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Abstract Let N � 2 be fixed. Suppose that, for every dyadic cube Q in Rd,
we have: N convex regions fRi.Q/gN1 , subsets of Q; and N complex numbers
fci.Q/gN1 such that jci.Q/j � 1 and

PN
1 ci.Q/jRi.Q/j D 0. Define Qh.Q/.x/ �

jQj�1=2.PN
1 ci.Q/�Ri.Q/.x//. We prove a technical theorem which implies that, for

all such collections fQh.Q/gQ2D and all finite linear combinations
P
�Q Qh.Q/.x/,

�
�
�
X

�Q Qh.Q/
�
�
�
2

� .2C p
2/Nd

�X
j�Qj2

�1=2
:

We show that, if fQh1.Q/gQ2D and fQh2.Q/gQ2D are two such families, the L2 bounded
linear operator T defined by

T. f / �
X

Q

h f ; Qh1.Q/ih2.Q/

is, in a natural sense, stable with respect to small dilation and translation errors in
the kernel functions fQh1.Q/gQ2D and fQh2.Q/gQ2D.
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1 Introduction

A family f �g�2� � L2.Rd/ is called almost-orthogonal if there is finite R so that,
for all finite subsets F � � and all linear sums

P
�2F �� � ,

�
�
�
�
�
�

X

�2F
�� �

�
�
�
�
�
�
2

� R

 
X

F
j�� j2

!1=2

: (1)
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If R is the least such constant for which (1) holds, we say the family is almost-
orthogonal with constant R.

“Almost-orthogonal” is a mild misnomer: “almost-orthonormal” may be more
accurate. We recall that a family f �g�2� is orthonormal if, for all � and � 0 in � ,

h �; � 0i �
ˆ
Rd
 �.x/  � 0.x/ dx D

(
1 if � D � 0I
0 otherwise.

The family f �g�2� is orthonormal if and only if, for all finite sums as in (1), we
have equality, with R D 1.

A duality argument shows that f �g�2� � L2.Rd/ satisfies (1) if and only if, for
all f 2 L2.Rd/,

 
X

�

jh f ;  � ij2
!1=2

� Rk fkL2 : (2)

Combining (1) and (2), we see that, if f .1/� g�2� and f .2/� g�2� are two almost-
orthogonal families in L2.Rd/, with respective constants R1 and R2, then, for all
f 2 L2.Rd/,

X

�

h f ;  .1/� i .2/�

converges unconditionally1 to define a linear operator T W L2 ! L2 with bound
� R1R2. The canonical example of such an operator is the identity, where f .1/� g�2�
and f .2/� g�2� are both the same complete orthonormal family, such as the classical
Haar functions [3]. Recall that an interval I is dyadic if I D Œ j2k; . jC1/2k/ for some
integers j and k. For each such I we set

h.I/.x/ � �Il.x/ � �Ir.x/;

where Il is I’s left half and Ir is I’s right half. (We also use this notation for non-
dyadic intervals.) TheHaar function associated to I is h.I/.x/=jIj1=2, where, here and
henceforth, jEj is a set E’s Lebesgue measure (of varying dimension!).

One can define “Haar functions” adapted to dyadic cubes in Rd. A cube Q � Rd

is a cartesian product of d intervals Ii.Q/ of equal length: Q D Qd
1 Ii.Q/. We call

their common length Q’s sidelength, denoted `.Q/. The cube is dyadic if each Ii.Q/
is a dyadic interval. The set of all dyadic cubes in Rd is D. The dimension d will
vary but be clear from the context. We get d-dimensional Haar functions for the Qs

1We state our precise meaning of “unconditional convergence” in Definition 1.
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in D by taking products

�1.x1/ � �2.x2/ � � � � � �d.xd/

where x D .x1; x2; : : : ; xd/ 2 Rd and each �j is h.Ij.Q// or �Ij.Q/. We run over all
such products except the one for which every �j equals �Ij.Q/. This yields, for each

Q 2 D, an orthogonal set of 2d � 1 functions, fh.Q/.i/ g2d�1
1 . Each h.Q/.i/ is supported on

Q (where it only takes on the values ˙1), has integral equal to 0, and is constant
on Q’s immediate dyadic subcubes. We normalize the set by dividing each h.Q/.i/ by

jQj1=2. The resulting “Haar functions”,
(

h.Q/.i/

jQj1=2
)

Q2D; 1�i<2d

(3)

make up a complete orthonormal family for L2.Rd/, letting us write

f D
X

Q;i

h f ; h.Q/.i/ i
jQj h.Q/.i/ ; (4)

for any f 2 L2.Rd/.
Formula (4) is true, but is it stable? If we want to use (4) to investigate f , we have

to estimate integrals

h f ; h.Q/.i/ i D
ˆ
Rd

f .x/ h.Q/.i/ .x/ dx;

which are likely to have small errors. We might make translation errors: instead of
f .x/ we have f .x C E� i1.Q//, where (we hope) jE� i1.Q/j < `.Q/, the computed inner
product is

ˆ
Rd

f .x/ h.Q/.i/ .x � E� i1.Q// dx � h f ; h1.Q/.i/ i:

We can expect similar translation errors—call them E� i2.Q/—in the other h.Q/.i/ s

occurring in (4), resulting in “perturbed” Haar functions h2.Q/.i/ . If we try to add
up part of (4), we face

X

Q;i

h f ; h1.Q/.i/ i
jQj h2.Q/.i/ : (5)
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If the E� ik.Q/s have norms � �`.Q/, where � is small, then we hope that

�
�
�
�
�
�
f �

X

Q;i

h f ; h1.Q/.i/ i
jQj h2.Q/.i/

�
�
�
�
�
�
2

� C.�/k fk2 (6)

for some function C.�/ going to 0 as � ! 0.
But it is not clear that the families fhk.Q/.i/ =jQj1=2gQ;i (k D 1; 2) are even almost-

orthogonal. The problem comes from the Haar functions’ jumps. We can fix this by
working with a smoother family. Let 0 < ˛ � 1. Suppose that, for each Q 2 D, we
have a function 	.Q/ W Rd ! C such that:

(a) supp 	.Q/ � Q;
(b) j	.Q/.x/� 	.Q/.x0/j � .jx � x0j=`.Q//˛ for all x and x0;
(c)

´
	.Q/ dx D 0.

It is well known that f	.Q/=jQj1=2gQ2D is almost-orthogonal in L2.Rd/ [3, 4].
If f	.Q/.1/ =jQj1=2gQ2D and f	.Q/.2/ =jQj1=2gQ2D are two such families then the uncondi-
tionally convergent sum

X

Q2D

h f ; 	.Q/.1/ i
jQj 	

.Q/

.2/ .x/; (7)

defines bounded linear operator T W L2 ! L2. This sum is also stable. Let
0 < � < 1=2 and let fE�i.Q/gQ2D (i D 1; 2) be two families of vectors in Rd such

that jE�i.Q/j � �`.Q/. Define e	.Q/.i/ .x/ D 	
.Q/
.i/ .x � E�1.Q// (i D 1; 2). The families

fe	.Q/.i/ =jQj1=2gQ2D are almost-orthogonal, with constants � C.˛; d/ [3, 4], implying
that

eT. f / �
X

Q2D

h f ;e	.Q/.1/ i
jQj

e

	
.Q/
.2/

defines a bounded linear operator on L2. Moreover, for every 0 < r < ˛, there is a
constant C D C.˛; r; d/ so that, for all f 2 L2.Rd/ [4],

�
�T. f / �eT. f /��

2
� C�rk fk2I (8)

and analogous results hold in Lp.Rd/ if 1 < p < 1 [4]. The 	.Q/.i/ s’ smoothness

is crucial here. But with the hk.Q/.i/ s, “˛ is 0”, and the Hölder smooth 	.Q/s seem
better for working with wavelet representations of operators. This superiority is
somewhat specious. In the real world, (7) is discretized: the 	.Q/s are replaced
by discontinuous, piecewise constant functions. Sums like (4) provide a model to
understand their sensitivity to errors.
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It turns out that the perturbed Haar systems are almost-orthogonal in L2.Rd/

(Theorems 1 and 2) and series like (4) are stable: they satisfy (6) with C.�/ equal
to a dimensional constant times �1=2 (Theorem 3). The almost-orthogonality and
stability results hold for much more general systems, perturbations, and operators
than those discussed above, and the exponent on � is sharp.

Our proofs of these facts start from a familiar concept. A function f W Œa; b
 ! C
is said to be of bounded variation on Œa; b
 (written f 2 BVŒa; b
) [1] if there is a
finiteM so that, for all partitions P D fa D x0 < � � � < xn D bg of Œa; b
,

nX

1

j f .xk/ � f .xk�1/j � M:

The supremum over all such sums is called f ’s total variation over Œa; b
 and is
denoted Vf Œa; b
. (When we write Vf .I/ and I D Œa; b
, we mean Vf Œa; b
.) If f 2
BVŒa; b
 then f 2 BVŒc; d
 for every Œc; d
 � Œa; b
, and, for every partition P as
above,

nX

1

Vf Œxk�1; xk
 D Vf .[n
1Œxk�1; xk
/ D Vf Œa; b
:

We say that a function is of bounded variation on R if the supremum of the
preceding expression, over all closed bounded intervals, is finite; and we call that
supremum the function’s total variation on R.

For every cube Q � Rd, let NBV.Q/ be the set of f W Rd ! C such that: (a)
f is measurable; (b) f ’s support is a subset of Q (the closure of Q); (c) for each
1 � i � d, f is of bounded variation with respect to xi on R, with total variation on
R being � 1; (d)

´
f dx D 0.

Condition (c) means: If we fix the x2, x3, . . . , xd components of x D
.x1; : : : ; xd/ 2 Rd, then the function f .�; x2; x3; : : : ; xd/ has total variation � 1

on R, with the analogous statements for x2, x3, etc.
Our fundamental result is:

Theorem 1 If f .Q/ 2 NBV.Q/ for every Q 2 D then

�
f .Q/

jQj1=2
�

Q2D

is almost-orthogonal in L2.Rd/, with constant �
�
1C 1p

2

�
d.

Theorem 1 immediately implies the fact stated in the abstract:

Corollary 1 Let N � 2. Suppose that, for every dyadic cube Q � Rd, we have N
convex regions fRi.Q/gN1 , subsets of Q, and N complex numbers fci.Q/gN1 such that
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jci.Q/j � 1 and
PN

1 ci.Q/jRi.Q/j D 0. Define, for every Q 2 D,

Qh.Q/.x/ � jQj�1=2
 

NX

1

ci.Q/�Ri.Q/.x/

!

:

Then, for every finite linear combination
P

Q2D �Q Qh.Q/,
�
�
�
�
�
�

X

Q2D
�Q Qh.Q/

�
�
�
�
�
�
2

�
�
2C p

2
�
Nd

0

@
X

Q2D
j�Qj2

1

A

1=2

:

Proof Each function
PN

1 ci.Q/�Ri.Q/ equals 2N times some f .Q/ 2 NBV.Q/.

Corollary 1 holds no matter what the convex bodies are (cones, spheres,
parallelepipeds, cylinders, etc.) or how they are placed (overlapping, disjoint, etc.).
Careful placement gives a better constant.

Corollary 2 Suppose that, for every dyadic cube Q � Rd, we have 2d convex
regions fRi.Q/g2d1 , where each Ri.Q/ is a subset of a unique immediate dyadic
subcube of Q, and that we have complex numbers fci.Q/g2d1 such that jci.Q/j � 1

and
P2d

1 ci.Q/jRi.Q/j D 0. Define, for every Q 2 D,

Qh.Q/.x/ � jQj�1=2
0

@
2dX

1

ci.Q/�Ri.Q/.x/

1

A :

For every finite linear combination
P

Q2D �Q Qh.Q/,
�
�
�
�
�
�

X

Q2D
�Q Qh.Q/

�
�
�
�
�
�
2

�
�
4C 2

p
2
�
d

0

@
X

Q2D
j�Qj2

1

A

1=2

:

Again, it’s simple: because of how we placed the Ri.Q/s, each function
P2d

1 ci.Q/�Ri.Q/ equals 4 times some f .Q/ 2 NBV.Q/.
After proving Theorem 1 we look at the stability of almost-orthogonal expan-

sions of the form

T.g/ �
X

Q2D

hg; f .Q/1 i
jQj f .Q/2 ; (9)

where each f .Q/i 2 NBV.Q/. Corollary 3 shows that, for any g 2 L2, the series
in (9) converges unconditionally to define T as a bounded linear operator on L2.
In Theorem 3 we show that the operator defined by (9) is L2-stable with respect to
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small dilation and translation errors in the functions f .Q/i . We now say precisely what
those small errors are.

Given a family of functions f f .Q/gQ2D, where each f .Q/ 2 NBV.Q/, we suppose

we have two sequences of vectors fEı.Q/gQ2D and fE�.Q/gQ2D in Rd. The vectors

E�.Q/ are assumed to be small and the vectors Eı.Q/ are assumed to be close to E1 �
.1; 1; 1; : : : ; 1/. Precisely, for some 0 < � < 1=2, jE1 � Eı.Q/j C jE�.Q/j < � for
all Q 2 D. If Eı.Q/ D .ı1; ı2; : : : ; ıd/ and x D .x1; x2; : : : ; xd/ 2 Rd we shall set
Eı.Q/x � .ı1x1; ı2x2; ı3x3; : : : ; ıdxd/.

We define the perturbed form of f .Q/ by

ef .Q/.x/ � f .Q/
�Eı.Q/.x � xQ C `.Q/E�.Q//C xQ

�
: (10)

The effect of replacing xwith Eı.Q/.x�xQC`.Q/E�.Q//CxQ is to shift f .Q/’s “center”
a bit and dilate it slightly “relative to xQ”. For example, if

g.x/ D �B.xQI`.Q//.x/;

the characteristic function of a ball roughly comparable to Q, and Eı.Q/ D
.ı; ı; ı; : : : ; ı/, then

g.Eı.Q/.x � xQ C `.Q/E�.Q//C xQ/ D �B.xQ�`.Q/E�.Q/I`.Q/=ı/.x/ W
the center shifts by a small multiple of `.Q/ and the radius gets multiplied by ı�1.
(For a general ı.Q/, the ball becomes an ellipsoid.) For an operator T like (9) built
from two families f f .Q/j gQ2D ( j D 1; 2), we assume we have sequences of vectors

fEıj.Q/gQ2D and vectors fE�j.Q/gQ2D such that jE1� Eıj.Q/j C jE�j.Q/j < �, from which

we define the analogousef .Q/j s as given by formula (10). We define a perturbation of
T in the obvious way:

eT.g/ �
X

Q2D

hg;ef .Q/1 i
jQj

e

f .Q/2 : (11)

In Sect. 3 we prove:

Theorem 2 The operator defined by (11) is L2 bounded, with norm � C.d/.

Theorem 3 There is a constant C D C.d/, independent of �, so that, for all
operators T andeT (as defined by (9) and (11), respectively), and all g 2 L2.Rd/,

kT.g/�eT.g/k2 � C.d/�1=2kgk2:

The exponent 1=2 is the best possible. Let f f .Q/j =jQj1=2gQ2D ( j D 1; 2) be the

Haar functions on R and let g D hŒ0;1/. Leave the f
.Q/
1 s alone but shift hŒ0;1/ in the
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f .Q/2 system to the right by 0 < � < 1=10. Then T.g/.x/ D hŒ0;1/.x/, eT.g/.x/ D
hŒ0;1/.x � �/, and kT.g/ �eT.g/k2 	 �1=2.

At two places the reader may wonder why we are doing things certain ways
when others seem simpler. Remarks there (labeled “Point 1” and “Point 2”) direct
the reader to an appendix (Sect. 3) for motivations. Originally we tried to put these in
the introduction, but attempts to motivate the motivations (before stating the proofs)
made the paper too long and confusing. We removed them, thinking nobody would
care about them anyway, but the referee asked about precisely those issues. We then
had the idea of addressing them in an appendix. We are grateful to the referee for
getting us to explain ourselves, and helping to make the paper not too long and
just confusing enough. The “points” remarks occur, respectively, after the proofs of
Lemma 1 and Theorem 1.

We write A 	 B—where A and B are positive quantities depending on some
parameters—to mean that there are positive numbers c1 and c2 (“comparability
constants”) so that

c1A � B � c2AI (12)

and, if c1 and c2 do happen to depend on parameters, (12) does not become trivial.
We will often use ‘C’ to denote a constant which might change to occurrence. We
will not always state the parameters C depends on. If E and F are sets, we write
E � F to express E 
 F.

We indicate the end of the proof with the symbol �.

2 The Proof of Theorem 1

We begin with two lemmas.

Lemma 1 Let I be a closed, bounded interval. Suppose that f W I ! C is of
bounded variation, with Vf .I/ � 1, b W I ! R is integrable, and

´
b dx D 0.

Then:
ˇ
ˇ
ˇ
ˇ

ˆ
I
f b dx

ˇ
ˇ
ˇ
ˇ � .1=2/kbk1: (13)

Proof of Lemma 1 Take kbk1 D 1. Assume first that f is real. If bC and b� are b’s
positive and negative parts then

´
bC dx D ´

b� dx D 1=2, implying

ˆ
f .x/ bC.x/ dx D .1=2/s1

and
ˆ

f .x/ b�.x/ dx D .1=2/s2;
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where s1 and s2 are two numbers lying in ŒinfI f ; supI f 
. Therefore

ˇ
ˇ
ˇ
ˇ

ˆ
f .x/ .bC.x/ � b�.x// dx

ˇ
ˇ
ˇ
ˇ D .1=2/js1 � s2j � .1=2/ sup

x;y2I
j f .x/ � f . y/j � 1=2:

If f is not real, let ˛ be a complex number with modulus equal to 1 such that

ˇ
ˇ
ˇ
ˇ

ˆ
I
f b dx

ˇ
ˇ
ˇ
ˇ D

ˆ
.˛f .x// b.x/ dx D

ˆ
.<.˛f .x/// b.x/ dx;

and apply the same argument to <.˛f /. �
Point 1. Using bounded variation seems like overkill. For f defined on I we can

set

�f .I/ � supfj f .x/� f . y/j W x; y 2 Ig:

If�f .I/ � 1 we’ll get

ˇ
ˇ
ˇ
ˇ

ˆ
I
f b dx

ˇ
ˇ
ˇ
ˇ � .1=2/kbk1:

Why use Vf .I/? See the appendix.
The second lemma lets us prove Theorem 1 by induction on d.

Lemma 2 Suppose that d � 2, Q � Rd is a cube, and f W Rd ! C lies in NBV.Q/.
Write Q � I1.Q/ � K.Q/, where K.Q/ D Qd

2 Ii.Q/. For y 2 Rd�1 define

	. y/ � `.Q/�1
ˆ
I1.Q/

f .t; y/ dt:

Then 	 2 NBV.K.Q//.

Proof of Lemma 2 It is trivial that supp 	 � K.Q/ and
´
	 dy D 0. For 2 � j � d,

let fykgn0 be points inRd�1 differing only in their xj coordinates, where these increase
with k. Then:

nX

1

j	. yk/� 	. yk�1/j � `.Q/�1
ˆ
I1.Q/

 
nX

1

j f .t; yk/ � f .t; yk�1/j
!

dt � 1;

because f 2 NBV.Q/. �
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We now prove Theorem 1.
Let d D 1. Take Q and I, dyadic intervals. Consider the inner product

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�

; (14)

where f .Q/ 2 NBV.Q/ and h.I/=jIj1=2 is the classical Haar function associated to I. If
Q\ I D ; or Q is properly contained in I then (14) is 0. If I � Q then, by Lemma 1,

ˇ
ˇ
ˇ
ˇ

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�ˇ
ˇ
ˇ
ˇ � .1=2/Vf .Q/.I/

	 jIj
jQj


1=2
:

Therefore, for each j � 0,

X

I�Q
`.I/D2�j`.Q/

ˇ
ˇ
ˇ
ˇ

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�ˇ
ˇ
ˇ
ˇ � .1=2/2�j=2

X

I�Q
`.I/D2�j`.Q/

Vf .Q/ .I/

D .1=2/2�j=2Vf .Q/ .Q/ (15)

� .1=2/2�j=2:

For each Q 2 D,

X

I2D

ˇ
ˇ
ˇ
ˇ

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�ˇ
ˇ
ˇ
ˇ D

X

I2D
I�Q

ˇ
ˇ
ˇ
ˇ

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�ˇ
ˇ
ˇ
ˇ

� .1=2/

1X

0

2�j=2

D 1C 1p
2
:

For every I 2 D,

X

Q2D

ˇ
ˇ
ˇ
ˇ

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�ˇ
ˇ
ˇ
ˇ D

X

Q2D
I�Q

ˇ
ˇ
ˇ
ˇ

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�ˇ
ˇ
ˇ
ˇ

� .1=2/

1X

0

2�j=2

D 1C 1p
2
:
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By the Schur Test, the linear mapping L W `2.D/ ! `2.D/ defined by

L
�f�QgQ2D

� �
8
<

:

X

Q2D
�Q

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�
9
=

;
I2D

has a bound less than or equal to 1 C 1p
2
. Let g D P

Q2D �Q
f .Q/

jQj1=2 be a finite

linear sum. The classical Haar functions form a complete orthonormal set in L2.R/.
Therefore,

ˆ
jgj2 dx D

X

I

ˇ
ˇ
ˇ
ˇ

�

g;
h.I/

jIj1=2
�ˇ
ˇ
ˇ
ˇ

2

D
X

I

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

Q2D
�Q

�
f .Q/

jQj1=2 ;
h.I/

jIj1=2
�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

�
	

1C 1p
2


2 X

Q2D
j�Qj2;

proving the Theorem 1 when d D 1.
Assume the result for d � 1 � 1, with constant C.d � 1/; i.e., assume that if

f .Q/ 2 NBV.Q/ for every .d� 1/-dimensional dyadic cubeQ, and
P

Q2D �Q
f .Q/

jQj1=2 is
any finite linear combination, then

0

B
@

ˆ
Rd�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

Q2D
�Q

f .Q/

jQj1=2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

dx

1

C
A

1=2

� C.d � 1/

0

@
X

Q2D
j�Qj2

1

A

1=2

:

Consider the family

�
f .Q/

jQj1=2
�

Q2D
;

where every Q is a d-dimensional dyadic cube and each f .Q/ 2 NBV.Q/. Put
f .Q/.x/ D f .Q/.x0; y/, where x0 2 R and y 2 Rd�1. Write

f .Q/.x0; y/ D f .Q/1 .x0; y/C f .Q/2 .x0; y/;
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where

f .Q/1 .x0; y/ D
	

f .Q/.x0; y/� `.Q/�1
ˆ
I1.Q/

f .Q/.t; y/ dt




�I1.Q/.x
0/�K.Q/. y/

f .Q/2 .x0; y/ D
	

`.Q/�1
ˆ
I1.Q/

f .Q/.t; y/ dt




�I1.Q/.x
0/�K.Q/. y/;

and I1.Q/ and K.Q/ are as in the statement of Lemma 2, so that Q D I1.Q/�K.Q/.
By our d D 1 result, for each fixed y 2 Rd�1, the family f`.Q/�1=2f .Q/1 .x0; y/gQ2D

is almost-orthogonal in L2.R/, with constant � C.1/. This is because, for each fixed
y, the function `.Q/�1=2f .Q/1 .x0; y/ is either identically 0 (with respect to x0) or it’s a
suitably scaled, uniformly bounded-variation function, with integral 0, adapted to a
unique dyadic interval I1.Q/. Note that subtracting a term of the form c�I1.Q/.x

0/
does not change f .Q/’s total variation in x0 on I1.Q/, and so does not affect the
relevant Schur Test estimates. (See the proof of Lemma 1.)

For each fixed y 2 Rd�1,
ˆ
R

ˇ
ˇ
ˇ
X

�QjQj�1=2f .Q/1 .x0; y/
ˇ
ˇ
ˇ
2

dx0 � C.1/2
X

j�Qj2`.Q/�.d�1/�K.Q/. y/:

Since jK.Q/j D `.Q/d�1, integrating in y yields

ˆ
Rd

ˇ
ˇ
ˇ
X

�QjQj�1=2f .Q/1 .x0; y/
ˇ
ˇ
ˇ
2

dx0 dy � C.1/2
X

j�Qj2: (16)

By induction (and because of Lemma 2), for each fixed x0 2 R, the family
f`.Q/�.d�1/=2f .Q/2 .x0; y/gQ2D is almost-orthogonal in L2.Rd�1/, with constant �
C.d � 1/. (As with the f .Q/1 s, for some x0, f .Q/2 .x0; y/ is identically 0 in y—which
is fine.) Hence, for each fixed x0 2 R,

ˆ
Rd�1

ˇ
ˇ
ˇ
X

�QjQj�1=2f .Q/2 .x0; y/
ˇ
ˇ
ˇ
2

dy � C.d � 1/2
X

j�Qj2`.Q/�1�I1.Q/.x0/:

Now integrating in x0 yields:
ˆ
Rd

ˇ
ˇ
ˇ
X

�QjQj�1=2f .Q/2 .x0; y/
ˇ
ˇ
ˇ
2

dx0 dy � C.d � 1/2
X

j�Qj2: (17)

Combining (16) and (17) yields

�
�
�
�

X
�Q

f .Q/

jQj1=2
�
�
�
�
2

� .C.1/C C.d � 1//
�X

j�Qj2
�1=2

;
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which implies

C.d/ � d C.1/:

The Schur Test gives C.1/ � 1C 1p
2
. We have Theorem 1. �

Point 2. Why do induction? We have d-dimensional Haar functions (3). Why
not get Schur test estimates directly from inner products between them and the
functions in

�
f .Q/

jQj1=2
�

Q2D
‹

See the appendix.
Theorem 1 implies the L2 boundedness of a certain “rough” operator (see the

introduction), defined as a limit of finite sums. We need to specify in what way this
limit is taken.

Definition 1 We say that a sequence fEkg1
1 of finite subsets ofD fills upD if every

Q 2 D is in all but finitely many Eks. (This holds if the Eks are increasing and
[kEk D D.) Let f�QgQ2D be a sequence of complex numbers, and fg.Q/gQ2D a
sequence of functions in L2.Rd/, each indexed over the family of dyadic cubes D.
We say that

X

Q2D
�Qg.Q/

converges unconditionally to h 2 L2.Rd/ if, for every sequence of finite subsets
fEkg1

1 that fills up D,

lim
k!1

�
�
�
�
�
�
h �

X

Q2Ek

�Qg.Q/

�
�
�
�
�
�
2

D 0:

Corollary 3 Let f f .Q/1 gQ2D and f f .Q/2 gQ2D be two families such that f .Q/i 2
NBV.Q/ for all Q 2 D and i D 1; 2. If g 2 L2.Rd/ then the series

X

Q2D

hg; f .Q/1 i
jQj f .Q/2 (18)

converges unconditionally to some h in L2. Moreover,

khk2 �
		

1C 1p
2




d


2
kgk2:
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In other words, (18) defines a linear operator T W L2 ! L2 with norm
� ..1C 1p

2
/d/2.

Proof of Corollary 3 Let g 2 L2.Rd/, and suppose that E � D is a finite subset.
Define

TE.g/ �
X

E

hg; f .Q/1 i
jQj f .Q/2 :

By Theorem 1,

kTE.g/k2 �
	

1C 1p
2




d

 
X

E

jhg; f .Q/1 ij2
jQj

!1=2

�
		

1C 1p
2




d


2
kgk2 < 1:

(19)
If fEkg1

1 is a sequence of finite subsets that fills up D then, for any m and n,

kTEm.g/ � TEn.g/k2 �
	

1C 1p
2




d

0

@
X

Em�En

jhg; f .Q/1 ij2
jQj

1

A

1=2

I

which, because of (19), goes to 0 as m and n go to infinity. (Apply domi-
nated convergence to the sums over the symmetric differences Em�En.) Therefore
fTEk.g/gk is Cauchy in L2.Rd/ and converges to an h with norm � ..1 C
1p
2
/d/2kgk2. The function h is unique because, if fEkg1

1 and fE 0
kg1
1 fill up D, so

does fE1; E 0
1; E2; E 0

2; : : :g. �

3 The Proofs of Theorems 2 and 3

As with Theorem 1, we will first work in one dimension, where we will sometimes
call dyadic intervals I or J, and sometimes Q.

Both proofs make use of a simple fact whose proof can be found in [2] and [3].

Lemma 3 If QD denotes the family of concentric triples of dyadic intervals inR then
QD can be decomposed into 3 disjoint families,

QD D [3
1Gi;

such that, for each 1 � i � 3: a) 8I; J 2 Gi, either I \ J D ; or one is a subset of
the other; b) every I 2 Gi is the right or left half of a J 2 Gi; c) 8I 2 Gi, I’s right
and left halves belong to Gi; d) R is covered by the set of I 2 Gi of length 3; and
therefore, for any k, R is covered by the set of I 2 Gi of length 3 � 2k.
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As an immediate corollary of Lemma 3, the set of concentric triples of dyadic
cubes in Rd (also denoted QD) can be split into 3d disjoint families, each one having
the analogous inclusion/exclusion and relative size properties as the set of dyadic
cubes. The proof is trivial: for every Ea D .a1; : : : ; ad/ 2 f1; 2; 3gd, let GEa be the set
of cubes Q D Qd

1 Ii.Q/ such that each Ii.Q/ 2 Gai .

The Proof of Theorem 2 If I is a dyadic interval, we use QI to denote I’s concentric
triple, and we define h.QI/ by

h.QI/.x/ D �QIl .x/� �QIr .x/:

Then h.QI/=jQIj1=2 is the “Haar function” associated to QI. Because of Lemma 3, for
each 1 � i � 3, fh.QI/=jQIj1=2 W QI 2 Gig forms a complete orthonormal basis for
L2.R/.

For each 1 � i � 3 we let Fi be the set of dyadic intervals Q such that QQ 2 Gi.

We note that if Q 2 Fi and f .Q/ 2 NBV.Q/ thenef .Q/ 2 NBV. QQ/, where QQ 2 Gi. We
claim that if 1 � i � 3 and f f .Q/gQ2Fi is any family such that each f .Q/ 2 NBV.Q/
then

(
ef .Q/

jQj1=2
)

Q2Fi

is almost-orthogonal in L2.R/, with a constant less than or equal to an absolute C.
The proof is easy. We only need to bound

ˇ
ˇ
ˇ
ˇ
ˇ

*
ef .Q/

jQj1=2 ;
h.QI/

jQIj1=2
+ˇ
ˇ
ˇ
ˇ
ˇ

(20)

forQ and I both lying inFi. But we have already seen this sort of thing. If QQ\QI D ;
or QQ is strictly contained in QI then the inner product is 0. Otherwise QI � QQ, with
jQIj D 2�jj QQj for some j � 0, and (20) is less than or equal to

 
jQIj
jQj

!1=2

Vff .Q/ .
QI/ D 31=22�j=2Vff .Q/ .

QI/:

For every Q 2 Fi and j � 0,

X

I2FiW QI� QQ

jQIjD2�j
j QQj

ˇ
ˇ
ˇ
ˇ
ˇ

*
ef .Q/

jQj1=2 ;
h.QI/

jQIj1=2
+ˇ
ˇ
ˇ
ˇ
ˇ



290 M. Wilson

is less than or equal to a constant times

2�j=2Vff .Q/ .
QQ/ � 2�j=2;

implying that, for every Q 2 Fi,

X

I2Fi

ˇ
ˇ
ˇ
ˇ
ˇ

*
ef .Q/

jQj1=2 ;
h.QI/

jQIj1=2
+ˇ
ˇ
ˇ
ˇ
ˇ

� C.1C 1p
2
/ � C:

Similarly, for every I 2 Fi,

X

Q2Fi

ˇ
ˇ
ˇ
ˇ
ˇ

*
ef .Q/

jQj1=2 ;
h.QI/

jQIj1=2
+ˇ
ˇ
ˇ
ˇ
ˇ

� C.1C 1p
2
/ � C:

Combining the two inequalities proves our claim.
For every Ea 2 f1; 2; 3gd, let FEa be the family of dyadic cubesQ such that QQ 2 GEa.

Fix an Ea 2 f1; 2; 3gd. If Q 2 FEa then ef .Q/ 2 NBV. QQ/. We can now repeat the
inductive argument from the proof of Theorem 1 to get that

(
ef .Q/

jQj1=2
)

Q2F
Ea

is almost-orthogonal in L2.Rd/, with constant � Cd, where C is the constant we get
for d D 1. We get the same estimate for every Ea 2 f1; 2; 3gd, implying that

(
ef .Q/

jQj1=2
)

Q2D

is almost-orthogonal in L2.Rd/, with constant � C3dd � C.d/. A repetition of the
argument in the proof of Corollary 3 shows that, for any g 2 L2.Rd/,

X

Q2D

hg;ef .Q/1 i
jQj

e

f .Q/2

converges unconditionally in L2 to define a bounded linear operator eT W L2 ! L2

with norm � C.d/2. �
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The Proof of Theorem 3 Write T.g/ �eT.g/ as S1.g/C S2.g/, where

S1.g/ D
X

Q2D

hg; f .Q/1 �ef .Q/1 i
jQj f .Q/2

S2.g/ D
X

Q2D

hg;ef .Q/1 i
jQj

	

f .Q/2 �ef .Q/2




:

Because of (2) and Theorem 2, Theorem 3 will follow once we show that, for all
finite linear sums

X

Q2D
�Q

0

@
f .Q/i �ef .Q/i

jQj1=2

1

A

(i D 1; 2), we have

�
�
�
�
�
�

X

Q2D
�Q

0

@
f .Q/i �ef .Q/i

jQj1=2

1

A

�
�
�
�
�
�
2

� C�1=2

0

@
X

Q2D
j�Qj2

1

A

1=2

(21)

for a constant C only depending on d. Inequality (21) will follow from Theorem 2
and a technical, one-dimensional lemma (Lemma 4). We prove Lemma 4 first. We
warn the reader that its proof requires an additional (fortunately very easy) lemma
(Lemma 5).

Since the f .Q/i s’ subscripts are now irrelevant, we no longer write them.
Until otherwise stated, D, QD, Fi, and Gi refer to families of intervals.

Lemma 4 For each Q 2 Fi, let g.Q/ W R ! R have support contained in Q and
be of bounded variation, with total variation � 1. (Note: we do not require that´
g.Q/ dx D 0.) Let fı.Q/gQ2D and f�.Q/gQ2D be two sequences of real numbers

indexed over D, such that j1 � ı.Q/j C j�.Q/j < � < 1=2 for all Q 2 D. Define
eg.Q/.x/ � g.Q/.ı.Q/.x � xQ C `.Q/�.Q//C xQ/ and, for each QI 2 Gi, set

a.Q; QI/ �
*
g.Q/ � ı.Q/eg.Q/

jQj1=2 ;
h.QI/

jQIj1=2
+

:

There is an absolute C such that, for all Q 2 Fi and QI 2 Gi,

X

QI2Gi

ja.Q; QI/j (22)
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and

X

Q2Fi

ja.Q; QI/j (23)

are both bounded by C�1=2.

Proof of Lemma 4 If Q 2 Fi and QI 2 Gi then

ı.Q/
´
eg.Q/.x/ h.QI/.x/ dx

D ı.Q/
´
g.Q/

�
ı.Q/.x � xQ C `.Q/�.Q//C xQ

�
h.QI/.x/ dx

D ´
g.Q/.u/ h.QI/

�
ı.Q/�1.u � xQ � ı.Q/`.Q/�.Q//C xQ

�
du;

after substituting u D ı.Q/.x � xQ C `.Q/�.Q//C xQ. Therefore,

ˆ �
g.Q/.x/� ı.Q/eg.Q/.x/

�
h.QI/.x/ dx D

ˆ
g.Q/.x/ �.QI/.x/ dx; (24)

where �.QI/.x/ equals

h.QI/.x/ � h.QI/
�
ı.Q/�1.x � xQ � ı.Q/`.Q/�.Q//C xQ

�
: (25)

We note a fact which will be important soon. Although we do not assume that´
g.Q/ dx D 0, we do have

´ �
g.Q/.x/� ı.Q/eg.Q/.x/

�
dx D 0, ensuring that (24)

equals 0 if QI 6� QQ: if QI 6� QQ and QI \ QQ 6D ;, the support of g.Q/.x/ � ı.Q/eg.Q/ is
entirely contained in either the right or the left half of QI, across which h.QI/ is constant.

The key to the proof of Lemma 4 is a good estimate for the right-hand side
of (24), which follows from Lemma 1 and a bound on k�.QI/k1. For the latter we
need the simple lemma mentioned above.

Lemma 5 If I is a bounded interval, with endpoints a < b, and I0 is another
bounded interval, with endpoints a0 < b0, then

ˆ
j�I.x/� �I0.x/j dx � ja � a0j C jb � b0j: (26)

Proof of Lemma 5 Assume that b�a � b0 �a0. If b � a0 the left-hand side of (26) is
b�aCb0 �a0, while ja�a0j � b�a and jb�b0j � b0 �a0. If a � a0 < b the left-hand
side of (26) is exactly a0 � a C b0 � b (because b � b0), and if a0 < a < b � b0 it is
a � a0 C b0 � b. The other cases follow from symmetry. �

We continue the proof of Lemma 4. Recall that h.QI/ has the form �Œa;b/ � �Œa0 ;b0/,
where Œa; b/ D QIl and Œa0; b0/ D QIr. If 	 W R ! R is a strictly increasing bijection
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then

�Œ˛;ˇ/.	.x// D �Œ	�1.˛/;	�1.ˇ//.x/:

Set 	.x/ D ı.Q/�1.x � xQ � ı.Q/`.Q/�.Q//C xQ. Then 	�1.x/ D ı.Q/.x � xQ C
`.Q/�.Q//C xQ. For ease of reading we will refer to 	�1 as  . We can write

h.QI/
�
ı.Q/�1.x � xQ � ı.Q/`.Q/�.Q//C xQ

�

D �Œ .a/; .b//.x/� �Œ .a0/; .b0//.x/;

and therefore the L1 norm of

�.
QI/.x/ � h.QI/.x/ � h.QI/

�
ı.Q/�1.x � xQ � ı.Q/`.Q/�.Q//C xQ

�

is less than or equal to

ja �  .a/j C jb �  .b/j C ja0 �  .a0/j C jb0 �  .b0/j: (27)

A quick calculation yields

a �  .a/ D .a � xQ/.1 � ı.Q//� ı.Q/`.Q/�.Q/; (28)

with similar expressions for the other terms.
We recall that Q 2 Fi, QI 2 Gi, and that the inner product (24) is zero unless

QI � QQ; thus, for the only cases of interest, `.QI/ D 2�j`. QQ/ for some j � 0. Given
0 < � < 1=2, let N be the unique natural number such that � 2 Œ2�N�1; 2�N/.
For such QI, the absolute value of (28)—and thus k�.QI/k1—is less than or equal to a
constant times 2�N`.Q/.

We will give two bounds on the absolute value of (24), depending on whether
j � N or j > N. We only use (28) for the j � N estimate.

If j � N (so that QI is not too small compared to QQ), then the absolute value of (24)
is less than or equal to a constant times 2�N`. QQ/Vg.Q/ .QI/.

If j > N (meaning that QI is very small compared to QQ) then the absolute value
of (24) is less than or equal to

�
Vg.Q/ .QI/C Vfg.Q/ .

QI/
�

kh.QI/k1;

which is the same as

2�j`. QQ/
�
Vg.Q/ .QI/C Vfg.Q/ .

QI/
�
: (29)

Of course, what we need to bound is not the absolute value of (24), but the same
divided by jQj1=2jQIj1=2 	 2�j=2`.Q/. (Recall that we are still working in d D 1.) If
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j � N, the quotient is less than or equal to a constant times 2j=22�NVg.Q/ .QI/. If j > N

the corresponding estimate is 2�j=2
�
Vg.Q/ .QI/C V

ı.Q/fg.Q/.
QI/
�
. Therefore, if Q 2 Fi,

QI 2 Gi, QI � QQ, and `.QI/ D 2�j`. QQ/, then

ja.Q; QI/j �
8
<

:

C2j=22�NVg.Q/ .QI/ if j � NI
C2�j=2

�
Vg.Q/ .QI/C V

ı.Q/fg.Q/ .
QI/
�

if j > NI

while a.Q; QI/ D 0 if QI 6� QQ.
We now estimate (22)

X

QI
ja.Q; QI/j D

X

QIW QI� QQ
ja.Q; QI/j

and (23)

X

Q

ja.Q; QI/j D
X

QW QI� QQ
ja.Q; QI/j:

Estimate of (22):

X

QIW QI� QQ
ja.Q; QI/j � C

X

j�0

X

QIW`.QI/D2�j`. QQ/
ja.Q; QI/j

D C2�N
X

0�j�N

2j=2
X

QIW`.QI/D2�j`. QQ/
Vg.Q/ .QI/

C C
X

j>N

2�j=2
X

QIW`.QI/D2�j`. QQ/

�
Vg.Q/ .QI/C V

ı.Q/fg.Q/.
QI/
�

D .I/C .II/;

where

.I/ D C2�N
X

0�j�N

2j=2
X

QIW`.QI/D2�j`. QQ/
Vg.Q/ .QI/

.II/ D C
X

j>N

2�j=2
X

QIW`.QI/D2�j`. QQ/

�
Vg.Q/ .QI/C V

ı.Q/fg.Q/.
QI/
�
:

For each Q and j � 0,

X

QIW`.QI/D2�j`. QQ/
Vg.Q/ .QI/ � Vg.Q/ . QQ/ � 1
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and

X

QIW`.QI/D2�j`. QQ/

�
Vg.Q/ .QI/C V

ı.Q/fg.Q/ .
QI/
�

� Vg.Q/ . QQ/C V
ı.Q/fg.Q/.

QQ/ � 5=2;

because the change of variable does not affect the total variation and jı.Q/j � 3=2.
Therefore

.I/ � C2�N
X

0�j�N

2j=2 � C2�N=2

.II/ � C
X

j>N

2�j=2 � C2�N=2;

implying that
P

QIW QI� QQ ja.Q; QI/j � C2�N=2.
Estimate of (23): This is like case a), but simpler, because, for each j � 0 and

QI, there is only one QQ such that QI � QQ and `.QI/ D 2�j`. QQ/. We get the same
estimate: � C2�N=2.

That proves Lemma 4, since � 	 2�N . �
The Schur Test and Lemma 4 imply that if fg.Q/gQ2D and feg.Q/gQ2D are two

families as given in Lemma 4’s hypotheses, then, for any finite linear sum

X

Q2D
�Q

 
g.Q/ � ı.Q/eg.Q/

jQj1=2
!

;

we have

�
�
�
�
�
�

X

Q2D
�Q

 
g.Q/ � ı.Q/eg.Q/

jQj1=2
!��
�
�
�
�
2

� C�1=2

0

@
X

Q2D
j�Qj2

1

A

1=2

; (30)

with C an absolute constant. This implies Theorem 3 when d D 1. We can write

f .Q/ �ef .Q/ D
�
f .Q/ � ı.Q/ef .Q/

�
C .ı.Q/� 1/ef .Q/:

Lemma 4 implies that

�
�
�
�
�
�

X

Q2D
�Q

 
f .Q/ � ı.Q/ef .Q/

jQj1=2
!��
�
�
�
�
2

� C�1=2

0

@
X

Q2D
j�Qj2

1

A

1=2

I (31)
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while, by Theorem 2,

�
�
�
�
�
�

X

Q2D
�Q

 
ef .Q/

jQj1=2
!��
�
�
�
�
2

� C

0

@
X

Q2D
j�Qj2

1

A

1=2

: (32)

Since j1 � ı.Q/j � � � �1=2 for all Q, we get (21) and thus Theorem 3 in one
dimension.

We now prove (21) for general d. From here on we work in Rd: FEa, GEa, D, and
QD are families of cubes; Eı.Q/ and E�.Q/ are vectors.
Fix Ea 2 f1; 2; 3gd. For Q 2 FEa we write Eı.Q/ as .ı1.Q/; ı2.Q/; : : : ; ıd.Q// and

E�.Q/ as .�1.Q/; �2.Q/; : : : ; �d.Q//. Associated to each Eı.Q/ and E�.Q/ will be two
finite sequences of vectors f Qıj.Q/gd0 and f Q�j.Q/gd0, defined by

Qı0.Q/ � E1
Qı1.Q/ � .ı1.Q/; 1; 1; : : : ; 1/

Qı2.Q/ � .ı1.Q/; ı2.Q/; 1; 1; : : : ; 1/

Qı3.Q/ � .ı1.Q/; ı2.Q/; ı3.Q/; 1; 1; : : : ; 1/

: : :

Qıd.Q/ D ı.Q/

and

Q�0.Q/ D 0

Q�1.Q/ D .�1.Q/; 0; 0; : : : ; 0/

Q�2.Q/ D .�1.Q/; �2.Q/; 0; 0; : : : ; 0/

Q�3.Q/ D .�1.Q/; �2.Q/; �3.Q/; 0; 0; : : : ; 0/

: : :

Q�d.Q/ D �.Q/:

In other words, considered as a dilation operator, Qı0.Q/ starts as the identity,
and then, as j advances, morphs—one variable at a time—into Eı.Q/; while Q�j.Q/
similarly morphs from the identity into E�.Q/, but now considered as a sequence of
translation operators. Keep in mind that ıj.Q/ and �j.Q/ are numbers (components

of the vectors Eı.Q/ and E�.Q/) while Qıj.Q/ and Q�j.Q/ are vectors.
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Define 
.Q/0 .x/ � f .Q/.x/ and, for 1 � k � d,



.Q/
k .x/ D

 
kY

1

ıj.Q/

!

f .Q/. Qık.Q/.x � xQ C `.Q/ Q�k.Q//C xQ/:

After noticing that 
.Q/d .x/ D
�Qd

1 ık.Q/
�
ef .Q/.x/, we write

f .Q/.x/�ef .Q/.x/ D f .Q/.x/�
 

dY

1

ık.Q/

!

ef .Q/.x/C
  

dY

1

ık.Q/

!

� 1

!

ef .Q/.x/

D 

.Q/
0 .x/ � 
.Q/d .x/C

  
dY

1

ık.Q/

!

� 1

!

ef .Q/.x/

D
"

dX

kD1

�


.Q/
k�1.x/� 


.Q/
k .x/

�
#

C
"  

dY

1

ık.Q/

!

� 1
!
ef .Q/.x/

#

� ŒI
C ŒII
 :

The term ŒII
 is no problem, because

ˇ
ˇ
ˇ
ˇ
ˇ

  
dY

1

ık.Q/

!

� 1
!ˇ
ˇ
ˇ
ˇ
ˇ

� C.d/�

and Theorem 2 controls the almost-orthogonal “norm” of fef .Q/=jQj1=2gF
Ea
.

To see what is going on with ŒI
, we look at the first term in the sum,



.Q/
0 .x/� 
.Q/1 .x/ D f .Q/.x/� ı1.Q/f .Q/. Qı1.Q/.x� xQ C `.Q/ Q�1.Q//C xQ/: (33)

Write x D .x1; x2; : : : ; xd/ as .x1; x�/, where x1 2 R and x� 2 Rd�1. For fixed
x�, (33) is

f .Q/.x1; x
�/� ı1.Q/f

.Q/.ı1.Q/.x1 � .xQ/1 C `.Q/�1.Q//C .xQ/1; x
�/ (34)

(note the absence of tildes), because the (respective) dilation and translation
operators Qı1.Q/ and Q�1.Q/ do not affect the x� components at all.

To ease reading we refer to (34) as !.Q/.x/.
For QQ 2 GEa, write QQ D I1. QQ/ � K. QQ/, as in the statement of Lemma 2. Then

!.Q/.x1; x
�/ D !.Q/.x1; x

�/�I1. QQ/.x1/�K. QQ/.x
�/



298 M. Wilson

and, for every fixed x� 2 Rd�1 and every finite linear sum

X

Q2F
Ea

�Q

	
!.Q/

jQj1=2



D
X

Q2F
Ea

�Q

 
!.Q/.x1; x�/�I1. QQ/.x1/�K. QQ/.x�/

jQj1=2
!

;

we have, by the one-dimensional version of Theorem 3,

ˆ
R

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

Q2F
Ea

�Q

	
!.Q/.x1; x�/

jQj1=2


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

dx1 � C�
X

Q2F
Ea

j�Qj2jK. QQ/j�1�K. QQ/.x
�/: (35)

Here we are arguing just as we did in estimating (16), but incorporating the ‘� C�’
bound we have from the one-dimensional Theorem 3 (see (30)–(32)). We get � this
time, and not �1=2, because we are not taking the square root of the integral. When
we integrate (35) in x� we get, for every Ea 2 f1; 2; 3gd,

ˆ
Rd

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

Q2F
Ea

�Q

	
!.Q/.x/

jQj1=2


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

dx D
ˆ
R�Rd�1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

Q2F
Ea

�Q

	
!.Q/.x1; x�/

jQj1=2


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

dx1 dx
�

� C�
X

Q2F
Ea

j�Qj2:

The other summands in ŒI
 are handled in a similar fashion, successively treating
the variables x2, . . . , xd as we did x1. For example, 
.Q/1 .x/ � 


.Q/
2 .x/ equals ı1.Q/

times

f .Q/. Qı1.Q/.x�xQC`.Q/ Q�1.Q//CxQ/�ı2.Q/f .Q/. Qı2.Q/.x�xQC`.Q/ Q�2.Q//CxQ/;

where the functions’ two arguments, respectively

. Qı1.Q/.x � xQ C `.Q/ Q�1.Q//C xQ (36)

and

Qı2.Q/.x � xQ C `.Q/ Q�2.Q//C xQ; (37)
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differ only in their second components. The second component of (36) is x2, and
that of (37) is

ı2.Q/.x2 � .xQ/2 C `.Q/�2.Q//C .xQ/2:

But their first components both equal

ı1.Q/.x1 � .xQ/1 C `.Q/�1.Q//C .xQ/1I

and, for 3 � k � d, each kth component for both functions equals xk.
If we now define, more or less as before,

!.Q/.x/ � 

.Q/
1 .x/ � 
.Q/2 .x/;

then the preceding argument applies virtually verbatim to yield

ˆ
Rd

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

Q2F
Ea

�Q

	
!.Q/.x/

jQj1=2


ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

2

dx � C�
X

Q2F
Ea

j�Qj2

for every Ea 2 f1; 2; 3gd. (Recall that ı1.Q/ is essentially 1.) The same argument
applies to the other summands 
.Q/k�1�
.Q/k for 3 � k � d to yield the same estimates.
When we add up over all k and all Ea 2 f1; 2; 3gd, and include the term ŒII
, we get

�
�
�
�
�
�

X

Q2D
�Q

 
f .Q/ �ef .Q/

jQj1=2
!��
�
�
�
�
2

� C�1=2

0

@
X

Q2D
j�Qj2

1

A

1=2

for all finite linear sums,

X

Q2D
�Q

 
f .Q/ �ef .Q/

jQj1=2
!

;

where C depends on d. That’s (21). Theorem 3 is proved. �
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Appendix

Point 1. The total variation Vf .I/ adds like a measure; �f .I/ doesn’t. In particular,
if a D x0 < x1 < x2 < � � � < xn D b then

nX

1

Vf Œxk�1; xk
 � Vf Œa; b
;

which we need (see (15)); but

nX

1

�f Œxk�1; xk
 � �f Œa; b


fails. (As with Vf , we use�f Œx; y
 to mean �f .Œx; y
/.)
Point 2.We give two answers; the second makes the first redundant.

a) Theorem 1 yields
�
�
�
�

X
�Q

f .Q/

jQj1=2
�
�
�
�
2

� C.d/
�X

j�Qj2
�1=2

;

with C.d/ growing at worst linearly in d. If we apply Schur’s test to
�

f .Q/

jQj1=2
�

Q2D

and the orthonormal family (3) then, for each J and Q in D such that J � Q, we
have to consider the inner products

jQj�1=2jJj�1=2h f .Q/; h.J/i i
for every 1 � i < 2d, and the Schur bound grows exponentially in d.

But it’s worse than that.
b) For fixed d > 1 set Q0 D Œ0; 1/d and let B be the ball (open or closed) of

radius 1=3 centered at .1=2; 1=2; 1=2; : : : ; 1=2/ (the center ofQ0). Define f .x/ D
�B.x/ � jBj�Q0 .x/. Then f is a bounded multiple of a function in NBV.Q0/. We
look at the terms appearing in the Schur test,

jJj�1=2jQ0j�1=2h f ; h.J/i i D jJj�1=2h f ; h.J/i i; (38)

for J � Q0 and a fixed i (the value of i doesn’t matter: say it’s 1). Let 2�k be J’s
sidelength, where k > 0. The inner product (38) equals 0 if J � B or J \ B D ;.
It’s possibly non-zero if J straddles B’s boundary, and when that happens our
best estimate for the absolute value of (38) is roughly

jJj�1=2jJj D jJj1=2 D 2�kd=2:
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The .d � 1/-dimensional measure of B’s boundary is 	 1 (it depends on d but
not on k). The cubes J have diameters 	 2�k. For large k, 	 2k.d�1/ of them
can straddle B’s boundary. (The reader might want to sketch this.) Therefore,
when we add up the estimated absolute values of (38) for these J’s, we get 	
2�kd=22k.d�1/ D 2k.d=2�1/, which sums (over k) to infinity.

Philosophical Remark We think Theorem 1 holds because of subtle cancelation
in the sums

X
�Q

f .Q/

jQj1=2 ;

which the bounded-variation-plus-induction argument lets us exploit without really
understanding.
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