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Abstract The purpose of this paper is threefold: first, we survey on several
known pointwise identities involving fractional operators; second, we propose a
unified way to deal with those identities; third, we prove some new pointwise
identities in different frameworks in particular geometric and infinite-dimensional
ones.

1 Introduction

The present paper is devoted to several pointwise inequalities involving several
nonlocal operators. We focus on two types of pointwise inequalities: the Córdoba-
Córdoba inequality and the Kato inequality. In order to keep the presentation
simple, we state the inequalities in question in the case of the fractional lapla-
cian, i.e. .��/s, in R

n. Actually, in subsequent sections, we will generalize
these inequalities to a lot of different contexts. Furthermore, we will present a
unified proof for both inequalities based on some extension properties of some
nonlocal operators. Our proofs are elementary and simplify the original argu-
ments.
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The fractional Laplacian can be defined in various ways, which we review now.
It can be defined using Fourier transform by

F..��/sv/ D j�j2s F.v/;

for v 2 Hs.Rn/. It can also be defined through the kernel representation (see the
book by Landkof [12])

.��/sv.x/ D Cn;s P.V.
ˆ
Rn

v.x/ � v.x/
jx � xjnC2s dx; (1)

for instance for v 2 S.Rn/, the Schwartz space of rapidly decaying functions. Here
we will only consider s 2 .0; 1/:

The inequalities considered in the present paper are the following

Theorem 1.1 (Córdoba-Córdoba Inequality) Let ' be a C2.Rn/ convex function.
Assume that u and '.u/ are such that .��/su and .��/s'.u/ exist. Then the
following holds

.��/s'.u/ � ' 0.u/.��/s u: (2)

The next theorem is the Kato inequality.

Theorem 1.2 (Kato Inequality) The following inequality holds in the distribu-
tional sense

.��/sjuj � sgn.u/.��/s u: (3)

The previous two theorems are already known: Theorem 1.1 is due to Córdoba
and Córdoba (see [8, 9]). Theorem 1.2 is due to Chen and Véron (see [6]). Both
original proofs are based on the representation formula given in (1). This formula
holds only when the fractional laplacian is defined on R

n. The Córdoba-Córdoba
inequality is a very useful result in the study of the quasi-geostrophic equation (see
[9]). This inequality has been generalized in several contexts in [10] for instance or
[7]. In this line of research we propose a unified way of proving these inequalities
based on some extension properties for nonlocal operators.

2 Some New Inequalities

In this section, we derive by a very simple argument several inequalities at the
nonlocal level, i.e. without using any extensions, which are not available in these
frameworks.
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2.1 A Pointwise Inequality for Nonlocal Operators
in Non-divergence Form

Nonlocal operators in non-divergence form are defined by

Iu.x/ D �
ˆ
Rn
.u.x C y/C u.x � y/ � 2u.x//K.y/ dy

for a kernel K � 0. Denote

ıyu.x/ D �
�
u.x C y/C u.x � y/ � 2u.x/

�
:

Then, considering a C2 convex function ', one has by the fact that a convex function
is above its tangent line

ıy'.u/.x/ D �
�
'.u.x C y//C '.u.x � y// � 2'.u.x//

�
D

�
�
'.u.x C y//� '.u.x//C '.u.x � y//� '.u.x//

�

� ' 0.u.x//ıyu.x/:

Hence for the operator I one has also an analogue of the original Córdoba-Córdoba
estimate.

2.2 The Case of Translation Invariant Kernels

Consider the operator

Lu.x/ D
ˆ
Rn
.u.x/� u.y//K.x � y/ dy

where K is symmetric. Hence one can write

Lu.x/ D
ˆ
Rn
.u.x/� u.x � h//K.h/ dh

or in other words, by a standard change of variables

Lu.x/ D 1

2

ˆ
Rn
ıhu.x/K.h/ dh
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We start with the following lemma, which is a direct consequence of the symmetry
of the kernel

Lemma 2.1
ˆ
Rn

Lu.x/ D 0:

The following lemma is consequence of straightforward computations

Lemma 2.2

ıhuv.x/ D uıhv C vıhuC
.v.x C h/� v.x//.u.x C h/� u.x//C .v.x � h/� v.x//.u.x � h/� u.x//:

Hence by the two previous lemma one has the useful identity

0 D
ˆ
Rn

Lu2 D 2

ˆ
Rn

uLu C 2

ˆ
Rn

ˆ
Rn
.u.x/� u.y//2K.x � y/ dxdy:

2.3 Some Integral Operators on Geometric Spaces

In this section, we describe new operators involving curvature terms. These
operators appear naturally in harmonic analysis, as described below. They are of
the form

Lu.x/ D
ˆ
.u.x/� u.y//K.x; y/ dy

where the non-negative kernel K is symmetric and has some geometric meaning.
The integral sign runs either over a Lie group or over a Riemannian manifold. By
exactly the same argument as in the previous section, one deduces trivially Córdoba-
Córdoba estimates for these operators. We now describe these new operators.

2.3.1 The Case of Lie Groups

Let G be a unimodular connected Lie group endowed with the Haar measure dx.
By “unimodular”, we mean that the Haar measure is left and right-invariant. If we
denote by G the Lie algebra of G, we consider a family

X D fX1; : : : ;Xkg
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of left-invariant vector fields on G satisfying the Hörmander condition, i.e. G is
the Lie algebra generated by the X0

i s. A standard metric on G , called the Carnot-
Caratheodory metric, is naturally associated with X and is defined as follows: let
` W Œ0; 1� ! G be an absolutely continuous path. We say that ` is admissible if
there exist measurable functions a1; : : : ; ak W Œ0; 1� ! C such that, for almost every
t 2 Œ0; 1�, one has

`0.t/ D
kX

iD1
ai.t/Xi.`.t//:

If ` is admissible, its length is defined by

j`j D
ˆ 1

0

 
kX

iD1
jai.t/j2 dt

! 1
2

:

For all x; y 2 G, define d.x; y/ as the infimum of the lengths of all admissible
paths joining x to y (such a curve exists by the Hörmander condition). This distance
is left-invariant. For short, we denote by jxj the distance between e, the neutral
element of the group and x, so that the distance from x to y is equal to jy�1xj.

For all r > 0, denote by B.x; r/ the open ball in G with respect to the Carnot-
Caratheodory distance and by V.r/ the Haar measure of any ball. There exists d 2
N

� (called the local dimension of .G;X/) and 0 < c < C such that, for all r 2 .0; 1/,

crd � V.r/ � Crd;

see [14]. When r > 1, two situations may occur (see [11]):

• Either there exist c;C;D > 0 such that, for all r > 1,

crD � V.r/ � CrD

where D is called the dimension at infinity of the group (note that, contrary to d,
D does not depend on X). The group is said to have polynomial volume growth.

• Or there exist c1; c2;C1;C2 > 0 such that, for all r > 1,

c1e
c2r � V.r/ � C1e

C2r

and the group is said to have exponential volume growth.

When G has polynomial volume growth, it is plain to see that there exists C > 0

such that, for all r > 0,

V.2r/ � CV.r/; (4)
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which implies that there exist C > 0 and � > 0 such that, for all r > 0 and all
� > 1,

V.�r/ � C��V.r/: (5)

On a Lie group as previously described, one introduces the Kohn sub-laplacian

�G D
kX

iD1
X2i :

On any Lie group G, it is natural by functional calculus to define the fractional
powers .��G/

s, s 2 .0; 1/ of the Kohn sub-laplacian ��G. It has been proved in
[13, 15] (see also [16]) that for Lie groups with polynomial volume

k.��G/
s=2uk2L2.G/ � C

ˆ
G�G

ju.x/� u.y/j2
V.jy�1xj/jy�1xj2s dx dy:

It is therefore natural to consider the operator which is the Euler-Lagrange
operator of the Dirichlet form in the R.H.S. of the previous equation given by

Lu.x/ D
ˆ
G

u.x/� u.y/

V.jy�1xj/jy�1xj2s dy:

It defines a new Gagliardo-type norm, suitably designed for Lie groups (of any
volume growth). By the structure itself of this norm, one can prove as before a
Córdoba-Córdoba inequality.

2.3.2 The Case of Manifolds

Let M be a complete Riemannian manifold of dimension n. Denote d.x; y/ the
geodesic distance from x to y. Similarly to the previous case it is natural to introduce
the new operators, Euler-Lagrange of suitable Gagliardo norms, given by

Lu.x/ D
ˆ
M

u.x/� u.y/

d.x; y/nC2s dy

These new operators also satisfy Córdoba-Córdoba estimates (see [15] for an
account in harmonic analysis where these quantities pop up).
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3 A Review of the Extension Property

3.1 The Extension Property in R
n

We first introduce the spaces

Hs.Rn/ D ˚
v 2 L2.Rn/ W j�js.Fv/.�/ 2 L2.Rn/

�
;

where s 2 .0; 1/ and F denotes Fourier transform. For � � R
nC1
C a Lipschitz

domain (bounded or unbounded) and a 2 .�1; 1/, we denote

H1.�; ya/ D ˚
u 2 L2.�; ya dx dy/ W jruj 2 L2.�; ya dx dy/

�
:

Let a D 1 � 2s. It is well known that the space Hs.Rn/ coincides with the trace
on @RnC1

C of H1.RnC1
C ; ya/. In particular, every v 2 Hs.Rn/ is the trace of a function

u 2 L2loc.R
nC1
C ; ya/ such that ru 2 L2.RnC1

C ; ya/. In addition, the function u which
minimizes

min

(ˆ
R
nC1
C

ya jruj2 dxdy W uj
@R

nC1
C

D v

)
(6)

solves the Dirichlet problem

(
Lau WD div .yaru/ D 0 in RnC1

C
u D v on @RnC1

C :
(7)

By standard elliptic regularity, u is smooth in R
nC1
C . It turns out that �yauy.�; y/

converges in H�s.Rn/ to a distribution h 2 H�s.Rn/ as y # 0. That is, u weakly
solves

(
div .yaru/ D 0 in RnC1

C
�ya@yu D h on @RnC1

C :
(8)

Consider the Dirichlet to Neumann operator

�a W Hs.Rn/ ! H�s.Rn/

v 7! �a.v/ D h WD � lim
y!0C

ya@yu D @u

@	a
;
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where u is the solution of (7). Then, we have:

Theorem 3.1 ([4]) For every v 2 Hs.Rn/,

.��/sv D ds�a.v/ D �ds lim
y!0C

ya@yu;

where a D 1 � 2s, ds is a positive constant depending only on s, and the equality
holds in the distributional sense.

3.2 The Extension Property in Bounded Domains

We consider now the case of bounded domains. In this case, two different operators
can be defined.

• The spectral Laplacian: If one considers the classical Dirichlet Laplacian�� on
the domain � , then the spectral definition of the fractional power of �� relies
on the following formulas:

.���/
sg.x/ D

1X
jD1


sj Ogj �j.x/ D 1

�.�s/

ˆ 1

0

�
et��g.x/� g.x/

� dt

t1Cs
: (9)

Here 
j > 0, j D 1; 2; : : : are the eigenvalues of the Dirichlet Laplacian on�with
zero boundary conditions , written in increasing order and repeated according
to their multiplicity and �j are the corresponding normalized eigenfunctions,
namely

Ogj D
ˆ
�

g.x/�j.x/ dx ; with k�jkL2.�/ D 1 :

The first part of the formula is therefore an interpolation definition. The second
part gives an equivalent definition in terms of the semigroup associated to the
Laplacian. We will denote the operator defined in such a way asA1;s D .���/

s ,
and call it the spectral fractional Laplacian.

• The restricted fractional laplacian: On the other hand, one can define a fractional
Laplacian operator by using the integral representation in terms of hypersingular
kernels already mentioned

.��Rd/sg.x/ D Cd;s P.V.
ˆ
Rn

g.x/� g.z/

jx � zjnC2s dz; (10)

In this case we materialize the zero Dirichlet condition by restricting the operator
to act only on functions that are zero outside�. We will call the operator defined
in such a way the restricted fractional Laplacian and use the specific notation
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A2;s D .��j�/s when needed. As defined, A2;s is a self-adjoint operator on
L2.�/ , with a discrete spectrum: we will denote by 
s;j > 0, j D 1; 2; : : :

its eigenvalues written in increasing order and repeated according to their
multiplicity and we will denote by f�s;jgj the corresponding set of eigenfunctions,
normalized in L2.�/.

• Common notation. In the sequel we use A to refer to any of the two types of
operatorsA1;s or A2;s, 0 < s < 1. Each one is defined on a Hilbert space

H.�/ D fu D
1X
kD1

uk�s;k 2 L2.�/ W kuk2H D
1X
kD1


s;kjukj2 < C1g � L2.�/

(11)

with values in its dual H�. The notation in the formula copies the one just used
for the second operator. When applied to the first one we put here �s;k D �k, and

s;k D 
sk. Note that H.�/ depends in principle on the type of operator and on
the exponent s. Moreover, the operatorA is an isomorphism between H and H�,
given by its action on the eigen-functions. It has been proved in [1] (see also [5])
that

H.�/ D

8
ˆ̂<
ˆ̂:

Hs.�/ if s 2 .0; 1=2/;
H1=2
00 .�/ if s D 1=2;

Hs
0.�/ if s 2 .1=2; 1/;

We now introduce the Caffarelli-Silvestre extension for these operators. In the
case of the restricted fractional laplacian, the extension is precisely the one described
in Sect. 3.1. We now concentrate on the case of the spectral fractional laplacian. Let
us define

C D � � .0;C1/;

@LC D @� � Œ0;C1/:

We write points in the cylinder using the notation .x; y/ 2 C D �� .0;C1/. Given
s 2 .0; 1/, it has been proved in [5] (see also [3]) that the following holds.
Lemma 3.1 Consider a weak solution of

�
div.y1�2srw/ D 0 in C D � � .0;C1/;

w D 0 ; on @� � .0;C1/
(12)

Then � limy!0 y1�2s@yw D Aw.�; 0/: where A is the spectral fractional laplacian.
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3.3 The Extension Property in General Frameworks

To generalize the inequalities under consideration, one has to invoke a rather general
version of the Caffarelli-Silvestre extension proved by Stinga and Torrea [17]. Their
approach, based on semi-group theory, allows to prove the previous results in quite
general ambient spaces, like Riemannian manifolds or Lie groups.

In the following theorem, we will consider three cases later for the objectM:

(1) The case of complete Riemannian manifolds and the Laplace-Beltrami operator
(2) The case of Lie groups and the Kohn laplacian
(3) The case of the Wiener space and the Ornstein-Uhlenbeck operator

Let L be a positive and self-adjoint operator in L2.M/. One can define its
fractional powers by means of the standard formula in spectral theory

Ls D 1

�.�s/

ˆ 1

0

�
etL � Id

� dt

t1Cs
;

where s 2 .0; 1/ and etL denotes the heat semi-group onM. Then one has

Theorem 3.2 Let u 2 dom.Ls/. A solution of the extension problem

8
ˆ̂<
ˆ̂:

Lv C 1 � 2s
y

@yv C @2yv D 0 on M � R
C

v.x; 0/ D u on M;

is given by

v.x; y/ D 1

�.s/

ˆ 1

0

etL.Lsu/.x/e�y2=4t dt

t1�s

and furthermore, one has at least in the distributional sense

� lim
y!0C

y1�2s@yv.x; y/ D 2s�.�s/

4s�.s/
Lsu.x/: (13)

4 Proofs of Theorems 1.1 and 1.2

4.1 Proof of Theorem 1.1

We now come to the proof of Theorem 1.1. We introduce the function

Qw D '.w/ � v
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where w is the Caffarelli-Silvestre extension of u and v the Caffarelli-Silvestre
extension of '.u/. Then Qw satisfies

�
La Qw D ya' 00.w/jrwj2 � 0; in R

nC1
C

Qw D 0 on @RnC1
C

since ' is convex. Hence by the Hopf lemma in [2] (see also the Appendix) ( notice
Qw � 0 by the weak maximum principle) , one has @Qw

@	a
> 0, hence the result.

4.2 Proof of Theorem 1.2

We now turn to the proof of the Kato inequality in Theorem 1.2. This is a conse-
quence of the Cordoba-Cordoba inequality. Indeed consider the convex function

'�.x/ D
p
x2 C �2:

Then the result follows by Theorem 1.1 and a standard approximation argument.

4.3 The Results in Bounded Domains

In the case of the spectral laplacian, the Córdoba-Córdoba estimate has been proved
by Constantin and Ignatova [7] by a rather involved use of semi-group theory.
Our proof has the same flavour as the one of Theorem 1.1. Furthermore, in our
framework, one can also prove the Córdoba-Córdoba estimate in the case of the
restricted laplacian, which is not covered by [7].

Theorem 4.1 Let ' be a C2.Rn/ convex function. Assume that u and '.u/ are such
that Au and A'.u/ exist where A is either the restricted or spectral fractional
laplacian. Then the following holds

A'.u/ � ' 0.u/A u (14)

Proof The case of the restricted laplacian is fully covered by the proof of Theorem
1.1 verbatim. In the case of the spectral fractional laplacian, one considers as before

Qw D '.w/ � v

where w is the Caffarelli-Silvestre extension of u and v the Caffarelli-Silvestre
extension of '.u/ where the Caffarelli-Silvestre extension is the one described in
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Sect. 3.1. Then Qw satisfies
8
<
:
La Qw D ya' 00.w/jrwj2 � 0; in C

Qw D 0 on @LC
Qw D 0 on fy D 0g

By the weak maximum principle, one has Qw � 0 in C and one concludes with the
Hopf lemma in the appendix. ut
Remark 4.2 Our proof of the estimate is the same as the one in Córdoba and
Martínez in [10] for the Dirichlet-to-Neumannoperator. However, their proof covers
only the case 1=2 and for power-like convex functions. The argument can be actually
generalized as we mentioned. Furthermore, it unifies all the possible proofs of the
Córdoba-Córdoba estimates.

5 Geometric Ambient Spaces

5.1 The Case of Manifolds

The case of compact manifolds, through a parabolic argument, has been proved
by Cordoba and Martínez [10]. Our proof once again completely unifies the several
approaches. Consider a complete Riemannian manifoldM and its Laplace-Beltrami
operator

L D ��g

Invoking now the extension of Stinga and Torrea described in Sect. 3.3, one proves

Theorem 5.1 Let ' be a C2.Rn/ convex function. Assume that u and '.u/ are such
that Lu and L'.u/ exist. Then the following holds

L'.u/ � ' 0.u/L u (15)

We then recover the case of compact manifolds in [10] and even generalize it to
complete non-compact manifolds. The proof of the previous theorem is identical,
once the extension is well defined as described above (see [17]), to the proof of
Theorem 1.1.

5.2 The Case of Lie Groups

Consider a Lie group G with its Kohn Laplacian

L D ��G
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Invoking now the extension of Stinga and Torrea described in Sect. 3.3, one
proves

Theorem 5.2 Let ' be a C2.Rn/ convex function. Assume that u and '.u/ are such
that Lu and L'.u/ exist. Then the following holds

L'.u/ � ' 0.u/L u (16)

5.3 The Case of the Wiener Space

We start by recalling the basic notions about the Wiener space and its associated
operators. An abstract Wiener space is defined as a triple .X; 
;H/ where X is
a separable Banach space, endowed with the norm k � kX , 
 is a nondegenerate
centred Gaussian measure, and H is the Cameron–Martin space associated with the
measure 
 , that is, H is a separable Hilbert space densely embedded in X, endowed
with the inner product Œ�; ��H and with the norm j � jH . The requirement that 
 is a
centred Gaussian measure means that for any x� 2 X�, the measure x�

#
 is a centred
Gaussian measure on the real line R, that is, the Fourier transform of 
 is given by

O
.x�/ D
ˆ
X
e�ihx;x�i d
.x/ D exp

�
�hQx�; x�i

2

	
; 8x� 2 X�I

here the operator Q 2 L.X�;X/ is the covariance operator and it is uniquely
determined by the formula

hQx�; y�i D
ˆ
X

hx; x�ihx; y�id
.x/; 8x�; y� 2 X�:

The nondegeneracy of 
 implies that Q is positive definite: the boundedness of Q
follows by Fernique’s Theorem, asserting that there exists a positive number ˇ > 0
such that

ˆ
X
eˇkxk2d
.x/ < C1:

This implies also that the maps x 7! hx; x�i belong to Lp
 .X/ for any x� 2 X�
and p 2 Œ1;C1/, where Lp
 .X/ denotes the space of all 
 -measurable functions
f W X ! R such that

ˆ
X

j f .x/jpd
.x/ < C1:

In particular, any element x� 2 X� can be seen as a map x� 2 L2
 .X/, and we denote
by R� W X� ! H the identification map R�x�.x/ WD hx; x�i. The space H given by
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the closure of R�X� in L2
 .X/ is usually called reproducing kernel. By considering
the map R W H ! X defined as

ROh WD
ˆ
X

Oh.x/x d
.x/;

we obtain that R is an injective 
–Radonifying operator, which is Hilbert–Schmidt
when X is Hilbert. We also have Q D RR� W X� ! X. The space H WD RH,
equipped with the inner product Œ�; ��H and norm j � jH induced by H via R, is the
Cameron-Martin space and is a dense subspace of X. The continuity of R implies
that the embedding of H in X is continuous, that is, there exists c > 0 such that

khkX � cjhjH; 8h 2 H:

We have also that the measure 
 is absolutely continuous with respect to translation
along Cameron–Martin directions; in fact, for h 2 H, h D Qx�, the measure

h.B/ D 
.B � h/ is absolutely continuous with respect to 
 with density given
by

d
h.x/ D exp

�
hx; x�i � 1

2
jhj2H

	
d
.x/:

For j 2 N we choose x�
j 2 X� in such a way that Ohj WD R�x�

j , or equivalently

hj WD ROhj D Qx�
j , form an orthonormal basis ofH. We order the vectors x�

j in such a
way that the numbers 
j WD kx�

j k�2
X� form a non-increasing sequence. Given m 2 N,

we also let Hm WD hh1; : : : ; hmi � H, and …m W X ! Hm be the closure of the
orthogonal projection from H to Hm

…m.x/ WD
mX
jD1

˝
x; x�

j

˛
hj x 2 X:

The map …m induces the decomposition X ' Hm ˚ X?
m , with X?

m WD ker.…m/,
and 
 D 
m ˝ 
?

m , with 
m and 
?
m Gaussian measures on Hm and X?

m respectively,
having Hm and H?

m as Cameron–Martin spaces. When no confusion is possible we
identifyHm withRm; with this identification the measure 
m D …m#
 is the standard
Gaussian measure onRm. Given x 2 X, we denote by xm 2 Hm the projection…m.x/,
and by xm 2 X?

m the infinite dimensional component of x, so that x D xmCxm. When
we identify Hm with R

m we rather write x D .xm; xm/ 2 R
m � X?

m .
We say that u W X ! R is a cylindrical function if u.x/ D v.…m.x// for some

m 2 N and v W R
m ! R. We denote by FCk

b.X/, k 2 N, the space of all Ck
b

cylindrical functions, that is, functions of the form v.…m.x// with v 2 Ck.Rn/, with
continuous and bounded derivatives up to the order k. We denote by FCk

b.X;H/ the
space generated by all functions of the form uh, with u 2 FCk

b.X/ and h 2 H.
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Given u 2 L2
 .X/, we consider the canonical cylindrical approximation Em given
by

Emu.x/ D
ˆ
X?
m

u.…m.x/; y/ d

?
m .y/: (17)

Notice that Emu depends only on the first m variables and Emu converges to u in
Lp
 .X/ for all 1 � p < 1.

We let

r
u WD
X
j2N

@ju hj for u 2 FC1b.X/

div
' WD
X
j�1

@�
j Œ'; hj�H for ' 2 FC1b.X;H/

�
u WD div
r
u for u 2 FC2b.X/

where @j WD @hj and @
�
j WD @j � Ohj is the adjoint operator of @j. With this notation,

the following integration by parts formula holds:

ˆ
X
u div
' d
 D �

ˆ
X
Œr
u; '�H d
 8' 2 FC1b.X;H/: (18)

In particular, thanks to (18), the operator r
 is closable in Lp
 .X/, and we denote
byW1;p


 .X/ the domain of its closure. The Sobolev spaces Wk;p

 .X/, with k 2 N and

p 2 Œ1;C1�, can be defined analogously, and FCk
b.X/ is dense in Wj;p


 .X/, for all
p < C1 and k; j 2 N with k � j.

Given a vector field ' 2 Lp
 .XIH/, p 2 .1;1�, using (18) we can define div
 '
in the distributional sense, taking test functions u in W1;q


 .X/ with 1
p C 1

q D 1. We

say that div
 ' 2 Lp
 .X/ if this linear functional can be extended to all test functions
u 2 Lq
 .X/. This is true in particular if ' 2 W1;p


 .XIH/.
Let u 2 W2;2


 .X/,  2 FC1b.X/ and i; j 2 N. From (18), with u D @ju and
' D  hi, we get

ˆ
X
@ju @i d
 D

ˆ
X

�@i.@ju/  C @ju hx; x�
i id
 (19)

Let now ' 2 FC1b.X;H/. If we apply (19) with  D Œ'; hj�H DW ' j, we obtain

ˆ
X
@ju @i'

j d
 D
ˆ
X

�@j.@iu/ ' j C @ju '
jhx; x�

i id
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which, summing up in j, gives
ˆ
X
Œr
u; @i'�H d
 D

ˆ
X

�Œr
 .@iu/; '�H C Œr
u; '�Hhx; x�
i id


for all ' 2 FC1b.X;H/.
The operator �
 W W2;p


 .X/ ! Lp
 .X/ is usually called the Ornstein-Uhlenbeck
operator on X. Notice that, if u is a cylindrical function, that is u.x/ D v.y/ with
y D …m.x/ 2 R

m and m 2 N, then

�
u D
mX
jD1

@jju � hx; x�
j i@ju D �v � hrv; yiRm :

We write u 2 C.X/ if u W X ! R is continuous and u 2 C1.X/ if both u W X ! R

and r
u W X ! H are continuous.
For simplicity of notation, from now on we omit the explicit dependence on 
 of

operators and spaces. We also indicate by Œ�; �� and j � j respectively the inner product
and the norm in H.

By means of Sect. 3.3, one can prove an extension property for the operator
.��
/

s and one proves in this case also a Córdoba-Córdoba estimate.

Appendix

In this appendix, we provide the Hopf lemma, which is crucial in the proof of the
estimates. We state the theorem in the case of Rn as stated in [4]. However, an
inspection of the proof shows that it is extendable to cylindersM� .0;C1/ where
M is one of the cases covered in the present note and the associated operators.
Indeed, the geometry is always the same and the Hopf lemma just depends on the
structure of the equation.

We start with some notations. We introduce

BC
R D f.x; y/ 2 R

nC1 W y > 0; j.x; y/j < Rg;
�0R D f.x; 0/ 2 @RnC1

C W jxj < Rg;
�C
R D f.x; y/ 2 R

nC1 W y � 0; j.x; y/j D Rg:

Lemma 1 Consider the cylinder CR;1 D �0R � .0; 1/ � R
nC1
C where �0R is the ball

of center 0 and radius R in Rn. Let u 2 C.CR;1/\ H1.CR;1; ya/ satisfy
8
ˆ̂<
ˆ̂:

Lau � 0 in CR;1
u > 0 in CR;1
u.0; 0/ D 0:
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Then,

lim sup
y!0C

�ya
u.0; y/

y
< 0:

In addition, if yauy 2 C.CR;1/, then

@	au.0; 0/ < 0:
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