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Abstract. Estimating regional deformation of the myocardium from
Cine MRI has the potential to locate abnormal tissue. Regional deforma-
tion of the left ventricle is commonly estimated using either segmentation
or 3D + t registration. Segmentation is often performed at each instant
separately from the others. It can be tedious and does not guarantee
temporal causality. On the other hand, extracting regional parameters
through image registration is highly dependent on the initial segmenta-
tion chosen to propagate the deformation fields and may not be consistent
with the myocardial contours. In this paper, we propose an intermediate
approach that couples segmentation and registration in order to improve
temporal causality while removing the influence of the chosen initial seg-
mentation. We propose to apply the deformation fields from image reg-
istration (sparse Bayesian registration) to every segmentation of the car-
diac cycle and combine them for more robust regional measurements. As
an illustration, we describe local deformation through the measurement
of AHA regional volumes. Maximum regional volume change is extracted
and compared across scar and non-scar regions defined from delayed
enhancement MRI on 20 ST-elevation myocardial infarction patients.
The proposed approach shows (i) more robustness in extracting regional
volumes than direct segmentation or standard registration and (ii) better
performance in detecting scar.

Keywords: Regional volumes · Segmentation · Registration · Infarct
diagnosis

1 Introduction

Local tracking of the myocardium has shown to help determining the local via-
bility of the heart from MRI [10] or echocardiography [4]. Two ways to mea-
sure regional deformation are reported in most papers: (i) the sequence of 3D
segmentations (named here Segmentation) and (ii) the sequence made of an
initial 3D geometry propagated in time using the output of the image registra-
tion along the sequence (named here 3D segmentation + registration). Manual
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or semi-automatic segmentation as offered in commercial software is straight-
forward, does not rely on any hypothesis from a registration algorithm and is
usually considered as ground truth. However, it is a fastidious process leading
to variable results between observers, non-consistency between slices or frames
and requiring several manual adjustments. To tackle this issue, many research
groups have worked on automatic segmentation [11], with some recent meth-
ods that include spatio-temporal information to propagate the segmentation
[7,13]. Despite these progresses, routine delineation of the ventricles is still semi-
automatic, which offers more confidence and flexibility to the cardiologists. 3D
segmentation + registration, on the other hand, gives smooth results in space and
time and better consistency between frames. However, full temporal consistency
is still not guaranteed and the method can be inconsistent with the myocar-
dial contours (Fig. 1 left). Moreover, standard 3D segmentation + registration
heavily depends on the first 3D segmentation used to propagate the deformation
fields (Fig. 1 right) leading to high uncertainty on the quantification of the defor-
mation. The dependence on the frame selection and the temporal consistency
issue have already been considered in the design of registration algorithms, for
instance on 3D echocardiographic data [3,12], although the segmentation from
a single instant is considered.

We suggest to combine both the segmentation (of all time frames) and
an independent registration algorithm by averaging the propagated mesh from
every frame (and not only the first frame) in order to leverage the drawbacks
of both while maintaining their assets. This approach is simple, registration-
independent, and could be directly translated to clinical practice using already
available segmentation software and image registration algorithms. Using this
approach reduces the need for a temporally consistent segmentation or registra-
tion, since all frames of the cardiac cycle are used to propagate the registration
output.

Fig. 1. (Left) Segmentation (green contours) compared to registration (purple con-
tours) on short-axis and long-axis view. (Right) Comparison between segmentation
(pink contours), the registration propagated from end-diastole (green contours) and
the registration propagated from mid-diastole (frame 20, blue contours), for a mid-
systole short-axis slice. (Color figure online)
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The ultimate goal of registration or segmentation is to extract quantitative
parameters in order to understand, estimate, and classify patient’s motion, defor-
mation or shape abnormalities. As an application, we intend to detect abnormal
AHA zones from regional volume changes using the standard two approaches
and our proposed coupling method. Regional volumes are clinical indices already
measured in clinical practice from echocardiography [2] in some cases but rarely
measured in MRI partly due to insufficient reliability of the current methods.
Previous work also used regional volumes as a way to personalise an electro-
mechanical model as it overcomes the aperture problem of tracking contours
using Cine MRI only [9].

2 Methods

2.1 Patient Population and Pre-processing

Image Acquisition. To validate the proposed method against alternatives, 20
patient scans were collected from 3 different clinical studies. The first 10 patients
were recruited after ST-elevation myocardial infarction and images were acquired
on a Siemens 3 T mMR. The next 10 patients were scanned on a Philips 3T
Ingenia after ST-elevation myocardial infarction. Ethical approval and written
consent were obtained for all patients. Imaging protocol consisted of 2 chambers,
3 chambers, 4 chambers and short-axis stack Cine images to evaluate the car-
diac function as well as short-axis delayed enhancement (LGE) sequences 10 min
after injection of 0.4 mmol/kg of Gadolinium. Image resolution varied between
1.32× 1.32× 9 mm3 and 1.42× 1.42× 10 mm3 and contained 25 to 30 frames per
cardiac cycle.

Short-axis image processing. All images were analyzed by 3 experts on Seg-
ment1 and then manually corrected after consensus. Image processing of the
Cine MRI images consisted of semi-automatic segmentation of the left ventricle
endocardium and epicardium on all the short-axis slices and every time frames.
Image processing of the LGE MRI required manual segmentation of the left
ventricle and semi-automatic segmentation of the scar using Otsu thresholding
model [5], as thresholding methods and manual corrections are still the clinical
standard despite progress [1,6] towards automatic infarct delineation as demon-
strated in the STACOM’12 challenge.

3D modelling. MR spatial resolution of both the Cine and the LGE sequences
is highly heterogeneous with a slice thickness of 9 to 10 mm leading to a staircase
effect when creating a mesh directly from the stack of short-axis binary masks. To
smooth this effect, the short-axis 2D segmentations were first realigned around
the long-axis to prevent from potential artifacts due to to different breath holding
positions. For this, the long-axis was defined as the line linking the barycentres
of the apical and basal endocardial contours. For each slice, the barycentre of

1 Segment is a freely available software available at http://segment.heiberg.se.

http://segment.heiberg.se
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Fig. 2. (Left) Division of the 3D mesh into AHA zones for the creation of regional
volumes defined as the volume between the barycentre of the LV and the endocardial
surface of the AHA zone. (Right) 3D mapping of the scar regions from short-axis LGE
images.

the endocardium was then translated to the long-axis. Second, the polygons
formed by each 2D binary masks were linearly interpolated in the z dimension
to allow homogeneous resolution. 3D meshes were then created using the CGAL
4.8 library2. A sequence of 3D segmentations was therefore obtained from Cine
MRI. From LGE images, a 3D geometry was created similarly from the endo-
cardium and epicardium delineation. The 2D binary masks of scar delineation
were then mapped onto this mesh after iso-resampling. 3D meshes were divided
into 17 AHA zones and regional volumes for Cine MRI and scar percentage
(number of mesh elements with a scar over the total size of the AHA zone) for
LGE MRI, were computed for each AHA zone. Each AHA zone containing at
least 1% scarred tissue was labeled as a scar zone. Figure 2 illustrates these two
pipelines. The effect of spatial interpolation errors was minimized by averaging
the measurements over the AHA zones, larger than the slice resolution.

2.2 Proposed Segmentation and Registration Coupling

Evaluation of local properties such as regional volume change, is usually per-
formed by studying a time sequence of meshes created by segmentation or by
propagation of deformation fields on an initial mesh. An intermediate approach
that takes the advantages of both approaches is presented here.

Sparse Bayesian Registration. Image registration was based on the sparse
Bayesian algorithm presented in [8]. Images were first upsampled to an isotropic
resolution using a linear interpolator. Pairs of consecutive images are registered
and the estimated transformations are chained along the cycle. Our implemen-
tation uses a three-level multiresolution scheme and the parameters described in
[8], which were evaluated on the STACOM’11 registration challenge dataset.

Coupling segmentation and registration. In order to soften the heavy influ-
ence of the segmentation on the results of a registration, all 3D segmentations

2 The Computational Geometry Algorithms Library is available at www.cgal.org.

www.cgal.org
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of the cardiac cycle are used in our approach as an initial mesh to which the
corresponding registration is applied. More precisely, let’s call Mt the mesh cre-
ated from the segmentation of the cardiac frame t and fj→j+1 the deforma-
tion field computed from the registration of frames j to j + 1. These deforma-
tion fields may be composed and inverted to register any frame into another
one: fi→j = fi→k ◦ · · · ◦ fj−1→j . Therefore, if the cardiac cycle is imaged into
N frames, there exists N possible meshes for each frame: {M j

i }i∈[1,N ] where
M j

i = fi→j(Mi) is the deformed mesh at time j coming from the segmentation
of frame i.

2.3 Regional Volumes

In this paper we decided to focus on regional volume changes as an index for
local contraction deficiency caused by the presence of scar tissue (as previously
shown using a electromechanical model of the heart in [9]). Regional volumes are
defined as the volume formed by the endocardial surface of the AHA zone and the
barycentre of the LV (Fig. 2 left). This measure is segmentation-based and can be
easily measured from independent meshes. Additionally, this measure is robust
to small registration or segmentation errors since it averages the displacements
of all points of the selected surface. We compute it via three different ways:

(i) Segmentation: Regional volumes are computed for each mesh created
directly from the segmentation and compiled as a time sequence for each
AHA zone α:

V Seg
regα

(j) = Vregα
(Mj)

(ii) 3D segmentation + registration: AHA zones are created on the end-
diastolic mesh and this mesh is deformed under the registration deformation
fields. Consistent regional volumes sequences are then extracted for each
zone:

V 3DSeg+Reg
regα

(j) = Vregα
(f0→j(M0))

(iii) Our coupling: segmentation + registration: Regional volumes are
computed for every combination of 3D segmentation + registration and
the mean value measured for each time point:

V Coupling
regα

(j) =
1
N

N∑

i=0

Vregα
(fi→j(Mi))

2.4 Statistical Analysis

We hypothesize that maximum regional volume change enables to detect zones
containing scar tissue. Regional volume changes were computed as the relative dif-
ference between the regional volume at time t and the regional volume at time 0
(end-diastole). The maximum regional volume change was then measured as the
minimum over time of the regional volume change (also called regional ejection
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fraction). Maximum regional volume change of scar and healthy zones were com-
pared statistically using Student’s t-test and the level of statistical significance
was set to a p-value < 0.05. Additionally, in order to evaluate the accuracy of the
regional volumes in predicting the position of a scar zone, ROC analysis was per-
formed and the Area Under Curve (AUC) computed. A perfect prediction tool cor-
responds to an AUC of 1 while a AUC of 0.5 corresponds to a coin toss.

3 Results

3.1 Comparison of Volume Changes Between Methods

Differences in the application of the deformation fields from the end-diastolic
frame or any other frame were noticed for every case. Figure 3 (bottom) illus-
trates three examples on the same patient where the propagation from the first
frame (red contours), the segmentation (green contours), and the coupling curve
(blue contours), lead to different contraction levels. These differences impact the
computation of the regional volumes (Fig. 3 top). The left column illustrates ideal
cases where all three methods agree with a small difference. The middle column
illustrates examples where the segmentation is unreliable and inconsistent in time
leading to noisy regional volumes, probably due to inclusion/exclusion of papil-
lary muscles as shown in the bottom row. For these cases, using a registration
algorithm enables to smooth the results and improve the temporal consistency,

Fig. 3. (Top) Examples of regional volume change (between each frame and the first
frame, leading to a change of 0% at time 0 for all methods) of 1 patient, for 3 AHA
zones: (red) 3D Segmentation + registration, (green) segmentation, (blue) distribution
over the set of segmentations where the mean is the selected value for our coupling
approach. (Bottom) Corresponding short-axis images where yellow circles highlight
the AHA zone to consider. Contours are colored with the same code as the above
curves. (Color figure online)
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for both the standard registration or the proposed coupling. For the right col-
umn, both the standard approaches are incorrect: the segmentation is noisy but
within an acceptable level, however the registration using the first frame leads
to overestimated contraction. The standard deviation of volume changes over all
the segmentations propagated to a given frame is represented by a blue errorbar.
Its average amplitude at end-systole around 20% illustrates the high influence
of the initial mesh for the quantification of the deformation.

3.2 Ability to Locate Scar Zones

As shown in Fig. 4, all methods agree that maximum regional volume change
is lower for scar zones (in red) than for healthy tissue (in blue) for every AHA
zone. This difference is even significant (p < 0.05) for 7 or 6 of the 17 AHA zones
depending on the method used to calculate the regional volumes. Note that
lateral zones (5, 6, 11, 12) present only 0 to 3 scar regions making statistical
significance unreachable. It is also interesting to note that the mean healthy
regional volume is highly dependent on the AHA zone. A unique threshold for
the full myocardium would therefore be inadequate.

More precisely, segmentation seems to be the least reliable of the three meth-
ods and fails to differentiate the scars on zones 1 and 16. Moreover, 3D seg-
mentation + registration fails to separate healthy from scar tissue on zone 11.
Our coupling approach, on the other hand always differentiates scar vs non-scar
regional volume changes.

Fig. 4. Maximum regional volume changes for each AHA zones using the 3 methods.
Blue (resp. red) bars represent the means and standard deviations for healthy (resp.
scar) areas. Stars (*) indicates significant differences (p< 0.05). Green ellipses highlight
failed differentiation. (Color figure online)

Additionally, AUC values are presented Table 1 and examples of ROC curves
that led to the measurements of AUC values are shown Fig. 5. The mean accuracy
of the coupling method (0.84 ± 0.10) is significantly higher than the standard seg-
mentation method (0.78 ± 0.14) and higher than the standard 3D segmentation
+ registration approach (0.82 ± 0.10) although not significantly. Additionally,
the coupling methods reaches the best detection in 8 zones. In contrast, segmen-
tation is better than our coupling in 5 zones and 3D segmentation + registration
in 3 zones. Finally, the proposed approach never shows the worst performance.
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Table 1. AUC (Area under Curve) values from ROC analysis for each AHA zone and
each method for the accuracy in the detection of the scar zone. Bold values represent
best accuracy.

AHA zone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

n. of scars 9 17 12 3 0 1 13 17 13 4 2 3 15 17 8 5 15

4D Seg 0.56 0.76 0.77 0.82 0.00 0.74 0.68 1.00 1.00 0.63 0.78 0.75 0.85 0.96 0.72 0.61 0.87

Our coupling 0.75 0.96 0.73 0.90 0.00 0.63 0.76 1.00 0.96 0.75 0.81 0.76 0.96 0.92 0.67 0.73 0.88

3D Seg + Reg 0.74 0.88 0.71 0.92 0.00 0.53 0.71 0.86 0.89 0.92 0.78 0.75 0.96 0.92 0.66 0.72 0.89

Fig. 5. Examples of ROC curves measuring the accuracy of the infarct detection for
each 3 methods on 3 AHA zones.

4 Discussion and Conclusion

In this paper, we highlighted the lack of consistency between the two standard
approaches for deformation estimation and the need for a more robust, interme-
diate approach. We proposed a coupling method that combines both the output
of the registration and the segmentation of all the cardiac frames. We illus-
trated this method by measuring the regional volumes and studied their ability
to detect infarct tissue on 20 patients. Results showed that segmentation, stan-
dard registration and our approach can all be accurate in the scar detection.
However, the detection was more systematic using the proposed coupling, which
gathers the best assets of both methods (ground truth segmentation, spacial
and temporal smoothness) without their drawbacks (noisy segmentation, exclu-
sion/inclusion of papillary muscles, influence of the initial frame). Moreover, this
method can easily be translated into clinical practice and applied routinely from
already available segmentation and registration tools. A larger database would
be required to validate these results and allow a more precise localization of the
scars from regional volumes. Future work will investigate better fusion algorithms
for a more robust coupling approach than the current simple averaging. We will
also study the extension of this approach to tagged images for the evaluation of
cardiac motion through radial, circumferential and longitudinal strains.
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