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Abstract. This paper presents a novel method that combines respec-
tive benefits of the tracking-based methods and the Gabor-based non-
tracking approaches for improving the motion/strain quantification from
tagged MR images. The “tag number constant” concept used in Gabor-
based non-tracking methods is integrated into a recent phase-based reg-
istration framework. We evaluated our method on both synthetic and
real data: (1) on a synthetic data of a normal heart, we found that the
constraint improved both longitudinal and circumferential strains accu-
racies; (2) on 15 healthy volunteers, the proposed method achieved bet-
ter tracking accuracy compared to three state-of-the-art methods; (3) on
one patient dataset, we show that our method is able to distinguish the
infarcted segments from the normal ones.

Keywords: Cardiac tagged MR -+ Strain - Tag number constant
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1 Introduction

The quantification of regional myocardial motion and strains remains a cen-
tral challenge for diagnosing heart diseases. Tagged magnetic resonance imaging
(TMRI) is currently the gold standard for quantifying local myocardial deforma-
tions. The underlying technique is based on the creation of non-invasive magnetic
markers (tags) that move with the myocardium over the cardiac cycle. Tracking
these tags permits the recovery of underlying cardiac deformations.

As for the state-of-the-art on cardiac motion tracking from TMRI, the reader
is referred to [1] for a thorough analysis. We provide here a brief discussion
relevant to this paper. All the developed algorithms can be roughly classified into
two categories: the tracking-based and the Gabor-based non-tracking methods.
The tracking-based methods consist in (1) tracking the myocardial motion by
HARP [2], optical flow or any other non-rigid registration technique and (2)
deriving the strain from the tracked field. One limitation of such methods is that
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the computed strain is highly sensitive to the regularization parameter used for
the tracking [3]. As a result, Qian et al. [3], Bruurmijn et al. [4] and Kause et al.
[5] opted for bypassing the tracking issue. They proposed to directly compute
Eulerian strain maps from spatial tag frequencies that were filtered out by Gabor
filters. The idea is that temporal variations in spatial tag frequencies reveals the
stretch /shortening of the myocardium. For example, an increased spatial tag
frequency means that the tissue undergoes a local contraction. All of the above
groups made use of this concept to compute the deformation gradient tensor
which is further related to strain. They all used the assumption that the Number
of Tags between two myocardial points remains Constant over the cardiac cycle
(denoted as NTC hereinafter). This assumption is implicit in [3] while explicit
in both [4,5]. The authors claim that it makes their strain estimate independent
to any tracking field. However, they overlook that a tracking is always required
for reporting strain evolution at all time points per material point, which is of
clinical importance in diagnosing heart diseases like dyssynchrony, infarction etc.
In this paper, we propose to integrate the NTC into a recent phase-based reg-
istration framework [6]. By exploiting NTC as constraints defined in the anatom-
ical directions of the heart, we aim to reduce the dependency of the strain output
to the amount of regularization and report strain curves per material point. The
constraints are used as an additional step for refining the tracking of myocardial
points located in the middle of the myocardium. The role the NTC plays in
improving the quantification is evaluated on both synthetic and real data.

2 Data Acquisition and Preprocessing

A full description of the acquisition of the TMRI used can be found in [1].
The data consists of three sequences with orthogonal tagging directions. In the
following, the sequence is identified by the index k (k =0, 1,2).

We follow the preprocessing steps described in [1]. It consists of (1) the com-
putation of HARP phase; (2) the manual segmentation of the left ventricle (LV)
at end-diastole and its resampling to a volumetric mesh. The resampled mesh has
three layers in the radial direction: endocardium (endo), epicardium (epi) and
a middle layer located between them (mid); and (3) the division of LV domain
into local windows according to the AHA standard. The apex segment (n° 17)
was further subdivided into three equal parts, resulting in 19 windows in total.
Gaussian window functions (Fig. 2(b)) were then defined for each window.

3 Methodology

We chose to track each of the endo/mid/epi layers independently (This choice
is justified later in Sect. 3.1). First, we track each of the endo/epi/mid layers by
the purely phase-based registration (Sect. 3.2) using a recent parametric motion
model (Sect. 3.1). Second, we refine the motion of the mid layer using the phase-
based registration with NTC constraints (Sect. 3.3). We chose not to refine the
endo and epi layers because they subject to tracking artifacts which impact the
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computation of accurate number of tags that we impose as constraints. The way
we implement the NTC constraint is later detailed in Sect. 3.3.

3.1 Motion Model

We use the parametric model proposed in [1] to represent the motion. With the
acquisition protocol used, there is a poor tag resolution in the radial direction
(only 2 or 3 line tags), making it difficult to capture accurate transmural motion
variations [1]. As a result, we decided to remove the three parameters that rep-
resent the transmural gradients of Rad., Long. and Circ. (RLC) displacements
from the model. This leads to a 9-parameter model per window per layer:

=> P (x)v(x)
i
with vV (x) = (ax)l(i)(x) +alD e (x) 4 bg))éT x
(af 19 (%) + af D (x) + b)),
(a319(x) + al)e® (x) + ) p(x)8c(x)

where v is the local motion inside the window i, ¢(* are Gaussian window
functions, and v is the global motion that results from mixing local motions.
&4(x) (d = r,1,¢) are RLC directions. (V) and ¢(¥ are local coordinates along
Long. and Circ. directions respectively. p is the distance to the long axis [1]. In
this way, {bg),b(i) b(i)} represent translations, {a”i , Cic)} are Long. and Circ.
strains, and {al(z), a, } are Long. - Circ. shearings. {aﬂ ,aSQ} are Rad. displace-
ment gradients in Long. and Circ. directions (not transmural). We then have
9 x 19 parameters for modeling the motion of each of the endo/mid/epi layers.
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Fig. 1. Illustration of (a) the TMRI image, (b) the HARP phase, (c) the unwrapped
phase computed taking a pixel’s phase value as reference.

3.2 Phase-Based Registration Without Constraint

We aim to optimize the motion v according to phase-based SSD [6]:

Ephase(v /szk x, u(x Aref( ) — Ai(x+u(x)+v(x))2dx (2)

k=0
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Fig. 2. The surface layer mesh with windows and the d_eﬁnition of control point pairs.
(a): LV mesh and windows; (b): the window function ¢ (x); (c), (d) show respectively
the control point pairs in Clirc. and Long. directions.

Where k indicates the sequence, and ref indicates the reference time (the last
frame in our case). Al is the unwrapped phase as is illustrated in Fig. 1. We use
the unwrapped phase for the formulation because it facilitates the computation of
tag numbers which will be described later in Sect. 3.3. Both u and v are motions
from ref to t. u is the current motion which is known, while v is the motion
model in Eq.1. We opt for registering all other frames to ref for avoiding the
accumulation of errors during the tracking. wy is a weight function introduced
in [6]. The reader is referred to [6] for more details.

3.3 Phase-Based Registration With Constraint

In this section, we describe how to implement the NTC for refining the motion. It
is rather intuitive that the number of tags between two material points remains
unchanged throughout the cardiac cycle. As a consequence, we propose to add an
additional constraint energy to Eq. 2 for penalizing the deviation of tag numbers
to that at ref.

First, we select a number of myocardial point pairs following the circ. and
long. directions as shown in Fig.2(c) and (d). For each window, the boundary
mesh nodes are paired in circ. and long. directions. Those node pairs are chosen
for defining the constraint. We take all such point pairs from the mid-level and
apical windows. Those from the basal windows are excluded because segmen-
tation errors are more severe [1|. We denote these point pairs by (p;,q;) with
j =0to J — 1 where p; and q; are the material coordinates at ref time.

The number of tag between p; and q; is then computed by normalizing their
unwrapped phase difference by 27. The constraint energy is defined as follows:

J—-1 2 1 1 2
E0=3 3 (5o - o)
j=0 k=0
with Dy = 45 (a;) — Ay (py) ¥

Dp.,; = Au(Tulay) + v(q))) — AL (Tu(p)) + v(py))
Tu(x) = x + u(x)

where u has the same definition as that in Eq.2 and v is given by Eq. 1.
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Fig. 3. Ground truth meshes, short- and long- axis slices of the synthetic TMRI (three
sequences of line taggings are multiplied for better visualization).

E. can be decomposed into a number of local quadratic forms. Actually, it
is upper-bounded by the sum of those quadratic forms. The reader is referred to
the appendix for more details on the derivation of the following equation:

v) <Y EPWY) (4)

where i indicates the window, v(?) is the local motion described in Eq.1, and
Egi) is the local quadratic form corresponding to the window .

Similarly for Eppqese(V), we have Eppase(v) < Y, Ef(fhase( ) with E;Qase
being local quadratic forms according to [6]. Finally, by combining the phase-

based term Epp,sc. and the constraint energy E., we have E defined as:
B(¥) = Eprane(¥) + ME(v) €3 (Bl V) + AEEDv)) - (5)

Where ¢ is a normalizing factor. We set it to 10* empirically in our experiments.
A is the weight of the constraint. It is tuned later in Sect. 5.1. Equation 5 means
that F is upbounded by the sum of local energies F ,wse+,\§E( . F is minimized
by optimizing each of the local quadratic form through solving a linear system.
The whole process is iterated until convergence.

4 Generation of Synthetic Images

We combined a real 3D TMRI recording denoted as Z}, and an electro-mechanical
(E/M) model simulating the cardiac electrophysiological activation and the
myocardial contraction [8] for generating synthetic images.

It consists of four steps: (1) we track the LV in the real recording by [1].
The output is a sequence of volumetric meshes denoted as M?; (2) we use the
E/M model to simulate myocardial deformations corresponding to the LV geom-
etry M, leading to another sequence of meshes S*; (3) since M and S are
equivalent, it is easy to build a Thin Plate Spline (TPS) transformation that
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warps the real images Z}, to the simulation S'; and (4) we correct the appar-
ent motion extracted in (1) by transformations contained in S* sequence so
that the motion in the simulated images corresponds to the E/M model. Each
myocardial voxel position at time ¢ is mapped back to the first frame. The new
intensity is then computed by linearly interpolating Z,g. In this study, we simu-
lated a synthetic data for a normal heart shown in Fig. 3. The spatial resolution
is 0.96 x 0.96 x 7.71 mm and line tag spacing is 7mm.

5 Result

5.1 Synthetic Data

We use the synthetic data for tuning the constraint weight A (Eq.5) and inves-
tigating whether the constraint helps improving strain accuracy. Here the eval-
uation only involves the mid layer where the constraint was used. We display
in Fig.4(a) the evolution of RMSE motion errors at end-systole with A. From
the result, we observe that there is an optimal value around A = 1.5. We then
compared the performance between using A = 0 and A = 1.5 on strain quantifi-
cation in Fig.4(b) and (c). We used the Engineering strain as described in [1].
We see that for both strains, using the constraint gives smaller RMSE strain
errors. This confirms the interest of utilizing the NTC constraint.

RMSE motion Err. (mm)
RMSE Long. strain (%)

0 0.5 1 1.5 2 25 3 35 10 20 30 40 50
2 Frame number

(a) Tuning A (b) Long. strain

—— =15
— =0

RMSE Circ. strain (%)
I S

10 20 30 40 50
Frame number

(c) Circ. strain

1g 4. (a):Evolution of motion errors at end-systole with the constraint energy weight
A; (b): Temporal evolution of Long. and (c): Circ. strain errors.
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Fig.5. (a): Volunteer data landmark tracking errors using A = 1.5 compared to the
state-of-the-art; (b) Circ. strain curves on a patient with fibrosis. Solid lines show
normal segments while curves with markers show segments with fibrosis.

5.2 Real Data

We also evaluated our method on 15 healthy volunteer datasets which are pub-
licly available from [9]. Each volunteer data has 24 manually tracked landmarks
located in the basal, mid and apical myocardium. These landmarks were warped
forward in time by computing barycentric coordinates in the first frame and prop-
agating them through the sequence of volumetric meshes. From Fig. 5(a), we see
that the dispersion of motion errors is reduced when compared to the purely
phase-based registration (without NTC constraint) PPM [6]. This result is fur-
ther confirmed by Levene’s test. The returned p-value is below 0.05, rejecting
the null hypothesis that their variances are equal. Besides, our method slightly
outperformed the other two recent methods HARPAR, (regularized HARP) [1]
and MEVIS (quadrature-filter based) [9] in both median and variance values.

Moreover, our method was evaluated on a patient who had fibrosis at the
entire inferior wall, part of the inferolateral wall and part of the inferoseptal
wall (AHA n° 3,4,5,10,11,15) confirmed by late-enhancement MR. In Fig.5(b)
we observe reduced Clirc. strain values for those infarcted segments, showing a
clear discrepancy between normal segments and those with fibrosis.

6 Conclusion and Discussion

This paper integrates the NTC constraints into a recent phase-based registra-
tion framework for refining the tracking. On synthetic data, we observe that
integrating the constraint improved both motion and strain (Long. and Cire.)
accuracies. On healthy volunteers, the proposed method gives better accuracy
compared to three state-of-the-art algorithms. On a patient with infarction, we
observe reduced Clirc.strain values for those AHA segments with fibrosis. We
admit that a more thorough validation needs to be done both synthetically and
clinically in the future. However, our aim is to show the potential benefits of com-
bining respective advantages of both methods (tracking-based and Gabor-based
non-tracking), which we consider as an interesting research field.
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Appendix
In Eq. 3, conducting 1%*-order approximations on A! leads to:

E.(v) =

A () = A7 (py)  AL(Talqy)) — ALTu(p))) +0L(v)?
ZZ< K (q)% b @y)  AL(Tu(qy)) ;75 (P;)) + G ))

(6)
with 67 (v) = VAL(Tu(q))) - v(a;) — VAL(T.(p;)) - v(P;)

Instead of computing A}, maps by phase unwrapping which is highly sensitive
to image artifacts, we chose to circumvent the issue by (1) computing V.A%
from HARP phases by the method described in [2] and (2) further computing
Aj(q;) —AL(pj) (1 =ref and t) by curvilinear integration of V.AJ,. The path of
integration is easily defined using our mesh topology. Equation 6 then becomes:

=S i)
J k

_ i 1 (U ref 1 fTu(ay) .
with 3 = o VA, (x)dx — o VAL (x)dx
P

i Tu(p;)

(7)

where ﬁj is known and &7 (V) contains the model parameters.

' )
We first replace both o) (p;) and ¢ (q;) in &7 (v) by g( D= M
This is justified by the fact that p; and q; are symmetric to the WlndOW center
(see Fig.2), thus ¢ (p;) ~ ¢ (q;). §.(v) then becomes:

I(v) ~ Zgji)ﬁ;i) (V(i))

with £ (v) = VAL (Tu(qy)) - v (ay) — VAL(Tu(p;)) - v (p))

(®)

Then, applying the Partition-of-Unity property [7] of g§i) leads directly to [7]:

) < Zzg< i) Z (ﬁﬂ _ v > ZE@) () 9)

Where Eéi) is quadratic since £§-i) is linear in the motion parameters of v(¥).
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