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Abstract Heteropolyacids (HPAs) are a class of inorganic materials that have been
widely used as additives to enhance the performance of fuel cell membranes,
recently. This chapter covers the use of HPAs in the preparation of proton exchange
membranes (PEM) for polymer electrolyte membrane fuel cells (PEMFCs). The
fundamental aspects of HPAs and their corresponding salts in addition to various
structural configurations such as Keggin, Wells–Dawson, and Lacunar are dis-
cussed. The use of HPAs for preparation of membranes for high-temperature
PEMFC and direct methanol fuel cell (DMFC) based on the immobilization on
various substrates including perfluorinated sulfonic acids (PFSAs), aromatic
hydrocarbons, poly(vinyl alcohol) (PVA), and polybenzimidazole (PBI) are
reviewed. The research challenges that need to be addressed to bring the new
composite membranes to practical application are also discussed.
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List of abbreviations

CS-HEC Chitosan-hydroxy ethyl cellulose
CsPW Cs hydrogen salts of phosphotungstic acid
HPA Heteropolyacid
LbL Layer by layer
mGO Graphene oxide modified with 3-aminopropyl-triethoxysilane
MMT K10 montmorillonite
MO Metal oxide
MOR Methanol oxidation reaction
ORR Oxygen reduction reaction
PBI Polybenzimidazole
PDDA Poly(diallyl dimethyl ammonium chloride)
PEFC Polymer electrolyte fuel cell
PEMFC Polymer electrolyte fuel cell
PFSA Perfluorosulfonic acid
PMA Molybdophosphoric acid or phosphomolybdic acid, H3PMo12O40

POM Polyoxometalate
Ppy Polypyrrole
PVA Poly(vinyl alcohol)
PWA Phosphotungstic acid, H3PW12O40

QDPSU Quaternary diazabicyclo-octane polysulfone
rGO Reduced graphene oxide
SiMA Silicomolybdic acid, H4SiMo12O40

SiWA Silicotungestico acid H4SiW12O40

SPAEK Sulfonated poly(aryl ether ketone)
SPBN Sulfonated polynorbornene
SPEEK Sulfonated poly(ether ether ketone)s
SPS Sulfonated polystyrene
ZrP Zirconium phosphate

1 Introduction

The interest in developing highly stable and cost-effective new proton exchange
membranes for polymer electrolyte fuel cells (PEMFCs) has been ever growing to
promote the commercialization for this type of fuel cell [1–12]. This is to overcome
the limitation of perfluorosulfonic acid (PFSA) membranes, which rely on water in
proton conduction that prevent the operation of PEMFCs above 80 °C [13–15].
Higher fuel cell operation is desired to enhance reaction kinetics of electrochemical
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reactions, increase CO tolerance of electrodes and reduce or eliminate water
management system [16–18].

Various approaches have been used to develop alternative membranes including
modification of commercially available PFSA membranes, chemical synthesis of
sulfonate hydrocarbon membranes, and formation of composite membranes [19].
Particularly, composite ionic membranes composed of organic–inorganic compo-
nents have received great attention in the past decade because of their ability to be
operated under wide ranges of temperatures including much higher ones than
membranes made of the pure polymers [20]. Moreover, the incorporation of inor-
ganic fillers provides a number of advantages ranging from improvement in the
mechanical properties and water management of the membrane to inhibition of the
fuel crossover by increasing the tortuosity of transport pathways. These composite
membranes can be formed by: (1) introducing nanosized hygroscopic inorganic
fillers such as SiO2, ZrO2, and TiO2, (2) doping of basic substrates with nonvolatile
proton conducting solvents such as phosphoric acid, N-heterocycles, heteropoly-
acids (HPAs), and ionic liquids, and (3) incorporation of solid proton conductors
such as phosphate salts of zirconium (ZrP) and HPAs. Various synthesis routes can
be used to introduce one phase into the other one. A review on various methods of
introducing each phase in organic/inorganic composite membrane is available [21].

Among composite membranes, those doped with or containing solid proton
conductors such as HPAs are promising candidates for PEMFC [22, 23, 21]. This is
because HPAs display the highest proton conductivity among inorganic solids near
ambient temperatures. They also have distinct discrete ionic structures including
heteropoly anions and counter cations (e.g., H+, H3O

+, and H5O2
+) and therefore

exhibit high-proton mobility. Moreover, the presence of bounded water molecule in
HPAs makes them interesting for the development of moderate temperature
PEMFC since proton conduction is independent of external humidification [2, 23].

The objective of this chapter is to review the progress of developments in regard
to composite ionic membranes based on HPAs. A special attention is given to the
types and structures of HPAs and their use in synthesis of nanocomposite polymeric
materials with ion conducting functional groups for various types of PEMFC
applications. The challenges remaining for further research to achieve important
breakthroughs are also discussed.

2 Heteropolyacids Types and Structures

Polyoxometalates (POMs) are group of chemicals that have attracted an increasing
attention due to the diversity and selectivity of their properties making them suitable
for wide number of applications [24]. HPAs are complex proton acids incorporating
polyoxometalate anions (heteropolyanions) having metal-oxygen octahedral as
basic structural units [25, 26]. Keggin and Wells–Dawson are two important
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categories of the HPAs. In 1933, Keggin used X-ray diffraction technique to
determinate the H3[PW12O40]5H2O structure and provided a clear description of the
bonds between the WO6 octahedra of the molecule [27]. The Wells–Dawson
structure was theoretically described by Wells in 1945 and experimentally con-
firmed in 1953 [28].

HPAs are subsets of metal oxides distinguished by central heteroatoms, which
are surrounded by a number of metal-oxygen octahedra. There are strong bonds
between the atoms supporting the polyhedra structures and connect them with the
heteroatoms. The metal in HPAs is usually tungsten or molybdenum and less
usually vanadium or uranium. The heteropoly anions having metal-oxygen octa-
hedral as the basic structural units make up the primary structure of the HPA as
shown in the Keggin anion (Fig. 1).

The Keggin HPAs, which is the most studied, represented by the formula
XxþM12O40

x�8, contain 12 addenda atoms and one heteroatom, where X is the
heteroatom (central atom, commonly P5+, Si4+, or B3+), x is its oxidation state, and
M is the addenda atom (metal ion, commonly W and Mo). It is composed of a
central tetrahedron (XO4), which is surrounded by 12 edge- and corner-sharing
metal oxide octahedra (MO6). The octahedra are arranged in four M3O13 groups,
and each group has three octahedra sharing edges. They are linked through strong
oxygen bonds, which also connect the central tetrahedron [29]. A typical
FTIR-ATR spectrum of Keggin-type phosphotungstic acid (PWA) showing four
different W–O bonds and characteristic bands at 1080 (P–Oa), 983 (W = Od), 893
(W–Ob–W), and 797 (W–Oc–W) cm−1 is shown in Fig. 2.

Due to the complexity, other polyoxometalates including Wells–Dawson
heteropolyanions X2

xþM18O62
2x�16, Keggin and Dawson lacunary anions,

Fig. 1 HPA structures: a ball and stick model of the silicotungstic Keggin anion (SiW12O40−4)
and b space filling model of the secondary crystalline structure of Keggin HPA with base-centered
cubic arranged cavities containing H5O2

+ cations (red O, gray W, blue H, purple P, or Si)
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XM11O39
x�12 and X2M17O61

2x�20, and transition metal complexes have not been
fully examined.

In addition to metals, HPAs are interestingly having multiple active sites in their
structure including protons and oxygens. Functionally, protons act as Brønsted
acids to promote acid-catalyzed process including proton transports. Besides, some
oxygen atoms on the surface of HPA (especially oxygens located on the lacunary
sites of lacunary POM anions with a high negative charge) are basic enough to react
with protons and hydronium ions (protonate) and can practically behave as active
sites in base-catalyzed reactions. On the other hand, the metals of HPAs are active
sites in all oxidative reactions. The details of various catalytic activities of HPAs
were reviewed [30–32].

Although Dawson HPAs were used in various applications including proton
transport materials [33], majority of the patents and investigations are based on the
applications of the Keggin-type HPAs and their salts. This primarily includes
H3PMo12O40 (PMA), H3PW12O40 (PWA), H4SiMo12O40 (SiMA), and H4SiW12O40

(SiWA). Solid HPAs commonly form ionic crystals composing of anions (which is
heteropolyanions), cationic counterions (H+, H3O

+, H5O2
+, etc.), and hydration

water. The HPAs are noticeably crystallizing with a large number of water mole-
cules as in PWA and PMA, both of which have 29 water molecules compared to 30
for SiWA [34, 35]. The status of water is important for assessing HPA role as a
proton transfer material. Some HPAs loss water very easily even at room temper-
ature where as others can retain water tightly even at high temperature.

In HPA crystals, the Keggin anions are quite mobile. Due to structural flexibility
and mobility of HPAs, not only water but also a diversity of polar molecules can
enter and leave HPA crystals that is important when using HPAs in fuel cell
applications. It should be noted that proton conductivity of solids is generally

Fig. 2 FTIR-ATR spectrum of Keggin-type PWA showing four characteristic bands
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related to their acid-based catalytic activities [36]. HPAs display strong acidity,
good solubility in polar solvents such as water, lower alcohols, ketones, ethers and
esters, in addition to good thermal stability and reversible redox behavior. One of
the most important properties of HPAs is the ability to be chemically adjusted or
tuned by simple modification of their structures. The acidity of the HPAs is
dependent upon the total charge of the anion and the heteroatom in their structure
[37–39]. The strong acidity level means fast proton mobility, which results in a high
catalytic activity [29]. The acidity strength of crystalline HPAs decreases in the
series PW > SiW � PMo > SiMo, which is identical to that in solutions [40].

Due to their versatile properties, HPAs have been used in an extensive range of
applications, including chemical analysis, biochemistry, ion selective membranes,
sensors, and electrochemical energy devices [41, 42]. Particularly, HPAs have been
useful constituent of polymer electrolyte fuel cells (PEFCs) and their corresponding
fuel cells using liquid fuels such as methanol or ethanol. Intensive work has been
reported on membranes incorporating HPAs for fuel cells, specifically, saturated
HPAs and unsaturated (defective) or lacunary HPAs were evaluated for fuel cell
applications [43]. Figure 3 compares the structure of saturated HPA of [SiW12O40]

4

− in a hydrated form of H4[SiW12O40]22H2O, which is also known as 12-HSiW and
one of the corresponding lacunary structures [SiW11O39]

8− in a hydrated form of
H8[SiW11O39]26H2O known as 11-HSiW. As shown, the number of acidic
hydrogens and water molecules is higher in lacunary HPAs. Interestingly, lacunary
HPAs can be simply prepared by hydrolysis of the parent HPAs with a base under
controlled conditions of temperature and ionic strength. Removal of one, two, or
three metal oxide (MO) units from the parent HPAs results in a mono-, di-, or tri-
lacunary POMs. A general reaction scheme for the preparation of various lacunary
HPAs is shown Fig. 4.

Lacunary HPAs could be further modified by bonding with functional silanes
that can subsequently crosslinked or polymerized to achieve more stable HPAs.

Fig. 3 Comparison of HPA and corresponding mono-lacunary structures
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Such HPAs offer high ionic conductivities prompting their use in fuel cells. For
example, indium-substituted HPAs with Keggin H4[In(H2O)PW11O39]11H2O and
H5[In(H2O)SiW11O39]8H2O, structures were reported to be solid high-proton
conductors with a conductivity of 2.60 � 10−4 S cm−1 and 5.25 � 10−4 S cm−1

(at 18 °C and 80% relative humidity), respectively. The conductivity of these
materials also increased with the rise of the temperature [44].

The conductivity performance of HPAs varies widely depending upon the type
of the HPAs’ structure. Particularly, the change in the constitutional elements of
polyanion can lead to the difference in the degree of hydration and proton mobility
[45]. Typically, H5[SiW11VO40]15H2O shows an excellent conductivity of
7.93 � 10−3 S cm−1 at 15 °C and 50% RH [38]. In addition, the size of the HPAs
influences considerably their performances specially when they are incorporated in
the composite membranes [46].

Generally, HPAs have high thermal stability, in the order of
PW > SiW > PMo > SiMo (Keggin types) that decompose at 465, 445, 375, and
350 °C, respectively. On the other hand, the influence of the heteroatom on the
thermal stability is negligible [47]. The redox activity of HPAs promotes their
application as redox bi-functional catalysts. With increasing electronegativity of the
addenda atom, the reduction potential of the HPA decreases, while increases as the
electronegativity of the counter cations or the heteroatoms increases, but it
decreases as the electronegativity of the addenda atom increases [28]. The oxidation
potential decreases in the Keggin structures as PMo > SiMo � PW > SiW.

HPAs have been used in an extensive range of applications, including chemical
analysis, biochemistry, ion selective membranes, sensors, and electrochemical
energy devices [41, 42]. Most generally, they are used as inorganic catalysts.
Depending on their composition, HPAs can be effective catalysts for both acid
catalysis and redox catalysis [47]. One of the important specific characteristics of
the HPAs is that they can be tuned by adding different elements to their structures,
allowing for the design of HPAs for special reactions. The high selectivity, thermal
stability as well as hydrolytic stability, long lifetimes in solution, high oxidation
potential, and noncorrosive nature of many HPAs make them economically and
environmentally attractive as a natural ‘green catalysts’ [48]. In addition, the list of
proteins or enzymes that can interact with HPA is long which supports the use of
HPAs in a number of biochemical and biomedical applications [49]. Moreover, due

[XM12O40]n-

[XM11O39](n+4)-

[XM10O36](n+5)-

[XM9O34](n+6)-

mono-lacunary

di-lacunary

tri-lacunary

pH=4-5

pH above 6

pH above 7

Fig. 4 General pathways for
preparation of various
lacunary HPAs
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to antiviral and antitumor activity of HPAs, these find use in biomedicine appli-
cations [50, 51].

The appealing applications of HPAs as dopants and fillers in ionic composite
membranes are indicated by the large number of patents and publications appeared
recently [2, 52, 53, 37, 54, 55, 56]. This was motivated by their high ionic con-
ductivity, thermal stability, very strong Brønsted acidity approaching the superacid
region (more acidic than sulfuric acid and Nafion), and their capability to undergo
redox processes under the mild conditions. Such membranes also found uses in ion
selective electrodes, gas detection apparatuses, solid-state electrochromic devices,
and solid or liquid electrolytes in electrolytic cells [57, 58, 59, 31, 32]. A great deal
of work has been focused on the self-immobilization of POMs especially the
Keggin type into the polymers matrices such as polypyrrole, polythiophene, and
polyaniline to increase the performance of hybrid membranes.

3 HPAs and Proton Transport in Fuel Cells

Due to the dissociated protons combined with the anions having good mobility,
HPAs are excellent proton conductors and promising solid electrolytes. The interest
in HPAs began after reporting remarkably high conductivities of 2 � 10−1 S cm−1

at 25 °C, and low activation energies of 15.5 and 13.7 kJ/mol for crystals of
H3[Mo12PO40]29H2O and H3[W12PO40]29H2O [60], respectively. However, upon
application for fuel cell, keeping the samples in their fully hydrated form without
decomposition is difficult since HPAs dissolve in the water that formed in a fuel cell
during the operation [61]. Highly concentrated aqueous solution of HPA was
reported for the use as a fuel cell electrolyte, which resulted in a comparable
performance with PEMFC [62, 63]. Although stable cell performance for HPA
electrolyte was reported for 300 h, however, the high crossover results in voltage
loss of fuel cell.

HPAs with high stability in water have been obtained upon immobilization on
clay [64], aluminum phosphate [53], and silica supports [65]. It was reported that
the addition of aluminum phosphate in SPEEK/PWA remarkably increased water
retention and effectively reduced leaching of PWA from the composite membrane
[53]. On the other hand, the proton conductivity of mesoporous silica is as low as
10−6–10−4 S cm−1. However, its remarkable structural order, large surface area and
pore volumes, availability and simple functionalization make it an ideal porous
framework for HPA based proton conductors [47, 66, 67].

Typically, an inorganic glass composite membrane containing a mixture of PWA
and PMAPWA/PMA–P2O5–SiO2 resulted in very highly conductivity values of
1.014 S cm−1 at 30 °C and 85% RH [68] and 1.01 � 10−1 S cm−1 at 85 °C under
85% RH for a mesoporous-structured PWA–P2O5–SiO2 glass [69]. The fuel cell
performance of these inorganic materials was 35–42 mW cm−2 in H2/O2 at 30%
RH and 30 °C [68, 69]. However, they cannot be used as electrolytes in fuel cells in
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their powdered form. Therefore, composite membranes with a polymer binder have
been developed for fuel cell application.

Several approaches to incorporate HPA into fuel cell membranes include fab-
ricating unsupported HPA pellets [61], doping polymer electrolytes [70], and sol–
gel methods [71]. Among these, HPAs have been mainly used as dopants in
composite proton exchange membranes. It was suggested that specific interactions
between HPAs and polymers could have a significant influence on the fuel cell
performance at elevated temperatures and thus they have received considerable
attention [71]. More details of various preparation methods can be found elsewhere
[72–75]. Five different procedures were commonly used to produce such composite
membranes as schematized in Fig. 5. They include mixing of HPA with a polymer
in a solution form followed by casting [76, 77] or impregnation of HPA in a porous
substrate [78, 70]. HPAs were supported on various substrates including silica.
When preparing the membrane from a polymer solution, the incorporation of HPAs
supported on silica within a polymeric membrane can be achieved by two different
ways: (i) pre-formation of HPA–silica particles followed by direct mixing with a
polymer solution [65, 79] and (ii) in situ preparation of the inorganic phase within
the matrix during film formation, e.g., via the sol–gel process of an alkoxide pre-
cursor in the presence of PWA [80–82]. Particle size and distribution heterogeneity
are two main concerns when using the first method. However, the sol–gel method is
normally lead to better distribution, more stability and possible control for the size

Methods for preparation 
of composite  membranes 

with HPAs

Impregnation of HPA into 
porous substrate

Copolymerization of 
HPA containing 

monomers 

Self-immobilization of HPA in a 
basic substrate

Use of water insoluble salt of 
HPA

Mixing HPA with 
polymer solution and 

casting 

Fig. 5 Various methods for preparation of composite proton exchange membranes containing
HPAs
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of the particles by variation of the preparation parameters such as pH, temperature,
and concentration of starting components [83, 84].

HPA supported on the polymers and porous fillers are likely subjected to
leaching out of HPA during the fuel cell operation, despite the improvement took
place in other properties including proton conductivities [85]. Such limitation is due
to low loading level, loose interaction with solid organic substrate and possible
agglomeration leading to the formation of large particles or clusters in the polymer
substrate during the casting process [86, 87]. To overcome this problem, a third
effective method involving copolymerization of HPA containing monomers or
covalent bonding of HPA to a polymer backbone was proposed [87, 88, 89, 43].
The covalent bonding of dopant to the polymer backbone minimizes leaching and
enhances the immobilization level of HPAs. Nevertheless, this synthetic procedure
is costly and, therefore, the application of this method was limited to few examples
[52].

The forth method involves a self-immobilization of HPAs onto basic polymer
backbones typically in a fiber form [2, 52] or adding another filler with high specific
surface area such as reduced graphene oxide (rGO) [54] or rGO covalently modified
with 3-aminopropyl-triethoxysilane (mGO) [90]. For example, amounts of up to
50 wt% of PWA could be simply immobilized onto nylon nanofibers by
self-immobilization. The fifth proposed method for solving the leaching problem of
HPAs was to use water-insoluble salt of HPAs such as CsxH3−xPW12O40 [91]. In
this regard, HPA salts such as CsH2PO4 have been intensively investigated because
of their desirable high operating temperature (230–260 °C) [92, 93] and
high-protonic conductivity (r = 2.2 � 10−2 S cm−1 at 240 °C) [94]. Such
advantages explain the reason for applying the compositions of CsH2PO4 with
oxyanions [95], cations [96], and inorganic/organic scaffolds [97, 98] for improving
proton conductivity, mechanical properties, and thermal stability at high tempera-
tures in addition to reducing methanol permeability.

4 HPAs in PEM Fuel Cell

HPAs have been used extensively in the PEMFC as additive to the catalyst layer
and membrane. As additive to the catalyst layer, HPAs have been used in both
cathode and anode mainly to address the CO-poisoning by enhancing the tolerance.
Particularly, it was reported that the addition of PMA and corresponding vanadium
substituted analogs into Pt results in a remarkable performance improvements when
the fuel cell was fed with reformed hydrogen containing 100 ppm CO [99]. It was
concluded that PMA acts as an oxidizing agent for the reaction between CO and
water in the presence of Pt, Pd, and Au [100, 22]. Besides, the addition of HPAs in
the electrode is likely to improve the catalytic activity towards oxygen reduction
reaction (ORR) and methanol oxidation reaction (MOR) [101, 55, 102]. However,
HPA applications in the catalyst layers of electrodes are beyond the scope of this
chapter and more details can be found elsewhere [22].
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PFSAs are the choice materials for the membranes for PEMFC applications.
However, these membranes are not gas tight enough especially at temperature
above 80 °C [20, 5, 103]. Several low cost alternatives such as poly(vinyl alcohol)
(PVA), sulfonated poly(ether ether ketone)s (SPEEK), and sulfonated polystyrene
(SPS) have been evaluated for PEMFC applications. These membranes exhibited
good chemical stability and low fuel crossover. However, their proton conductivity
is significantly lower than PFSAs. Typically, the proton conductivity of PVA and
SPEEK are in the ranges of 10−14–10−10 S cm−1 [22, 104] and 10−4–10−3 S cm−1

[83], respectively. HPAs have been introduced to various low cost PFSA alterna-
tives to enhance the proton conductivity. This led to an increase in the conductivity
up to the range of 10−3–10−1 S cm−1 [83, 105, 106]. Interestingly, such improve-
ment in the conductivity was accompanied by an increase in the thermal stability of
membranes.

5 HPAs in High-Temperature and Low-Humidity
PEMFC

The main limitation of PFSA family of membranes is their dependence on level of
hydration to achieve high conductivity, and this poses a problem when operating at
temperatures higher than 80 °C as the proton conductivity of the membranes
decreased significantly. The variation of hydration level undermines the perme-
ability of H2 and O2 due to the involvement of the formed hydrated ionic clusters in
the gas permeation mechanism [107, 108]. On the other hand, the retention and
management of water within these types of membranes is challenging, costly and in
most cases affect the PEMFC performance. Therefore, there is a strong demand for
the PEMs to work at lower relative humidity and/or under anhydrous conditions.
However, acceleration of electrochemical reactions and simplification of water
management system of fuel cells under lower humidity and/or anhydrous conditions
is challenged by dramatic losses of proton conductivity of PFSA membranes [109,
110, 5]. Typically, Nafion 112 losses an order of magnitude of its proton con-
ductivity at around 60% RH, which increases two orders of magnitude with the
reduction of RH to 25%.

Various materials and designing strategies were proposed to prepare alternative
proton conductors for high-temperature fuel cell operation under dry conditions.
The use of other media of proton conductions or less-volatile liquids such as
phosphoric and phosphonic acids [1, 111] and amine heterocycles [112] have been
widely considered. However, in most cases, the proton conductivity is not com-
parable to PFSAs and there is a risk of liquid electrolytes leaching. On the other
hand, addition of an inorganic material with hydrophilic properties such as HPAs
was proposed to maintain high water content levels at elevated temperatures or
under dry conditions. There is a linear relationship between water content of the
membrane and its conductivity at lower RH%.
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A lot of work has been reported on incorporation of different HPAs in PFSA
membranes [76, 113, 114] and other hydrocarbon membranes [83, 115, 105, 106,
116, 117] for PEMFCs application. It was shown that the activation energy for
proton transport (Ea) decreased significantly for PFSA membranes upon increasing
the amount of HPAs under lower RH% [118]. For example, the addition of 5 wt%
of PWA lowered Ea by 40% at 60% RH compared to pristine membrane. Initial
investigation on various HPAs such as PWA, SiWA, PMA, and SiMA indicated
that the additives containing molybdenum were less stable in the membrane
environment than those containing tungsten [76]. Upon operating in fuel cell for a
few hours, the amount of molybdenum-based additive present in the cathode cat-
alyst layer increased. It was suggested that molybdates migrated into the catalyst
layers, where they had a detrimental effect on the performance by undergoing
parasitic redox reactions on the surfaces of carbon and platinum, resulting in an
increase in the activation overpotential. Table 1 summarizes some of the efforts to
introduce HPAs to membranes used in the PEMFC.

Initial studies reported the limiting changes in the stability of HPA in hydrated
conditions and the strong influence of humidity on the proton conductivities and
diffusional problems of the membranes. The high water solubility of HPAs triggers
leaching problem and consequently high drop in a performance. Two different
approaches of using alternative heteropolysalts instead of their acid and supported
HPAs were widely used to avoid the leaching problem in high-temperature PEMs.
More stable HPA containing membranes were achieved using heteropolysalts as
fillers in membranes for PEMFCs. In this regard, larger cations such as Cs+, NH4

+,
Rb+, and Tl+ [133] as well as organic cations such as 4,4′- and 2,2′-bipyridines
[134] were combined with HPAs to produce heteropoly salts. Precipitation from
aqueous solutions was normally used to achieve such partially substituted hetero-
polysalts [135, 136]. On the other hand, it was shown that a solid-state reaction
involving mechano-chemical treatments using a high-energy ball mill is more
efficient to prepare heteropolysalts and normally lead to more conductive hetero-
polysalts [137, 138], and subsequent composite membranes [115]. Additional
investigation revealed that the reduction in the particle size facilitates the conduc-
tivity due to enhancement in the surface to volume ratio, which permits more
efficient proton hopping and increase in conductivity [23]. For example, reducing a
filler size from 1–2 mm to 30–50 nm resulted in 35% enhancement in proton
conductivity [139].

In the second approach, HPAs or their corresponding salts were supported on
different materials including SiO2 [86, 121, 84, 122, 77, 140, 123], ZrO2 [84, 120,
77], WO2 [77], and TiO2 [84, 77] followed by immobilization in polymeric
membranes [86]. PWA was found to be the only heteropolyacid that has been found
suitable for these hybrid membranes, and it was concluded that SiO2 is the best
supporting material since there is a strong interaction between the H3PW12O40,
Nafion®, and the SiO2 molecules [121]. The proton conductivity and the fuel cell
performance at 100% RH of the composite membrane close to those of pristine
membranes. However, the merits of HPA became evident upon increasing the
temperature or reducing the RH%. Improved performance under dry conditions was
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also achieved for membranes containing CsxH3−xPWO40 immobilized on TiO2

[141] and CeO2 [142]. Nevertheless, immobilization of HPA salts and their stability
on the inorganic supports were much better than pure HPAs [141]. Table 1 illus-
trates some of the results on HPA salts loading level and properties of the obtained
composite membranes.

Commercially available polybenzimidazole (PBI) has been the most extensively
studied and used for the PEMFC under high-temperature. Particularly, PBI mem-
branes impregnated with phosphoric acid have been studied as polymer electrolytes
in PEMFCs for two decades and were reasonably successful with excellent
thermo-chemical stability and good conductivity [143, 144]. Several organic
modifiers including ZrP [7] and PWA [145] have been incorporated into PBI to
improve the performance of the PBI/H3PO4 membrane.

PWA and SiWA [128, 146], PMA [147], PWA/SiO2 [148], and SiWA/SiO2

[145] were initially used to fabricate PBI composite membranes. Initial results
indicated that the conductivities of the composite membranes containing 20 and
30 wt% of PWA at 140 °C and that of SiWA at 200 °C were lower than that of
pristine PBI membranes under the same conditions [128]. It was reported that the
SiO2 support provided a stable structure and membranes were thermally stable up to
400 °C. The conductivity values of 1.5 � 10−3 S cm−1 at 150 °C for PWA/SiO2/
PBI and 2.23 � 10−3 S cm−1 at 160 °C for SiWA/SiO2/PBI were reported. In a
separate study, 37.5 wt% of SiWA-SiO2/mPBI showed excellent proton conduc-
tivity of 1.32 � 10−3 S cm−1 at room temperature [149]. Despite the good con-
ductivity values of the composite membranes, there are few reports on fuel cell
performance. Membranes composed of PWA/PBI or SiWA/PBI doped with
phosphoric acid showed high conductivity compared to neat PBI membranes in
high-temperature PEMFC [150]. At 150 °C, the conductivity of the 40%
SiWA/PBI composite membrane was 0.1774 S cm−1. In a single cell test, for
example, 40 wt% SiWA/PBI exhibits only around 10–15 mV loss in cell potential
due to IR drop which is around 75 mV at 500 mA cm−2 for PBI. The best fuel cell
performance was achieved with a 40 wt% SiWA/PBI composite membrane at 120 °
C. However, at higher temperatures, contrary to the PBI membrane, the perfor-
mance of the SiWA/PBI composite membrane declined in fuel cell. It has been
suggested that the PWA/PBI composite membranes were suitable for the temper-
ature limit of 120 °C.

CsHPA was used extensively for PEMFC due to its insolubility in water.
Typically, PBI/Cs2.5H0.5PMo12O40/H3PO4 composite membrane exhibited con-
ductivity as high as 0.15 � 10−2 S cm−1 and in a fuel cell gave a high power
density of 0.7 W cm2 (at atmospheric pressure and 150 °C with H2/O2) [130].
Higher proton conductivities of 1.91 � 10−2 S cm−1 and 1.71 � 10−2 S cm−1

were achieved at 160 °C under anhydrous conditions for mechano chemically
synthesized CsHPA composites of PBI-50H3PW12O40�50CsHSO4 with 87 wt%
phosphoric acid doping level and PBI-50H4SiW12O40�50CsHSO4 with 82 wt%
doping level, respectively [98]. Nevertheless, these composite membranes show
better conductivity with comparable single cell results, despite the lower phosphoric
acid doping level compared to PBI.
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Comparative conductivity, stability and fuel cell performance of PBI composite
membranes with four different cesium salts of CsPOMo, CsPOW, CsSiOMo, and
CsSiOW were evaluated [131]. The composite membranes loaded with H3PO4

showed higher conductivities than that of the phosphoric acid loaded PBI mem-
brane. The conductivity increased with an increase in the percentage of inorganic
component in the composite up to 30%. CsPOMo/PBI/H3PO4 exhibited a con-
ductivity of 0.12 S cm−1 under anhydrous conditions at 150 °C. The membrane
having P form of the CsHPA demonstrated higher conductivity than those con-
taining Si atom, although the mechanical strength was inferior. The performance of
the fuel cell with these composite membranes was better than that with a phosphoric
acid-doped PBI membrane under the same conditions. The CsPOMo gave the best
power density of around 0.6 W cm2 with oxygen at atmospheric pressure and 150 °C.

6 HPAs in DMFC

DMFCs is an alternative cell to the hydrogen PEMFC, which avoids the limitations
associated with the use of H2 as a fuel. In order to be competitive, the DMFC must
be reasonably cheap and capable of delivering high power densities. However, the
performance of DMFCs is limited by the catalyst and membranes. The slow kinetics
of the anode reaction and poisoning of the platinum catalyst together with the high
methanol crossover are among main concerns. Typically, PFSA membranes
showed exceptional proton conductivity upon employing in DMFCs but excess
methanol permeability causes fuel loss, which lowers energy efficiency and fuel cell
performance. The use of diluted methanol fuel (<4 molar of methanol), which
supposed to minimize excessive fuel permeability is likely to reduce the energy
density of fuel cell significantly [151]. Particularly, these drawbacks reduce the
energy density to as low as 2000 Wh kg−1 and yield low operating voltage com-
pared to PEMFC [152]. The ultimate solution to high methanol crossover, which is
a key barrier for the development of DMFC, is the utilization of membranes with
low methanol permeability that have potential for operation at higher temperatures.
Introducing nanoparticles into polymers substrates is an effective tool to suppress
methanol crossover, but is often accompanied by the partial loss of proton con-
ductivity because protons and methanol are transported through the same pathway.
HPAs having very strong Brønsted acidity approaching to the level of the super-
acids (more acidic than 100% sulfuric acid and Nafion) and fast reversible redox
transformations are interesting candidates for preparation of composite membranes
for DMFC [153]. HPAs have been immobilized in various proton conducting
membranes to improve methanol barrier property and/or proton conductivity [154,
155]. DMFC performance based on the PWA—meso-silica nanocomposite mem-
brane and low Pt catalyst loading (1 mg cm2)—was found close to the advanced
DMFCs (100–200 mW cm2) [156].

Majority of reported studies of HPAs based composite membranes were dedi-
cated to PFSA based membranes including Nafion. Generally, various HPAs were
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used as dopants that are usually sonicated with liquid Nafion in a high boiling point
solvent before casting. Typically, stable molybdophosphoric acid (PMA)-impreg-
nated membranes were reported to be prepared either by exposing cast membranes
to solvent vapor at room temperature for 24 h and annealing at 150 °C [157] or by
imbedding in polymer films using mixed solvents [158]. The obtained membranes
showed noticeable enhancement in the conductivity [157] and improvement in the
methanol rejection [158] compared to commercial Nafion.

Operation at high temperatures significantly enhances the kinetics of methanol
oxidation. It was reported that the addition of inorganic hygroscopic materials to
Nafion extends the operating temperature range of DMFC [159, 160, 140]. Nafion–
silica composite membranes doped with phosphotungstic and silicotungstic acids
were investigated at 145 °C and improvements in the electrochemical characteris-
tics at high current densities were reported [140]. For instance, a maximum power
density of 400 mW cm−2 was obtained at 145 °C in the presence of oxygen feed,
whereas the maximum power density in the presence of air feed was around
250 mW cm−2 [140]. In another study, the power densities of 33 mW cm−2 at 80 °
C, 39 mW cm−2 at 160 °C, and 44 mW cm−2 at 200 °C were reported [160]. Such
improved performance was correlated to the strong interaction of inorganic fillers
with water at high temperature. Table 2 illustrates additional examples of HPAs

Table 2 PWA loading level, thickness, conductivities, and methanol permeability of various
DMFC membranes

Sample Thickness
(lm)

Proton
conductivity
(S cm−1)

MeOH permeability
(�10−8 cm2 s−1)

DMFC
performancea

(mW cm−2)

Refs.

SPBNb
– 6.1 � 10−2 at

100% RH, 30 °C
93.9 63 at 80 °C, (1 M

methanol)
[161]

SPEEK/PWA – 1.7 � 10−2 at
100% RH, 100 °
C

– – [162]

SPEEK/MMTc-SiWA
(30 wt%)

– 43.8 � 10−2 at
100% RH, 30 °C

35.0 – [64]

Nylond (51.12) 95 3.59 16.3 127.1 at 60 °C,
(5 M methanol)

[52]

40%-smpCTS/PWA (52.4) – 29 at 80 °C 0.47 16 at 80 °C, (2 M
methanol)

[10]

PPy-layered SPEES/PWA – 6.0 at 25 °C 21 – [163]

PES/PVP-PWA – 78 at 80 °C 165 132 (2 M
methanol)

[11]

Nafion/PPO/PMA 100 ± 5 3.41 � 10−2 at
room temperature

44.1 Higher OCV than
Nafion

[158]

Nafion-silica/PWA 80 – – 250 at 145 °C [140]

Nafion-silica/ PWA – 0.024 25 70 at 80 °C [164]

N212/PDDA-PWAe 51 – – [165]

(continued)
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composite membranes for DMFC applications at high temperature as well as nor-
mal operation temperature.

PWA in SPEEKs and poly(1,4-phenylene ether ether sulfone) stabilized by
surface modification with polypyrrole (Ppy) using an in situ polymerization method
showed a reduction in the methanol crossover without significant leaching in PWA
[163, 179]. In addition, the water uptake, swelling ratio, and the tensile strength of
the surface-coated membranes were improved with the increase in the thickness of
Ppy layer. In a similar approach, PWA was microcapsulated into imidazole and
incorporated into SPEEK membrane matrix prior to evaluation in DMFC and
revealed improved DMFC performance [154].

Table 2 (continued)

Sample Thickness
(lm)

Proton
conductivity
(S cm−1)

MeOH permeability
(�10−8 cm2 s−1)

DMFC
performancea

(mW cm−2)

Refs.

SPAEK–
COOH/polycation
chitosan (CTS)-PWA

50 0.24 at 80 °C 100 – [166]

Pore-filled PVDF with
PWA

– 0.098 at 80 °C 90 – [167]

Pore-filled PVDF with
Si-PWA

60 1.01 � 10−2 at
60 °C

– 21.6 at 25 °C [168]

PVA–ZrP–CsSiWA 180 13 at 100 °C,
50% RH

200 2.1 [169]

PVA immobilized
Si-PWA

80 0.0105 � 10−2 at
50 °C

16 29.6 at 35 °C [170]

PVA/PAA–CsPMA 250 ± 20 3.7 11 36 at 25 °C [171]

PVA/PAA–CsPWA 250 ± 20 3 6.7 30 at 25 °C [171]

PVA/PAA–CsSiWA 250 ± 20 1.8 1.38 39 at 25 °C [171]

CsPW–Nafion 50 0.05 15.4 30.6 at 25 °C,
(2 M methanol)

[172]

CsPW–Chitosan – 75 at 80 °C 156 – [173]

CsPW–SPEEK 80–100 1.3 � 10−1 at
80 °C 100% RH

47 – [174]

PWA-MC/Imidazole 31.6 at 80 °C,
room temperature

166 – [154]

PVA–ZrP–SiWA 250 1 � 10−2 at 60 °
C, 60% RH

60 – [175]

PVA-PWA-SiO2 – 0.004–0.017 1–10 – [176]

PVA/PMA – 2.05 154 – [177]

PEG/SiO2-PWA 150-400 5.04 � 10−3 121 – [178]
aMaximum power density (otherwise stated)
bSulfonated polynorbornene membranes
cK10 montmorillonite
dSandwiched between two Nafion layers
eFour bilayers of poly(diallyl dimethyl ammonium chloride) and PWA
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Pore-filling of polymer substrates with HPAs was also reported to achieve an
improved performance of DMFC [168, 167]. Typically, pores of PVDF substrates
filled by sulfonated poly(aryl ether ketone sulfone) membranes blended with
phosphotungstic acid resulted in a membrane with comparable conductivity and
lower methanol permeability than Nafion [167]. The layer-by-layer
(LbL) self-assembly is another method to introduce a thin multilayer film on a
substrate by sequential electrostatic adsorption between the negatively and posi-
tively charged polyelectrolytes. A 50% reduction in the methanol permeability was
reported for most of the LbL membranes. Typically, bilayers of chitosan and PWA
onto sulfonated poly (aryl ether ketone) (SPAEK) substrate resulted in a membrane
with high-proton conductivity values up to 0.24 S cm−1 at 80 °C and extremely
low water swelling ratio and methanol permeability [166].

Inorganic PEM such as PWA immobilized into mesoporous silica matrix such as
MCM-41 (Si-PWA) was assembled and used in DMFC [180, 181]. The
PWA/MCM-41 electrolyte has a high-proton conductivity of 4.5 � 10−2 S cm−1 at
150 °C with an activation energy of ca. 8 kJ mol−1. Single fuel cell tests showed a
peak power density of 95 mW cm−2 at 100 °C and 100% RH with H2/O2 system
and 90 mW cm−2 in methanol/O2 at 150 °C and an extremely low RH of 0.67%.
This sub-micron to nano-sized Si-PWA immobilized onto PVA crosslinked glu-
taraldehyde [170] and porous PVDF [168] were also reported. Lower methanol
permeability than Nafion and a maximum power density of around 44 mW cm−2

were obtained at 60 °C.
An interesting class of materials for suppressing methanol permeability is the

polymers containing basic groups including amine, amide, imine, and imidazole
[182–184]. One of the key membranes of interest in DMFC is PBI based materials
such as commercialized Celtec-V membrane, which is a blend of PBI and poly
(vinylphosphonic acid) [185]. Although some encouraging results were reported
[186], the conductivity was low and needed to be improved. PWA was
self-immobilized on various substrates with basic groups to reduce methanol per-
meability [52, 10]. Since the HPA is immobilized, the leaching risk is minimized
and the conductivity could be simply tuned by controlling the level of PWA. Upon
using micro-pores chitosan as a substrate, comparable performance and excellent
methanol-blocking performance of 60% lower than that of Nafion 212 membrane
was achieved [10].

Recently, it was reported that self-immobilization of high level of PWA on
electrospun nylon nanofiberous results in a highly selective methanol barrier with
undetectable leaching of PWA [52]. Upon assembling in a sandwiched proton
conducting membranes (Fig. 6) with Nafion outer layers, superior methanol barrier
properties (viz. P = 3.59 � 10−8 cm2 s−1) and selectivity mounting to more than
20 times higher than Nafion 115 coupled with proton conductivities reaching
58.6 � 10−3 mS cm−1 at 30 °C were achieved. When tested in DMFC single cell,
the performance of hybrid membrane was far better than Nafion 115 especially at
higher methanol concentrations. For example, at 2 M methanol feed, the composite
membrane had an improvement in power peak by 49.6% over Nafion 115. An
increase in the power peak by 113.3% was obtained with 5 M methanol feed and
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the maximum power density of 127.1 mW cm−2 that was observed for 3L mem-
brane compared to 59.6 mW cm−2 for Nafion 115. In addition, the OCV, which is
directly related to the methanol crossover, was improved to 693 and 675 mV giving
about 41 and 78 mV higher than that of Nafion 115 in 2 and 5 M methanol,
respectively. Self-immobilization of PWA on PES/PVP-PWA also resulted in
comparable performance of 132 mW cm−2 to that of Nafion 212 at 80 °C [187, 11].

Cesium phosphotungstate salt enhances the proton conductivity and reduces
methanol permeability of various host substrates including SPEEK [174]
chitosan-hydroxy ethyl cellulose (CS-HEC) [188], chitosan [173], PVA [169] and
PVA/PAA [171], etc. Cesium phosphotungstate salt has excellent conductive
capability and increased stability in aqueous media. PVA/PAA membranes with
various Cs salt of heteropolyacids were assembled for DMFC [171]. The blend of
PVA and PAA was crosslinked with glutaraldehyde, and the Cs salts of different
HPAs, including PMA, PWA, and silicotungstic acid (SiWA), were incorporated
into the polymer network to form PVA/PAA–CsPMA, PVA/PAA–CsPWA, and
PVA/PAA–CsSiWA. A dense network formation was achieved through
crosslinking with glutaraldehyde, which led to an order of magnitude decrease in
the methanol permeability compared to Nafion 115 membrane. The hybrid mem-
brane containing CsSiWA exhibited a very low methanol permeability of
1.4 � 10−8 cm2 s−1) compared to other membranes. Better performance was
achieved when sulfosuccinic acid used as a crosslinker possibly due to the presence
of sulfonic acid in the structure of crosslinker [189]. Ultralow methanol perme-
ability resulted to a power density of 150 mW cm−2 at a current density of
500 mA cm−2.

Fig. 6 Three-layered membranes composed of self-immobilized PWA on electrospun nylon and
two outer Nafion layers [52]
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To avoid any heterogeneity in the membrane preparation and consequent decline
in both proton conductivity and mechanical properties of composite membranes,
which may cause by the relatively large particle sizes, an in situ synthesis of
proton-conductive nanoparticles within a polymer matrix was reported [172].
Particularly, nanoparticles of Cs hydrogen salts of phosphotungstic acid (CsPW)
synthesized in situ in Nafion (CsPW–Nafion) resulted in a 101.3% increase of
maximum power density relative to pristine Nafion in DMFC [172].

7 Concluding Remarks and Future Perspectives

Various types of HPAs in a pure or modified forms and as an additive have been
incorporated in composite membranes in various types of PEMFC. In composite
proton exchange membranes, HPAs and theirs corresponding salts have been
immobilized into various inert and ionomeric substrates to reduce fuel crossover
and enhance the proton transport and fuel cell performance especially at high
temperatures and in dry conditions. In addition, HPAs were evaluated in DMFC to
suppress methanol crossover. Among various types of HPAs, phosphotungstic acid
and corresponding cesium salts have been used widely due to their long-term
stability in fuel cell.

Effective immobilization of HPAs onto polymeric substrates is still challenging
due to the highly solubility of such fillers in water. Using of corresponding salts of
HPAs, covalent attachments to the polymer backbones and immobilization on the
porous silica or fibrous structured amid-type backbones have been proposed to
overcome the HPAs leaching during PEMFC or DMFC operation. Although some
preliminarily reports indicate a stable immobilization of HPAs in the composite
membranes, the long-term stability under dynamic fuel cell conditions has been not
provided in many cases. Particularly, the PEMFC performance under higher tem-
perature and low relative humidity is lacking and this aspect is needed to be
investigated comprehensively.
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