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Abstract. In systems with multiple memories, software may need to
explicitly copy data from one memory location to another. This copying
is required to enable access or to unlock performance, and it is especially
important in heterogeneous systems. When the data includes pointers
to other data, the copying process has to recursively follow the pointers
to perform a deep copy of the entire data structure. It is tedious and
error-prone to require users to manually program the deep copy code for
each pointer-based data structure used. Instead, a compiler and runtime
system can automatically handle deep copies if it can identify pointers in
the data, and can determine the size and type of data pointed to by each
pointer. This is possible if the language provides reflection capabilities, or
uses smart pointers that encapsulate this information, e.g. Fortran point-
ers that intrinsically include dope vectors to describe the data pointed
to. In this paper, we describe our implementation of automatic deep copy
in a Fortran compiler targeting a heterogeneous system with GPUs. We
measure the runtime overheads of the deep copies, propose techniques to
reduce this overhead, and evaluate the efficacy of these techniques.

Keywords: Parallel computing · Heterogeneous systems · Compilers ·
Memory

1 Introduction

Massive parallelism and heterogeneity are prevalent in current systems designed
for compute-intensive applications. These systems typically include multiple dis-
tributed memories, and software may need to explicitly copy data from one
memory location to another. In some cases, this copying is necessary for certain
processors in the system to be able to access the corresponding data. For exam-
ple, in a system with host processors and GPU accelerators connected via an
interconnect (e.g. PCIe), the system-wide memory and the on-chip GPU mem-
ory have separate address spaces. Host processors can directly refer to addresses
in the system-wide memory, but the GPU processors can only refer to addresses
in the on-chip GPU memory. Any program data operated on by the GPU has
to be explicitly transferred to/from the system-wide memory. In other cases, all
the processors in the system share a global address space, but because of non-
uniform memory access times, it may still be worthwhile to copy data between
different memory locations to combat performance loss due to NUMA effects.
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For application codes that use pointer-based data structures, the data to be
copied includes pointers to other data, and the copying process has to recursively
follow the pointers to perform a deep copy of the entire data structure. Further,
pointer address values in the copied data have to be fixed to refer to addresses
in the copied version of the data structure. It is tedious and error-prone to
require users to manually program the deep copy code for each pointer-based
data structure. Instead, a compiler and runtime system can automatically handle
deep copies if it can identify pointers in the data, and can determine the size and
type of data pointed to by each pointer. This is possible if the language provides
reflection capabilities, or uses smart pointers that encapsulate this information,
e.g. Fortran pointers that intrinsically include dope vectors to describe the data
pointed to.

While our ideas are generally applicable to distributed memory systems, in
this paper we focus on a CPU-GPU system with a host IBM POWER8 processor
connected to an NVIDIA Kepler GPU via PCIe. Currently, the most common
method used to program data transfers in such a system is to use the CUDA
API [15] which provides runtime library calls for memory management and data
transfers. However, this is a low-level API, and using it to manually program
data copies can adversely affect productivity of software development.

An alternative method is to use CUDA Unified Memory [9], which provides a
shared address space abstraction across the host processor and the GPU, with the
underlying implementation transparently and automatically handling all data
copies. Unified Memory is very easy to use from the programmer’s perspec-
tive, but it can degrade performance for some applications since it is a uniform
(one-size-fits-all) solution that works at page-based granularity and cannot be
customized per application.

Yet another method for programming data transfers in a CPU-GPU system
is to use a directive-based approach, such as OpenACC [17] or OpenMP [3] with
accelerator support. These provide high-level annotations that the programmer
can insert at appropriate points in the code to identify data that will be accessed
on the GPU. The OpenACC/OpenMP implementation then takes care of per-
forming data copies when necessary. This implementation not only performs
data transfers, but is also responsible for GPU memory allocation/de-allocation,
and for tracking data items that have been previously copied. The directive-
based approach has the advantage of allowing application-specific optimization
while also alleviating the tedium of programming to a low-level API. However,
the OpenACC and OpenMP standards currently do not support deep copy for
pointer-based data. Many applications include pointer-based data structures,
and to use OpenACC/OpenMP for such applications, programmers must either
devolve to using low-level APIs for copying their data, or they must re-structure
program data so that deep copy is not needed. The latter may involve major
code changes and may not be feasible. While the standards are evolving and
trying to address these issues, the deep copy problem is tricky to solve, in part
because OpenACC/OpenMP are geared towards high performance computing
and are sensitive to runtime overheads introduced due to specification of the
standards.
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In this work, we explored the design and performance implications of support-
ing deep copy semantics in a directive-based programming model for Fortran.
Our system integrates components at three levels:

1. Language features: In Fortran, implementing some language features (e.g.
dynamic array sections) makes it necessary for the executable code to be able
to store and access extra information for pointer fields and variables. The
format of this information is implementation dependent and is referred to
as a dope vector. There is a dope vector associated with each pointer, and
the information stored in dope vectors can be accessed by runtime library
code. Also, Fortran does not allow indiscriminate pointer casting or pointer
arithmetic, which simplifies pointer handling by an automatic system.

2. Compiler analysis: For all types used in an application (intrinsic or user-
defined types), information about the size and layout of each type is extracted
in the compiler and made available to the runtime system.

3. Runtime system: Runtime library functions implement the code for data
transfers, making use of dope vectors and compiler generated information
to perform pointer traversals for deep copy.

We inserted OpenMP map clauses in Fortran program codes to identify data
to be copied to or from the GPU memory. We modified our Fortran OpenMP
compiler and runtime implementation to automatically support deep copy for
all pointer-based data in the map clauses. Since Fortran pointers include dope
vectors that describe the data being pointed to, our system has ready access to
the information needed to support deep copy.

Contributions of this paper are as follows:

– We describe the design and implementation of our compiler and runtime
support for automatically copying pointer-based data structures in Fortran
OpenMP codes targeting a CPU-GPU system. Our algorithms include sup-
port for recursive data structures and cyclic pointer traversals (Sect. 2).

– We introduce techniques that can be applied to reduce the runtime overhead
of deep copy (Sect. 3).

– We collect experimental data to measure the runtime overheads of our deep
copy implementation, and evaluate the effectiveness of the techniques proposed
to mitigate this overhead (Sect. 4).

2 Design and Implementation

Figure 1 shows a code snippet for declaring a simple pointer-based list data
structure, and using OpenMP to copy and process the list on the GPU. Lines
7–9 form an OpenMP target region that is to be executed on the GPU. The
OpenMP map clause on Line 7 is used to identify data to be copied to and from
GPU memory. The map clause can be used with multiple options, for example
it can specify that data only be mapped to the GPU, or only be mapped from
the GPU. The default behaviour for mapping a data item is the following:
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– On entry to a target region, if there is no copy of the data item in GPU
memory, allocate it and transfer data to GPU memory.

– On exit from a target region, if this is the end of the lifetime of the data item,
transfer data from the GPU copy to the host copy, and de-allocate GPU mem-
ory. The OpenMP specification includes rules that a runtime implementation
has to use to keep track of the lifetimes of mapped data items.

2.1 Compilation

In our system, the compiler performs two functions relevant to data mapping.
First, it inserts calls to the OpenMP runtime library to handle data copying for
each data item specified in a map clause. These calls, Map Enter and Map Exit,
are illustrated in Fig. 1 and described in Sects. 2.4 and 2.5. Second, it collects
high-level type information and passes it to the runtime. In the example in Fig. 1,
information for 3 types is collected: real, integer, and ListElem. The format used
for passing type information is described in Sect. 2.2. The compiler can statically
determine if a data item requires deep copy (i.e. if it is of pointer type, or if
it contains pointer types), and if so, it passes the corresponding runtime type
descriptor index as a parameter to the OpenMP library call inserted for the map.
The runtime then uses this type descriptor information to recursively traverse the
entire data structure and perform deep copy. In our design, the user can control
when deep copy is performed by using an extension of OpenMP map-types to
override the automatic deep copy behavior in specific map instances.

1 real :: x 
2 type ListElem
3   type(ListElem),pointer :: nextNode
4   integer :: data(N) 
5 end type ListElem

6 type(ListElem),pointer :: headPtr

7 !$omp target 
8 !!! process list on GPU 
9 !$omp end target 

/* Gather Type Descriptors */ 
1. real : 
2. integer : 

. ListElem : 

 (&headPtr, , );
/* Launch GPU Execution */ 

 (&headPtr, , ); 

Compiler 

SOURCE CODE PROCESSED CODE 

map(tofrom:headPtr) Map_Enter

Map_Exit

3

3

3

Fig. 1. Example to illustrate compiler actions

Dope Vectors. Information in a pointer variable typically contains only the
address of the data pointed to. However, a Fortran pointer variable carries more
information, as illustrated in Fig. 2. This information, collectively called the dope
vector, is implementation dependent and may include the data address, a flag
to indicate if the pointer is associated with valid data, the size of data, and
shape of the data for array types. The shape information includes number of
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dimensions and bounds for each dimension. In our compiler, we use the existing
format for dope vectors as-is. Fortran pointers are typed, i.e. a given pointer
variable can only be associated with data of a matching type. The size of the
dope vector can vary depending on its associated data type, but this size is known
statically at compile time. The size of array data and bounds of array dimensions
may be dynamically determined and recorded at runtime in the corresponding
fields of the dope vector. Our system correctly handles copying of arrays with
dynamic lengths. Also, our compiler processes Fortran allocatable arrays and
Fortran pointers to arrays in a similar manner, and we treat them uniformly in
the copying implementation.

pc 

pf

A

A

C-style Pointer 

Fortran Dope Vector 

addr

addr flag size 

Fig. 2. Dope vector

ph

pg

Ah 

Ag 

Host Memory 

GPU Memory 

map(p) 

ph

pg

Ah 

Ag 

Host Memory 

GPU Memory 

Bh

Bg

map(p) 

(b) (a) 

Fig. 3. Mapping fortran pointer-based
data

Deep Copy. When copying a Fortran pointer between memories, both the dope
vector and the data being pointed to have to be copied. Further, the address
in the copied dope vector has to be updated to refer to the copied version of
the data, as illustrated in Fig. 3(a). The runtime keeps track of data already
copied by recording the corresponding pair of dope vector addresses, and the
corresponding pair of data addresses, shown by the dashed lines in the figure.

When performing a deep copy, the data structure has to be traversed by
following pointers within the data being copied. For such pointers that are not
the top-level pointers, the dope vector is contained within the data already copied
over, as illustrated in Fig. 3(b). In this case, only the data being pointed to has
to be copied, and the address field in the dope vector has to be updated.

2.2 Runtime Type Descriptors

We introduced runtime type descriptors in our compiler and runtime system. To
traverse the data structure for deep copy, the runtime has to be able to identify
what parts of the data are pointer fields, and the type of data that these pointers
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refer to. The compiler has access to all type information for variables used in a
compilation unit. It can collect the information required for traversals and pass
it to the runtime by generating code to initialize runtime type descriptors on
program start-up.

. . . 

1 
2 
3 
4 
5 

8 
4 
X 
Y 
Z 

Index Size Pointer Fields 

0 3 1 

Offset Type 
Index 

Dope 
Vector 
Type 

X = (size of dope vector) + (N*4) 

Fig. 4. Runtime type descriptors

Figure 4 illustrates the format of
the runtime type descriptor list. The
index of an element in the list serves
as an identifier for a data type (user-
defined or otherwise) in the program
code. There is an entry in the list for
each type that contains pointer fields
or that may be the target type asso-
ciated with a pointer variable. A list
entry is a type descriptor which is an
integer value giving the size of the
data type in bytes, followed by zero
or more integer-triplets. Each triplet
denotes a pointer field contained in the corresponding data type, and includes
the following information:

1. Offset: length in bytes from the start of the data type to the pointer field.
2. Type ID: the index of the type descriptor list corresponding to the type of

data pointed to by this pointer field.
3. Dope vector type: an identifier for the format of the dope vector corresponding

to this pointer field. Our compiler uses different dope vector formats for scalar
data versus arrays. For array types, each element of the array is traversed for
deep copy.

In Fig. 4, index 1 corresponds to real type, index 2 corresponds to integer type,
and index 3 corresponds to the ListElem type in the example code snippet of
Fig. 1.

2.3 Assumptions

For automatic copying, we assume that the structure of the data is immutable
during the time when multiple copies of the data exist. Specifically, this means
that pointer fields within the data structure cannot change their value (both
on the host, and on the GPU after the initial copy) during the lifetime of the
mapped data. As a result, some application codes will not benefit from our
automatic deep copy implementation and may need source code modification.
However, there exists a large set of applications that will not be limited by this
assumption. Note that the restriction applies only to pointers; other data fields
may be freely modified.

Non-mutable pointers enable a low-overhead implementation of automatic
deep copy. It may be possible to design algorithms that handle mutable data
structures and work well in practice, but this is out of the scope of this paper.
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2.4 Mapping Data on Target Entry

On entry to an OpenMP target region, the compiler generates host code to invoke
a runtime library function for handling the data copy for each data item specified
in a map clause. In our implementation we built upon an open-source OpenMP
library1, and modified it to support deep copy. Figure 5 shows the pseudocode
for the runtime implementation. In this code, variable MapCount is used to
track the lifetime of mapped data. We maintain MapCount for all data items
reachable through deep copy traversals. We introduced variables globalMapID
and MapID, which serve as timestamps to identify data items that have already
been processed in a specific Map Enter call. This allows our runtime to correctly
handle cyclic pointer traversals in recursive data structures.

Figure 5(a), excluding the bold lines 8–11, 14, 18, and 19, is the existing code
without support for deep copy. The Map Enter function is invoked for each top-
level data item to be copied. The runtime code keeps track of data that has been
previously copied, maintaining a list of corresponding host and GPU addresses.
It allocates GPU memory and transfers data for new copies. It also maintains
a counter called MapCount for each host address to keep track of the lifetime
of data copies. MapCount represents the number of top-level mapped variables
that can reach a given address, either directly or through pointer traversals. It
is used to automatically de-allocate GPU memory on exit from a target region
for copies that can no longer be referenced.

1 GetOrCreate (h_addr

2   d_addr = LookupCorrespondence (h_addr)

3   If (d_addr==NULL):

4       IsNew = true

5    /* Allocate GPU memory and 

6       save addr in d_addr */

7    /* Record correspondence */

8   If (MapID[h_addr] == globalMapID):

9       Visited = true

10  Else

11 MapID[h_addr] = globalMapID

12 MapCount[h_addr]++

13 Map_Enter (h_addr, RT_Desc_ID

14   globalMapID++

15   <IsNew, d_addr> = GetOrCreate(h_addr

16   If (IsNew):

17     /* Copy contents h_addr to d_addr */

18   For each ptr field offset DV in h_addr:

19     Map_Enter_DC (h_addr+DV, d_addr+DV

21 Struct DopeVector DV:

22   flag IsAssociated

23   address Data

25 Map_Enter_DC (h_DV, d_DV, RT_Desc_ID

26   If (not h_DV.IsAssociated):

27     Return

28   <Visited, IsNew, d_addr> = 

29       GetOrCreate (h_DV.Data

30   d_DV.Data = d_addr /* copy to GPU memory */

31   If (Visited): 

32    Return

33   If (IsNew):

34     /* Copy contents h_DV.Data to d_DV.Data */

35   For each ptr field offset DV in h_DV.Data:

36 Map_Enter_DC(h_DV.Data+DV, d_DV.Data+DV

(a) (b) 

Fig. 5. Pseudocode for copying data on target entry

1 Intel OpenMP Runtime Library: https://www.openmprtl.org.

https://www.openmprtl.org
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The bold sections of Fig. 5(a), together with the code in Fig. 5(b), are our
modifications for supporting deep copy. We introduced a variable, globalMapID,
that is incremented on each call to Map Enter and is unique to that instance of
the call. We also introduced a MapID variable for each host address mapped, and
set it to the globalMapID value whenever a host address is processed as part of a
Map Enter call. Lines 8–11, 14, and 31–32 allow us to correctly handle recursive
data structures when performing pointer traversals for deep copy. Lines 18–19
initiate the deep copy traversal by using the runtime type descriptor parameter to
identify pointer fields in the data corresponding to the address being mapped.
The Map Enter DC function is invoked for each of these pointer fields. This
function is similar to the top-level Map Enter function, except that it also checks
if the pointer is associated with data (lines 26–27 that handle null pointers), fixes
the pointer values in the GPU copy of the data (line 30), and handles recursive
traversal (lines 35–36).

Note that the pseudocode in Fig. 5 is simplified for clarity of presentation. The
actual implementation is more complex because it includes optimizations as well
as functionality to handle various map attributes that are part of the OpenMP
specification. The deep copy part of the code also handles these attributes, prop-
agating them in the recursive traversal. For aliasing of array sections, we impose
the same restrictions as the current OpenMP standard, i.e. the first time an
array is copied (mapped) in a target region, it must include all subsections of the
array that will be subsequently mapped during the lifetime of the initial array
copy. This allows us to reuse the existing logic in the runtime library to track
corresponding addresses for host and GPU copies and avoid creating multiple
copies of the same data.

2.5 Mapping Data on Target Exit

There is a runtime library function Map Exit analogous to the Map Enter func-
tion described in the previous section. On exit from an OpenMP target region,
the compiler generates host code to invoke this function for each data item in map
clauses associated with the target region. Map Exit uses the same globalMapID,
MapID, and MapCount variables as Map Enter, and it similarly traverses point-
ers for deep copy. The differences between the two functions are that:

– Map Exit copies data in the reverse direction, from GPU memory to host
memory.

– Map Exit decrements MapCount instead of incrementing it.
– Map Exit de-allocates GPU memory and deletes the correspondence when the

MapCount for an address becomes zero.

3 Optimizations

The ease-of-use and productivity benefits of automatic deep copy have to be
balanced with the runtime overhead of traversing data structures and performing
multiple transfers corresponding to pointers in the data. In this section, we
propose several techniques that can be used to reduce the runtime overhead.
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3.1 Transfers to/from GPU Memory

When a user-defined data type contains a mix of pointer and non-pointer data,
the pointer data has to be treated differently from the non-pointer data for
the purpose of transfers to and from GPU memory. This is because the pointer
address values in the GPU copy have to be fixed to point to data in GPU
memory (refer to line 30 of the code in Fig. 5). We describe 4 different techniques
to perform data transfers of structures with a mix of pointer and non-pointer
data. These techniques have different overheads depending on the number and
contiguity of pointer fields and the size of data fields in the data type. In Fig. 6, we
illustrate the techniques using a simple example. In the figure, p and X represent
host values for a pointer field and a data field, while pg and Xg represent the
corresponding GPU values. Dotted lines connect the same memory locations,
and numbered circles represent the sequence of operations.

p X

COPY TO 
HOST GPU 

pg X pg Xg p Xgp X

COPY FROM 
GPU HOST 

p X pg Xg p Xgpg X

p X pg X pg Xg

p X pg X pg Xg pg Xgpg X p Xg

p p

p X pg X pg X

p

pg Xg pg X p Xg

p

COPY FROM
GPU HOST

COPY TO
HOST GPU

p X pg Xp X

p X pg X

p X pg X

pg Xg p Xg

pg Xg p Xg

pg Xg

pg

p pp Xp

X p

p

p

p p

p

p

p

Xg

X

p Xg p

1

2

1

1
2

3 1 2

4
2 3 1

2

GPU HOSTHOST GPU

BASE

TCPY 

BASE

TCPY 

PCPY PCPY 

Initial/Final
Host Data 

Initial/Final
GPU Data 

Temporary/ 
Intermediate

Transfer  
Operation

Copy
Operation

1

p

Fig. 6. Techniques to optimize pointer-based data transfers

1. Basic Version (BASE)

Copy to GPU Memory: We first transfer the entire data structure to GPU
memory. Then, for each pointer field, we transfer the GPU address value to
the corresponding pointer field. Pointer fields are individually transferred only
if they are associated.

Copy from GPU Memory: In this case, we cannot transfer the entire data
structure to the host, since that will overwrite the original pointer address values
on the host. Instead, we individually transfer each contiguous non-pointer data
segment in the structure.
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2. Basic Version With Self-Managed Memory (BASE+)
This is the same as the BASE version except that it uses self-managed GPU
memory in the runtime. The CUDA library function, cudaMalloc, is used to
allocate GPU memory. Repeatedly invoking this function during a deep copy can
result in high overhead. In our implementation, we use a single call to allocate
a large GPU memory space, and then self-manage this space in the runtime
library to efficiently perform multiple smaller allocations and deallocations. All
following versions (TCPY and PCPY) also use self-managed GPU memory.

3. Version with Temporary Copies (TCPY)
For this version, we first create a temporary copy of the data structure on the
host.

Copy to GPU Memory: We overwrite the pointer address fields in the tem-
porary copy with the corresponding GPU address values. Then we do a single
transfer of the entire data structure from the temporary copy to GPU memory.

Copy from GPU Memory: We transfer the entire data structure from GPU
memory to the temporary host copy. Then we copy only the non-pointer data
from the temporary copy to the original data structure on the host.

4. Version with Temporary Pointer Value Copies (PCPY)
For this version, we assume that the pointers are not used on the host (due to
accesses in multithreaded host code) during the processing of the map clause.
This property can be determined by compiler analysis in some cases, or it can
be provided by the user via program annotations.

We first allocate temporary space on the host, and for each pointer field, we
copy the value of the host pointer to the temporary space.

Copy to GPU Memory: We update the pointer address values to correspond-
ing GPU address values in-place in the host copy of the data. We then transfer
the entire data structure to GPU memory. Finally, we restore the original pointer
values in the host copy.

Copy from GPU Memory: We transfer the entire data structure from GPU
memory to the host. Then for each pointer field, we copy the host address value
of the pointer from temporary space to its original location.

For TCPY and PCPY, the runtime checks if a data item has any associated
(non-null) pointers before it creates temporary copies on the host.

Table 1 gives the overheads associated with each technique in terms of number
of transfers, size of data transferred, and size of temporary copies on the host. We
assume S is the size of the data structure to be copied, DV is the size of a dope
vector, and M is the number of pointer fields in the data structure. Note that
the number of transfers for the copy-from case in the BASE versions depends
on the contiguity of pointer fields in the layout of the data structure.
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Table 1. Cost of different data transfer techniques

Number of transfers Size of transfers Size of host copies

BASE copy to 1+M S+M*DV 0

BASE copy from varies S–M*DV 0

TCPY 1 S S–M*DV

PCPY 1 S M*DV

3.2 Other Optimizations

In this section, we discuss some other optimizations that can be applied based
on information obtained from programmer annotations and/or sophisticated
analysis.

Structured Maps. In addition to the assumptions in Sect. 2.3, if it is known
that data transfer directives are only associated with structured program-
ming constructs2, then the runtime overhead can be reduced. In this case,
the globalMapID of Sect. 2.4 is used to track the level of the nesting struc-
ture by incrementing it on each Map Enter call and decrementing it on each
Map Exit call. The MapID for an address is set to the current nesting level only
when corresponding memory is newly allocated on the GPU in a Map Enter
or Map Enter DC call. That corresponding GPU memory is copied back/de-
allocated at the end of the structured nesting level (i.e. in the first Map Exit
call that decrements the globalMapID to a value less than the MapID for the
address). There is no need to maintain the MapCount for each mapped address.
Also, following default OpenMP semantics for data copying (without the always
modifier on the map clause), data is copied to GPU memory only when it is first
allocated and copied back only when it is de-allocated. As a result, there is no
need to recursively traverse the data structure multiple times. Only one traversal
at the beginning and one at the end of the lifetime of the mapped data is needed.
Thus, there is significant potential for improving runtime performance.

User Specified De-allocation. The runtime maintains a MapCount per
address so that it can automatically determine the end of the lifetime of a
mapped data item, i.e. when the data item should be copied back and de-
allocated from the GPU. If the programmer is solely responsible for specifying
this, e.g. by using the OpenMP delete map-type, then there is no need to main-
tain MapCounts, or to recursively traverse data structures multiple times. Thus,
performance can be improved.

2 This excludes the use of OpenMP directives such as target enter data and target
exit data.
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Asynchronous Transfers. By default, our implementation uses synchronous
data transfer calls. However, NVIDIA GPUs support asynchronous data trans-
fers using the CUDA Streams API. If sufficient bandwidth is available, multiple
transfers can be overlapped for better performance. For the techniques described
in Sect. 3.1, explicit synchronization is needed in the BASE versions when trans-
ferring data to the GPU, between the single transfer of the entire data and
the subsequent transfers for fixing individual pointer values. All other transfers
corresponding to the same OpenMP map clause can proceed in parallel.

Selective Pointer Traversal. Prior work [5] based on OpenACC described
ways for the programmer to specify which fields of a data structure to treat as
pointers to be traversed in an automatic deep copy implementation. Selective
pointer traversal can be applied in combination with any of the optimization
techniques discussed in this section.

4 Experiments

In this section, we report the results of experiments performed to measure the
overheads of our automatic deep copy implementation. We focused our measure-
ments on the time taken by the runtime library calls invoked for data mapping,
and on the time taken by data transfers. We ran our experiments on a system
with an IBM POWER8 LE host running Linux Ubuntu 14.04, connected to an
NVIDIA Kepler K40 GPU via PCIe, using CUDA version 8.0.

Our compiler system uses the IBM XL Fortran front-end to parse the
OpenMP source code. It then translates the output of the front-end to Clang
AST format. This Clang AST code is processed by the open-source Clang
OpenMP compiler to generate a binary that executes across the host and GPU.
We implement our runtime techniques by modifying the open-source runtime
library that is included with the Clang OpenMP compiler. For self-managed
GPU memory, we use a single call to cudaMalloc to initially allocate 2 GB of
GPU memory, and then manage this space in the runtime code.

We use the following benchmark codes for our evaluation:

– List: This code constructs and initializes a linked list of length 1024 on the
host, and then traverses the list on the GPU. The type of each list element is
as shown in Fig. 1. There are 3 versions of the code obtained by varying the
size of the list element: 128 bytes, 1 KB, and 1 MB.

– SplitList: This code uses a linked list where each list element has 2 data
fields that are separated by a pointer field in the middle. As before, there are
3 versions of the code, corresponding to sizes 128 bytes, 1 KB, and 1 MB.

– Tree: This is a height-balanced binary tree with 1024 nodes. Each node has
a left-child pointer, followed by a data field, followed by a right-child pointer.
There are 3 versions of the code, corresponding to node sizes 128 bytes, 1 KB,
and 1 MB.
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– UMT: This is the kernel version of the UMT application [2], which performs
three-dimensional, non-linear, radiation transport calculations. It is represen-
tative of real application code written using pointer-based data structures,
and requires automatic deep copy support for easily porting it to systems
with multiple memories. The data structure includes 3-level pointer chains,
with multiple pointer fields at levels 2 and 3. We insert OpenMP directives
to transfer 2000 nodes in the data structure to GPU memory. Total data size
transferred is approximately 2.2 GB.

Results for List, SplitList, and Tree
For benchmarks List, SplitList, and Tree, Fig. 7 shows the time in seconds taken
to process data transfers in the runtime. Data is separately presented for transfers
to the GPU (Fig. 7(a), (b), and (c)) and transfers from the GPU (Fig. 7(d), (e),
and (f)). There are 3 sizes for each benchmark, and 4 versions for each size
corresponding to the different techniques described in Sect. 3.1.

Fig. 7. Time taken for data transfers (seconds)

The data in Fig. 7 is used to compare the relative performance of the different
versions. The low performance of the BASE version clearly shows the benefit of
using self-managed memory. Overall, the results are as expected: the overhead
of the extra host copy in TCPY dominates when data size is 1 MB, and the
overhead of extra transfers when copying to the GPU in BASE+ dominates at
smaller data sizes. The results for size 128 bytes closely match those for size
1 KB, as latency costs dominate the transfer time for small data sizes. Note that
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for SplitList, when copying from the GPU, BASE+ always has higher overhead
than TCPY and PCPY. This is because SplitList has 2 data fields per node that
are separately copied back to the host in BASE+.

In Fig. 7(a), the versions for Tree take noticeably less time than List or
SplitList. Tree has 2 pointers per node but the total number of data transfers
for fixing pointer values in GPU copies in BASE+ is the same as the number
of transfers for List and SplitList. This is because our runtime does not initiate
any transfers for fixing pointers that are null, and the pointers in the leaf nodes
of Tree are all null. Since the overall number and sizes of transfers initiated for
all 3 benchmarks are similar for corresponding versions, the disparate times for
Tree are due to differences in data structure traversal and clustering/sequencing
of the data transfers. Profiling using nvprof shows that in this case the difference
can be attributed to time spent in various CUDA API calls, while the actual
transfer times are almost the same. Note that even though Tree BASE+ uses
more data transfers than Tree PCPY, it performs better for size 1 MB because
PCPY has greater overhead for copying the multiple pointers per node in Tree.

Figure 8 shows the percentage of effectively available bandwidth achieved for
each of the testcases in Fig. 7(a), (b), and (c). The effectively available band-
width is the maximum achievable bandwidth for the pattern of transfers dic-
tated by the data structure traversal (not the maximum bandwidth provided
in hardware). We compute the effectively available bandwidth by running a
manually coded CUDA version that only does GPU memory allocation/de-
allocation and the sequence of data transfers corresponding to each optimization
version. The CUDA version gives an optimistic upper bound on bandwidth, and
it does not include any overheads of our runtime such as data structure traversal,
address/offset computation, or checks and updates related to OpenMP imple-
mentation. Bandwidth is computed as the ratio of actual data transferred over
the wall clock time taken to execute the code that processes transfers. The per-
cent bandwidth achieved compared to the optimistic CUDA version is a measure
of the overhead in the OpenMP runtime library code. Note that this overhead
depends on data size for some optimization cases.

Fig. 8. Percentage bandwidth achieved compared to optimistic CUDA version
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In all cases except List and SplitList for 1 MB, we achieve 70% or greater
of the optimistic maximum bandwidth. As expected, the absolute values of the
bandwidth are proportional to the data size, e.g. bandwidth values for size 1 MB
are an order of magnitude larger than the values for size 1 KB. Also, for a given
benchmark/size, the optimistic bound computed for BASE is lower than that
computed for BASE+, which in turn is lower than that computed for TCPY
and PCPY. This explains why the percent bandwidths achieved by BASE and
BASE+ are relatively higher even though they spend more time processing data
transfers. On average across all cases, 77.5% of the effectively available band-
width is achieved.

We also implemented a version of our runtime using asynchronous data trans-
fers with two CUDA streams. However, for our testcases, the overheads asso-
ciated with asynchronous transfers (allocating/copying to pinned host mem-
ory, and API calls for synchronization) caused slowdowns in overall perfor-
mance. Further experiments are needed to determine if these overheads can be
overcome.

Results for UMT
We also measured the performance of automatic deep copy for transferring data
to the GPU in the UMT benchmark. For each version BASE, BASE+, TCPY,
and PCPY, Table 2 shows the time in seconds to process the data transfer, and
the bandwidth of the transfer in GB/s. As a reference, the absolute values of
the bandwidths achieved by the 1 MB size testcases in Fig. 8(a) ranged from
1.615 GB/s to 3.358 GB/s. The results of our initial experiments indicate that
the overhead of automatic deep copy may be tolerable for practical use cases.

Table 2. UMT transfers to GPU memory

BASE BASE+ TCPY PCPY

Time (seconds) 5.4382 3.3708 2.6548 2.3492

Bandwidth (GB/s) 0.4367 0.7045 0.8944 1.0107

5 Related Work

Prior work related to OpenACC [5,17] has addressed the issue of designing auto-
matic deep copy traversals, and it is supported to some extent in the Cray and
PGI Fortran compilers. However, overheads associated with deep copy are not
well understood. In our work, we described and implemented a specific algorithm
for deep copy that also supports cyclic pointer traversals, proposed optimization
techniques based on this algorithm, and performed experiments to measure the
overheads of different techniques.

The main advantage of our automatic deep copying approach is it enables
ease of programming. Software shared memory abstractions (e.g. [4,11,14]) pro-
vide another way to make programming easier. CUDA Unified Memory(UM) [9]
is a shared memory abstraction available on systems with NVIDIA GPUs. UM is
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an on-demand solution that works on OS page-size granularity, and can have very
high overhead in some cases. In contrast, our approach can incorporate prefetch-
ing optimizations, and can be specifically optimized for each application’s data
structures and access patterns.

The system used in our experiments has a PCIe interconnect between the
CPU and GPU. NVLink [7] is a custom high-bandwidth interconnect that can
be used with NVIDIA GPUs. We expect that using a system with NVLink will
help reduce the overheads associated with automatic deep copies.

Our implementation is based on OpenMP. The directives for data mapping
in OpenACC are very similar to those in OpenMP. There are other high-level
paradigms for programming heterogeneous systems, such as C++ AMP [8] and
Kokkos [6], both of which use the concept of data views. These aim to enable
performance portability for data accesses; they do not provide support for auto-
matically traversing recursive pointer-based data structures.

Garbage collection [13] techniques for memory management automatically
track the lifetimes of pointer-based data. In our algorithm, we also track the
lifetime of data encountered in deep copy traversals, except our case is simpler
because we follow OpenMP semantics. Specifically, we only track the number
of variables directly specified in map clauses that may reach a given data item
through deep copy traversal.

In our work, we rely on Fortran language features to completely automate
deep copy traversals. For other languages such as Java/C/C++, there exist
libraries and APIs for serialization that can be used to partially automate deep
copy traversals.

6 Conclusion

We designed and implemented automatic support for deep copy of pointer-based
data structures across multiple memories. We proposed several techniques that
can be applied to optimize the overhead of pointer-based data transfers. We
obtained experimental data to evaluate the overheads of our implementation in a
CPU-GPU system, and to determine the applicability of the different techniques
proposed. Overall, our work shows that automatic copying of pointer-based data
structures can be implemented using the compiler and runtime with manageable
overheads.
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