
The Contention Avoiding Concurrent
Priority Queue

Konstantinos Sagonas(B) and Kjell Winblad(B)

Department of Information Technology, Uppsala University,
Uppsala, Sweden

{Konstantinos.Sagonas,Kjell.Winblad}@it.uu.se

Abstract. Efficient and scalable concurrent priority queues are crucial
for the performance of many multicore applications, e.g. for task schedul-
ing and the parallelization of various algorithms. Linearizable concur-
rent priority queues with traditional semantics suffer from an inherent
sequential bottleneck in the head of the queue. This bottleneck is the
motivation for some recently proposed priority queues with more relaxed
semantics. We present the contention avoiding concurrent priority queue
(CA-PQ), a data structure that functions as a linearizable concurrent
priority with traditional semantics under low contention, but activates
contention avoiding techniques that give it more relaxed semantics when
high contention is detected. CA-PQ avoids contention in the head of the
queue by removing items in bulk from the global data structure, which
also allows it to often serve DelMin operations without accessing mem-
ory that is modified by several threads. We show that CA-PQ scales well.
Its cache friendly design achieves performance that is twice as fast com-
pared to that of state-of-the-art concurrent priority queues on several
instances of a parallel shortest path benchmark.

1 Introduction

The need for scalable and efficient data structures has increased with the number
of cores per processor chip which has steadily increased for the last decade. Con-
current priority queues in particular are important for a wide range of parallel
applications such as task scheduling [20], branch-and-bound algorithms [10], and
parallel versions of Dijkstra’s shortest path algorithm [18]. Typically, the inter-
face of concurrent priority queues consists of an Insert operation that inserts a
key-value pair (called item from here on) to the priority queue, and a DelMin
operation that removes and returns the item with the smallest key from the
priority queue. Strict (linearizable) priority queues require that the DelMin
operation always returns an item that had the smallest key of all items in the
priority queue at some point during the operation’s execution, while relaxed
priority queues can return an item that was not the one with the minimum key.

Research supported in part by the Linnaeus centre of excellence UPMARC (www.
upmarc.se).

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 314–330, 2017.
DOI: 10.1007/978-3-319-52709-3 23

www.upmarc.se
www.upmarc.se

The Contention Avoiding Concurrent Priority Queue 315

Until quite recently, most research on concurrent priority queues has focused
on strict priority queues, e.g. [2,7,12,16–18,21]. Still, even in the 1990’s, there
have been a few papers on parallel priority queues that consider more relaxed
semantics [8,15].

Inspired by the realization that the DelMin operation induces an inherent
sequential bottleneck in the head of strict priority queues, some recent papers
have proposed relaxed priority queues for modern multicore machines [1,13,
19,20]. Even though all these proposals are successful in reducing the sequential
bottleneck in the head of the priority queue, they all have a performance problem
in that all DelMin calls access memory that is frequently written to by multiple
threads. This is especially expensive on NUMA machines, as it causes data to
be transferred between processor chips which in turn may cause long stalls in
the processor pipeline and contention in the memory system.

In this paper, we describe a new concurrent priority called the contention
avoiding concurrent priority queue or CA-PQ for brevity. CA-PQ does not have
the performance problem mentioned above. Furthermore, CA-PQ differs from
recent proposals in that it works as a strict priority queue when contention is
low. Its semantics is relaxed only when operations frequently observe contention.
Previously proposed relaxed priority queues have relaxed semantics even when
this is not motivated by high contention. This is a problem because unneces-
sary use of relaxed semantics causes items with high priority to be ignored by
DelMin, which can cause unnecessary computations and performance degrada-
tion in some applications. Finally, in contrast to related work, CA-PQ has two
contention avoidance mechanisms that are activated separately: one to avoid con-
tention in DelMin operations and one to avoid contention in Insert operations.

Using a parallel program that computes the single source shortest paths on
a graph, a benchmark which is representative for many best-first search algo-
rithms that use priority queues, we compare CA-PQ’s performance with that of
other state-of-the-art concurrent priority queues. As we will see, CA-PQ’s cache
friendly design lets it outperform all other data structures with a significant mar-
gin in many scenarios. Furthermore, CA-PQ’s adaptivity to contention helps it
perform well across a multitude of scenarios without any need to manually tune
its parameters.

We start by giving a high-level overview of CA-PQ (Sect. 2). We then describe
its operations in detail (Sect. 3) and the guarantees that they provide (Sect. 4).
Details of our implementation of the global CA-PQ component appear in Sect. 5.
We then contrast CA-PQ with related work (Sect. 6), experimentally evaluate
CA-PQ variants with other state-of-the-art data structures (Sect. 7) and con-
clude (Sect. 8).

2 A Brief Overview of the Contention Avoiding
Priority Queue

As illustrated in Fig. 1, the CA-PQ has a global component and thread local
components. When a CA-PQ is uncontended it functions as a strict concurrent

316 K. Sagonas and K. Winblad

Fig. 1. The structure of a CA-PQ.

priority queue. This means that the DelMin operation removes the smallest
item from the global priority queue and the Insert operation inserts an item
into the global priority queue.

Accesses to the global priority queue detect whether there is contention
during these accesses. The counters delmin contention and insert contention are
modified based on detected contention so that the frequency of contention dur-
ing recent calls can be estimated. If DelMin operations are frequently con-
tended, contention avoidance for DelMin operations is activated. If a thread’s
delmin buffer and insert buffer are empty and DelMin contention avoidance is
turned on, then the DelMin operation will grab up to k smallest items from the
head of the global priority queue and place them in the thread’s delmin buffer.
Grabbing a number of items from the head of the global priority queue can
be done efficiently if the queue is implemented with a “fat” skip list that can
store multiple items per node; see Fig. 1. Thus, activating contention avoidance
for DelMin operations reduces the contention on the head of the global pri-
ority queue by reducing the number of accesses by up to k − 1 per k DelMin
operations.

Contention avoidance for Insert operations is activated for a particular
thread when contention during Insert operations is frequent for that thread.
The Insert contention avoidance reduces the number of inserts to the global
priority queue by buffering items from a bounded number of consecutive Insert
operations in the insert buffer. When at least one of the delmin buffer and
insert buffer is non-empty, the DelMin operation takes the smallest item from
these buffers and returns it.

3 Implementation

We will now give a detailed description of CA-PQ’s implementation. First we will
describe the implementation of the two operations, Insert and DelMin. We will
then describe the general requirements for the global priority queue component.

3.1 Operations

The Insert Operation. Pseudocode for this operation can be seen in Algo-
rithm1. Items are inserted in the global priority queue (line 3) when contention
is low or when the number of items in the thread-local insert buffer equals its
capacity. By initially setting the buffer’s capacity to zero and setting it to a

The Contention Avoiding Concurrent Priority Queue 317

non-zero value when Insert operations frequently observe contention, these two
tests are folded into one; cf. line 2.

Algorithm 1. The Insert operation
1 Function Insert (pq, item)
2 if pq.local.insert buffer.size == pq.local.insert buffer.capacity then
3 contended = GInsert(pq.global pq, item);
4 if contended then pq.local.insert contention += INS CONT ;
5 else pq.local.insert contention -= INS UNCONT ;

6 else
7 InsertBufferInsert(pq.local.insert buffer, item);
8 end

The Insert operation on the global priority queue, called GInsert, returns
true if it observed contention during the operation and false otherwise. To esti-
mate the contention level for Insert operations in the priority queue, the
thread local counter insert contention is incremented by INS CONT if con-
tention was detected and is decremented by INS UNCONT if no contention
was detected (lines 4–5). In our implementation, INS CONT is equal to two and
INS UNCONT is equal to one. As we will soon see, these values ensure that
adaptation to contention in Insert operations will eventually happen if more
than one out of two Insert operations are contended for a sufficiently long
period of time. Finally, if the thread local insert buffer has a size that is less than
its capacity, the item is inserted into the insert buffer (line 7).

The DELMIN Operation. Pseudocode for this operation is displayed in Algo-
rithm2. If at least one of the thread local buffers is non-empty, the operation
removes the smallest item from these buffers (lines 4 and 7). If an item is removed
from the insert buffer, the buffer’s capacity is also decreased by one (line 6). This
is done to ensure that DelMin will fetch the minimum item from the global
priority queue at least once in a given number of DelMin operations performed
by a particular thread.

If both buffers are empty, the GDelMin operation is called on the global pri-
ority queue (line 9). This operation also returns an indication whether contention
was detected during the operation in addition to the removed minimum item (if
contention avoidance is turned off) or a buffer with the removed minimum items
(if contention avoidance is turned on). (If the global priority queue is empty a
special empty pq item is returned.) After the call to GDelMin, we record the
contention by adjusting the delmin contention variable (lines 10–11) in a similar
way as was done for the insert contention variable in the Insert operation. In
our implementation, the constants DELMIN CONT and DELMIN UNCONT
are set to 250 and 1 respectively. These values ensure that adaptation to con-
tention in DelMin operations will happen if more than one out of 250 DelMin
operations are contended during a long period of time.

We then proceed to check if delmin contention has reached one of the
thresholds for turning on or off contention avoidance on the global prior-
ity queue (lines 12–17). The thresholds called DELMIN RELAX LIMIT and
DELMIN UNRELAX LIMIT in the pseudocode are in our implementation set
to 1000 and −1000 respectively. Calling TurnOnDelMinRelaxation on the

318 K. Sagonas and K. Winblad

Algorithm 2. The DelMin operation
1 Function DelMin (pq, item)

2 switch SelectBufferWithSmallestKey(pq.local.delmin buffer, pq.local.insert buffer) do

3 case pq.local.delmin buffer do

4 return DelMinBufferDelMin(pq.local.delmin buffer);

5 case pq.local.insert buffer do

6 pq.local.insert buffer.capacity -= 1;

7 return InsertBufferDelMin(pq.local.insert buffer);

8 otherwise do

9 contended, ret val = GDelMin(pq.global pq);

10 if contended then pq.local.delmin contention += DELMIN CONT ;

11 else pq.local.delmin contention -= DELMIN UNCONT ;

12 if pq.local.delmin contention > DELMIN RELAX LIMIT then

13 TurnOnDelMinRelaxation(pq.global pq);

14 pq.local.delmin contention = 0;

15 else if pq.local.delmin contention < DELMIN UNRELAX LIMIT then

16 TurnOffDelMinRelaxation(pq.global pq);

17 pq.local.delmin contention = 0;

18 end

19 if pq.local.insert contention > INS RELAX LIMIT then

20 pq.local.insert buffer.max size = MAX INSERT BUFF SIZE;

21 pq.local.insert contention = 0;

22 else if pq.local.insert contention < INS UNRELAX LIMIT then

23 if pq.local.insert buffer.max size > 0 then

24 pq.local.insert buffer.max size -=1;

25 pq.local.insert contention = 0;

26 end

27 pq.local.insert buffer.capacity = pq.local.insert buffer.max size;

28 if ret val is a buffer then

29 pq.local.delmin buffer = ret val;

30 return DelMinBufferDelMin(pq.local.delmin buffer);

31 else return ret val ;

32 end

33 end

global priority queue will cause subsequent GDelMin calls to delete up to k
smallest items from the global priority queue and return these items in a buffer.
Doing the reverse call, TurnOffDelMinRelaxation will cause subsequent
GDelMin calls to only remove and return the smallest item.

We then go on to check if one of the thresholds for changing the contention
avoidance for Insert operations has been reached (lines 19–25). In our imple-
mentation, the constants INS RELAX LIMIT and INS UNRELAX LIMIT are
set to 100 and −100 respectively. Adapting to high contention for Insert
operations is done by setting the max size value of the insert buffer to the
constant MAX INSERT BUFF SIZE (500 in our implementation) on line 20.
When Insert operations experience low contention we decrease max size of the
insert buffer by one (line 24). We set the capacity of the insert buffer to the
max size value of the insert buffer on line 27.

Note that adaptation to contention in Insert operations is done by only
doing thread-local modification while adaptation to contention in DelMin oper-
ations is done by changing the state of the global component. One could also
implement DelMin contention avoidance by only changing a thread local flag if
the global priority queue exposes separate operations for deleting a single item
and a buffer of items. We expect this alternative design choice to work equally
well.

The Contention Avoiding Concurrent Priority Queue 319

At the end of DelMin’s code, we check if the value returned by GDelMin
is a buffer of items or a single item (line 28). If the value is a buffer, we set it to
be the thread local delmin buffer and return an item from that buffer. Otherwise,
if it is a single item, we simply return that item (line 31).

3.2 Global Concurrent Priority Queue Component

The requirements for the global priority queue are as follows. First, it should
support linearizable Insert and DelMin operations. Second, it should also
support a linearizable bulk DelMin operation that returns up to the k smallest
items from the priority queue in a buffer. Furthermore, all these operations need
to be able to detect contention so as the contention avoidance mechanisms are
activated. With these properties fulfilled, it is easy to see that the interface used
for the global priority queue in Algorithms 1 and 2 can be implemented. The
ability to turn off and on DelMin relaxation can be implemented by associating
a flag with the global priority queue. The GDelMin operation simply needs to
check this flag and use the bulk DelMin functionality to return a buffer of items
if the flag is on, or use the single-item DelMin functionality to return a single
item otherwise.

For the DelMin contention avoidance to work as intended, it is crucial that
the bulk DelMin operations can remove and return the k smallest items much
faster than doing k single-item DelMin operations. To make this possible, our
implementation of the global concurrent priority queue makes use of a skip list
data structure with fat nodes; see Fig. 1. As every skip list node in our imple-
mentation can store up to k items, the bulk DelMin operation can remove and
return up to k smallest items with as little work as the single-item DelMin
operation needs to do in the worst case. A k value that is equal to or greater
than the number of threads should be enough to eliminate most of the contention
in DelMin. Our implementation uses 80 as the value of k.

4 Properties

We will now state the guarantees provided by the CA-PQ. As some applications
might not need the contention avoidance for both Insert and DelMin, we will
first state and prove the guarantees of the CA-PQ variants derived by turning
these features off.

First note that turning off the contention avoidance for both Insert and
DelMin results in a strict priority queue. We call the data structure that results
from turning off contention avoidance for Insert operations CA-DM. To state
the guarantee provided by CA-DM we first have to define a particular time
period.

Definition 1 (Time period TP(k,Dn)). Let an integer k ≥ 1, D1, . . . , Dn be
the sequence of DelMin calls performed by a thread T on a priority queue Q,
and let j = max(1, n− k + 1). Then TP (k,Dn) is the time period that starts at
the time Dj is issued and ends when the call Dn returns.

320 K. Sagonas and K. Winblad

We can now state and prove the guarantee that the CA-DM priority queue
provides.

Theorem 1 (CA-DM DELMINGuarantee).The itemreturned bya DelMin
call D on a CA-DM priority queue Q is guaranteed to be among the k ·P smallest
items that have been inserted into the priority queue at some point in time t
during the time period TP (k,D), where P is the number of threads that are
accessing Q and k is the maximum size of the buffer returned by the global
priority queue that is used by Q.

Proof: Let t be the linearization point of the latest GDelMin call G (Algo-
rithm2, line 9) performed by the issuer of D before D’s return. Note that t must
then be in the time period TP (k,D) as the number of items in the delmin buffer
decreases by one in every DelMin call that does not get its item directly from
the global priority queue. All items in the buffer returned by the call G are
among the k · P smallest items in Q at the time of G’s linearization point. To
see this, note that no items in the global priority queue were smaller than the
at most k items returned by G at G’s linearization point and no more than
(P − 1) · k items can be buffered in the delmin buffers of other threads. ��

We call the priority queue derived from CA-PQ by turning off contention
avoidance for DelMin CA-IN. The guarantee provided by CA-IN is arguably
even weaker than that provided by CA-DM.

Theorem 2 (CA-IN DELMIN Guarantee). At least one in every m + 1
DelMin operations performed by a thread is guaranteed to be among the m ·
(P − 1) + 1 smallest items in the CA-IN priority queue Q at some point in time
during the operation’s execution, where m is equal to MAX INSERT BUFF SIZE
and P is the number of threads that are accessing Q.

Proof: At least one call D in every m+ 1 DelMin calls returns an item I from
a GDelMin call G since the capacity of the insert buffer is decreased when
items are removed from it (Algorithm 2, line 6). This item I must be among the
m · (P − 1) + 1 smallest items in the priority queue at the linearization point of
G since there can be at most m · (P − 1) smaller items in the insert buffers of
other threads. ��

The guarantee provided by a CA-PQ that has both contention avoidance for
DelMin and Insert operations turned on is very similar to that of CA-IN.

Theorem 3 (CA-PQ DELMIN Guarantee). At least one in every m + 1
DelMin operations performed by a thread is guaranteed to be among the m ·
(P − 1) + 1 smallest items in the CA-PQ priority queue Q at some
point in time during the operation’s execution, where m is equal to
k+MAX INSERT BUFF SIZE, k is the maximum size of the buffer returned
by GDelMin, and P is the number of threads that are accessing Q.

Proof: The proof is very similar to the proof of Theorem2. The difference is that
there is now also the delmin buffer so that m becomes slightly larger. ��

The Contention Avoiding Concurrent Priority Queue 321

All priority queue variants mentioned above also support the property speci-
fied in the theorem below which is important for the termination of many parallel
algorithms that employ concurrent priority queues.

Theorem 4 (DELMIN Deletes All). Let S be the set of all threads that have
issued operations on a priority queue Q and t be a specific point in time after
which no Insert operations are issued. If all threads in S issue a DelMin
operation after time t and all get the special item empty pq as results, then all
items that have been inserted into Q have been deleted and returned by DelMin
operations.

Proof: An item that is inserted into Q and has not yet been deleted is stored in
the global priority queue or in one of the thread-local buffers of threads in S.
It is easy to see that all these locations must be empty if all threads in S issue
DelMin operations after t and get the empty pq symbol as return value. ��

5 Our Implementation of the Global Priority Queue
Component

Our global concurrent priority queue is constructed from a contention adapting
search tree (CATree) [14] using a skip list with fat nodes as backing data struc-
ture. We refer to the original CATree paper for a complete description of the
CATree data structure and will here just briefly describe how we extended it to
support the DelMin operations. Fig. 2 shows the structure of a CATree. The

Fig. 2. The CATree data struc-
ture.

routing nodes are used to find the location of a
specific item in the data structure. The actual
items stored in the data structure are located
in the sequential data structure instances in
the last layer. These sequential data structures
are protected by locks in the base nodes where
they are rooted. Base nodes can be split and
joined with each other based on how much
contention is detected in the base node locks.
As the smallest items in a CATree are always
located in the leftmost part of the tree when
depicted as in Fig. 2, the DelMin operation
first finds and locks the leftmost base node in
the CATree. When the leftmost base node is empty it is joined together with
its neighbor using the CATree algorithm for low contention adaptation until the
leftmost base node is non-empty1. As depicted in Fig. 1, we reuse the fat skip
list nodes as delmin buffer and use a binary heap as insert buffer.
1 The only difference between the low-contention join function described in the CATree

paper [14] and the one used to create a non-empty leftmost base node is that the
latter uses a forcing Lock call instead of a TryLock call to lock the neighbor.
(This cannot cause a deadlock since no other code issues forcing lock calls in the
other direction).

322 K. Sagonas and K. Winblad

Traditional locks are well known to give poor performance when they are
contended [3,6,9]. Therefore, to improve the performance when base node locks
in the CATree are contended we use a locking technique that we call delegation
locking but that is also called combining in other places [3,6]. More specifically
we use a delegation locking technique, called queue delegation locking [9], when
locking base nodes. Delegation locking lets the current lock owner thread help
other threads perform their critical sections that are waiting to acquire the lock.
By doing so the throughput of critical sections executed on a particular lock
can be substantially increased because the current lock owner can keep the data
protected by the lock in its private processor cache while helping critical sec-
tions from other threads. Queue delegation locking has the additional benefit
compared to other locking algorithms that critical sections for which the issuing
threads do not need any return value (such as the Insert operation) can be
delegated to the lock owner without any need to wait for the actual execution of
the critical section. Linearizability is still provided as the order of the delegated
operation is maintained by a queue. Contention in the operations is detected by
checking whether another thread is holding the base node lock that the operation
needs to acquire.

Memory Management. The only nodes of the data structure that need
delayed memory reclamation in our CA-PQ implementation are the routing
nodes and base nodes in the CATree component. These nodes can be read by
multiple threads concurrently so it is unsafe to reclaim these nodes before it is
certain that no threads can hold references to them. To reclaim these nodes we
use Keir Fraser’s epoch based reclamation [4].

6 Related Work

Early attempts to construct concurrent priority queues, e.g. [7], were based on
heap data structures. More recent concurrent priority queues have often been
based on concurrent skip lists as empirical evidence suggests that this design is
more scalable than the heap based design [16]. Both the priority queue by Shavit
and Lotan [16] and the one by Sundell and Tsigas [17] handle DelMin by first
doing a logical deletion of the node to be deleted by marking it before it is phys-
ically removed from the skip list. The skip list based priority queue by Lindén
and Jonsson [12] (called Lindén from here on) also uses logical deletion before
physical removal but achieves better performance and less memory contention
by physically removing a prefix of logically deleted nodes in one go, in con-
trast to previous algorithms that physically remove one node at a time. Calciu
et al. have explored the idea of using combining and delegation to speedup the
DelMin operation. Their data structure [2] uses a sequential skip list managed
by a server thread for small keys and a concurrent skip list for larger keys to
exploit the parallelism of Insert operations. In a very recent work, Zhang and
Dechev have proposed a concurrent priority based on multi-dimensional linked
lists [21]. We consider all the above works on concurrent priority queues orthog-
onal to the main contribution of this paper which is a priority queue with more
relaxed semantics.

The Contention Avoiding Concurrent Priority Queue 323

Concurrent priority queues with relaxed semantics have also been proposed.
The MultiQueue data structure by Rihani et al. [13] is created from C · P
sequential priority queues protected by locks, where C is a constant and P
is the number of threads using the priority queue. An Insert operation in a
MultiQueue selects one of the sequential queues at random and inserts in that
queue. MultiQueue’s DelMin operation checks the minimum item in two of
the sequential priority queues selected at random (without acquiring locks) and
does the actual DelMin in the one of these priority queues with the smallest key
if that priority queue is successfully locked with a try-lock call. The process is
retried if the try-lock call fails. The MultiQueue does not provide any guarantee,
but an experimental evaluation suggests that DelMin often returns an item with
one of the smallest keys in the priority queue [13].

Alistarh et al. have created the SprayList which is a relaxed priority queue
based on the skip list data structure [1]. SprayList relaxes the result of the
DelMin operation by “spraying” into a random position close to the head of
the skip list. The SprayList guarantees that the item returned by DelMin is
among the O(P log3 P) smallest items with high probability, where P is the
number of threads.

For scheduling purposes in a task-based parallel programming framework,
Wimmer et al. have created relaxed priority queues that have different trade-
offs between quality of the items returned by DelMin and scalability [20]. Of
these, the queue that seems to perform best is called Hybrid k. A later pub-
lication, also by Wimmer et al., introduced the k-LSM priority queue [19].
k-LSM provides the structural guarantee that no more than k · P items might
be skipped by DelMin, where k is a configurable parameter and P is the num-
ber of threads. We will here focus on the k-LSM priority queue rather than
Hybrid k because the implementation of the latter is optimized for a particu-
lar task-based parallel programming framework, making it difficult to compare
with, and experiments by Wimmer et al. suggest that k-LSM performs slightly
better than Hybrid k [19]. The k-LSM data structure is based on so called log-
structured merge-trees (LSM) and consists of a thread local LSM component
and a shared relaxed LSM component. Insert inserts the item to the thread
local LSM component. If this results in a block larger than a certain size, that
block is merged into the shared LSM. DelMin compares one of the k smallest
items in the shared LSM with the smallest item from the local LSM and tries to
remove the smallest of those items.

All the above relaxed priority queues (MultiQueue, SprayList, Hybrid k and
k-LSM) utilize relaxations to avoid contention in DelMin operations. How-
ever, in contrast to CA-PQ, they all access non-thread-local memory in every
DelMin operation. As this shared memory is written to by many threads fre-
quently, many of these accesses induce cache misses. This can be expensive as
it causes the core executing the thread to wait for data to be transferred from
remote locations and causes contention in the memory system. On big multi-
cores, especially on NUMA machines with several processor chips, getting data
from remote locations can be several orders of magnitude more expensive than

324 K. Sagonas and K. Winblad

getting data from the same processor’s cache. There are two reasons why CA-PQ
can avoid the frequent remote memory accesses in DelMin. Firstly, its DelMin
fetches a block containing several items from the global priority queue, i.e., it
gets several items for a single cache miss (because several items can be stored
on the same cache line). Secondly, the guarantees provided by CA-PQ are more
permissive than those provided by SprayList, Hybrid k and k-LSM, which makes
it possible to allow CA-PQ’s DelMin to often be performed without checking
if other threads have changed the data structure.

Another major difference between CA-PQ and other relaxed priority queues
is that CA-PQ only activates relaxations when this is motivated by detected
high contention. As we will see in the next section, this makes it possible for
CA-PQ to achieve high performance in a wide range of scenarios.

7 Experimental Evaluation

We evaluate the scalability and performance of CA-PQ and the variants CA-IN
(Insert contention avoidance turned off), CA-DM (DelMin contention avoid-
ance turned off) and CATree (the global priority queue component of our algo-
rithm) in a parallel single-source shortest-path (SSSP) benchmark. The bench-
mark uses a parallel version of Dijkstra’s algorithm using a concurrent priority
queue; see Tamir et al. [18]. We note that we avoid the node locks used in this
parallelization by updating the node weights in compare-and-swap loops. CA-
PQ does not have a DecreaseKey operation that changes the key of an item
in the priority queue — such is also the case for the other concurrent priority
queues that we compare against. Changing the weight of a key in the priority
queue is therefore implemented by an Insert operation and the other refer-
ence to the node that might exist in the queue is lazily removed when it is
deleted by a DelMin operation. As noted by Tamir et al. [18], this lazy removal
scheme can induce some overhead over having a concurrent priority queue with
a DecreaseKey operation. To get a hint of how big this overhead might be, we
include the sequential version of Dijkstra’s algorithm that uses DecreaseKey
with a Fibonacci Heap [5] as priority queue as a base line. The overhead of
not having DecreaseKey operation seems to be quite low in many cases as
the sequential Dijkstra has similar performance as the parallel SSSP algorithm
using CA-PQ when using just one thread.

Data Sets. We include results from running the SSSP benchmark on the
California road network (called RoadNet from now on) and a social media net-
work obtained from LiveJournal (called LiveJournal from now on) [11]. RoadNet
is a relatively sparse network containing 1.95 million nodes connected to the
source involving 5.5 million edges. LiveJournal is a more dense network contain-
ing 4.4 million nodes connected to the source and 68 million edges. As we do
not have any natural weights for these networks we used two versions of these
networks. A weight of one on all edges is used in the unweighted version. In the
weighted version, a random weight from the range [0, 1000] is assigned to each
of the edges.

The Contention Avoiding Concurrent Priority Queue 325

Data Structures and Parameters. We compare our priority queues to Lindén
[12], MultiQueue [13], SprayList [1] and k-LSM [19]. Section 6 contains a descrip-
tion of these data structures. All implementations are those provided by their
inventors except the MultiQueue which is implemented by the authors of k-LSM.
We use the default parameters for SprayList as configured by its authors because
the SprayList was evaluated in a very similar benchmark to ours [1]. To find a
good value for the C parameter used by the MultiQueue, we ran the benchmarks
with C equal to 2, 4, 8, 16, 32 and 64. We found that the values 8 and 16 gave
the best performance and the difference between these two parameters was very
small in all cases. We therefore use MultiQueue with C = 16. Similarly, to find
a good value for the k parameter used by k-LSM we ran the experiments with
k equal to 2n for all integer values of n from 8 to 17. From this, we found that
k = 210 = 1024 gave the best performance on RoadNet and that k = 216 = 65 536
generally gave the best performance on LiveJournal. We therefore show k-LSM
with both k = 1024 (klsm1024) and k = 65 536 (klsm65536).

Methodology. We show results from a machine with four Intel(R) Xeon(R) E5-
4650 CPUs (2.70 GHz, turbo boost turned off), eight cores each (i.e. the machine
has a total of 32 physical cores, each with hyperthreading, which makes a total
of 64 logical cores). The machine has 128 GB of RAM and is running Linux
3.16.0-4-amd64. We compiled the benchmark which is written in C and C++
with GCC version 5.3.0 and used the optimization flag -O3. We have verified
our results by running the experiments on a machine with four AMD Opteron
6276 (2.3 GHz, in total 64 cores)2. Threads are pinned to logical cores so that
the first 16 threads in the graphs run on the first processor chip, the next 16
on the second, and so on. We ran each measurement three times and show the
average and error bars for the minimum and maximum in the graphs. As a sanity
check we compared the calculated distances against the actual distances after
each run.

Results. The results from the SSSP benchmark are displayed in Fig. 3. The
graphs show throughput N ÷ T on the y-axis, where N is the number of nodes
in the graph and T is the execution time of the benchmark in µs. We show
throughput rather than time because this makes the scalability behavior easier
to see. (The poor performance of some data structures would otherwise make
the results unreadable.) The dashed black line shows the performance of the
sequential Dijkstra’s algorithm with a Fibonacci heap. The red line with legend
Lock shows the performance of a binary heap protected by a lock.

RoadNet. Let us first look at the results for the RoadNet graphs shown in
Fig. 3a and b. With RoadNet, none of the data structures manages to provide
much increase in performance when more than one processor chip is utilized
(after 16 threads). However, in the scenario with edge weight range [0, 1000],
CA-PQ archives a speedup of 11 compared to its single thread performance

2 Results from the AMD machine and from additional scenarios as well as the
benchmark code are available at http://www.it.uu.se/research/group/languages/
software/ca pq.

http://www.it.uu.se/research/group/languages/software/ca_pq
http://www.it.uu.se/research/group/languages/software/ca_pq

326 K. Sagonas and K. Winblad

Fig. 3. Graphs showing results from the SSSP experiment. Throughput (# nodes in
graph ÷ execution time (µs)) on the y-axis and number of threads on the x-axis. The
black dashed line is the performance of sequential Dijkstra’s algorithm with a Fibonacci
Heap.

when running on 16 threads (remember that these 16 threads run on 8 cores with
hyperthreading). It is clear from the worse performance of CA-DM (Insert con-
tention avoidance turned off) and CA-IN (DelMin contention avoidance turned
off) that both contention avoidance mechanisms are beneficial to achieving this
performance in the relatively sparse RoadNet graph that gives high contention
both in Insert and DelMin operations. The data structure that achieves the
second best performance after CA-PQ in these scenarios is klsm1024. It is inter-
esting to note that klsm1024 also buffers inserted items in a thread local storage.

To investigate the reason for the performance further, we show number of
L2 cache misses (measured with hardware counters) divided by the number of
nodes in the graph in Table 1. As the L2 cache is private to a core on this
processor, more L2 cache misses is an indication of worse memory locality and
more accesses to memory modified by several thread. Unsurprisingly, CA-PQ
has the least amount of L2 cache misses in the RoadNet scenarios due to its
cache friendly design.

In the sequential version of Dijkstra’s algorithm each node is processed
exactly once. In the parallel version, this is not always the case as the node with
the smallest distance estimate is not always processed first. We can therefore

The Contention Avoiding Concurrent Priority Queue 327

Table 1. Waste and cache misses (64 threads). The column time shows execution
time in seconds, waste shows the number of nodes unnecessarily processed and the
column $miss shows number of L2 cache misses divided by number of nodes in the
graph.

Graph RoadNet LiveJournal

Weights 1 [0,1000] 1 [0,1000]

Time Waste $miss Time Waste $miss Time Waste $miss Time Waste $miss

CA-PQ 0.07 1730k 7.8 0.09 1927k 12.2 0.63 924k 30.1 0.47 353k 95.4

CA-RM 0.43 7k 14.8 0.38 11k 34.6 0.98 8 32.2 0.47 2k 94.1

CA-IN 0.14 2264k 8.2 0.48 2030k 27.3 1.25 1768k 37.0 2.34 714k 110.5

MultiQ. 0.18 8k 32.2 0.19 58k 36.1 0.56 39 63.4 0.93 2k 112.2

kl.1024 0.20 2498k 12.4 0.19 2222k 15.8 161.39 174 33980.3 7.63 3k 2538.5

kl.65536 0.44 28411k 82.5 0.42 26115k 105.6 4.76 688k 601.7 5.48 1857k 1192.7

Spray 2.51 134k 461.0 0.27 230k 88.3 8.33 41 314.9 2.39 7k 755.5

CATree 0.68 9 20.9 0.71 36 40.2 1.59 1 40.8 2.27 5 107.5

Lindén 3.39 206 108.4 1.01 252 114.6 7.96 21 142.6 4.64 0 353.1

Lock 7.06 210 39.7 11.02 490 59.0 17.01 54 62.4 49.73 86 163.4

use the number of nodes processed by the parallel algorithm as a measurement
of how precise the DelMin operation is (how far from the actual minimum
the returned items are). In the column “waste” of Table 1 we show the number
of nodes processed minus the number of nodes in the graph. We see that the
strict priority queues CATree, Lindén and Lock all do a small amount of wasted
work in both the unweighted and the weighted scenarios. CA-PQ, CA-IN and
the k-LSMs all waste quite a lot of work considering that RoadNet only has
1.95 million nodes. However, as the contention on the priority queue is high in
this scenario it can be less wasteful for the priority queue to be less precise in
order to reduce the contention inside the priority queue. As CA-PQ only acti-
vates the relaxed semantics when high contention is detected, one can see it as
opportunistic in the sense that it lowers precision and risks more wasted work
in the application only when time and resources would be wasted anyway due
to contention.

The MultiQueue achieves very good precision according to the waste estimate
but as each operation accesses at least one of the shared priority queues, it suffers
from bad memory locality; see Table 1. Since communication between processor
chips is more expensive than communication within the chip, the bad memory
locality of MultiQueue becomes apparent first when more than one NUMA node
is utilized; see Fig. 3a.

LiveJournal. We now go on to discuss the results from the graph LiveJour-
nal that can be seen in Fig. 3c and d. As the LiveJournal graph is relatively
dense there will be many priority queue items with the same distance (key)
while running the parallel SSSP. This is especially true in the unweighted case
(Fig. 3c). This can lead to a lot of contention in Insert operations as the skip
list based data structures (CA-*, SprayList, Lindén and CATree) all try to insert

328 K. Sagonas and K. Winblad

an item with the same distance in the same location. The MultiQueue however
is excellent in avoiding contention and achieves the best performance in the
unweighted LiveJournal (Fig. 3c). However, MultiQueue is tightly followed by
CA-PQ as CA-PQ is also good at avoiding contention with its contention avoid-
ance mechanisms and has good memory locality; see Table 1.

In the weighted LiveJournal scenario (Fig. 3d), where the contention in
Insert operations is not as high as in the unweighted case, CA-PQ and CA-DM
are by far outperforming the other data structures. Some hints about the reason
for this is given in Table 1: one can see that CA-PQ and CA-DM induces less L2
cache misses than the other data structures. However, we want to stress that the
number of L2 cache misses is a course-grained measurement of memory locality.
The cost of cache misses can differ depending on whether it is a read miss or
write miss and whether the miss causes communication outside the chip or not.

From Table 1, we see that CA-DM generally does relatively little wasted
work while CA-PQ is more wasteful which is natural as CA-PQ provides weaker
guarantees than those provided by CA-DM. This also explains why CA-DM
performs better than CA-PQ by a very small amount for most thread counts in
the weighted LiveJournal scenario.

A Note on Denser Graphs. We have also run experiments on randomly gener-
ated graphs that are more dense than the graphs used in the experiments we just
presented. (Refer to http://www.it.uu.se/research/group/languages/software/
ca pq for the results of these experiments.) Dense graphs tend to give an access
pattern on the concurrent priority queue with many more Insert operations
than DelMin in the beginning of the run and then many more DelMin than
Insert in the end of the run. CA-PQ is efficient in these kinds of scenarios
because of its cache friendly DelMin operation. For example, CA-PQ’s execu-
tion time on a graph with 100 edges per node and edge weights from the range
[0, 1000] is only about one third of the execution time of the second best data
structure in this scenario (SprayList). The access pattern produced by denser
graphs also explains why k-LSM performs badly with the LiveJournal graphs.
When DelMin operations are frequent and Insert’s are less frequent, most
DelMin calls will take items from the shared LSM, which induces contention
and cache misses.

Usefulness of Adaptivity. To investigate the usefulness of adaptively turn-
ing on the contention avoidance techniques we have run experiments where con-
tention avoidance for both Insert and DelMin are always turned on (not shown
in graphs to not clutter them). We found the performance of this non-adaptive
approach to be similar to CA-PQ in scenarios where Insert contention is high,
but significantly worse in scenarios with low Insert contention (e.g. LiveJournal
weight range [0, 1000]). Thus, CA-PQ’s ability to adaptively turn off and on the
contention avoidance techniques is beneficial because it helps it perform well in
a multitude of scenarios without any need to change parameters.

The Global Component. Finally, we comment on the performance of the strict
priority queue that we developed as the global component of CA-PQ which is

http://www.it.uu.se/research/group/languages/software/ca_pq
http://www.it.uu.se/research/group/languages/software/ca_pq

The Contention Avoiding Concurrent Priority Queue 329

called CATree in Fig. 3 and Table 1. CATree beats the state-of-the-art lock-free
linearizable priority queue by Lindén by a substantial amount in several of the
scenarios and especially when more than one NUMA node is used. We attribute
this good performance to the good memory locality provided by delegation lock-
ing and the fact that we use fat skip list nodes which increase locality and reduce
the number of memory allocations.

A Note on Thread Preemption. In our benchmark setup, thread preemption
is uncommon since we use one hardware thread per worker thread. In setups
where threads often get preempted or stalled for some reason, CA-PQ’s buffering
of items can be problematic, as small items can be stuck for a long period of time
in the buffers of these threads. It remains as future work to investigate solutions
for this problem, perhaps using a stealing technique similar to the one proposed
by Wimmer et al. [19].

8 Concluding Remarks

We have introduced the CA-PQ concurrent priority queue that activates relaxed
semantics only when resources would otherwise be wasted on contention related
overheads and on waiting. CA-PQ has a cache friendly design and avoids accesses
to memory that is written to by many threads when its contention avoidance
mechanisms are activated, which contributes to its performance advantage com-
pared to related relaxed data structures.

It would be interesting to investigate other strategies for adapting the relax-
ation. For example, one can experiment with a more fine grained adjustment
of the relaxation than what is done in CA-PQ or consider relaxation based on
feedback about wasted work from the application. However, the investigation of
such strategies is left for future work.

References

1. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The spraylist: a scalable relaxed
priority queue. In: Proceedings of 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, pp. 11–20. ACM, New York
(2015)

2. Calciu, I., Mendes, H., Herlihy, M.: The adaptive priority queue with elimination
and combining. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 406–420.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45174-8 28

3. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization tech-
nique. In: Proceedings of 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2012, pp. 257–266. ACM, New York
(2012)

4. Fraser, K.: Practical lock-freedom. Ph.D. thesis, University of Cambridge Com-
puter Laboratory (2004)

5. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

http://dx.doi.org/10.1007/978-3-662-45174-8_28

330 K. Sagonas and K. Winblad

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of 22nd Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA 2010, pp. 355–364.
ACM, New York (2010)

7. Hunt, G.C., Michael, M.M., Parthasarathy, S., Scott, M.L.: An efficient algorithm
for concurrent priority queue heaps. Inf. Process. Lett. 60(3), 151–157 (1996)

8. Karp, R.M., Zhang, Y.: Randomized parallel algorithms for backtrack search and
branch-and-bound computation. J. ACM 40(3), 765–789 (1993)

9. Klaftenegger, D., Sagonas, K., Winblad, K.: Delegation locking libraries for
improved performance of multithreaded programs. In: Silva, F., Dutra, I., Santos
Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 572–583. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-09873-9 48

10. Kumar, V., Ramesh, K., Rao, V.N.: Parallel best-first search of state-space graphs:
a summary of results. In: AAAI, vol. 88, pp. 122–127 (1988)

11. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collec-
tion, June 2016. http://snap.stanford.edu/data

12. Lindén, J., Jonsson, B.: A skiplist-based concurrent priority queue with mini-
mal memory contention. In: Baldoni, R., Nisse, N., Steen, M. (eds.) OPODIS
2013. LNCS, vol. 8304, pp. 206–220. Springer, Heidelberg (2013). doi:10.1007/
978-3-319-03850-6 15

13. Rihani, H., Sanders, P., Dementiev, R.: Brief announcement: multiqueues: sim-
ple relaxed concurrent priority queues. In: Proceedings of 27th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2015, pp. 80–82. ACM,
New York (2015)

14. Sagonas, K., Winblad, K.: Contention adapting search trees. In: 14th International
Symposium on Parallel and Distributed Computing, ISPDC, pp. 215–224. IEEE
(2015)

15. Sanders, P.: Randomized priority queues for fast parallel access. J. Parallel Distrib.
Comput. 49(1), 86–97 (1998)

16. Shavit, N., Lotan, I.: Skiplist-based concurrent priority queues. In: Proceedings of
14th International Parallel and Distributed Processing Symposium, pp. 263–268
(2000)

17. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. In: 2003 Proceedings of 17th International Symposium Parallel
and Distributed Processing Symposium, p. 84, April 2003

18. Tamir, O., Morrison, A., Rinetzky, N.: A heap-based concurrent priority queue
with mutable priorities for faster parallel algorithms. In: Proceedings of Principles
of Distributed Systems: 19th International Conference, OPODIS 2015 (2015)

19. Wimmer, M., Gruber, J., Träff, J.L., Tsigas, P.: The lock-free k-LSM relaxed prior-
ity queue. In: Proceedings of 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, pp. 277–278. ACM, New York
(2015)

20. Wimmer, M., Versaci, F., Träff, J.L., Cederman, D., Tsigas, P.: Data structures
for task-based priority scheduling. In: Proceedings of 19th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 379–380. ACM,
New York (2014)

21. Zhang, D., Dechev, D.: A lock-free priority queue design based on multi-
dimensional linked lists. IEEE Trans. Parallel Distrib. Syst. 27(3), 613–626 (2016)

http://dx.doi.org/10.1007/978-3-319-09873-9_48
http://snap.stanford.edu/data
http://dx.doi.org/10.1007/978-3-319-03850-6_15
http://dx.doi.org/10.1007/978-3-319-03850-6_15

	The Contention Avoiding Concurrent Priority Queue
	1 Introduction
	2 A Brief Overview of the Contention Avoiding Priority Queue
	3 Implementation
	3.1 Operations
	3.2 Global Concurrent Priority Queue Component

	4 Properties
	5 Our Implementation of the Global Priority Queue Component
	6 Related Work
	7 Experimental Evaluation
	8 Concluding Remarks
	References

