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Abstract An alternative characterizations of intrinsic Lipschitz functions within
Carnot groups through the boundedness of appropriately defined difference quo-
tients is provided. It is also shown how intrinsic difference quotients along
horizontal directions are naturally related with the intrinsic derivatives, introduced
e.g. in Franchi et al. (Comm Anal Geom 11(5):909–944, 2003) and Ambrosio et al.
(J Geom Anal 16:187–232, 2006) and used to characterize intrinsic real valued C1

functions inside Heisenberg groups. Finally the question of the equivalence of the
two conditions: (1) boundedness of horizontal intrinsic difference quotients and (2)
intrinsic Lipschitz continuity is addressed in a few cases.
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1 Introduction

The aim of this paper is to contribute to the theory of intrinsic Lipschitz functions
within Carnot groups.

We provide here an alternative characterizations of intrinsic Lipschitz func-
tions through the boundedness of appropriately defined difference quotients. We
show also how intrinsic difference quotients are strictly related with the intrinsic
derivatives, introduced in [3, 15] and used by Serra Cassano et al. to characterize
intrinsic real valued C1 functions inside Heisenberg groups. Finally in the last
section we attach the related question when the boundedness of only horizontal
intrinsic difference quotients yields intrinsic Lipschitz continuity.

For a first description of Carnot groups we refer to the beginning of next
section and to the literature there indicated. We anticipate here that we identify
a Carnot group G with Rn endowed with a non commutative polynomial group
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operation denoted as � (see (1) and (2)). Moreover (non commutative) Carnot groups,
endowed with their natural Carnot-Carathéodory distance (see Definition 2.1) are
not Riemannian manifolds being also non Riemannian at any scale [26].

In the last years, there has been a general attempt aimed to carry on geometric
analysis in non-Euclidean structures, and, in particular, to develop a good notion
of rectifiable sets in sub-Riemannian metric structures and, specifically, in Carnot
groups. For different notions of rectifiability in these general settings see [1, 2, 4,
14, 18, 23–25] and the references therein.

We recall that in Euclidean spaces, rectifiable sets are obtained, up to a negligible
subset, by ‘gluing up’ countable families of graphs of C1 or of Lipschitz functions.
Hence, understanding the objects that, within Carnot groups, naturally take the
role of C1 or of Lipschitz functions seems to be preliminary in order to develop
a satisfactory theory of intrinsic rectifiable sets. It has been clear for a long time
that considering Euclidean notions, even in the simplest Carnot groups i.e. the
Heisenberg groups, may be both too general and too restrictive (see [22] for a
striking example). More intrinsic definitions are necessary.

Observe that, the adjective “intrinsic” is meant to emphasize the role played
by the algebra of the group, in particular by its horizontal layer, and by group
translations and dilations. In other words, “intrinsic” notions or properties in G are
those depending only on the structure of its Lie algebra g. In particular, an intrinsic
geometric property, such as e.g. being an intrinsic graph, or an intrinsic regular
graph, or an intrinsic Lipschitz graph, must be invariant under group translations
and group dilations. By this we mean that, after a translation or a dilation, they keep
being graphs or regular graphs or Lipschitz graphs.

The notion of graph within Carnot groups is somehow more delicate than in
Euclidean spaces, since Carnot groups in general are not cartesian products of
subgroups (unlike Euclidean spaces). A notion of intrinsic graph fitting the structure
of the groupG is needed.

An intrinsic graph inside G is associated with a decomposition of the ambient
group G as a product G D M � H of two homogeneous complementary subgroups
M,H (Definition 2.2) and the idea is the following one: letM,H be complementary
homogeneous subgroups of a group G, then the intrinsic (left) graph of f W A �
M ! H is the set

graph . f / D fg � f .g/ W g 2 Ag:

Intrinsic graphs appeared naturally in [5, 17, 19] in relation with the study of non
critical level sets of differentiable functions fromG to Rk. Indeed, implicit function
theorems for groups [14, 15, 18] can be rephrased stating precisely that non critical
level sets are always, locally, intrinsic graphs.

What are then appropriate intrinsic notions of Lipschitz functions or of dif-
ferentiable functions when dealing with functions acting between complementary
subgroups?

Both these notions were originally given in a somewhat indirect way as intrinsic
geometric properties of the graphs of the functions in question. Precisely, a function
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acting between complementary subgroups is an intrinsic Lipschitz function when its
graph does not intersect appropriately defined cones (see Definitions 3.2 and 3.3).
Analogously, a function is an intrinsically differentiable function when its graph
admits an appropriately defined tangent homogeneous subgroup at each point (see
[5, 20, 27]).

Both these notions, are invariant under group translations and dilations, hence
they are intrinsic and seem to be the right ones to be considered inside groups (see
e.g [24]).

On the other hand, in the Euclidean setting, the most common and elementary
definition of Lipschitz function is through the boundedness of the difference
quotients of the function itself and the natural definition of a differentiable function
is through existence and continuity of its partial derivatives.

As anticipated before, we introduce here an analogous definition of intrinsic
difference quotients (see Definition 3.7). These intrinsic difference quotients, though
their form may be algebraically complicated, can be explicitly computed given the
group G and the couple of complementary subgroups M and H. Moreover it is
easy to characterize intrinsic Lipschitz functions as intrinsic functions with bounded
intrinsic difference quotients (see Proposition 3.11).

The problem of characterizing intrinsic differentiable or intrinsic C1 graphs
in terms of intrinsic differentiability properties of their underlying functions, is
definitely much more complicated. The available results are up to now limited
to the case of hypersurfaces inside Heisenberg groups that is to the case of ‘real
valued’ functions inside Heisenberg groups. By this we mean precisely that G is an
Heisenberg group and that the target space H, in the decomposition G D M � H, is
1-dimensional and horizontal.

Moreover the actual form of the intrinsic derivatives (in many significant cases
they are first order non linear differential operators) was obtained in the above
mentioned cases, in a rather indirect way through the use of Dini theorem. We
observe here as, in perfect analogy with Euclidean calculus, intrinsic derivatives of
functions acting between complementary subgroups of G can be obtained as limits
of intrinsic difference quotients along horizontal directions (when these limits exist).
So we provide an explicit way of computing the form of intrinsic derivatives, given
the groupG and the couple of complementary subgroupsM and H.

Finally we observe that it is not clear when informations on boundedness or
continuity of intrinsic derivatives of f W M ! H are sufficient to yield that the graph
of f is intrinsic Lipschitz or intrinsic differentiable in G. Related to this is the fact
that in many significant instances the homogeneous subgroupM, though a stratified
group, is not a Carnot group. The validity of an intrinsic Lipschitz continuity result,
such as in Theorem 3.21, that does not have up to now a corresponding result in
term of continuity or boundedness of intrinsic derivatives, might suggest that also in
this case such a result might hold true.

Finally it is a pleasure to thank for their interest in this work and for many
pleasant and useful conversations Bruno Franchi, Francesco Serra Cassano and
Sebastiano Nicolussi Golo.
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2 Notations and Definitions

2.1 Carnot Groups

We recall here only the notions about Carnot groups that will be used in the
following of this paper. For general accounts on Carnot groups, see e.g. [10–12, 21].

A graded group of step � is a connected, simply connected Lie group G whose
finite dimensional Lie algebra g is the direct sum of k subspaces gi, g D g1˚� � �˚g� ,
such that

�
gi; gj

� � giCj; for 1 � i; j � �;

where gi D 0 for i > �. We denote as n the dimension of g and as nj the dimension
of gj, for 1 � j � �.

A Carnot group G of step � is a graded group of step �, where g1 generates all
of g. That is Œg1; gi� D giC1; for i D 1; : : : ; �.

Let X1; : : : ;Xn be a base for g such that X1; : : : ;Xm1 is a base for g1 and, for 1 <
j � �, Xmj�1C1; : : : ;Xmj is a base for gj. Here we have m0 D 0 and mj � mj�1 D nj,
for 1 � j � �.

Because the exponential map exp W g ! G is a one to one diffeomorphism from
g to G, any p 2 G can be written, in a unique way, as p D exp. p1X1 C � � � C pnXn/

and we identify p with the n-tuple . p1; : : : ; pn/ 2 Rn and G with .Rn; �/, i.e. Rn

endowed with the product �. The identity ofG is denoted as 0 D .0; : : : ; 0/.
If G is a graded group, for all � > 0, the (non isotropic) dilations ı� W G ! G

are automorphisms of G defined as

ı�. p1; : : : ; pn/ D .�˛1p1; �
˛2p2; : : : ; �

˛npn/;

where ˛i D j, if mj�1 < i � mj. We denote the product of p and q 2 G as p � q (or
sometimes as pq). The explicit expression of the group operation � is determined by
the Campbell-Hausdorff formula. It has the form

p � q D p C q C Q. p; q/; for all p; q 2 R
n; (1)

whereQ D .Q1; : : : ;Qn/ W Rn � Rn ! Rn. Each Qi is a homogeneous polynomial
of degree ˛i with respect to the intrinsic dilations of G. That is

Qi.ı�p; ı�q/ D �˛iQi. p; q/; for all p; q 2 G and � > 0: (2)

We collect now further properties of Q following from Campbell-Hausdorff for-
mula. First of all Q is antisymmetric, that is

Qi. p; q/ D �Qi.�q;�p/; for all p; q 2 G:
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Each Qi. p; q/ depends only on a section of the components of p and q. Precisely

Q1. p; q/ D : : : D Qm1 . p; q/ D 0

Qj. p; q/ D Qj. p1; : : : ; pmi�1 ; q1; : : : ; qmi�1 /;
(3)

if mi�1 < j � mi and 2 � i. By Proposition 2.2.22 (4) in [10], for m1 < i � n we
can write

Qi. p; q/ D
X

k;h

Ri
k;h. p; q/. pkqh � phqk/; (4)

where the functionsRi
k;h are polynomials, homogenous of degree ˛i � ˛k � ˛h with

respect to group dilations, and the sum is extended to all h; k such that ˛h C˛k � ˛i.
From (4) it follows in particular that

Qi. p; 0/ D Qi.0; q/ D 0 and Qi. p; p/ D Qi. p;�p/ D 0: (5)

Finally, it is useful to thinkG D G1˚G2˚� � �˚G� , whereGi D exp.gi/ D Rni

is the ith layer of G and to write p 2 G as . p1; : : : ; p�/, with pi 2 Gi. G1 is denoted
as the horizontal layer of G.

Accordingly we also denoteQ D .Q1; : : : ;Q�/ whereQ1 � 0 and for 2 � i � �

each Qi is a vector valued polynomial homogeneous of degree i with respect to the
intrinsic dilations of G. With this notation (1) becomes

p � q D �
p1 C q1; p2 C q2CQ2. p; q/; : : : ; p�Cq�CQ�. p; q/

�
; for all p; q 2 G:

(6)

An homogeneous norm in G is a function k�k W G ! RC such that for all
p; q 2 G and for all � � 0

kp � qk � kpk C kqk ; kı�pk D � kpk :

Homogeneous norms exist. A convenient one (see [16, Theorem 5.1]) is

kpk WD max
jD1;:::;�f"j

�
�pj
�
�1=j
R
nj g; for all p D . p1; : : : ; p�/ 2 G; (7)

where "1 D 1, and "2; : : : "� 2 .0; 1� are suitable positive constants depending onG.

Definition 2.1 An absolutely continuous curve � W Œ0;T� ! G is a sub-unit
curve if there exist measurable real functions c1.s/; : : : ; cm1 .s/, s 2 Œ0;T� such thatP

j c
2
j � 1 and

P�.s/ D
m1X

jD1
cj.s/Xj.�.s//; for a.e. s 2 Œ0;T�:
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If p; q 2 G, we define their Carnot-Carathéodory distance as

dc. p; q/ WD inf fT > 0 W there exists a sub-unit curve � with �.0/ D p; �.T/ D qg :

By Chow’s Theorem, the set of sub-unit curves joining p and q is not empty,
furthermore dc is a distance onG that induces the Euclidean topology (see Chap. 19
in [10]).

More generally, given any homogeneous norm k�k, it is possible to define a
distance in G as

d. p; q/ D d.q�1 � p; 0/ D �
�q�1 � p�� ; for all p; q 2 G: (8)

The distance d in (8) is comparable with the Carnot-Carathéodory distance ofG and

d.g � p; g � q/ D d. p; q/ ; d.ı�. p/; ı�.q// D �d. p; q/ (9)

for all p; q; g 2 G and all � > 0.

2.2 Complementary Subgroups and Graphs

From now on G will always be a Carnot group, identified with Rn through
exponential coordinates.

Definition 2.2 A homogeneous subgroup of G (see [28, 5.2.4]) is a Lie subgroup
H such that ı�g 2 H, for all g 2 H and for all � � 0. Homogeneous subgroups are
linear subspaces of G � Rn.

Two homogeneous subgroupsM;H of G are complementary subgroups in G, if
M \ H D f0g and if for all g 2 G, there are m 2 M and h 2 H such that g D m � h.
If M;H are complementary subgroups in G we say that G is the product of M and
H and we denote this as

G D M � H:

If M;H are complementary subgroups of G D .Rn; �/ then they are also comple-
mentary linear subspaces of Rn and we denote this asG D M˚H. If one of them is
a normal subgroup then G is said to be the semi-direct product ofM and H. If both
M and H are normal subgroups then G is said to be the direct product ofM and H.

Remark 2.3 If M is an homogeneous subgroup of G then also M is a stratified
group, but it is not necessarily a Carnot group. If M;H are complementary
subgroups of G then Gi D Mi ˚ Hi, for i D 1; : : : ; �.

Example 2.4 Complementary subgroups always exist in any Carnot group G.
Indeed, choose any horizontal homogeneous subgroup H D H1 � G1 and a
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subgroup M D M1 ˚ � � � ˚ M� such that: H ˚ M1 D G1, and Gj D Mj for all
2 � j � �. Then it is easy to check that M and H are complementary subgroups in
G and that the productG D M � H is semidirect becauseM is a normal subgroup.

Given two complementary subgroups M;H of G, then for any g 2 G the
elements m 2 M and h 2 H such that g D mh are unique because M \ H D f0g.
These elements are denoted as components of g along M and H or as projections
of g onM and H.

Proposition 2.5 If M;H are complementary subgroups in G there is c0 D
c0.M;H/ > 0 such that for all g D mh

c0 .kmk C khk/ � kgk � kmk C khk : (10)

From now on, we will keep the following convention: when M;H are comple-
mentary subgroups in G, M will always be the first ‘factor’ and H the second one,
hence gM 2 M and gH 2 H are the unique elements such that

g D gMgH: (11)

We stress that this notation is ambiguous because gM and gH depend on both the
complementary subgroups M and H and also on the order under which they are
taken.

The projection maps PM W G ! M and PH W G ! H are defined as

PM.g/ WD gM; PH.g/ WD gH (12)

Proposition 2.6 Let M, H be complementary subgroups of G, then the projection
maps PM W G ! M and PH W G ! H defined in (12) are polynomial maps.
More precisely, if � is the step of G, there are 2� matrices A1; : : : ;A�;B1; : : : ;B� ,
depending onM and H, such that

(i) Aj and Bjare .nj; nj/-matrices, for all 1 � j � �;

and, with the notations of (1),

(ii) PMg D �
A1g1;A2.g2 � Q2.A1g1;B1g1//; : : : ;A�.g� � Q�.A1g1; : : : ;B��1g��1//

�I
(iii) PHg D �

B1g1;B2.g2 � Q2.A1g1;B1g1//; : : : ;B�.g� � Q�.A1g1; : : : ;B��1g��1//
� I

(iv) Aj is the identity on M
j; and Bj is the identity on Hj; for 1 � j � �:

Recall that nj is the dimension of the layer gj.
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Definition 2.7 LetH be a homogeneous subgroup ofG. We say that a set S � G is
a (left) H-graph (or a left graph in directionH) if S intersects each left coset ofH in
one point, at most.

If A � G parametrizes the left cosets of H—in particular if A itself intersect
each left coset ofH at most one time—and if S is anH-graph, then there is a unique
function f W E � A ! H such that S is the graph of f , that is

S D graph . f / WD f� � f .�/ W � 2 Eg:

Conversely, for any  W D � A ! H the set graph . / is an H-graph.
One has an important special case whenH admits a complementary subgroupM.

Indeed, in this case, M naturally parametrizes the left cosets of H and we have that

S is a H-graph if and only if S D graph . f /

for f W E � M ! H. By uniqueness of the components along M and H, if S D
graph . f / then f is uniquely determined among all functions fromM to H.

If a set S � G is an intrinsic graph then it keeps being an intrinsic graph after left
translations or group dilations.

Proposition 2.8 Let H be a homogeneous subgroup of G. If S is a H-graph then,
for all � > 0 and for all q 2 G, ı�S and q � S are H-graphs.

If, in particular,M;H are complementary subgroups in G, if S D graph . f / with
f W E � M ! H, then

For all � > 0; ı�S D graph . f�/;with

f� W ı�E � M ! H and

f�.m/ D ı�f .ı1=�m/; for m 2 ı�E :
(13)

For any q 2 G; q � S D graph . fq/; where

fq W Eq � M ! H; Eq D fm W PM.q
�1 � m/ 2 Eg and

fq.m/ D �
PH.q

�1 � m/��1 � f �PM.q
�1 � m/�; for all m 2 Eq:

(14)

Remark 2.9 The algebraic expression of fq in (14) is more explicit when G is a
semi-direct product ofM;H. Precisely

(i) IfM is normal in G then fq.m/ D qHf
�
.q�1m/M

�
; for m 2 Eq D qE.qH/�1:

(ii) If H is normal in G then fq.m/ D .q�1m/�1
H
f .q�1

M
m/; for m 2 Eq D qME :
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If bothM andH are normal in G—that is if G is a direct product ofM andH—then
we get the well known Euclidean formula

(iii) fq.m/ D qHf .q�1
M
m/; for m 2 Eq D qME :

See also [5, Proposition 3.6].

3 Intrinsic Lipschitz Functions

3.1 General Definitions

As anticipated in the introduction, intrinsic Lipschitz functions in G are functions,
acting between complementary subgroups of G, with graphs non intersecting
naturally defined cones. Hence, the notion of intrinsic Lipschitz graph respects
strictly the geometry of the ambient groupG. Intrinsic Lipschitz functions appeared
for the first time in [14] and were studied, more diffusely, in [13, 18, 19, 30].

We begin with two definitions of intrinsic (closed) cones.

Definition 3.1 Let H be a homogeneous subgroup of G, q 2 G. Then, the cones
X.q;H; ˛/ with axis H, vertex q, opening ˛, 0 � ˛ � 1 are defined as

X.q;H; ˛/ D q � X.0;H; ˛/; where X.0;H; ˛/ D ˚
p W dist . p;H/ � ˛ kpk �:

Notice that Definition 3.1 does not require that H is a complemented subgroup.
Frequently, while working with functions acting between complementary sub-

groups, it will be convenient to consider also the following family of cones.

Definition 3.2 If M;H are complementary subgroups in G, q 2 G and ˇ � 0, the
cones CM;H.q; ˇ/, with base M, axis H, vertex q, opening ˇ are defined as

CM;H.q; ˇ/ D q � CM;H.0; ˇ/; where CM;H.0; ˇ/ D f p W kpMk � ˇ kpHkg :

Observe that

H D X.0;H; 0/ D CM;H.0; 0/; G D X.0;H; 1/ D [ˇ>0CM;H.0; ˇ/:

Moreover, the cones CM;H.q; ˇ/ are equivalent with the cones X.q;H; ˛/ that is:
for any ˛ 2 .0; 1/ there is ˇ � 1, depending on ˛, M and H, such that

CM;H.q; 1=ˇ/ � X.q;H; ˛/ � CM;H.q; ˇ/; (15)

Now we introduce the basic definition of this paragraph.
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Definition 3.3

(i) Let H be an homogeneous subgroup, not necessarily complemented in G. We
say that an H-graph S is an intrinsic Lipschitz H-graph if there is ˛ 2 .0; 1/

such that,

S \ X. p;H; ˛/ D f pg; for all p 2 S:

(ii) If M;H are complementary subgroups in G, we say that f W E � M ! H is
intrinsic Lipschitz in E when graph . f / is an intrinsic Lipschitz H-graph.

(iii) We say that f W E � M ! H is intrinsic L-Lipschitz in E if there is L > 0 such
that

CM;H. p; 1=L/\ graph . f / D f pg; for all p 2 graph . f /: (16)

The Lipschitz constant of f in E is the infimum of the L > 0 such that (16)
holds.

It follows immediately from (15) that f is intrinsic Lipschitz in E if and only if it
is intrinsic L-Lipschitz for an appropriate constant L, depending on ˛, f andM.

Because of Proposition 2.8 and Definition 3.2 left translations of intrinsic
Lipschitz H-graphs, or of intrinsic L-Lipschitz functions, are intrinsic Lipschitz
H-graphs, or intrinsic L-Lipschitz functions. We state these facts in the following
theorem.

Theorem 3.4 If G is a Carnot group, then for all q 2 G,

(i) S � G is an intrinsic Lipschitz H-graph H) q�S is an intrinsic Lipschitz H-graph;
(ii) f W E � M ! H is intrinsic L-Lipschitz, H) fq W Eq � M !

H is intrinsic L-Lipschitz.

The geometric definition of intrinsic Lipschitz graphs has equivalent algebraic
forms (see also [5, 17, 19]).

Proposition 3.5 LetM;H be complementary subgroups inG, f W E � M ! H and
L > 0. Then (i) to (iii) are equivalent.

(i) f is intrinsic L-Lipschitz in E :
(ii)

�
�PH

�Nq�1q
��� � L

�
�PM

�Nq�1q
��� ; for all q; Nq 2 graph . f /:

(iii)
�
� fNq�1 .m/

�
� � L kmk ; for all Nq 2 graph . f / and m 2 ENq�1 :

Remark 3.6 IfG is the semi-direct product ofM andH, (ii) of Proposition 3.5 takes
a more explicit form. Indeed, from Remark 2.9, we get
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(i) IfM is normal in G then f is intrinsic L-Lipschitz if and only if

�
� f . Nm/�1f .m/�� � L

�
� f . Nm/�1 Nm�1mf . Nm/�� ; for all m; Nm 2 E :

(ii) If H is normal in G then f is intrinsic L-Lipschitz if and only if

�
�m�1 Nmf . Nm/�1 Nm�1mf

�
m
��� � L

�
� Nm�1m

�
� ; for all m; Nm 2 E :

(iii) If G is a direct product of M and H we get the well known expression for
Lipschitz functions

�
� f . Nm/�1f .m/�� � L

�
� Nm�1m

�
� ; for all m; Nm 2 E :

Hence in this case intrinsic Lipschitz functions are the same as the usual metric
Lipschitz functions from .M; d1/ to .H; d1/.

3.2 Intrinsic Difference Quotients

A different new characterization of intrinsic Lipschitz functions can be given in
terms of boundedness of appropriately defined intrinsic difference quotients. Let us
begin with this notion. In the spirit of the previous paragraphs, first we propose the
definition in the particular case of a function vanishing in the origin of the group
and then we get the general definition extending the particular case in a translation
invariant way.

Let f W E � M ! H and Y 2 m. Assume 0 2 E and f .0/ D 0. In this case the
difference quotients�Y f .0I t/ of f (from 0 2 E in direction Y) are defined as

�Yf .0I t/ WD ı1=t f .ıt expY/

for all t > 0 such that ıt expY 2 E . Then we extend this definition to any m 2 E .
Let q WD m � f .m/ 2 graph . f /, then fq�1 vanishes in 0 2 Eq�1 and we define

�Y f .mI t/ WD �Yfq�1 .0I t/ D ı1=t fq�1 .ıt expY/ (17)

once more for all t > 0 such that ıt expY 2 Eq�1 .
To make the previous definition less implicit, i.e. given directly on the function

f and not on its translated fq�1 , we consider the following steps making also more
transparent the underlying geometry of the construction.

• Let f W M ! H. Fix m 2 M and Y 2 m. Then consider the line from
qm WD m � f .m/

s 7! qm � ıs expY for 0 � s
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and its projection onM

s 7! PM .qm � ıs expY/ for 0 � s:

Let

�Y;tqm WD PM .qm � ıt expY/ D m � PM . f .m/ � ıt expY/ :

• Consider the projection on H of the difference between the two points on
graph . f /: �Y;tqm � f .�Y;tqm/ and qm WD m � f .m/,

PH

�
q�1
m ��Y;tqm � f .�Y;tqm/

� D PH

�
q�1
m ��Y;tqm

� � f .�Y;tqm/

• Finally the intrinsic difference quotient of f from m in direction Y is

�Yf .mI t/ WD ı1=t
�
PH

�
q�1
m ��Y;tqm � f .�Y;tqm/

��
: (18)

The previous definition of �Y f .mI t/ can be given a different expression.

PH

�
q�1
m ��Y;tqm � f .�Y;tqm/

�

D PH

�
q�1
m � PM .qm � ıt exp Y/ � f .�Y;tqm/

�

D PH

�
q�1
m � PM .qm � ıt exp Y/ � PH .qm � ıt exp Y/ � .PH .qm � ıt exp Y//�1 � f .�Y;tqm/

�

D PH

�
q�1
m � qm � ıt exp Y � .PH .qm � ıt exp Y//�1 � f .�Y;tqm/

�

D .PH.qm � ıt exp Y/�1 � f .�Y;tqm/

D .PH. f .m/ � ıt exp Y/�1 � f .m � PM . f .m/ � ıt exp Y//

Finally we propose the following definitions

Definition 3.7 Let M;H be complementary subgroups in G and f W E � M ! H.
If m 2 E and Y belongs to the Lie algebra m of M, then the intrinsic difference
quotients of f at m along Y, are

�Yf .mI t/ D ı1=t

�
.PH. f .m/ � ıt expY//�1 � f �m � PM. f .m/ � ıt expY/

�	
; (19)

for all t > 0 such that m � PM. f .m/ � ıt expY/ 2 E .
Remark 3.8 Notice that formally the definition of difference quotient could be given
also for Y 2 h. This case is, as it should be, completely not interesting because the
difference quotients are 0. Indeed with Y 2 h it followsm �PM. f .m/ � ıt expY/ D m
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and using the definition in (18)

�Y f .mI t/ D ı1=t
�
PH

�
q�1
m ��Y;tqm � f ��Y;tqm

���

D ı1=t
�
PH

�
f .m/�1 � m�1 � m � PM . f .m/ � ıt expY/ � f .m � PM . f .m/ � ıt expY//

��

D ı1=t
�
PH

�
f .m/�1 � f .m/�� D 0:

Remark 3.9 Observe that Definition 3.7 gives the same notion of difference quotient
as proposed in (17). Indeed, if f .m/ D 0 then PH. f .m/ � ıt expY/ D 0 and m �
PM. f .m/ � ıt expY/ D m � ıt expY. Hence

f .m/ D 0 H) �Yf .mI t/ D ı1=t f .m � ıt expY/ (20)

and also, if q D m � f .m/ then fq�1 .0/ D 0 we get (17)

�Y f .mI t/ D �Y fq�1 .0I t/ D ı1=t
�
fq�1 .ıt expY/

�
:

Remark 3.10 With the same notations of Definition 3.7 and recalling Remark 2.9,
we get

(i) IfM is normal in G and Y 2 m then

PH. f .m/ � ıt expY/ D f .m/

and

m � PM. f .m/ıt .expY// D m � f .m/ � ıt expY � f .m/�1
D m � Adf .m/.ıt expY/:

Hence ifM is a normal subgroup and Y 2 m

�Y f .mI t/ D ı1=t
�
f .m/�1 � f �m � Adf .m/.ıt expY/

��
:

(ii) If H is normal in G then

PH . f .m/ � ıt expY/ D .ıt expY/�1 � f .m/ � ıt expY

and

PM. f .m/ � ıt expY/ D ıt expY:

Hence if H is a normal subgroup and Y 2 m

�Y f .mI t/ D ı1=t
�
.ıt expY/

�1 � f .m/�1 � ıt expY � f .m � ıt expY/
�
:
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(iii) If both M and H are normal in G and G is a direct product of M and H then
we get the well known expression for the difference quotient:

�Yf .mI t/ D ı1=t
�
f .m/�1 � f .m � ıt expY/

�
:

Next Proposition gives a straightforward characterization of intrinsic Lipschitz
functions in terms of the boundedness of their difference quotients.

Proposition 3.11 Let M;H be complementary subgroups in G and f W E � M !
H. The following statements are equivalent

(i) f is intrinsic L-Lipschitz in E;
(ii) there is L > 0 such that, for all Y 2 m and for all m 2 E

k�Yf .mI t/k � L kexpYk :

Proof If q D mf .m/ 2 graph . f / then by (17)

k�Y f .mI t/k D ���Y fq�1 .0I t/�� D 1

t

�� fq�1 .ıt expY/
�� ;

for all t > 0 and Y 2 m.

.i/ H) .ii/: By .iii/ of Proposition 3.5,

k�Y f .mI t/k D 1

t

�
� fq�1 .ıt expY/

�
� � L

t
kıt expYk D L kexpYk ;

for t > 0 and Y 2 m. Hence .ii/ holds.
.ii/ H) .i/. Let Nm 2 E and Nq WD Nmf . Nm/. For any m 2 ENq�1 let Y 2 m be such

that m D expY. Then

�
� fNq�1 .m/

�
� D �

� fNq�1 .expY/
�
� D k�Y f . NmI 1/k � L kexpYk D L kmk :

Hence .iii/ of Proposition 3.5 holds and f is intrinsic L-Lipschitz.
ut

We conclude this section observing that the limits for t ! 0C of intrinsic
different quotients, when these limits exist and are finite, give origin to a notion
of intrinsic derivative for functions acting between complementary subgroups. We
will show, in Examples 3.16 and 3.17, that these intrinsic derivatives are precisely
the operators considered by Serra Cassano and coauthors to characterize intrinsic
Lipschitz and intrinsic regular functions inside Heisenberg groups.

Definition 3.12 Let M;H be complementary subgroups in G, let m be the Lie
algebra of M and f W E � M ! H. If m 2 E � M, the intrinsic directional
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derivative of f at m along Y 2 m, is

DYf .m/ WD lim
t!0C

�Y f .mI t/ D lim
t!0C

��Y f .mI t/ (21)

provided the two limits on the right exist and are equal.

Remark 3.13 This remark follows directly from (20). Indeed

f .m/ D 0 H) �Yf .mI t/ D ı1=t f .m � ıt expY/

hence, if the limits in (21) exist,

f .m/ D 0 H) DYf .m/ D Yf .m/:

3.3 Examples of Difference Quotients and of Intrinsic
Derivatives

Example 3.14 (Horizontal Valued Functions Inside Step 2 Groups) Let G D
.Rm; �/ be a step 2 group and denote g D g1 ˚ g2. Let fZ1; : : : ;Zmg be a base of
g with

g1 D spanfZ1; : : : ;Zm1g; g2 D spanfZm1C1; : : : ;Zmg

With the notation in (6) we denote

qi;h WD Q2.expZi; expZh/ 2 R
m�m1 ; for 1 � i; h � m:

Notice that qi;h D �qh;i and qi;h D 0 if i > m1.
We assume (see Example 2.4) that G D M � H where H is a k-dimensional

horizontal subgroup and M is a complementary normal subgroup. Moreover we
choose the vectors Zi are chosen such that

H D exp .spanfZ1; : : : ;Zkg/ ; M D exp .spanfZkC1; : : : ;Zmg/ :

Notice that we are assuming that Z1; : : : ;Zk are commuting vector fields.
Let f W M ! H be defined as

f . p/ WD exp

 
kX

1

'i. p/Zi

!

D
kX

1

'i. p/ expZi for all p 2 M:

for all p D . p1; p2/ 2 M, where 'i W M ! R for 1 � i � k.
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Fix an horizontal Zj 2 g1, that is with k C 1 � j � m1. Using (i) of Remark 3.10,
we compute

�Zj f . pI t/ D ı1=t
�
f . p/�1 � f � p � f . p/ � ıt expZj � f . p/�1��

D
kX

iD1

1

t

�
'i
�
p � f . p/ � ıt expZj � f . p/�1�� 'i. p/

�
expZi

Notice that

p � f . p/ � ıt expZj � f . p/�1

D �
p1 C t expZj; p2 C 2Q2. f . p/; t expZj/C Q2. p1; t expZj/

�

D �
p1 C t expZj; p2 C 2t

kX

`D1
'`. p/Q2.expZ`; expZj/

C tQ2.exp.
m1X

`DkC1
p`Z`/; expZj/

�

D �
p1 C t expZj; p2 C 2t

kX

`D1
'`. p/q`;j C t

m1X

`DkC1
p`q`;j

�
:

Hence,

�Zj f . pI t/

D
kX

iD1

1

t

 

'i
�
p1 C t expZj; p2 C 2t

kX

`D1
'`. p/q`;j

Ct
m1X

`DkC1
p`q`;j

� � 'i. p1; p2/
!

expZi:

Let us specialize the previous example in the case G D Hn.

Example 3.15 (Horizontal Valued Functions Inside Heisenberg Groups) We recall
here the well known definition of Heisenberg groups mainly to fix a few notations.

The n-Heisenberg group Hn is identified with R2nC1 through exponential coor-
dinates. A point p 2 Hn is denoted p D . p1; : : : ; p2n; p2nC1/ D . p1; p2/, with
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p1 2 R2n and p2 D p2nC1 2 R. If p and q 2 Hn, the group operation is defined as

p � q D . p1 C q1; p2nC1 C q2nC1 C Q2. p1; q1//

D . p1 C q1; p2nC1 C q2nC1 � 1

2
hJp1; q1i

R2n/

where J D


0 In

�In 0

�
is the .2n � 2n/-symplectic matrix.

For any q 2 Hn and for any r > 0 left translations �q W Hn ! Hn and non
isotropic dilations ır W Hn ! Hn are defined as

�q. p/ WD q � p and as ırp WD .rp1; r2p2nC1/:

We denote as hn the Lie algebra of Hn. The standard basis of hn is given, for i D
1; : : : ; n, by

Xi WD @i � 1

2
.Jp0/i@2nC1; Yi WD @iCn C 1

2
.Jp0/iCn@2nC1; T WD @2nC1:

The horizontal subspace h1 is the subspace of hn spanned by X1; : : : ;Xn and by
Y1; : : : ;Yn. Denoting by h2 the linear span of T, the 2-step stratification of hn is
expressed by

hn D h1 ˚ h2: (22)

The Lie algebra hn is also endowed with a scalar product h�; �i making the vector
fields X1; : : : ;Xn and Y1; : : : ;Yn and T orthonormal. Thus (22) turns out to be an
orthonormal decomposition of hn as a vector space.

If p 2 Hn, we indicate as kpk its Koranyi norm, i.e.

kpk D 4

q
kp1k4

R2n C jp2nC1j2

There are infinite many different couples of complementary subgroups inside Hn.
All these couples contain a horizontal subgroup, here denoted as V of dimension
k � n, isomorphic and isometric to Rk and a normal subgroup W of dimension
2n C 1 � k, containing the centre T.

Let Hn D W � V where V is a k-dimensional horizontal subgroup and W a
complementary normal subgroup. We assume, for the time being, that V and W

are in generic position inside Hn, in particular we do not assume that they are
orthogonal.
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It is always possible to choose a basis Z WD fZ1; : : : ;Z2n;T D Z2nC1g of the
algebra hn such that

V D exp.spanfZ1; : : : ;Zkg/; W D exp.spanfZkC1; : : : ;Z2n;Tg/;

where Z1; : : : ;Zk are commuting horizontal vector fields.
We use coordinates with respect to the Z basis, i.e.

H
n 3 p D exp

� 2nC1X

iD1
piZi

� ' . p1; : : : ; p2nC1/ 2 R
2nC1:

With the notation in (6) we denote

q`;h WD Q2.expZ`; expZh/ 2 R; for 1 � `; h � 2n C 1:

As in Example 3.14, let

f W W ! V; f . p/ WD exp

 
kX

1

'i. p/Zi

!

D
kX

1

exp.'i. p/Zi/:

Nothing changes in the computations from the general case of a step 2 group and
we get the following expression for the difference quotients for each horizontal Zj
with j D k C 1; : : : ; 2n,

�Zj f . pI t/

D
kX

iD1

1

t

 

'i
�
p1 C t expZj; p

2 C t.2
kX

`D1
'`. p/q`;j

C
2nX

`DkC1
p`q`;j

� � 'i. p
1; p2/

!

expZi:

(23)

Moreover

�Z2nC1
f . pI t/ D ı1=t

�
f . p/�1 � f � p � f . p/ � ıt expZ2nC1 � f . p/�1��

D ı1=t
�
f . p/�1 � f � p � .0; : : : ; 0; t2��

D
kX

iD1

1

t

�
'i
�
p1; : : : ; p2n; p2nC1Ct2

� � 'i. p1; : : : ; p2n; p2nC1/
�
expZi:

(24)

Passing to the limit in (23) for t ! 0C, we obtain the following system of
k.2n � k � 1/ non linear (intrinsic) differential operators acting on the k real valued
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functions '1; : : : ; 'k:

DZj'i WD @j'i C �
2

kX

`D1
'`. p/q`;j C

2nX

`DkC1
p`q`;j

�
@2nC1'i (25)

here @j'i D @'i
@pj

for i D 1; : : : ; k and j D k C 1; : : : ; 2n C 1:

Boundedness in (24) gives only a Holder type condition on the last variable of
the functions 'i.

Example 3.16 We further specialize the setting in Example 3.15 assuming that W
and V are orthogonal in Hn. Precisely, we assume that

fZ1; : : : ;Z2n;Z2nC1g D fX1; : : : ;Xn;Y1; : : : ;Yn;Tg

and that, for 1 � k � n,

V D exp.spanfX1; : : : ;Xkg/; W D exp.spanfZkC1; : : : ;Z2n;Tg/:

The coefficients q`;i take the special form

q`;i WD Q2.expZ`; expZi/ D
8
<

:

qh;hCn D 1
2

for 1 � h � n
qhCn;h D � 1

2
for 1 � h � n

q`;i D 0 otherwise.

Hence (25) takes the form

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

DZj'i WD @j'iC
2nX

`DkC1
p`q`;j@t'i D @j'i � 1

2
pjCn@t'i � Xj'i; kC1 � j � n

DZj'i WD @j'iC2
kX

`D1
'`. p/q`;j@t'i D @j'iC'j�n@t'i; nC1 � j � nCk

DZj'i WD @j'iC
2nX

`DkC1
p`q`;j@t'i D @j'iC1

2
pj�n@t'i � Yj�n'i; nCkC1 � j � 2n

(26)

It may be interesting to consider also these special instances of (26).

Example 3.17 With the notations of Example 3.16 let us consider the complemen-
tary subsets of Hn � .R2nC1; �/

V D exp.spanfX1g/; W D exp.spanfX2; : : : ;Xn;Y1; : : : ;Yn;Tg/



184 R.P. Serapioni

and a function f W W ! V. Then f .w/ WD '.w/ expX1 can be identified with the
real valued function ' and we speak, with an abuse of language, of a real valued
intrinsic function. Here w WD .0; p2; : : : ; p2n; p2nC1/ 2 W.

Then (26) takes the form

8
ˆ̂
ˆ̂̂
ˆ̂
<

ˆ̂̂
ˆ̂
ˆ̂
:

DZj' � DXj' WD @j' � 1

2
pjCn@2nC1' � Xj'; 2 � j � n

DZnC1
' � DY1' WD @nC1' C '@2nC1';

DZj' � DYj�n' WD @j' C 1

2
pj�n@2nC1' � Yj�n'; n C 2 � j � 2n

(27)

In H1 the system (27) reduces to the single non linear Burger type equation

DY' WD @2' C '@3' D @2' C 1

2
@3'

2: (28)

Equation (28) appeared in this context in [18], when studying the regularity
of non critical level sets of group-C1 functions Hn ! R. There are many works
dealingwith weak solutions of equations (28) and their relation with intrinsic regular
surfaces inside the first Heisenberg groupH1, (see [6–8, 29]).

System (27) is studied in [9] (see also [3]) where the authors characterize intrinsic
real valued Lipschitz functions f W W ! V as bounded solutions of (27). We
notice that our Theorem 3.19 is related with the above mentioned characterization,
notwithstanding that the result in [9] is much deeper than the one in here, given
that the assumption in [9] is of boundedness of the limits of the intrinsic different
quotients and not, as we make in Theorem 3.19, on the difference quotients
themselves.

Much less studied are the vector valued analogues of (27) and (28). Consider the
complementary subsets of H2 � .R5; �/

V D exp.spanfX1;X2g/; W D exp.spanfY1;Y2;Tg/

and f W W ! V. Then f .w/ WD '1.w/ expX1 C '2.w/ expX2, where w WD
.0; 0; p3; p4; p5/ 2 W.

In this case the equations in the first and last groups of system (26) disappear and
we are left only with the non linear part of the system

8
<

:

DZ3'1 WD @3'1 C '1@5'1; DZ3'2 WD @3'2 C '1@5'2;

DZ4'1 WD @4'1 C '2@5'1; DZ4'2 WD @4'2 C '2@5'2;

that is the vector valued analogous of (28).
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If we consider in H3 � .R7; �/ the complementary subgroups

V D exp.spanfX1;X2g/; W D exp.spanfX3;Y1;Y2;Y3;Tg/;

a function f .w/ WD '1.w/ expX1 C '2.w/ expX2 W W ! V, here w WD
.0; 0; p3; : : : ; p6; p7/ 2 W, then (26) becomes a system of 8 equations acting on
the two real valued functions '1; '2

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
:

DZ3'1 WD X3'1; DZ3'2 WD X3'2

DZ4'1 WD @4'1 C '1.w/@7'1; DZ4'2 WD @4'2 C '1.w/@7'2

DZ5'1 WD @5'1 C '2.w/@7'1; DZ5'2 WD @5'2 C '2.w/@7'2

DZ6'1 WD Y3'1; DZ6'2 WD Y3'2:

Finally we compute the difference quotients and an intrinsic derivative inside a
step 3 group.

Example 3.18 (One Dimensional Function Inside Engels Group) The Engels
group is E D .R4; �; ı�/, were the group law is defined as

0

B
B
@

x1
x2
x3
x4

1

C
C
A �

0

B
B
@

y1
y2
y3
y4

1

C
C
A D

0

B
B
B
B
B
@

x1 C y1
x2 C y2

x3 C y3 C .x1y2 � x2y1/=2
x4 C y4 C Œ.x1y3 � x3y1/C .x2y3 � x3y2/�=2

C.x1 � y1 C x2 � y2/.x1y2 � x2y1/=12

1

C
C
C
C
C
A

and the family of dilation is

ı�.x1; x2; x3; x4/ D .�x1; �x2; �
2x3; �

3x4/:

A basis of left invariant vector fields is X1;X2;X3;X4 defined as

X1. p/ WD @1 � .p2=2/ @3 C ��p3=2� . p1p2 C p22/=12
�
@4

X2. p/ WD @2 C .p1=2/ @3 C ��p3=2C . p21 C p1p2/=12
�
@4

X3. p/ WD @3 � .. p1 C p2/=2/ @4

X4. p/ WD @4:

The commutation relations are ŒX1;X2� D X3; ŒX1;X3� D ŒX2;X3� D X4 and all
the others commutators are zero. E is a semidirect product, as E D M � H, of the
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two subgroupsM and H

M WD fm D .0; p2; p3; p4/g H WD fh D . p1; 0; 0; 0/g D fexp.spanX1/g:

Let f W M ! H where f .m/ WD exp.'.m/X1/. Observe thatM is a normal subgroup
being H an horizontal subgroup. Then it follows

�X2 f .mI t/ D ı1=t
�
f .m/�1 � f .m � Ad'.m/.exp tX2//

�

D ı1=t
�
f .m/�1 � f .0; p2Ct; p3Ct'.m/; p4C t

2
.'.m/2Cp2'.m/� p3//

�

D exp
�1
t

�
'.0; p2Ct; p3Ct'.m/; p4C t

2
.'.m/2Cp2'.m/ � p3//� '.m/

��
X1:

Hence, computing limt!0C
�X2 f .mI t/ we obtain the only horizontal intrinsic

derivative of the real valued function '

DX2'.m/ WD @2' C '.m/@3' C 1

2
.'.m/2 C p2'.m/� p3/@4'

D @2' C 1

2
@3'

2 C 1

12
@4.2'

3 C 3p2'
2 � 6p3'/:

3.4 Horizontal Difference Quotients and Lipschitz Functions

In a few noticeable instances the boundedness of difference quotients along the
vectors of the horizontal layer of m is sufficient to imply intrinsic Lipschitz
continuity.

As observed before, this phenomenon is different from the one about functions
defined on Carnot groups, although it is strictly related to it. It is well known that
if f W G ! R is such that Yf is bounded for all Y in the horizontal layer of g, then
f is a Lipschitz function, the reason being that the horizontal layer of g generates,
by commutation, all the algebra. This is not the case for functions acting fromM to
H. Indeed M, though a stratified group, is not necessarily a Carnot group because
not necessarily the horizontal layer of the algebra generates the entire algebra of
M (see e.g. Example 3.17), on the other side there is a redeeming feature: intrinsic
difference quotients and intrinsic derivatives are non linear operators. Finally one
does not have to forget that the final result is that the functions are intrinsic Lipschitz
and not Lipschitz.

We present here only two instances of this phenomenon, both of them inside
Heisenberg groups. The first one deals with 1-codimensional graphs of functions
acting between any two complementary subgroups the second one deals with
k-codimensional horizontal graphs of functions acting between orthogonal com-
plementary subgroups.
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Theorem 3.19 Let W and V be complementary subgroups in Hn with V one
dimensional and horizontal. Let L > 0 and f W W ! V be such that

k�Zf .wI t/k � L kexpZk

for all w 2 W and for all horizontal vector fields Z 2 w1. Then there is QL D
QL.L;V;W/ � L such that f is QL-intrinsic Lipschitz in W.

Proof By translation invariance, it is enough to prove

k f .w/k � QL kwk (29)

for all w 2 W under the additional assumption

f .0/ D 0:

If f .w/ D 0 there is nothing to prove. Hence let us assume that v WD f .w/ ¤ 0.
Under this assumption we prove that there are s; t 2 R, there are horizontal vectors
Z;U in the first layer w1 of the algebra w of W and a constant C D C.V;W/ > 0

such that kexpZk D kexpUk D 1,

w � Adf .w/.ıs expZ/ D ıt expU (30)

and

jtj � kwk C jsjI jsj � C kwk2=k f .w/k: (31)

With the notations of (6), w D .w1;w2/ D .w1;w2nC1/, f .w/ D .f .w/1; 0/, expZ D�
.expZ/1; 0

�
and expU D �

.expU/1; 0
�
. Then

w � Adf .w/.ıs expZ/ D �
w1 C .ıs expZ/1;w2nC1 C 2Q2. f .w/1; .ıs expZ/1/

CQ2.w1; .ıs expZ/1/
�

D �
w1 C s.expZ/1;w2nC1 C 2Q2. f .w/1; s.expZ/1/

CQ2.w1; s.expZ/1/
�

Hence (30) is equivalent to solve in Z;U and t; s the system of 2n C 1 equations,

�
w1 C s.expZ/1 D t.expU/1

w2nC1 C 2Q2.f .w/1; s.expZ/1/C Q2.w1; s.expZ/1/ D 0:
(32)
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Let ˛; ˇ 2 R2n, with k˛k
R2n D kˇk

R2n D 1, be such that

w 2 W ”
2nX

iD1
˛iwi D 0; v 2 V ” v D ıkvk exp

nX

iD1
.ˇiXi C ˇnCiYi/:

BecauseW and V are complementary subgroups then

C D C.W;V/ WD j
2nX

iD1
˛iˇij > 0:

Let

Z WD
nX

iD1
˛nCiXi � ˛iYi 2 w1;

then kexpZk D 1 and for all v 2 V and w 2 W

ˇ̌Q2.v1; .expZ/1/
ˇ̌ D 1

2
kvk j

2nX

iD1
˛iˇij � C kvk ;

Q2.w1; .expZ/1/ D �1
2

nX

iD1
.wi˛i C wnCi˛nCi/ D 0:

(33)

With this choice of Z from the last equation of (32), using that Q2.�; �/ is bilinear,
we get

jsj � Cjw2nC1j=k f .w/k � Ckwk2=k f .w/k;

where C is a (different) constant depending only on V and W. The other estimate
in (31) follows from the first equations in (32).

Finally let us see that (29) follows from (30) and (31). Indeed, consider the
intrinsic difference quotients starting from 0 along U and from w � f .w/ along Z

rUf .0I t/ D f .ıt expU/;

rZf .wI s/ D f .w/�1 � f .w � Adf .w/.ıs expZ// D f .w/�1 � f .ıt expU/

From the assumption of boundedness of the difference quotients of f

k f .ıt expU/k � Ljtj
�
� f .w/�1 � f .w � Adf .w/.ıs expZ//

�
� � Ljsj
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The boundedness of these difference quotients yields an estimate k f .w/k. Indeed

k f .w/k � �
� f .w/�1f .ıt expU/

�
�C k f .ıt expU/k

D �
� f .w/�1f .w � Adf .w/.ıs expZ//

�
�C k f .ıt expU/k

� L.jsj C jtj/
� L

� kwk C 2Ckwk2=k f .w/k�
(34)

that eventually gives

k f .w/k � QL kwk

with QL D 1
2
.L C p

L2 C 8LC/. ut
Remark 3.20 Observe that in Theorem 3.19 it has been proved that if
k�Zf .wI t/k D 0 for all w 2 W and for all horizontal vector field Z 2 w1 then
f W W ! V is intrinsic Lipschitz with 0 Lipschitz constant hence it is a constant
function. This fact is not anymore true if f is defined on a proper subset of W. The
following one is an example: let W and V be the complementary subgroups of H1

defined as

W WD f.0; x2; x3/g; V WD f.x1; 0; 0/g:

Let A be the neighborhood of the origin in W defined as A WD f.0; x2; x3/ W x2 >
�1g and let f W A � W ! V be defined as

f .0; x2; x3/ WD


x3
1C x2

; 0; 0

�
:

The horizontal layer ofw1 is one dimensional and is spanned by the vector Y WD @x2 .
Then from Definition 3.7 (see also (i) of Remark 3.10)

�Yf .wI t/ D 0; for all w 2 A and t � 0

while clearly f is not constant.

Theorem 3.21 Let W and V be the complementary orthogonal subgroups of Hn

considered in Example 3.16. Precisely, for 1 � k � n let

V D exp.spanfX1; : : : ;Xkg/; W D exp.spanfZkC1; : : : ;Z2n;Tg/:

Hence V is k-dimensional and horizontal. Let L > 0 and f W W ! V be such that

k�Zf .wI t/k � L kexpZk
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for all w 2 W and for all horizontal vector fields Z 2 w1. Then there is QL D
QL.L;V;W/ � L such that f is QL-intrinsic Lipschitz in W.

Proof We keep using the notations introduced in Examples 3.15 and 3.16.
Analogously as in the proof of Theorem 3.19, by translation invariance, it is

enough to prove

k f .w/k � QL kwk (35)

for all w 2 W under the additional assumption

f .0/ D 0:

Let be given w D .w1;w2/ 2 W and v D .v1; 0/ 2 V with v1 ¤ 0. Then there is
z D .z1; 0/ 2 W1 as

w � Advz 2 W
1: (36)

Indeed, let z D .z1; : : : ; z2nC1/ be defined such that

zi D 0; for 1 � i � n and for n C k C 1 � i � 2n C 1

znCi D � sign.vi/; for n C 1 � i � n C k:

With this choice of z we have

Q2.w1; z1/ D 1

2

nX

iD1
.wiznC1 � wnCizi/ D 0;

Q2.v1; z1/ D 1

2
�

kX

iD1
jvij:

Finally choosing � D �w2nC1=
Pk

iD1 jvij we get

w � Advz D �
w1 C z1;w2nC1 C 2Q2.v1; z1/C Q2.w1; z1/

� D .w1 C z1; 0/ 2 W
1:

Let us go back to the proof of (35). If f .w/ D 0 there is nothing to prove. Hence
let us assume that f .w/ ¤ 0 and define v WD f .w/. Now let Z;U 2 w1 be chosen
such that kexpZk D kexpUk D 1 and

ıs expZ D z; ıt expU D w � Adf .w/z
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for appropriate s; t 2 R. With this choice of s we have

jsj � C kwk2 = k f .w/k :

From now on the proof follows the same pattern of the proof of Theorem 3.19. ut
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