on both .0; ı/ and .R; S/
where  ˛ı;R .S/ D 0. Here S is uniquely determined by R and ˛. Finally we set
 ˛ı;R .S/ D 0 as well, so that the kernel vanishes on the diagonal and common point
masses do not ‘see’ each other. Note also that the tangent line extension of a C1;ı

function on the line is again C1;ı with no increase in the C1;ı norm.
It was shown in the one dimensional case with no common point masses in [13],

that boundedness of the Hilbert transform H with one set of appropriate truncations
together with the A˛2 condition without holes, is equivalent to boundedness of H
with any other set of appropriate truncations, and this was extended to R˛;n and
more general operators in higher dimensions, permitting common point masses as
well. Thus we are free to use the tangent line truncations throughout the proofs of
our results.

1.3 Quasicube Testing Conditions

The following ‘dual’ quasicube testing conditions are necessary for the boundedness
of T˛ from L2 .�/ to L2 .!/,

T2T˛ � sup
Q2�Pn

1

jQj�

ˆ
Q

ˇ̌
T˛
�
1Q�

�ˇ̌2
! < 1;

�
T�
T˛
�2 � sup

Q2�Pn

1

jQj!

ˆ
Q

ˇ̌
.T˛/�

�
1Q!

�ˇ̌2
� < 1;

and where we interpret the right sides as holding uniformly over all tangent line
truncations of T˛ . Equally necessary are the following ‘full’ testing conditions
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where the integrations are taken over the entire space Rn:

FT2T˛ � sup
Q2�Pn

1

jQj�

ˆ
Rn

ˇ̌
T˛
�
1Q�

�ˇ̌2
! < 1;

�
FT�

T˛
�2 � sup

Q2�Pn

1

jQj!

ˆ
Rn

ˇ̌
.T˛/�

�
1Q!

�ˇ̌2
� < 1;

1.4 Quasiweak Boundedness and Indicator/Touching Property

The quasiweak boundedness property for T˛ with constant C is given by

ˇ̌
ˇ̌ˆ

Q
T˛
�
1Q0�

�
d!

ˇ̌
ˇ̌ � WBPT˛

pjQj! jQ0j� ; (5)

for all quasicubes Q;Q0 with
1

C
� ` .Q/

` .Q0/
� C;

and either Q � 3Q0 n Q0 or Q0 � 3Q n Q;

and where we interpret the left side above as holding uniformly over all tangent
line trucations of T˛ . This condition is used in our T1 theorem with an energy
side condition in [27], but will be removed in our T1 theorem with an energy side
condition obtained here as a corollary of the Good-� Lemma.

We say that two quasicubes Q and Q0 in �Pn are touching quasicubes if
the intersection of their closures is nonempty and contained in the boundary of
the larger quasicube. Finally, let IT˛ D IT˛ .�; !/ be the best constant in the
indicator/touching inequality for the bilinear form corresponding to T

ˇ̌
T ˛

�
1Q; 1Q0

�ˇ̌ � IT˛ .�; !/ k1QkL2.�/ k1Q0kL2.!/ ; (6)

for all touching quasicubes Q;Q0 2 Pn;

with
1

C
� ` .Q/

` .Q0/
� C;

and either Q � 3Q0 n Q0 or Q0 � 3Q n Q:

1.5 Poisson Integrals andA˛
2

Let � be a locally finite positive Borel measure on R
n, and suppose Q is an �-

quasicube in R
n. Recall that jQj 1n � ` .Q/ for a quasicube Q. The two ˛-fractional
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Poisson integrals of � on a quasicube Q are given by:

P˛ .Q; �/ �
ˆ
Rn

jQj 1n�
jQj 1n C jx � xQj

	nC1�˛ d� .x/ ;

P˛ .Q; �/ �
ˆ
Rn

0
B@ jQj 1n�

jQj 1n C jx � xQj
	2
1
CA

n�˛

d� .x/ ;

where we emphasize that jx � xQj denotes Euclidean distance between x and xQ and
jQj denotes the Lebesguemeasure of the quasicubeQ. We refer to P˛ as the standard
Poisson integral and to P˛ as the reproducing Poisson integral.

We say that the pair K;K0 in Pn are neighbours if K and K0 live in a common
dyadic grid and both K � 3K0 n K0 and K0 � 3K n K, and we denote byN n the set
of pairs .K;K0/ in Pn � Pn that are neighbours. Let

�N n D ˚�
�K; �K0� W �K;K0� 2 N n




be the corresponding collection of neighbour pairs of quasicubes. Let � and ! be
locally finite positive Borel measures on R

n, and suppose 0 � ˛ < n. Then we
define the classical offset A˛2 constants by

A˛2 .�; !/ � sup
.Q;Q0/2�N n

jQj�
jQj1� ˛

n

jQ0j!
jQj1� ˛

n
: (7)

Since the cubes in Pn are products of half open, half closed intervals Œa; b/, the
neighbouring quasicubes .Q;Q0/ 2 �N n are disjoint, and any common point
masses of � and ! do not simultaneously appear in each factor.

We now define the one-tailedA˛
2 constant using P˛. The energy constants E strong

˛

introduced below will use the standard Poisson integral P˛ .

Definition 4 The one-tailed constants A˛
2 and A˛;�

2 for the weight pair .�; !/ are
given by

A˛
2 � sup

Q2�Pn
P˛

�
Q; 1Qc�

� jQj!
jQj1� ˛

n
< 1;

A˛;�
2 � sup

Q2�Pn
P˛

�
Q; 1Qc!

� jQj�
jQj1� ˛

n
< 1:

Note that these definitions are the analogues of the corresponding conditions
with ‘holes’ introduced by Hytönen [6] in dimension n D 1—the supports of the
measures 1Qc� and 1Q! in the definition of A˛

2 are disjoint, and so the common
point masses of � and ! do not appear simultaneously in each factor. Note also that,
unlike in [29], where common point masses were not permitted, we can no longer
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assert the equivalence of A˛
2 with holes taken over quasicubes with A˛

2 with holes
taken over cubes.

1.5.1 Punctured A˛
2
Conditions

The classical A˛2 characteristic supQ2�Qn
jQj!

jQj1� ˛
n

jQj�
jQj1� ˛

n
fails to be finite when the

measures � and ! have a common point mass—simply letQ in the sup above shrink
to a common mass point. But there is a substitute that is quite similar in character
that is motivated by the fact that for large quasicubesQ, the sup above is problematic
only if just one of the measures is mostly a point mass when restricted to Q.

Given an at most countable set P D fpkg1
kD1 in Rn, a quasicube Q 2 �Pn, and a

locally finite positive Borel measure �, define as in [27],

� .Q;P/ � jQj� � sup f� .pk/ W pk 2 Q \ Pg ;

where the supremum is actually achieved since
P

pk2Q\P � .pk/ < 1 as� is locally
finite. The quantity� .Q;P/ is simply thee�measure ofQ wheree� is the measure�
with its largest point mass fromP in Q removed. Given a locally finite measure pair
.�; !/, let P.�;!/ D fpkg1

kD1 be the at most countable set of common point masses
of � and !. Then the weighted norm inequality (4) typically implies finiteness of
the following puncturedMuckenhoupt conditions (see [27]):

A˛;punct2 .�; !/ � sup
Q2�Pn

!
�
Q;P.�;!/

�
jQj1� ˛

n

jQj�
jQj1� ˛

n
;

A˛;�;punct2 .�; !/ � sup
Q2�Pn

jQj!
jQj1� ˛

n

�
�
Q;P.�;!/

�
jQj1� ˛

n
:

Now we turn to the definition of a quasiHaar basis of L2 .�/.

1.6 A Weighted QuasiHaar Basis

We will use a construction of a quasiHaar basis in R
n that is adapted to a measure

� (c.f. [18] for the nonquasi case). Given a dyadic quasicube Q 2 �D, where D is
a dyadic grid of cubes from Pn, let 4�

Q denote orthogonal projection onto the finite
dimensional subspace L2Q .�/ of L

2 .�/ that consists of linear combinations of the
indicators of the children C .Q/ of Q that have �-mean zero over Q:

L2Q .�/ �
8<
:f D

X
Q02C.Q/

aQ01Q0 W aQ0 2 R;

ˆ
Q
fd� D 0

9=
; :
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Then we have the important telescoping property for dyadic quasicubes Q1 � Q2
that arises from the martingale differences associated with the projections 4�

Q:

1Q0 .x/

0
@ X

Q2ŒQ1;Q2�

4�
Q f .x/

1
A D 1Q0 .x/

�
E
�
Q0

f � E
�
Q2

f
�
; Q0 2 C .Q1/ ; f 2 L2 .�/ :

(8)

We will at times find it convenient to use a fixed orthonormal basis
˚
h�;aQ



a2	n of

L2Q .�/ where 	n � f0; 1gn n f1g is a convenient index set with 1 D .1; 1; : : : ; 1/.
Then

˚
h�;aQ



a2	n and Q2�D is an orthonormal basis for L2 .�/, with the understanding

that we add the constant function 1 if � is a finite measure. In particular we have for
an infinite measure

k fk2L2.�/ D
X

Q2�D

��4�
Q f
��2
L2.�/

D
X

Q2�D

X
a2	n

ˇ̌̌bf .Q/ˇ̌̌2 ; ˇ̌̌bf .Q/ˇ̌̌2 �
X
a2	n

ˇ̌̌˝
f ; h�;aQ

˛
�

ˇ̌̌2
;

where the measure is suppressed in the notationbf . Indeed, this follows from (8) and
Lebesgue’s differentiation theorem for quasicubes. We also record the following
useful estimate. If I0 is any of the 2n �D-children of I, and a 2 	n, then

ˇ̌
E
�

I0h
�;a
I

ˇ̌ �
q
E
�

I0
�
h�;aI

�2 � 1q
jI0j�

: (9)

1.7 The Strong Quasienergy Conditions

Given a dyadic quasicube K 2 �D and a positive measure � we define the
quasiHaar projection P�K � P

J2�DW J�K
4�

J on K by

P�K f D
X

J2�DW J�K

X
a2	n

˝
f ; h�;aJ

˛
�
h�;aJ so that

��P�K f
��2
L2.�/ D

X
J2�DW J�K

X
a2	n

ˇ̌
ˇ˝ f ; h�;aJ

˛
�

ˇ̌
ˇ2 ;

and where a quasiHaar basis
˚
h�;aJ



a2	n and J2D� adapted to the measure � was

defined in the subsection on a weighted quasiHaar basis above.
Now we define various notions for quasicubes which are inherited from the same

notions for cubes. The main objective here is to use the familiar notation that one
uses for cubes, but now extended to �-quasicubes. We have already introduced
the notions of quasigrids �D, and center, sidelength and dyadic associated to
quasicubesQ 2 �D, as well as quasiHaar functions, and we will continue to extend
to quasicubes the additional familiar notions related to cubes as we come across
them. We begin with the notion of deeply embedded. Fix a quasigrid �D. We say
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that a dyadic quasicube J is .r; "/-deeply embedded in a (not necessarily dyadic)
quasicube K, which we write as J br;" K, when J � K and both

` .J/ � 2�r` .K/ ; (10)

qdist .J; @K/ 
 1

2
` .J/" ` .K/1�" ;

where we define the quasidistance qdist .E;F/ between two sets E and F to be the
Euclidean distance dist

�
��1E; ��1F

�
between the preimages ��1E and ��1F of

E and F under the map �, and where we recall that ` .J/ � jJj 1n . For the most part
we will consider J br;" K when J and K belong to a common quasigrid�D, but an
exception is made when defining the strong energy constants below.

Recall that in dimension n D 1, and for ˛ D 0, the energy condition constant
was defined by

E2 � sup
ID P[Ir

1

jIj�
1X
rD1

�
P˛ .Ir; 1I�/

jIrj
�2 ��P!Irx

��2
L2.!/

;

where I, Ir and J are intervals in the real line. The extension to higher dimensions
we use here is that of ‘strong quasienergy condition’ defined in [27] and recalled
below.

We define a quasicube K (not necessarily in �D) to be an alternate �D-
quasicube if it is a union of 2n �D-quasicubes K0 with side length ` .K0/ D 1

2
` .K/

(such quasicubes were called shifted in [29], but that terminology conflicts with
the more familiar notion of shifted quasigrid). Thus for any �D-quasicube L there
are exactly 2n alternate �D-quasicubes of twice the side length that contain L, and
one of them is of course the �D-parent of L. We denote the collection of alternate
�D-quasicubes by A�D.

The extension of the energy conditions to higher dimensions in [29] used the
collection

Mr;"�deep .K/ � fmaximal dyadic J br;" Kg

of maximal .r; "/-deeply embedded dyadic subquasicubes of a quasicube K (a
subquasicube J of K is a dyadic subquasicube of K if J 2 �D when �D is a
dyadic quasigrid containing K). This collection of dyadic subquasicubes of K is of
course a pairwise disjoint decomposition of K. We also defined there a refinement
and extension of the collectionM.r;"/�deep .K/ for certain K and each ` 
 1. For an
alternate quasicube K 2 A�D, defineM.r;"/�deep;�D .K/ to consist of the maximal
r-deeply embedded �D-dyadic subquasicubes J of K. (In the special case that K
itself belongs to �D, then M.r;"/�deep;�D .K/ D M.r;"/�deep .K/.) Then in [29] for
` 
 1 we defined the refinement

M`
.r;"/�deep;�D .K/ � ˚

J 2 M.r;"/�deep;�D
�

`K0� for some K0 2 C�D .K/ W

J � L for some L 2 M.r;"/�deep .K/


;
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where C�D .K/ is the obvious extension to alternate quasicubes of the set of �D-
dyadic children. Thus M`

.r;"/�deep;�D .K/ is the union, over all quasichildren K0 of
K, of those quasicubes in M.r;"/�deep

�

`K0� that happen to be contained in some

L 2 M.r;"/�deep;�D .K/. We then define the strong quasienergy condition as follows.

Definition 5 Let 0 � ˛ < n and fix ‘goodness’ parameters .r; "/. Suppose � and
! are locally finite positive Borel measures on R

n. Then the strong quasienergy
constant E strong

˛ is defined by

�
E strong
˛

�2 � sup
ID P[Ir

1

jIj�
1X
rD1

X
J2Mr;"�deep.Ir/

 
P˛ .J; 1I�/

jJj 1n

!2 ��P!J x��2L2.!/

C sup
�D

sup
I2A�D

sup
`�0

1

jIj�
X

J2M`
.r;"/�deep;�D.I/

 
P˛ .J; 1I�/

jJj 1n

!2 ��P!J x��2L2.!/ :

Similarly we have a dual version of E strong
˛ denoted E strong;�

˛ , and both depend
on r and " as well as on n and ˛. An important point in this definition is that the
quasicube I in the second line is permitted to lie outside the quasigrid�D, but only
as an alternate dyadic quasicube I 2 A�D. In the setting of quasicubes we continue
to use the linear function x in the final factor

��P!J x��2L2.!/ of each line, and not the
pushforward of x by�. The reason of course is that this condition is used to capture
the first order information in the Taylor expansion of a singular kernel.

2 The Good-� Lemma

The basic new result of this paper is the following ‘Good-� Lemma’ whose utility
will become evident when we pursue its corollaries below. Set fraktur A˛2 to be the
sum of the four A˛2 conditions:

A˛2 D A˛
2 C A˛;�

2 C A˛;punct2 C A˛;�;punct2 :

Lemma 1 (The Good-� Lemma) Suppose that T˛ is a standard ˛-fractional
singular integral in R

n, and that � and ! are locally finite positive Borel measures
on Rn. For every � 2 �0; 1

2

�
, we have

WBPT˛ .�; !/ (11)

� C˛

�
1

�

q
A˛2 .�; !/C �

TT˛ C T�

T˛
�
.�; !/C �

E strong
˛ C E strong;�

˛

�
.�; !/C 4

p
�NT˛ .�; !/

�
:
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Thus the effect of the Good-� Lemma is to ‘good-� replace’ the quasiweak
boundedness property with just the usual testing conditions in the presence of
the side conditions of Muckenhoupt and energy on the weight pair. However, in
dimension n D 1 a much stronger inequality can be proved (see e.g. [19] and [12]):

WBPT˛ � C˛
�p

A˛2 C TT˛ C T�
T˛

	
:

2.1 Corollaries

Now we come to the corollaries of the Good-� Lemma. We first remove the
hypothesis of the quasiweak boundedness property from the conclusion of part (1)
of Theorem 1 in [27].

Remark 1 In [10], Lacey and Wick have removed the weak boundedness property
from their T1 theorem by using NTV surgery with two independent grids, one
for each function f and g in hT˛� f ; gi, in the course of their argument. The use of
independent grids for each of f and g greatly simplifies the NTV surgery, but does
not accommodate our control of functional energy by Muckenhoupt and energy
conditions.

Theorem 2 Suppose 0 � ˛ < n, that T˛ is a standard ˛-fractional singular
integral operator on Rn, and that ! and � are locally finite positive Borel measures
on R

n. Set T˛� f D T˛ .f�/ for any smooth truncation of T˛� . Let � W Rn ! R
n be

a globally biLipschitz map. Then the operator T˛� is bounded from L2 .�/ to L2 .!/,
i.e.

kT˛� fkL2.!/ � NT˛� k fkL2.�/ ;

uniformly in smooth truncations of T˛ , and moreover

NT˛� � C˛
�p

A˛2 C TT˛ C T�
T˛ C E strong

˛ C E strong;�
˛

	
;

provided that the two dualA˛
2 conditions and the two dual punctured Muckenhoupt

conditions all hold, and the two dual quasitesting conditions for T˛ hold, and
provided that the two dual strong quasienergy conditions hold uniformly over all
dyadic quasigrids�D � �Pn, i.e. E strong

˛ C E strong;�
˛ < 1, and where the goodness

parameters r and " implicit in the definition of the collections M.r;"/�deep .K/ and
M`

.r;"/�deep;�D .K/ appearing in the strong energy conditions, are fixed sufficiently
large and small respectively depending only on n and ˛.

Proof Let T˛ı;R be a tangent line approximation to T˛ as introduced above. Then

NT˛ı;R
< 1, indeed NT˛ı;R

� Cn;˛;ı;R
p
A˛2 by an easy argument, and by part (1) of
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Theorem 1 in [27] applied to the ˛-fractional singular integral T˛ı;R we have

NT˛ı;R
� C˛

�p
A˛2 C TT˛ı;R

C T�
T˛ı;R

C E strong
˛ C E strong;�

˛ C WBPT˛ı;R

	
;

with C˛ independent of ı and R. We obtain from the Good-� Lemma applied to
T˛�;ı;R in place of T˛ ,

WBPT˛ı;R
� C˛

�
1

�

p
A˛2 C TT˛ı;R

C T�
T˛ı;R

C E strong
˛ C E strong;�

˛ C 4
p
�NT˛ı;R

�
;

and then combining inequalities gives

NT˛ı;R
� C0̨

�
1

�

p
A˛2 C TT˛ı;R

C T�
T˛ı;R

C E strong
˛ C E strong;�

˛ C 4
p
�NT˛ı;R

�
;

with C0̨ independent of ı and R. Since NT˛ı;R
< 1, we can absorb the term

C0̨ 4
p
�NT˛ı;R

on the right hand side above into the left hand side for � > 0 sufficiently
small. Since T˛ı;R is an arbitrary tangent line approximation to T˛ , the proof of
Theorem 2 is complete. ut

The first case of the following T1 theorem was proved in [26], and the second
case is a corollary of Theorem 2 above and Theorem 2 in [27].

Theorem 3 Suppose 0 � ˛ < n, that T˛ is a standard ˛-fractional singular
integral operator on Rn, and that ! and � are locally finite positive Borel measures
on R

n. Set T˛� f D T˛ .f�/ for any smooth truncation of T˛� . Let � W Rn ! R
n be a

globally biLipschitz map. Then

NT˛� � p
A˛2 C TT˛ C T�

T˛ ;

in the following two cases:

(1) when T˛ is a strongly elliptic standard ˛-fractional singular integral operator on
R

n, and one of the weights � or ! is supported on a compact C1;ı curve in Rn,
(2) when T˛ D R˛ is the vector of ˛-fractional Riesz transforms, and both weights

� and ! are k-energy dispersed where 0 � k � n � 1 satisfies
�
n � k < ˛ < n; ˛ ¤ n � 1 if 1 � k � n � 2

0 � ˛ < n; ˛ ¤ 1; n � 1 if k D n � 1 :

There is a further corollary that can be easily obtained, namely a two weight
accretive global Tb theorem whenever a two weight T1 theorem holds for strictly
comparable weight pairs. We say that two weight pairs .�; !/ and .e�;e!/ are strictly
comparable if e� D h1� and e! D h2! where each hi is a function bounded
between two positive constants. The simple proof of the following accretive global
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Tb theorem uses only the statement of a related T1 theorem. We say that a complex-
valued function b is accretive on Rn if

0 < cb � Re b .x/ � jb .x/j � Cb < 1; x 2 R
n :

Theorem 4 Suppose 0 � ˛ < n, that T˛ is a standard ˛-fractional singular
integral operator on Rn, and that ! and � are locally finite positive Borel measures
on Rn for which we have the ‘T1 theorem’ for strictly comparable weight pairs, i.e.

NT˛� .e�;e!/ �
q
A˛2 .e�;e!/C TT˛ .e�;e!/C T�

T˛ .e�;e!/ ; (12)

whenever .�; !/ and .e�;e!/ are strictly comparable. Finally, let b and b� be two
accretive functions on R

n. Then the best constant NT˛� D NT˛� .�; !/ in the two
weight norm inequality

kT˛� fkL2.!/ � NT˛� k fkL2.�/ ;

taken uniformly over tangent line truncations of T˛ , satisfies

NT˛� � p
A˛2 C Tb

T˛ C Tb�;�
T˛ ; (13)

where the two dual b-testing conditions for T˛ are given by

ˆ
Q

ˇ̌
T˛�
�
1Qb

�ˇ̌2
d! � Tb

T˛ jQj� ; for all cubes Q;

ˆ
Q

ˇ̌
T˛;�!

�
1Qb��ˇ̌2 d� � Tb�;�

T˛ jQj! ; for all cubes Q;

and where we interpret the left sides above as holding uniformly over all tangent
line truncations of T˛ .

Note that Theorem 4 applies in particular to both cases (1) and (2) of Theorem 3.

Proof We first note that since the kernel K˛ is real-valued,

ˆ
Q

ˇ̌
T˛�
�
1Q Re b

�ˇ̌2
d! D

ˆ
Q

ˇ̌
ReT˛�

�
1Qb

�ˇ̌2
d! �

ˆ
Q

ˇ̌
T˛�
�
1Qb

�ˇ̌2
d! � Tb

T˛ jQj� ;
ˆ
Q

ˇ̌
T˛;�!

�
1Q Re b�

�ˇ̌2
d� D

ˆ
Q

ˇ̌
ReT˛;�!

�
1Qb�

�ˇ̌2
d� �

ˆ
Q

ˇ̌
T˛;�!

�
1Qb�

�ˇ̌2
d� � Tb� ;�

T˛ jQj! ;

and if we now define measures

e! � �
Re b��! ande� � .Re b/ � ;
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we see that the operator T˛ and the weight pair .e�;e!/ satisfy (12). But it follows that
TT˛ .e�;e!/ � Tb

T˛ .�; !/ and T
�
T˛ .e�;e!/ � Tb�;�

T˛ .�; !/, and since the Muckenhoupt
A2 conditions are clearly comparable for strictly comparable weight pairs, we have
the equivalence

NT˛� .e�;e!/ �
q
A˛2 .�; !/C Tb

T˛ .�; !/C Tb�;�
T˛ .�; !/ :

Finally, since 0 < c � Re b;Re b� � C, we see that NT˛� .e�;e!/ � NT˛� .�; !/, and
this completes the proof of (13). ut

Note that the presence of a .b; b�/-variant of the weak boundedness property here
would complicate matters, since in general,

Re
ˆ
Q
T˛
�
1Q0b�

�
b�d! ¤

ˆ
Q
T˛
�
1Q0 Re b�

�
Re b�d!:

To remind the reader of the versatility of even a global Tb theorem, we reproduce a
proof of the boundedness of the Cauchy integral on C1;ı curves.

2.1.1 Boundedness of the Cauchy Integral on C1;ı Curves

Here we point out how the above Tb theorem can apply to obtain the boundedness
of the Cauchy integral on C1;ı curves in the plane (which can be obtained in many
other easy ways as well, see e.g. [31, Sect. 4 of Chap.VII]). Recall that the problem
reduces to boundedness on L2 .R/ of the singular integral operator CA with kernel

KA .x; y/ � 1

x � y C i .A .x/ � A .y//
;

where the curve has graph fx C iA .x/ W x 2 Rg. Now b .x/ � 1C iA0 .x/ is accretive
and we have the b-testing condition

ˆ
I
jCA .1Ib/ .x/j2 dx � Tb

H jIj ;

and its dual. Indeed, if I D Œ˛; ˇ�, then

CA .1Ib/ .x/ D
ˆ ˇ

˛

1C iA0 .y/
x � y C i .A .x/ � A .y//

dy

D � log .x � y C i .A .x/� A .y/// jˇ˛
D log

�
x � ˛ C i .A .x/ � A .˛//

x � ˇ C i .A .x/ � A .ˇ//

�
;



142 E.T. Sawyer et al.

gives

jCA .1Ib/ .x/j2 � ln
x � ˛

ˇ � x
; x 2 I D Œ˛; ˇ� ;

and it follows that

ˆ
I
jCA .1Ib/ .x/j2 dx �

ˆ
I

ˇ̌
ˇ̌ln x � ˛
ˇ � x

ˇ̌
ˇ̌2 dx �

ˆ ˇ�˛

0

ˇ̌
ˇ̌ln x

ˇ � ˛
ˇ̌
ˇ̌2 dx

D .ˇ � ˛/
ˆ 1

0

jlnwj2 dw D C jIj :

Since the kernel KA is C1;ı , the Tb theorem above applies with T D CA and � D
! D dx Lebesgue measure, to show that CA is bounded on L2 .R/. Of course this
proof just misses the case of Lipschitz curves since our two weight Tb theorem does
not apply to kernels that fail to be C1;ı .

3 Proof of the Good-� Lemma

We will prove the Good-� Lemma by first replacing the quasiweak boundedness
constant on the left hand side of (11) with the indicator/touching constant introduced
in (6) above. To control the indicator/touching constant, we will need to tweak the
usual good/bad technology of NTV a bit in the following subsection.

3.1 Good/Bad Technology

First we recall the good/bad cube technology of Nazarov, Treil and Volberg [32] as
in [25], but with a small simplification introduced in the real line by Hytönen in [6].
This simplification does not impact the validity of the arguments in [30], but will
facilitate the use of NTV surgery in later subsections.

Following [6], we momentarily fix a large positive integer M 2 N, and consider
the tiling of Rn by the family of cubes DM � ˚

IM˛


˛2Zn having side length 2

�M and
given by IM˛ � IM0 C 2�M˛ where IM0 D �

0; 2�M
�n
. A dyadic grid D built on DM is

defined to be a family of cubesD satisfying:

(1) Each I 2 D has side length 2�` for some ` 2 Z with ` � M, and I is a union of
2n.M�`/ cubes from the tiling DM,

(2) For ` � M, the collection D` of cubes in D having side length 2�` forms a
pairwise disjoint decomposition of the space Rn,

(3) Given I 2 Di and J 2 Dj with j � i � M, it is the case that either I \ J D ; or
I � J.
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We now momentarily fix a negative integer N 2 �N, and restrict the above grids
to cubes of side length at most 2�N :

DN � ˚
I 2 D W side length of I is at most 2�N



.

We refer to such grids DN as a (truncated) dyadic grid D built on DM of size
2�N . There are now two traditional means of constructing probability measures on
collections of such dyadic grids.

Construction #1: Consider first the special case of dimension n D 1. Then for
any

ˇ D fˇigi2N
M

2 !N
M � f0; 1gZN

M ;

where ZN
M � f` 2 Z W N � ` � Mg, define the dyadic grid Dˇ built on DM of size

2�N by

Dˇ D
8<
:2�`

0
@Œ0; 1/C k C

X
iW `<i�M

2�iC`ˇi

1
A
9=
;

N�`�M; k2Z
:

Place the uniform probability measure �NM on the finite index space !N
M D f0; 1gZN

M ,
namely that which charges each ˇ 2 !N

M equally. This construction is then extended
to Euclidean space R

n by taking products in the usual way and using the product
index space �N

M � �
!N
M

�n
and the uniform product probability measure �N

M D
�NM � : : : � �NM .

Construction #2: Momentarily fix a (truncated) dyadic grid D built on DM of
size 2�N . For any

� D .�1; : : : ; �n/ 2 	N
M � ˚

2�M
Z
nC W j�ij < 2�N



;

where ZC D N [ f0g, define the dyadic grid D� built on DM of size 2�N by

D� � D C �:

Place the uniform probability measure 
NM on the finite index set 	N
M , namely that

which charges each multiindex � in 	N
M equally.

The two probability spaces
�˚

Dˇ



ˇ2�N

M
; �N

M

	
and

�
fD�g�2	N

M
; 
NM

	
are isomor-

phic since both collections
˚
Dˇ



ˇ2�N

M
and fD� g�2	N

M
describe the set AN

M of all

(truncated) dyadic grids D� built on DM of size 2�N , and since both measures �N
M

and 
NM are the uniform measure on this space. Indeed, it suffices to verify this in
the case n D 1. The first construction may be thought of as being parameterized
by scales—each component ˇi in ˇ D fˇigi2N

M
2 !N

M amounting to a choice
of the two possible tilings at level i that respect the choice of tiling at the level
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below—and since any grid in AN
M is determined by a choice of scales , we see

that
˚
Dˇ



ˇ2�N

M
D AN

M . The second construction may be thought of as being

parameterized by translation—each � 2 	N
M amounting to a choice of translation of

the grid D fixed in construction #2–and since any grid in AN
M is determined by any

of the cubes at the top level, i.e. with side length 2�N , we see that fD� g�2	N
M

D AN
M

as well, since every cube at the top level in AN
M has the formQC� for some � 2 	N

M
and Q 2 D at the top level in AN

M (i.e. every cube at the top level in AN
M is a union

of small cubes in DM , and so must be a translate of some Q 2 D by an amount 2�M

times an element of ZnC). Note also that in all dimensions, #�N
M D #	N

M D 2n.M�N/.
We will use E�N

M
to denote expectation with respect to this common probability

measure on AN
M .

The usual NTV probabilistic reduction to ‘good’ cubes will be implemented
below for each positive integer M and each negative integer N assuming that the
functions f and g are supported in a large cube L with

´
L fd� D 0 D ´

L gd!, and
moreover assuming that �N is sufficiently large compared to ` .L/ that the small
probability estimates claimed below hold (�N > ` .L/C r will work where r is the
goodness constant), and finally assuming that f and g are constant on each cube Q
in the tiling DM . Recall that we can always reduce to the case

´
L fd� D 0 D ´

L gd!
by simply subtracting off averages and controlling the resulting error terms by the
testing conditions (see e.g. [32]).

Notation 2 For purposes of notation and clarity, we often suppress all reference to
M and N in our families of grids, and in the notations � and 	 for the parameter
sets, and we will use P� and E� to denote probability and expectation, and instead
proceed as if all grids considered are unrestricted. The careful reader can supply
the modifications necessary to handle the assumptions made above on the grids D
and the functions f and g regarding M and N. In fact, we will exploit the integers M
and N explicitly in the subsubsections on NTV surgery below.

In the case of one independent family of grids, as is the case here, the main result
is the following conditional probability estimate: for every I 2 Pn,

P� fD W I is a bad cube in D j I 2 Dg � C2�"r: (14)

Provided we obtain estimates independent ofM and N, this will be sufficient for our
proof—this follows the procedure with two independent grids initiated by Hytönen
for the Hilbert transform inequality in [6]. The key point of introducing the two
different parameterizations above of the same probability space, is that construction
#1 is well-adapted to the reduction to good cubes in a single independent family of
grids, as used in the proof of the main theorem in [30], which is in turn needed below,
while construction #2 facilitates the use of NTV surgery belowwhen combined with
the construction of Q-good grids, to which we next turn.
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3.1.1 Q-Good Quasicubes and Q-Good Quasigrids

We first introduce these notions for usual cubes, and later pass to quasicubes. Let
Q 2 Pn be an arbitrary cube in R

n with sides parallel to the coordinate axes. For
technical reasons associated to our application below, we also want to consider the
‘siblings’ of Q, i.e. the ‘triadic children’ of 3Q.

Definition 6 We say that a cube I 2 Pn is Q-good if either ` .I/ > 2��` .Q/, or for
every sibling Q0 of Q, we have

dist
�
I; @Q0� 
 1

2
` .I/" `

�
Q0�1�"

when ` .I/ � 2��` .Q/. We say I 2 Pn is Q-bad if I is not Q-good.

Note that for a fixed cube Q 2 Pn, we do not have a conditional probability
estimate P� fD W I 2 D and I is Q-badg � C2�"r since the property of a cube
I being Q-bad is independent of which grids D it belongs to. To rectify this
complication we will introduce below a second independent family of grids—
but this second family will also be used to simultaneously Haar-decompose both
f 2 L2 .�/ and g 2 L2 .!/.2

We next wish to capture the idea of a grid D being ‘Q-good’ with respect to this
fixed cube Q, and the idea will be to require that Q is I-good for all sufficiently
larger cubes I in the grid D. Here we will obtain a ‘goodness’ estimate in Lemma 2
below.

Definition 7 Let r and " be goodness constants as in [25]. For Q 2 Pn we declare
a grid D to be Q-good if for every sibling Q0 of Q and for every I 2 D with ` .I/ 

2r` .Q/, the following holds: the distance from the cube Q0 to the boundary of the
cube I satisfies the ‘deeply embedded’ inequality,

dist
�
Q0; @I

� 
 1

2
`
�
Q0�" ` .I/1�" :

We say the grid D is Q-bad if it is not Q-good.

Note that Q is fixed in this definition and it is easy to see, using the translation
parameterization in construction #2 above, that the collection of gridsD that are Q-
bad occur with small probability. Indeed, if I � Q has side length at least 2r times
that of Q, then the translates of I satisfy Q br I with probability near 1.

Lemma 2 Fix a cube Q 2 Pn. Then P� fD W D is Q-badg � C2�"r.

2Traditionally, two independent grids are applied to f and g separately, something we avoid since
the treatment of functional energy in the arguments of [27, 30] (which we use here) relies on using
a common grid for f and g.
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The following is our tweaking of the good/bad technology of NTV [32]. Fix a
cube Q 2 Pn and let D be randomly selected. Define linear operators (depending
on the grid D),

P�QIgood f �
( P

I2DW I is r-good inD 4�
I f if D is Q-good

0 if D is Q-bad
;

P�QIbad f � f � P�QIgoodf ;

and likewise for P!QIgoodg and P!QIbadg.

Proposition 1 Fix a cube Q 2 Pn. Then we have the estimates

E�

��P�QIbad f
��
L2.�/

� C2� "r
2 k fkL2.�/ ;

E�

��P!QIbadg
��
L2.!/

� C2� "r
2 kgkL2.!/ :

Proof We have from (14) and Lemma 2 that

E�

��P�badf��2L2.�/DE�

 
1fD is Q-goodg

X
I2D is bad

��4�
I f
��2
L2.�/

!
C E�

 
1fD is Q-badg

X
I2D

��4�
I f
��2
L2.�/

!

� C2�"r
X
I2D

��4�
I f
��2
L2.�/ CE�

�
1fD is Q-badg

�X
I2D

��4�
I f
��2
L2.�/ . C2�"r k fk2L2.�/ :

ut
From this we conclude that there is an absolute choice of r depending on 0 <

" < 1 so that the following holds. Let T W L2.�/ ! L2.!/ be a bounded linear
operator, and let Q 2 Pn be a fixed cube. We then have

kTkL2.�/!L2.!/ � 2 sup
k fkL2.�/D1

sup
kgkL2.!/D1

E�j
D
TP�QIgoodf ;P!QIgoodg

E
!
j : (15)

Indeed, we can choose f 2 L2.�/ of norm one, and g 2 L2.!/ of norm one so that

kTkL2.�/!L2.!/ D hTf ; gi!
� E�j

D
TP�QIgoodf ;P!QIgoodg

E
!
j C E�j

D
TP�QIbadf ;P!QIgoodg

E
!
j

C E�j
D
TP�QIgoodf ;P!QIbadg

E
!
j C E�j˝TP�QIbadf ;P!QIbadg

˛
!
j

� E�j
D
TP�QIgoodf ;P!QIgoodg

E
!
j C 3C � 2� r"

16 kTkL2.�/!L2.!/ ;

And this proves (15) for r sufficiently large depending on " > 0.
Clearly, all of this extends automatically to the quasiworld.
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Implication: Given a quasicube Q 2 �Pn, it suffices to consider only Q-good
quasigrids and Q-good quasicubes in these quasigrids, and to prove an estimate
for kT�kL2.�/!L2.!/ that is independent of these assumptions.

3.2 Control of the Indicator/Touching Property

Recall the indicator/touching constant IT˛ defined in (6) above. Here we will prove
that

IT˛ � C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C 4
p
�NT˛

�
; (16)

from which it easily follows that we have the same inequality for the weak
boundedness property constantWBPT˛ defined in (5) above,

WBPT˛ � C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C 4
p
�NT˛

�
: (17)

Indeed an elementary argument shows that WBPT˛ . IT˛ Cp
A˛2 C TT˛ . For the

proof of (16) we assume the reader is already familiar with the proof of the main
theorem in [30] or [27], and we now review the parts of this proof that are pertinent
here.

We first recall the basic setup in [30]. Let �D� D �D! be a quasigrid on R
n,

and let
˚
h�;aI



I2�D� ; a2	n and

n
h!;bJ

o
J2�D!; b2	n

be corresponding quasiHaar bases,

so that f 2 L2 .�/ and g 2 L2 .!/ can be written f D fgoodC fbad and g D ggoodCgbad
where

f D
X

I2�D�

4�
I f and g D

X
J2�D!

4!
J g ;

fgood D
X

I2�D�
good

4�
I f and ggood D

X
J2�D!

good

4!
J g ;

and where �D�
good D �D!

good is the .r; "/-good subgrid, and where the quasiHaar
projections 4�

I fgood and 4!
J ggood vanish if the quasicubes I and J are not good in

�D� D �D! . Note that we use a single independent family of grids�D� D �D!

and only include the different superscripts � and ! to emphasize which measure the
grid is being used with in a given situation.

Remark 2 In [27] and [30], the quasiHaar projections 4�
I fgood and 4!

J ggood are
required to vanish if the quasicubes I and J are not �-good in �D� D �D! , where
a quasicube I is �-good in a quasigrid �D if I together with its children and its
ancestors up to order � are all good. This more restrictive condition doesn’t affect
what is done here.
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For future reference note that the argument in [30] applies just as well to the
smaller projections P�QIgoodf and P!QIgoodg in place of fgood and ggood respectively. We
fix f D fgood and g D ggood. For now we continue to work with general functions
f and g and the projections fgood and ggood, but keeping in mind that in order to
prove (16), we will later specialize to the cases of indicator functions f D 1Q and
g D 1R, and we will then also include the restriction to Q-good grids �DQIgood and
projections P�QIgoodf and P!QIgoodg for a fixed quasicube Q - the quasicube Q in the
projection P�QIgoodf is chosen to coincide with the quasicubeQ in the indicator 1Q in
order to achieve the three critical reductions in Sect. 3.2.1 below. Continuing with
[27, 30], we then proved there the bilinear inequality

jT ˛ . f ; g/j D
ˇ̌
ˇ̌̌
ˇ

X
I2�D�

good and J2�D!
good

T ˛
�4�

I f ;4!
J g
�
ˇ̌
ˇ̌̌
ˇ (18)

� C˛
�p

A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C WBPT˛

	
k fkL2.�/ kgkL2.!/ ;

uniformly over gridsD, and we now discuss the salient features of this proof for us.
As in [27, 30] let

NT V˛ � p
A˛2 C TT˛ C T�

T˛ C WBPT˛ ;

A˛2 � A˛
2 C A˛;�

2 C A˛;punct2 C A˛;�;punct2 ;

and recall the following brief schematic diagram of the decompositions involved in
the proof given in [30], with bounds in :

hT˛� f ; gi!
#

Bb�
. f ; g/ C B

�c . f ; g/ C B\ . f ; g/ C B� . f ; g/

# dual NT V˛ NT V˛
#

Tdiagonal . f ; g/ C Tfar below . f ; g/ C Tfar above . f ; g/ C Tdisjoint . f ; g/

# # ; ;
# #

BA
b�
. f ; g/ T1far below . f ; g/ C T2far below . f ; g/

# NT V˛ C E strong
˛ NT V˛

#
BA
stop . f ; g/ C BA

paraproduct . f ; g/ C BA
neighbour . f ; g/

E strong
˛ Cp

A˛2 TT˛
p
A˛2

With reference to this diagram, we now make a sweeping and crucial claim.
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The only two places in our proof of the main theorem in [30] where the weak
boundedness propertyWBPT˛ is used, is

(1) in proving the estimates for terms A1 and A2 involving
˝
T˛�
�4�

I f
�
;4!

J g
˛
!
that

arise in estimating the form B� . f ; g/ at the top right of the schematic diagram,
and

(2) and in the estimates for the inner products
˝
T˛�
�4�

I f
�
;4!

J g
˛
!

in the form
T2far below . f ; g/ for which I are J are close in both scale and position,

(3) and even then in these two cases, only for certain child quasicubes I� and J� 0

when they touch, i.e. their interiors are disjoint but their closures intersect (even
in just a point). In all other instances where NT V˛ appears in the schematic
diagram, the weak boundedness property is not used.

In order to make the application of the quasiweak boundedness property in these
arguments clear, we reproduce the relevant portions of the arguments from [30] that
deal with the forms B� . f ; g/ and T2far below . f ; g/. Recall also that the parameters
�;�; r in [30, Definition 12 on p. 40] were fixed to satisfy

� > r and � > � C r :

1: Here is the beginning of the proof of (6.1) on page 28 dealing with B� . f ; g/
in the statement of Lemma 9 in [30].

Extract from pages 28 and 29 of [30]:
Note that in (6.1) we have used the parameter � in the exponent rather than

r, and this is possible because the arguments we use here only require that there
are finitely many levels of scale separating I and J. To handle this term we first
decompose it into

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

X
.I;J/2�D���D! W J�3I
2��`.I/�`.J/�2�`.I/

C
X

.I;J/2�D���D! W I�3J
2��`.I/�`.J/�2�`.I/

C
X

.I;J/2�D���D!

2��`.I/�`.J/�2�`.I/
J 6�3I and I 6�3J

9>>>>>=
>>>>>;
ˇ̌˝
T˛�
�4�

I f
�
;4!

J g
˛
!

ˇ̌

� A1 C A2 C A3:

The proof of the bound for term A3 is similar to that of the bound for the left side of
(6.2), and so we will defer the bound for A3 until after (6.2) has been proved.

We now consider term A1 as term A2 is symmetric. To handle this term we will
write the quasiHaar functions h�I and h!J as linear combinations of the indicators
of the children of their supporting quasicubes, denoted I� and J� 0 respectively. Then
we use the quasitesting condition on I� and J� 0 when they overlap, i.e. their interiors
intersect; we use the quasiweak boundedness property on I� and J� 0 when they
touch, i.e. their interiors are disjoint but their closures intersect (even in just a
point); and finally we use the A˛2 condition when I� and J� 0 are separated, i.e. their
closures are disjoint. We will suppose initially that the side length of J is at most
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the side length I, i.e. ` .J/ � ` .I/, the proof for J D 
I being similar but for one
point mentioned below. So suppose that I� is a child of I and that J� 0 is a child of J.
If J� 0 � I� we have from (9) that,

ˇ̌˝
T˛�
�
1I� 4�

I f
�
; 1J�0

4!
J g
˛
!

ˇ̌
. sup

a;a0
2	n

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌
pjI� j�

ˇ̌˝
T˛� .1I� / ; 1J�0

˛
!

ˇ̌
ˇ̌
ˇDg; h!;a0

J

E
!

ˇ̌
ˇpjJ� 0 j!

. sup
a;a0

2	n

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌
pjI� j�

�ˆ
J�0

jT˛� .1I� /j2 d!
� 1

2 ˇ̌ˇDg; h!;a0

J

E
!

ˇ̌
ˇ

. sup
a;a0

2	n

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌
pjI� j�

TT˛ jI� j
1
2
�

ˇ̌
ˇDg; h!;a0

J

E
!

ˇ̌
ˇ

. sup
a;a0

2	n

TT˛

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌ ˇ̌ˇDg; h!;a0

J

E
!

ˇ̌
ˇ :

The point referred to above is that when J D 
I we write
˝
T˛�
�
1I�
�
; 1J� 0

˛
!

D˝
1I� ;T

˛;�
!

�
1J� 0

�˛
�
and get the dual quasitesting constant T�

T˛
. If J� 0 and I� touch,

then ` .J� 0/ � ` .I� / and we have J� 0 � 3I� n I� , and so

ˇ̌˝
T˛�
�
1I� 4�

I f
�
; 1J�0

4!
J g
˛
!

ˇ̌
. sup

a;a0
2	n

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌
pjI� j�

ˇ̌˝
T˛� .1I� / ; 1J�0

˛
!

ˇ̌
ˇ̌
ˇDg; h!;a0

J

E
!

ˇ̌
ˇpjJ� 0 j!
(19)

. sup
a;a0

2	n

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌
pjI� j�

WBPT˛
pjI� j� jJ� 0 j!

ˇ̌
ˇDg; h!;a0

J

E
!

ˇ̌
ˇpjJ� 0 j!

D sup
a;a0

2	n

WBPT˛
ˇ̌˝
f ; h�;aI

˛
�

ˇ̌ ˇ̌ˇDg; h!;a0

J

E
!

ˇ̌
ˇ :

The only place where the quasiweak boundedness property WBPT˛ was used
above was in the second line of the display (19) when we invoked

ˇ̌˝
T˛�
�
1I�
�
; 1J� 0

˛
!

ˇ̌ � WBPT˛
pjI� j� jJ� 0 j!

for quasicubes I� 2 C .I/ and J� 0 2 C .J/ that touch.
2: Here is the beginning of the proof on page 41 that controls the form

Tfar below . f ; g/ in [30].
Extract from page 41 of [30]:
The far below term Tfar below . f ; g/ is bounded using the Intertwining Proposition

and the control of functional energy condition by the energy condition given in the
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next two sections. Indeed, assuming these two results, we have from � < � that

Tfar below . f ; g/ D
X

A;B2A
B¤A

X
I2CA and J2C��shift

B
Jb�;"I

˝
T˛�
�4�

I f
�
;
�4!

J g
�˛
!

D
X
B2A

X
A2AW B¤A

X
I2CA and J2Cfi�shift

B
Jb�;"I

˝
T˛�
�4�

I f
�
;
�4!

J g
�˛
!

D
X
B2A

X
A2AW B¤A

X
I2CA and J2C��shift

B

˝
T˛�
�4�

I f
�
;
�4!

J g
�˛
!

�
X
B2A

X
A2AW B¤A

X
I2CA and J2Cfi�shift

B
J 6b�;"I

˝
T˛�
�4�

I f
�
;
�4!

J g
�˛
!

D T1far below . f ; g/� T2far below . f ; g/ :

Now T2far below . f ; g/ is bounded by NTV˛ by Lemma 9 since J is good if 4!
J g ¤ 0.

The only place where the quasiweak boundedness property WBPT˛ was used
above3 was in bounding the inner products

˝
T˛�
�4�

I f
�
;
�4!

J g
�˛
!
by Lemma 9 of

[30] when in addition I and J were close in both scale and position, and this reduces
to the previous extract from pages 28 and 29 of [30] treated above.

Thus we may split the sum in (18) as follows:

T ˛ . f ; g/ D
X

I2�D�
good and J2�D!

good

T ˛
�4�

I f ;4!
J g
�

D

8̂
ˆ̂<
ˆ̂̂:

X
.I;J/2�D�

good��D!
goodW J�3I

2��`.I/�`.J/�2�`.I/

C
X

.I;J/2�D�
good��D!

goodW J�3I
2��`.I/�`.J/�2�`.I/

9>>>=
>>>;
T ˛

�4�
I f ;4!

J g
�

CR˛ . f ; g/

� fA1 . f ; g/C A2 . f ; g/g C R˛ . f ; g/ ;

where we are including in the terms A1 . f ; g/ C A2 . f ; g/ the corresponding inner
products from the form T2far below . f ; g/ to which Lemma 9 of [30] was applied. Then

3On page 41 of [30], there was a typo in that J bj;" I appeared in the fourth line of the display
instead of J 6b�;" I as corrected here.



152 E.T. Sawyer et al.

the remainder formR˛ . f ; g/ satisfies the estimate

jR˛ . f ; g/j � C˛
�p

A˛2 C TT˛ C T�
T˛ C E strong

˛ C E strong;�
˛

	
k fkL2.�/ kgkL2.!/ :

(20)

The key point here is that the quasiweak boundedness constant WBPT˛ does not
appear on the right hand side of this estimate, and this is because the arguments
in [30] that are used to bound R˛ . f ; g/ do not use the quasiweak boundedness
property at all, as a patient reader can verify. This constitutes the deepest part of our
argument to prove (16).

We now turn to the ‘good-�’ argument that will substitute for the use of the
quasiweak boundedness property in (18) in order to prove (16). First we observe
that the constant C in (6) can be taken to be 2�, and then an application of the
inequality

ˇ̌˝
T˛�
�
1I�
�
; 1J� 0

˛
!

ˇ̌ � IT˛
pjI� j� jJ� 0 j!;

to the display in (19) above, shows that

ˇ̌˝
T˛�
�
1I� 4�

I f
�
; 1J� 0

4!
J g
˛
!

ˇ̌
. sup

a;a02	n

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌
pjI� j�

ˇ̌˝
T˛�
�
1I�
�
; 1J� 0

˛
!

ˇ̌
ˇ̌̌D
g; h!;a

0

J

E
!

ˇ̌̌
pjJ� 0 j!

. sup
a;a02	n

ˇ̌˝
f ; h�;aI

˛
�

ˇ̌
pjI� j�

IT˛
pjI� j� jJ� 0 j!

ˇ̌
ˇDg; h!;a0

J

E
!

ˇ̌
ˇpjJ� 0 j!

D sup
a;a02	n

IT˛
ˇ̌˝
f ; h�;aI

˛
�

ˇ̌ ˇ̌ˇDg; h!;a0

J

E
!

ˇ̌
ˇ :

From this we obtain the following crude estimate valid for any f 2 L2 .�/ and
g 2 L2 .!/:

jA1 . f ; g/C A2 . f ; g/j � C˛
�p

A˛2 C TT˛ C T�
T˛ C IT˛

	
k fkL2.�/ kgkL2.!/ :

(21)

Definition 8 We say that two quasicubes K and L have �-comparable side lengths,
or simply that ` .K/ and ` .L/ are �-comparable, if

2��` .K/ � ` .L/ � 2�` .K/ :

Furthermore, we say that K and L are �-close if they have �-comparable side
lengths, and if they belong to a common quasigrid�D and are touching quasicubes
that satisfy either K � 3L or L � 3K.

Now consider the special indicator case f D 1Q and g D 1R where Q and R are
�-close in some �D. For this case we will be able to do much better than (21). In
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fact, for each 0 < � < 1
2
we claim that the following ‘good-�’ inequality holds:

ˇ̌
A1
�
1Q; 1R

�ˇ̌Cˇ̌
A2
�
1Q; 1R

�ˇ̌ � C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C 4
p
�NT˛

���1Q��L2.�/ k1RkL2.!/ :

(22)

With (22) proved, we can use it and (20) to complete the proof of the estimate for
the indicator/touching property (16) by taking expectations E� as usual:

E�

ˇ̌
ˇ̌
ˇ

X
I2�D� and J2�D!

T ˛
�

�4�
I 1Q;4!

J 1R
�ˇ̌ˇ̌
ˇ

� E� .jA1j C jA2j/C E�

ˇ̌
R˛

�
1Q; 1R

�ˇ̌

� C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C
p
�NT˛

�
k1QkL2.�/ k1RkL2.!/

CC˛
�p

A˛2 C TT˛ C T�
T˛ C E strong

˛ C E strong;�
˛

	
k1QkL2.�/ k1RkL2.!/

� C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C 4
p
�NT˛

�
k1QkL2.�/ k1RkL2.!/ ;

which gives (16) upon taking the supremum over such Q and R to get

IT˛ � C0̨
�
1

�

p
A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C 4
p
�NT˛

�
:

Notation 3 The remainder of this paper is devoted to proving (22) for touching and
�-close quasicubes Q and R. To simplify notation and geometric constructions, we
consider only the case of ordinary cubes in Pn, and note that the extension to the
quasiworld is then routine.

To prove the claim (22) we use the parameterization by translation introduced
above. Essentially this approach was used in the averaging technique employed in
[23], which in turn was borrowed from Fefferman and Stein [4], later refined in [6],
and further refined here in this paper. It suffices to prove that

ˇ̌
ˇT ˛

��
1Q
�
good ; .1R/good

	ˇ̌ˇ � C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C
p
�NT˛

�

� k1QkL2.�/ k1RkL2.!/ ;

for all Q;R 2 Pn that are �-close, uniformly over Q-good grids, and where

T ˛
��
1Q
�
good ; .1R/good

	
D

X
I2D�

QIgood and J2D!
QIgood

T ˛
�4�

I 1Q;4!
J 1R

�
:
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The grids D�
QIgood D D!

QIgood are those arising in the projections P�QIgoodf and
P!QIgoodg above. Moreover, due to the key observation above regarding where the
weak boundedness property arises in the proof of the main theorem in [30], it
suffices to prove

E�

8̂
ˆ̂<
ˆ̂̂:

X
.I;J/2D�

QIgood�D!
QIgoodW J�3I

2��`.I/�`.J/�2�`.I/

C
X

.I;J/2D�
QIgood�D!

QIgoodW I�3J
2��`.I/�`.J/�2�`.I/

9>>>=
>>>;
ˇ̌˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

ˇ̌

� C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C 4
p
�NT˛

�
k1QkL2.�/ k1RkL2.!/ ;

under the assumption that we sum over only Q-good cubes I and J that belong
to Q-good grids in the above sums, and where we recall that we may realize the
underlying probability space as translations of any fixed grid, say the standard
dyadic grid. Note that R is contained in 3Q, and this accounts for our inclusion
of siblings in Definition 7 above.

By symmetry it suffices to prove for all 0 < � < 1
2
that

E�

X
.I;J/2D�

QIgood�D!
QIgoodW J�3I

2��`.I/�`.J/�2�`.I/
I and J touch

ˇ̌˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

ˇ̌
(23)

� C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C 4
p
�IT˛

�
k1QkL2.�/ k1RkL2.!/ ;

for all cubes Q;R 2 Pn that are �-close (we are including the testing conditions
here because we are including children I� and J� 0 in the display (19) that coincide
as well).

3.2.1 Three Critical Reductions

Now we make three critical reductions that permit the application of NTV surgery,
and lie at the core of the much better estimate (22).

(1) We must have that I ‘cuts across the boundary’ of Q, i.e. jI \ Qj > 0 and
jI \ Qcj > 0 (or else 4�

I 1Q D 0),
(2) We must have that J ‘cuts across the boundary’ of R, i.e. jJ \ Rj > 0 and

jJ \ Rcj > 0 (or else 4!
J 1R D 0),

(3) By the assumed ‘Q-goodness’ in Definition 7, together with reductions (1) and
(2) above, we cannot have either ` .I/ 
 2r` .Q/ or ` .J/ 
 2r` .R/.
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From these reductions, we are left to prove

E�

X
.I;J/2D�

QIgood�D!
QIgoodW J�3I

I and J are �-close
`.I/<2r`.Q/ and `.J/<2r`.R/

ˇ̌˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

ˇ̌
(24)

� C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C 4
p
�NT˛

�
k1QkLof 2.�/ k1RkL2.!/ ;

for all �-close Q;R 2 Pn.
The small pairs of cubes .I; J/, i.e. those with both ` .I/ < 2�r` .Q/ and ` .J/ <

2r` .R/, pose a difficulty and our next task is to further reduce matters to proving
the more restricted estimate:

E�

X
.I;J/2D�

QIgood�D!
QIgoodW J�3I

I and J are �-close
`.I/ and `.Q/ are r-comparable
`.J/ and `.R/ are r-comparable

ˇ̌˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

ˇ̌
(25)

� C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C 4
p
�NT˛

�
k1QkL2.�/ k1RkL2.!/ ;

for all Q;R 2 Pn that are �-close. The difference between (25) and (24) is that
in (25), we do not permit small pairs of .I; J/, i.e. those with ` .I/ < 2�r` .Q/ or
` .J/ < 2�r` .RQ/.

3.2.2 Elimination of Small Pairs

To eliminate the small pairs from (24), we apply for a second time our proof from
[30] as outlined above, but this time to each inner product

˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

appearing in the sum in (24) inside the expectation E�. In other words, for fixed I,
J, Q and R, we take f D 4�

I 1Q and g D 4!
J 1R, and we obtain that

E�E�0

ˇ̌˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

ˇ̌

� C˛
�p

A˛2 C TT˛CT�

T˛ C CE strong
˛ C E strong;�

˛ C 2�"rNT˛

	
k4�

I 1QkL2.�/
��4�

J 1R
��
L2.!/

CE�E�0

X
.K;L/2D0

QIgood�D0

QIgoodW L�3K
K and L are j-close

`.K/<2r`.I/ and `.L/<2r`.JR/

ˇ̌˝
T˛� 4�

K

�4�
I 1Q

�
;4!

L

�4!
J 1R

�˛
!

ˇ̌
;

where here the expectation E�0 is taken to be independent of E�.
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But now we may further assume that the pair of grids .D;D0/, for which
.I; J/ 2 D � D and .K;L/ 2 D0 � D0, are mutually good.4 Thus we cannot have
` .K/ < 2��` .I/ because K is I-good, and this eliminates the inclusion of small
pairs .K;L/, i.e. those with ` .K/ < 2��` .I/. Note that the term 2�"rNT˛ arises
from the bad Haar projections4�

K and 4!
L of 4�

I 1Q and 4!
J 1R respectively. Finally,

we note that f D 4�
I 1Q is constant on the children of I and that

��4�
I 1Q

��2
L2.�/

DP
I02C.I/

´
I0

ˇ̌
E
�
I01Q � E

�
I 1Q

ˇ̌2
d� . Thus it suffices to prove the following estimate,

E�0

X
.K;L/2D0

QIgood�D0

QIgoodW L�3K
K and L are �-close

`.K/ and `.I/ are r-comparable
`.L/ and `.J/ are r-comparable

X
I02C.I/
J0

2C.J/

ˇ̌˝
T˛� 4�

K

��
E
�
I0 4�

I 1Q
�
1I0
�
;4!

L

��
E
!
J0 4!

J 1R
�
1J0

�˛
!

ˇ̌

� C˛

�
1

�

p
A˛2 C TT˛CT�

T˛C 4
p
�NT˛

� X
I02C.I/
J0

2C.J/

ˇ̌
E
�
I0 4�

I 1Q
ˇ̌ ˇ̌

E
!
J0 4!

J 1R
ˇ̌ k1I0 kL2.�/ k1J0 kL2.!/ ;

which we can write simply as

E�0

X
.K;L/2D0

QIgood�D0

QIgoodW L�3K
K and L are �-close

`.K/ and `.I0/ are r-comparable
`.L/ and `.J0/ are r-comparable

ˇ̌hT˛� 4�
K .1I0/ ;4!

L .1J0/i!
ˇ̌

� C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C 4
p
�NT˛

�
k1I0kL2.�/ k1J0kL2.!/

for each I0 2 C .I/ and J0 2 C .J/. Now relabel I0 and J0 as Q and R respectively
(and then also K and L as I and J respectively) to obtain (25).

3.2.3 NTV Surgery

Now in order to prove (25), we invoke the technique of NTV surgery as used in
[7, 17] and [10]. Given 0 < � < 1

2
, define

J� � fx 2 J W dist .x; @J/ > �` .J/g :
Then we write

ˇ̌˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

ˇ̌ � ˇ̌˝
T˛�
�4�

I 1Q
�
; 1J� 4!

J 1R
˛
!

ˇ̌C ˇ̌˝
T˛�
�4�

I 1Q
�
; 1JnJ� 4!

J 1R
˛
!

ˇ̌
� A1 C A2:

4Both I and J belong to the common grid D, while K and L belong to the independent common
grid D0—in contrast to the traditional use of two independent grids where I 2 D and J 2 D0.
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Now we use first the fact that I and J� are separated by a distance at least �` .J/ > 0
in order to bound the first term A1 by

A1 D ˇ̌˝
T˛�
�
1I0 4�

I 1Q
�
; 1J� 4!

J 1R
˛
!

ˇ̌
(26)

. 1

�

p
A˛2 k4�

I 1QkL2.�/
��4!

J 1R
��
L2.!/

� 1

�

p
A˛2 k1QkL2.�/ k1RkL2.!/ :

We further dominate the square of the second term A2 by

A22 D ˇ̌˝
T˛�
�4�

I 1Q
�
; 1JnJ� 4!

J 1R
˛
!

ˇ̌2
(27)

D
ˇ̌̌
ˇ̌
ˇ
*
T˛�

0
@ X

I02C.I/
1I0 4�

I 1Q

1
A ; 1JnJı

X
J02C.J/

1J0 4!
J 1R

+

!

ˇ̌̌
ˇ̌
ˇ
2

.
X

I02C.I/

X
J02C.J/

ˇ̌˝
T˛�
�
1I0 4�

I 1Q
�
; 1J0nJ� 4!

J 1R
˛
!

ˇ̌2

.
X

I02C.I/

X
J02C.J/

N2
T˛ k1I0 4�

I 1Qk2L2.�/
��1J0nJ� 4!

J 1R
��2
L2.!/

. N2
T˛ k1Qk2L2.�/

X
J02C.J/

��1J0nJ� 4!
J 1R

��2
L2.!/

DN2
T˛ k1Qk2L2.�/

ˆ
J0nJ�

ˇ̌4!
J 1R

ˇ̌2
d! :

Then we note the fact that, using the translation parameterization of � indexed
by � 2 	 , we have

E�

ˇ̌
R \ �

.J C �/0 n .J C �/�
�ˇ̌
!

� C˛� jRj! ; (28)

which follows upon taking the average over certain translates D0 C � where D0 is
a fixed grid containing J. This is of course equivalent to taking instead the average
over the same translates !C� of the measure!, and it is in this latter form that (28)
is evident.

Now we will apply (28), together with an argument to resolve the difficulty
associated with the appearance of J in both J0 nJ� and 4!

J 1R, to obtain the following
key estimate for every 0 < � < 1

2
:

E�

ˆ
J0nJ�

ˇ̌4!
J 1R

ˇ̌2
d! � C˛

p
� jRj! ; (29)

for the expected value of the final integral on the right hand side of (27). With (29)
and (26) in hand, we will obtain that

E�

ˇ̌˝
T˛�
�4�

I 1Q
�
;4!

J 1R
˛
!

ˇ̌2
. E�

ˇ̌˝
T˛�
�4�

I 1Q
�
; 1J� 4!

J 1R
˛
!

ˇ̌2 C E�

X
I02C.I/

X
J0

2C.J/

ˇ̌˝
T˛�
�
1I0 4�

I 1Q
�
; 1J0

nJ� 4!
J 1R

˛
!

ˇ̌2
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� C2˛
1

�2
A˛2
��1Q��2L2.�/ k1Rk2L2.!/ CE�

X
I02C.I/

X
J0

2C.J/

N2
T˛
��1I0 4�

I 1Q
��2
L2.�/

��1J0
nJ� 4!

J 1R
��2
L2.!/

� C2˛
1

�2
A˛2
��1Q��2L2.�/ k1Rk2L2.!/ Cp

�N2
T˛
��1Q��2L2.�/ k1Rk2L2.!/ ;

as required. Thus the proof of (16), and hence also that of the Good-� Lemma, will
be complete once we have proved the estimate (29), to which we now turn.

Remark 3 In the third line above we have used the norm inequality
ˇ̌hT˛� f ; gi!

ˇ̌ �
NT˛ k fkL2.�/ kgkL2.!/ with f D 1I0 4�

I 1Q and g D 1J0nJ� 4!
J 1R, and where g is a

constant multiple of an indicator of a ‘rectangle’ J0 nJ�. This prevents us from using
the smaller bound �I2T˛ in place of �N2

T˛ .

In order to illuminate the main ideas in the proof of (29), we first prove the
simplest case of dimension n D 1. So let

J n J� D Jleft� [ Jright� ;

where Jleft� D J� n J� and J
right
� D JC n J�, and write

E�

ˆ
J0nJ�

ˇ̌4!
J 1R

ˇ̌2
d!DE�

ˆ
Jleft�

ˇ̌4!
J 1R

ˇ̌2
d!CE�

ˆ
J
right
�

ˇ̌4!
J 1R

ˇ̌2
d!DLeftCRight:

(30)

Now we recall the parameterization of the expectation by translations � 2 	N
M of

step size 2�M , and let � D �2M where � is the side length of the interval J0 n J�.
Then, by using the ‘average of an average’ principle, we can rewrite the expectation
in terms of the larger step size �2�M . We continue to use � to denote the new step
size �2�M . Then we further decompose the expectation Left in (30) as

Left D E�

ˆ
Jleft�

ˇ̌4!
J 1R

ˇ̌2
d! D E�

ˆ
.JC�/left�

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ2 d!

D E�1f� W.JC�/left� �Rg
ˆ
.JC�/left�

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ2 d!

CE�1f� W.JC�/left� lies to the left of Rg
ˆ
.JC�/left�

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ2 d!

� A3 C A4 ;

where because of our change of step size, we have that
n
.J C �/left�

o
�
is a pairwise

disjoint covering of the top interval containing J that has side length 2�N (see the
beginning of Sect. 3.1 above).
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For term A3 we use the elementary estimate

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ D ˇ̌

E.JC�/
�
1R � E.JC�/1R

ˇ̌ � 1

together with the estimate in (28), to obtain

A3 D E�1f� W.JC�/left� �Rg
ˆ
.JC�/left�

ˇ̌̌
4!

JC�1R
ˇ̌̌2
d!

� E�

ˇ̌
ˇR \ .J C �/left�

ˇ̌
ˇ
!

� C˛� jRj! :

For term A4 we proceed as follows. We suppose that .J C �/left� lies to the left of
R, since the case when .J C �/

right
� lies to the right of R is similar. We have

ˆ
.JC�/left�

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ2 d! D

ˆ
.JC�/left�

ˇ̌
E.JC�/

�
1R � E.JC�/1R

ˇ̌2
d!

D
ˆ
.JC�/left�

ˇ̌
ˇ̌ jR \ .J C �/�j!

j.J C �/�j!
� jR \ .J C �/j!

jJ C � j!

ˇ̌
ˇ̌2 d!

� 2
ˇ̌
ˇ.J C �/left�

ˇ̌
ˇ
!

� jR \ .J C �/�j!
j.J C �/�j!

�2

C2
ˇ̌
ˇ.J C �/left�

ˇ̌
ˇ
!

� jR \ .J C �/j!
jJ C � j!

�2
:

We now estimate the sum of the first terms above since the sum of the second terms
can be estimated with the same argument.

For the sum of the first terms we write

X
� W .JC�/left� is left of R

ˇ̌
ˇ.J C �/left�

ˇ̌
ˇ
!

� jR \ .J C �/�j!
j.J C �/�j!

�2

�
0
@ X
� W .JC�/left� is left of R

ˇ̌̌
.J C �/left�

ˇ̌̌
!

j.J C �/�j!
jR \ .J C �/�j!

j.J C �/�j!

1
A jRj! ;

and let J C �1 be the leftmost translate of J such that

ˇ̌
ˇ.J C �/left�

ˇ̌
ˇ
!

j.J C �/�j!
jR \ .J C �/�j!

j.J C �/�j!
> ı; (31)
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where ı > 0 will be chosen later to be
p
�. We suppose the translations � are

ordered to be increasing. Note that we have both

1 
 jR \ .J C �1/�j!
j.J C �1/�j!

> ı

and

.J C �/left� � .J C �1/� ;

if both � > �1 and .J C �/left� is left of R:

Thus we compute that

E�

ˆ
.JC�/

left
�

ˇ̌̌
4!

JC�1R
ˇ̌̌2
d! D 1

ƒ

8̂
<
:̂
X
�<�1

C
X

�>�1W .JC�/
left
�

is left of R

9>=
>; (32)

ˆ
.JC�/

left
�

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ2 d! (33)

� 1

ƒ

X
�<�1

ˇ̌
ˇ.J C �/left�

ˇ̌
ˇ
!

jR \ .J C �/
�

j!
j.J C �/

�
j2!

jRj! C 1

ƒ

X
�>�1W .JC�/

left
�

is left of R

ˇ̌
ˇ.J C �/left�

ˇ̌
ˇ
!

� 1

ƒ
ı # f� < �1g jRj! C 1

ƒ
j.J C �1/�j! � ı jRj! C 1

ƒ

1

ı
jR \ .J C �1/�j!

�
�
ı C �

ı

�
jRj! D 2

p
� jRj! ;

if we choose ı D p
�. This completes the proof of (29) in dimension n D 1.

3.2.4 Higher Dimensions

In the case of n > 1 dimensions we decompose the ‘corner-like’ pieces J0 n J� for
each child J0 2 C .J/ into faces S C � of width � (when n D 1 there are only two
such faces S C � , namely the intervals .J C �/left� and .J C �/

right
� ). Then we apply

the above argument for .J C �/left� to S C � for each face S of width � in J0 n J�, but
using only translations perpendicular to the face S, and finally apply the ‘average of
an average’ principle, to obtain (29). We illustrate the proof in the case n D 2 since
the general case n 
 2 is no different.

For a square K in the plane, let K� denote the lower left child of K. Now fix
squares J and R in the plane with �-comparable side lengths and such that J � 3R.
For � 2 H�, where H� is the set of horizontal translations � of step size � with
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j� j � C` .R/, denote by .J C �/lower left� the L-shaped ‘corner’

.J C �/lower left� � .J C �/� n J� ;

and by .J C �/left� the vertical portion of the L-shaped set .J C �/lower left� (this is one
of the faces S C � introduced above). We will show that

1

#H�

X
�2H�

ˆ
.JC�/left�

ˇ̌̌
4!

JC�1R
ˇ̌̌2
d! .

p
�; (34)

where #H� � C`.R/
�

, and then by the ‘average of an average’ principle we
obtain (29). To prove (34) we will apply the one-dimensional argument from
the previous subsubsection, but with modifications to accommodate the fact that
.J C �/left� can now spill out over the top of R as well as to the left of R (recall that in
the one-dimensional setting, .J C �/left� occurred to the left of the interval R if it was
not contained in R). As in dimension n D 1, let J C �1 be the leftmost horizontal
translate of J such that

ˇ̌̌
.J C �/left�

ˇ̌̌
!

j.J C �/�j!
jR \ .J C �/�j!

j.J C �/�j!
> ı; (35)

so that we have

1 
 jR \ .J C �1/�j!
j.J C �1/�j!

> ı:

Then with notation analogous to the case n D 1 we have a similar calculation to
that in (33):

1

ƒ

8̂
<
:̂
X
�<�1

C
X

�>�1W .JC�/
left
�

�.JC�1/
�

9>=
>;
ˆ
.JC�/

left
�

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ2 d!

� 1

ƒ

X
�<�1

ˇ̌
ˇ.J C �/left�

ˇ̌
ˇ
!

jR \ .J C �/
�

j!
j.J C �/

�
j2!

jRj! C 1

ƒ

X
�>�1W .JC�/

left
�

�.JC�1/
�

ˇ̌̌
.J C �/left�

ˇ̌̌
!

� 1

ƒ
ı # f� < �1g jRj! C 1

ƒ
j.J C �1/�j! � ı jRj! C 1

ƒ

1

ı
jR \ .J C �1/�j!

�
�
ı C �

ı

�
jRj! D 2

p
� jRj! ;

if we choose ı D p
�. Thus we have so far successfully estimated the sum over

translations � that satisfy either � < �1 or .J C �/left� � .J C �1/�.
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Now we simply repeat the last step considering only the remaining horizontal
translations. Since the side lengths of J and R are comparable, there are at most a
fixed number of such steps left, and adding up the results, and using the ‘average of
an average’ principle, then gives

E�

ˆ
.JC�/left�

ˇ̌
ˇ4!

JC�1R
ˇ̌
ˇ2 d! � C˛

p
�:

This completes the proof of (29) in the case of dimension n D 2, and as mentioned
earlier, the above two-dimensional argument easily adapts to the case n 
 3.
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Appendix

We assume notation as above. Define the bilinear form

B . f ; g/ � hT˛� f ; gi! ; f 2 L2 .�/ ; g 2 L2 .!/ ;

restricted to functions f and g of compact support and mean zero. For each dyadic
grid D we then have

B . f ; g/ D
X
I;J2D

˝
T˛� 4�

I f ;4!
J g
˛
!
:

Now define the bilinear forms

CD . f ; g/ D
X

I;J2DW I and J are r-close

˝
T˛� 4�

I f ;4!
J g
˛
!
; f 2 L2 .�/ ; g 2 L2 .!/ :

Thus the form CD . f ; g/ sums over those pairs of cubes in the grid D that are close
in both scale and position, these being the only pairs where the need for a weak
boundedness property traditionally arises. We also consider the subbilinear form

SD . f ; g/ D
X

I;J2DW I and J are r-close

ˇ̌˝
T˛� 4�

I f ;4!
J g
˛
!

ˇ̌
; f 2 L2 .�/ ; g 2 L2 .!/ ;

which dominates CD . f ; g/, i.e. jCD . f ; g/j � SD . f ; g/ for all f 2 L2 .�/ ; g 2
L2 .!/. The main results above can be organized into the following two part
theorem.
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Theorem 5 With notation as above, we have:

(1) For f and g of compact support and mean zero,

E� jB . f ; g/� CD . f ; g/j
� C˛

�p
A˛2 C TT˛ C T�

T˛ C E strong
˛ C E strong;�

˛ C 2�"rNT˛

	
k fkL2.�/ kgkL2.!/

CC˛E�SD . f ; g/ :

(2) For f and g of compact support and mean zero, and for 0 < � < 1
2
,

E�SD . f ; g/ � C˛

�
1

�

p
A˛2 C TT˛ C T�

T˛ C 4
p
�NT˛

�
k fkL2.�/ kgkL2.!/ :

The reason for emphasizing the two estimates in this way, is that a different
proof strategy might produce a different bound for E� jB . f ; g/� CD . f ; g/j, which
can then be combined with the bound for E�SD . f ; g/ to control jB . f ; g/j. Note
also that the term C˛E�SD . f ; g/ is included in part (1) of the theorem, to allow for
some of the inner products in the definition of CD . f ; g/ to be added back into the
form B . f ; g/� CD . f ; g/ during the course of the proof of estimate (1). Indeed, this
was done when controlling the form T2far below . f ; g/ above.
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