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Abstract. Muscle fibers in healthy hearts follow a regular geometry,
with streamlines that lie along close to parallel helical curves. This regu-
larity is disrupted in the presence of myocardial infarction which results
in a loss of contractile function due to the necrosis of myocytes and the
build up of collagen. However, intermediate situations also exist with
partly functional surrounding border zones. The precise manner in which
fiber geometry is remodeled following the occurrence of an infarct is not
known. Here we demonstrate the promise of Cartan frame fitting to dif-
fusion magnetic resonance images of the heart to address this question.
We use the error of fit of these models to the first principal eigen vec-
tor of the diffusion tensor to capture the degree of local fiber coherence.
The first study of its kind in application to myocardial infarction, our
experiments on porcine hearts reveal measures to assess damage that
are complementary to existing scalar ones, such as the apparent diffu-
sion coefficient or the fractional anisotropy. Cartan frame fitting provides
valuable additional information about local fiber geometry.

1 Introduction

In North America alone there are almost half a million sudden deaths each
year due to heart defects [16]. In patients suffering from structural heart dis-
ease over 85% of the cases arise from myocardial infarction (MI). Following MI,
the deposition of collagen (the main component of cardiac connective tissue) in
the scar triggers a prolonged ventricular remodelling process [11]. Studies have
shown that by 4 weeks after the occurrence of an infarct, mature fibrosis has
replaced necrotic myocytes [3,5]. This deposition of collagen is heterogeneous due
to surviving blood vessels which continue to supply oxygen to the peri-infarct
area [2], resulting in a mixture of viable and necrotic cells to form a border
zone (BZ), which in turn can generate lethal arrhythmias [12]. Developing non-
invasive methods to characterize the BZ has been the focus of many research
groups.

A common strategy is to use diffusion-weighted (DW) imaging to provide
scalar parametric maps of the apparent diffusion coefficient (ADC) and the frac-
tional anisotropy (FA), which can identify in vivo scar areas in patients with
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prior-infarction [15] and structural changes in infarcted porcine hearts, ex vivo
[8,14]. The molecular diffusion of water molecules reflects microstructural tissue
integrity and there is a gradual loss of fiber coherence in the ischemic BZ and
dense scar regions due to collagen deposition. The loss in fiber coherence leads
to a decrease in FA in these regions, while the deposition of collagen combined
with increased extracellular spacing results in elevated ADC values. This rela-
tionship between ADC and FA is illustrated by the examples in Fig. 1, with the
ADC map (top left) showing increased diffusion (yellowish tones) in the scar
tissue, and the FA map showing a corresponding decrease (dark blue tones) in
anisotropy (top middle) in an infarcted pig heart.

In healthy mammalian hearts myofibers are known to lie along helical curves,
an arrangement that is critical for normal mechanical and electrophysiological
function [4]. Numerous mathematical models for this arrangement have been
proposed in the literature including [1,6,9,10]. Much less is known, however,
about the manner in which heart wall myofibers rearrange in the presence of
infarcts. Qualitatively, in healthy regions the fibers maintain a smoothly varying
helical pattern, as revealed by tractography (Fig. 1, bottom left), while at loca-
tions affected by the infarct their geometry is much more chaotic (Fig. 1, bottom
right).

Motivated by the above considerations, we propose to use the error of fit
of Cartan frames to fiber orientation data from DW images as a measure of
fiber orientation incoherence. We demonstrate the association of regions with a
high error of fit with an infarct, while simultaneously providing parametric maps
of fiber geometry in healthy tissue. We provide experimental results on several
porcine hearts with infarcts and one that is healthy. As a preview of these results,
Fig. 1 (top right) shows that regions of low error of fit (dark blue) are consistent
with the healthy tissue, as corroborated by the ADC and FA maps. Regions
with high error of fit (yellow tones) correspond well with the infarcted regions,
where fiber incoherence is expected, but additionally include locations near the
epithelial and endothelial linings.

2 Methods

2.1 Modeling Fiber Geometry via Connection Forms

We utilize the methods of [7] to describe the geometry of fiber orientation in
the heart wall via rotations of a frame field that is fit to the DW data. Let a
point x =

∑
i xiei ∈ R3 be expressed in terms of e1,e2,e3, the natural basis

for R3. We define a right-handed orthonormal frame field f1,f2,f3 : R3 → R3.
Each frame axis can be expressed by the rigid rotation f i =

∑
j aijej , where

A = {aij} ∈ R3×3 is a differentiable attitude matrix such that A−1 = AT .
Treating f i and ej as symbols, we can write

[
f1 f2 f3

]T = A
[
e1 e2 e3

]T
. (1)
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Fig. 1. Ex vivo diffusion imaging of a pig heart. Top: The ADC map (left), with regions
of high diffusion shown in shades of yellow, the FA map (middle), with regions of low
FA shown in darker blue and the error of fit in degrees generated by fitting 1-forms
(right). Bottom: Streamline tractography seeded in a healthy region of the LV wall
(left) and in a region of the septum affected by the infarct (right). Both tractography
results are visualized from a circumferential direction. See text for a discussion. (Color
figure online)

Since each ei is constant, the differential geometry of the frame field is completely
characterized by A. Taking the exterior derivative on both sides, we have

d
[
f1 f2 f3

]T = (dA)A−1
[
f1 f2 f3

]T = C
[
f1 f2 f3

]T
, (2)

where d denotes the exterior derivative, and C = (dA)A−1 = {cij} ∈ R3×3

is the Maurer-Cartan matrix of connection forms cij . Writing f i as symbols,
(2) is to be understood as df i =

∑
j cijf j . The Maurer-Cartan matrix is skew

symmetric with zeros as diagonal entries so there are at most 3 independent, non-
zero 1-forms: c12, c13, and c23. 1-forms operate on vectors through contraction,
written as dw〈v〉 ∈ R for a general 1-form dw =

∑
i widei and vector v on

R3, which yields dw〈v〉 =
∑

i widei〈
∑

j vjej〉 =
∑

i wivi, since dei〈ej〉 = δij ,
where δij is the Kronecker delta. It turns out that the space of linear models for
smoothly varying frame fields is parametrized by the 1-forms cij . Since only 3
unique non-zero combinations of cij are possible, there are in total 9 connection
parameters cijk. These coefficients express the rate of turn of the frame vector
f i towards f j when x moves in the direction fk. With f1 taken as the local
orientation of a fiber and f3 taken to be the component of the heart wall normal
orthogonal to f1, Fig. 2 illustrates the connection parameter c123 describing the
rotation of fibers in the direction of a transmural penetration of the heart wall.
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Fig. 2. Connection forms measure the local rotations of the frame axes f 1, f 2, f 3. Here
we focus on the contraction of the 1-form c12 on the frame axis f 3 and compare its
values in a short axis slice of a pig heart with an infarct (middle) with those in a short
axis slice from a healthy pig heart (right). See text for a discussion.

Cartan frame fitting applies to smoothly rotating frame fields. In the presence
of infarcts fiber orientation coherence is lost and the fitting errors using this
method increase (Fig. 1 middle left). We shall exploit this association of frame
field fitting error with fiber incoherence.

2.2 Cartan Frame Fitting and Error Analysis

At each voxel we use the first principal eigen vector of a diffusion tensor recon-
struction to represent the fiber orientation as f1. We then estimate the heart
wall normal as the gradient of the distance function to the boundary of the
myocardium and take its component orthogonal to f1 to be f3. f2 is then taken
to be their cross product. To find the 9 connection parameters at each voxel
we use Nelder-Mead optimization to minimize a fitting energy. This energy is
defined at each voxel as the average of the angle between the measured orien-
tation from DW data at each voxel in a local neighborhood and that given by
rotating the frame field by a particular set of connections. Once this method
has converged to a set of connection parameters the fitting error at the voxel is
taken to be this average angular error between the model and the data.

2.3 Pig Hearts

In this study we used healthy and infarcted porcine hearts. The hearts were
freshly excised, suspended in a plexiglass phantom filled with fluorinert to elim-
inate artifacts and placed in an MR head coil for ex vivo imaging. All DW-MR
studies were performed on a dedicated 1.5T GE Signa Excite scanner using a
custom FSE pulse sequence. We used the following MR parameters: TE = 35 ms,
TR = 700 ms, echo train length = 2, b value = 0 for the un-weighted MR images
and b value = 500 s/mm2 when the 7 diffusion gradients were applied, respec-
tively. We used a 256× 256 k-space, FOV= 10–16 cm and a slice thickness of
1.2 mm, yielding a sub-millimetric voxel size. From each heart, select samples
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containing an infarct were cut to align with the short-axis view of the MR images
and prepared for histopathology to confirm the collagen deposition in the infarct
area. The details of the methods used to generate the chronic infarcts are pre-
sented in [8].

3 Results and Discussion

Reconstruction and Filtering. We used an established Rician smoothing method
to reduce noise in the diffusion images [13]. The parameters for this non-local
filtering method guided by voxel to voxel similarity were tuned to prevent over-
smoothing. We used the publicly available MedInria software to carry out the
filtering, and to then reconstruct the diffusion tensor from the raw diffusion
weighted scans, from which fiber orientations were extracted as the first prin-
cipal eigen vector. We used a threshold on the FA map as a mask to restrict
further processing.

Comparison with Histology. We first applied a combination of linear and non-
linear registration transformations using functions readily available in Matlab,
in particular imregtform, to align histological slices to their corresponding DW
slices. We then compared ADC maps with Cartan frame fitting-based error of
fit maps. Supplementing the earlier results in Fig. 1, Fig. 3 shows the ADC map
(left) the error of fit map in degrees (middle) and a histology image (right)
for a different slice of the dataset in Fig. 1 (top row) and for a selected region
from a different infarcted pig heart (middle row). The histology images show
intact myocytes in the normal tissue and altered tissue microstructure in the
infarcted zones. As depicted by the Masson Trichrome stain, the ischemic bor-
der zones (BZ) had collagen fibrils interdigitated between viable myocytes. In the
dense scar areas, necrotic myocytes were completely replaced by mature fibro-
sis (the final product of collagen degradation), resulting in a loss of myocardial
anisotropy. The bottom row shows tractography results for these cases. As before
there is qualitatively good agreement between regions with high ADC values and
regions with high error of fit (yellowish tones). The results also show regions of
viable tissue (greenish tones in the error of fit maps) within the infarcted areas,
which is corroborated by the tractography results. In particular, there appear to
be regions of coherent fibers within the septum of the first heart (third row left)
and the LV wall of the second heart (third row right and bottom row left).

Quantitative Results. Given the association between ADC and our error of
frame fit, it is natural to compare these measures quantitatively throughout
the myocardium. We did so for the 5 infarcted porcine hearts we analyzed by
computing Dice coefficients to describe the overlap, in the following manner.
For the same heart let A be the set of voxels with ADC value >0.6 and let B
be the set of voxels with error of fit >15◦. The ADC threshold is chosen based
on results in [8] which demonstrate the mean ADC value of normal tissue for
these DW scans to be below 0.5 with the mean value of border zone or scar tis-
sue regions being above 0.6. The error of fit threshold was chosen by empirical
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Fig. 3. We now register the histology to the DW images and show the ADC map (left)
the error of fit (middle) and the registered histological image (right) for a different
slice of the dataset in Fig. 1 (top row) and for a zoomed-in region of a different pig
heart with an infarct (second row). The corresponding tractography results are shown
in the third row. The bottom row shows tractography for the second case while seeding
separately from locations with low error of fit (left) and high error of fit (right). (Color
figure online)

considerations, but modest changes to it did not significantly alter the standard
Dice coefficient, computed as A ∩ B/A ∪ B, or a modified coefficient computed
as A ∩ B/A. These results, shown in Table 1 (left), demonstrate that typically
over 80% of the locations with increased diffusion also yield a high error of fit
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Table 1. Dice coefficients between voxels A with high ADC (>0.6) and voxels B with
high error of fit (>15) degrees.

Pig A ∩ B/A ∪ B A ∩ B/A

Pig 2 .40 .80

Pig 4 .43 .89

Pig 5 .47 .76

Pig 6 .46 .87

Pig 7 .27 .94

Fig. 4. Histograms of the c123 connection parameter over all voxels with low error of
fit in an infarcted heart (left) and over all voxels in a healthy heart (right).

using our frame fitting method, due to the loss of geometric coherence of fiber
orientations. However there are additional locations where fiber orientations are
not smooth, typically at the linings of the heart wall, or near the edges of a
collapsing and narrow right ventricle. Such regions are not picked up by the
ADC or FA measures likely because there is no increase in collagen or loss in
anisotropy there. As such, we hypothesize that these are regions where the fiber
orientation is simply distinct from that of neighboring locations, i.e., it does not
form a coherent pattern.

We also present histograms in Fig. 4 to compare the c123 connection para-
meter in the infarcted pig heart of Fig. 1, but restricted to locations where the
error of fit is low, with the c123 parameter for the healthy heart. This connection
parameter attains by far the largest values in healthy hearts, because it relates
to the transmural turning of fibers from outer wall to inner wall. The histograms
have very similar distributions and mean values in voxel units, suggesting that
in regions away from the infarct, the fiber geometry remains similar to that of a
healthy heart.

4 Conclusion

We have demonstrated the use of Cartan frame fitting to characterize collagenous
fibrosis and to provide quantitative assessment of fiber coherence in the presence
of structural heart disease, using high resolution DW imaging in infarcted porcine
hearts. Although our Cartan frame fits were applied to a relatively small sample
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size of 5 diseased hearts and 1 healthy one, the results are consistent and the
method holds promise for the measurement of fiber coherence in dense scar
areas and more importantly in the BZ, where the substrate of lethal arrhythmia
resides. In future work we plan to carry out this analysis using in vivo DW MR
data, in an effort to integrate our frame fitting methods into clinical platforms
for better differential diagnosis. We also hope to provide personalized estimates
of fiber directions for use in mathematical models for in silico prediction of
electro-mechanical function in hearts with infarcts.
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