Weighted Norm Inequalities of (1, q)-Type for Integral and Fractional Maximal Operators

Stephen Quinn and Igor E. Verbitsky

Dedicated to Richard L. Wheeden

Abstract We study weighted norm inequalities of (1, q)- type for 0 < q < 1,

 $\|\mathbf{G}v\|_{L^q(\Omega,d\sigma)} \leq C \|v\|$, for all positive measures v in Ω ,

along with their weak-type counterparts, where $\|\nu\| = \nu(\Omega)$, and G is an integral operator with nonnegative kernel,

$$\mathbf{G}\nu(x) = \int_{\Omega} G(x, y) d\nu(y).$$

These problems are motivated by sublinear elliptic equations in a domain $\Omega \subset \mathbb{R}^n$ with non-trivial Green's function G(x, y) associated with the Laplacian, fractional Laplacian, or more general elliptic operator.

We also treat fractional maximal operators M_{α} ($0 \leq \alpha < n$) on \mathbb{R}^n , and characterize strong- and weak-type (1, q)-inequalities for M_{α} and more general maximal operators, as well as (1, q)-Carleson measure inequalities for Poisson integrals.

2010 Mathematics Subject Classification. Primary 35J61, 42B37; Secondary 31B15, 42B25

S. Quinn • I.E. Verbitsky (⊠)

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA e-mail: stephen.quinn@mail.missouri.edu; verbitskyi@missouri.edu

[©] Springer International Publishing AG 2017

S. Chanillo et al. (eds.), *Harmonic Analysis, Partial Differential Equations and Applications*, Applied and Numerical Harmonic Analysis, DOI 10.1007/978-3-319-52742-0_12

1 Introduction

In this paper, we discuss recent results on weighted norm inequalities of (1, q)- type in the case 0 < q < 1,

$$\|\mathbf{G}\nu\|_{L^{q}(\Omega,d\sigma)} \le C \|\nu\|,\tag{1}$$

for all positive measures ν in Ω , where $\|\nu\| = \nu(\Omega)$, and **G** is an integral operator with nonnegative kernel,

$$\mathbf{G}\nu(x) = \int_{\Omega} G(x, y) d\nu(y).$$

Such problems are motivated by sublinear elliptic equations of the type

$$\begin{cases} -\Delta u = \sigma u^q & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

in the case 0 < q < 1, where Ω is an open set in \mathbb{R}^n with non-trivial Green's function G(x, y), and $\sigma \ge 0$ is an arbitrary locally integrable function, or locally finite measure in Ω .

The only restrictions imposed on the kernel *G* are that it is quasi-symmetric and satisfies a weak maximum principle. In particular, **G** can be a Green operator associated with the Laplacian, a more general elliptic operator (including the fractional Laplacian), or a convolution operator on \mathbb{R}^n with radially symmetric decreasing kernel G(x, y) = k(|x - y|) (see [1, 12]).

As an example, we consider in detail the one-dimensional case where $\Omega = \mathbb{R}_+$ and $G(x, y) = \min(x, y)$. We deduce explicit characterizations of the corresponding (1, q)-weighted norm inequalities, give explicit necessary and sufficient conditions for the existence of weak solutions, and obtain sharp two-sided pointwise estimates of solutions.

We also characterize weak-type counterparts of (1), namely,

$$\|\mathbf{G}\nu\|_{L^{q,\infty}(\Omega,d\sigma)} \le C \|\nu\|.$$
⁽²⁾

Along with integral operators, we treat fractional maximal operators M_{α} with $0 \leq \alpha < n$ on \mathbb{R}^n , and characterize both strong- and weak-type (1, q)-inequalities for M_{α} , and more general maximal operators. Similar problems for Riesz potentials were studied earlier in [6–8]. Finally, we apply our results to the Poisson kernel to characterize (1, q)-Carleson measure inequalities.

2 Integral Operators

2.1 Strong-Type (1, q)-Inequality for Integral Operators

Let $\Omega \subseteq \mathbb{R}^n$ be a connected open set. By $\mathscr{M}^+(\Omega)$ we denote the class of all nonnegative locally finite Borel measures in Ω . Let $G: \Omega \times \Omega \rightarrow [0, +\infty]$ be a nonnegative lower-semicontinuous kernel. We will assume throughout this paper that *G* is quasi-symmetric, i.e., there exists a constant a > 0 such that

$$a^{-1}G(x,y) \le G(y,x) \le a G(x,y), \quad x,y \in \Omega.$$
(3)

If $\nu \in \mathcal{M}^+(\Omega)$, then by $\mathbf{G}\nu$ and $\mathbf{G}^*\nu$ we denote the integral operators (potentials) defined respectively by

$$\mathbf{G}\nu(x) = \int_{\Omega} G(x, y) \, d\nu(y), \quad \mathbf{G}^*\nu(x) = \int_{\Omega} G(y, x) \, d\nu(y), \quad x \in \Omega.$$
(4)

We say that the kernel G satisfies the *weak maximum principle* if, for any constant M > 0, the inequality

$$\mathbf{G}v(x) \leq M$$
 for all $x \in S(v)$

implies

$$\mathbf{G}v(x) \leq hM$$
 for all $x \in \Omega$,

where $h \ge 1$ is a constant, and $S(v) := \operatorname{supp} v$. When h = 1, we say that $\mathbf{G}v$ satisfies the *strong maximum principle*.

It is well-known that Green's kernels associated with many partial differential operators are quasi-symmetric, and satisfy the weak maximum principle (see, e.g., [2, 3, 12]).

The kernel *G* is said to be *degenerate* with respect to $\sigma \in \mathcal{M}^+(\Omega)$ provided there exists a set $A \subset \Omega$ with $\sigma(A) > 0$ and

$$G(\cdot, y) = 0$$
 $d\sigma$ – a.e. for $y \in A$.

Otherwise, we will say that *G* is *non-degenerate* with respect to σ . (This notion was introduced in [19] in the context of (p, q)-inequalities for positive operators $T: L^p \to L^q$ in the case 1 < q < p.)

Let 0 < q < 1, and let G be a kernel on $\Omega \times \Omega$. For $\sigma \in \mathcal{M}^+(\Omega)$, we consider the problem of the existence of a *positive solution u* to the integral equation

$$u = \mathbf{G}(u^q d\sigma)$$
 in Ω , $0 < u < +\infty \ d\sigma$ -a.e., $u \in L^q_{\text{loc}}(\Omega)$. (5)

We call *u* a positive supersolution if

$$u \ge \mathbf{G}(u^q d\sigma)$$
 in Ω , $0 < u < +\infty d\sigma$ -a.e., $u \in L^q_{\text{loc}}(\Omega)$. (6)

This is a generalization of the sublinear elliptic problem (see, e.g., [4, 5], and the literature cited there):

$$\begin{cases} -\Delta u = \sigma u^q & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(7)

where σ is a nonnegative locally integrable function, or measure, in Ω .

If Ω is a bounded C^2 -domain then solutions to (7) can be understood in the "very weak" sense (see, e.g., [13]). For general domains Ω with a nontrivial Green function *G* associated with the Dirichlet Laplacian Δ in Ω , solutions *u* are understood as in (5).

Remark 2.1 In this paper, for the sake of simplicity, we sometimes consider positive solutions and supersolutions $u \in L^q(\Omega, d\sigma)$. In other words, we replace the natural local condition $u \in L^q_{loc}(\Omega, d\sigma)$ with its global counterpart. Notice that the local condition is necessary for solutions (or supersolutions) to be properly defined.

To pass from solutions u which are globally in $L^q(\Omega, d\sigma)$ to all solutions $u \in L^q_{loc}(\Omega, d\sigma)$ (for instance, very weak solutions to (7)), one can use either a localization method developed in [8] (in the case of Riesz kernels on \mathbb{R}^n), or *modified* kernels $\tilde{G}(x, y) = \frac{G(x, y)}{m(x)m(y)}$, where the modifier $m(x) = \min(1, G(x, x_0))$ (with a fixed pole $x_0 \in \Omega$) plays the role of a regularized distance to the boundary $\partial\Omega$. One also needs to consider the corresponding (1, q)-inequalities with a weight m (see [16]). See the next section in the one-dimensional case where $\Omega = (0, +\infty)$.

Remark 2.2 Finite energy solutions, for instance, solutions $u \in W_0^{1,2}(\Omega)$ to (7), require the global condition $u \in L^{1+q}(\Omega, d\sigma)$, and are easier to characterize (see [6]).

The following theorem is proved in [16]. (The case where $\Omega = \mathbb{R}^n$ and $\mathbf{G} = (-\Delta)^{-\frac{\alpha}{2}}$ is the Riesz potential of order $\alpha \in (0, n)$ was considered earlier in [8].)

Theorem 2.3 Let $\sigma \in \mathcal{M}^+(\Omega)$, and 0 < q < 1. Suppose G is a quasi-symmetric kernel which satisfies the weak maximum principle. Then the following statements are equivalent:

(1) There exists a positive constant $\varkappa = \varkappa(\sigma)$ such that

$$\|\mathbf{G}\nu\|_{L^{q}(\sigma)} \leq \varkappa \|\nu\| \quad for \ all \ \nu \in \mathscr{M}^{+}(\Omega).$$

- (2) There exists a positive supersolution $u \in L^q(\Omega, d\sigma)$ to (6).
- (3) There exists a positive solution $u \in L^q(\Omega, d\sigma)$ to (5), provided additionally that *G* is non-degenerate with respect to σ .

Remark 2.4 The implication $(1) \Rightarrow (2)$ in Theorem 2.3 holds for any nonnegative kernel *G*, without assuming that it is either quasi-symmetric, or satisfies the weak maximum principle. This is a consequence of Gagliardo's lemma [10, 21]; see details in [16].

Remark 2.5 The implication $(3) \Rightarrow (1)$ generally fails for kernels *G* which do not satisfy the weak maximum principle (see examples in [16]).

The following corollary of Theorem 2.3 is obtained in [16].

Corollary 2.6 Under the assumptions of Theorem 2.3, if there exists a positive supersolution $u \in L^q(\Omega, \sigma)$ to (6), then $\mathbf{G}\sigma \in L^{\frac{q}{1-q}}(\Omega, d\sigma)$.

Conversely, if $\mathbf{G}\sigma \in L^{\frac{q}{1-q},1}(\Omega, d\sigma)$, then there exists a non-trivial supersolution $u \in L^q(\Omega, \sigma)$ to (6) (respectively, a solution u, provided G is non-degenerate with respect to σ).

2.2 The One-Dimensional Case

In this section, we consider positive weak solutions to sublinear ODEs of the type (7) on the semi-axis $\mathbb{R}_+ = (0, +\infty)$. It is instructive to consider the one-dimensional case where elementary characterizations of (1, q)-weighed norm inequalities, along with the corresponding existence theorems and explicit global pointwise estimates of solutions are available. Similar results hold for sublinear equations on any interval $(a, b) \subset \mathbb{R}$.

Let 0 < q < 1, and let $\sigma \in \mathscr{M}^+(\mathbb{R}_+)$. Suppose *u* is a positive weak solution to the equation

$$-u'' = \sigma u^q \quad \text{on } \mathbb{R}_+, \quad u(0) = 0, \tag{8}$$

such that $\lim_{x\to+\infty} \frac{u(x)}{x} = 0$. This condition at infinity ensures that *u* does not contain a linear component. Notice that we assume that *u* is concave and increasing on $[0, +\infty)$, and $\lim_{x\to 0^+} u(x) = 0$.

In terms of integral equations, we have $\Omega = \mathbb{R}_+$, and $G(x, y) = \min(x, y)$ is the Green function associated with the Sturm-Liouville operator $\Delta u = u''$ with zero boundary condition at x = 0. Thus, (8) is equivalent to the equation

$$u(x) = \mathbf{G}(u^q d\sigma)(x) := \int_0^{+\infty} \min(x, y) u(y)^q d\sigma(y), \quad x > 0,$$
(9)

where σ is a locally finite measure on \mathbb{R}_+ , and

$$\int_0^a y \, u(y)^q d\sigma(y) < +\infty, \quad \int_a^{+\infty} u(y)^q d\sigma(y) < +\infty, \quad \text{for every } a > 0.$$
(10)

This "local integrability" condition ensures that the right-hand side of (9) is well defined. Here intervals $(a, +\infty)$ are used in place of balls B(x, r) in \mathbb{R}^n .

Notice that

$$u'(x) = \int_{x}^{+\infty} u(y)^{q} d\sigma(y), \quad x > 0.$$
 (11)

Hence, *u* satisfies the global integrability condition

$$\int_0^{+\infty} u(y)^q d\sigma(y) < +\infty \tag{12}$$

if and only if $u'(0) < +\infty$.

The corresponding (1, q)-weighted norm inequality is given by

$$\|\mathbf{G}\boldsymbol{\nu}\|_{L^q(\sigma)} \le \varkappa \|\boldsymbol{\nu}\|,\tag{13}$$

where $\varkappa = \varkappa(\sigma)$ is a positive constant which does not depend on $\nu \in \mathscr{M}^+(\mathbb{R}_+)$. Obviously, (13) is equivalent to

$$\|H_{+}\nu + H_{-}\nu\|_{L^{q}(\sigma)} \le \varkappa \|\nu\| \quad \text{for all } \nu \in \mathscr{M}^{+}(\mathbb{R}_{+}), \tag{14}$$

where H_{\pm} is a pair of Hardy operators,

$$H_{+}\nu(x) = \int_{0}^{x} y \, d\nu(y), \quad H_{-}\nu(x) = x \int_{x}^{+\infty} d\nu(y).$$

The following proposition can be deduced from the known results on two-weight Hardy inequalities in the case p = 1 and 0 < q < 1 (see, e.g., [20]). We give here a simple independent proof.

Proposition 2.7 Let $\sigma \in \mathcal{M}^+(\mathbb{R}_+)$, and let 0 < q < 1. Then (13) holds if and only *if*

$$\varkappa(\sigma)^q = \int_0^{+\infty} x^q d\sigma(x) < +\infty, \tag{15}$$

where $\varkappa(\sigma)$ is the best constant in (13). Proof Clearly,

$$H_+\nu(x) + H_-\nu(x) \le x ||\nu||, \quad x > 0.$$

Hence,

$$||H_{+}v + H_{-}v||_{L^{q}(\sigma)} \le \left(\int_{0}^{+\infty} x^{q} d\sigma(x)\right)^{\frac{1}{q}} ||v||,$$

which proves (14), and hence (13), with $\varkappa = \left(\int_0^{+\infty} x^q d\sigma(x)\right)^{\frac{1}{q}}$.

Conversely, suppose that (14) holds. Then, for every a > 0, and $\nu \in \mathcal{M}^+(\mathbb{R}_+)$,

$$\left(\int_{0}^{a} x^{q} d\sigma(x)\right) \left(\int_{a}^{+\infty} d\nu(y)\right)^{q}$$
$$\leq \int_{0}^{a} \left(x \int_{x}^{+\infty} d\nu(y)\right)^{q} d\sigma(x)$$
$$\leq \int_{0}^{+\infty} (H_{-}\nu)^{q} d\sigma \leq \varkappa^{q} \|\nu\|^{q}.$$

For $\nu = \delta_{x_0}$ with $x_0 > a$, we get

$$\int_0^a x^q d\sigma(x) \le \varkappa^q.$$

Letting $a \to +\infty$, we deduce (15).

Clearly, the Green kernel $G(x, y) = \min(x, y)$ is symmetric, and satisfies the strong maximum principle. Hence, by Theorem 2.3, Eqs. (8) and (9) have a non-trivial (super)solution $u \in L^q(\mathbb{R}_+, \sigma)$ if and only if (15) holds.

From Proposition 2.7, we deduce that, for "localized" measures $d\sigma_a = \chi_{(a,+\infty)} d\sigma$ (a > 0), we have

$$\varkappa(\sigma_a) = \left(\int_a^{+\infty} x^q d\sigma(x)\right)^{\frac{1}{q}}.$$
(16)

Using this observation and the localization method developed in [8], we obtain the following existence theorem for general weak solutions to (7), along with sharp pointwise estimates of solutions.

We introduce a new potential

$$\mathbf{K}\sigma(x) := x \Big(\int_{x}^{+\infty} y^{q} d\sigma(y) \Big)^{\frac{1}{1-q}}, \quad x > 0.$$
(17)

We observe that $\mathbf{K}\sigma$ is a one-dimensional analogue of the potential introduced recently in [8] in the framework of intrinsic Wolff potentials in \mathbb{R}^n (see also [7] in the radial case). Matching upper and lower pointwise bounds of solutions are obtained below by combining $\mathbf{G}\sigma$ with $\mathbf{K}\sigma$.

Theorem 2.8 Let $\sigma \in \mathcal{M}^+(\mathbb{R}_+)$, and let 0 < q < 1. Then Eq. (7), or equivalently (8) has a nontrivial solution if and only if, for every a > 0,

$$\int_0^a x \, d\sigma(x) + \int_a^{+\infty} x^q \, d\sigma(x) < +\infty.$$
(18)

Moreover, if (18) holds, then there exists a positive solution u to (7) such that

$$C^{-1}\left[\left(\int_0^x y\,d\sigma(y)\right)^{\frac{1}{1-q}} + \mathbf{K}\sigma(x)\right] \tag{19}$$

$$\leq u(x) \leq C \left[\left(\int_0^x y \, d\sigma(y) \right)^{\frac{1}{1-q}} + \mathbf{K}\sigma(x) \right].$$
⁽²⁰⁾

The lower bound in (19) holds for any non-trivial supersolution u.

Remark 2.9 The lower bound

$$u(x) \ge (1-q)^{\frac{1}{1-q}} \Big[\mathbf{G}\sigma(x) \Big]^{\frac{1}{1-q}}, \quad x > 0,$$
(21)

is known for a general kernel *G* which satisfies the strong maximum principle (see [11], Theorem 3.3; [16]), and the constant $(1 - q)^{\frac{1}{1-q}}$ here is sharp. However, the second term on the left-hand side of (19) makes the lower estimate stronger, so that it matches the upper estimate.

Proof The lower bound

$$u(x) \ge (1-q)^{\frac{1}{1-q}} \left[\int_0^x y \, d\sigma(y) \right]^{\frac{1}{1-q}}, \quad x > 0,$$
(22)

is immediate from (21).

Applying Lemma 4.2 in [8], with the interval $(a, +\infty)$ in place of a ball *B*, and combining it with (16), for any a > 0 we have

$$\int_{a}^{+\infty} u(y)^{q} d\sigma(y) \ge c(q) \varkappa(\sigma_{a})^{\frac{q}{1-q}} = c(q) \left[\int_{a}^{+\infty} y^{q} d\sigma(y) \right]^{\frac{1}{1-q}}.$$

Hence,

$$u(x) \ge \mathbf{G}(u^q d\sigma) \ge x \int_x^{+\infty} u(y)^q d\sigma(y) \ge c(q) x \left[\int_x^{+\infty} y^q d\sigma(y) \right]^{\frac{1}{1-q}}.$$

Combining the preceding estimate with (22), we obtain the lower bound in (19) for any non-trivial supersolution u. This also proves that (18) is necessary for the existence of a non-trivial positive supersolution.

Conversely, suppose that (18) holds. Let

$$v(x) := c \left[\left(\int_0^x y \, d\sigma(y) \right)^{\frac{1}{1-q}} + \mathbf{K}\sigma(x) \right], \quad x > 0,$$
(23)

where c is a positive constant. It is not difficult to see that v is a supersolution, so that $v \ge \mathbf{G}(v^q d\sigma)$, if c = c(q) is picked large enough. (See a similar argument in the proof of Theorem 5.1 in [7].)

Also, it is easy to see that $v_0 = c_0(\mathbf{G}\sigma)^{\frac{1}{1-q}}$ is a subsolution, i.e., $v_0 \leq \mathbf{G}(v_0^q d\sigma)$, provided $c_0 > 0$ is a small enough constant. Moreover, we can ensure that $v_0 \leq v$ if $c_0 = c_0(q)$ is picked sufficiently small. (See details in [7] in the case of radially symmetric solutions in \mathbb{R}^n .) Hence, there exists a solution which can be constructed by iterations, starting from $u_0 = v_0$, and letting

$$u_{j+1} = \mathbf{G}(u_i^q d\sigma), \quad j = 0, 1, \dots$$

Then by induction $u_j \le u_{j+1} \le v$, and consequently $u = \lim_{j \to +\infty} u_j$ is a solution to (9) by the Monotone Convergence Theorem. Clearly, $u \le v$, which proves the upper bound in (19).

2.3 Weak-Type (1, q)-Inequality for Integral Operators

In this section, we characterize weak-type analogues of (1, q)-weighted norm inequalities considered above. We will use some elements of potential theory for general positive kernels *G*, including the notion of *inner capacity*, cap(·), and the associated *equilibrium* (extremal) measure (see [9]).

Theorem 2.10 Let $\sigma \in \mathcal{M}^+(\Omega)$, and 0 < q < 1. Suppose G satisfies the weak maximum principle. Then the following statements are equivalent:

(1) There exists a positive constant \varkappa_w such that

$$\|\mathbf{G}\nu\|_{L^{q,\infty}(\sigma)} \leq \varkappa_w \|\nu\| \quad \text{for all } \nu \in \mathcal{M}^+(\Omega).$$

(2) There exists a positive constant c such that

$$\sigma(K) \leq c \left(\operatorname{cap}(K) \right)^q$$
 for all compact sets $K \subset \Omega$

(3) $\mathbf{G}\sigma \in L^{\frac{q}{1-q},\infty}(\sigma).$

Proof (1) \Rightarrow (2) Without loss of generality we may assume that the kernel *G* is *strictly positive*, that is, G(x, x) > 0 for all $x \in \Omega$. Otherwise, we can consider the kernel *G* on the set $\Omega \setminus A$, where $A := \{x \in \Omega : G(x, x) \neq 0\}$, since *A* is negligible

for the corresponding (1, q)-inequality in statement (1). (See details in [16] in the case of the corresponding strong-type inequalities.)

We remark that the kernel *G* is known to be strictly positive if and only if, for any compact set $K \subset \Omega$, the inner capacity cap(*K*) is finite [9]. In this case there exists an equilibrium measure λ on *K* such that

$$\mathbf{G}\lambda \ge 1$$
 n.e. on K , $\mathbf{G}\lambda \le 1$ on $S(\lambda)$, $\|\lambda\| = \operatorname{cap}(K)$. (24)

Here n.e. stands for *nearly everywhere*, which means that the inequality holds on a given set except for a subset of zero capacity [9].

Next, we remark that condition (1) yields that σ is absolutely continuous with respect to capacity, i.e., $\sigma(K) = 0$ if cap(K) = 0. (See a similar argument in [16] in the case of strong-type inequalities.) Consequently, $G\lambda \ge 1 d\sigma$ -a.e. on K. Hence, by applying condition (1) with $\nu = \lambda$, we obtain (2).

(2) \Rightarrow (3) We denote by σ_E the restriction of σ to a Borel set $E \subset \Omega$. Without loss of generality we may assume that σ is a finite measure on Ω . Otherwise we can replace σ with σ_F where *F* is a compact subset of Ω . We then deduce the estimate

$$\|\mathbf{G}\sigma_F\|_{L^{\frac{q}{1-q},\infty}(\sigma_F)} \le C < \infty,$$

where *C* does not depend on *F*, and use the exhaustion of Ω by an increasing sequence of compact subsets $F_n \uparrow \Omega$ to conclude that $\mathbf{G}\sigma \in L^{\frac{q}{1-q},\infty}(\sigma)$ by the Monotone Convergence Theorem.

Set $E_t := \{x \in \Omega : \mathbf{G}\sigma(x) > t\}$, where t > 0. Notice that, for all $x \in (E_t)^c$,

$$\mathbf{G}\sigma_{(E_t)^c}(x) \leq \mathbf{G}\sigma(x) \leq t.$$

The set $(E_t)^c$ is closed, and hence the preceding inequality holds on $S(\sigma_{(E_t)^c})$. It follows by the weak maximum principle that, for all $x \in \Omega$,

$$\mathbf{G}\sigma_{(E_t)^c}(x) \leq \mathbf{G}\sigma(x) \leq h t.$$

Hence,

$$\{x \in \Omega: \mathbf{G}\sigma(x) > (h+1)t\} \subset \{x \in \Omega: \mathbf{G}\sigma_{E_t}(x) > t\}.$$
(25)

Denote by $K \subset \Omega$ a compact subset of $\{x \in \Omega : \mathbf{G}\sigma_{E_t}(x) > t\}$. By (2), we have

$$\sigma(K) \leq c \left(\operatorname{cap}(K) \right)^q$$

If λ is the equilibrium measure on K, then $\mathbf{G}\lambda \leq 1$ on $S(\lambda)$, and $\lambda(K) = \operatorname{cap}(K)$ by (24). Hence by the weak maximum principle $\mathbf{G}\lambda \leq h$ on Ω . Using quasi-symmetry of the kernel G and Fubini's theorem, we have

$$\operatorname{cap}(K) = \int_{K} d\lambda$$
$$\leq \frac{1}{t} \int_{K} \mathbf{G} \sigma_{E_{t}} d\lambda$$
$$\leq \frac{a}{t} \int_{E_{t}} \mathbf{G} \lambda d\sigma$$
$$\leq \frac{ah}{t} \sigma(E_{t}).$$

This shows that

$$\sigma(K) \leq \frac{c(ah)^q}{t^q} \left(\sigma(E_t)\right)^q.$$

Taking the supremum over all $K \subset E_t$, we deduce

$$\left(\sigma(E_t)\right)^{1-q} \leq \frac{c(ah)^q}{t^q}.$$

It follows from the preceding estimate and (25) that, for all t > 0,

$$t^{\frac{q}{1-q}}\sigma\Big(\left\{x\in\Omega:\mathbf{G}\sigma(x)>(h+1)t\right\}\Big)\leq t^{\frac{q}{1-q}}\sigma(E_t)\leq c^{\frac{1}{1-q}}(ah)^{\frac{q}{1-q}}.$$

Thus, (3) holds.

(3) \Rightarrow (2) By Hölder's inequality for weak L^q spaces, we have

$$\|\mathbf{G}v\|_{L^{q,\infty}(\sigma)} = \left\|\frac{\mathbf{G}v}{\mathbf{G}\sigma}\mathbf{G}\sigma\right\|_{L^{q,\infty}(\sigma)}$$
$$\leq \left\|\frac{\mathbf{G}v}{\mathbf{G}\sigma}\right\|_{L^{1,\infty}(\sigma)} \|\mathbf{G}\sigma\|_{L^{\frac{q}{1-q},\infty}(\sigma)}$$
$$\leq C \|\mathbf{G}\sigma\|_{L^{\frac{q}{1-q},\infty}(\sigma)} \|v\|,$$

where the final inequality,

$$\left\|\frac{\mathbf{G}\nu}{\mathbf{G}\sigma}\right\|_{L^{1,\infty}(\sigma)} \leq C \,\|\nu\|,$$

with a constant C = C(h, a), was obtained in [16], for quasi-symmetric kernels G satisfying the weak maximum principle.

3 Fractional Maximal Operators

Let $0 \leq \alpha < n$, and let $\nu \in \mathscr{M}^+(\mathbb{R}^n)$. The fractional maximal function $M_{\alpha}\nu$ is defined by

$$M_{\alpha}\nu(x) := \sup_{Q \ni x} \frac{|Q|_{\nu}}{|Q|^{1-\frac{\alpha}{n}}}, \quad x \in \mathbb{R}^n,$$
(26)

where *Q* is a cube, $|Q|_{\nu} := \nu(Q)$, and |Q| is the Lebesgue measure of *Q*. If $f \in L^{1}_{loc}(\mathbb{R}^{n}, d\mu)$ where $\mu \in \mathscr{M}^{+}(\mathbb{R}^{n})$, we set $M_{\alpha}(fd\mu) = M_{\alpha}\nu$ where $d\nu = |f|d\mu$, i.e.,

$$M_{\alpha}(fd\mu)(x) := \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_{Q} |f| \, d\mu, \quad x \in \mathbb{R}^{n}.$$
⁽²⁷⁾

For $\sigma \in \mathscr{M}^+(\mathbb{R}^n)$, it was shown in [22] that in the case 0 < q < p,

$$M_{\alpha}: L^{p}(dx) \to L^{q}(d\sigma) \Longleftrightarrow M_{\alpha}\sigma \in L^{\frac{q}{p-q}}(d\sigma),$$
(28)

$$M_{\alpha}: L^{p}(dx) \to L^{q,\infty}(d\sigma) \Longleftrightarrow M_{\alpha}\sigma \in L^{\frac{q}{p-q},\infty}(d\sigma),$$
(29)

provided p > 1.

More general two-weight maximal inequalities

$$\|M_{\alpha}(fd\mu)\|_{L^{q}(\sigma)} \leq \varkappa \|f\|_{L^{p}(\mu)}, \quad \text{for all } f \in L^{p}(\mu), \tag{30}$$

where characterized by E.T. Sawyer [18] in the case p = q > 1, R.L. Wheeden [24] in the case q > p > 1, and the second author [22] in the case 0 < q < p and p > 1, along with their weak-type counterparts,

$$\|M_{\alpha}(fd\mu)\|_{L^{q,\infty}(\sigma)} \le \varkappa_w \|f\|_{L^p(\mu)}, \quad \text{for all } f \in L^p(\mu), \tag{31}$$

where $\sigma, \mu \in \mathscr{M}^+(\mathbb{R}^n)$, and \varkappa, \varkappa_w are positive constants which do not depend on *f*.

However, some of the methods used in [22] for 0 < q < p and p > 1 are not directly applicable in the case p = 1, although there are analogues of these results for real Hardy spaces, i.e., when the norm $||f||_{L^p(\mu)}$ on the right-hand side of (30) or (31) is replaced with $||M_{\mu}f||_{L^p(\mu)}$, where

$$M_{\mu}f(x) := \sup_{Q \ni x} \frac{1}{|Q|_{\mu}} \int_{Q} |f| d\mu.$$
(32)

We would like to understand similar problems in the case 0 < q < 1 and p = 1, in particular, when $M_{\alpha}: \mathscr{M}^+(\mathbb{R}^n) \to L^q(d\sigma)$, or equivalently, there exists a constant

 $\kappa > 0$ such that the inequality

$$\|M_{\alpha}\nu\|_{L^{q}(\sigma)} \le \varkappa \|\nu\| \tag{33}$$

holds for all $\nu \in \mathcal{M}^+(\mathbb{R}^n)$.

In the case $\alpha = 0$, Rozin [17] showed that the condition

$$\sigma \in L^{\frac{1}{1-q},1}(\mathbb{R}^n, dx)$$

is sufficient for the Hardy-Littlewood operator $M = M_0: L^1(dx) \rightarrow L^q(\sigma)$ to be bounded; moreover, when σ is radially symmetric and decreasing, this is also a necessary condition. We will generalize this result and provide necessary and sufficient conditions for the range $0 \le \alpha < n$. We also obtain analogous results for the weak-type inequality

$$\|M_{\alpha}\nu\|_{L^{q,\infty}(\sigma)} \le \varkappa_{w} \|\nu\|, \quad \text{for all } \nu \in \mathscr{M}^{+}(\mathbb{R}^{n}), \tag{34}$$

where \varkappa_w is a positive constant which does not depend on ν .

We treat more general maximal operators as well, in particular, dyadic maximal operators

$$M_{\rho}\nu(x) := \sup_{Q \in \mathscr{D}: Q \ni x} \rho_Q |Q|_{\nu}, \tag{35}$$

where \mathscr{Q} is the family of all dyadic cubes in \mathbb{R}^n , and $\{\rho_Q\}_{Q \in \mathscr{Q}}$ is a fixed sequence of nonnegative reals associated with $Q \in \mathscr{Q}$. The corresponding weak-type maximal inequality is given by

$$\|M_{\rho}\nu\|_{L^{q,\infty}(\sigma)} \le \varkappa_w \|\nu\|, \quad \text{for all } \nu \in \mathscr{M}^+(\mathbb{R}^n).$$
(36)

3.1 Strong-Type Inequality

Theorem 3.1 Let $\sigma \in M^+(\mathbb{R}^n)$, 0 < q < 1, and $0 \le \alpha < n$. The inequality (33) holds if and only if there exists a function $u \ne 0$ such that

$$u \in L^q(\sigma)$$
, and $u \ge M_\alpha(u^q \sigma)$.

Moreover, u can be constructed as follows: $u = \lim_{j\to\infty} u_j$, where $u_0 := (M_{\alpha}\sigma)^{\frac{1}{1-q}}$, $u_{j+1} \ge u_j$, and

$$u_{j+1} := M_{\alpha}(u_i^q \sigma), \quad j = 0, 1, \dots$$
 (37)

In particular, $u \ge (M_{\alpha}\sigma)^{\frac{1}{1-q}}$.

Proof (\Rightarrow) We let $u_0 := (M_\alpha \sigma)^{\frac{1}{1-q}}$. Notice that, for all $x \in Q$, we have $u_0(x) \ge \left(\frac{|Q|_\sigma}{|Q|^{1-\frac{q}{n}}}\right)^{\frac{1}{1-q}}$. Hence,

$$u_{1}(x) := M_{\alpha}(u_{0}^{q}d\sigma)(x) = \sup_{Q \ni x} \frac{1}{|Q|^{1-\frac{\alpha}{n}}} \int_{Q} u_{0}^{q}d\sigma \ge \sup_{Q \ni x} \left(\frac{|Q|_{\sigma}}{|Q|^{1-\frac{\alpha}{n}}}\right)^{\frac{1}{1-q}} = u_{0}(x).$$

By induction, we see that

$$u_{j+1} := M_{\alpha}(u_j^q d\sigma) \ge M_{\alpha}(u_{j-1}^q d\sigma) = u_j, \quad j = 1, 2, \dots$$

Let $u = \lim u_i$. By (33), we have

$$\begin{split} \|u_{j+1}\|_{L^{q}(\sigma)} &= \|M_{\alpha}(u_{j}^{q}\sigma)\|_{L^{q}(\sigma)} \\ &\leq \varkappa \|u_{j}\|_{L^{q}(\sigma)}^{q} \\ &\leq \varkappa \|u_{j+1}\|_{L^{q}(\sigma)}^{q}. \end{split}$$

From this we deduce that $||u_{j+1}||_{L^q(\sigma)} \le \varkappa^{\frac{1}{1-q}}$ for $j = 0, 1, \ldots$. Since the norms $||u_j||_{L^q(\sigma)}^q$ are uniformly bounded, by the Monotone Convergence Theorem, we have for $u := \lim_{j\to\infty} u_j$ that $u \in L^q(\sigma)$. Note that by construction $u = M_\alpha(u^q d\sigma)$.

(\Leftarrow) We can assume here that $M_{\alpha}\nu$ is defined, for $\nu \in \mathscr{M}^+(\mathbb{R}^n)$, as the centered fractional maximal function,

$$M_{\alpha}\nu(x) := \sup_{r>0} \frac{\nu(B(x,r))}{|B(x,r)|^{1-\frac{\alpha}{n}}},$$

since it is equivalent to its uncentered analogue used above. Suppose that there exists $u \in L^q(\sigma)$ ($u \neq 0$) such that $u \ge M_\alpha(u^q d\sigma)$. Set $\omega := u^q d\sigma$. Let $v \in \mathscr{M}^+(\mathbb{R}^n)$.

We note that we have

$$\frac{M_{\alpha}\nu(x)}{M_{\alpha}\omega(x)} = \frac{\sup_{r>0}\frac{|B(x,r)|_{\nu}}{|B(x,r)|^{1-\frac{\alpha}{n}}}}{\sup_{\rho>0}\frac{|B(x,\rho)|_{\omega}}{|B(x,\rho)|^{1-\frac{\alpha}{n}}}}$$
$$\leq \sup_{r>0}\frac{|B(x,r)|_{\nu}}{|B(x,r)|_{\omega}}$$
$$=: M_{\omega}\nu(x).$$

I

Thus,

$$\begin{split} \|M_{\alpha}\nu\|_{L^{q}(\sigma)} &= \left\|\frac{M_{\alpha}\nu}{M_{\alpha}\omega}\right\|_{L^{q}((M_{\alpha}\omega)^{q}d\sigma)} \\ &\leq \left\|\frac{M_{\alpha}\nu}{M_{\alpha}\omega}\right\|_{L^{q}(d\omega)} \\ &\leq \|M_{\omega}\nu\|_{L^{q}(d\omega)} \\ &\leq C \|M_{\omega}\nu\|_{L^{1,\infty}(\omega)} \leq C \|\nu\|, \end{split}$$

by Jensen's inequality and the (1, 1)-weak-type maximal function inequality for $M_{\omega}\nu$. This establishes (33).

3.2 Weak-Type Inequality

For $0 \le \alpha < n$, we define the *Hausdorff content* on a set $E \subset \mathbb{R}^n$ to be

$$H^{n-\alpha}(E) := \inf\left\{\sum_{i=1}^{\infty} r_i^{n-\alpha} \colon E \subset \bigcup_{i=1}^{\infty} B(x_i, r_i),\right\}$$
(38)

where the collection of balls $\{B(x_i, r_i)\}$ forms a countable covering of E (see [1, 15]).

Theorem 3.2 Let $\sigma \in M^+(\mathbb{R}^n)$, 0 < q < 1, and $0 \le \alpha < n$. Then the following conditions are equivalent:

(1) There exists a positive constant \varkappa_w such that

 $\|M_{\alpha}\nu\|_{L^{q,\infty}(\sigma)} \leq \varkappa_w \|\nu\| \text{ for all } \nu \in \mathscr{M}(\mathbb{R}^n).$

(2) There exists a positive constant C > 0 such that

 $\sigma(E) \leq C (H^{n-\alpha}(E))^q$ for all Borel sets $E \subset \mathbb{R}^n$.

(3) $M_{\alpha}\sigma \in L^{\frac{q}{1-q},\infty}(\sigma).$

Remark 3.3 In the case $\alpha = 0$ each of the conditions (1)–(3) is equivalent to $\sigma \in L^{\frac{1}{1-q},\infty}(dx)$.

Proof (1) \Rightarrow (2) Let $K \subset E$ be a compact set in \mathbb{R}^n such that $H^{n-\alpha}(K) > 0$. It follows from Frostman's theorem (see the proof of Theorem 5.1.12 in [1]) that there exists a measure ν supported on K such that $\nu(K) \leq H^{n-\alpha}(K)$, and, for every $x \in K$ there exists a cube Q such that $x \in Q$ and $|Q|_{\nu} \geq c |Q|^{1-\frac{\alpha}{n}}$, where c depends only

on n and α . Hence,

$$M_{\alpha}\nu(x) \ge \sup_{Q\ni x} \frac{|Q|_{\nu}}{|Q|^{1-\frac{\alpha}{n}}} \ge c \quad \text{for all } x \in K,$$

where *c* depends only on *n* and α . Consequently,

$$c^{q} \sigma(K) \leq \|M_{\alpha}\nu\|_{L^{q,\infty}(\sigma)}^{q} \leq \varkappa_{w}^{q} \Big(H^{n-\alpha}(K)\Big)^{q}.$$

If $H^{n-\alpha}(E) = 0$, then $H^{n-\alpha}(K) = 0$ for every compact set $K \subset E$, and consequently $\sigma(E) = 0$. Otherwise,

$$\sigma(K) \leq \varkappa_w^q \Big(H^{n-\alpha}(K) \Big)^q \leq \varkappa_w^q \Big(H^{n-\alpha}(K) \Big)^q,$$

for every compact set $K \subset E$, which proves (2) with $C = c^{-q} \varkappa_w^q$.

(2) \Rightarrow (3) Let $E_t := \{x : M_\alpha \sigma(x) > t\}$, where t > 0. Let $K \subset E_t$ be a compact set. Then for each $x \in K$ there exists $Q_x \ni x$ such that

$$\frac{\sigma(Q_x)}{|Q_x|^{1-\frac{\alpha}{n}}} > t.$$

Now consider the collection $\{Q_x\}_{x \in K}$, which forms a cover of *K*. By the Besicovitch covering lemma, we can find a subcover $\{Q_i\}_{i \in I}$, where *I* is a countable index set, such that $K \subset \bigcup_{i \in I} Q_i$ and $x \in K$ is contained in at most b_n sets in $\{Q_i\}$. By (2), we have

$$\sigma(K) \le [H^{n-\alpha}(K)]^q,$$

and by the definition of the Hausdorff content we have

$$H^{n-\alpha}(K) \leq \sum |Q_i|^{1-\alpha/n}$$

Since $\{Q_i\}$ have bounded overlap, we have

$$\sum_{i\in I}\sigma(Q_i)\leq b_n\sigma(K).$$

Thus,

$$\sigma(K) \leq \left(b_n \frac{\sigma(K)}{t}\right)^q,$$

Weighted Norm Inequalities of (1, q)-Type

which shows that

$$t^{\frac{q}{1-q}}\sigma(K) \le (b_n)^{\frac{1}{1-q}} < +\infty.$$

Taking the supremum over all $K \subset E_t$ in the preceding inequality, we deduce $M_{\alpha}\sigma \in L^{\frac{q}{1-q},\infty}(\sigma)$.

 $(3) \Rightarrow (1)$. We can assume again that M_{α} is the centered fractional maximal function, since it is equivalent to the uncentered version. Suppose that $M_{\alpha}\sigma \in L^{\frac{q}{1-q},\infty}(\sigma)$. Let $\nu \in \mathcal{M}(\mathbb{R}^n)$. Then, as in the case of the strong-type inequality,

$$\frac{M_{\alpha}\nu(x)}{M_{\alpha}\sigma(x)} = \frac{\sup_{r>0} \frac{|B(x,r)|_{\nu}}{|B(x,r)|^{1-\frac{\alpha}{n}}}}{\sup_{\rho>0} \frac{|B(x,\rho)|_{\sigma}}{|B(x,\rho)|_{\sigma}}} \le \sup_{r>0} \frac{|B(x,r)|_{\nu}}{|B(x,r)|_{\sigma}} =: M_{\sigma}\nu(x).$$

Thus, by Hölder's inequality for weak L^p-spaces,

$$\begin{split} \|M_{\alpha}\nu\|_{L^{q,\infty}(\sigma)} &\leq \|(M_{\alpha}\sigma)(M_{\sigma}\nu)\|_{L^{q,\infty}(\sigma)} \\ &\leq \|M_{\alpha}\sigma\|_{L^{\frac{q}{1-q},\infty}(\sigma)} \|M_{\sigma}\nu\|_{L^{1,\infty}(\sigma)} \\ &\leq c\|M_{\alpha}\sigma\|_{L^{\frac{q}{1-q},\infty}(\sigma)} \|\nu\|, \end{split}$$

where in the last line we have used the (1, 1)-weak-type maximal function inequality for the centered maximal function $M_{\sigma}v$.

We now characterize weak-type (1, q)-inequalities (36) for the generalized dyadic maximal operator M_{ρ} defined by (35). The corresponding (p, q)-inequalities in the case 0 < q < p and p > 1 were characterized in [22]. The results obtained in [22] for weak-type inequalities remain valid in the case p = 1, but some elements of the proofs must be modified as indicated below.

Theorem 3.4 Let $\sigma \in \mathcal{M}^+(\mathbb{R}^n)$, 0 < q < 1, and $0 \le \alpha < n$. Then the following conditions are equivalent:

(1) There exists a positive constant \varkappa_w such that (36) holds. (2) $M_{\rho\sigma} \in L^{\frac{q}{1-q},\infty}(\sigma)$.

Proof (2) \Rightarrow (1) The proof of this implication is similar to the case of fractional maximal operators. Let $\nu \in \mathcal{M}(\mathbb{R}^n)$. Denoting by $Q, P \in \mathcal{Q}$ dyadic cubes in \mathbb{R}^n , we

estimate

$$\frac{M_{\rho}\nu(x)}{M_{\rho}\sigma(x)} = \frac{\sup_{Q\ni x}(\rho_{Q} |Q|_{\nu})}{\sup_{P\ni x}(\rho_{P} |P|_{\sigma})}$$
$$\leq \sup_{Q\ni x} \frac{|Q|_{\nu}}{|Q|_{\sigma}} =: M_{\sigma}\nu(x)$$

By Hölder's inequality for weak L^p-spaces,

$$\begin{split} \|M_{\rho}\nu\|_{L^{q,\infty}(\sigma)} &\leq \|(M_{\rho}\sigma)(M_{\sigma}\nu)\|_{L^{q,\infty}(\sigma)} \\ &\leq \|M_{\rho}\sigma\|_{L^{\frac{q}{1-q},\infty}(\sigma)} \|M_{\sigma}\nu\|_{L^{1,\infty}(\sigma)} \\ &\leq c\|M_{\rho}\sigma\|_{L^{\frac{q}{1-q},\infty}(\sigma)} \|\nu\|, \end{split}$$

by the (1,1)-weak-type maximal function inequality for the dyadic maximal function M_{σ} .

(1) \Rightarrow (2) We set $f = \sup_{Q} (\lambda_{Q} \chi_{Q})$ and $d\nu = f d\sigma$, where $\{\lambda_{Q}\}_{Q \in \mathcal{Q}}$ is a finite sequence of non-negative reals. Then obviously

$$M_{\rho}\nu(x) \ge \sup_{Q}(\lambda_{Q}\rho_{Q}\chi_{Q}), \text{ and } \|\nu\| \le \sum_{Q}\lambda_{Q}|Q|_{\sigma}.$$

By (1), for all $\{\lambda_Q\}_{Q \in \mathcal{Q}}$,

$$\|\sup_{\mathcal{Q}} (\lambda_{\mathcal{Q}} \rho_{\mathcal{Q}} \chi_{\mathcal{Q}})\|_{L^{q,\infty}(\sigma)} \leq \varkappa_{v} \sum_{\mathcal{Q}} \lambda_{\mathcal{Q}} |\mathcal{Q}|_{\sigma}$$

Hence, by Theorem 1.1 and Remark 1.2 in [22], it follows that (2) holds.

4 Carleson Measures for Poisson Integrals

In this section we treat (1, q)-Carleson measure inequalities for Poisson integrals with respect to Carleson measures $\sigma \in \mathscr{M}^+(\mathbb{R}^{n+1}_+)$ in the upper half-space $\mathbb{R}^{n+1}_+ = \{(x, y): x \in \mathbb{R}^n, y > 0\}$. The corresponding weak-type (p, q)-inequalities for all 0 < q < p as well as strong-type (p, q)-inequalities for 0 < q < p and p > 1, were characterized in [23]. Here we consider strong-type inequalities of the type

$$\|\mathbf{P}\nu\|_{L^{q}(\mathbb{R}^{n+1}_{+},\sigma)} \leq \varkappa \|\nu\|_{\mathscr{M}^{+}(\mathbb{R}^{n})}, \quad \text{for all } \nu \in \mathscr{M}^{+}(\mathbb{R}^{n}),$$
(39)

for some constant $\varkappa > 0$, where $\mathbf{P}\nu$ is the Poisson integral of $\nu \in \mathscr{M}^+(\mathbb{R}^n)$ defined by

$$\mathbf{P}\nu(x,y) := \int_{\mathbb{R}^n} P(x-t,y) d\nu(t), \quad (x,y) \in \mathbb{R}^{n+1}_+.$$

Here P(x, y) denotes the Poisson kernel associated with \mathbb{R}^{n+1}_+ .

By $\mathbf{P}^*\mu$ we denote the formal adjoint (balayage) operator defined, for $\mu \in \mathcal{M}^+(\mathbb{R}^{n+1}_+)$, by

$$\mathbf{P}^*\mu(t) := \int_{\mathbb{R}^{n+1}_+} P(x-t, y) d\mu(x, y), \quad t \in \mathbb{R}^n.$$

We will also need the symmetrized potential defined, for $\mu \in \mathscr{M}^+(\mathbb{R}^{n+1}_+)$, by

$$\mathbf{PP}^*\mu(x,y) := \mathbf{P}\Big[(\mathbf{P}^*\mu)dt\Big] = \int_{\mathbb{R}^{n+1}_+} P(x-\tilde{x},y+\tilde{y})d\mu(\tilde{x},\tilde{y}), \quad (x,y) \in \mathbb{R}^{n+1}_+.$$

As we will demonstrate below, the kernel of $\mathbf{PP}^*\mu$ satisfies the weak maximum principle with constant $h = 2^{n+1}$.

Theorem 4.1 Let $\sigma \in \mathcal{M}^+(\mathbb{R}^{n+1}_+)$, and let 0 < q < 1. Then inequality (39) holds if and only if there exists a function u > 0 such that

$$u \in L^q(\mathbb{R}^{n+1}_+, \sigma), \quad and \quad u \ge \mathbf{PP}^*(u^q \sigma) \quad \text{in } \mathbb{R}^{n+1}_+.$$

Moreover, if (39) holds, then a positive solution $u = \mathbf{PP}^*(u^q \sigma)$ such that $u \in L^q(\mathbb{R}^{n+1}_+, \sigma)$ can be constructed as follows: $u = \lim_{i \to \infty} u_i$, where

$$u_{j+1} := \mathbf{PP}^*(u_j^q \sigma), \quad j = 0, 1, \dots, \quad u_0 := c_0(\mathbf{PP}^*\sigma)^{\frac{1}{1-q}},$$
 (40)

for a small enough constant $c_0 > 0$ (depending only on q and n), which ensures that $u_{i+1} \ge u_i$. In particular, $u \ge c_0 (\mathbf{PP}^*\sigma)^{\frac{1}{1-q}}$.

Proof We first prove that (39) holds if and only if

$$\|\mathbf{P}\mathbf{P}^*\mu\|_{L^q(\mathbb{R}^{n+1}_+,\sigma)} \le \varkappa \|\mu\|_{\mathscr{M}^+(\mathbb{R}^{n+1}_+)}, \quad \text{for all } \mu \in \mathscr{M}^+(\mathbb{R}^{n+1}_+).$$
(41)

Indeed, letting $\nu = \mathbf{P}^* \mu$ in (39) yields (41) with the same embedding constant \varkappa .

Conversely, suppose that (41) holds. Then by Maurey's factorization theorem (see [14]), there exists $F \in L^1(\mathbb{R}^{n+1}_+, \sigma)$ such that $F > 0 \ d\sigma$ -a.e., and

$$\|F\|_{L^{1}(\mathbb{R}^{n+1}_{+},\sigma)} \leq 1, \quad \sup_{(x,y)\in\mathbb{R}^{n+1}_{+}} \mathbf{PP}^{*}(F^{1-\frac{1}{q}}d\sigma)(x,y) \leq \varkappa.$$
(42)

By letting $y \downarrow 0$ in (42) and using the Monotone Convergence Theorem, we deduce

$$\sup_{x \in \mathbb{R}^n} \mathbf{P}^*(F^{1-\frac{1}{q}} d\sigma)(x) \le \varkappa.$$
(43)

Hence, by Jensen's inequality and (43), for any $\nu \in \mathscr{M}^+(\mathbb{R}^n)$, we have

$$\|\mathbf{P}v\|_{L^{q}(\mathbb{R}^{n+1}_{+},\sigma)} \leq \|\mathbf{P}v\|_{L^{1}(\mathbb{R}^{n+1}_{+},F^{1-\frac{1}{q}}d\sigma)} = \|\mathbf{P}^{*}(F^{1-\frac{1}{q}}d\sigma)\|_{L^{1}(\mathbb{R}^{n},d\nu)} \leq \varkappa \|\nu\|_{\mathscr{M}^{+}(\mathbb{R}^{n})}.$$

We next show that the kernel of **PP**^{*} satisfies the weak maximum principle with constant $h = 2^{n+1}$. Indeed, suppose $\mu \in \mathcal{M}^+(\mathbb{R}^{n+1}_{+})$, and

$$\mathbf{PP}^*\mu(\tilde{x},\tilde{y}) \le M$$
, for all $(\tilde{x},\tilde{y}) \in S(\mu)$.

Without loss of generality we may assume that $S(\mu) \in \mathbb{R}^{n+1}_+$ is a compact set. For $t \in \mathbb{R}^n$, let $(x_0, y_0) \in S(\mu)$ be a point such that

$$|(t, 0) - (x_0, y_0)| = \operatorname{dist}((t, 0), S(\mu)).$$

Then by the triangle inequality, for any $(\tilde{x}, \tilde{y}) \in S(\mu)$,

$$|(x_0, y_0) - (\tilde{x}, -\tilde{y})| \le |(x_0, y_0) - (t, 0)| + |(t, 0) - (\tilde{x}, -\tilde{y})| \le 2|(t, 0) - (\tilde{x}, \tilde{y})|.$$

Hence,

$$\sqrt{|t - \tilde{x}|^2 + \tilde{y}^2} \ge \frac{1}{2} \sqrt{\left[|x_0 - \tilde{x}|^2 + (y_0 + \tilde{y})^2\right]}.$$

It follows that, for all $t \in \mathbb{R}^n$ and $(\tilde{x}, \tilde{y}) \in S(\mu)$, we have

$$P(t-\tilde{x},\tilde{y}) \le 2^{n+1}P(x_0-\tilde{x},y_0+\tilde{y}).$$

Consequently, for all $t \in \mathbb{R}^n$,

$$\mathbf{P}^*\mu(t) \le 2^{n+1}\mathbf{P}\mathbf{P}^*\mu(x_0, y_0) \le 2^{n+1}M.$$

Applying the Poisson integral $\mathbf{P}[dt]$ to both sides of the preceding inequality, we obtain

$$\mathbf{PP}^*\mu(x,y) \le 2^{n+1}M \quad \text{for all } (x,y) \in \mathbb{R}^{n+1}_+.$$

This proves that the weak maximum principle holds for **PP**^{*} with $h = 2^{n+1}$. It follows from Theorem 2.3 that (39) holds if and only if there exists a non-trivial $u \in$

 $L^q(\mathbb{R}^{n+1}_+, \sigma)$ such that $u \ge \mathbf{PP}^*(u^q d\sigma)$. Moreover, a positive solution $u = \mathbf{PP}^*(u^q \sigma)$ can be constructed as in the statement of Theorem 4.1 (see details in [16]). \Box

Corollary 4.2 Under the assumptions of Theorem 4.1, inequality (39) holds if and only if there exists a function $\phi \in L^1(\mathbb{R}^n)$, $\phi > 0$ a.e., such that

$$\phi \geq \mathbf{P}^* \Big[(\mathbf{P}\phi)^q d\sigma \Big] \quad a.e. \quad in \ \mathbb{R}^n.$$

Moreover, if (39) holds, then there exists a positive solution $\phi \in L^1(\mathbb{R}^n)$ to the equation $\phi = \mathbf{P}^* [(\mathbf{P}\phi)^q d\sigma].$

Proof If (39) holds then by Theorem 4.1 there exists $u = \mathbf{PP}^*(u^q d\sigma)$ such that u > 0 and $u \in L^q(\mathbb{R}^{n+1}_+, \sigma)$. Setting $\phi = \mathbf{P}^*(u^q d\sigma)$, we see that

$$\mathbf{P}\phi = \mathbf{P}\mathbf{P}^*(u^q d\sigma) = u,$$

so that $\phi = \mathbf{P}^*[(\mathbf{P}\phi)^q d\sigma]$, and consequently

$$\|\phi\|_{L^1(\mathbb{R}^n)} = \|u\|_{L^q(\mathbb{R}^{n+1}_+,\sigma)}^q = \int_{\mathbb{R}^n} u(x,y) dx < \infty.$$

Conversely, if there exists $\phi > 0$, $\phi \in L^1(\mathbb{R}^n)$ such that $\phi \ge \mathbf{P}^*[(\mathbf{P}\phi)^q d\sigma]$, then letting $u = \mathbf{P}\phi$, we see that u is a positive harmonic function in \mathbb{R}^{n+1}_+ so that

$$u(x, y) = \mathbf{P}\phi(x, y) \ge \mathbf{P}\mathbf{P}^*(u^q d\sigma)(x, y), \quad (x, y) \in \mathbb{R}^{n+1}_+$$

Notice that the kernel $P(x - \tilde{x}, y + \tilde{y})$ of the operator **PP**^{*} has the property

$$\int_{\mathbb{R}^n} P(x - \tilde{x}, y + \tilde{y}) dx = 1, \quad y > 0, \ (\tilde{x}, \tilde{y}) \in \mathbb{R}^{n+1}_+,$$

and consequently, for all y > 0,

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^{n+1}_+} P(x-\tilde{x},y+\tilde{y}) u(\tilde{x},\tilde{y})^q d\sigma(\tilde{x},\tilde{y}) dx = \int_{\mathbb{R}^{n+1}_+} u(\tilde{x},\tilde{y})^q d\sigma(\tilde{x},\tilde{y}),$$

Hence,

$$\|u\|_{L^q(\mathbb{R}^{n+1}_+,\sigma)}^q = \int_{\mathbb{R}^n} \Big[\mathbf{P}\mathbf{P}^*(u^q d\sigma)\Big](x,y) \, dx \le \int_{\mathbb{R}^n} u(x,y) \, dx = \|\phi\|_{L^1(\mathbb{R}^n)} < \infty.$$

Thus, inequality (39) holds by Theorem 4.1.

		-

References

- 1. D.R. Adams, L.I. Hedberg, *Function Spaces and Potential Theory*. Grundlehren der math. Wissenschaften, vol. 314 (Springer, Berlin, Heidelberg, New York, 1996)
- 2. A. Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains. J. Anal. Math. **72**, 45–92 (1997)
- A. Ancona, Some results and examples about the behavior of harmonic functions and Green's functions with respect to second order elliptic operators. Nagoya Math. J. 165, 123–158 (2002)
- 4. H. Brezis, S. Kamin, Sublinear elliptic equation on \mathbb{R}^n . Manuscr. Math. **74**, 87–106 (1992)
- 5. H. Brezis, L. Oswald, Remarks on sublinear elliptic equations. Nonlin. Anal.: Theory Methods Appl. **10**, 55–64 (1986)
- D.T. Cao, I.E. Verbitsky, Finite energy solutions of quasilinear elliptic equations with subnatural growth terms. Calc. Var. PDE 52, 529–546 (2015)
- D.T. Cao, I.E. Verbitsky, Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations. Nonlin. Anal. Ser. A: Theory Methods Appl. 146, 1–19 (2016)
- D.T. Cao, I.E. Verbitsky, Nonlinear elliptic equations and intrinsic potentials of Wolff type. J. Funct. Anal. 272, 112–165 (2017) (published online, http://dx.doi.org/10.1016/j.jfa.2016.10. 010)
- 9. B. Fuglede, On the theory of potentials in locally compact spaces. Acta Math. **103**, 139–215 (1960)
- 10. E. Gagliardo, On integral transformations with positive kernel. Proc. Am. Math. Soc. 16, 429–434 (1965)
- A. Grigor'yan, I.E. Verbitsky, Pointwise estimates of solutions to semilinear elliptic equations and inequalities. J. d'Analyse Math. arXiv:1511.03188 (to appear)
- N.S. Landkof, *Foundations of Modern Potential Theory*. Grundlehren der math. Wissenschaften, vol. 180 (Springer, New York, Heidelberg, 1972)
- M. Marcus, L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures (Walter de Gruyter, Berlin, Boston, 2014)
- 14. B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans un espaces L^p , in *Astérisque*, vol. 11 (Soc. Math., Paris, 1974)
- V. Maz'ya, Sobolev Spaces, with Applications to Elliptic Partial Differential Equations. Grundlehren der math. Wissenschaften, 2nd Augmented Edition, vol. 342 (Springer, Berlin, 2011)
- 16. S. Quinn, I.E. Verbitsky, A sublinear version of Schur's lemma and elliptic PDE. preprint (2016)
- 17. A.L. Rozin, Singular integrals and maximal functions in the space L^1 . Bull. Georgian Acad. Sci. **87**, 29–32 (1977) (in Russian)
- E.T. Sawyer, A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75, 1–11 (1982)
- 19. G. Sinnamon, Schur's lemma and best constants in weighted norm inequalities. Le Matematiche 57, 165–204 (2005)
- 20. G. Sinnamon, V.D. Stepanov, The weighted Hardy inequality: new proofs and the case p = 1. J. Lond. Math. Soc. (2) **54**, 89–101 (1996)
- 21. P. Szeptycki, Notes on integral transformations. Dissert. Math. 231 (1984), pp. 1-52
- 22. I.E. Verbitsky, Weighted norm inequalities for maximal operators and Pisier's theorem on factorization through $L^{p,\infty}$. Int. Equ. Oper. Theory **15**, 121–153 (1992)
- 23. I.V. Videnskii, On an analogue of Carleson measures. Soviet Math. Dokl. 37, 186–190 (1988)
- 24. R.L. Wheeden, A characterization of some weighted norm inequalities for the fractional maximal function. Studia Math. **107**, 258–272 (1993)