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Abstract. Due to its complex geometry, the basal ring is often omit-
ted when putting different heart geometries into correspondence. In this
paper, we present the first results on a new mapping of the left ventricle
basal rings onto a normalized coordinate system using a fold-over free
approach to the solution to the Laplacian. To guarantee correspondences
between different basal rings, we imposed some internal constrained posi-
tions at anatomical landmarks in the normalized coordinate system. To
prevent internal fold-overs, constraints are handled by cutting the vol-
ume into regions defined by anatomical features and mapping each piece
of the volume separately. Initial results presented in this paper indicate
that our method is able to handle internal constrains without introduc-
ing fold-overs and thus guarantees one-to-one mappings between different
basal ring geometries.
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1 Introduction

Building statistical models (or atlases) of the heart is central for investigating
and understanding tissue functions and properties. A main step in this direction
is the definition of reference frames, or unitary domains, that allow to compare
different geometries in a meaningful way. Ideally, these domains should assign
equal coordinates to corresponding anatomical features and, at the same time,
align the intermediate zones that might present different shapes (i.e. different
trabeculae architectures).

The definition of cardiac atlases is an active field of research and several
methods to put the geometries into correspondence and build atlases have been
proposed [13,19]. Existing methods can be split into two main categories. Meth-
ods that deform a geometry to another one [7,12] and those that build a para-
metric description of the ventricular shapes, using basis functions like thin-plate
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splines [2], hermite functions [11] or B-Splines [5], to define a mapping between
different geometries. Recently, parameterizations using the solution to the Lapla-
cian have been proposed to put cardiac surfaces into correspondence. In [14,16],
a 3-step method to map the left ventricle cut at basal level onto a disk domain
is proposed. A first unconstrained map is generated by solving the Laplacian
with the boundary of the shape mapped to the boundary of the domain. Then,
the apex is fixed to the center of the domain and a final parameterization if
calculated using a quasi-conformal metric. Another example is presented in [10],
where constraints for the atrial surface mapping are imposed by defining bound-
ary conditions inside the domain.

However, most of the methods rely on a simplified geometry of the heart
at the basal region, using a flat “top” and discarding the basal ring due to
its complex shape. A main concern in cutting the geometry using a short axis
plane to build cardiac models is the uncertainty of cutting possible connectivity
of cardiac muscular architecture [15]. Although such connectivity has not been
rigorously proved, several works [1,6] support the importance of fiber orientation
in electromechanical simulations of the heart and, thus, we believe that basal
connectivity should be explored. We propose to use the solution to Laplacian in
order to define coordinates over the basal region of the left ventricle (LV). This
enables to take this region into account when comparing different LV volumes. To
this end, we propose to map the left ventricular basal structure to a normalized
coordinate domain imposing some inner fixed positions on certain anatomical
landmarks that are extended over the rest of the volume.

In this study we investigate the definition of a volumetric left ventricular
base reference frame with constrained coordinates at some anatomical features,
or places, based on the discrete mesh Laplacian presented in [17] and defining
interior fixed coordinates as in [8]. This method presents the following advan-
tages: allows to handle arbitrary polygonal constraints, can be extended to other
organ geometries and it is easy to implement and reproduce.

2 Materials and Methods

To develop the method we have used the normal hearts from John Hopkins
Canine Hearts database1 [9]. This database consists of ex-vivo magnetic reso-
nance image (MRI) volumes of canine hearts. More precisely, to focus on the
basal ring, we studied the SA slices comprising the 35% (i.e. regions 1–6 of the
AHA division [3]) of the left ventricle (LV) volume. We generated the initial
volumetric meshes defining a vertex for each voxel and their connectivity from
their 26-adjacency in the image.

To constrain interior coordinates, anatomical features and extracted geo-
metric landmarks were fixed. Anatomical features include the basal ring, the
endocardium and the epicardium. Geometric landmarks consist of medial sur-
face of the volumes [18], the boundaries between interoseptal and inferoseptal
and between inferolateral and anterolateral basal regions (see Fig. 1).
1 Avaliable at: http://cvrgrid.org/data/ex-vivo.

http://cvrgrid.org/data/ex-vivo
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2.1 Left Ventricle Volume Parameterization Using Laplacian
Solution

Laplacian operators [4] are powerful mathematical tools that allow to define coor-
dinate systems on manifolds, or volumes, with values fixed at some locations.
These fixed values are called boundary conditions (BC) and can be coordinates
constraints (Dirichlet BC) or derivative constraints (Neumann BC). When defin-
ing coordinate systems, Dirichlet conditions allow to constraint specific coordi-
nates to specific locations, which are then extended by the solution of the Lapla-
cian over the whole domain. This also implies that their setting is central to put
different geometries into correspondence.

Given a 3D mesh M extracted from an MRI volume, we propose to obtain
a parameterization from the Cartesian space to our defined 3D unitary domain
D = [0, 1] × [0, 1] × [0.65, 1] (see Fig. 1) using the 3 coordinate functions. We
use a similar nomenclature as spherical coordinates and name our three unitary
domain coordinates radius r for the depth coordinate ranging from endocardium
to epicardium, angular θ for a circumferential coordinate defined in short axis
(SA) and elevation ϕ for a coordinate defined in SA along the basal part of the
left ventricles. Mathematically, we want to define a mapping between our mesh
M to the unitary domain D:

R
3 ⊃ M → D ⊂ R

3

(x, y, z) → (r, θ, ϕ)

To obtain this mapping, we use the solution to the Laplacian to define each
coordinate:

1. Δr = 0 with r|Mr
= rC

2. Δθ = 0 with θ|Mθ
= θC

3. Δϕ = 0 with ϕ|Mϕ
= ϕC

⎫
⎬

⎭
(1)

for Δ the Laplacian operator, Mr, Mθ, Mϕ the specific anatomical sites in
the 3D mesh M where the values of each coordinate, r, θ, ϕ are constrained,
respectively, to rC := rC(x, y, z), θC = θC(x, y, z) and ϕC = ϕC(x, y, z).

As our domains are discrete meshes obtained from MRI volumes, we use
the discrete Laplace operator to compute solutions to (1). By the mean value
Theorem [4], solutions to Eq. (1) can be approximated by the following 3 linear
systems (one for each coordinate):

1. Ar = bR; 2. Aθ = bθ; 3. Aϕ = bϕ (2)

with A a sparse matrix defined from the triangulation adjacency, the size of A
being NvxNv with Nv the number of mesh vertices [3] and b the independent
term given by the boundary conditions evaluated at each anatomical site (Mr,
Mθ, Mϕ). If N(i) is the 1-ring of Vi defined as the n adjacent voxels in the
volume, then A is given by:
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A =

⎧
⎪⎨

⎪⎩

1 if j ∈ N(i), i �= j

0 if j /∈ N(i), i �= j

−∑
k �=i aik if i = j

(3)

Given that the matrix A is the same for the 3 coordinates and only depends on
the mesh connectivity defined by the MRI volume, the only thing that remains
to be defined are boundary conditions br, bθ and bϕ and their corresponding
anatomical meshes.

Fig. 1. Schematic description of fixed landmarks and their values in D. Left: vertical
long axis view, with the upper surface in light blue, the lowest plane in dark blue, the
endocardium in green, the epicardium in red and the medial surface in grey. Right: SA
view with colored AHA basal regions. (Color figure online)

2.2 Constrained Coordinates for the Left Ventricle

The fixed coordinates were defined using the following anatomical structures
used by clinicians: the basal ring, the endocardium and the epicardium. The
SA cut defining the lower boundary of the basal region was also considered to
complete its boundary. Moreover, to demonstrate the capacity of the method
to constrain interior boundaries, and have a better definition of the radial and
elevation coordinates at the basal part, we have extracted the medial surface of
each volume, as defined in [18]. In Fig. 2 we show these landmarks with respect to
the volume. These anatomical landmarks are used to define boundary conditions
for each coordinate as follows.

The values of some coordinates are well defined on some of the sites, like
radius equal 0 at endocardium and equal 1 at epicardium. However, it is not so
straightforward to extend such values to the complete basal region. We propose
to use the Laplacian for surfaces to extend the values that are easily identified
to the whole basal ring boundary (endocardium, epicardium, SA lower cut and
basal region upper surface) to define the boundary functions for each coordinate.
Such boundary functions will be used to obtain the coordinate value inside the
whole volume solving each of the systems in (2).
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)c)b)a

)f)e)d

Fig. 2. Examples of segmentations masks: (a) whole volume, (b) upper surface, (c)
lower plane, (d) epicardium, (e) medial surface and (f) endocardium

Radial Coordinate. The radial coordinate r ∈ [0, 1] normalizes the width of
the basal region and, thus, it should be set to r = 0 at the endocardium and r = 1
at the epicardium. To obtain a more accurate transition we force an additional
interior constraint at the medial surface with r = 0.5. Therefore, the anatomical
mesh Mr is given by endocardium, epicardium, basal ring, SA lower plane and
the medial surface. The boundary function br is obtained from the values fixed
at endocardium, epicardium and medial surface as follows.

We extend the radial coordinate over the basal ring upper surface and lowest
SA plane of the volume ((Fig. 2b and c), respectively), using the solutions to the
Laplacian for each surface (basal ring and SA cut). For each surface, the matrix
A in (3) is computed using the connectivity given by their masks in the MRI
volume. As boundary conditions, we set r = 0 in the intersection of each surface
with the endocardium, r = 0.5 in the intersection with the medial surface and
r = 1 in the intersection with the epicardium.

Angular Coordinate. The angular coordinate θ is the circumferential coor-
dinate defined in SA along the volume, counterclockwise positive defined. This
coordinate allows the unfolding of the LV as shown in Fig. 1. To define its origin
θ = 0 we have used the boundary between basal interoseptal and basal infer-
oseptal regions defined by the American Heart Association (AHA). At the same
time, we have fixed θ = 0.7 in the boundary between basal inferolateral and
basal anterolateral regions. Although the “natural” coordinate value should be
0.5, we forced it to 0.7 to show the effect of fixing it.
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Angular values defined at the surfaces separating the septal-lateral regions
have to be extended to the whole anatomical site Mθ to define bθ. Since in
this case Mθ is given by the basal ring boundary, we independently solve the
Laplacian for endocardium, epicardium, basal ring upper surface and SA lower
plane with boundary conditions given by the intersection of the planes defining
the septal and lateral regions with each of the 4 surfaces. The solutions to these
Laplacians are used as boundary conditions in the second system of (2) to extend
the angular coordinate to the whole volumetric mesh.

Elevation Coordinate. The elevation coordinate ϕ is defined in SA along the
ventricular basal region and ranges from 0.65 at the lowest plane to 1 at the upper
surface. These values are extended to Mϕ given as before by the whole basal
region boundary to define bϕ. To do so, we solve 2 Laplacian systems, one for the
endocardium and another for the epicardium, with boundary conditions fixing
their intersection with the basal ring to 1.0 and their intersection with the lower
SA cut to 0.65. Finally, we propagate this elevation coordinate over the whole
basal volume using these solutions to the Laplacian as boundary conditions in
the 3rd system of (2).

3 Results

To illustrate the performance of the method, we have parameterized the ventric-
ular basal region of 3 normal hearts from JHU canine cardiac database, labeled
as DT080803, DT101703 and DT102403.

Figure 3 shows the 3 coordinate maps (r in 1st row, θ in 2nd row and ϕ in 3rd
row) and the remeshing for the 3 cases in the last row. Remeshings show each
coordinate isoline in a different color, red for r, green for θ and blue for ϕ. We
observe that the propagation of each coordinate fixed at its specific anatomical
site is smooth and homogeneous. This guarantees that the parametric map will
be differentiable and will provide regular remeshings. The quality of the remesh-
ing can be observed in the meshes of the last row, where we show the isolines
of each coordinate map. It is worth noticing that their distribution over basal
region is homogeneous in the 3 cases, which is a desirable property for a further
use in cardiac models.

4 Discussion

The definition of reference frames, or unitary domains, that allow to compare
different cardiac geometries in a meaningful way has several applications such as
shape and function analysis or integration of data from different modalities. In
this paper we have presented a method to obtain parameterizations of the left
ventricle basal ring into a unitary domain. Moreover, with our method, we can go
one step further and fix coordinate values in the unitary domain at anatomical
features to force a more meaningful coordinate assignment.
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DT102403 DT101703 DT080803

Fig. 3. Results of constrained coordinate extension. Top row: radial coordinate r. Sec-
ond row: angular coordinate θ. Third row: elevation coordinate ϕ. Bottom row: isolines
over the volume for each coordinate by color (red, green, blue) = (r, θ, ϕ) (Color figure
online)

In order to be able to compare different anatomies in the unitary domain, the
definition of the anatomical landmarks to be set as interior boundary conditions
plays a central role. Further analysis in this direction will be carried out. But
the simplicity of the method and its robust mathematical background makes it
a promising way to obtain a normalized anatomical space. On the other hand,
other unitary domains, different from the unitary cube should be studied, in
order to allow a clear definition of the apex central point and to take into account
the right ventricle, specially the junction between its free wall and the septum.
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