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Abstract We study weighted norm inequalities of .1; q/- type for 0 < q < 1,

kG�kLq.�;d�/ � C k�k; for all positive measures � in �;

along with their weak-type counterparts, where k�k D �.�/, and G is an integral
operator with nonnegative kernel,

G�.x/ D
ˆ

�

G.x; y/d�.y/:

These problems are motivated by sublinear elliptic equations in a domain
� � R

n with non-trivial Green’s function G.x; y/ associated with the Laplacian,
fractional Laplacian, or more general elliptic operator.

We also treat fractional maximal operators M˛ (0 � ˛ < n) on R
n, and

characterize strong- and weak-type .1; q/-inequalities for M˛ and more general
maximal operators, as well as .1; q/-Carleson measure inequalities for Poisson
integrals.
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1 Introduction

In this paper, we discuss recent results on weighted norm inequalities of .1; q/- type
in the case 0 < q < 1,

kG�kLq.�;d�/ � C k�k; (1)

for all positive measures � in �, where k�k D �.�/, and G is an integral operator
with nonnegative kernel,

G�.x/ D
ˆ

�

G.x; y/d�.y/:

Such problems are motivated by sublinear elliptic equations of the type

(
��u D �uq in �;

u D 0 on @�;

in the case 0 < q < 1, where � is an open set in R
n with non-trivial Green’s

function G.x; y/, and � � 0 is an arbitrary locally integrable function, or locally
finite measure in �.

The only restrictions imposed on the kernel G are that it is quasi-symmetric
and satisfies a weak maximum principle. In particular, G can be a Green operator
associated with the Laplacian, a more general elliptic operator (including the
fractional Laplacian), or a convolution operator on R

n with radially symmetric
decreasing kernel G.x; y/ D k.jx � yj/ (see [1, 12]).

As an example, we consider in detail the one-dimensional case where � D RC
and G.x; y/ D min.x; y/. We deduce explicit characterizations of the corresponding
.1; q/-weighted norm inequalities, give explicit necessary and sufficient conditions
for the existence of weak solutions, and obtain sharp two-sided pointwise estimates
of solutions.

We also characterize weak-type counterparts of (1), namely,

kG�kLq;1.�;d�/ � C k�k: (2)

Along with integral operators, we treat fractional maximal operators M˛ with
0 � ˛ < n on R

n, and characterize both strong- and weak-type .1; q/-inequalities
for M˛ , and more general maximal operators. Similar problems for Riesz potentials
were studied earlier in [6–8]. Finally, we apply our results to the Poisson kernel to
characterize .1; q/-Carleson measure inequalities.
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2 Integral Operators

2.1 Strong-Type .1; q/-Inequality for Integral Operators

Let � � R
n be a connected open set. By MC.�/ we denote the class of all

nonnegative locally finite Borel measures in �. Let GW � � � ! Œ0; C1� be a
nonnegative lower-semicontinuous kernel. We will assume throughout this paper
that G is quasi-symmetric, i.e., there exists a constant a > 0 such that

a�1 G.x; y/ � G.y; x/ � aG.x; y/; x; y 2 �: (3)

If � 2 MC.�/, then by G� and G�� we denote the integral operators
(potentials) defined respectively by

G�.x/ D
ˆ

�

G.x; y/ d�.y/; G��.x/ D
ˆ

�

G.y; x/ d�.y/; x 2 �: (4)

We say that the kernelG satisfies the weak maximum principle if, for any constant
M > 0, the inequality

G�.x/ � M for all x 2 S.�/

implies

G�.x/ � hM for all x 2 �;

where h � 1 is a constant, and S.�/ WD supp �. When h D 1, we say that G�

satisfies the strong maximum principle.
It is well-known that Green’s kernels associated with many partial differential

operators are quasi-symmetric, and satisfy the weak maximum principle (see, e.g.,
[2, 3, 12]).

The kernel G is said to be degeneratewith respect to � 2 MC.�/ provided there
exists a set A � � with �.A/ > 0 and

G.�; y/ D 0 d� � a.e. for y 2 A:

Otherwise, we will say that G is non-degenerate with respect to � . (This notion
was introduced in [19] in the context of .p; q/-inequalities for positive operators
TWLp ! Lq in the case 1 < q < p.)

Let 0 < q < 1, and let G be a kernel on � � �. For � 2 MC.�/, we consider
the problem of the existence of a positive solution u to the integral equation

u D G.uqd�/ in �; 0 < u < C1 d��a:e:; u 2 Lqloc.�/: (5)
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We call u a positive supersolution if

u � G.uqd�/ in �; 0 < u < C1 d��a:e:; u 2 Lqloc.�/: (6)

This is a generalization of the sublinear elliptic problem (see, e.g., [4, 5], and the
literature cited there):

(
��u D �uq in �;

u D 0 on @�;
(7)

where � is a nonnegative locally integrable function, or measure, in �.
If � is a bounded C2-domain then solutions to (7) can be understood in the

“very weak” sense (see, e.g., [13]). For general domains � with a nontrivial
Green function G associated with the Dirichlet Laplacian � in �, solutions u are
understood as in (5).

Remark 2.1 In this paper, for the sake of simplicity, we sometimes consider positive
solutions and supersolutions u 2 Lq.�; d�/. In other words, we replace the natural
local condition u 2 Lqloc.�; d�/ with its global counterpart. Notice that the local
condition is necessary for solutions (or supersolutions) to be properly defined.

To pass from solutions u which are globally in Lq.�; d�/ to all solutions
u 2 Lqloc.�; d�/ (for instance, very weak solutions to (7)), one can use either
a localization method developed in [8] (in the case of Riesz kernels on R

n), or

modified kernels QG.x; y/ D G.x;y/
m.x/m.y/ , where the modifier m.x/ D min

�
1;G.x; x0/

�
(with a fixed pole x0 2 �) plays the role of a regularized distance to the boundary
@�. One also needs to consider the corresponding .1; q/-inequalities with a weight
m (see [16]). See the next section in the one-dimensional case where � D .0; C1/.

Remark 2.2 Finite energy solutions, for instance, solutions u 2 W1;2
0 .�/ to (7),

require the global condition u 2 L1Cq.�; d�/, and are easier to characterize (see
[6]).

The following theorem is proved in [16]. (The case where � D R
n and G D

.��/� ˛
2 is the Riesz potential of order ˛ 2 .0; n/ was considered earlier in [8].)

Theorem 2.3 Let � 2 MC.�/, and 0 < q < 1. Suppose G is a quasi-symmetric
kernel which satisfies the weak maximum principle. Then the following statements
are equivalent:

(1) There exists a positive constant ~ D ~.�/ such that

kG�kLq.�/ � ~k�k for all � 2 MC.�/:

(2) There exists a positive supersolution u 2 Lq.�; d�/ to (6).
(3) There exists a positive solution u 2 Lq.�; d�/ to (5), provided additionally that

G is non-degenerate with respect to � .
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Remark 2.4 The implication (1) ) (2) in Theorem 2.3 holds for any nonnegative
kernel G, without assuming that it is either quasi-symmetric, or satisfies the weak
maximum principle. This is a consequence of Gagliardo’s lemma [10, 21]; see
details in [16].

Remark 2.5 The implication (3) ) (1) generally fails for kernels G which do not
satisfy the weak maximum principle (see examples in [16]).

The following corollary of Theorem 2.3 is obtained in [16].

Corollary 2.6 Under the assumptions of Theorem 2.3, if there exists a positive

supersolution u 2 Lq.�; �/ to (6), then G� 2 L
q

1�q .�; d�/.

Conversely, if G� 2 L
q

1�q ;1
.�; d�/, then there exists a non-trivial supersolution

u 2 Lq.�; �/ to (6) (respectively, a solution u, provided G is non-degenerate with
respect to �).

2.2 The One-Dimensional Case

In this section, we consider positive weak solutions to sublinear ODEs of the type (7)
on the semi-axis RC D .0; C1/. It is instructive to consider the one-dimensional
case where elementary characterizations of .1; q/-weighed norm inequalities, along
with the corresponding existence theorems and explicit global pointwise estimates
of solutions are available. Similar results hold for sublinear equations on any interval
.a; b/ � R.

Let 0 < q < 1, and let � 2 MC.RC/. Suppose u is a positive weak solution to
the equation

� u00 D �uq on RC; u.0/ D 0; (8)

such that limx!C1 u.x/
x D 0. This condition at infinity ensures that u does not

contain a linear component. Notice that we assume that u is concave and increasing
on Œ0; C1/, and limx!0C u.x/ D 0.

In terms of integral equations, we have � D RC, and G.x; y/ D min.x; y/ is the
Green function associated with the Sturm-Liouville operator �u D u00 with zero
boundary condition at x D 0. Thus, (8) is equivalent to the equation

u.x/ D G.uqd�/.x/ WD
ˆ C1

0

min.x; y/u.y/qd�.y/; x > 0; (9)

where � is a locally finite measure on RC, and

ˆ a

0

y u.y/qd�.y/ < C1;

ˆ C1

a
u.y/qd�.y/ < C1; for every a > 0: (10)
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This “local integrability” condition ensures that the right-hand side of (9) is well
defined. Here intervals .a; C1/ are used in place of balls B.x; r/ in R

n.
Notice that

u0.x/ D
ˆ C1

x
u.y/qd�.y/; x > 0: (11)

Hence, u satisfies the global integrability condition

ˆ C1

0

u.y/qd�.y/ < C1 (12)

if and only if u0.0/ < C1.
The corresponding .1; q/-weighted norm inequality is given by

kG�kLq.�/ � ~k�k; (13)

where ~ D ~.�/ is a positive constant which does not depend on � 2 MC.RC/.
Obviously, (13) is equivalent to

kHC� C H��kLq.�/ � ~k�k for all � 2 MC.RC/; (14)

where H˙ is a pair of Hardy operators,

HC�.x/ D
ˆ x

0

y d�.y/; H��.x/ D x
ˆ C1

x
d�.y/:

The following proposition can be deduced from the known results on two-weight
Hardy inequalities in the case p D 1 and 0 < q < 1 (see, e.g., [20]). We give here a
simple independent proof.

Proposition 2.7 Let � 2 MC.RC/, and let 0 < q < 1. Then (13) holds if and only
if

~.�/q D
ˆ C1

0

xqd�.x/ < C1; (15)

where ~.�/ is the best constant in (13).

Proof Clearly,

HC�.x/ C H��.x/ � x k�k; x > 0:
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Hence,

kHC� C H��kLq.�/ �
�ˆ C1

0

xqd�.x/
� 1

q k�k;

which proves (14), and hence (13), with ~ D
� ´ C1

0
xqd�.x/

� 1
q
.

Conversely, suppose that (14) holds. Then, for every a > 0, and � 2 MC.RC/,

�ˆ a

0

xqd�.x/
��ˆ C1

a
d�.y/

�q

�
ˆ a

0

�
x
ˆ C1

x
d�.y/

�q
d�.x/

�
ˆ C1

0

.H��/qd� � ~qk�kq:

For � D ıx0 with x0 > a, we get

ˆ a

0

xqd�.x/ � ~q:

Letting a ! C1, we deduce (15). ut
Clearly, the Green kernel G.x; y/ D min.x; y/ is symmetric, and satisfies the

strong maximum principle. Hence, by Theorem 2.3, Eqs. (8) and (9) have a non-
trivial (super)solution u 2 Lq.RC; �/ if and only if (15) holds.

From Proposition 2.7, we deduce that, for “localized” measures d�a D
�.a;C1/d� (a > 0), we have

~.�a/ D
�ˆ C1

a
xqd�.x/

� 1
q
: (16)

Using this observation and the localization method developed in [8], we obtain
the following existence theorem for general weak solutions to (7), along with sharp
pointwise estimates of solutions.

We introduce a new potential

K�.x/ WD x
�ˆ C1

x
yqd�.y/

� 1
1�q

; x > 0: (17)

We observe that K� is a one-dimensional analogue of the potential introduced
recently in [8] in the framework of intrinsic Wolff potentials in R

n (see also [7]
in the radial case). Matching upper and lower pointwise bounds of solutions are
obtained below by combining G� with K� .
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Theorem 2.8 Let � 2 MC.RC/, and let 0 < q < 1. Then Eq. (7), or
equivalently (8) has a nontrivial solution if and only if, for every a > 0,

ˆ a

0

x d�.x/ C
ˆ C1

a
xqd�.x/ < C1: (18)

Moreover, if (18) holds, then there exists a positive solution u to (7) such that

C�1
h�ˆ x

0

y d�.y/
� 1

1�q C K�.x/
i

(19)

� u.x/ � C
h�ˆ x

0

y d�.y/
� 1

1�q C K�.x/
i
: (20)

The lower bound in (19) holds for any non-trivial supersolution u.

Remark 2.9 The lower bound

u.x/ � .1 � q/
1

1�q

h
G�.x/

i 1
1�q

; x > 0; (21)

is known for a general kernel G which satisfies the strong maximum principle (see

[11], Theorem 3.3; [16]), and the constant .1 � q/
1

1�q here is sharp. However, the
second term on the left-hand side of (19) makes the lower estimate stronger, so that
it matches the upper estimate.

Proof The lower bound

u.x/ � .1 � q/
1

1�q

hˆ x

0

y d�.y/
i 1

1�q
; x > 0; (22)

is immediate from (21).
Applying Lemma 4.2 in [8], with the interval .a; C1/ in place of a ball B, and

combining it with (16), for any a > 0 we have

ˆ C1

a
u.y/qd�.y/ � c.q/~.�a/

q
1�q D c.q/

h ˆ C1

a
yqd�.y/

i 1
1�q

:

Hence,

u.x/ � G.uqd�/ � x
ˆ C1

x
u.y/qd�.y/ � c.q/ x

hˆ C1

x
yqd�.y/

i 1
1�q

:

Combining the preceding estimate with (22), we obtain the lower bound in (19)
for any non-trivial supersolution u. This also proves that (18) is necessary for the
existence of a non-trivial positive supersolution.
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Conversely, suppose that (18) holds. Let

v.x/ WD c
h�ˆ x

0

y d�.y/
� 1

1�q C K�.x/
i
; x > 0; (23)

where c is a positive constant. It is not difficult to see that v is a supersolution, so
that v � G.vqd�/, if c D c.q/ is picked large enough. (See a similar argument in
the proof of Theorem 5.1 in [7].)

Also, it is easy to see that v0 D c0.G�/
1

1�q is a subsolution, i.e., v0 � G.v
q
0d�/,

provided c0 > 0 is a small enough constant. Moreover, we can ensure that v0 � v

if c0 D c0.q/ is picked sufficiently small. (See details in [7] in the case of radially
symmetric solutions in R

n.) Hence, there exists a solution which can be constructed
by iterations, starting from u0 D v0, and letting

ujC1 D G.uqj d�/; j D 0; 1; : : : :

Then by induction uj � ujC1 � v, and consequently u D limj!C1 uj is a solution
to (9) by the Monotone Convergence Theorem. Clearly, u � v, which proves the
upper bound in (19). ut

2.3 Weak-Type .1; q/-Inequality for Integral Operators

In this section, we characterize weak-type analogues of .1; q/-weighted norm
inequalities considered above. We will use some elements of potential theory for
general positive kernels G, including the notion of inner capacity, cap.�/, and the
associated equilibrium (extremal) measure (see [9]).

Theorem 2.10 Let � 2 MC.�/, and 0 < q < 1. Suppose G satisfies the weak
maximum principle. Then the following statements are equivalent:

(1) There exists a positive constant ~w such that

kG�kLq;1.�/ � ~wk�k for all � 2 MC.�/:

(2) There exists a positive constant c such that

�.K/ � c
�

cap.K/
�q

for all compact sets K � �:

(3) G� 2 L
q

1�q ;1
.�/.

Proof (1) ) (2) Without loss of generality we may assume that the kernel G is
strictly positive, that is, G.x; x/ > 0 for all x 2 �. Otherwise, we can consider the
kernel G on the set � n A, where A WD fx 2 �WG.x; x/ 6D 0g, since A is negligible



226 S. Quinn and I.E. Verbitsky

for the corresponding .1; q/-inequality in statement (1). (See details in [16] in the
case of the corresponding strong-type inequalities.)

We remark that the kernel G is known to be strictly positive if and only if, for any
compact set K � �, the inner capacity cap.K/ is finite [9]. In this case there exists
an equilibrium measure � on K such that

G� � 1 n.e. on K; G� � 1 on S.�/; k�k D cap.K/: (24)

Here n.e. stands for nearly everywhere, which means that the inequality holds on a
given set except for a subset of zero capacity [9].

Next, we remark that condition (1) yields that � is absolutely continuous with
respect to capacity, i.e., �.K/ D 0 if cap.K/ D 0. (See a similar argument in [16] in
the case of strong-type inequalities.) Consequently, G� � 1 d�-a.e. on K. Hence,
by applying condition (1) with � D �, we obtain (2).

(2) ) (3) We denote by �E the restriction of � to a Borel set E � �. Without
loss of generality we may assume that � is a finite measure on �. Otherwise we can
replace � with �F where F is a compact subset of �. We then deduce the estimate

kG�Fk
L

q
1�q ;1

.�F/
� C < 1;

where C does not depend on F, and use the exhaustion of � by an increasing

sequence of compact subsets Fn " � to conclude that G� 2 L
q

1�q ;1
.�/ by the

Monotone Convergence Theorem.
Set Et WD fx 2 �W G�.x/ > tg, where t > 0. Notice that, for all x 2 .Et/

c,

G�.Et/c.x/ � G�.x/ � t:

The set .Et/
c is closed, and hence the preceding inequality holds on S.�.Et/c/. It

follows by the weak maximum principle that, for all x 2 �,

G�.Et/c.x/ � G�.x/ � h t:

Hence,

fx 2 �WG�.x/ > .h C 1/tg � fx 2 �WG�Et .x/ > tg: (25)

Denote by K � � a compact subset of fx 2 �WG�Et .x/ > tg. By (2), we have

�.K/ � c
�

cap.K/
�q
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If � is the equilibrium measure on K, then G� � 1 on S.�/, and �.K/ D cap.K/

by (24). Hence by the weak maximum principle G� � h on �. Using quasi-
symmetry of the kernel G and Fubini’s theorem, we have

cap.K/ D
ˆ
K
d�

� 1

t

ˆ
K
G�Et d�

� a

t

ˆ
Et

G�d�

� ah

t
�.Et/:

This shows that

�.K/ � c.ah/q

tq

�
�.Et/

�q
:

Taking the supremum over all K � Et, we deduce

�
�.Et/

�1�q � c.ah/q

tq
:

It follows from the preceding estimate and (25) that, for all t > 0,

t
q

1�q �
�

fx 2 �WG�.x/ > .h C 1/tg
�

� t
q

1�q �.Et/ � c
1

1�q .ah/
q

1�q :

Thus, (3) holds.
(3) ) (2) By Hölder’s inequality for weak Lq spaces, we have

kG�kLq;1.�/ D
����G�

G�
G�

����
Lq;1.�/

�
����G�

G�

����
L1;1.�/

kG�k
L

q
1�q ;1

.�/

� C kG�k
L

q
1�q ;1

.�/
k�k;

where the final inequality,

����G�

G�

����
L1;1.�/

� C k�k;

with a constant C D C.h; a/, was obtained in [16], for quasi-symmetric kernels G
satisfying the weak maximum principle. ut
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3 Fractional Maximal Operators

Let 0 � ˛ < n, and let � 2 MC.Rn/. The fractional maximal function M˛� is
defined by

M˛�.x/ WD sup
Q3x

jQj�
jQj1� ˛

n
; x 2 R

n; (26)

where Q is a cube, jQj� WD �.Q/, and jQj is the Lebesgue measure of Q. If f 2
L1

loc.R
n; d	/ where 	 2 MC.Rn/, we set M˛.fd	/ D M˛� where d� D jf jd	, i.e.,

M˛.fd	/.x/ WD sup
Q3x

1

jQj1� ˛
n

ˆ
Q

jf j d	; x 2 R
n: (27)

For � 2 MC.Rn/, it was shown in [22] that in the case 0 < q < p,

M˛WLp.dx/ ! Lq.d�/ ” M˛� 2 L
q

p�q .d�/; (28)

M˛ WLp.dx/ ! Lq;1.d�/ ” M˛� 2 L
q

p�q ;1
.d�/; (29)

provided p > 1.
More general two-weight maximal inequalities

kM˛.fd	/kLq.�/ � ~ kfkLp.	/; for all f 2 Lp.	/; (30)

where characterized by E.T. Sawyer [18] in the case p D q > 1, R.L. Wheeden [24]
in the case q > p > 1, and the second author [22] in the case 0 < q < p and p > 1,
along with their weak-type counterparts,

kM˛.fd	/kLq;1.�/ � ~w kfkLp.	/; for all f 2 Lp.	/; (31)

where �; 	 2 MC.Rn/, and ~; ~w are positive constants which do not depend on f .
However, some of the methods used in [22] for 0 < q < p and p > 1 are not

directly applicable in the case p D 1, although there are analogues of these results
for real Hardy spaces, i.e., when the norm kfkLp.	/ on the right-hand side of (30)
or (31) is replaced with kM	fkLp.	/, where

M	f .x/ WD sup
Q3x

1

jQj	
ˆ
Q

jf jd	: (32)

We would like to understand similar problems in the case 0 < q < 1 and p D 1,
in particular, when M˛ WMC.Rn/ ! Lq.d�/, or equivalently, there exists a constant
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~ > 0 such that the inequality

kM˛�kLq.�/ � ~ k�k (33)

holds for all � 2 MC.Rn/.
In the case ˛ D 0, Rozin [17] showed that the condition

� 2 L
1

1�q ;1
.Rn; dx/

is sufficient for the Hardy-Littlewood operator M D M0WL1.dx/ ! Lq.�/ to
be bounded; moreover, when � is radially symmetric and decreasing, this is also
a necessary condition. We will generalize this result and provide necessary and
sufficient conditions for the range 0 � ˛ < n. We also obtain analogous results
for the weak-type inequality

kM˛�kLq;1.�/ � ~w k�k; for all � 2 MC.Rn/; (34)

where ~w is a positive constant which does not depend on �.
We treat more general maximal operators as well, in particular, dyadic maximal

operators

M
�.x/ WD sup
Q2QWQ3x


Q jQj�; (35)

where Q is the family of all dyadic cubes in R
n, and f
QgQ2Q is a fixed sequence of

nonnegative reals associated with Q 2 Q. The corresponding weak-type maximal
inequality is given by

kM
�kLq;1.�/ � ~w k�k; for all � 2 MC.Rn/: (36)

3.1 Strong-Type Inequality

Theorem 3.1 Let � 2 MC.Rn/, 0 < q < 1, and 0 � ˛ < n. The inequality (33)
holds if and only if there exists a function u 6	 0 such that

u 2 Lq.�/; and u � M˛.uq�/:

Moreover, u can be constructed as follows: u D limj!1 uj, where u0 WD
.M˛�/

1
1�q , ujC1 � uj, and

ujC1 WD M˛.uqj �/; j D 0; 1; : : : : (37)

In particular, u � .M˛�/
1

1�q .
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Proof ()) We let u0 WD .M˛�/
1

1�q . Notice that, for all x 2 Q, we have u0.x/ �� jQj�
jQj1�

˛
n

� 1
1�q

. Hence,

u1.x/ WD M˛.uq0d�/.x/ D sup
Q3x

1

jQj1� ˛
n

ˆ
Q
uq0d� � sup

Q3x

� jQj�
jQj1� ˛

n

� 1
1�q D u0.x/:

By induction, we see that

ujC1 WD M˛.uqj d�/ � M˛.uqj�1d�/ D uj; j D 1; 2; : : : :

Let u D lim uj. By (33), we have

kujC1kLq.�/ D kM˛.uqj �/kLq.�/

� ~kujkqLq.�/

� ~kujC1kqLq.�/:

From this we deduce that kujC1kLq.�/ � ~
1

1�q for j D 0; 1; : : :. Since the norms
kujkqLq.�/ are uniformly bounded, by the Monotone Convergence Theorem, we have
for u WD limj!1 uj that u 2 Lq.�/. Note that by construction u D M˛.uqd�/.

(() We can assume here that M˛� is defined, for � 2 MC.Rn/, as the centered
fractional maximal function,

M˛�.x/ WD sup
r>0

�.B.x; r//

jB.x; r/j1� ˛
n

;

since it is equivalent to its uncentered analogue used above. Suppose that there exists
u 2 Lq.�/ (u 6	 0) such that u � M˛.uqd�/. Set ! WD uqd� . Let � 2 MC.Rn/.

We note that we have

M˛�.x/

M˛!.x/
D

supr>0
jB.x;r/j�

jB.x;r/j1�
˛
n

sup
>0
jB.x;
/j!

jB.x;
/j1�
˛
n

� sup
r>0

jB.x; r/j�
jB.x; r/j!

DW M!�.x/:
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Thus,

kM˛�kLq.�/ D
���� M˛�

M˛!

����
Lq..M˛!/qd�/

�
���� M˛�

M˛!

����
Lq.d!/

� kM!�kLq.d!/

� C kM!�kL1;1.!/ � Ck�k;

by Jensen’s inequality and the .1; 1/-weak-type maximal function inequality for
M!�. This establishes (33). ut

3.2 Weak-Type Inequality

For 0 � ˛ < n, we define the Hausdorff content on a set E � R
n to be

Hn�˛.E/ WD inf

( 1X
iD1

rn�˛
i WE �

1[
iD1

B.xi; ri/;

)
(38)

where the collection of balls fB.xi; ri/g forms a countable covering of E (see [1, 15]).

Theorem 3.2 Let � 2 MC.Rn/, 0 < q < 1, and 0 � ˛ < n. Then the following
conditions are equivalent:

(1) There exists a positive constant ~w such that

kM˛�kLq;1.�/ � ~w k�k for all � 2 M .Rn/:

(2) There exists a positive constant C > 0 such that

�.E/ � C .Hn�˛.E//q for all Borel sets E � R
n:

(3) M˛� 2 L
q

1�q ;1
.�/.

Remark 3.3 In the case ˛ D 0 each of the conditions (1)–(3) is equivalent to � 2
L

1
1�q ;1

.dx/.

Proof (1) ) (2) Let K � E be a compact set in R
n such that Hn�˛.K/ > 0. It

follows from Frostman’s theorem (see the proof of Theorem 5.1.12 in [1]) that there
exists a measure � supported on K such that �.K/ � Hn�˛.K/, and, for every x 2 K
there exists a cube Q such that x 2 Q and jQj� � c jQj1� ˛

n , where c depends only
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on n and ˛. Hence,

M˛�.x/ � sup
Q3x

jQj�
jQj1� ˛

n
� c for all x 2 K;

where c depends only on n and ˛. Consequently,

cq �.K/ � kM˛�kqLq;1.�/ � ~q
w

�
Hn�˛.K/

�q
:

If Hn�˛.E/ D 0, then Hn�˛.K/ D 0 for every compact set K � E, and
consequently �.E/ D 0. Otherwise,

�.K/ � ~q
w

�
Hn�˛.K/

�q � ~q
w

�
Hn�˛.K/

�q
;

for every compact set K � E, which proves (2) with C D c�q~q
w.

(2) ) (3) Let Et WD fx W M˛�.x/ > tg, where t > 0. Let K � Et be a compact
set. Then for each x 2 K there exists Qx 3 x such that

�.Qx/

jQxj1� ˛
n

> t:

Now consider the collection fQxgx2K , which forms a cover of K. By the
Besicovitch covering lemma, we can find a subcover fQigi2I , where I is a countable
index set, such that K � S

i2I Qi and x 2 K is contained in at most bn sets in fQig.
By (2), we have

�.K/ � ŒHn�˛.K/�q;

and by the definition of the Hausdorff content we have

Hn�˛.K/ �
X

jQij1�˛=n:

Since fQig have bounded overlap, we have

X
i2I

�.Qi/ � bn�.K/:

Thus,

�.K/ �
�
bn

�.K/

t

�q

;
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which shows that

t
q

1�q �.K/ � .bn/
1

1�q < C1:

Taking the supremum over all K � Et in the preceding inequality, we deduceM˛� 2
L

q
1�q ;1

.�/.
(3) ) (1). We can assume again that M˛ is the centered fractional maximal

function, since it is equivalent to the uncentered version. Suppose that M˛� 2
L

q
1�q ;1

.�/. Let � 2 M .Rn/. Then, as in the case of the strong-type inequality,

M˛�.x/

M˛�.x/
D

supr>0
jB.x;r/j�

jB.x;r/j1�
˛
n

sup
>0
jB.x;
/j�

jB.x;
/j1�
˛
n

� sup
r>0

jB.x; r/j�
jB.x; r/j� DW M� �.x/:

Thus, by Hölder’s inequality for weak Lp-spaces,

kM˛�kLq;1.�/ � k.M˛�/ .M� �/kLq;1.�/

� kM˛�k
L

q
1�q ;1

.�/
kM� �kL1;1.�/

� ckM˛�k
L

q
1�q ;1

.�/
k�k;

where in the last line we have used the .1; 1/-weak-type maximal function inequality
for the centered maximal function M� �. ut

We now characterize weak-type .1; q/-inequalities (36) for the generalized
dyadic maximal operator M
 defined by (35). The corresponding .p; q/-inequalities
in the case 0 < q < p and p > 1 were characterized in [22]. The results obtained in
[22] for weak-type inequalities remain valid in the case p D 1, but some elements
of the proofs must be modified as indicated below.

Theorem 3.4 Let � 2 MC.Rn/, 0 < q < 1, and 0 � ˛ < n. Then the following
conditions are equivalent:

(1) There exists a positive constant ~w such that (36) holds.
(2) M
� 2 L

q
1�q ;1

.�/.

Proof (2) ) (1) The proof of this implication is similar to the case of fractional
maximal operators. Let � 2 M .Rn/. Denoting by Q;P 2 Q dyadic cubes in R

n, we
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estimate

M
�.x/

M
�.x/
D supQ3x.
Q jQj�/

supP3x.
P jPj�/

� sup
Q3x

jQj�
jQj� DW M� �.x/:

By Hölder’s inequality for weak Lp-spaces,

kM
�kLq;1.�/ � k.M
�/ .M� �/kLq;1.�/

� kM
�k
L

q
1�q ;1

.�/
kM� �kL1;1.�/

� ckM
�k
L

q
1�q ;1

.�/
k�k;

by the .1; 1/-weak-type maximal function inequality for the dyadic maximal
function M� .

(1) ) (2) We set f D supQ.�Q�Q/ and d� D f d� , where f�QgQ2Q is a finite
sequence of non-negative reals. Then obviously

M
�.x/ � sup
Q

.�Q
Q�Q/; and k�k �
X
Q

�Q jQj� :

By (1), for all f�QgQ2Q,

k sup
Q

.�Q
Q�Q/kLq;1.�/ � ~v

X
Q

�Q jQj� :

Hence, by Theorem 1.1 and Remark 1.2 in [22], it follows that (2) holds. ut

4 Carleson Measures for Poisson Integrals

In this section we treat .1; q/-Carleson measure inequalities for Poisson integrals
with respect to Carleson measures � 2 MC.RnC1

C / in the upper half-space RnC1
C D

f.x; y/W x 2 R
n; y > 0g. The corresponding weak-type .p; q/-inequalities for all

0 < q < p as well as strong-type .p; q/-inequalities for 0 < q < p and p > 1,
were characterized in [23]. Here we consider strong-type inequalities of the type

kP�kLq.R
nC1
C

;�/
� ~ k�kMC.Rn/; for all � 2 MC.Rn/; (39)
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for some constant ~ > 0, where P� is the Poisson integral of � 2 MC.Rn/ defined
by

P�.x; y/ WD
ˆ
Rn

P.x � t; y/d�.t/; .x; y/ 2 R
nC1
C :

Here P.x; y/ denotes the Poisson kernel associated with R
nC1
C .

By P�	 we denote the formal adjoint (balayage) operator defined, for 	 2
MC.RnC1

C /, by

P�	.t/ WD
ˆ
R
nC1
C

P.x � t; y/d	.x; y/; t 2 R
n:

We will also need the symmetrized potential defined, for 	 2 MC.RnC1
C /, by

PP�	.x; y/ WD P
h
.P�	/dt

i
D

ˆ
R
nC1
C

P.x � Qx; y C Qy/d	.Qx; Qy/; .x; y/ 2 R
nC1
C :

As we will demonstrate below, the kernel of PP�	 satisfies the weak maximum
principle with constant h D 2nC1.

Theorem 4.1 Let � 2 MC.RnC1
C /, and let 0 < q < 1. Then inequality (39) holds

if and only if there exists a function u > 0 such that

u 2 Lq.RnC1
C ; �/; and u � PP�.uq�/ in R

nC1
C :

Moreover, if (39) holds, then a positive solution u D PP�.uq�/ such that u 2
Lq.RnC1

C ; �/ can be constructed as follows: u D limj!1 uj, where

ujC1 WD PP�.uqj �/; j D 0; 1; : : : ; u0 WD c0.PP��/
1

1�q ; (40)

for a small enough constant c0 > 0 (depending only on q and n), which ensures that

ujC1 � uj. In particular, u � c0 .PP��/
1

1�q .

Proof We first prove that (39) holds if and only if

kPP�	k
Lq.R

nC1
C

;�/
� ~ k	k

MC.R
nC1
C

/
; for all 	 2 MC.RnC1

C /: (41)

Indeed, letting � D P�	 in (39) yields (41) with the same embedding constant ~.
Conversely, suppose that (41) holds. Then by Maurey’s factorization theorem

(see [14]), there exists F 2 L1.RnC1
C ; �/ such that F > 0 d�-a.e., and

kFk
L1.R

nC1
C

;�/
� 1; sup

.x;y/2RnC1
C

PP�.F1� 1
q d�/.x; y/ � ~: (42)
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By letting y # 0 in (42) and using the Monotone Convergence Theorem, we deduce

sup
x2Rn

P�.F1� 1
q d�/.x/ � ~: (43)

Hence, by Jensen’s inequality and (43), for any � 2 MC.Rn/, we have

kP�k
Lq.R

nC1
C

;�/
� kP�k

L1.R
nC1
C

;F
1�

1
q d�/

D kP�.F1� 1
q d�/kL1.Rn; d�/ � ~ k�kMC.Rn/:

We next show that the kernel of PP� satisfies the weak maximum principle with
constant h D 2nC1. Indeed, suppose 	 2 MC.RnC1

C /, and

PP�	.Qx; Qy/ � M; for all .Qx; Qy/ 2 S.	/:

Without loss of generality we may assume that S.	/ b R
nC1
C is a compact set. For

t 2 R
n, let .x0; y0/ 2 S.	/ be a point such that

j.t; 0/ � .x0; y0/j D dist
�
.t; 0/; S.	/

�
:

Then by the triangle inequality, for any .Qx; Qy/ 2 S.	/,

j.x0; y0/ � .Qx; �Qy/j � j.x0; y0/ � .t; 0/j C j.t; 0/ � .Qx; �Qy/j � 2j.t; 0/ � .Qx; Qy/j:

Hence,

p
jt � Qxj2 C Qy2 � 1

2

rh
jx0 � Qxj2 C .y0 C Qy/2

i
:

It follows that, for all t 2 R
n and .Qx; Qy/ 2 S.	/, we have

P.t � Qx; Qy/ � 2nC1P.x0 � Qx; y0 C Qy/:

Consequently, for all t 2 R
n,

P�	.t/ � 2nC1PP�	.x0; y0/ � 2nC1M:

Applying the Poisson integral PŒdt� to both sides of the preceding inequality, we
obtain

PP�	.x; y/ � 2nC1M for all .x; y/ 2 R
nC1
C :

This proves that the weak maximum principle holds for PP� with h D 2nC1. It
follows from Theorem 2.3 that (39) holds if and only if there exists a non-trivial u 2
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Lq.RnC1
C ; �/ such that u � PP�.uqd�/. Moreover, a positive solution u D PP�.uq�/

can be constructed as in the statement of Theorem 4.1 (see details in [16]). ut
Corollary 4.2 Under the assumptions of Theorem 4.1, inequality (39) holds if and
only if there exists a function � 2 L1.Rn/, � > 0 a.e., such that

� � P�
h
.P�/qd�

i
a.e. in R

n:

Moreover, if (39) holds, then there exists a positive solution � 2 L1.Rn/ to the

equation � D P�
h
.P�/qd�

i
.

Proof If (39) holds then by Theorem 4.1 there exists u D PP�.uqd�/ such that
u > 0 and u 2 Lq.RnC1

C ; �/. Setting � D P�.uqd�/, we see that

P� D PP�.uqd�/ D u;

so that � D P�Œ.P�/qd��, and consequently

k�kL1.Rn/ D kukq
Lq.R

nC1
C

;�/
D

ˆ
Rn

u.x; y/dx < 1:

Conversely, if there exists � > 0, � 2 L1.Rn/ such that � � P�
h
.P�/qd�

i
, then

letting u D P�, we see that u is a positive harmonic function in R
nC1
C so that

u.x; y/ D P�.x; y/ � PP�.uqd�/.x; y/; .x; y/ 2 R
nC1
C :

Notice that the kernel P.x � Qx; y C Qy/ of the operator PP� has the property

ˆ
Rn

P.x � Qx; y C Qy/dx D 1; y > 0; .Qx; Qy/ 2 R
nC1
C ;

and consequently, for all y > 0,

ˆ
Rn

ˆ
R
nC1
C

P.x � Qx; y C Qy/u.Qx; Qy/qd�.Qx; Qy/ dx D
ˆ
R
nC1
C

u.Qx; Qy/qd�.Qx; Qy/;

Hence,

kukq
Lq.R

nC1
C

;�/
D

ˆ
Rn

h
PP�.uqd�/

i
.x; y/ dx �

ˆ
Rn

u.x; y/dx D k�kL1.Rn/ < 1:

Thus, inequality (39) holds by Theorem 4.1. ut



238 S. Quinn and I.E. Verbitsky

References

1. D.R. Adams, L.I. Hedberg, Function Spaces and Potential Theory. Grundlehren der math.
Wissenschaften, vol. 314 (Springer, Berlin, Heidelberg, New York, 1996)

2. A. Ancona, First eigenvalues and comparison of Green’s functions for elliptic operators on
manifolds or domains. J. Anal. Math. 72, 45–92 (1997)

3. A. Ancona, Some results and examples about the behavior of harmonic functions and Green’s
functions with respect to second order elliptic operators. Nagoya Math. J. 165, 123–158 (2002)

4. H. Brezis, S. Kamin, Sublinear elliptic equation on R
n. Manuscr. Math. 74, 87–106 (1992)

5. H. Brezis, L. Oswald, Remarks on sublinear elliptic equations. Nonlin. Anal.: Theory Methods
Appl. 10, 55–64 (1986)

6. D.T. Cao, I.E. Verbitsky, Finite energy solutions of quasilinear elliptic equations with sub-
natural growth terms. Calc. Var. PDE 52, 529–546 (2015)

7. D.T. Cao, I.E. Verbitsky, Pointwise estimates of Brezis–Kamin type for solutions of sublinear
elliptic equations. Nonlin. Anal. Ser. A: Theory Methods Appl. 146, 1–19 (2016)

8. D.T. Cao, I.E. Verbitsky, Nonlinear elliptic equations and intrinsic potentials of Wolff type. J.
Funct. Anal. 272, 112–165 (2017) (published online, http://dx.doi.org/10.1016/j.jfa.2016.10.
010)

9. B. Fuglede, On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215
(1960)

10. E. Gagliardo, On integral transformations with positive kernel. Proc. Am. Math. Soc. 16,
429–434 (1965)

11. A. Grigor’yan, I.E. Verbitsky, Pointwise estimates of solutions to semilinear elliptic equations
and inequalities. J. d’Analyse Math. arXiv:1511.03188 (to appear)

12. N.S. Landkof, Foundations of Modern Potential Theory. Grundlehren der math. Wis-
senschaften, vol. 180 (Springer, New York, Heidelberg, 1972)

13. M. Marcus, L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures (Walter
de Gruyter, Berlin, Boston, 2014)

14. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espaces
Lp, in Astérisque, vol. 11 (Soc. Math., Paris, 1974)

15. V. Maz’ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations.
Grundlehren der math. Wissenschaften, 2nd Augmented Edition, vol. 342 (Springer, Berlin,
2011)

16. S. Quinn, I.E. Verbitsky, A sublinear version of Schur’s lemma and elliptic PDE. preprint
(2016)

17. A.L. Rozin, Singular integrals and maximal functions in the space L1 . Bull. Georgian Acad.
Sci. 87, 29–32 (1977) (in Russian)

18. E.T. Sawyer, A characterization of a two-weight norm inequality for maximal operators. Studia
Math. 75, 1–11 (1982)

19. G. Sinnamon, Schur’s lemma and best constants in weighted norm inequalities. Le Matem-
atiche 57, 165–204 (2005)

20. G. Sinnamon, V.D. Stepanov, The weighted Hardy inequality: new proofs and the case p D 1.
J. Lond. Math. Soc. (2) 54, 89–101 (1996)

21. P. Szeptycki, Notes on integral transformations. Dissert. Math. 231 (1984), pp. 1–52
22. I.E. Verbitsky, Weighted norm inequalities for maximal operators and Pisier’s theorem on

factorization through Lp;1. Int. Equ. Oper. Theory 15, 121–153 (1992)
23. I.V. Videnskii, On an analogue of Carleson measures. Soviet Math. Dokl. 37, 186–190 (1988)
24. R.L. Wheeden, A characterization of some weighted norm inequalities for the fractional

maximal function. Studia Math. 107, 258–272 (1993)

http://dx.doi.org/10.1016/j.jfa.2016.10.010
http://dx.doi.org/10.1016/j.jfa.2016.10.010

	Weighted Norm Inequalities of (1,q)-Type for Integral and Fractional Maximal Operators
	1 Introduction
	2 Integral Operators
	2.1 Strong-Type (1,q)-Inequality for Integral Operators
	2.2 The One-Dimensional Case
	2.3 Weak-Type (1,q)-Inequality for Integral Operators

	3 Fractional Maximal Operators
	3.1 Strong-Type Inequality
	3.2 Weak-Type Inequality

	4 Carleson Measures for Poisson Integrals
	References


