
Chen Ding
John Criswell
Peng Wu (Eds.)

 123

LN
CS

 1
01

36

29th International Workshop, LCPC 2016
Rochester, NY, USA, September 28–30, 2016
Revised Papers

Languages and Compilers
for Parallel Computing

Lecture Notes in Computer Science 10136

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Chen Ding • John Criswell • Peng Wu (Eds.)

Languages and Compilers
for Parallel Computing
29th International Workshop, LCPC 2016
Rochester, NY, USA, September 28–30, 2016
Revised Papers

123

Editors
Chen Ding
University of Rochester
Rochester, NY
USA

John Criswell
University of Rochester
Rochester, NY
USA

Peng Wu
Huawei Inc.
Santa Clara, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-52708-6 ISBN 978-3-319-52709-3 (eBook)
DOI 10.1007/978-3-319-52709-3

Library of Congress Control Number: 2017930201

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at LCPC 2016: the 29th International
Workshop on Languages and Compilers for Parallel Computing held during
September 27–29, 2016, in Rochester, New York.

Since its founding in 1988, the LCPC workshop has been a leading venue for
research on parallelizing compilers and related topics in concurrency, parallel lan-
guages, parallel programming models, runtime systems, and tools. The workshop spans
the spectrum from foundational principles to practical experience, and from early ideas
to polished results. LCPC encourages submissions that go outside the scope of sci-
entific computing and enable parallel programming in new areas, such as mobile
computing and data centers. The value of LCPC stems largely from its focused topics
and personal interaction. This year’s location, in Rochester, NY, was both scenic and
convenient. September weather is beautiful, as is the university campus, located at the
confluence of the Genesee River and the historic Erie Canal.

Specific topics of LCPC 2016 included:

• Compiling for parallelism and parallel compilers
• Static, dynamic, and adaptive optimization of parallel programs
• Parallel programming models and languages
• Formal analysis and verification of parallel programs
• Parallel runtime systems and libraries
• Performance analysis and debugging tools for concurrency and parallelism
• Parallel algorithms and concurrent data structures
• Parallel applications
• Synchronization and concurrency control
• Software engineering for parallel programs
• Fault tolerance for parallel systems
• Parallel programming and compiling for heterogeneous systems

There were 26 submissions. Each submission was reviewed by at least three, and on
average 3.5, Program Committee members. The committee decided to accept 23
papers, of which 20 are regular papers (up to 15 pages) and three are short papers (up to
five pages).

The workshop program includes three keynotes:

• “Parallel Computation Models and Systems, Dataflow, Coelets, and Beyond” by
Guang R. Gao of University of Delaware

• “Towards High-Level High-Performance Software Development” by P. (Saday)
Sadayappan of Ohio State University

• “The Multi-core Problem as an Algorithmic Problem” by Leslie Valiant of Harvard
University

There was also one invited talk on “Tapir: Embedding Fork-Join Parallelism into
LLVM’s Intermediate Representation” by Tao Schardl of MIT.

We would like to thank Pengcheng Li for creating the workshop website at
http://www.cs.rochester.edu/u/cding/lcpc2016/ and compiling the final publication
package, and the computer science staff for the help in organizing the workshop and the
financial support from Huawei, IBM, as well as the Goergen Institute of Data Science
and Department of Computer Science at University of Rochester. The generation of the
proceedings was assisted by the EasyChair conference system.

December 2016 Chen Ding
John Criswell

Peng Wu

VI Preface

http://www.cs.rochester.edu/u/cding/lcpc2016/

Organization

Program Committee

Ayon Basumallik MathWorks Inc., USA
James Brodman Intel, USA
Arun Chauhan Indiana University, USA
John Criswell University of Rochester, USA
Chen Ding University of Rochester, USA
Matthew Fluet Rochester Institute of Technology, USA
Jeff Huang Texas A&M University, USA
Hironori Kasahara Waseda University, Japan
Frank Mueller North Carolina State University, USA
P. Sadayapan Ohio State University, USA
Xipeng Shen North Carolina State University, USA
Michelle Strout University of Arizona, USA
Peng Tu Intel, USA
James Tuck North Carolina State University, USA
Peng Wu Huawei US Research Lab, USA

Contents

Large Scale Parallelism

QUARC: An Array Programming Approach
to High Performance Computing . 3

Diptorup Deb, Robert J. Fowler, and Allan Porterfield

Utilizing Concurrency: A New Theory for Memory Wall 18
Xian-He Sun and Yu-Hang Liu

ParFuse: Parallel and Compositional Analysis of Message
Passing Programs . 24

Sriram Aananthakrishnan, Greg Bronevetsky, Mark Baranowski,
and Ganesh Gopalakrishnan

Fast Approximate Distance Queries in Unweighted Graphs
Using Bounded Asynchrony . 40

Adam Fidel, Francisco Coral Sabido, Colton Riedel, Nancy M. Amato,
and Lawrence Rauchwerger

Energy Avoiding Matrix Multiply . 55
Kelly Livingston, Aaron Landwehr, José Monsalve,
Stéphane Zuckerman, Benoît Meister, and Guang R. Gao

Resilience and Persistence

Language Support for Reliable Memory Regions . 73
Saurabh Hukerikar and Christian Engelmann

Harnessing Parallelism in Multicore Systems to Expedite
and Improve Function Approximation . 88

Aurangzeb and Rudolf Eigenmann

Adaptive Software Caching for Efficient NVRAM Data Persistence 93
Pengcheng Li and Dhruva R. Chakrabarti

Compiler Analysis and Optimization

Polyhedral Compiler Technology in Collaboration with Autotuning
Important to Domain-Specific Frameworks for HPC 101

Mary Hall and Protonu Basu

http://dx.doi.org/10.1007/978-3-319-52709-3_1
http://dx.doi.org/10.1007/978-3-319-52709-3_1
http://dx.doi.org/10.1007/978-3-319-52709-3_2
http://dx.doi.org/10.1007/978-3-319-52709-3_3
http://dx.doi.org/10.1007/978-3-319-52709-3_3
http://dx.doi.org/10.1007/978-3-319-52709-3_4
http://dx.doi.org/10.1007/978-3-319-52709-3_4
http://dx.doi.org/10.1007/978-3-319-52709-3_5
http://dx.doi.org/10.1007/978-3-319-52709-3_6
http://dx.doi.org/10.1007/978-3-319-52709-3_7
http://dx.doi.org/10.1007/978-3-319-52709-3_7
http://dx.doi.org/10.1007/978-3-319-52709-3_8
http://dx.doi.org/10.1007/978-3-319-52709-3_9
http://dx.doi.org/10.1007/978-3-319-52709-3_9

An Extended Polyhedral Model for SPMD Programs and Its Use in Static
Data Race Detection . 106

Prasanth Chatarasi, Jun Shirako, Martin Kong, and Vivek Sarkar

Polygonal Iteration Space Partitioning . 121
Aniket Shivam, Alexandru Nicolau, Alexander V. Veidenbaum,
Mario Mango Furnari, and Rosario Cammarota

Automatically Optimizing Stencil Computations on Many-Core
NUMA Architectures. 137

Pei-Hung Lin, Qing Yi, Daniel Quinlan, Chunhua Liao,
and Yongqing Yan

Formalizing Structured Control Flow Graphs . 153
Amit Sabne, Putt Sakdhnagool, and Rudolf Eigenmann

Dynamic Computation and Languages

Automatic Vectorization for MATLAB . 171
Hanfeng Chen, Alexander Krolik, Erick Lavoie, and Laurie Hendren

Analyzing Parallel Programming Models for Magnetic Resonance Imaging. . . . 188
Forest Danford, Eric Welch, Julio Cárdenas-Ródriguez,
and Michelle Mills Strout

The Importance of Efficient Fine-Grain Synchronization
for Many-Core Systems . 203

Tongsheng Geng, Stéphane Zuckerman, José Monsalve,
Alfredo Goldman, Sami Habib, Jean-Luc Gaudiot, and Guang R. Gao

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations
in Action . 218

Khalid Ahmad, Anand Venkat, and Mary Hall

GPUs and Private Memory

LightHouse: An Automatic Code Generator for Graph Algorithms
on GPUs . 235

G. Shashidhar and Rupesh Nasre

Locality-Aware Task-Parallel Execution on GPUs . 250
Jad Hbeika and Milind Kulkarni

Automatic Copying of Pointer-Based Data Structures 265
Tong Chen, Zehra Sura, and Hyojin Sung

X Contents

http://dx.doi.org/10.1007/978-3-319-52709-3_10
http://dx.doi.org/10.1007/978-3-319-52709-3_10
http://dx.doi.org/10.1007/978-3-319-52709-3_11
http://dx.doi.org/10.1007/978-3-319-52709-3_12
http://dx.doi.org/10.1007/978-3-319-52709-3_12
http://dx.doi.org/10.1007/978-3-319-52709-3_13
http://dx.doi.org/10.1007/978-3-319-52709-3_14
http://dx.doi.org/10.1007/978-3-319-52709-3_15
http://dx.doi.org/10.1007/978-3-319-52709-3_16
http://dx.doi.org/10.1007/978-3-319-52709-3_16
http://dx.doi.org/10.1007/978-3-319-52709-3_17
http://dx.doi.org/10.1007/978-3-319-52709-3_17
http://dx.doi.org/10.1007/978-3-319-52709-3_18
http://dx.doi.org/10.1007/978-3-319-52709-3_18
http://dx.doi.org/10.1007/978-3-319-52709-3_19
http://dx.doi.org/10.1007/978-3-319-52709-3_20

Automatic Local Memory Management for Multicores Having Global
Address Space . 282

Kouhei Yamamoto, Tomoya Shirakawa, Yoshitake Oki,
Akimasa Yoshida, Keiji Kimura, and Hironori Kasahara

Run-time and Performance Analysis

Mapping Medley: Adaptive Parallelism Mapping with Varying
Optimization Goals . 299

Murali Krishna Emani

The Contention Avoiding Concurrent Priority Queue 314
Konstantinos Sagonas and Kjell Winblad

Evaluating Performance of Task and Data Coarsening
in Concurrent Collections. 331

Chenyang Liu and Milind Kulkarni

Author Index . 347

Contents XI

http://dx.doi.org/10.1007/978-3-319-52709-3_21
http://dx.doi.org/10.1007/978-3-319-52709-3_21
http://dx.doi.org/10.1007/978-3-319-52709-3_22
http://dx.doi.org/10.1007/978-3-319-52709-3_22
http://dx.doi.org/10.1007/978-3-319-52709-3_23
http://dx.doi.org/10.1007/978-3-319-52709-3_24
http://dx.doi.org/10.1007/978-3-319-52709-3_24

Large Scale Parallelism

QUARC: An Array Programming Approach
to High Performance Computing

Diptorup Deb(B), Robert J. Fowler, and Allan Porterfield

Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, USA

diptorup@cs.unc.edu, {rjf,akp}@renci.org
http://cs.unc.edu/

Abstract. We present QUARC, a framework for the optimized compi-
lation of domain-specific extensions to C++. Driven by needs for pro-
grammer productivity and portable performance for lattice QCD, the
framework focuses on stencil-like computations on arrays with an arbi-
trary number of dimensions. QUARC uses a template meta-programming
front end to define a high-level array language. Unlike approaches that gen-
erate scalarized loop nests in the front end, the instantiation of QUARC
templates retains high-level abstraction suitable for optimization at the
object (array) level. The back end compiler (CLANG/LLVM) is extended
to implement array transformations such as transposition, reshaping, and
partitioning for parallelism and for memory locality prior to scalarization.
We present the design and implementation.

Keywords: Array-programming · Domain-specific languages

1 Introduction

QUARC is an embedded C++14 domain-specific compilation framework for
optimizing expressive high-level C++ template code. It addresses performance
and productivity challenges in lattice quantum chromodynamics (LQCD) in
exploration of new physics and new algorithms. QUARC provides a compact,
high-level notation with support for aggressive optimization and performance
portability across architectures and machine implementations. QUARC pro-
vides notation and mechanisms to solve partial differential equations over com-
plex vector fields discretized on structured lattices. While the design choices for
QUARC are driven by the needs of LQCD, we plan to generalize QUARC to
other domains.

It is increasingly difficult to extract high levels of portable performance from
today’s high-end systems. A single node of a current-generation HPC system
has features such as deeply nested cache hierarchies, multi-core parallelism, and
short-vector SIMD units. Domain-specific and architecture-specific knowledge
and labor are required to design efficient concrete data layouts and code. The
resulting hand-optimized codes bear little resemblance to the original abstract
concepts and they are difficult to debug and to maintain.
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-52709-3 1

4 D. Deb et al.

These issues spring from weaknesses in architecture-neutral abstract paral-
lel programming frameworks. Libraries such as Intel TBB [7] and Kokkos [2]
address some of the challenges. Increasingly, languages such as C/C++ are the
choice for HPC programming, but they lack support for abstract arrays as first-
class objects. Various libraries and domain specific-languages (DSLs) [20], [6]
extend the expressiveness of C++ using template meta-programming techniques
like expression templates (ETs). These suffer performance problems because the
concrete implementation of the array expressions, particularly scalarization of
loops, occurs at the time of template instantiation. This makes it difficult or
impossible for the compiler to retain enough context to infer the programmer’s
intent or to infer properties such as lack of aliasing or side effects. Subsequent
compiler-driven analysis and optimization are thwarted.

1.1 The LQCD Problem Domain

QCD is the theory of the strong force, one of the four fundamental forces in
nature. LQCD discretizes space and time on a four-dimensional lattice. Each
lattice site is represented by at least one 12-dimensional complex vector (spinors)
and eight (3×3) SU(3) matrices (gauge links). The lattice usually is represented
using a nest of array and structure types using as much as 2 kilobytes per site.
In production, the lattice sizes can be as large as 1283 × 256.

LQCD programs typically involve stencil computations. Often, a stencils
is applied once per iteration of an implicit solver. Every stencil computation
involves multiple short matrix-vector products, like the one shown in Listing 1.2,
that can touch up to 3 K bytes per lattice site, leading to poor memory locality
and a low computational intensity. These characteristics constrains stencil opti-
mization strategies like time-tiling LQCD thus requires strategies for optimiza-
tion that have proven hard to automate. Recent performance studies [9] have
highlighted this increasing software gap by comparing hand optimized LQCD
kernels to QDP++ [20], an existing C++ ETs-based LQCD DSL. Reported
numbers show an 8× performance difference on Intel’s Xeon Phi accelerators
and a 2.6× gap on regular Intel Xeon processors.

1.2 The QUARC Approach

QUARC optimizes kernels like that shown in Listing 1.1. It supports dynamic
arrays of arbitrary rank as first-class objects. The intermediate representation
preserves array semantics, allowing QUARC to use existing analysis and opti-
mization passes in LLVM, as well as to add domain-specific transformations.
The main innovations are:

– It provides a loop-less declarative syntax that makes arrays first-class objects,
and provides a framework for defining array operators.

QUARC: An Array Programming Approach 5

//===----- Basic lattice QCD data types ----===//

typedef std::complex <double > c;

// 3-D complex vector

typedef std::array <c, 3> su3Vec;

// 3x3 complex matrix

typedef std::array <su3Vec , 3> su3Mat;

// Packed array of 8 SU3Matrices

typedef std::array <su3Mat , 8> wG;

// 12-D complex vector

typedef std::array <su3Vec , 4> wS;

// 4-D lattice of 12-D complex vectors

typedef quarc ::mdarray <wS, 4, PERIODIC > wSLattice;

// 4-D lattice of packed 3x3 complex matrices

typedef quarc ::mdarray <wG, 4, PERIODIC > wGLattice; int

main () {

wSLattice s_in (16 ,16 ,16 ,16), s_out (16 ,16 ,16 ,16);

wGLattice g(16 ,16 ,16 ,16);

// ... intializations

//===------ An abridged QCD stencil ----===//

// operator* : su3_mult_op mkernel (Listing 1.2)

// operator+ : complex vector addition

// gshift : described in Sect .\,2.2

// adj() : complex adjunct

s_out = g.get <0>() * s_in.gshift <1,0,0,0>()

+ g.get <1>() * s_in.gshift <0,1,0,0>()

+ g.get <2>() * s_in.gshift <0,0,1,0>()

+ g.get <3>() * s_in.gshift <0,0,0,1>()

+ adj(g.get <4>()) * s_in.gshift <-1,0,0,0>()

+ adj(g.get <5>()) * s_in.gshift <0,-1,0,0>()

+ adj(g.get <6>()) * s_in.gshift <0,0,-1,0>()

+ adj(g.get <7>()) * s_in.gshift <0,0,0,-1>();

return 0;

}

Listing 1.1. A lattice QCD stencil written in QUARC syntax

– To define stencils, QUARC uses a generalized shift (gshift) operation provid-
ing a multi-dimensional view of the array accesses to the compiler. Enabling
exact dependence and reuse-distances analyses, and avoiding issues such as
delinearization [13]. The gshift operator cleanly separates stencil-related
accesses from those occurring inside the pointwise operations.

– QUARC defers loop generation (late scalarization) of array expressions to the
compiler. Late scalarization facilitates optimizations such as common subex-
pression elimination or expression fusion to array expressions. This opens
the possibility of generating domain- and architecture-specific loop constructs
after incorporating other optimizations.

6 D. Deb et al.

– It provides uniform support for data transformations including tiling for
shared-memory parallelism, partitioning for distributed parallelism, improving
memory locality, and aligning data for vectorization. QUARC includes classi-
cal array transformations like reshape, transpose and catenate [14,15]. These
enable the modification of array properties such as rank (number of dimen-
sions) and shape (extent of each dimension). Combining such transformations
with dependence- and reuse-distance analyses makes it possible to derive data
layout transformations such as structure of arrays (SoA) to arrays of struc-
ture of arrays (ASoA) required for vectorizing LQCD kernels on short-vector
SIMD machines.

template <typename T1, typename T2>

auto su3_mult_op(T1 m,T2 v){

T2 r;

for(int i=0;i<3;i++) {

r[i][0]=0.0;r[i][1]=0.0;

for(int j=0;j<3;j++) {

r[i][0] += m[i][j][0] * v[j][0];

r[i][0] -= m[i][j][1] * v[j][1];

r[i][1] += m[i][j][0] * v[j][1];

r[i][1] += m[i][j][1] * v[j][0];

}

}

return r;

}

Listing 1.2. Mkernel defining a pointwise SU3 matrix-vector product

2 An Array Programming Approach to Parallelism

Compilers for data-parallel programming languages like HPF [16] have focused
on loop-centric transformations that alter the execution schedule of loop itera-
tions to remove true dependence, improve cache-locality, and introduce paral-
lelism. Without a data-centric view of the array expressions data-layout trans-
formations become very challenging.

As a domain-specific compilation framework, QUARC can exploit inherent
guarantees that allow us to take a radically different approach. QUARC state-
ments are guaranteed to be data-independent, with all arrays having the same
rank and shape (refer Sects. 3.3 and 3.4). This allows QUARC to be fully data-
centric and to make loop generation a final step in the optimization process.
In addition to traditional loop-tiling optimizations, QUARC can do data-layout
transformations to support short-vector SIMD units.

2.1 QUARC Array Transformations

Array operations have been defined formally [14,15] for APL [8] and similar
array-programming frameworks. Such operations can alter the structural prop-
erties of arrays, and offer the necessary semantics for defining data-reordering

QUARC: An Array Programming Approach 7

within arrays. Mainstream procedural languages, like C/C++, have offered very
limited support for such array operations.

Notations for Defining Array Properties. We use Λ to denote an n-
dimensional LQCD lattice defined using QUARC arrays. Upper-case Roman
characters used in a postfix notation denote array properties. Lower-case Greek
letters denote array operations. Operations are written using C-like function call
notation.

The dimensionality of the arrays is denoted by N and the extent of each
dimension by Bi. The shape vector, made up of the dimensional extents, is
represented as S and an index coefficient vector holding the cumulative sizes for
each dimension is referred to as Ic. We initialize S and Ic as

Sinitial = {Bi|N < i <= 0}, (1)

Ic initial = {
0∏

i=N−2

Bi,

0∏

i=N−3

Bi, . . . , 1}. (2)

A set of abstract array operations are used to model the data transformations.
Selecting an element from a list is done using the (ι) operator. Reshaping array
dimensions is done via the (ρ) operator. Reshaping is defined as

Snew = (ρ(ΛS,Rf)), (3)

where Rf denotes a vector containing the reshape factors for all of the dimen-
sions. Reshaping introduces padding only if ιRf i, for a given dimension does not
divide the original Bi evenly. The new extents are

Bi new =
ι(ΛS, i)
ι(Rf , i)

=

⎧
⎪⎨

⎪⎩

Bi, if ι(Rf , i) == 1

{ι(Rf , i), � ι(ΛS, i)
ι(Rf , i)

�} otherwise
,

where 0 < ι(Rf , i) < Bi. (4)

Transpose (Φ) generalizes two-dimensional matrix transpose to transpose an
array about any diagonal, and catenation (κ) is used to merge or to linearize
two adjacent dimensions into one. For both operation the required dimensions
are specified as a two-tuple argument.

QUARC Representation of Array Expressions. We introduce additional
terminology for explaining the QUARC program structure. A QUARC kernel
(Qk) is a single array statement inside a QUARC program. Conceptually, it is
an abstract countable loop over all values of the index set of the arrays referenced
in the statement. Mini-kernel (mkernel) is a pointwise array operator or second-
order array function. The iteration domain of a Qk is denoted as AIs. It the set
of all the execution instances that need to be completed when processing the Qk.
In QUARC, the AIs geometrically represents an n-orthotope or hyperrectangle,
with origin as the lower bound and upper bounds equal to the corresponding Bi.

8 D. Deb et al.

Each point in AIs is termed an iteration point and is identified by an n-tuple
coordinate. Finally, the index space or the data domain is represented as Ds. It
is the set of all array elements accessed by the Qk. Although arrays are stored
in a one-dimensional linearized address space, Ds is an n-dimensional space. We
only consider monolithic addressing (Sect. 3.2) of QUARC arrays, therefore AIs

and Ds are always equivalent for every Qk.

2.2 An Array-Transformation Mechanism

The present array-transformations in QUARC are driven by a reuse-distance
based algorithm to derive SIMD friendly data-layouts for LQCD stencils. Reuse-
distance is defined as the measure of non-unique data referenced between two
successive uses of a given array reference. Various well-known canonical cache-
blocking optimizations are based on reuse-distance, such as those provided by
Wolf and Lam [24]. Henretty et al. [5] introduced a novel data-layout transforma-
tion for short-vector SIMD also using reuse-distance analysis to identify SIMD
vector-stream alignment conflicts (SACs). Their algorithm uses the SAC metric
to define Φρ transforms on the innermost dimension of multi-dimensional arrays
to enhance vectorizability.

The QUARC array-transformation algorithm expands on Henretty et al.’s
algorithm. We incorporate κ along with Φρ and apply the transformation to
any dimension of the array. The technique derives the gather-scatter data-layout
transformation and the required data mappings. Extending the transformation
to outer dimensions can lead to an exhaustive search for the best layout. To
reduce the search space, we use a LQCD-specific transformation. Most LQCD
configurations use three equal-sized spatial dimensions and a time dimension
twice the extent of the others. Thus, QUARC usually can ensure that the longest
dimension is always innermost before starting layout transformations.

Step 1: Analyze Outer Accesses. The first step evaluates the accesses at the
outermost nesting level and identifies SACs. We then apply κΦρ to the innermost
dimension, and proceed outwards until SACs are removed. Algorithm1 provides
an outline of the QUARC array-transformation algorithm using the kernel in
Listing 1.1 as the input. The transformations are applied to both S and Ic. The
final state of S provides the new shape with an innermost vector dimension, and
the final state of the Ic gives the mapping to the old index space.

Step 2: Analyze mkernels. Along with analysis on the outer array accesses
the mkernels are also analyzed for vectorizibility. For example, the mkernel in
Listing 1.2 has no vectorizable loops, but has interleaved data accesses.

Step 3: Finalizing Data-Layout. In the final step the analyses from the earlier
steps are combined to derive the data-layout for the complete Qk. For Listings 1.1
and 1.2 after creating a vector dimension from the outermost dimensions the
inner nested dimensions are permuted out.

QUARC: An Array Programming Approach 9

Algorithm 1. QUARC array transformation outline
Input : Λσ, where ΛN = 4
Input : Dimensional Reuse Distance Vector
Input : Linearized Reuse Distance Vector
Input : Vector Length (Vl)
Output: Index set transformation map

1 permute dimensions to ensure B0 ≥ B1 ≥ B2 ≥ B3

2 if More than one dimension has a SAC then
3 abort ; // Λ too small to benefit from layout transforms

4 else
5 if B0 > Vl then
6 Rf =< 1, 1, 1, Vl >;
7 S1 = ρ(ΛS, Rf) ; // < B3, B2, B1, Vl,

B0
Vl

>

8 S2 = Φ(S1, (1, 0)) ; // < B3, B2, B1,
B0
Vl

, Vl >

9 else

10 factorize Vl to (Vl
2

, 2);

11 Rf =< 1, 1, Vl
2

, 2 >;
12 S1 = ρ(ΛS, Rf) ; // < B3, B2,

Vl
2 ,

B1
Vl
2

, 2,
B0
2 >

13 S2 = Φ(S1, (1, 0)) ; // < B3, B2,
B1
Vl
2

,
Vl
2 ,

B0
2 , 2 >

14 S3 = Φ(S2, (2, 1)) ; // < B3, B2,
B1
Vl
2

,
B0
2 , 2,

Vl
2 >

15 S4 = κ(S3, 1, 0)) ; // < B3, B2,
B1
Vl
2

,
B0
2 , Vl >

16 end

17 end
18 create a mapping function from Ds to D′

s

2.3 Parallel Code Generation

The output of the array-transformation phase of the QUARC analysis is a map-
ping from Ds to the new data space, D′

s. These spaces can be of different dimen-
sionality, as the transforms can change the rank of the arrays. D′

s gets broken
into multiple split index sets to handle different boundary regions, and each set
is materialized into actual loop nests. For the set operations and the loop gen-
eration, we use the integer set operations and a polyhedral code generator from
the Integer Set Library (isl) [22]. (See Sect. 5.3.) After transforming the arrays,
we annotate different dimensions with the parallelization strategy to be used.
Typically, the innermost dimension is designated as a vector dimension, and the
outermost is parallelized using threads or MPI. We propagate this metadata into
the isl -generated loops using existing LLVM infrastructure.

3 QUARC Language Design

QUARC uses C++14 template meta-programming to implement a DSL inter-
face that generates annotations recognized by the compiler. Figure 1 presents

10 D. Deb et al.

Fig. 1. QUARC array syntax pseudo-BNF

an abridged BNF grammar for the QUARC DSL. By definition, QUARC pro-
grams are valid C++14 code compilable by any C++14 compiler. The language
semantics are close to the C++ ETs idiom [21]. The ETs idiom uses overloaded
operators and proxy expression objects to build array expressions without inter-
mediate containers. ETs have been used widely, in various scientific computing
DSLs and BLAS libraries DSLs [6,17,20] to embed array semantics in C++.
QUARC differs from conventional ETs. First, with the aforementioned system
of annotations, we embed extended type information in the syntax to extend
the type system abstractly and to make QUARC arrays first-class objects. The
annotations are transparent to the end user and need no manual intervention
while programming in the QUARC DSL. Second, the late-scalarization technique
pushes loop generation from the template-instantiation phase into the compiler
back end. These design choices enable the QUARC optimizer (QOPT) to derive
non-trivial low-level optimizations. In the next section, we describe the QUARC
DSL syntax and API semantics.

3.1 QUARC Arrays

QUARC’s mdarray data type is an abstract composite type that is represented
using a four-tuple: <type, rank, boundary-function, shape>. The type spec-
ifies the C++ data type of the array elements. The current implementation lim-
its the types to those matching the C++14 type trait is arithmetic. The
rank property is the number of dimensions of the array. Boundary-function
is a user-definable index function to handle boundary conditions, and shape
defines the extent of each dimension. Of these properties, element-type, rank and
boundary-function are compile-time constants, specified as template arguments.

QUARC: An Array Programming Approach 11

The shape property is specified using C++14’s variadic template feature. A com-
bination of static and run-time checks is used for full type inference.

3.2 Array Addressing Modes

QUARC provides two addressing modes for the mdarray instances. Monolithic
addressing operates on entire arrays and is used in array expressions. Elemental
addressing is similar to C++ subscript operation. In this paper, we focus on the
monolithic addressing mode. Monolithic addressing eschews explicit subscripts.
Allowing only an n-tuple address offsets or “shifts”, where n is the rank of the
array. By default the shifts are all generated as “0s”. Non-zero shifts are specified
using the gshift operator.

There are two significant benefits of this approach. By design, the program-
mer uses whole-array subscripts, and the address linearization happens after
performing optimizations. Thus, we do not have to deal with the delineariza-
tion problem of recovering a multi-dimensional view of the array accesses [13].
All references except the boundary values use the same index function, differ-
ing only in the constant term. Such references are termed uniformly generated
references [24]. Moreover, every subscript implicitly describes an affine function,
with a single index variable (SIV). This practice makes it possible to compute
exact dependence distance vectors as well as reuse-distances. Together, these
features support optimizations that otherwise have been hard to implement in
C++ ETs-based array programs.

3.3 Array Operators

QUARC array operators are higher-order functions that take a callback function
(mkernel) in a template argument to do the actual elemental array operations.
The design cleanly differentiates the stencil operations, defined using gshifts,
from the mkernels. Allowing us to derive data-layouts after analyzing both oper-
ations. The mkernels are required to be “pure” or “side-effect free”, such that
every QUARC expression induces a completely statically determinable control
flow. The language semantics allow mkernels to operate on different types. For
example, as shown in Listing 1.1 in QUARC it is possible to define arrays of
matrices and arrays of vectors, and then to create a multiplication operator to
operate on them, producing another array of vectors.

3.4 Array Statements

QUARC array-statement semantics are similar to those of other high-level lan-
guages supporting array objects, such as Fortran 90 and HPF. The right-hand
side (RHS) is evaluated completely without side effects and only then is the result
written into the left-hand side (LHS). We disallow the use of the same array on
both sides. In the future, we intend to remove this restriction by using data-
dependence analysis to identify the intersecting hyperplane in the index space

12 D. Deb et al.

between the left- and right-hand sides, and to introduce a temporary minimal-
size variable. All arrays in an expression are assumed to be non-aliasing. We
enforce the restriction that they have the same rank and shape.

4 The QOPT Architecture

QOPT, QUARC’s underlying optimization framework, is built on top of the
LLVM compiler infrastructure. It uses isl for set operations and loop gener-
ation. The optimization workflow is a five-step process, as depicted in Fig. 2.
First, a preprocessing step detects all Qks in a procedure. After, preprocess-
ing an abstract binary expression tree (Qk-BET) representation is generated for
each Qk. The possibility of early transformations is explored using the Qk-BET
representation, and involves potentially combining the trees of multiple Qks.

Fig. 2. The QOPT architecture

After early transformations on the Qk-BET, QOPT evaluates the applicabil-
ity of array transformations for memory locality and SIMD-friendly data-layouts.
The array transformations may lead to data layout changes. If so, an abstract
map from the old to the new layout is generated to build the required gather-
scatter code during the code-generation phase.

Following the array transformations, QOPT converts the Qk-BETs into mul-
tiple iteration sets using isl. The iteration sets separate the iterations that
require boundary-value computations from iterations that process only inner
(non-boundary) elements of the arrays. The iteration sets and the correspond-
ing loop-bounds are determined by the shape of the arrays and by the shifts
specified in the array accesses. In the final step, QOPT scalarizes the iteration
sets into actual loops in the LLVM IR language.

5 Array Expressions to Optimized Code

5.1 Preprocessing

The preprocessor recognizes QUARC annotations and applies program transfor-
mations that reduce code complexity while maintaining the semantic structure

QUARC: An Array Programming Approach 13

for further analysis and transformation passes. For example, it inlines all func-
tions generated by QUARC templates other than the mkernel calls. This step
significantly prunes the call graph, yet retains the separation of high-order stencil
operators and the pointwise mkernel operations.

The preprocessor also annotates the LLVM IR to enable the construction
of the Qk-BETs. Listing 1.3 shows an abridged state of the IR after pre-
processing a binary array expression that has a single gshift access. Each
quarcc build * expr call represents the creation of the proxy expression
objects. The quarcc kernel dispatch is the call to the actual Qk function.
In the code-generation phase, the proxy objects are removed completely, while
the Qk call is transformed into inline loop nests.

/* Original code : a1 = a2.gshift <1,0>() + a2; */

%1 = call __quarcc_build_gshift_expr__ (%a2)

%2 = call __quarcc_build_bin_expr__ (%1, %a2)

call __quarcc_kernel_dispatch__ (%a1, %2)

Listing 1.3. State of IR after preprocessing

5.2 Qk Expression Tree Generation and Early Optimizations

The Qk-BET is the intermediate representation that QOPT uses for all analysis
and transformations. Generation of the Qk-BET is also a two-step process. In the
first step, QOPT analyzes the quarcc kernel dispatch function to build an
abstract expression tree that does not contain the actual array references used
in a particular instance of the Qk. The quarcc kernel dispatch takes two
parameters: the LHS subexpression that is always a single mdarray reference,
and the RHS subexpression. To build the tree, QOPT recursively uses def-use
chain analysis of the RHS subexpression parameter. Specifically, it looks for two
specially annotated functions: mkernel and access. These two are the nodes of
the tree, with the accesses forming the leaves and the mkernels forming the
internal nodes. The access function, as described in Sect. 3.2, contains only the
shift values. These are then extracted using LLVM’s ScalarEvolution analysis.

After building the expression tree, QOPT materializes the actual Qk-BET
by building a second tree, a data structure that we call the “expression-builder-
tree”. The expression-builder-tree is constructed using successive def-use analy-
ses of the arguments passed to the quarcc build * expr calls, immediately
preceding the quarcc kernel dispatch. The leaves of the expression-builder-
tree store the actual array references to be used in the Qk. QOPT builds a
complete binary expression tree for every Qk by matching these two trees.

Qk-BET Merging. QOPT looks for opportunities to fuse adjacent Qks to
enhance memory locality in the body of a potentially fused loop nest. It limits
fusion to adjacent Qks that share at least one array reference. Because all arrays
in a Qk have the same shape, the fused loop iteration space is the same as the
original abstract iteration space of each Qk. This strategy was used to simplify
code generation in the current implementation.

14 D. Deb et al.

We currently restrict fusion to kernels that are completely data-independent.
QOPT does not try to fuse two kernels where the LHS of one kernel is accessed
using a non-zero shift on the RHS of the other kernel. The fusion of the Qks is
done using the Qk-BET representation, thus merging the expression trees into
a single tree. Scalarization then builds a single loop body for the fused tree.

/* Original a1 = a2.gshift <1,0>() + a2; */

// No boundary operations needed

for (int c0 = 0; c0 < D0 - 1; c0 += 1)

for (int c1 = 0; c1 < D1; c1 += 1)

a1[c0][c1] = a2[c0+1][c1] + a2[c0][c1];

// Requires boundary function(PERIODIC) call

if (D0 >= 1)

for (int c1 = 0; c1 < D1; c1 += 1)

a1[D0][c1] = a2[PERIODIC(D0+1)][c1] + a2[c0][c1];

Listing 1.4. Code generated after late scalarization

5.3 Late Scalarization

Late scalarization is the phase in which QOPT concretizes the abstract Qk-
BET representation. To help explain the process, we formally define an out-of-
bound set (OBs) as the subset of Ds for which a shifted array access in the
Qk leads to an out-of-bound access. Every dimension can have two OBs, each
corresponding to the lower and upper bounds of that dimension. Thus, there can
be a maximum of 2n OBss for a given Qk. Geometrically, the out-of-bound sets
represent faces or boundaries of the n-orthotope.

To compute the OBs for a given Qk, QOPT first calculates the maximal
positive and negative shifts for every dimension. The OBs for a given dimension,
i, are computed by subtracting the maximal negative shift from the lower bound,
then subtracting the positive shifts from the Bi. Thus, no OBs are generated if
the maximal shift in a given direction is 0.

Index-Set Splitting. Once QOPT generates the OBs it proceeds to split Ds

into disjoint subsets to separate all of the iterations for which a boundary func-
tion call is required. To build these split sets, QOPT successively finds all possible
combinations of adjacent facets of the n-orthotope. For every combination, the
OBs corresponding to each facet in the combination is intersected with Ds, and
all other OBs not in that particular combination are subtracted from Ds.

In the worst case, where each dimension has a non-zero shift in both direc-
tions, the process is equivalent to computing each lower dimensional facet or k -
orthotope of the original n-orthotope, where k = (0..n]. Since each k -orthotope
in turn has 2k facets, the total number of split sets generated is S, where

S =
n−1∑

k=0

nCk2n−k + 1. (5)

It can be shown that S equals 3n. This is because each facet must have its
center as a valid Ip, and the set of all the centers is the set of points each of

QUARC: An Array Programming Approach 15

whose coordinates can have only three possible values {0, �Bi/2�, Bi}. Thus, the
total number of centers, and by corollary the number of hyperrectanges, has to
be 3n. Hence, in the worst case the number of split sets is exponential in the
number of dimensions. Listing 1.4 shows the generated loop nests for the example
introduced in Listing 1.3. We show the equivalent C++ code for what QOPT
generates in the LLVM IR language.

6 Related Work

C++ ETs Optimizations. Various approaches to array semantics in C++
using the C++ ETs idiom have been explored. Iglberger et al. [6] and Härdtlein
et al. [4] presented techniques to improve the sequential performance of ETs. The
Boost.SIMD package [3] provides an abstract interface built using ETs that auto-
mate generation of SIMD intrinsics to enable vectorized code generation. These
designs do not have a compiler-based component. Winter et al. [23] designed a
just-in-time compilation framework for ETs to optimize GPU kernels. None of
these approaches addresses the optimization of multiple statement. There are no
provisions for data layout transformations or for cache-blocking.

DSL Compilation Strategies. Compiler-driven techniques with goals simi-
lar to ours have also been attempted. The ROSE [26] compiler framework was
originally designed as a preprocessor generator that could do automatic prop-
erty discovery and optimizations from C++ ETs. The telescoping languages [11]
design was also an influential proposal addressing many of these issues.

Stencil Compilers. Special-purpose stencil compilers have been the target of
many research efforts. The Rice dHPF compiler allowed compilation of stencil
codes for distributed memory systems [16]. More recently, Datta et al. [1], Kamil
et al. [10] and Tang et al. [19] offered solutions for shared memory multi-core
platforms. Henretty et al. [5] built a stencil compiler incorporating data-layout
transformations for short-vector SIMD machines.

Compiler Driven Data-Layout Optimizations. Automating data-layouts
selection for vectorization has been addressed by number of recent works. Majeti
et al. [12] offered an automated solution for SoA to AoS transformations target-
ting heterogeneous platforms. Sung et al. [18] provided a transformation tech-
nique for structured grid applications on GPUs. Xu and Gregg [25] designed a
pragma based semi-automatic technique that also transforms SoA to AoS.

7 Status and Work in Progress

Currently, QUARC can process simple examples end-to-end to generate single-
threaded X86 64 executables. We currently support multi-dimensional arrays,
but do not yet support arrays nested at each lattice site to support the SU(3)
algebra used in LQCD. Ongoing work is addressing the extension of the semantics
to nested arrays with the objective of generating optimized code for non-trivial

16 D. Deb et al.

LQCD applications. This work will relax the current type restriction (Sect. 3.1)
on the mdarrays.

We are in the process of integrating the late scalarization module with
LLVM’s parallel code generation framework to support OpenMP outlining and
vector code generation. We are also extending the array transformation frame-
work to support data partitioning at the level of MPI nodes.

Acknowledgement. This work was supported in part by the DOE Office of Science
SciDAC program on grants DE-FG02-11ER26050/DE-SC0006925 and DE-SC0008706.

References

1. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D.,
Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-
the-art multicore architectures. In: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, SC 2008, pp. 4:1–4:12. IEEE Press, Piscataway (2008). http://
dl.acm.org/citation.cfm?id=1413370.1413375

2. Edwards, H.C., Trott, C.R.: Kokkos: enabling performance portability across many-
core architectures. In: Proceedings of the 2013 Extreme Scaling Workshop (XSW
2013), XSW 2013, pp. 18–24 (2013). http://dx.doi.org/10.1109/XSW.2013.7

3. Estérie, P., Gaunard, M., Falcou, J., Lapresté, J.T., Rozoy, B.: Boost.SIMD: generic
programming for portable SIMDization. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, PACT 2012, pp.
431–432. ACM, New York (2012). http://doi.acm.org/10.1145/2370816.2370881

4. Härdtlein, J., Pflaum, C., Linke, A., Wolters, C.H.: Advanced expression templates
programming. Comput. Vis. Sci. 13(2), 59–68 (2009). http://dx.doi.org/10.1007/
s00791-009-0128-2

5. Henretty, T., Veras, R., Franchetti, F., Pouchet, L.N., Ramanujam, J.,
Sadayappan, P.: A stencil compiler for short-vector SIMD architectures. In: Pro-
ceedings of the 27th International ACM Conference on International Conference
on Supercomputing - ICS 2013, p. 13 (2013). http://dl.acm.org/citation.cfm?
doid=2464996.2467268

6. Iglberger, K., Hager, G., Treibig, J., Rüde, U.: Expression templates revisited:
a performance analysis of current methodologies. SIAM J. Sci. Comput. 34(2),
C42–C69 (2012). http://dx.doi.org/10.1137/110830125

7. Intel Corporation: Intel Threading Building Blocks (2016)
8. Iverson, K.E.: Notation as a tool of thought. Commun. ACM 23(8), 444–465 (1980).

http://doi.acm.org/10.1145/358896.358899
9. Joo, B., Smelyanskiy, M., Kalamkar, D.D., Vaidyanathan, K.: Wilson Dslash kernel

from lattice QCD optimization, July 2015. http://www.osti.gov/scitech/servlets/
purl/1223094

10. Kamil, S., Husbands, P., Oliker, L., Shalf, J., Yelick, K.: Impact of modern memory
subsystems on cache optimizations for stencil computations. In: Proceedings of the
2005 Workshop on Memory System Performance, MSP 2005, pp. 36–43. ACM, New
York (2005). http://doi.acm.org/10.1145/1111583.1111589

11. Kennedy, K., Broom, B., Chauhan, A., Fowler, R.J., Garvin, J., Koelbel, C.,
Mccosh, C., Mellor-Crummey, J.: Telescoping languages: a system for automatic
generation of domain languages. Proc. IEEE 93(2), 387–408 (2005)

http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dl.acm.org/citation.cfm?id=1413370.1413375
http://dx.doi.org/10.1109/XSW.2013.7
http://doi.acm.org/10.1145/2370816.2370881
http://dx.doi.org/10.1007/s00791-009-0128-2
http://dx.doi.org/10.1007/s00791-009-0128-2
http://dl.acm.org/citation.cfm?doid=2464996.2467268
http://dl.acm.org/citation.cfm?doid=2464996.2467268
http://dx.doi.org/10.1137/110830125
http://doi.acm.org/10.1145/358896.358899
http://www.osti.gov/scitech/servlets/purl/1223094
http://www.osti.gov/scitech/servlets/purl/1223094
http://doi.acm.org/10.1145/1111583.1111589

QUARC: An Array Programming Approach 17

12. Majeti, D., Barik, R., Zhao, J., Grossman, M., Sarkar, V.: Compiler-driven data
layout transformation for heterogeneous platforms. In: Mey, D., et al. (eds.) Euro-
Par 2013. LNCS, vol. 8374, pp. 188–197. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54420-0 19

13. Maslov, V.: Delinearization: an efficient way to break multiloop dependence equa-
tions. In: Proceedings of the SIGPLAN 1992 Conference on Programming Lan-
guage Design and Implementation, pp. 152–161 (1992)

14. More, T.: Axioms and theorems for a theory of arrays. IBM J. Res. Dev. 17(2),
135–175 (1973). http://dx.doi.org/10.1147/rd.172.0135

15. Mullin, L.: A mathematics of arrays. Ph.D. thesis, Syracuse University, December
1988

16. Roth, G., Mellor-Crummey, J., Kennedy, K., Brickner, R.G.: Compiling stencils in
high performance fortran. In: Proceedings of the 1997 ACM/IEEE Conference on
Supercomputing, SC 1997. pp. 1–20. ACM, New York (1997). http://doi.acm.org/
10.1145/509593.509605

17. Haney, S., Crotinger, J., Karmesin, S., Smith, S.: Easy expression templates using
PETE, the Portable Expression Template Engine. Technical report LA-UR-99-777
(1999)

18. Sung, I.J., Stratton, J.A., Hwu, W.M.W.: Data layout transformation exploiting
memory-level parallelism in structured grid many-core applications. In: Proceed-
ings of the 19th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT 2010, pp. 513–522. ACM, New York (2010). http://doi.
acm.org/10.1145/1854273.1854336

19. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.K., Leiserson, C.E.: The
pochoir stencil compiler. In: Proceedings of the Twenty-Third Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA 2011, pp. 117–128.
ACM, New York (2011). http://doi.acm.org/10.1145/1989493.1989508

20. USQCD: QDP++ (2002). http://usqcd-software.github.io/qdpxx/
21. Veldhuizen, T.: Expression templates. C++ Report 7, 26–31 (1995)
22. Verdoolaege, S.: isl : an integer set library for the polyhedral model. In: Fukuda,

K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
299–302. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15582-6 49

23. Winter, F.T., Clark, M.A., Edwards, R.G., Joo, B.: A framework for lattice QCD
calculations on GPUs. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium. IEEE, May 2014. http://dx.doi.org/10.1109/IPDPS.2014.
112

24. Wolf, M.E., Lam, M.S.: A data locality optimizing algorithm. In: Proceedings of the
ACM SIGPLAN 1991 Conference on Programming Language Design and Imple-
mentation, PLDI 1991, pp. 30–44. ACM, New York (1991). http://doi.acm.org/
10.1145/113445.113449

25. Xu,S.,Gregg,D.:Semi-automaticcompositionofdata layouttransformations for loop
vectorization. In: Hsu, C.-H., Shi, X., Salapura, V. (eds.) NPC 2014. LNCS, vol. 8707,
pp. 485–496. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44917-2 40

26. Yan, Y., Lin, P.H., Liao, C., de Supinski, B.R., Quinlan, D.J.: Supporting multiple
accelerators in high-level programming models. In: Proceedings of the Sixth Inter-
national Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM 2015, pp. 170–180, ACM, New York (2015). http://doi.acm.
org/10.1145/2712386.2712405

http://dx.doi.org/10.1007/978-3-642-54420-0_19
http://dx.doi.org/10.1007/978-3-642-54420-0_19
http://dx.doi.org/10.1147/rd.172.0135
http://doi.acm.org/10.1145/509593.509605
http://doi.acm.org/10.1145/509593.509605
http://doi.acm.org/10.1145/1854273.1854336
http://doi.acm.org/10.1145/1854273.1854336
http://doi.acm.org/10.1145/1989493.1989508
http://usqcd-software.github.io/qdpxx/
http://dx.doi.org/10.1007/978-3-642-15582-6_49
http://dx.doi.org/10.1109/IPDPS.2014.112
http://dx.doi.org/10.1109/IPDPS.2014.112
http://doi.acm.org/10.1145/113445.113449
http://doi.acm.org/10.1145/113445.113449
http://dx.doi.org/10.1007/978-3-662-44917-2_40
http://doi.acm.org/10.1145/2712386.2712405
http://doi.acm.org/10.1145/2712386.2712405

Utilizing Concurrency: A New Theory
for Memory Wall

Xian-He Sun(&) and Yu-Hang Liu

Illinois Institute of Technology, Chicago, USA
{sun,yuhang.liu}@iit.edu

Abstract. In addition to locality, data access concurrency has emerged as a
pillar factor of memory performance. In this research, we introduce a
concurrency-aware solution, the memory Sluice Gate Theory, for solving the
outstanding memory wall problem. Sluice gates are designed to control data
transfer at each memory layer dynamically, and a global control algorithm,
named layered performance matching, is developed to match the data transfer
request/supply at each memory layer thus matching the overall performance
between the CPU and memory system. Formal theoretical analyses are given to
show, with sufficient data access concurrency and hardware support, the
memory wall impact can be reduced to the minimum. Experimental testing is
conducted which confirm the theoretical findings.

1 Introduction and Highlight

Memory wall problem refers to the relatively slow memory performance forming a wall
between CPU and memory [1]. This wall causes CPUs to stall while waiting for data
and slows down the speed of computing. The widely accepted solution for memory
wall problem is the memory hierarchy approach. During the last thirty years, the design
of the memory hierarchy has been enhanced to have more layers, larger caches, and
built-in on-chip caches to match the increasingly large performance gap between
computing and memory access. Besides the traditionally-focused locality, data access
concurrency has become increasingly important, and can determine the performance of
a memory system [2, 3].

Concurrency has been built into each layer of a memory hierarchy to support
concurrent data access. However, a system is hard to reach the optimal locality and
concurrency at the same time. Even it does, that does not mean it has reached the
optimal system performance. Similarly, adding the optimizations of each memory layer
of a memory hierarchy does not necessarily lead to the best system optimization.
Locality and concurrency influence each other, within their layer and beyond their
layer, and the influences are application dependent. These complicate the
concurrency-aware data access optimization process.

In this study, we propose a new theory, Sluice Gate Theory, to fully utilize memory
hierarchy systems. Sluice Gate Theory claims that memory hierarchy is a designed
sluice to transfer data to computing units, and through multi-level sluice gate control
we can match data flow demand with supply. Therefore, we can reduce memory stall

© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 18–23, 2017.
DOI: 10.1007/978-3-319-52709-3_2

time to the minimum under existing technologies, and provide a practical solution for
the long-standing memory wall problem. Two techniques, the C-AMAT (Concurrent
AMAT) model and the LPM (Layered Performance Matching) method, are developed
to provide a constructive proof for Sluice Gate Theory.

C-AMAT serves as a gate calculator which finds a locality-concurrency balanced
optimal configuration to match the data access requests and supplies at each layer of a
memory hierarchy [2]. LPM controls the global memory system optimization and
provides global control parameters to each memory layer [4]. Sluice Gate Theory
provides a formal proof of the correctness of the LPM approach. That is, with sufficient
data access and hardware concurrency, the LPM method can find a system configu-
ration to match the demand with supply, whereas the matching will reduce the memory
stall time to the minimum. Sluice Gate Theory utilizes the substantial memory con-
currency that already exists at each layer of current memory systems to explore the
combined effort of capacity, locality, and concurrency; and provides a constructive
method for software and hardware co-design of memory systems. Only major theo-
retical results are presented in this paper. All the proofs can be found in [5], and the
paper of C-AMAT [2] and LPM [4] are available online.

Sluice Gate Theory proves that through “matching” at each memory layer, the
memory stall time can be reduced to the minimum. The terms “sluice” and “gate” are
carefully chosen, implying data moves toward the computing unit in a specially
designed, gate controlled data channel. Figure 1 illustrates data movement and the
“sluice” and “gate”. The channel has stages with different devices (the registers,
multi-level on-chip or off-chip caches, main memory, disk, and so on), has width in
different forms (concurrency), and has speed in different measurements (bandwidth,
frequency, latency). It is multi-staged to mask the performance difference between
computing units and memory devices. At each stage, a “sluice gate” is placed to control
the data movement. C-AMAT measures the supply rate and controls the “width” of the
channel by increasing data access concurrency to meet the data access demand at each
memory layer. This concurrency is not only for improving the data movement speed,
but equally important for overlapping computing and data transfer. Data locality will
increase the cache hits at the “gate” and, therefore, reduce the request at the next level
of the memory hierarchy. The number of stages can be increased to improve concur-
rency, locality, and to adapt a new hardware device.

The LPM algorithm controls the matching process. It determines the data
demand/supply matching threshold at each memory layer, and makes sure the
thresholds can be reached through locality and concurrency optimizations. Due to the
request and device differences at each stage, the sluice gates need to be locally con-
trolled and adjusted to best fit the local demand. Since the performance at one memory
layer will influence the performance of other memory layers, the performance matching
of a memory system needs to be globally coordinated. Performance matching of a
memory system is an uneasy task. Fortunately, the C-AMAT model and LPM algo-
rithm have been developed for local calculation and global coordination, respectively.
Jointly, C-AMAT and LPM provide a constructive proof of the Sluice Gate Theory.

Utilizing Concurrency Data Access: A New Theory 19

2 The Theoretical Treatment of Memory Sluice Gate Theory

Theorem 1 (Layered Performance Matching (LPM)): If a matching can be achieved
at each memory layer for a given application for any matching threshold T > 0
through optimization, then the LPM algorithm can find a performance matching for the
application.

With the LPM theorem, we now analyze the assumptions of the LPM theorem.

Theorem 2 (Data Concurrency): If an application has sufficient hit concurrency and
has sufficient pure miss concurrency or sufficiently low pure miss rate or pure miss
penalty at layer Li, then at memory layer Li, we can find a performance matching for
any matching threshold Ti > 0.

All the optimization parameters used in Data Concurrency Theorem, hit concur-
rency, pure miss concurrency, pure miss rate, and pure miss penalty are data access
concurrency parameters introduced by C-AMAT [2]. They can be optimized through
increasing software and hardware concurrency. They do not depend on the memory
device hardware peak performance. In other words, the concurrency theorem says
through concurrency improvement we can find a match at memory layer Li. The
theorem shows the great potential of data access concurrency.

Based on the Data Concurrency and the LPM Theorem, the following result shows
that we can remove the memory wall effect through increasing data concurrency.

Theorem 3 (Concurrency Match): If an application has sufficient hit concurrency
and has sufficient pure miss concurrency or sufficiently low pure miss rate or pure miss
penalty at each memory layer, then the LPM algorithm can find a performance
matching for the application for any matching threshold T1 > 0.

The proof of the Concurrency Match Theorem has only used the concurrency
parameters. The following theorem shows the contribution of data locality in perfor-
mance matching.

Data movement

Water flow

Memory Layer 1 Layer 2 Layer 3 ...

Processor side

Downstream sideUpstream side

Off-chip side

Layer 4

...

Fig. 1. Compare between data access movement and water flow

20 X.-H. Sun and Y.-H. Liu

Theorem 4 (Data Locality): Increasing data locality at memory layer j (1 � j � i),
will decrease the data access request rate at the memory layer Li+1.

From Data Concurrency Theorem and Data Locality Theorem, we can see data
concurrency and data locality playing different roles in the performance matching
process. Data concurrency improves the supply in a memory performance matching,
and data locality reduces the request in memory performance matching. They are both
vital in memory performance matching.

Recall the impact of the memory wall problem is the large ratio of memory stall time
compared to the total application runtime. Therefore, we can claim that the memory
wall effect is negligible small if memory stall time is less than 1% of the application’s
pure execution time (we think 1% is small enough, but it can be x% for any x > 0).
With this one percent definition, we have the final result.

Theorem 5 (Sluice Gate): If a memory system can match an application’s data access
requirement for any matching threshold T1 > 0, then this memory system has removed
the memory wall effect for this application.

The Sluice Gate Theorem is of great significance. It claims that the memory wall
impact can be reduced to the minimum and to be practically eliminated through data
access concurrency, on conventional memory hierarchy architectures. For a long time,
the memory wall problem has been the wall standing on the road of improving com-
puting system performance. It has been believed that the memory wall problem only
can be solved through technology advancements of memory devices. The Sluice Gate
Theorem gives an alternative approach via data concurrency.

The performance match can be found as stated in Data Concurrency Theorem is in
a theoretical sense. Theoretically achievable does not mean we can achieve it in today’s
engineering practice, but through engineering effort we may achieve it someday. While
we may not have sufficient data access and dynamic hardware concurrency in practice,
Sluice Gate Theory gives a direction of software/hardware co-design and optimization
to reduce memory stall time to the minimum.

3 Experimental Results and Conclusion

A detailed CPU model and the DRAMSim2 module in the GEM5 simulator were
adopted to achieve accurate simulation results. We have conducted several case studies,
and only show one, the Multiple Dimension Exploration case study, here in.

Under the five configurations A to E, Table 1 shows the corresponding average
LPMRs (LPM Ratios) of the 410.bwaves benchmark in the SPEC CPU 2006 bench-
mark suit. We use the LPM algorithm [4] to find an optimal architecture match for the
given software implementation. The goal of the optimization is to keep the memory
stall time per instruction within 1% of CPIexe, where the CPIexe is 0.261 cycles per
instruction on average. The calculated matching thresholds, T1 and T2, for L1 and L2
cache of the 410.bwaves benchmark are 1.52 and 2.14, respectively. Table 1 shows
under Configuration A, the LPMRs are higher than the threshold values of T1 and T2,
so that the optimizations are carried in both layers at the same time. To increase

Utilizing Concurrency Data Access: A New Theory 21

concurrency, we doubled the IW and ROB size, transformed the architecture from
configuration A to configuration B in Table 1. However, the mismatches are still higher
than their thresholds. Then we continue the optimization process and transform the
configuration B to configuration C, and then to D. Configuration D meet the “1%”
requirement. As an optional step, we continue to check if hardware is overprovided.
We do a fine tune to reduce possible hardware overprovision to achieve cost efficiency,
which leads to the final configuration E.

Please notice with the original configuration A, the memory stall time is 0.396
cycles per instruction, which contributes more than 60% of the total execution time
(0.653 cycles per instruction). With the configuration E, the final memory stall time is
less than 1% of the pure execution time (which is less than 0.4% of the original total
execution time). Therefore, the memory system performance speedup is greater than
150. The performance improvement is huge.

Sluice Gate Theory provides a system approach to solve the long-standing memory
wall problem. Its correctness is verified with rigorous mathematical proofs, and its
practical applicability is supported with its associated C-AMAT model and LPM
method for performance measurement and optimization. Sluice Gate Theory utilizes
existing data concurrency and optimizes the combined performance of data locality and
concurrency to reduce the overall memory stall time. It is powerful and imperative for
the advancement of modern memory systems. Sluice Gate Theory is based on data
concurrency. It calls for the rethinking from a data centric view. It calls for the
development of compiler technologies to utilize data access concurrency and to
develop concurrency-aware locality optimizations, and provides a guideline for such
optimization and utilization.

References

1. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implications of the obvious.
ACM SIGARCH Comput. Archit. News 23, 20–24 (1995)

2. Sun, X.H., Wang, D.: Concurrent average memory access time. IEEE Comput. 47(5), 74–80
(2014)

Table 1. LPMRs under five machine configurations

Configuration A B C D E

Sluice width Pipeline issue width 4 4 6 8 8
IW size 32 64 64 128 96
ROB size 32 64 64 128 96
L1 cache port number 1 1 2 4 4
MSHR numbers 4 8 16 16 16
L2 cache interleaving 4 8 8 8 8

Mismatching degree LPMR1 8.1 6.2 2.1 1.2 1.4
LPMR2 9.6 9.3 3.1 1.6 1.9

22 X.-H. Sun and Y.-H. Liu

3. Chou, Y., Fahs, B., Abraham, S.: Microarchitecture optimizations for memory-level
parallelism. In: Proceedings of 31st International Symposium on Computer Architecture,
June 2004

4. Liu, Y.H., Sun, X.H.: LPM: concurrency-driven layered performance matching. In: 44th
International Conference on Parallel Processing (ICPP). IEEE (2015)

5. Sun, X.-H., Liu, Y.-H.: Sluice gate theory: have we found a solution for memory wall?.
Illinois Institute of Technology Technical report (IIT/CS-SCS-2016-01) (2016). Full paper is
available upon request

Utilizing Concurrency Data Access: A New Theory 23

ParFuse: Parallel and Compositional Analysis
of Message Passing Programs

Sriram Aananthakrishnan1(B), Greg Bronevetsky2, Mark Baranowski1,
and Ganesh Gopalakrishnan1

1 University of Utah, Salt Lake City, USA
{sriram,baranows,ganesh}@cs.utah.edu

2 Google Inc., Mountain View, USA
bronevet@google.com

Abstract. Static analysis discovers provable true properties about
behaviors of programs that are useful in optimization, debugging and
verification. Sequential static analysis techniques fail to interpret the
message passing semantics of the MPI and lack the ability to opti-
mize or check the message passing behaviors of MPI programs. In this
paper, we introduce an abstraction for approximating the message pass-
ing behaviors of MPI programs that is more precise than prior work and
is applicable to a wide variety of applications. Our approach builds on
the compositional paradigm where we transparently extend MPI support
to sequential analyses through composition with our MPI analyses. This
is the first framework where the data flow analysis is carried out in par-
allel on a cluster, with the message-carried data flow facts for refining
inter-process data flow analysis states. We detail ParFuse – a framework
that supports such parallel and compositional analysis of MPI programs,
report its scalability and detail the prospects of extending our work for
more powerful analyses.

1 Introduction

HPC systems have become increasingly complex as we step into the exascale
computing era. In parallel, MPI has also evolved, introducing sophisticated com-
munication primitives for interprocess communication. Debugging and perfor-
mance tuning of message passing programs have become notoriously difficult.
With the growing complexity of writing message passing programs, tools to
assist developers are crucially needed. While many dynamic and runtime tools
exist to assist MPI programmers, only a handful of static analysis based tools
exist in comparison. Static analysis of MPI programs can discover provably true
properties about the communication behaviors of the MPI programs which are
useful in optimization, error detection and verification. For instance, compilers
can replace point-to-point operations in a neighborhood communication pattern
with their optimized collective counterparts [11] if the MPI program’s commu-
nication topology can be determined.

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 24–39, 2017.
DOI: 10.1007/978-3-319-52709-3 3

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 25

Many standard dataflow analyses such as constant propagation are MPI
agnostic i.e., they do not model the effects of dataflow due to MPI commu-
nication, losing precision at the call sites of MPI operations and thereby missing
the opportunity to apply program optimizations. Static analysis of MPI pro-
grams require abstractions for modeling the communication behaviors where
the abstraction must provide an interpretation for MPI operations and compute
the possible message matches. This task is challenging requiring composition of
multiple static analyses.

Prior work on analyzing MPI programs have focused on a non-compositional
approach. The message passing semantics are modeled by constructing a com-
munication graph [2,19,20] and the analysis associates special transfer functions
for each MPI operation to interpret the dataflow information along the com-
munication edges. Adopting a new dataflow analysis for MPI programs under
this setting requires implementing the special transfer functions corresponding
to each MPI operation. In this paper, we build on the compositional principles
of the Fuse [3] framework where we implement a suite of analyses for modeling
the MPI message passing semantics. Our approach allows any dataflow analyses
to be composed with MPI analyses which transparently adds MPI support for
the MPI-agnostic analyses.

In this paper, we offer the first static analysis method with the following
features:

– We introduce specific abstractions for MPI operations which enables us to
reach a useful level of accuracy that covers many real applications.

– Our abstractions for MPI operations are built on top of the Fuse framework
where MPI-agnostic static analyses are leveraged with MPI support through
composition with our MPI analyses.

– Our analysis is carried out in parallel on a cluster to ameliorate the cost when
analyzing an MPI program with N processes. We provide an evaluation of the
scalability of our approach.

– Visualization of possible communication matches as an automatically gener-
ated “dot graph” built using our compositional infrastructure for analyzing
MPI programs.

The rest of the paper provides background on compositional analysis and prior
work in Sect. 2, our abstractions for MPI semantics in Sect. 3, MPI analyses
that realizes our abstraction in Sect. 4, our parallel and compositional ParFuse
framework in Sect. 5 and the results in Sect. 6. Related work and concluding
remarks follow.

2 Background

2.1 Compositional Analysis

In a prior project [3], we introduced the Fuse compositional framework that sim-
plifies composition of static analyses through a data structure called Abstract

26 S. Aananthakrishnan et al.

Transition System (ATS). ATSs are graphs where the nodes correspond to
different possible code execution paths and edges represent transitions from one
program state to another. Static analyses can be executed on ATSs and com-
pute constraints (e.g. dataflow facts) on reachable program executions, which
are stored as annotations on each ATS node. The ATS organizes the constraints
on reachable executions using sets of program state components (memory loca-
tions, values or operations). This allows analyses to portably communicate the
constraints on reachable executions as set constraints on state components to
other analyses, which we denote as “abstract objects”. While the abstract objects
are opaque (their individual values may be infinitely many), its implementations
must include standard set operations such as overlaps, must-equals, equal-sets,
subset etc. This enables other analyses to compare two abstract objects and
make complex inferences based on them without knowing how they were com-
puted. The graph representation for the ATS makes it easier to transparently
introduce path pruning (by eliminating nodes that correspond to impossible
execution paths), path-sensitivity or context-sensitivity (e.g. multiple copies of
a function’s body for each code location from which the function may be called).
The structure of the graph is made available via a standard graph interface and
Fuse uses it to execute additional analyses with the added precision by associ-
ating constraints on the modified graph.

Fuse enables analysis interactions through a novel query interface which
allows analyses to prove new constraints. The interactions between the analy-
ses are organized as a client-server architecture where clients are static analyses
asking questions and servers are static analyses providing answers to client’s
questions. Client queries are either a graph query or a set query where the
graph queries (GetATSInit,GetATSFin) are used for traversing the graph and
set queries (GetMemLoc,GetValue,GetCodeLoc) are used accessing the con-
straints at an ATS node. To access the set constraints at an ATS node, the
clients provide a program segment and ask for the set of memory locations,
values, or operations denoted by the program segment. The server provides an
approximate interpretation of the program segment and returns abstract objects
for the set query. The interactions are orchestrated by a composer entity which
forwards the queries from clients to the servers and returns the abstract objects
from the servers back to the clients.

Illustration. Consider the source code in Fig. 1 requiring composition of mul-
tiple static analyses. The analyses constant propagation Fig. 1(b), unreachable
code elimination Fig. 1(c), points-to analysis Fig. 1(d) and constant propagation
Fig. 1(e) interacts using the Fuse query interface to determine the value of the
expression ∗p+5. Constant propagation Fig. 1(b) determines the outcome of the
branch condition as true. Unreachable code elimination Fig. 1(c) queries constant
propagation for GetValue(arr[1] == 3). Constant propagation responds with an
abstract value object {True} which allows unreachable code analysis to elimi-
nate the infeasible path. Points-to traverses the modified graph and computes
the constraint p → arr[0]. Constant propagation Fig. 1(e) queries points-to for
GetMemLoc(∗p) using which it computes the value of ∗p + 5.

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 27

Fig. 1. Compositional analysis by fuse

Key Advantages. Fuse allows for a configurable program analyses where the
developer picks the static analyses to be applied on a given program. The analysis
composition is described as a composition command. The Fuse query interface
allows analyses to communicate constraints in an API-agnostic way i.e., without
being aware of analysis specific API such as LLVM’s Alias Analysis interface
[13]. Fuse simplifies analysis composition and allows modular abstractions to
be introduced and flexibly composed with other analyses. We will leverage this
capability in this paper to create a set of new analyses that model MPI semantics
and compose our MPI analyses with traditional analyses that model non-MPI
aspects of a program’s behavior. This enables traditional static analyses to accu-
rately analyze a wide range of properties (e.g. optimization potential or memory
safety) of MPI applications.

2.2 Prior Work: Dataflow Analysis of MPI Programs

The fundamental challenge in reasoning about MPI programs is identifying the
communication topology of the MPI program i.e., statically matching the send-
receive operations. While this problem is undecidable in general, analyses com-
pute approximations for it. The computed approximation must be sound (i.e., it
must connect each pair of send and receive operations that may possibly match)
but does not need to be complete (i.e., some of the matched operations may not
actually match in a real execution). Abstracting the communication topology
requires: (1) an abstraction for the MPI operations and (2) a matching of the
send abstractions with the receive abstractions. One simple abstraction for the
communication topology is to group all the send operations into one equivalence
class and all the receive operations into another equivalence class and match the
two equivalence classes. While sound, this simple abstraction is imprecise for
practical purposes.

MPI operations can be grouped into equivalence classes based on the static
code location. Strout et al. [20] use this abstraction to construct the MPI-ICFG
where the matchings are computed by (i) grouping all the send operations from
a send statement into an equivalence class (ii) grouping all the receive opera-
tions from a receive statement into an equivalence class (iii) connecting the send

28 S. Aananthakrishnan et al.

and receive equivalence classes. MPI-ICFG extends the interprocedural CFG by
adding communication edges between the send and receive CFG nodes and the
dataflow analysis is performed by propagating dataflow facts over the communi-
cation edges. The matchings are further refined using tags, datatypes and simple
path constraints. This approach has two drawbacks. First, this approach uses a
single CFG for modeling the message passing behaviors and consequently, the
abstraction for MPI operations groups the MPI operations issued by different
processes executing the same path into a single equivalence class. For instance,
consider the following code snippet

while(true) {

if(rank

else MPI_Recv(buf ,..rank -1);

}

MPI-ICFG for the code snippet groups the send operations of all even processes
into one equivalence class and the receive operations of all odd processes into
another and connects the two equivalence classes. While sound, this abstraction
allows communication between process 0 and process 3 which never happens in
the original program. Furthermore, when the target expressions of MPI oper-
ations and path constraints are complex (left-neighbor, right-neighbor expres-
sions), refinement of the send-receive matchings is cumbersome. Second, this app-
roach ignores the matches-before ordering of MPI matching semantics, thereby
losing opportunities for potential refinement.

Bronevetsky [2] constructed a parallel control-flow graph (pCFG) which
improves the matching precision by grouping processes into equivalence classes
and the equivalence classes were split at communication points or branch condi-
tions and merged whenever they were identical. Message passing semantics are
simulated by performing the analysis on the pCFG. To precisely match MPI
operations in pCFG, the analysis would first block on corresponding MPI oper-
ations and the symbolic constraints on the target expression of a send must iso-
morphically match the symbolic constraints on the target expression of a receive
operation. While scalable, this approach makes matching difficult when complex
abstractions are used to describe the equivalence classes and target expressions
evaluating to multiple values.

3 Approximating MPI Semantics

Our key insight is that computing an approximation of the communication topol-
ogy with a reasonable precision on an unbounded number of processes is expen-
sive and cumbersome. In our approach, we relax the unbounded constraint and
fix the number of processes and compute an approximation for a fixed number of
processes. This means that the program must be analyzed separately for each
number of processes the user wants to run with; this can be done as a final
compilation pass at job load-time.

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 29

Abstracting MPI Operations. Our approach analyzes a concurrent MPI
program with N processes using a cross-product of the ATSs given by AT1×AT2×
· · ·×ATN

where we associate an analysis instance for each process. For abstract-
ing the MPI operations, we group MPI operations issued from an ATS node of a
process into an equivalence class. Our abstraction differentiates the MPI opera-
tions issued by different processes, in different locations in the code, which allows
ParFuse to compute more precise matchings than previous approaches. Further-
more, our abstraction allows ParFuse to compute process-sensitive value approx-
imations (i.e., specific to each process) for the buffers of the MPI operations.

MPI Matching. The challenge in matching the abstractions for MPI opera-
tions i.e., their equivalence classes, is that they must be matched following the
out-of-order matching semantics of the MPI. Blocking operations are matched in
the program order i.e., the order in which they are issued by the program. How-
ever, non-blocking operations are matched out of order i.e., two non-blocking
operations to two different process are matched in any order. But two non-
blocking operations to the same process are matched in the program order. MPI
enforces this by the non-overtaking rule. One way to formalize the out-of-order
matching of MPI is through matches-before relations. Vakkalanka et al. [21]
introduce intra matches-before relations (within a process) between the MPI
operations issued by a process where the matches-before relations are due to
the MPI matching semantics. The intra matches-before ordering between the
operations is summarized as follows.

– Two blocking or non-blocking MPI point-to-point operations are matches-
before ordered if they are send/receive to the same process and two operations
are unordered if they are send/receive to different processes (non-overtaking
rule).

– The non-blocking point-to-point operations are ordered before their respective
MPI Wait operations.

– MPI-specific strong-ordering points such as Barrier and Wait are matches-
before ordered with any MPI operations that follow in program order.

Explicitly matching the equivalence classes of MPI operations following the
matches-before ordering is cumbersome in practice. We simplify matching by
delegating the task to the MPI runtime. In our approach, when a dataflow analy-
sis reaches the ATS node of a send or a receive equivalence class it issues the
operation to the MPI runtime where they are matched and exchange dataflow
facts as the message payload.

While our approach simplifies MPI matching, it imposes three restrictions:
First, we require that the matches-before ordering must be exactly determinable
at compile time. Second, we require that the MPI operations are deterministic
as the non-deterministic MPI operations have many possible matching choices
that are not explored by the MPI runtime. Third, we require the divergent
paths of the MPI processes where MPI send/receive operations are potentially
issued to be loop-free. While these restrictions may seem onerous, we believe that

30 S. Aananthakrishnan et al.

composable static analysis of many MPI programs can be achieved under these
restrictions, and that the data flow facts obtained under these restrictions can
prove to be useful, while guaranteeing soundness. In particular, all of our MPI
benchmarks yielded useful data flow facts under these restrictions. Furthermore,
by introducing new MPI analyses (i.e., improving the MPI abstractions), our
framework allows MPI-agnostic analyses to be MPI-aware on a larger set of
applications. By fixing the number of processes and using the MPI runtime for
matching provides ParFuse an unique opportunity towards building a parallel
dataflow analysis framework for MPI programs where the framework is deployed
as an MPI application.

Novelty. Our approach improves upon the prior work where our abstraction for
MPI operations allows ParFuse to compute more precise matchings. We differ
from other approaches in matching the MPI abstractions where we delegate the
matching to the MPI runtime. By performing the matching on the fly we do not
require a priori construction of a communication graph for dataflow analysis.
We realize our abstractions by implementing MPI specific analyses in the Par-
Fuse framework. Our method allows analysis of each process to be carried out
independently in parallel allowing ParFuse to scale better. Lastly, by building on
the compositional principles of Fuse framework our work enables compositional
reasoning of MPI programs.

4 MPI Analyses in ParFuse

Our approach for approximating MPI semantics is based on the following key
ideas. First, we relax the unbounded process constraint by fixing the number
of processes for the analysis. Second, we associate the MPI operations issued
from an ATS node into a group. Third, we match the send-receive groups using
the MPI runtime and exchange dataflow facts as message payload in-lieu of
actual messages. We realize these novel ideas by modularly introducing MPI
specific analyses into analysis composition using Fuse’s compositional principles
and transparently extending MPI support to existing MPI-agnostic analyses.

MPI Context Sensitivity (MCC). The role of MCC is to implement our
abstraction for MPI operations by replacing the context-insensitive single copy
of the ATS node for an MPI function body (empty stub) with multiple copies
creating one copy for each call site. MCC operates on an input ATS and emits a
MPI context sensitive ATS as its output. Observe that the ATS node is specific
to each process and context of MPI operations at two different processes are not
equal. The successors of MCC operate on the MPI context sensitive ATS allowing
them to interpret the message passing semantics due to MPI operations issued
from the same ATS node.

MPI Value (MV). MPI value provides semantic interpretation of MPI spe-
cific variables rank (the pid of the MPI process) and size (the total number of
MPI processes). The values of rank and size are assigned by the MPI runtime

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 31

when the program executes the functions MPI Comm rank and MPI Comm size
respectively. The transfer function of MV semantically interprets the two MPI
operations MPI Comm rank and MPI Comm size using MPI COMM WORLD as
the argument and assigns positive integer constants to the variables rank and
size as assigned by the MPI runtime. Analyses such as constant propagation
when composed with MV, can infer new information based on the values com-
puted by MV.

MPI Communication (MCO). MPI communication analysis provides seman-
tic interpretations for the MPI communication operations such as MPI Send,
MPI Recv by executing the operations. The message payload is the dataflow facts
corresponding to the buffer of the MPI operations. MCO traverses the ATS of a
previously completed analysis and at ATS nodes of MPI communication oper-
ations queries a prior analysis for the set of values denoted by the buffer using
the Fuse query interface function GetValue. The abstract value object obtained
from a prior analysis is serialized using the boost serialization API [1]. The MCO
executes the MPI Send operation to transmit a serialized representation of the
abstract value object as the message payload.

The envelope information of the MPI operations such as target and tag
must be known to execute the MPI operations. As such, the execution of MCO
must be preceded by a value analysis, such as constant propagation, which can
compute this information. Then MCO can obtain the values for target and
tag by the value analysis by calling GetValue on these variables. The MCO
analysis requires that the values of the expressions target and tag evaluate to
integer constants and aborts if the values are unknown. The restriction that the
matches-before ordering of the MPI operations be exactly determinable at static
time ensures that the values of the expressions exactly target and tag evaluate
to integer constants. With the values for target, tag and *buf obtained from a
prior analysis, MCO transmits the analysis information to the MPI runtime by
executing the MPI operations.

MCO of the receiveing process deserializes the received information and
caches the abstract value object at the call site of the MPI Recv operation. The
value approximation computed by a dataflow analysis is moved from the MCO
of a sending process to the MCO of the receiving process. The portable query
interface makes it possible for ParFuse to transparently add a dataflow analysis
into the analysis composition and MCO propagates the dataflow facts from one
process to another through the MPI runtime.

5 ParFuse Framework

We realize our methods for analyzing MPI programs in the ParFuse framework.
ParFuse creates N instances of the Fuse compositional analysis framework, one
for each ATS graph of a process. Each Fuse instance Fi executes an identical
composition command containing a list of analyses that are composed using
sequential composition where the analyses are executed one after the other. The
ParFuse framework with N Fuse instances is deployed itself as an MPI program
where each MPI process is a Fuse instance.

32 S. Aananthakrishnan et al.

5.1 Analysis Composition Recipe

The standard dataflow analyses such as constant propagation (CP), points-to
analysis (PT), unreachable code elimination (UC), calling context sensitivity
(CCS), array analysis (ARR) have been observed to be useful to compose with
our MPI analyses and will be the focus of our experiments, although any stan-
dard dataflow analyses can be composed in the ParFuse framework. First, these
analyses benefit from MPI semantics provided by the MPI analyses. Second,
these analyses are also instrumental in static determination of the matches-
before ordering required by the MPI analyses. We illustrate this using a simple
example shown in Fig. 2a. Let CC denote the composition command and we will
add analyses to CC based on the demands of the MPI program. For notational
convenience, we differentiate two instances of an analysis appearing in CC using
subscripts. For instance, CP1 is the first instance of constant propagation and
CP2 is the second instance. Figure 2a shows the base ATS graph computed by
the syntactic analysis (SYN) that transforms the source code to an ATS and pro-
vides syntactic constraints for memory, values and code locations. MPI analysis
begins with the abstraction of MPI operations and we introduce MPI Context
Sensitivity (MCC) into analysis composition which assigns a unique context to
MPI operations based on the ATS node.

CC = SEQ(SYN,MCC)

Fig. 2. Analysis composition recipe: illustration

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 33

The ATS graph extended by MCC calling-site context for each MPI operation
is shown in Fig. 2b. The ATS graph constructed by MCC is identical for both
process 0 and process 1. For matching the send-receive groupings using the MPI
runtime, determining the value of the target expressions rank + 1 and rank − 1
of the send and receive operations is critical. We will extend the composition
command CC with points-to (rank is passed using pointers to MPI Comm rank),
constant propagation (to propagate initial constants from MPI headers to MPI
operations), MPI value (which interprets MPI Comm rank) and another constant
propagation (propagate the rank value to target expressions) to determine the
value of the target expressions of the send and the receive operation. Unreachable
code elimination (UC) is then added to prune infeasible paths.

CC = SEQ(SYN,MCC,PT,CP1,MV,CP2,UC)

The ATS graph for process 0 after CP2 is shown in Fig. 2c and the ATS graph
after UC is shown in Fig. 2d.

With the value of target expressions known, we can now introduce MPI
communication analysis for matching the send-receive groupings using the MPI
runtime and propagating the dataflow fact {x} → 5 from the send call site
of process 0 to the receive call site of process 1. This is illustrated in Fig. 3
The points-to composed earlier disambiguates the points-to relations at MPI
call sites. MCO of process 0 queries CP2 of process 0 for the values of x and
propagates the value from the sender (rank=0) to the receiver (rank=1). The
received value object is cached by the MCO of process 1. By adding another
instance of constant propagation after MCO, the received value is propagated to
the rest of the program.

CC = SEQ(SYN,MCC,PT,CP1,MV,CP2,UC,MCO,CP3) (1)

The analysis composition CC described above is the basic recipe for analyzing
MPI programs with message passing behaviors. The Fuse query interface allows
for transparent exchange of dataflow facts between the analyses and the MPI
communication analysis (MCO) communicates the dataflow facts through MPI
message passing operations.

Fig. 3. MPI runtime matching using MCO

34 S. Aananthakrishnan et al.

5.2 Illustration: Configurable Analysis of MPI Programs

We demonstrate the flexibility of our approach by proving a message passing
dependent property shown in Fig. 4 that requires a non-trivial composition of
standard dataflow and MPI analyses. ParFuse proves the property with two Fuse
instances using the following analysis composition.

CC = SEQ(SYN,MCC,PT,CP1,MV,CP2,UC1,MCO1,CP3,UC2,CP4,MCO2,CP5)

Fig. 4. Configurable program analysis example

The analysis composition consists of 13 instances of dataflow analyses which are
composed sequentially one after the other. The two Fuse instances are executed
independently of each other where MCO1 propagates the value of x from the
sender to the receiver. CP3 propagates the received value to the branch condi-
tion, using which UC2 eliminates the infeasible path. CP4 on the receiver side
computes precise value for z which is propagated back to the sender using MCO2.
Finally, the newly received value is propagated to the assert statement by CP5.
The compositional reasoning of ParFuse simplifies the task of proving the mes-
sage passing dependent property which is otherwise cumbersome when using the
existing non-compositional static analysis techniques for MPI programs. ParFuse
makes it possible to configure program analyses to target the complexity of the
program and the property to be proven. ParFuse also makes it easy to add
new MPI analyses implementing different abstractions for MPI operations with
varying cost/accuracy tradeoffs.

6 Experimental Results

We implemented the ParFuse framework in the ROSE [18] compiler infrastruc-
ture where our current implementation provides semantic interpretations for

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 35

the following MPI operations: MPI Comm rank, MPI Comm size, MPI Barrier,
MPI Bcast, MPI Send, MPI Recv and MPI Reduce. Our goal is to evaluate the
performance of realistic compositions of analyses that include our MPI analyses.
Instead of timing the executions of MPI analyses, we will pick a concrete analy-
sis task, compose a variety of standard dataflow analyses with MPI analyses to
accomplish this task and measure the performance of the analysis execution for
varying process counts. Two factors determine the choice of our analysis compo-
sition: (i) analysis composition required to accomplish the concrete analysis task
(ii) analysis composition required to resolve the send-receive matching unam-
biguously. The communication topology of an MPI program is a useful property
to be known statically with many applications such as debugging, overlapping
the computation with communication, optimal process placement etc. For the
concrete analysis task, we will synthesize the communication topology of the
MPI program as a DOT [10] graph. For this, we will compose MPI Dot Value
(MDV) (a visualization tool) with our MPI analyses. MDV assigns unique id to
the call sites of MPI send operations. The MPI Communication analysis (MCO)
employs the Fuse API GetValue to obtain the unique id as a value object from
MDV and transmits the value object to the matching receive call sites. The
MDV at a receiving process employs the Fuse API GetValue and queries MCO
to update the receive call sites with the received information. The communica-
tion graph in the DOT language is then synthesized by adding edges between
send and receive ATS nodes using the received information. MDV also exempli-
fies the versatility of the ParFuse framework where non-dataflow facts such as
unique ids are exchanged through our compositional principles.

Table 1. Analysis composition summary

Benchmark Analysis composition

Jacobi SEQ(SYN,MCC,PT1,CP1,MV,CP2,UC,ARR,PT2,MDV1,MCO,MDV2)

Heat SEQ(SYN,CCS,MCC,CP1,ARR1,CP2,PT1,MV,CP3,UC,CP4,ARR2,
PT2,MDV1,MCO,MDV2)

2D diffusion SEQ(SYN,CCS,MCC,CP1,ARR1,CP2,PT1,MV,CP3,UC,CP4,ARR2,
PT2,MDV1,MCO,MDV2)

Prime SEQ(SYN,CCS,MCC,CP1,PT,MV,CP2,UC,MDV1,MCO,MDV2)

Quadrature SEQ(SYN,CCS,MCC,CP1,PT,MV,CP2,UC,MDV1,MCO,MDV2)

We chose the following MPI programs: (i) Jacobi [16] iteration solving the
Laplacian equation in two dimensions (ii) Heat [6] equation solver solving the
time dependent heat equation in one dimension (iii) 2D Diffusion [9] solver solv-
ing the diffusion equation (iv) Prime [5] counting parallelized using MPI (v)
Quadrature [4] approximating an integral using the quadrature rule for our
study. The programs are of varying complexity in their source code requiring
different analysis composition to unambiguously resolve the send-receive match-
ing. Table 1 summarizes the analysis composition required for each benchmark

36 S. Aananthakrishnan et al.

to synthesize the communication topology as the DOT graph. The analyses are
repeatedly applied as the reapplication discovers new information. For instance,
to determine the memory locations denoted by the expression arr[maxn/size],
where size is assigned by MPI Comm size, constant propagation (CP) must be
reapplied after MPI value (MV). The array analysis (ARR) composed after the CP
queries CP for the value of the index expressions and consequently, determines
the set of memory locations denoted by the the expression arr[maxn/size].
We evaluated the performance of our analysis composition with varying process
counts up to 1024. The experiments were performed on a cluster with over 290
nodes (5104 cores, 32 GB memory per node). The nodes are Intel Xeon (Sandy-
bridge/Ivybridge E5-2670 and Haswell) processors and are connected through
the Mellanox FDR Infiniband interconnect. Figure 5 shows the plots comparing
the average execution time (wall time) of the application and the analysis com-

Fig. 5. Scalability evaluation

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 37

position for each benchmark. The input problem size for the applications Jacobi,
Prime and 2D Diffusion was not changed and with increasing process count they
exhibit strong scaling whereas the input problem size for applications Heat and
Quadrature was increased proportionally to the number of processes and they
exhibit weak scaling. Figures 5a to e show a weak scaling for our analysis compo-
sition. Our results show that our approach scales linearly with increasing process
counts. The challenge lies in picking the suite of analyses for disambiguating the
communication and carrying out the analysis task for proving properties. Our
current method is partial where the analyses are manually picked based on the
complexity in the source code (arrays, pointers, mpi variables etc.). We repeat-
edly apply the analyses until the necessary information for disambiguating the
communication is determined. We can overcome this challenge i.e., the phase
ordering problem [7] by performing a tight composition which is computation-
ally expensive and learning based approaches [12] that learns the characteris-
tics of the code being optimized and decides the best ordering of the analyses.
Tight composition [14] evades the phase ordering problem by discovering all the
information in one phase. Our preliminary implementation of tight composition
reveals that this effort merits further investigation.

7 Related Work

In Sect. 2.2, we summarized prior work on dataflow analysis of MPI programs.
In this section, we will summarize non-dataflow static techniques for analyzing
MPI programs and dataflow analysis techniques for non-MPI message passing
programs. McPherson et al. [15] employed a tree based data structure for under-
standing the call sites of the MPI operations. The tree based structure allowed
them to compute the value of target expressions when they involve rank and size
on demand. They used a bit vector for a process sensitive computation of the
target expressions of the MPI operations. Similar to our approach, they bound
the number of processes and determine the values of target expressions and the
message payload size at the call sites of the MPI operations. Their approach did
not however match the send receive operations and simulate the message pass-
ing behaviors. Droste et al. [8] implemented static checks purely based on the
AST of the program. While the tool implements many useful checks based on
the ATS, it was able to match MPI operations only when the target expression
is trivial (constants) and the other arguments are exactly the same. Their tech-
nique solely relied on the AST producing sub-optimal results when matching
point-to-point MPI operations. Reif [17] introduced a monotone lattice theo-
retic dataflow framework for communicating concurrent processes. Similar to
our approach, Reif bounded the number of processes. The matching however
was computed explicitly considering the semantics of the message passing oper-
ations. The framework was monolithic and was applied on a simpler message
passing model than MPI.

38 S. Aananthakrishnan et al.

8 Concluding Remarks

This paper presents a compositional approach towards building a dataflow analy-
sis framework for analyzing MPI programs. Our approach builds on the compo-
sitional principles of the Fuse framework where abstractions for message passing
operations are modularly introduced, by adding MPI specific analyses into analy-
sis composition. We implemented a specific abstraction for MPI operations that
allowed us to compute a more precise matching of the MPI operations than
previous approaches. We adopted a simple solution for matching MPI abstrac-
tions by delegating it to the MPI runtime where our analysis is not burdened
with simulating the complex matching semantics of MPI. Our compositional
approach provides a mechanism to extend sequential dataflow analyses to work
with MPI programs. Standard dataflow analyses can be transparently added into
the analysis composition with the MPI analyses where the MPI analyses handles
the task of abstracting message passing semantics. Our design choice of fixing
the number of processes provided us a unique opportunity for carrying out the
analysis of each process independently of each other, allowing the analyses to be
executed in parallel on a cluster and help our techniques scale for a large number
of processes. The framework is also first in its kind where the dataflow facts are
exchanged as message payload in lieu of actual messages.

Acknowledgments. This research was supported in part by NSF ACI 1148127, CCF
1439002, CCF 1346756 and DOE grant “Static Analysis using ROSE”.

References

1. BOOST Team. Boost Serialization API (2004)
2. Bronevetsky, G.: Communication-sensitive static dataflow for parallel message

passing applications. In: CGO (2009)
3. Bronevetsky, G., Burke, M., Aananthakrishnan, S., Zhao, J., Sarkar, V.: Compo-

sitional dataflow via abstract transition systems. Technical report, LLNL (2013)
4. Burkardt, J.: Quadrature using MPI (2010). http://people.sc.fsu.edu/jburkardt/c

src/quad mpi/quad mpi.html
5. Burkardt, J.: Couting Primes using MPI (2011). https://people.sc.fsu.edu/

jburkardt/c src/prime mpi/prime mpi.html
6. Burkardt, J.: Heat Equation solver in MPI-C (2011). http://people.sc.fsu.edu/

jburkardt/c src/heat mpi/heat mpi.html
7. Cooper, K.D., Subramanian, D., Torczon, L.: Adaptive optimizing compilers for

the 21st century. SC 23, 7–22 (2002)
8. Droste, A., Kuhn, M., Ludwig, T.: MPI-Checker: Static Analysis for MPI. In:

LLVM-HPC (2015)
9. Formal Verification Group at University of Utah. 2D Diffusion Equation Solver

in MPI-C (2009). http://formalverification.cs.utah.edu/MPI Tests/general tests/
small tests/2ddiff.c

10. Gansner, E., Koutsofios, E., North, S.: Drawing Graphs with DOT (2006)
11. Hoefler, T., Schneider, T.: Runtime detection and optimization of collective com-

munication patterns. In: PACT (2012)

http://people.sc.fsu.edu/jburkardt/c_src/quad_mpi/quad_mpi.html
http://people.sc.fsu.edu/jburkardt/c_src/quad_mpi/quad_mpi.html
https://people.sc.fsu.edu/jburkardt/c_src/prime_mpi/prime_mpi.html
https://people.sc.fsu.edu/jburkardt/c_src/prime_mpi/prime_mpi.html
http://people.sc.fsu.edu/jburkardt/c_src/heat_mpi/heat_mpi.html
http://people.sc.fsu.edu/jburkardt/c_src/heat_mpi/heat_mpi.html
http://formalverification.cs.utah.edu/MPI_Tests/general_tests/small_tests/2ddiff.c
http://formalverification.cs.utah.edu/MPI_Tests/general_tests/small_tests/2ddiff.c

ParFuse: Parallel and Compositional Analysis of Message Passing Programs 39

12. Kulkarni, S., Cavazos, J.: Mitigating the compiler optimization phase-ordering
problem using machine learning. In: OOPSLA (2012)

13. Lattner, C.: LLVM Alias Analysis Infrastructure. http://llvm.org/docs/
AliasAnalysis.html

14. Lerner, S., Grove, D., Chambers, C.: Composing dataflow analyses and transfor-
mations. In: POPL (2002)

15. McPherson, A.J., Nagarajan, V., Cintra, M.: Static approximation of MPI com-
munication graphs for optimized process placement. In: Brodman, J., Tu, P. (eds.)
LCPC 2014. LNCS, vol. 8967, pp. 268–283. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-17473-0 18

16. MCS, Argonne National Laboratory. Simple Jacobi Iteration in C (2000). http://
www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.
html

17. Reif, J.H.: Data flow analysis of communicating processes. In: POPL (1979)
18. ROSE Compiler Team. ROSE User Manual: A Tool for Building Source-to-Source

Translators
19. Shires, D., Pollock, L., Sprenkle, S.: Program flow graph construction for static

analysis of MPI programs. In: PDPTA (1999)
20. Strout, M.M., Kreaseck, B., Hovland, P.D.: Data-flow analysis for MPI programs.

In: ICPP (2006)
21. Vakkalanka, S., Vo, A., Gopalakrishnan, G., Kirby, R.M.: Reduced execution

semantics of MPI: from theory to practice. In: Cavalcanti, A., Dams, D.R. (eds.)
FM 2009. LNCS, vol. 5850, pp. 724–740. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05089-3 46

http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html
http://dx.doi.org/10.1007/978-3-319-17473-0_18
http://dx.doi.org/10.1007/978-3-319-17473-0_18
http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html
http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html
http://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html
http://dx.doi.org/10.1007/978-3-642-05089-3_46
http://dx.doi.org/10.1007/978-3-642-05089-3_46

Fast Approximate Distance Queries in
Unweighted Graphs Using Bounded Asynchrony

Adam Fidel(B), Francisco Coral Sabido, Colton Riedel, Nancy M. Amato,
and Lawrence Rauchwerger

Parasol Lab, Department of Computer Science and Engineering,
Texas A&M University, College Station, USA

fidel@cse.tamu.edu

Abstract. We introduce a new parallel algorithm for approximate
breadth-first ordering of an unweighted graph by using bounded asyn-
chrony to parametrically control both the performance and error of
the algorithm. This work is based on the k-level asynchronous (KLA)
paradigm that trades expensive global synchronizations in the level-
synchronous model for local synchronizations in the asynchronous model,
which may result in redundant work. Instead of correcting errors intro-
duced by asynchrony and redoing work as in KLA, in this work we con-
trol the amount of work that is redone and thus the amount of error
allowed, leading to higher performance at the expense of a loss of preci-
sion. Results of an implementation of this algorithm are presented on
up to 32,768 cores, showing 2.27x improvement over the exact KLA
algorithm and 3.8x improvement over the level-synchronous version with
minimal error on several graph inputs.

Keywords: Parallel graph algorithms · Breadth-first search · Distance
query · Approximate algorithms · Asynchronous · Distributed memory

1 Introduction

Processing large-scale graphs has increasingly become a critical component in a
variety of fields, from scientific computing to social analytics. Due to the ever
growing size of graphs of interest, distributed and parallel algorithms are typi-
cally employed to process graphs on a large scale.

Computing shortest paths in networks is a fundamental operation that is
useful for multiple reasons and many graph algorithms are built on top of short-
est paths. For example, computing centrality metrics and network diameter
relies on distance queries. In addition to being a building block for other algo-
rithms, shortest path queries can be used on their own to determine connectivity
and distances between particular vertices of interest. For many large real-world
graphs, computing exact shortest paths is prohibitively expensive and recent
work [22,27,28,30] explores efficient approximate algorithms for this problem.
In unweighted graphs, an online distance query can be answered through the use
of breadth-first search (BFS).
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 40–54, 2017.
DOI: 10.1007/978-3-319-52709-3 4

Fast Approximate Distance Queries in Unweighted Graphs 41

In this work, we introduce a novel approximate parallel breadth-first
search algorithm based on the k-level asynchronous [15] (KLA) paradigm. The
KLA paradigm bridges level-synchronous processing [20] (based on the bulk-
synchronous parallel model [34]) and asynchronous processing [26], allowing for
parametric control of the amount of asynchrony from full (asynchronous) to none
(level-synchronous). In a level-synchronous execution of breadth-first search, dis-
tances are correct at the end of a level, at the cost of expensive global synchro-
nizations. On the other hand, a high amount of asynchrony in breadth-first search
may lead to redundant work, as the lack of a global ordering could cause a ver-
tex to receive many updates with smaller distances until the true breadth-first
distance is discovered. Each update to the vertex’s state will trigger a propa-
gation of its new distance to its neighbors, potentially leading to all reachable
vertices being reprocessed many times and negating the benefit of asynchronous
processing.

Our novel algorithm controls the amount of redundant work performed by
controlling how updates trigger propagation and allowing for vertices to contain
some amount of error. In short, by only sending the improved values to neighbors
if the change is large enough, we limit the amount of redundant work that
occurs during execution. We modify the KLA breadth-first search algorithm by
conditionally propagating improved values received from a neighbor update.

The contributions of this work include:

– Approximate k-level asynchronous breadth-first search algorithm.
We present a new algorithm for approximate breadth-first search that trades
accuracy for performance in a KLA BFS. We prove an upper bound on the
error as a function of degree of approximation.

– Implementation that achieves scalable performance. Our implementa-
tion in the stapl Graph Library shows an improvement of up to 2.27x over
the exact KLA algorithm and 3.8x improvement over the level-synchronous
version with minimal error. Results show that our technique is able to scale
up to 32,768 cores.

2 Approximate Breadth-First Search

Our algorithm is implemented in the k-level asynchronous paradigm. In KLA,
algorithms are expressed using two operators. The vertex operator is a fine-
grained function executed on a single vertex that updates the vertex’s state and
issues visitations to neighboring vertices. It may spawn visitations through the
use of Visit(u, op) or VisitAllNeighbors(v, op), where u is the ID of a
single neighbor and v is the ID of the vertex being processed. These visitations
are encapsulated in the neighbor operator, which updates a vertex based on
values received from a single neighbor.

In the exact KLA breadth-first search, skipping the application of the neigh-
bor operator could lead to an incorrect result, but reduces the performance over-
head of redundant work that is often seen in highly asynchronous algorithms. We
show that the amount of error can be bounded, while improving the performance
of the distance query.

42 A. Fidel et al.

2.1 Algorithmic Description

In this section, we show how to express approximate breadth-first search using
the KLA paradigm. The goal is to compute, for each vertex, the distance from
the vertex and the root in the breadth-first search tree. We denote this distance
as d(v).

Function VertexOperator(v)
if v.color = GREY then

v.color = BLACK
VisitAllNeighbors(v, NeighborOp, v.dist+1, v.id)
return true

else
return false

end
Algorithm 1: k-level asynchronous BFS vertex operator.

Initially, all vertices except the source have distance dk(v) = ∞, no parent,
and color set to black. The source vertex sets its distance to 0, itself as its parent
and marks itself active by setting its color to grey. Algorithm1 shows the vertex
operator that is executed on all vertices in parallel. Each vertex determines if it
is active by checking if its color is set to grey. If so, it issues visitations to all
of its neighbors, sending its distance plus one. The traversal is completed if all
invocations of the vertex operator return false in a superstep (i.e., none of the
vertices are active).

Algorithm 2 presents the neighbor operator for the exact breadth-first search
algorithm. The distance and parent are updated if the incoming distance is less
than the vertex’s current distance. In addition, the vertex sets its color to grey,
marking it as active, and returns a flag indicating that it should be revisited. In
the k-level async model, if the invocation of the neighbor operator returns true,
the vertex operator will be reinvoked on that vertex only if its hop-count is still
in bounds of the KLA superstep. That is, if d(v) mod k = 0, then the visitation
is at the edge of the superstep and thus the vertex operator will not be invoked
until the start of the next superstep.

In this work, we introduce a new neighbor operator in Algorithm3 that allows
for the correction of an error and repropagation of the corrected distance under
certain conditions. We use tolerance 0 ≤ τ < 1 to denote the amount of error
a vertex will allow until it propagates a smaller distance. For a visit with cur-
rent distance d and better distance dnew, we will propagate the new distance
if (d − dnew)/d ≥ τ . We now need to store two distances: one that represents
the current smallest distance seen and the distance of the last propagation. The
last propagated distance is required as a vertex may continually improve its own
distance, but it will only repropagate if a neighbor visitation contains a distance
that is τ -better than its last propagated distance. By following a vertex’s par-
ent property, the algorithm also provides a path from every reachable vertex to
the source, similar to the traditional version of breadth-first search. However,

Fast Approximate Distance Queries in Unweighted Graphs 43

Function NeighborOperator(u, dist, parent)
if u.dist > dist then

u.dist ← dist
u.parent ← parent
u.color ← GREY
return true

else
return false

end
Algorithm 2: Original k-level asynchronous BFS neighbor operator.

Function ApproximateNeighborOperatorTolerance(u, dist, parent)
if u.dist > dist then

u.dist = dist
first time ← u.parent = none
better ← (u.prop - dist)/u.prop ≥ τ
if first time ∨ better then

u.parent ← parent
u.prop ← dist
u.color ← GREY
return true

end

else
return false

end
Algorithm 3: Approximate k-level asynchronous BFS with tolerance neigh-
bor operator.

these vertices may report a larger distance than the length of the discovered
path, due to updates that were not propagated.

The parameter τ controls the amount of tolerated error. Note that if τ <
1/|V |, then there is no error in the result and the neighbor operator is equivalent
to the exact version in Algorithm 2.

2.2 Error Bounds

As the approximate breadth-first search may introduce error, we quantify the
error that may be caused due to asynchronous visitations. We denote the
breadth-first distance of a vertex v at the end of a KLA traversal using dk(v),
where k is the level of asynchrony. Similarly, d0(v) is the true breadth-first dis-
tance for vertex v. In this section, we will show that the error of the breadth-first
distance is bounded by dk(v) ≤ d0(v)k.

Lemma 1. At the end of the first KLA superstep, all reached vertices have
distance dk(v) ≤ k.

44 A. Fidel et al.

Proof. Assume at the end of the first superstep, there exists a vertex v with
distance dk(v) > k. This means that v was reached on a path from the source
that has h > k hops. This is not possible, as the traversal will not allow a
visitation that is more than k hops away. Therefore dk(v) ≤ k. ��
Theorem 1. At the end of the algorithm, all reachable vertices will have dis-
tance dk(v) ≤ ksv, where sv is the superstep in which v was discovered.

Proof. Assume that after superstep s all reached vertices will have distance
dk(v) ≤ sk. Lemma 1 shows this holds for s = 1. All active vertices will issue
visitations to their neighbors, traveling up to at most k hops in superstep s + 1.
Consider a previously unreached vertex u that will be discovered in superstep
s+1 from some vertex w that was discovered in superstep s. Vertex w was on the
boundary of superstep s and has distance at most sk from the source. Therefore,
dk(u) ≤ dk(w)+ k because u will be discovered from a path that is up to k hops
from w.

dk(u) ≤ dk(w) + k

≤ sk + k (inductive hypothesis)
≤ (s + 1)k (simplification)

Through induction, dk(u) ≤ sk for a vertex u discovered in superstep s. ��
Lemma 2. If there exists a path π from the source to a vertex v, then v must
be discovered no later than superstep |π|.
Proof. We will show the lemma holds by induction. If the length of path π is 1,
vertex v shares an edge with the source. Then in the first superstep, the source
will visit all edges and discover v.

Suppose the lemma holds for any path with length i. Let π be a path with
length |π| = i+1. Then the ith vertex along the path, vi, will have been discovered
in or before the ith superstep. Now, by Algorithm 1, the vertex vi will traverse
all of its outgoing edges in or before the (i + 1)th superstep and discover the
(i + 1)th vertex along the path π. This proves the lemma holds for any path π
of length i + 1. Therefore, the lemma holds for any path π by induction. ��
Lemma 3. If there exists a path from the source to a vertex v, then v will be
discovered at the latest in superstep d0(v).

Proof. If a vertex has distance d0(v), then the shortest path π∗ to v has length
|π∗| = d0(v). By Lemma 2, this path must be discovered at the latest in superstep
d0(v). ��
Theorem 2. At the end of the algorithm, all reachable vertices will have
distance dk(v) ≤ d0(v)k.

Proof. By Theorem 1, dk(v) ≤ svk. We know through Lemma 3 that v will be
visited by superstep d0(v)k. Combining these, the approximation of the true
breadth-first distance is off by at most a multiplicative factor of k: d0(v)k. ��

Fast Approximate Distance Queries in Unweighted Graphs 45

src v

. . . .

1
. . .

|W(i)|

Fig. 1. Example graph showing two different paths from the source to a vertex v.

2.3 Bounds with Tolerance

When using the tolerance heuristic, a vertex with distance d will only propagate
a new distance dnew if the following is true:

d − dnew

d
≥ τ (1)

In the exact k-level asynchronous algorithm, all vertices that are distance
d0(v) away from the source will be visited in superstep d0(v)

k . However, since we
allow some bounded error, it is possible for a vertex to be visited in the dk(v)

k
superstep, which may be later than its original visitation. In addition, all edges
that are traversed through visitations will be visited in the same superstep in
which the visit was issued. However, not all visitations trigger a propagation of
a better distance to the vertex’s neighbors.

We will denote the discovered distance of a vertex using the tolerance heuris-
tic as dτ (v). In this section, we will prove that by using this heuristic, if a vertex

v is reached at the end of the first superstep, then dτ (v) ≤
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) .

Lemma 4. All vertices with a true distance of 1 will propagate a distance that
is at most 1

1−τ .

Proof. Because the distance from the source to v is 1, the shortest path π∗ =<
(src, v) > will be processed eventually in the traversal. Consider that vertex v
is discovered along a path π from the source and marks itself as distance |π|.
Once the path π∗ is processed, v will not propagate its distance if |π|−1

|π| < τ .
Simplifying, the length of the path is |π| < 1

1−τ . Therefore, v will propagate a
distance that is at most 1

1−τ , otherwise a repropagation will be triggered. ��

Theorem 3. At the end of the first superstep, all reachable vertices will propa-

gate a distance at most
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) .

Proof. Let W (i) =
∑i−1

j=0(1−τ)

(1−τ)i

j

denote the length of the longest path that will
be tolerated by a vertex of true distance i without triggering a propagation.

46 A. Fidel et al.

Lemma 4 shows that this holds for vertices with true distance 1. Assume that
this property holds for vertices of distance i.

Let v be a vertex with true distance i + 1 discovered along some path π. By
definition, v will not repropagate upon seeing a path πnew if the following holds:

|π| − |πnew|
|π| < τ (2)

The shortest path πnew that could be discovered without repropagating could
have length |πnew| = W (i)+1. Any path longer than πnew would have triggered
a repropagation along the path, by definition of W (i). See Fig. 1 for an example.

The vertex will not propagate the better distance if the threshold is not met:

|π| − (
∑i−1

j=0(1−τ)j

(1−τ)i + 1)

|π| < τ (3)

Written in terms of |π|, this can be simplified:

|π| <

∑i−1
j=0(1−τ)j

(1−τ)i + 1

1 − τ

=

∑i−1
j=0(1 − τ)j

(1 − τ)i+1
+

(1 − τ)i

(1 − τ)i+1

=

∑i
j=0(1 − τ)j

(1 − τ)i+1

= W (i + 1) (definition ofW (i))

The bound therefore holds for vertices with true distance i + 1 and thus all
vertices by induction. ��

As shown in Algorithm 3, a vertex always updates its distance upon seeing a
better distance, without necessarily propagating it. This means that a vertex’s
discovered distance is at most its propagated distance. That is, all vertices dis-

covered in the first superstep will have distance at most dτ (v) ≤
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) .

Note that in the case of τ = 0, dτ (v) =
∑d0(v)−1

j=0 1/1 = d0(v). Therefore,
τ = 0 is equivalent to the exact algorithm.

2.4 Combined Bounds

By the definition of KLA, the maximum distance that any vertex can be assigned
in the first superstep is k. Therefore, for a vertex of true distance i, its discovered
distance can be at most k. W (i) is the length of the longest path that can be
tolerated by a vertex of true distance i without propagation. However, if this
path is longer than k, then it will not be visited and thus the worst case distance

Fast Approximate Distance Queries in Unweighted Graphs 47

will be less than W (i). Now, solving W (i) = k for i only considering τ > 0
because, as shown above, there is no error for τ = 0, we find:

k = W (i) =

∑i−1
j=0(1 − τ)
(1 − τ)i

j

=
1−(1−τ)i

1−(1−τ)

(1 − τ)i
(Partial geometric sum, where 1 − τ > 0)

kτ =
1 − (1 − τ)i

(1 − τ)i

kτ + 1 =
1

(1 − τ)i

i = log(
1

kτ + 1
)/ log (1 − τ)

If a vertex v has at most true distance i, then its discovered dis-
tance is bounded by W (i). However, if the true distance is greater than
log(1

kτ+1)/ log (1 − τ), then the vertex’s discovered distance can be no more than
k, because the path that causes the bound of W (i) is no longer reachable in k
hops.

1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072

1 2 4 8 16
d0(v)

W
(d

0(v
))

 τ
0.0

0.025

0.05

0.075

0.1

0.2

0.3

0.4

0.5

Maximum Approximated Distance for Traversal with k=16

Fig. 2. Computed distance dτ
k(v) vs actual distance d0(v) for multiple τ and fixed k.

48 A. Fidel et al.

Therefore, if a vertex v is reached in the first superstep, the maximum dis-
tance dτ

k(v) that v can have is:

dτ
k(v) ≤

⎧
⎪⎪⎨

⎪⎪⎩

d0(v) τ = 0
∑d0(v)−1

j=0 (1−τ)j

(1−τ)d0(v) d0(v) ≤ log(1
kτ+1)/ log (1 − τ)

k otherwise

Figure 2 presents the trend of this function for various values of τ and a fixed
value k = 16. We see that W (i) can grow very rapidly, but is bounded by at
most k. For τ = 0, the approximated distance is the same as the exact distance.

Using the same technique as Theorem 2, we can show that error will accu-
mulate across supersteps in an additive way. Therefore, the total distance that
a vertex at the end of the algorithm will have is dτ

k(v) ≤ d0(v)k.

3 Implementation

We implemented the approximate breadth-first traversal in the stapl Graph
Library (sgl) [14–16]. sgl is a generic parallel graph library that provides a
high-level framework that abstracts the details of the underlying distributed
environment. It consists of a parallel graph container (pGraph), a collection of
parallel graph algorithms, and a graph paradigm that supports level-synchronous
and asynchronous execution of algorithms.

The pGraph container is a distributed data store built using the pContai-
ner framework (pcf) [31] provided by the Standard Template Adaptive Parallel
Library (stapl) [10]. It provides a shared-object view of graph elements across
a distributed-memory machine. The stapl Runtime System (stapl-rts) and
its communication library armi (Adaptive Remote Method Invocation) use the
remote method invocation (RMI) abstraction to allow asynchronous communi-
cation on shared objects while hiding the underlying communication layer (e.g.
MPI, OpenMP).

4 Experimental Evaluation

We evaluated our technique on two different systems.
Cray-XK7. This is a Cray XK7m-200 system which consists of twenty-

four compute nodes with AMD Opteron 6272 Interlagos 16-core processors at
2.1GHz. Twelve of the nodes are single socket with 32GB of memory, and the
remaining twelve are dual socket nodes with 64GB of memory.

IBM-BG/Q. This is an IBM BG/Q system available at Lawrence Livermore
National Laboratory. IBM-BG/Q has 24, 576 nodes, each node with a 16-core
IBM PowerPC A2 processor clocked at 1.6GHz and 16GB of memory. The
compiler used was gcc 4.8.4.

The code was compiled with maximum optimization levels (-DNDEBUG -O3).
Each experiment has been repeated 32 times and we present the mean execution

Fast Approximate Distance Queries in Unweighted Graphs 49

time along with a 95% confidence interval using the t-distribution. We also
measure the relative error of a vertex’s distance, where error is defined as (dτ

k(v)−
d0(v))/d0(v). We show the mean relative error across all vertices.

4.1 Breadth-First Search

In this section, we evaluate our algorithm on various graphs in terms of execution
time and relative error.

● ●

●

●
●

●

●

●

●

●

1

2

3
4
5
6
7
8
90101

111111111 821 821 821 821 821 821 821 821 821616161616161616161222222222 652 652 652 652 652 652 652 652 652232323232323232323444444444 464646464646464646888888888
k

Ti
m

e
(s

)

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Runtime of Approximate BFS on TX road network
Cray with p = 512

(a)

● ●●● ●●● ●●

0.001

0.010

0.100

111111111 821 821 821 821 821 821 821 821 821616161616161616161222222222 652 652 652 652 652 652 652 652 652232323232323232323444444444 464646464646464646888888888
k

R
el

at
iv

e
er

ro
r

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Error of Approximate BFS on TX road network
Cray with p = 512

(b)

Fig. 3. Approximate BFS with tolerance heuristic on TX road network with 512 cores
on Cray evaluating (a) runtime and (b) error.

In Fig. 3, we evaluate both the execution time and error on the Texas road
network from the SNAP [2] collection on 512 cores on the Cray-XK7 platform.
This graph has 1.3 million vertices and 1.9 million edges. As expected, a lower
value of τ results in slower execution time as more repropagations occur with
lower tolerance. In the extreme case of τ = 0, every message that contains a
better distance is propagated and thus it is the same as the exact version of the
algorithm. Figure 4(a) shows the number of repropagations that occur as we vary
the level of asynchrony and τ . As expected, higher values of k result in many
more visitations, while higher τ triggers relatively less visitations. This behavior
results in the corresponding time and error tradeoffs we observe in Fig. 3.

Figure 4(b) shows speedup vs error on the Texas road network. Speedup is
defined as the ratio of the exact algorithm’s execution time with the fastest k
and the approximate algorithm’s execution time. If an application is willing to
tolerate error in the result, we see that we are able to achieve 2.6x speedup for
an execution with 42 % error.

Figure 5 shows that we see similar benefit using the road network graph on
the IBM-BG/Q platform for a fixed value of k. We see that the exact version
of the KLA breadth-first search (τ = 0) is slower than the level synchronous
version, and the approximate version is faster than both. At 32,768 cores, the
approximate version is 2.27x faster with around 17 % mean error.

50 A. Fidel et al.

●

●

●●

●

●
●

●

●0e+00

1e+07

2e+07

3e+07

111111111 821 821 821 821 821 821 821 821 821616161616161616161222222222 652 652 652 652 652 652 652 652 652232323232323232323444444444 464646464646464646888888888
k

R
ev

is
its

tau
● 0

0.005
0.01
0.02
0.025
0.03
0.075
0.4
0.5

Revisits in Approximate BFS on TX road network
Cray with p = 512

(a)

●
●

●

●●

●

●

●

●

●

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

0.001 0.010 0.100
Error

S
pe

ed
up

tau
● 0.005

0.01
0.02
0.025
0.03
0.075
0.4
0.5

Speedup and Error of Approximate BFS
on TX road network on Cray with p = 512

(b)

Fig. 4. Approximate BFS with tolerance heuristic on TX road network with 512 cores
on Cray-XK7 evaluating (a) number of repropagations that occur during traversal
and (b) speedup over the fastest k.

●

●
● ● ● ● ● ● ●

Level Synchronous

3

4

5

6

7
8
9

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

Ti
m

e
(s

)

Approximate BFS Runtime on TX Road Network
on Cray with p = 32768 and k = 32

(a)

●

●

●

●
●

● ● ● ●

0.00

0.05

0.10

0.15

0.0 0.05 0.1 0.2 0.3 0.4 0.5
τ

R
el

at
iv

e
E

rr
or

Approximate BFS Error on TX Road Network
 on Cray with p = 32768 and k = 32

(b)

Fig. 5. Strong scaling of approximate BFS on IBM-BG/Q platform evaluating sensi-
tivity of (a) runtime and (b) error.

Random Neighborhood. We next evaluate the algorithm on a deformable
graph that allows us to vary the diameter from very large (circular chain) to
very small (random graph). This results in graphs with different diameters by
allowing any given vertex to randomly select and connect only to its ±m-closest
neighboring vertices. This is similar to the approach described by Watts and
Strogatz [35] where the rewiring mechanism is limited in terms of distance.

Figure 6 shows the performance and error of an execution of this algorithm
on a random neighborhood graph on 512 cores on the Cray-XK7 platform.
As shown, we see a benefit for using the approximate version for higher values
of k. At a k of 512, the approximate algorithm has a 1.12x speedup over the
fastest exact version but only has an error of 0.3%. Because this graph does
not have as much opportunity for wasted work as the road network, the benefits

Fast Approximate Distance Queries in Unweighted Graphs 51

●

●

●

●

●

●

8
9
0101

20

30

821 821 821 821 821 821222222 232323232323 215 215 215 215 215 215888888
k

Ti
m

e
(s

)

tau
● 0

0.1
0.2
0.4
0.5
0.75

Runtime of Approximate BFS on Rand Neighbor
n=1M, m=16 on Cray with p = 512

(a)

●● ● ●●0.000

0.001

0.002

0.003

821 821 821 821 821 821222222 232323232323 215 215 215 215 215 215888888
k

R
el

at
iv

e
er

ro
r tau

● 0
0.1
0.2
0.4
0.5
0.75

Error of Approximate BFS on Rand Neighbor
n=1M, m=16 on Cray with p = 512

(b)

Fig. 6. Approximate BFS with tolerance heuristic on random neighborhood network
(n = 1, 000, 000 and m = 16) with 512 cores on Cray-XK7.

of approximation are not as pronounced, but we still see an improvement in
performance with negligible error.

5 Related Work

Graph Processing and Breadth-First Search. The vertex-centric program-
ming model, popularized by Pregel [20] and its open-source equivalent Giraph
[3], has become a standard in parallel graph processing. The so-called think like a
vertex paradigm allows algorithm writers to express their computation in terms
of vertex programs, which describe the operations to be executed on a single
vertex and its incident edges. Whereas Pregel’s model is push-based, GraphLab
[19] offers a pull-based model based on the three operators gather-apply-scatter.

Many general purpose frameworks and runtimes [12,21,23] for graph process-
ing have been proposed and are used in practice. Galois is an amorphous data
parallel processing framework with support for many vertex-centric paradigms
[24]. Grappa [23] is a distributed shared memory framework designed specifically
for data-intensive applications. Graph-based domain-specific libraries [17] exist
and have been shown to perform well in practice.

Many techniques have been proposed specifically to improve breadth-first
search. Most notably, the Graph 500 benchmark [1] has sparked much research
into improving [8,9] breadth-first search on scale-free networks for distributed-
memory architectures. A hybrid top-down bottom-up breadth-first search was
presented in [6] that shows large improvement on scale-free networks.

Approximation. Decades of research exist for efficiently approximating graph
features, including diameter [11], neighborhoods [25] and triangles [7]. In this
work, we focus on single-source distance queries for unweighted graphs.

In [29], the authors propose automatic synthesis of approximate graph pro-
grams through several auto-approximation techniques. Our work is similar to the
task skipping approach where inputs from neighbors are ignored under certain

52 A. Fidel et al.

conditions. However, the authors primarily focus on single-core processing while
we consider distributed-memory parallel algorithms.

There has been a large body of work to approximate the all-pairs shortest
path problem for weighted graphs through the use of distance oracles [4,13,32]
([30] provides a comprehensive survey). An O(min (n2, kmn1/k))-time algorithm
for computing a 2k − 1 approximation has been presented in [5]. In [27], a
distributed-memory algorithm using local betweenness is presented. We focus
our work on online queries of unweighted shortest paths from a single source.

Ullman and Yannakakis [33] show a high-probability PRAM algorithm for
approximating a breadth-first search tree by performing multiple traversals from
landmark vertices. This was extended to weighted graphs [18] on a concurrent-
write PRAM using a hop-limited traversal, similar to the k-level async model.
A recent work [22] introduces a (1 + o(1))-approximation for weighted graphs
using multiple rounds of an exact BFS.

To the best of our knowledge, our approach is the first to incorporate asyn-
chrony into the approximation and leverage the benefit of asynchronous process-
ing for performance.

6 Conclusion

In this paper, we presented a novel parallel algorithm for approximating breadth-
first distances in a graph. We provide bounds for the error of such an approach
and show that experimentally, the observed errors are much lower than the
theoretical bounds. Our implementation shows substantial benefit in some cases
with only minor losses in precision of the exact answer.

Acknowledgments. We would like to thank Daniel Latypov for help with aspects of
the proof. We would also like to thank our anonymous reviewers.

This research supported in part by NSF awards CNS-0551685, CCF 0702765, CCF-
0833199, CCF-1439145, CCF-1423111, CCF-0830753, IIS-0916053, IIS-0917266, EFRI-
1240483, RI-1217991, by NIH NCI R25 CA090301-11, and by DOE awards DE-AC02-
06CH11357, DE-NA0002376, B575363. This research used resources of the National
Energy Research Scientific Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

1. The graph 500 list (2011). http://www.graph500.org
2. Stanford large network dataset collection (2013). http://snap.stanford.edu/data/

index.html
3. Avery, C.: Giraph: large-scale graph processing infrastructure on hadoop. In:

Hadoop Summit (2011)
4. Baswana, S., Kavitha, T.: Faster algorithms for all-pairs approximate shortest

paths in undirected graphs. SIAM J. Comput. 39(7), 2865–2896 (2010)
5. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in

expected O(n2) time. ACM Trans. Algorithms 2(4), 557–577 (2006)

http://www.graph500.org
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

Fast Approximate Distance Queries in Unweighted Graphs 53

6. Beamer, S., Asanović, K., Patterson, D.: Direction-optimizing breadth-first search.
In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis, SC 2012, pp. 12:1–12:10. IEEE Computer
Society Press, Los Alamitos (2012)

7. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient algorithms for large-scale
local triangle counting. ACM Trans. Knowl. Discov. Data 4(3), 13:1–13:28 (2010)

8. Buluç, A., Beamer, S., Madduri, K., Asanović, K., Patterson, D.: Distributed-
memory breadth-first search on massive graphs. In: Bader, D. (ed.) Parallel Graph
Algorithms. CRC Press (2015)

9. Buluç, A., Madduri, K.: Parallel breadth-first search on distributed memory sys-
tems. In: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2011, pp. 65:1–65:12. ACM,
New York (2011)

10. Buss, A.A., Harshvardhan, Papadopoulos, I., Pearce, O., Smith, T.G., Tanase, G.,
Thomas, N., Xu, X., Bianco, M., Amato, N.M., Rauchwerger, L.: STAPL: stan-
dard template adaptive parallel library. In: Proceedings of SYSTOR 2010: The 3rd
Annual Haifa Experimental Systems Conference, Haifa, Israel, 24–26 May 2010, pp.
1–10. ACM, New York (2010)

11. Ceccarello, M., Pietracaprina, A., Pucci, G., Upfal, E.: Space and time efficient par-
allel graph decomposition, clustering, and diameter approximation. In: Proceed-
ings of the 27th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA 2015, pp. 182–191. ACM, New York (2015)

12. Gregor, D., Lumsdaine, A.: The parallel BGL: a generic library for distributed
graph computations. In: Parallel Object-Oriented Scientific Computing (POOSC),
July 2005

13. Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation
of shortest paths in large graphs. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM 2010, pp. 499–508.
ACM, New York (2010)

14. Harshvardhan, Fidel, A., Amato, N.M., Rauchwerger, L.: The STAPL parallel
graph library. In: Kasahara, H., Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760,
pp. 46–60. Springer, Berlin Heidelberg (2012)

15. Harshvardhan, Fidel, A., Amato, N.M., Rauchwerger, L.: KLA: a new algorithmic
paradigm for parallel graph computations. In: Proceedings of the International
Conference on Parallel Architecture and Compilation Techniques (PACT), PACT
2014, pp. 27–38. ACM, New York (2014). Conference Best Paper Award

16. Harshvardhan, Fidel, A., Amato, N.M., Rauchwerger, L.: An algorithmic app-
roach to communication reduction in parallel graph algorithms. In: Proceedings
of the International Conference Parallel Architecture and Compilation Techniques
(PACT), PACT 2015, pp. 201–212. IEEE, San Francisco (2015). Finalist for Con-
ference Best Paper Award

17. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and effi-
cient graph analysis. In: Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2012, pp. 349–362. ACM, New York (2012)

18. Klein, P.N., Subramanian, S.: A randomized parallel algorithm for single-source
shortest paths. J. Algorithms 25(2), 205–220 (1997)

19. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proc. VLDB Endow. 5(8), 716–727 (2012)

54 A. Fidel et al.

20. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings
of the 2010 International Conference on Management of Data, SIGMOD 2010, pp.
135–146. ACM, New York (2010)

21. Méndez-Lojo, M., Nguyen, D., Prountzos, D., Sui, X., Hassaan, M.A., Kulkarni, M.,
Burtscher, M., Pingali, K.: Structure-driven optimizations for amorphous data-
parallel programs. In: Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP 2010, pp. 3–14. ACM,
New York (2010)

22. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
STOC 2014, pp. 565–573. ACM, New York (2014)

23. Nelson, J., Holt, B., Myers, B., Briggs, P., Kahan, S., Ceze, L., Oskin, M.: Grappa:
a latency-tolerant runtime for large-scale irregular application. In: WRSC 2014,
April 2014

24. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP 2013, pp. 456–471. ACM, New York (2013)

25. Palmer, C.R., Gibbons, P.B., Faloutsos, C.: ANF: afast and scalable tool for data
mining in massive graphs. In: Proceedings of the Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD 2002, pp.
81–90. ACM, New York (2002)

26. Pearce, R.A., Gokhale, M., Amato, N.M.: Multithreaded asynchronous graph tra-
versal for in-memory and semi-external memory. In: Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC 2010, New Orleans, LA,
USA, 13–19 November 2010, pp. 1–11 (2010)

27. Qi, Z., Xiao, Y., Shao, B., Wang, H.: Toward a distance oracle for billion-node
graphs. Proc. VLDB Endow. 7(1), 61–72 (2013)

28. Qiao, M., Cheng, H., Chang, L., Yu, J.X.: Approximate shortest distance comput-
ing: a query-dependent local landmark scheme. IEEE Trans. Knowl. Data Eng.
26(1), 55–68 (2014)

29. Shang, Z., Yu, J.X.: Auto-approximation of graph computing. Proc. VLDB Endow.
7(14), 1833–1844 (2014)

30. Sommer, C.: Shortest-path queries in static networks. ACM Comput. Surv. 46(4),
45:1–45:31 (2014)

31. Tanase, G., Buss, A.A., Fidel, A., Harshvardhan, Papadopoulos, I., Pearce, O.,
Smith, T.G., Thomas, N., Xu, X., Mourad, N., Vu, J., Bianco, M., Amato, N.M.,
Rauchwerger, L.: The STAPL parallel container framework. In: Proceedings of the
16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP 2011, San Antonio, TX, USA, 12–16 February 2011, pp. 235–246
(2011)

32. Thorup, M., Zwick, U.: Approximate distance oracles. In: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001,
pp. 183–192. ACM, New York (2001)

33. Ullman, J., Yannakakis, M.: High-probability parallel transitive closure algorithms.
In: Proceedings of the Second Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA 1990, pp. 200–209. ACM, New York (1990)

34. Valiant, L.: Bridging model for parallel computation. Comm. ACM 33(8), 103–111
(1990)

35. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. In:
Nature, pp. 440–442 (1998)

Energy Avoiding Matrix Multiply

Kelly Livingston1(B), Aaron Landwehr1, José Monsalve1,
Stéphane Zuckerman1, Benôıt Meister2, and Guang R. Gao1

1 Computer Architecture and Parallel Systems Laboratory,
Electrical and Computer Engineering Department,

University of Delaware, Newark, DE, USA
{kelly,aron,josem,szuckerm}@udel.edu, ggao.capsl@gmail.com

2 Reservoir Labs, 632 Broadway, New York,
NY 10012, USA

meister@reservoir.com

Abstract. As multi and many core chips steadily increase their core
count, we observe a phenomenon we call memory hierarchy capacity
per capita inversion. To overcome this inversion while remaining energy-
efficient, we present a dynamic tiling scheme which we apply to solve the
classic Matrix Multiply algorithm. The tiling scheme follows a Hilbert-
Inspired Curve strategy to minimize data movement energy, while still
allowing for slack and variance within the computation and memory
usage of a chip. Our algorithm is energy-conscious: it uses a machine
model which does not require symmetric memory (in size or addressing)
anywhere in the hierarchy. It only concerns itself with the energy con-
sumption of all memories. This property makes it very robust to chip
variance and allows all possible resources to be utilized, which is neces-
sary for future near-threshold voltage designs. Initial results, obtained on
a future many-core simulator targeting the Traleika Glacier architecture,
give initial estimates of memory reads and writes to all parts of the chip
as well as relative energy consumption.

1 Beyond Traditional Tiling: Targeting Exascale

Matrix Multiply (MM) has been studied for decades. Early works presented
algorithmic improvements for asymptotic reduction of operations of MM to
O(N log2(7)) by trading multiplications for simpler addition and applying recur-
sively [21]. More recent work has looked at communication avoidance by
seeking to minimize bytes read per floating point operation and attempt-
ing to reach the known lower bound which can provide more locality and
less communication [2,11,17]. Other previous works have taken the tradi-
tional algorithm and looked within the context of architecture and memory
subsystems.

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 55–70, 2017.
DOI: 10.1007/978-3-319-52709-3 5

56 K. Livingston et al.

XE XEXE XE

XE XEXE XE

Block Shared MemoryCE

N
E
T
W
O
R
K

BLOCKS (XEs + 1 CE)

....

Unit Shared Memory

....

....

....

..
..

UNIT

....

....

....

....

..
..

....

....

....

....

..
..

....

....

....

....

..
..

....

....

....

....

..
..

....

....
....

.... Chip Shared Memory

CHIP

I$ self
DVFSRF

SPAD ALUsFP Net.

XE

I$ DVFSRF PMU

SPAD ALUsFP IRQ

CE

self
PMU

Network XEs Backdoor

Fig. 1. Traleika glacier strawman architec-
ture

Projects like ATLAS [23] looked
to apply auto-tuning techniques so
that optimal tiling is created for each
memory level, which produced excel-
lent results. As multicore solutions
evolved, these solutions and others [1,
10] evolved to better leverage paral-
lelism and solve problems that arise
from shared cache structures. Tradi-
tionally, lower level data in a cache
required replication to higher levels of
caches. While we see efforts to advance
the efficiency of complex cache hierar-
chies to loosen this constraint [18] the
principle of having larger cache capac-
ity at levels farther from the processor
is still true today. However, we see a
shift for future architectures starting
with GPUs.

We are targeting the Traleika
Glacier (TG) architecture, a proto-
type design chip for exploring Near
Threshold Voltage (NTV) computing
and an extension of the Runnemede
many-core processor architecture [6].
TG is highly hierarchical: execution
engines are grouped into blocks; blocks
are grouped into units; and units are
grouped under a single chip as shown
in Fig. 1. The sizes of memory are very unconventional as well. Figure 2 compares
the memory hierarchy of a CPU, the 10 core Intel Xeon Processor E5-2470 v2
with a GPU, the NVidia Tesla K80, and TG [6]. As the figure illustrates, for

L3 total
25MB

L2 total
2,5MB

L1 total
320KB

Registers*
Memory per
core

2.5MB
per core

256KB
per core

32KB
per core

*Not enough info

CPU
L2 total
1.5MB

115KB
per SM

112KB
per SM

512KB
per SM

L1/Shared Mem total
1.5MB

Registers total
6.5MB

Memory per
Streaming Multiprocessor

GPU TG
Memory per
coreCSM total

64MB
32KB
per core

BSM total
256MB

128KB
per core

USM total
128MB

64KB
per core

Scratchpad total
128MB

64KB
per core

2KB
per core

 Reg total
4MB

Fig. 2. Graphic representation of capacity per capita inversion

Energy Avoiding Matrix Multiply 57

chip designs with dense amounts of compute, the higher level memory would
occupy far too much area on die and thus is reduced. This reduction creates
a memory capacity per capita inversion (CPCI) for the levels of the memory
hierarchy. Unfortunately, this inversion violates many of the assumptions made
in classical cache analysis algorithms. And it is difficult to analyze the chip as
a distributed memory machine since there is still significant locality associated
with every memory in the hierarchy. Thus, TG supports configuring all levels of
memory as scratchpad or potentially as incoherent cache [16] in order to research
the best way to utilize the hierarchy. Our solution for TG similarly follows how
GPUs, leveraging the shared memory, permanently store results in the lower
levels of memory, leaving the higher level cache for read-only accesses of A and
B [19,20,22]. Further, this trend can extend every level of programmer con-
trolled shared memory in a CPCI hierarchy. This opens many possibilities for
unique and interesting techniques for utilizing this space including tiling which
this paper will leverage.

Section 2 extends tiling, specifically looking at tiling for energy efficiency.
Section 3 introduces a novel method for dynamically generating tile shapes using
a hilbert inspired ordering. Section 4 combines these two techniques to provide a
methodology for creating a tiling scheme for any memory layout and explain how
to use asynchronous tasks to build a robust MM algorithm. Section 5 provides
specific details about our experimental testbed using the FSIM simulator and
the results.

2 Energy Efficient Tiling

2.1 Tiling Principles—The Matrix Multiplication Example

At the core of numerous numerical packages such as LU factorization, MM is an
ideal candidate for tiling. In fact, it is a common benchmark or the core routine
of benchmarks used to test hardware due to its large reuse of data which can
test memory and caching subsystems. It can be computed with a triple nested
loop, making the asymptotic computational complexity O(N3). In this paper,
MM is defined as CM,N = AM,K × BK,N , A,B,C ∈ R

2, M,N,K ∈ N
∗.

There are three traditional ways to tile MM: inner product (i.e., dot product),
outer product (i.e., cross product), and a combination of the former two. Inner
product ordering reduces accesses to C; outer product ordering reduces accesses
to A and B, but requires additional local memory and synchronization. A hybrid
combination will perform a trade-off to reuse A, B, and C. Traditionally, a new
tile, static in both size and shape, will be used for each level of memory since more
temporary space is available at farther memory levels and thus can provide more
reuse of A, B, and C. The remainder of this section introduces a novel hybrid
method of distributing a tile amongst multiple levels of a CPCI hiearchy with a
dynamic shape that can better utilize memory and reduce data movement.

58 K. Livingston et al.

2.2 Energy Efficient Tiling

As previously mentioned, outer product tiling is the only way to provide reuse
of the A and B matrix at the expense of more temporary storage and strict
synchronization. The resulting energy consumption during computing can be
divided up into energy to do compute and energy to move data. As we shrink
lithography processes more, data movement and leakage will begin to dominate
energy consumption [5]. Since leakage occurs regardless of executing tasks, an
algorithm must keep all processors busy with little scheduling downtime. Thus,
we also rely on asynchronous fine-grained scheduling in order to keep processors
busy where synchronization is occuring, and double buffering to create slack in
the synchronization, in way similar to Garcia et al. [14]. For reducing data move-
ment, we propose a method to model the energy consumed by a tiling scheme to
quickly determine a near-optimal tile size for a given amount of memory. This
method creates a machine model using a few assumptions:

1. Accessing data (read or write) from any kind of memory can be approxi-
mated as a particular static cost composed of dynamic access, leakage, and
communication energy for both a farther memory and a closer memory.

2. The static cost is the average for all the values of that memory level regardless
of variances in location, temperature, or circuit performance.

3. The shared memory structure is physically near all neighbors and the distance
travelled dominates the static energy cost function.

The total energy consumed for a subtiling according to these assumptions
is modelled in Eq. 1. E is the static energy cost per access to either a memory
higher (HM) in both capacity and access energy or a lower memory (LM) in
which we are tiling. Matrices are AM,K and BK,N in HM with sub-tiles in LM
with dimensions m × n for outer product and k for inner product.

HMTotal = 2MN · EHM +
(
NMK

n
+

NMK

m

)
· EHM

LMTotal =
MN

mn
· K
k

(2 + 2k) · mn · ELM

ETotal = HMTotal + LMTotal

(1)

In the HM energy consumption, every C result is read and written once
because of the inner product ordering of the tile. m and n accesses for the A and
B tiles are reduced by using outer product ordering of the smaller subtile. These
reductions require increases in access to the lower memory (LM). First, a subtile
must read in a partial sum from the LM subtile, then read k values from the
A input buffer and k values from the B input buffer, perform k computes, and
finally write back the partial sum to the result subtile. This operation is per-
formed for the m ·n values for each result tile every K

k synchronization points at
the energy cost of LM. Then the final results are written back out to HM, and
the procedure will be repeated for the MN

mn number of result tiles needed to com-
plete the matrix in HM. To optimize the energy consumed by data movement,

Energy Avoiding Matrix Multiply 59

we make several changes of variables and a memory constraint. Let R = EHM

ELM

define the ratio of energy consumption from higher to lower memory, and let
S = m

n define the ratio of the longest side to the shortest side of the subtile (for
this derivation, we assume m is longer). When S = 1, the tile is square, and as
the tile becomes more rectangular, the squareness factor increases. Equation 1
can then be simplified to Eq. 2.

ETotal = ELM ·
(
MNK ·

(
2
k

+ 2
)

+
(1 + S) · MNK

Sn
· R + 2MNR

)
(2)

Next, we make a memory constraint and thus define Q as the quantity of
memory available for tiling in LM. We also will constrain our equation to a tiling
scheme which will double buffer the A and B input vectors in order to loosen
synchronization requirements which results in a memory constraint definition in
Eq. 3.

Q = Sn2 + (1 + S) · 2kn → k =
Q − Sn2

(1 + S) · 2n
(3)

Substituting k in our original expression and simplifying, we derive the total
energy consumed as a function of higher tile dimensions, ratios, quantity of
memory, and a single variable n to define the subtiling in Eq. 4.

ETotal = (1 + S) · 4Sn2+(Q−Sn2)·R
(Q−Sn2)·Sn · MNK · ELM + (2MNK + 2MNR) · ELM

(4)
And lastly to find the minimum energy, we differentiate and set to 0 in Eq. 5.

Solving the quadratic for n2 we obtain the final equation, Eq. 6.

dETotal

dn = 0 = −1 · ((1+S)·(Q2R−2QS·(R+2)n2+n4·(R−4)·S2)
Sn2·(Q−Sn2)2 · MNK · ELM (5)

The proper amount of memory that should be dedicated to the outer product
result tile is a function of the energy access ratio between HM and LM regardless
of the shape of the tile. We denote this function as the fill factor : it is desig-
nated as FF in Eq. 6. It is important to understand that this model is based
on the three assumptions where the energy is static, which is not necessarily
true. Where the inner product length is extremely short, there will be potential
startup overheads that are not amortized such that the energy factor does not
properly relate to the real energy cost. Similarly, in the case where the inner
product is very long due to a low fill factor, the bandwidth requirements will
increase to the HM which typically requires more energy per operation when
accessed at higher bandwidths. Thus, this model should only be utilized as a
first order approximation strategy for an overall tiling scheme.

Sn2 = Q

(
(R + 2) − √

8R + 4
R − 4

)

FF =

{
(R+2)−√

8R+4
R−4 R �= 4

1
3 R = 4

(6)

60 K. Livingston et al.

Other limits and checks should be imposed as well to ensure this is the
optimal tiling. One such requirement is that k ≥ 1 and n ≥ 1 can be violated by
the non-discrete fill factor calculation and by using Eqs. 3 and 6, additional
constraints to the tiling shown in Eq. 7 can be added to make sure enough
memory is available.

1 ≤ Q − Sn2

(1 + S) · 2n
→ Q ≥ 4(S + 1)2FF

S(FF − 1)2
(7)

Lastly, we previously defined S as m
n , where m and n are sides of a full rectan-

gle tile. S′ is defined as an imperfectly filled tile which contains work equivalent
to S. To do this, the outer product work of the partial tile and the A and B input
buffer width requirements of the partial tile are matched to determine what the
full tile equivalent would be. After simplification and derivation, it yields Eq. 8.

S′ =
Inputs2 − 2Work + Inputs

√
Inputs2 − 4Work

2Work
(8)

. . . with Work = Sn2, and Inputs = (1 + S)n. We will see in future sections
how these constraints and S′ can be applied to coarsen tiles and lower runtime
overhead, and still ensure that sufficient memory is left for input buffers.

3 Hilbert Inspired Global Layout

H
ilb

er
t

M
or

to
n

Fig. 3. Order 1 through 3 Hilbert and Mor-
ton curves

Beyond the mathematical modelling
used to obtain basic rectangular tiling
to assign the proper amounts of A,
B, and C tiles in memory level (in
the abstract sense), we need an auto-
matic method for explicitly aggregat-
ing tiles which creates a tile shape
that has the least projected surface
area for both dimensions (thus a low
S′). Explicit aggregation is impor-
tant since recursive implicit aggrega-
tion like in cache-oblivious algorithms
would fail to expand memory consumption in the lower memories. Our method
must also be able to adapt to any memory layout, and be robust for any problem
dimension. This makes a space filling curve an excellent candidate since these
curves map a higher order space into a one dimensional space perfect for lin-
early enumerating as asynchronous tasks while also ensuring a good amount of
locality. Some space-filling curves like Morton curves are computationally very
inexpensive, but they have unbounded Hölder continuity and thus if used recur-
sively could lead to large jumps within the matrix. Better candidates are Peano
or Hilbert curves. Figure 3 provides examples of Hilbert and Morton curves.

Energy Avoiding Matrix Multiply 61

Once the requirement to replicate data down a cache-like hierarchy is
removed, the freedom to pin tiles anywhere in the hierarchy is possible. How-
ever, there is no obvious strategy to get the best layout. We present a data
layout and an asynchronous scheduling technique which maximizes memory uti-
lization, adapts to different memory sizes, preserves locality even during dynamic
throughput changes in processors, and is based on energy optimal tiling prin-
ciples. This produces tiles in certain memory locations in the method shown
in Fig. 8. In order to achieve the properties described, the aggregations are not
perfectly square or perfectly filled, which will incur some performance penalty
that must be quantified before describing our curve technique.

3.1 Measuring S′ Empirically

Hungershöfer and Wierum [15] show that for all sections of a Morton and a
Hilbert curve, Hilbert curves have slightly lower average surface area to volume
but also contain a higher worst case surface area to volume ratio.

Number of Tiles in Aggregation
0 100 200 300 400 500 600 700 800 900 1000

S
'

1

2

3

4

5

6

7

8
Hilbert Curve S'

Average S'
Maximum S'
Minimum S'

Number of Tiles in Aggregation
0 100 200 300 400 500 600 700 800 900 1000

100

101

102

103

104

105

106
Morton Curve S'

Average S'
Maximum S'
Minimum S'

Fig. 4. S′: Equivalent full tile aspect ratio matching work: inputs of a partial tile

Figure 4 shows our calculations for worst case, average, and minimum S′

values for every possible aggregation that follows the curve order for each curve
length using a 1024× 1024 Morton and Hilbert curves. For S′, the Hilbert curve
outperforms Morton by a factor of four on average and has a bounded maximum
below 8 whereas the Morton curve produces large maximum aspect ratios. This
is because S′ is more related to projected surface areas than standard surface
areas, giving an even larger penalty to Morton curves and making the choice of
Hilbert inspired curves as the most reasonable choice.

3.2 Decomposition Rules for Layout

Figure 5a gives an example curve for any arbitrarily dimensioned problem which
provides good locality for tiling, which we call Hilbert Inspired Curve (HIC).
To this end, we implement a pseudo-Hilbert curve algorithm influenced by the

62 K. Livingston et al.

works of Zhang et al. [24] and Chung et al. [9], which will be close to a Hilbert
curve in S′ performance. Unlike Zhang et al. where divisions create splits with
sections having power of 2 dimensions on the outer portions of the matrix, our
algorithm makes simple divisions by 2, split in both dimensions until we reach
a base case. While Zhang’s technique generates more regular patterns at the
expense of different aspect ratios throughout the matrix, our technique ensures
a Hilbert order with as close to the overall aspect ratio of the matrix at the
expense of a more complex base case ordering.

(a) An example 50 × 80 Curve

1 2 3 4

1 1

1 12 2

2 2

3

3

3

3

44

44

1 1

2

2

3

3

4 4

Cu
rv
e

Ty
pe

H
ilb

er
t

Re
cu
rs
io
n

Sc
an

lin
e

Re
cu
rs
io
n

Recursion Rules

(b) Recursion Rules

Fig. 5. HIC: Hilbert Inspired Curve. (Color figure online)

In order to lower the aspect ratio of the tiles and reduce the expected S′,
HIC will make scanlines of tiles following Chung et al.’s work, rather than using
Hilbert recursion.

This is because dividing a rectangular tile into a more square tile occurs only
until the longer length switches axes and is no longer smaller than the current
S value. This creates the condition shown in Eq. 9.

S >
1
S
2

→ S >
√

2 (9)

This is equivalent to always dividing the longest dimension of the tile, sim-
ilarly to many cache oblivious algorithms, except the single dimension split is
only performed when the curve types allow a scanline recursion. This results in
the recursion rules laid out in Fig. 5b.

In the base case where either tile dimension goes below 7, HIC terminates
recursion and specifies every possible scanline order in a look-up table similar
to Zhang. We ensure that a split in the base case cannot result in two odd
tiles by shifting the split as necessary. This reduces our look-up table to 4 cases
for each curve type, resulting in 64 total scanline orders. Figure 6 illustrates
the scanline order for all cases of base tiles for a curve traversing from lower

Energy Avoiding Matrix Multiply 63

D
D

O
NEVE

DDO NEVE

D
D

O
NEVE

NEVE NEVE

NEVE
NEVE

DDO NEVE

NEVE
NEVE

NEVE NEVE

Fig. 6. Portion of scanline look up table

left to lower right. The other three
curve orientations are not presented.
Dots indicate start points for each
scanline and the highlighted case does
not have a contiguous end/start con-
nection between the two upper sub-
tiles as previously mentioned.

This is exactly what we see in our
example tile from Fig. 5a, with the
ratio 8 : 5 >

√
2, and so a single

dimension cut on the X axis is made
in the middle (shown in blue dashes). This produces two tiles with S = 5 : 4.
Hence Hilbert recursion begins with the first 2 cuts (shown in red dashes). Sev-
eral aspect ratios were tested to ensure S′ values were still reasonable to evaluate
the impact of these changes and allow arbitrary matrix dimensions, instead of
the traditional Hilbert curve. Results are presented in Fig. 7.

0 200 400 600 800 1000
1

2

3

4

5

6

7

8

9

10
Average
Maximum
Minimum

1000x1000

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16
Average
Maximum
Minimum

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16
1000x1400 1000x2000

Number of Tiles in Aggregation

S’

Average
Maximum
Minimum

Fig. 7. S′ for 3 different aspect ratios

While the maximum value has reached as high as 16 for smaller tile sizes,
the overall S′ values remain nearly the same as the original Hilbert curve, which
will bode well in Sect. 4 when utilizing this curve to aggregate tiles in a CPCI
hierarchy.

4 Tiling Up and Down a Hierarchy Efficiently

4.1 Aggregating Tiles

The first step to implement our algorithm is to query the runtime for all program
available memory in the chip memory hierarchy. Then a tree is built where the
smallest memory closest to the processor is a leaf and the memory shared between
different groups of processors are inner nodes. Next the base tile size and inner
product length n and k are determined, (see Sect. 2). Of course, a tile size of
1 could work but the overhead of runtime queues, curve pointer calculations,
and synchronization would be cost prohibitive. If the base tile size is made too

64 K. Livingston et al.

coarse, then smaller regions of memory will be unusable: fragment pieces of
memory during tiling create excessive work stealing, and (for small problem
sizes) expose too little concurrency. Hence the importance of determining the
proper base tile size. For the purposes of our experiments, we picked our base
tile sizes empirically, but this process is autotunable.

Tile Aggregation
Layout

A

C

B

Physical Memory
Layout

CSM

USM

BSM BSM BSM BSM

USM

32MB

16MB

8MB 8MB

15MB
(1MB unusable)

7MB
(1MB unusable)

7MB
(1MB unusable)

Faulty
Memory

Fig. 8. Example tiling and memory layout
(These memory capacities are for illustra-
tive purposes only)

Bottom-up tile formation starts by
attempting to aggregate base blocks
together into larger tiles that can
form outer products while still hav-
ing enough memory available for the
input buffers. All aggregations must
follow a global layout dictated by
the HIC. Thus, the task is simply to
divide what portions of memory will
be A input buffers, B input buffers,
and C result tiles for that memory
block using the FF equation from
Fig. 6 and the HIC curve function to
project what inputs will be needed.
Once the children of a subtree have
finished, the subtree attempts to par-
tition the shared memory using the
FF equation with one exception: it
regards the value Q in the equation
as not only the size of its memory but
also the result tiles from all its chil-
dren in the calculation. This excep-
tion is made due to assumption 3
of our machine model from Sect. 2.
It is intuitive: any child could steal
work from another child at the cost
of the shared memory access when
gross imbalance occurs. The rest of
the memory in the subtree is divided
and utilized for the A and B tiles according to the dimensions created by the
HIC. Additionally, we insure that an upper level input buffer can hold a large
enough buffer (product length of k) to support lower level input buffer reads.
This assignment continues sequentially all the way through the memory tree until
the root finishes by initiating the first data movement of matrices from DRAM.
After all nodes of the memory tree are initialized, data layout is finished and the
spawning of tasks for computation can begin.

4.2 Creating Tasks

As mentioned earlier, outer product operations have synchronization require-
ments if multiple operations are occuring in parallel. In order to perform these

Energy Avoiding Matrix Multiply 65

operations, yet still maintain high performance, we implement a hierarchically
double-buffered and load-balanced asynchronous computation. This is similar in
style to Garcia et al. [14].

Fig. 9. Data dependency graph

As shown in Fig. 9,
there are 4 kinds of nodes
that we give to the run-
time. Each node has a
set of dependencies that
must be satisfied before it
can placed in the running
queue. Similarly, once a
node finishes, it will sat-
isfy its future dependencies
by making calls to the run-
time with a globally unique
identifier for each depen-
dency.

Once higher memory
level work is available,
each execution engine per-
forms direct DMA trans-
fers, bypassing all other
memory structures. While
we could have provided

additional data reuse by recruiting groups of XEs in the same block or unit
to perform a similar input broadcast into the lower level buffer just as the lower
level tiles did, this would add more synchronization and potentially affect per-
formance.

5 Experimental Results

5.1 Testbed

We experiment using FSim, which is a heavily multithreaded and multi-process
functional simulator created by Intel. It models the TG architecture: execution
and control engines, load-store queues, memory controllers and memory banks
at each level of the TG hierarchy, are all implemented as individual threads. The
runtime we used on FSim only allows up to 1

8 of the targeted 2048-core TG chip
to be simulated: up to 4 units of 8 blocks each, with 8 execution engines and one
control engine in each block (≈256 cores). Because we are only simulating part
of the chip, we reduce the chip area to 64 mm2 for performing on-chip network
energy calculations, and modify the amount of memory in the Unit and Chip
shared memories in order to maintain a hierarchy inversion ratio of 2:1 as seen
in Table 1.

66 K. Livingston et al.

Table 1. Simulation parameters

Chip shared memory 16MB

Units/chip 4

Unit shared memory 8MB

Blocks/unit 8

Block shared memory 2MB

Base tile size → n 30

Base tile size → k 30

We trace and count all matrix data
movements from any memory module in the
hierarchy using our runtime; in addition we
report relative energy consumption provided
by FSim that includes dynamic tiling com-
putations and runtime overheads. However,
FSim is not cycle accurate: we are unable
to estimate static power consumption or
the actual performance of the MM, but all

dynamic energy consumption is measured using approximations developed from
architectural designs. For this paper, since we are more interested in data move-
ment, we fix the voltage to be in superthreshold operation so all dynamic energy
consumption is on that order.

5.2 Tiling Related Results

Fig. 10. Memory accesses

Figure 10 shows the number of
memory accesses to all shared
memories on the chip. Our energy-
aware algorithm gives a clear pref-
erence for the closer memory oper-
ations, preferring to access BSM
20 times more than DRAM. In
fact, the algorithm favors the local
operations so strongly that the
number of DRAM operations is
exactly the lower bound on the
number of accesses to do the MM
operation. This is in spite of the C
matrix being 83% of the size of the
CSM showing that our algorithm

can easily operate on working sets larger than the highest capacity of memory
in the hierarchy.

It is not necessary to compare this method to other standard cache-oblivious
algorithms, since they follow the inclusion property.

This is because any algorithm that only uses the CSM would certainly be
unable to fit all 3 matrices in memory, necessitating that at least one of them be
accessed a second time. Since all our energy consumption in the on-chip memories
is less than 25%, it is already clear that we would consume less energy than any
competitor that does not have some kind of explicit outer product layout. This
is why we specifically chose this single case to illustrate our point.

5.3 Machine Related Results

The preference for on-chip memory operations over DRAM accesses is very help-
ful for off-chip bandwidth utilization as well. Given that a 1050 × 1590 × 1590

Energy Avoiding Matrix Multiply 67

requires a total of 5.3 GFLOP and our tiling scheme is able to only require
60 MB of loads or stores to DRAM, with throughput levels of 1.75 TFLOP/S
which we would expect that 1

8 of a chip could perform, it would still only require
a DRAM bandwidth of 20 GB/s.

Fig. 11. Relative energy consumption

This could potentially be an even
larger reduction in off-chip band-
width requirements if the full memory
capacity were simulated. This comes
at a cost with large increases in on-
chip accesses which we would expect
an on-chip network could handle the
added requirements.

Figure 11 shows the relative energy
consumption (without static energy)
to the 4 different shared memory
regions of the chip as well as the
dynamic energy consumption of the
processors for three different MM
sizes. Here we notice that even though
the BSM, USM, and CSM are read
and written orders of magnitude more
than the DRAM, the energy con-
sumed by the DRAM is still much
more than the more local memory
operations.

6 Related Work

Space-Filling Curves. Chatterjee et
al. [7] studied recursive data layouts for multiple kinds of Morton curves as well
as Hilbert curves in the context of Matrix Multiply, while Bader and Zenger [3]
created an algorithm using Peano curves. More recently, Ballard et al. [4] used
a Morton inspired ordering in which they divide by the largest dimension which
in a square matrix resolves to Morton order. These works solely looked at the
locality properties of space filling curves in order to provide cache friendly order-
ing. In addition, our work incorporates a hierarchy of scratchpad memories and
ensures the tiling scheme provides energy optimal data movement. Furthermore,
this technique also leverages the curve in a scheduler for more choreographed
data movement to increase locality.

Cache Oblivious and Communication Avoiding Algorithms. Frigo et al. [13]
define an algorithm as being cache-oblivious when the algorithm is cache opti-
mal without requiring any parameters defining the cache. They do this by using
the inclusion property of caches to simplify the problem into a 2 memory space
problem: fast cache memory and slow system memory, similar to our formu-
lation. They then can infer cache optimality for any algorithm that provably

68 K. Livingston et al.

minimizes communication between these two memories so long as the algorithm
is not a function of the sizes. However, this means exclusive caches or noncoher-
ent caches or scratchpads like the CPCI hierarchies we target can not apply to a
cache-oblivious algorithm or if so a complex analysis of the coherence algorithm
is necessary to determine what the maximum working set the cache can hold
and under what conditions of memory operations that maximum working set
can exist. We only require the energy cost to be inclusive and let the capacity be
a variable we define in our model. The downside to our algorithm is that it nat-
urally operates using a machine model where all data movement is explicit and
formulating an algorithm within a traditional cache hierarchy would be difficult
if not impossible for some caches.

More recent work includes communication avoiding (CA) classes [2,11,17].
They extend the cache oblivious concept to networks. CARMA [12] utilizes
a breadth-first\depth-first hybrid algorithm that leverages additional avail-
able memory to reduce communication across distributed-memory and NUMA
machines. It is not obvious how CARMA would handle an inverted memory
hierarchy such as TG since it is usually applied to distributed memory systems.
Additionally, we assume that energy consumption will be a dominating and lim-
iting factor within a chip in future architectures rather than bandwidth. Because
CA algorithms are cache-oblivious, they place equal weight on memory accesses
regardless of the energy liabilities they generate which could limit overall per-
formance when thermal constraints are considered.

7 Conclusion

This paper has presented a novel energy-aware algorithm targeting future many-
core architectures. It relies on the memory capacity inversion property and
applies a custom space-filling curve to implement our tiling method and achieve
energy efficient matrix multiplication execution. We provide a demonstrative
simulation experiment to show the advantages of our techniques and predict an
energy-optimal bandwidth to flop ratio absent of other bottlenecks in the TG
design. While this work provides a precise account of dynamic energy expendi-
ture and makes every effort to amoritize overheads properly, a not-yet imple-
mented cycle-accurate simulator would quantify the scheduling overheads of our
algorithm, which would allow for the computation of the total estimate of energy
per operation. This would inform computer architects in how inverted memory
hierarchies could be utilized. Likewise, our machine model is extensible: band-
width consumption can be modelled, following Chen et al.’s work [8]. From a
compiler perspective, our proposed algorithm can be integrated in a more gen-
eral framework, taking advantage of polyhedral models to extend our dynamic
space filling curves and energy model. From a runtime standpoint, there is the
potential for using runtime information to guide custom schedulers for optimal
locality using our framework. Lastly, initial confirmation of the energy model
can be empirically made on systems like KNL which have scratchpad modes for
the in-package memory.

Energy Avoiding Matrix Multiply 69

Acknowledgments. Authors would like to thank Shekhar Borkar, Joshua Fryman,
Romain Cledat, Ivan Ganev, Bala Seshasayee and others on the Intel XStack team
for information on memory energy ratios, use of FSim, and computing resources. This
material is based upon work supported by the Department of Energy [Office of Science]
under Award Number DE-SC0008717. This research is also based upon work supported
by the National Science Foundation, under award XPS-1439097.

References

1. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
plasma and magma projects. J. Phys.: Conf. Ser. 180(1), 012037 (2009)

2. Baboulin, M., Donfack, S., Dongarra, J., Grigori, L., Rémy, A., Tomov, S.: A class
of communication-avoiding algorithms for solving general dense linear systems on
CPU/GPU parallel machines. Procedia Comput. Sci. 9, 17–26 (2012). Proceedings
of the International Conference on Computational Science, ICCS 2012

3. Bader, M., Zenger, C.: Cache oblivious matrix multiplication using an element
ordering based on a Peano curve. Linear Algebra Appl. 417(23), 301–313 (2006).
Special Issue in Honor of Friedrich Ludwig Bauer

4. Ballard, G., Demmel, J., Lipshitz, B., Schwartz, O., Toledo, S.: Communication
efficient Gaussian elimination with partial pivoting using a shape morphing data
layout. In: SPAA 2013, Montréal, Québec, Canada. ACM (2013)

5. Borkar, S.: Role of interconnects in the future of computing. J. Lightwave Technol.
31(24) (2013). ISSN: 0733-8724

6. Carter, N.P., Agrawal, A., Borkar, S., Cledat, R., David, H., Dunning, D.,
Fryman, J.B., Ganev, I., Golliver, R.A., Knauerhase, R.C., et al.: Runnemede:
an architecture for ubiquitous high-performance computing. In: HPCA (2013)

7. Chatterjee, S., Lebeck, A.R., Patnala, P.K., Thottethodi, M.: Recursive array lay-
outs and fast parallel matrix multiplication. In: SPAA, Saint Malo, France. ACM
(1999)

8. Chen, G., Anders, M., Kaul, H., Satpathy, S., Mathew, S., Hsu, S., Agarwal, A.,
Krishnamurthy, R., Borkar, S., De, V.: 16.1 a 340mv-to-0.9v 20.2tb/s source-
synchronous hybrid packet/circuit-switched 16 × 16 network-on-chip in 22nm tri-
gate CMOS. In: 2014 IEEE International Solid-State Circuits Conference Digest
of Technical Papers (ISSCC) (2014)

9. Chung, K.-L., Huang, Y.-L., Liu, Y.-W.: Efficient algorithms for coding Hilbert
curve of arbitrary-sized image and application to window query. Inf. Sci. 177(10),
2130–2151 (2007). Including Special Issue on Hybrid Intelligent Systems

10. D’alberto, P., Bodrato, M., Nicolau, A.: Exploiting parallelism in matrix-
computation kernels for symmetric multiprocessor systems: matrix-multiplication
and matrix-addition algorithm optimizations by software pipelining and threads
allocation. ACM Trans. Math. Softw. 38(1) (2011)

11. Demmel, J.: Communication-avoiding algorithms for linear algebra and beyond.
In: IPDPS 2013 (2013)

12. Demmel, J., Eliahu, D., Fox, A., Kamil, S., Lipshitz, B., Schwartz, O., Spillinger,
O.: Communication-optimal parallel recursive rectangular matrix multiplication.
In: IPDPS (2013)

13. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: Proceedings of the 40th Annual Symposium on Foundations of Com-
puter Science, FOCS 1999, Washington, DC, USA. IEEE Computer Society (1999)

70 K. Livingston et al.

14. Garcia, E., Orozco, D., Khan, R., Venetis, I., Livingston, K., G. Gao.: A dynamic
schema to increase performance in many-core architectures through Percolation
operations. In: HiPC 2013, Bangalore, India. IEEE Computer Society (2013)

15. Hungershöfer, J., Wierum, J.-M.: On the quality of partitions based on space-
filling curves. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.)
ICCS 2002. LNCS, vol. 2331, pp. 36–45. Springer, Heidelberg (2002). doi:10.1007/
3-540-47789-6 4

16. Intel: Strawman system architecture and evaluation (2004). http://tinyurl.com/
j6xxg22. Accessed 10 July 2016

17. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput. 64(9), 1017–1026
(2004)

18. Jaleel, A., Borch, E., Bhandaru, M., Steely Jr., S.C., Emer, J.: Achieving non-
inclusive cache performance with inclusive caches: temporal locality aware (TLA)
cache management policies. In: MICRO 2010, MICRO ’43, Washington, DC, USA.
IEEE Computer Society (2010)

19. Juega, J., G’omez, J., Tenllado, C., Verdoolaege, S., Cohen, A., Catthoor, F.:
Evaluation of state-of-the-art polyhedral tools for automatic code generation on
GPUs (2012)

20. Leung, A., Vasilache, N., Meister, B., Baskaran, M., Wohlford, D., Bastoul, C.,
Lethin, R.: A mapping path for multi-GPGPU accelerated computers from a
portable high level programming abstraction. In: GPGPU-3, March 2010

21. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13(4), 354–356
(1969)

22. Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C.,
Catthoor, F.: Polyhedral parallel code generation for CUDA. ACM Trans. Archit.
Code Optim. 9(4) (2013)

23. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
SuperComputing 1998, San Jose, CA. IEEE Computer Society (1998)

24. Zhang, J., Kamata, S., Ueshige, Y.: A pseudo-Hilbert scan algorithm for arbitrarily-
sized rectangle region. In: Zheng, N., Jiang, X., Lan, X. (eds.) IWICPAS
2006. LNCS, vol. 4153, pp. 290–299. Springer, Heidelberg (2006). doi:10.1007/
11821045 31

http://dx.doi.org/10.1007/3-540-47789-6_4
http://dx.doi.org/10.1007/3-540-47789-6_4
http://tinyurl.com/j6xxg22
http://tinyurl.com/j6xxg22
http://dx.doi.org/10.1007/11821045_31
http://dx.doi.org/10.1007/11821045_31

Resilience and Persistence

Language Support for Reliable Memory Regions

Saurabh Hukerikar(B) and Christian Engelmann

Computer Science and Mathematics Division,
Oak Ridge National Laboratory, Oak Ridge, TN, USA

{hukerikarsr,engelmann}@ornl.gov

Abstract. The path to exascale computational capabilities in high-
performance computing (HPC) systems is challenged by the inadequacy
of present software technologies to adapt to the rapid evolution of archi-
tectures of supercomputing systems. The constraints of power have
driven system designs to include increasingly heterogeneous architec-
tures and diverse memory technologies and interfaces. Future systems
are also expected to experience an increased rate of errors, such that
the applications will no longer be able to assume correct behavior of
the underlying machine. To enable the scientific community to succeed
in scaling their applications, and to harness the capabilities of exascale
systems, we need software strategies that enable explicit management of
resilience to errors in the system, in addition to locality of reference in
the complex memory hierarchies of future HPC systems.

In prior work, we introduced the concept of explicitly reliable memory
regions, called havens. Memory management using havens supports reli-
ability management through a region-based approach to memory allo-
cations. Havens enable the creation of robust memory regions, whose
resilient behavior is guaranteed by software-based protection schemes. In
this paper, we propose language support for havens through type anno-
tations that make the structure of a program’s havens more explicit and
convenient for HPC programmers to use. We describe how the extended
haven-based memory management model is implemented, and demon-
strate the use of the language-based annotations to affect the resiliency
of a conjugate gradient solver application.

1 Introduction

The high-performance computing (HPC) community has their sights set on
exascale-class computers, but there remain several challenges in designing

This work was sponsored by the U.S. Department of Energy’s Office of Advanced
Scientific Computing Research. This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for United States Gov-
ernment purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 73–87, 2017.
DOI: 10.1007/978-3-319-52709-3 6

http://energy.gov/downloads/doe-public-access-plan

74 S. Hukerikar and C. Engelmann

these systems and preparing application software to harness the extreme-scale
parallelism. Due to constraints of power, emerging HPC system architectures
will employ radically different node and system architectures. Future architec-
tures will emphasize increasing on-chip and node-level parallelism, in addition to
scaling the number of nodes in the system, in order to drive performance while
meeting the constraints of power [1]. Technology trends suggest that present
memory technologies and architectures will yield much lower memory capacity
and bandwidth per flop of compute performance. Therefore, emerging memory
architectures will be more complex, with denser memory hierarchies and uti-
lize more diverse memory technologies [2]. The management of resilience to the
occurrence of frequent faults and errors in the system has also been identified as
a critical challenge [3]. HPC applications and their algorithms will need to adapt
to these evolving architectures, which will also be increasingly unreliable. These
challenges have led to suggestions that our existing approaches to programming
models must change to complement existing system-level approaches [4]. The
demands for massive concurrency and the emergence of high fault rates require
that programming model features also support the management of resilience and
data locality in order to achieve high performance.

Recent efforts in the HPC community have focused on improvements in the
scalability of numerical libraries and implementations of Message Passing Inter-
face (MPI) libraries for these to be useful on future extreme-scale machines. How-
ever, there is also a need to develop new abstractions and methods to support
fault resilience. In prior work, we proposed a resilience-driven approach to mem-
ory management using havens [5]. Havens offer an explicit method for affecting
resilience in the context of memory management decisions. In haven-based mem-
ory management, each allocated object is placed in a program-specified haven.
The havens guarantee a specified level of robustness for all the program objects
contained in a memory region. The objects contained in havens may not be freed
individually; instead the entire haven is deallocated, leading to the deletion of
all the contained objects. Each haven is protected by a detection/correction
mechanism, and different havens in a program may be protected using different
resilience schemes. The use of havens provides structure to resiliency manage-
ment of the program memory by grouping related objects based on the objects’
individual need for robustness and the performance overhead of the resilience
mechanism. This approach to memory management enables HPC applications
to write their own disciplines to enhance the resilience features of arbitrary types
of memory.

Traditional region-based systems were designed to statically assign program
objects to memory regions, based on compiler analysis, in order to eliminate the
need for runtime garbage collection [6]. In contrast, the primary goal of havens
is to provide a scheme for creating regions within heap-allocated memory with
various resilience features. In our initial design, we defined interfaces for the
creation and use of havens that were implemented by a library interface [5]. In
this paper, we develop language support in order to make havens clearer and
more convenient to use in HPC application programs by supporting as many
C/C++ language constructs as possible.

Language Support for Reliable Memory Regions 75

This paper makes the following contributions:

– We make a realistic proposal for adding language support for havens to main-
stream HPC languages.

– We develop type annotations, which enable static encoding of the decisions for
a program object’s allocation and deallocation into the robust regions. They
also provide opportunities to optimize the trade-off between the robustness
and performance overhead for protecting program objects.

– We investigate how affecting the resilience of individual program objects using
these static annotations affects their fault coverage and performance during
application execution.

2 Havens: Reliable Memory Regions

Havens are designed to support resilience-driven memory management. The run-
time memory is partitioned into robust regions, called havens, into which pro-
gram objects are allocated. Various object deallocation policies may be defined
for each haven, but the default is to free all the objects in a haven at once by
deleting the entire pool of memory. Therefore, havens enable the association
of lifetime to the reliable memory regions. Each memory region is protected
by a predefined robustness scheme that provides error detection and/or correc-
tion for all objects in the haven. Any robustness scheme used by a haven is
intended to be agnostic to the algorithm features, and to the structure of the
data objects placed in havens. The concept of havens maintains a clear separa-
tion between the memory management policies and the mechanism that provides
error resilience. Different havens used by an application may be protected using
different detection/correction schemes, such as software-based parity, hashing,
replication, etc., each of which may carry a different level of performance over-
head. Therefore, havens enable the program memory to be logically partitioned
into distinct regions each of which possess a specific level of error resilience and
performance overhead.

From the perspective of an HPC application program, havens enable applica-
tions to exert fine-grained control on the resilience properties of individual pro-
gram objects. Since different havens may have varying guarantees of resilience
and performance overhead, object placement in havens may be driven by the
trade-off between criticality of the object to program correctness and the asso-
ciated overhead. Havens are used to create a logical grouping of objects that
require similar resilience characteristics. Havens also enable improvements to
the locality of dynamically allocated objects by placement and aggregation of
various objects based on an application’s pattern of use. Furthermore, havens
permit HPC applications to balance the locality of program objects with their
resilience needs. For example, a runtime system may dynamically map a haven
onto specific hardware units in the memory hierarchy in an effort to improve the
locality of its program objects; such mapping may also be guided by the avail-
ability of hardware-based error detection/correction in the memory unit that
cooperates with the software-based protection scheme of the haven.

76 S. Hukerikar and C. Engelmann

3 Using Havens for Resilience-Driven Memory
Management

3.1 Basic Operations

While developing the concept of havens, we defined an interface for HPC pro-
grams to effectively use the reliable memory regions in their application codes
[5]. The abstract interface is based on the notion of a haven manager, which
provides a set of basic operations that must be implemented to fully support the
use of havens. The operations are summarized below:

1. haven create : The request for the creation of a haven by an application
returns a handle to the memory region, but no memory is allocated. The
choice of the error protection scheme is specified during the haven creation
operation.

2. haven alloc : An application requests a specified block of memory within
a haven using this interface. This operation results in the allocation of the
memory and the initialization of state related to the protection scheme.

3. haven delete : The interface indicates intent to delete an object within
the haven, but the memory is not released until the haven is destroyed.

4. haven read and haven write : These interfaces read and update the
program objects contained in the haven; the operations are performed through
these interfaces, rather than directly on the objects, to enable the haven
manager to maintain updated state about the robustness mechanism.

5. haven destroy : The interface requests that the haven be destroyed, which
results in all memory blocks allocated in the region to be deallocated. Upon
completion of this operation, no further operation on the haven are permitted,
and the memory is available for reuse. The state related to the robustness
scheme maintained by the haven manager is also destroyed.

6. haven relax and haven robust : These interfaces enable the error pro-
tection scheme applied to a haven to be turned on and off based on the needs
of the application during program execution.

3.2 Haven Library Interface

The implementation of the havens library is similar to the one in [5], in which the
heap is divided into fixed-size pages, and each new haven creation is aligned to
a page boundary. The library maintains a linked list of these pages. We provide
the library API functions for each of the primitives that enable basic haven oper-
ations: the haven alloc() and haven new() implement the abstraction for the
allocation of objects into the associated region. With the library-based imple-
mentation of the haven interfaces, we require no changes to the representa-
tion of pointers. Pointers may reference havens or access individual objects in
the havens. Since the library implementation does not differentiate between the
pointer types, any conversions between these two kinds of pointers are poten-
tially unsafe, and may lead to incorrect behavior. We only support per-region

Language Support for Reliable Memory Regions 77

allocation and deallocation, and therefore per-object deallocation is an illegal
operation. The haven release() enables the expression of the end of object
life. However, the haven destroy() operation must be invoked to release the
memory, which is achieved by concatenating the haven’s page list to the global
list of free pages.

3.3 Protection Schemes for Havens

In our initial implementation of havens, the memory regions are guaranteed
highly-reliable behavior through comprehensive protection based on a light-
weight software-based parity scheme. This scheme requires the haven manager to
maintain a pair of signatures for each memory region, which are of word length
for error correction, and an additional word length signature for error detection.
The detection signature contains one parity bit per word in the memory region.
As memory is allocated for the region and initialized, the correction signature S1
retains the XOR of all words that are written to the memory region. We apply
an XOR operation on every word that is updated in the memory region and the
correction signature S2.

Silent data corruptions or multi-bit errors are detected by checking the detec-
tion signature for parity violations. The detection signature also enables the loca-
tion of the corrupted memory word to be identified. The value at the corrupted
memory location may be recovered using the signatures S1 and S2. The XOR of
these two signatures S1 and S2 equals the XOR of all the uncorrupted locations
in the haven. Therefore, the corrupted value in the memory region is recovered
by performing an XOR operation on the remaining words in the haven with the
XOR of the signatures S1 and S2. The recovered value overwrites the corrupted
value, and the detection signature is recomputed. This parity-based protection
is an adaptation of an erasure code. Using this scheme, multibit corruptions may
be recovered from unlike hardware-based ECC, which offers only single bit error
correction and double bit error detection. The scheme maintains limited state for
the detection and correction capabilities and therefore carries very little space
overhead in comparison to other software-based schemes such as software-based
ECC and checksums. Additionally, the detection/recovery operations are trans-
parent to the application. The detection is a constant time operation while the
recovery is a O(n) operation based on the size of the haven.

4 A Haven Type System

4.1 Goals

Havens express the intended relationships between locality and resilience require-
ments of various program objects. The use of havens brings structure to mem-
ory management by grouping related program objects based on their resiliency
and locality needs. The initial prototype implementation of havens contains
library interfaces for each of the primitive haven operations [5]. The language

78 S. Hukerikar and C. Engelmann

support for havens aims to make programming HPC applications with havens
straightforward and productive by making the programs using havens clearer
and easier to write and to understand. Our design of the haven language sup-
port seeks to address the following seemingly conflicting goals:

– Explicit: HPC programmers control where their program objects are allo-
cated and explicitly define their robustness characteristic and lifetime.

– Convenience: A minimal set of explicit language annotations that support
as many C/C++ idioms as possible in order to facilitate the use of havens-
based memory management in existing HPC application codes, as well as in
the development of new algorithms.

– Safety: The language annotations must prevent dangling-pointer dereferences
and space leaks.

– Scalability: The havens must support various object types and the perfor-
mance overhead of any resilience scheme scales well even with large number
of objects.

The language support enables HPC programmers to statically encode mem-
ory management decisions for various program objects. By making the structure
of the havens and their resilience features explicit, the number of runtime checks
and modifications to the haven structure and the resilience scheme are reduced.

4.2 Type Annotations for Havens

In the haven-based model for memory management, the heap is divided into
regions, each containing a number of program objects. Therefore, havens are
abstract entities that represent an aggregation of program objects. Pointers to
havens refer to these abstract entities in the heap, whose resilience scheme is
defined upon creation and provides protection to all program objects that are
contained within the haven. The definition of a haven pointer type provides
a statically enforceable way of specifying the resilience scheme, type and size
information for the encapsulated objects inside the haven. A haven type statically
ensures that programs using this region-based model of memory management
are memory-safe, i.e., they don’t permit dangling references. The haven ptr
is a new type for handles to havens. The declaration of a haven ptr typed
pointer leads to the creation of a haven, but the declaration of a haven does not
allocate any memory. The haven-typed pointer object is declared and the haven
is subsequently deleted as shown in Listing 1.1.

haven_ptr h1;
. . .
deletehaven h1;

Listing 1.1. Type Annotations for Havens

The haven ptr is smart pointer object that contains the pointer reference
to a haven and also maintains bookkeeping information about the objects resi-
dent to the haven, including their sizes and a reference count. This information

Language Support for Reliable Memory Regions 79

enables the library to optimize the resilience scheme that protects the haven. For
example, in the parity-based protection scheme, the haven is protected using a
pair of parity signatures. The availability of the count and sizes of the objects
inside the haven enables statically creating sub-havens that are each protected
by pair of signatures. We define the deletehaven operator that provides a static
mechanism to reclaim the memory allocated for objects inside a haven, and also
discards the bookkeeping information and any state maintained by the resilience
scheme (for e.g., the signatures that provide parity protection for the haven).

The library implementation of havens permits unsafe operations, since a
haven h may be deleted even if the program contains accessible pointers to
objects in h. With the introduction of the haven ptr type, we also address the
issue of safety. When the deletehaven operator is encountered, the safety of
the delete operation is guaranteed by checking the reference counts included in
the haven ptr typed pointer object. The delete operation succeeds when the
haven ptr contains all null object pointers, and the operation results in releas-
ing the storage space for the haven, along with the program objects contained in
the haven. When the haven ptr typed pointer object contains a non-zero count
of active object references, the delete operation fails.

4.3 Subtyping Annotations

A subtype annotation is used to constrain the membership of an object to a
specific haven. Each object type is annotated with a region expression, which
explicitly specifies the haven to which values of that type belong. The region
expression is always bound to the type declaration of an object.

// Declare new haven pointer h1
haven_ptr h1;

// Declare variable x as member of the haven h1
int <h1> x;
x = 4;

// Delete haven releases memory for haven and the contained variable x
deletehaven h1;

Listing 1.2. Subtype Annotations for Havens

The type<haven ptr> defines a subtype for non-pointer variables that guar-
antees the allocation of the qualified object within a haven. The type annotation
enables local variables and global variables in C/C++ programs to be associated
with a haven. The haven membership of the annotated variable also guarantees
the variable with the protection offered by the haven’s specified resilience scheme.
The declaration of a single integer variable inside a haven is written as shown in
Listing 1.2.

The type*<haven ptr> annotation defines a subtype for pointer objects. The
inclusion of the haven ptr specifies membership of the object referenced by the
annotated variable to the haven. The declaration of an array inside a haven and
the allocation of memory for the array is written as shown in Listing 1.3.

80 S. Hukerikar and C. Engelmann

// Declare new haven pointer h2
haven_ptr h2;

// Declare vector pointer as member of the haven h2
double*<h2> vector;

// Allocate memory for vector of size N
vector = haven_alloc(N * sizeof(double));
. . .

// Set vector pointer to be null; without this deletehaven fails
vector = null;

// Delete haven release memory for haven and the contained vector
deletehaven h2;

Listing 1.3. Declaration of an array object within a haven

The membership relationship between variables and havens expressed by the
subtyping annotations also enables programmers to imply locality of reference
for all program objects that are associated with a haven.

Restrictions: With the use of the type annotations for object pointers, pro-
grammers need to differentiate between traditional C/C++ pointers and point-
ers that specify haven membership. Any conversion between these two kinds
of pointers is potentially unsafe and may lead to incorrect program behavior.
Therefore, we define a null haven, which enables traditional C/C++ pointers
to be viewed as pointers to objects inside this null region. The compiler guar-
antees safe assignments of pointer variables through static analysis or runtime
checks.

4.4 Defining Lifetimes

Through language support, we also define the notion of lifetimes for havens. The
basic idea is to define the scope of computation for which a haven is valid. We
define the reference lifetime for a haven as shown in Listing 1.4. This syntax
enables the creation of dynamic havens, whose lifetime is the execution of the
statement s; the statement s may be a compound statement. The program
objects that are allocated within the haven hx are guaranteed error protection
through the haven’s default resilience scheme. The explicit definition of lifetimes
for the havens enables programs to scope specific regions of computation that
must be executed with high reliability.

haven hx
{

// statement s
}

Listing 1.4. Defining lifetime scope for havens

Language Support for Reliable Memory Regions 81

4.5 Example: Vector Addition

The example in Listing 1.5 shows the skeleton of the vector addition code, in
which the objective is to protect the operand vectors a and b. The example omits
the details of the vector initialization and the addition routines. The declaration
of the haven ptr pointer variable with identifier h3 creates the haven. Upon
creation of the haven, the parity signatures are initialized, but no memory is
allocated.

// Create a haven for vectors
haven_ptr h3;

// Declare vectors as members of the haven h1
double*<h3> a = haven_alloc(N * sizeof(double));
double*<h3> b = haven_alloc(N * sizeof(double));

// Declare traditional vector pointer as member of null haven
double*<null > c = malloc(N * sizeof(double));

// Vector addition c = a + b
vector_addition(c, a, b);

// Set vector pointers to null; without this deletehaven fails
a = null; b = null;
free(c);

deletehaven h3;

Listing 1.5. Example: Resilient Vector Addition using Havens Language Support

The sub-type declaration of the array pointers makes the relationship
between the operand vectors and the haven h3 explicit and ensures the alloca-
tion of the vectors inside the haven. When the haven alloc allocation requests
are made, the library initializes the resilience scheme for the haven and allocates
the vectors a and b of size N elements. The array pointer to the result vector c
is a traditional pointer that is declared as a sub-type to a double* that estab-
lishes membership of the null haven. When the vector addition function returns,
the operand vector pointers are set to null so that the deletehaven operator is
able to release the memory associated with the haven h3 that includes vectors
a and b.

5 Application-Level Resilience Models Using Havens

A variety of algorithm-based fault tolerance (ABFT) strategies have been exten-
sively studied over the past decades. Many of these techniques are designed to
take advantage of the unique features of an application’s algorithm or data struc-
tures. These techniques are also able to leverage the fact that different aspects of
the application state have different resilience requirements, and that these needs
vary during the execution of an application. However, the key barrier to the
broader adoption of algorithm-based resilience techniques in the development of

82 S. Hukerikar and C. Engelmann

HPC applications is the lack of sufficient programming model support since the
use of these features requires significant programming effort.

We explore three generalized application-level resilience models that may be
developed using havens, and whose construction is facilitated by the language-
based annotations. These models are intended to serve as guidelines for HPC
application programmers to develop new algorithms as well as adapt the existing
application codes to incorporate algorithm-based resilience capabilities:

– Selective Reliability: Based on the insight that different variables in an
HPC program exhibit different vulnerabilities to errors, havens provide spe-
cific regions of program memory with comprehensive error protection. With
this model, HPC programmers use havens as mechanisms to explicitly declare
specific data and compute regions to be more reliable than the default relia-
bility of the underlying system.

– Specialized Reliability: Various protection schemes that provide error/de-
tection and correction capabilities for havens guarantee different levels of
resiliency. Also, based on the placement of havens in physical memory, the
software-based schemes may complement any hardware-based capabilities.
Havens provide simplified abstractions to design resilience strategies that seek
to complement the requirements of different program objects with the various
hardware and software-based protection schemes available.

– Phased Reliability: The vulnerability of various program objects and com-
putations to errors varies during program execution. Havens may also be used
to partition applications into distinct phases of computations. Since the vari-
ous resilience schemes incur overheads to the application performance, the pro-
tection features of specific data regions and compute phases may be enabled
or disabled in order to trade-off performance overhead and resilience.

6 Experimental Results

To apply the static annotations in an HPC application, we must identify program
objects that must be allocated in havens, and annotate their declarations with
the type qualifiers. These experiments evaluate the use of haven-based memory
management using the type qualifiers for a conjugate gradient code by including
the type and subtype qualifiers on its various application objects. We use a
pre-conditioned iterative CG algorithm and we validate the correctness of the
outcome of the solver with a solution produced using a direct solver. We compare
the evaluation with the results from our previous implementation that required
insertion of raw library interfaces. One of the important advantages of using
the static annotations is that the number of lines of code changed is reduced
significantly when compared to the changes required for insertion of library calls
in the same application code, which improves code readability.

In the CG algorithm, which solves a system of linear equations A.x = b, the
algorithm allocates the matrix A, the vector b and the solution vector x. Addi-
tionally, the conjugate vectors p and the residual vector r are referenced during
each iteration of the algorithm. The program objects in the CG application
demonstrate different sensitivities to errors. Errors in the operand matrix A or

Language Support for Reliable Memory Regions 83

vector b fundamentally changes the linear system being solved. For errors in
these structures even if the CG solver converges to a solution, it may be signif-
icantly different from a correct solution. The preconditioner matrix M demon-
strates lower sensitivity to the errors, as do the vectors x, p, r. These features of
the CG algorithm form the basis for the strategic placement of the objects into
havens, since the allocation of only sensitive data structures into havens pro-
vides a substantially higher resilient behavior in terms of completion rates of the
CG algorithm for reasonable overheads to performance than a naive placement
strategy. We present a detailed sensitivity analysis in [5].

Here, we evaluate the performance benefits gained from the use of static
annotations for the various objects in the CG code. We perform two sets of
experiments: (i) we allocate only one structure using the haven static annota-
tions, while the remaining structures are allocated using the standard memory
allocation interfaces; (ii) we strategically annotate the data structures of the
CG to allocate structures to havens in specific combinations. We evaluate the
following combinations: (i) allocation of only the static state, i.e., the matrix A
and vector B, the preconditioner M into havens, while the dynamic state, i.e., all
the solution vectors, are allocated using standard memory allocation functions;
(ii) allocation of only matrix A and vector B into havens; (iii) only the dynamic
state is provided fault coverage using havens. We compare these strategies with
allocations in which havens provide complete coverage and with experimental
runs which do not allocate any structure using havens.

The performance overhead of using havens in terms of the time to solution
of the CG solver for the above selection of program objects for allocation into
havens is shown in Fig. 1. The annotation of all the program variables to be
allocated into havens provides higher fault coverage, but it results in higher
overhead to the time to solution for the CG application. When the variables are
allocated using raw library interfaces, each program object is protected by a pair
of signatures, which provides monolithic protection for the entire haven. When
these objects are qualified with the static annotations in the application code,
the compiler and library have a better understanding of the size and structure of
the program objects. Therefore, the larger program objects, notably the operand
matrix A and the preconditioner matrix M, are split and protected by multiple
pairs of parity signatures. This split protection is transparent to the application
programmer and the application still accesses the matrix elements as a single
data structure. The use of multiple signatures improves the read/write overhead
for the objects and the observed overhead with static annotations for all program
objects is 11% lower than the library-based allocation for the same set of objects.
The operand matrix A occupies a dominant part of the solver’s memory, occu-
pying over 50% of the active address space, whereas the solution vector x, the
conjugate vectors p and the residual vector r and the preconditioner matrix M
account for the remaining space. Therefore, the annotation of matrix A individ-
ually results in 9% lower overhead than with monolithic parity protection using
library interfaces. The improvement in performance when smaller data objects
are statically annotated is only within 2% of the version using library interfaces
for the same objects.

84 S. Hukerikar and C. Engelmann

Fig. 1. Performance overheads of havens with static annotations

Language Support for Reliable Memory Regions 85

7 Related Work

Much research has been devoted to studies of algorithms for memory manage-
ment, which are based on either automatic garbage collection or explicit alloca-
tion/deallocation schemes. The concept of regions was implemented in storage
systems, which allowed objects to be allocated in specific zones [7]. While each
zone permits a different allocation policy, the deallocation is performed on a per-
object basis. The vmalloc library [8] provides programmers with an interface to
allocate memory and to define policies for each allocation. Region-based systems,
such as arenas [9], enable writing special-purpose memory allocators that achieve
performance by creating heap memory allocation disciplines that are suited to
the application’s needs. Implementations such as vmalloc place the burden of
determining policy of allocation of objects to regions on the programmer [8].
Other schemes have used profiling to identify allocations that are short-lived
and place such allocations in fixed-size regions [10]. Several early implemen-
tations of region-based systems were unsafe; the deletion of regions often left
dangling pointers that were subsequently accessible. Such safety concerns were
addressed through reference counting schemes for the regions [11].

For dynamic heap memory management through static analysis, regions pro-
vide [6] an alternative to garbage collection methods. In this approach, the
assignment of program objects to regions is statically directed by the compiler
in an effort to provide more predictable and lower memory space. The app-
roach was refined by relaxing the restriction that region lifetimes must be lexical
[12]. Language support for regions is available in many declarative programming
languages such as ML [13], Prolog [14]. Cyclone is a language designed to be
syntactically very close to C, but which provides support for regions through an
explicit typing system [15]. The Rust programming language [16] also provides
support for regions.

Recent efforts seek provide programming model support for reliability, such
as containment domains [17], which offer programming constructs that impose
transactional semantics for specific computations. Our previous work on havens
[5] provided a reliability-driven method for memory allocations. Rolex [18] offers
language-based extensions that support various resilience semantics on applica-
tion data and computations. Global View Resilience (GVR) supports reliability
of application data by providing an interface for applications to maintain version-
based snapshots of the application data [19]. In support of fault tolerance of in
explicit memory allocation/deallocation, the malloc failable interface is used
by the application to allocate memory on the heap; callback functions are used
to handle error recovery for the memory block [20].

8 Conclusion

Resilience is among the major concerns for the next generation of extreme-
scale HPC systems. With the rapid evolution of HPC architectures and the
emergence of increasingly complex memory hierarchies, applications running on

86 S. Hukerikar and C. Engelmann

future HPC systems must manage the locality and maintain reliability of their
data. Havens provide an explicit software-based approach for HPC applications
to manage the resilience and locality of their programs. In this paper, we focused
on developing language support for havens with emphasis on providing struc-
ture to the haven-based memory management. Through type annotations, a
programmer expresses the intended relationships between locality and resilience
requirements of various objects in the application program. The type annotations
enable the resilience requirements of program objects to be encoded within the
heap memory-management idioms. The static typing discipline for application
codes written in C/C++ also guarantees the safety of memory operations by
preventing dangling-pointer dereferences and space leaks. The structured haven-
based management facilitated by the language support provides the mechanisms
for the development of effective application-based resilience models for HPC
applications.

References

1. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR
2010. LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-19328-6 1

2. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dallya, W.,
Denneau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S.,
Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T.,
Williams, R.S., Yelick, K.: Exascale computing study: technology challenges in
achieving exascale systems. Technical report, DARPA, September 2008

3. DeBardeleben, N., Laros, J., Daly, J., Scott, S., Engelmann, C., Harrod, B.: High-
end computing resilience: analysis of issues facing the HEC community and path-
forward for research and development. Whitepaper, December 2009

4. Amarasinghe, S., Hall, M., Lethin, R., Pingali, K., Quinlan, D., Sarkar, V., Shalf, J.,
Lucas, R., Yelick, K., Balaji, P., Diniz, P.C., Koniges, A., Snir, M., Sachs, S.R.,
Yelick, K.: Exascale programming challenges: report of the 2011 workshop on exas-
cale programming challenges. Technical report, U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research (ASCR), July 2011

5. Hukerikar, S., Engelmann, C.: Havens: explicit reliable memory regions for
HPC applications. In: IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6, September 2016

6. Tofte, M., Talpin, J.P.: Implementation of the typed call-by-value λ-calculus using
a stack of regions. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 1994, pp. 188–201. ACM,
New York (1994)

7. Ross, D.T.: The AED free storage package. Commun. ACM 10(8), 481–492 (1967)
8. Vo, K.P.: Vmalloc: a general and efficient memory allocator. Softw. Pract. Exp.

26(3), 357–374 (1996)
9. Hanson, D.R.: Fast allocation and deallocation of memory based on object life-

times. Softw. Pract. Exp. 20(1), 5–12 (1990)

http://dx.doi.org/10.1007/978-3-642-19328-6_1
http://dx.doi.org/10.1007/978-3-642-19328-6_1

Language Support for Reliable Memory Regions 87

10. Barrett, D.A., Zorn, B.G.: Using lifetime predictors to improve memory allocation
performance. In: Proceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation, PLDI 1993, New York, NY, USA, pp.
187–196 (1993)

11. Gay, D., Aiken, A.: Memory management with explicit regions. In: Proceedings
of the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, PLDI 1998, pp. 313–323. ACM, New York (1998)

12. Aiken, A., Fähndrich, M., Levien, R.: Better static memory management: improv-
ing region-based analysis of higher-order languages. In: Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design and Implementa-
tion, PLDI 1995, pp. 174–18 (1995)

13. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T.H., Sestoft, P.,
Bertelsen, P.: Programming with regions in the ML kit. Technical report (diku-tr-
97/12), University of Copenhagen, Denmark, April 1997

14. Makholm, H.: A region-based memory manager for prolog. In: Proceedings of the
2nd International Symposium on Memory Management, ISMM 2000, pp. 25–34.
ACM, New York (2000)

15. Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., Cheney, J.: Region-
based memory management in Cyclone. In: Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, PLDI
2002, pp. 282–293. ACM, New York (2002)

16. Rust: the rust programming language. http://www.rust-lang.org
17. Chung, J., Lee, I., Sullivan, M., Ryoo, J.H., Kim, D.W., Yoon, D.H., Kaplan, L.,

Erez, M.: Containment domains: a scalable, efficient, and flexible resilience scheme
for exascale systems. In: Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, pp. 58:1–58:11 (2012)

18. Hukerikar, S., Lucas, R.F.: Rolex: resilience-oriented language extensions for
extreme-scale systems. J. Supercomput. 72, 1–33 (2016)

19. Chien, A., Balaji, P., Beckman, P., Dun, N., Fang, A., Fujita, H., Iskra, K.,
Rubenstein, Z., Zheng, Z., Schreiber, R., Hammond, J., Dinan, J., Laguna, I.,
Richards, D., Dubey, A., van Straalen, B., Hoemmen, M., Heroux, M., Teranishi,
K., Siegel, A.: Versioned distributed arrays for resilience in scientific applications:
global view resilience. Procedia Comput. Sci. 51, 29–38 (2015)

20. Bridges, P.G., Hoemmen, M., Ferreira, K.B., Heroux, M.A., Soltero, P., Brightwell,
R.: Cooperative application/OS DRAM fault recovery. In: Alexander, M., et al.
(eds.) Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 241–250. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29740-3 28

http://www.rust-lang.org
http://dx.doi.org/10.1007/978-3-642-29740-3_28

Harnessing Parallelism in Multicore Systems
to Expedite and Improve Function

Approximation

Aurangzeb(B) and Rudolf Eigenmann

Purdue University, West Lafayette, USA
orangzeb@purdue.edu

Abstract. Approximating functions in applications that can tolerate
some inaccuracy in their results can deliver substantial performance
gains. This paper makes a case for harnessing available parallelism in
multicore systems to improve performance as well as the quality of func-
tion approximation. To that end, we discuss a number of tasks that the
function approximation schemes can offload to available parallel cores.
We also discuss how leveraging parallelism can help provide guaran-
tees about results and dynamically improve approximations. Finally, we
present experimental results of a function approximation scheme.

1 Introduction

Many applications from different domains such as audio, video, machine learn-
ing, computer vision, gaming, data analytics, and simulations can tolerate a
certain degree of inaccuracy in their results. Approximate computing aims to
increase performance of these applications and/or reduce their power require-
ment in exchange for some tolerable loss in accuracy. Applications amenable to
approximation can be concerned with performance, power, or both. In this paper,
our focus is on performance only. The literature mentions a number of software,
hardware, and hybrid techniques that work at different granularities. Applica-
tion functions/procedures that have pure function behavior (i.e. they consis-
tently produce the same output for a given input and have no side effects) lend
themselves to approximation. Software function approximation schemes have
been shown to offer significant performance benefits and we focus on black-box
techniques [1,3].

Software black-box function approximation schemes are oblivious to the inter-
nals of the original function and seek to approximate a candidate function
based on its input-output behavior. This behavior is captured during training,
which is a process of obtaining outputs from the original function. The schemes
typically store the training inputs and corresponding outputs in some data-
structure as training history. The schemes draw inferences from the raw history
and prepare approximations by further processing the history and performing
scheme-specific tasks. During production, the schemes choose and execute the
approximations. Some schemes also have the capability to monitor the quality
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 88–92, 2017.
DOI: 10.1007/978-3-319-52709-3 7

Harnessing Parallelism in Multicore Systems to Expedite 89

Fig. 1. (a) Tasks that black-box function approximation schemes perform. (b) Sequen-
tial execution of the application - all tasks assigned to one core. (c) Most of these tasks
can be executed in parallel on multiple cores, as outlined in the subsequent sections.

of approximation results at runtime. If needed, they can update the history and
modify approximations dynamically. Figure 1(a) depicts these tasks. Section 2
describes how the schemes can harness available parallel cores in multicore sys-
tems by offloading some of these tasks to improve their performance and quality
of results. By exploiting parallelism, they can also provide better monitoring
of results and be equipped with the capability of dynamically improving the
quality of results. Section 3 describes our experiments with a black-box func-
tion approximation scheme, called history-based piecewise approximation [1]. It
divides the input range of a function into uniform and non-uniform regions and
applies low-order polynomial approximation in each region.

2 Function Approximation and Available Parallelism

This section describes the tasks that software black-box function approximation
schemes can offload to available parallel cores. In case of sequential applications,
the schemes can freely use the parallel cores, whereas for parallel applications
the cores are employed when idle, using low priority threads. Figure 1(b) and (c)
compare a scheme that does not exploit parallelism to one that does.

2.1 Building History

Function input-output history provides the basis for approximation to black-
box function approximation schemes. Building a relevant history is important
for accuracy of the approximation. Some schemes build the history offline. Where
inputs during production may be significantly different than those seen during
offline training, online training can improve the results. However, there may be
overheads in such schemes, as the expensive original functions need to be called.
Online training schemes can benefit from available parallel cores to build the
history. In the simplest case, for every seen input, the scheme can invoke the
original function in one of the available parallel cores and insert the results into
the history. One drawback is that “cold start” may result in poor approxima-
tion until the history is rich enough. To overcome this problem, the schemes

90 Aurangzeb and R. Eigenmann

can speculatively build history. Below we describe some ways a scheme can do
speculative training to build history online, harnessing available parallelism.

Around Most Recent Input: For speculative training, a scheme can use arbitrary
inputs that are around the most recent actual input.

In Most Frequent Region: A scheme can divide the seen inputs in different regions
and use arbitrary inputs in the most frequent region for speculative training.

In Most Frequent Region of Higher Output Variation: In addition to forming
regions of seen inputs, a scheme can also track the output variation in those
regions and can use arbitrary inputs in the most frequent region of the highest
output variation.

2.2 Preparing Approximations

The schemes process the raw history, draw inferences, and perform scheme-
specific tasks to prepare approximations for execution during production. For
instance, the history-based piecewise approximation scheme [1] creates regions
of input and computes polynomials for each region. It also considers the output
variation in the regions and decides to use constants for some regions. During
production, the scheme finds the region of the input and evaluates the corre-
sponding polynomial. Offloading the inference and approximation preparation
tasks to idle cores can improve the performance of a scheme.

2.3 Monitoring Quality

Monitoring the quality of approximation requires invoking the original function
during production and comparing the exact result with the output obtained from
executing approximation. Since it is an expensive process, a scheme can only
monitor the output occasionally, which makes it difficult to provide guarantees
for the quality of results. However, offloading the monitoring to available parallel
cores can enable a scheme to potentially monitor the results of every input. It can
also enable a scheme to provide guarantees for the approximations. For instance,
a scheme may guarantee that a certain percentage of function invocation will
result in an output that is within the specified tolerable error. At runtime, for
each input, the scheme will decide whether to invoke the original function or the
approximation, based on the monitoring information. Similarly, a scheme may
offer statistical guarantees within a confidence interval.

2.4 Improving Approximations

The accuracy of approximation depends on many factors, including, the qual-
ity and quantity of training data, ability of drawing inferences, and sophisti-
cation of the approximation scheme. Harnessing idle cores can allow a scheme
to dynamically improve its capabilities during runtime. It can help a scheme

Harnessing Parallelism in Multicore Systems to Expedite 91

update its history by doing dynamic online training, draw new inferences, and
improve its approximation strategies, without having any adverse effects on the
performance. For example, it can allow the history-based piecewise scheme [1]
to update history dynamically, adjust regions, compute new polynomials, and
change approximation strategies for regions.

3 Experimental Results

This section describes results of our experiments with the history-based piecewise
approximation scheme [1]. Currently, this scheme does not monitor results, offer
guarantees, or dynamically improve results. However, it can be extended to reap
the benefits of harnessing parallelism described in this paper. As for building his-
tory, it performs online training. We present results of testing three variants of
the history-based non-uniform piecewise scheme on top++ application [2]. These
variants are: BSA (binary search over sorted array), BST (binary search tree)
and RBT (red-black tree). We chose the top++ application because the candi-
date function for approximation in this application is quite compute-intensive,
which leads to higher overheads. The overheads of building history and preparing
approximations by the variants of the non-uniform scheme for a training length
of 125 are 60%, 54%, and 54%, respectively. We have extended the scheme to
harness parallelism and used the Around Most Recent Input (AMRI) speculation
described in Sect. 2.1. For each input, we use six speculative training inputs that
are ±0.04 apart. Table 1 compares the application speedup and percentage error
in results by the current versions of all variants of the non-uniform scheme that
uses single core with ones by the new versions of the extended scheme that uses
available parallel cores, for top++ application. The results show that employ-
ing three idle cores reduces the overhead of the scheme on a 4-core machine,
substantially improving the average application speedup from 1.5x to 2.2x.

Table 1. Effect of harnessing parallelism for building history using AMRI speculation
on application speedup and percentage error of non-uniform piecewise schemes.

BSA BST RBT

Speedup %Error Speedup %Error Speedup %Error

Current version 1.62x 0.09% 1.52x 0.012% 1.5x 0.012%

AMRI speculation 2.3x 0.06% 2.14x 0.006% 2.08x 0.006%

4 Conclusion

Software black-box function approximation schemes that aim to increase perfor-
mance of applications amenable to approximation can harness available parallel
cores in multicore systems to improve and expedite function approximation.
They can leverage the idle cores in building history, preparing and improving
approximations, and monitoring quality and offering result guarantees.

92 Aurangzeb and R. Eigenmann

References

1. Aurangzeb, Eigenmann, R.: History-based piecewise approximation scheme for pro-
cedures. In: 2nd Workshop on Approximate Computing (WAPCO), January 2016

2. Czakon, M., Mitov, A.: Top++. http://www.alexandermitov.com/software/115-
top-versions-and-downloads

3. Samadi, M., Jamshidi, D.A., Lee, J., Mahlke, S.: Paraprox: pattern-based approxi-
mation for data parallel applications. ACM SIGARCH Comput. Archit. News 42,
35–50 (2014)

http://www.alexandermitov.com/software/115-top-versions-and-downloads
http://www.alexandermitov.com/software/115-top-versions-and-downloads

Adaptive Software Caching for Efficient
NVRAM Data Persistence

Pengcheng Li1(B) and Dhruva R. Chakrabarti2

1 University of Rochester & Hewlett Packard Labs, Rochester, USA
pli@cs.rochester.edu

2 Hewlett Packard Labs, Palo Alto, USA
dhruvac@gmail.com

Abstract. Persistent memory is getting increasingly popular. However,
the existence of transient CPU caches brings a serious performance issue
for utilization of persistence. In particular, cache lines have to be flushed
frequently to guarantee consistent, persistent program states. In this
paper, we optimize data persistence by proposing a software cache. The
software cache first buffers lines that need to be flushed, and then flushes
them out at an appropriate later time. The software cache supports adap-
tive selection of the best cache size at run-time.

1 Introduction

Persistent memory or non-volatile memory (NVRAM) technologies, such as
memristors and phase change memory (PCM), are increasingly popular. Per-
sistent memory is byte-addressable and directly accessible (i.e., without DRAM
buffers) with CPU loads and stores. Data in NVRAM will not be erased if the
creator process does not clean it. It enables data reuse across system restarts and
of course process restarts. This in-memory durability model can greatly change
the programming paradigm for many applications [1].

A problem of NVRAM data persistence is the transient memories in current
computer architectures, such as CPU caches. At any point of program execu-
tion, some of the updates to persistent memory may only reside in CPU caches
and have not yet propagated to NVRAM. If there is a failure at this point of
execution, the program state in NVRAM may not be consistent thus preventing
full recovery.

Consistent persistent states are guaranteed by forcing all data out of caches to
persistent memory in the event of any tolerated failure. In Atlas [1] programming
model, a failure-atomic section (FASE) foresees a failure. A FASE is a code
segment that changes program invariants. Either all or none of the updates in
a FASE are visible in NVRAM. Therefore, persistent data is guaranteed to be
consistent at the end of a FASE.

In this paper, we propose a software cache to reduce the number of cache
line flushes. Its purpose is to cache the data writes and combine multiple writes
into a single cache flush at the time of eviction. We flush all cache lines in the
software cache at the end of a FASE. In addition, we develop a reuse-based
locality theory that allows us to optimize it by choosing the best cache size.
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 93–97, 2017.
DOI: 10.1007/978-3-319-52709-3 8

94 P. Li and D.R. Chakrabarti

For the purpose of disambiguity, if without explicit clarification of hardware
cache, “cache” in this paper refers to the software cache.

2 Software Cache

CPU

write(0x600)

0x800

0x200
0x400thread 1

DRAM

durable
data

NVRAM
HARDWARE CACHE

1

2insert 0x600

3 evict 0x400

4
flush 0x400

s.w. cache

s.w. cache

thread 2
0x400
0x600
0x800

Fig. 1. Illustration of the software cache. The software cache has two cache lines and is
full. Thread 1 writes a new cache line 0x600. 0x400 is evicted from the software cache
and flushed out of the hardware cache.

The software cache is a per-thread in-memory local store. It is in control of
determining when to flush a cache line to persistent memory. Figure 1 shows
its basic execution model. When writing a value to persistent memory, CPU,
instead of immediately flushing the corresponding cache line, forwards the cache
line address to the software cache to buffer the write. In a parallel program, per-
thread caching provides isolation and good scalability. The isolation is important.
Each thread independently manipulates its own cache, without interference from
others. Scalability is good because the implementation does not require locking.

Each thread combines cache line flushes if the coming cache line is already in
its local store. Otherwise, it would replace a stale entry, when its local store is
full, with the new cache line. A thread issues a command to the hardware cache
to force data of the stale cache line out to NVRAM. Figure 1 shows that the local
store of thread 1 is full, and after inserting the new cache line 0x600, thread 1
instructs the hardware cache to force 0x400 out to the NVRAM storage.

The software cache is placed in the faster DRAM, rather than NVRAM.
We use Least-Recently-Used (LRU) replacement policy. Traditionally, hardware
cache has been optimized for fast reads. For persistent memory, the software
cache only stores modified data.

3 Adaptive Write Caching

It would be beneficial if cache capacity is workload-aware. Overly large cache
size incurs a long CPU stall at the end of a FASE, when CPU resources are
wasted. Too small cache size would cause too many cache line flushes.

We use the miss ratio curve (MRC). MRC shows cache miss ratios over
different cache sizes. We choose the size online adaptively, which has relatively

Adaptive Software Caching for Efficient NVRAM Data Persistence 95

small cache miss ratio based on MRC and is not very large to stall CPU too
long, as the software cache size. The number of misses is the number of cache
line flushes in the software cache.

In this section, we present a reuse-based locality theory to derive MRC. We
consider an execution as a sequence of data accesses (writes). A logical time is
assigned to each data access. A time window is designated by two data accesses
and includes all intervening accesses. The length of a window is the number of
accesses it contains.

The reuse locality is measured by the number of data reuses in a time window.
Counting the number of intra-window reuses is the same as counting number of
reuse intervals that fall within the window. We define the following:

Definition 1 Reuse interval and Intra-window reuse. The time interval
between a data access and its next access to the same datum is defined as a reuse
interval. If a reuse interval is enclosed within a window, we say that the window
has an intra-window reuse.

Different windows may contain different numbers of reuses. We define the
timescale reuse reuse(k) as the average number of intra-window reuses of all
windows of length k. We call the length k the timescale parameter. Given any
trace, reuse(k) is uniquely defined.

From Reuse to Cache Hit Ratio. At any moment t in fully associative LRU
cache, the content consists of data referenced by previous k accesses for some
k. reuse(k) is the average number of reuses in each k consecutive data accesses.
It follows that on average, there are k-reuse(k) distinct data in these accesses.
The next access is a hit if it is a reuse; otherwise, it is a miss. The difference,
reuse ′(k) = reuse(k+ 1) – reuse(k), shows the average portion of times that the
next access is a reuse. Hence, the hit ratio of cache of size (k – reuse(k)) is the
derivative of reuse(k) at k, as shown in Eq. 1.

hr(c) = reuse′(k) = reuse(k+1)− reuse(k) (1)

where c = k− reuse(k). To illustrate, consider an example pattern “abab...” that
is infinitely repeating. The following table shows discrete values of reuse(k) and
hit ratio, where c denotes cache size, i.e., k-reuse(k).

k reuse(k) c hr

1 0 1 0

2 0 2 1

3 1 2 1

4 2 2 1

96 P. Li and D.R. Chakrabarti

Reuse vs. Footprint Locality. Footprint fp(k) is the average number of distinct
data accesses in all windows of length k [4]. Hence, it is obvious that fp(k)
plus reuse(k) is k. Xiang et al. showed that the miss ratio is the derivative of
footprint [4]. Inspired by their work, we can prove that the derivative of reuse is
the hit ratio theoretically. The result is mathematically derivable from footprint,
so it is not new. However, the formulation is new and has not been considered
in past work. The new derivation gives a new linear-time algorithm to calculate
cache performance, which we refer to [3]. In addition, it is the first mathematical
connection between the theory of locality [4] (data caching) and the theory of
liveness [2,3] (memory allocation).

4 Preliminary Results

We implemented the software cache in Atlas [1], and used an emulator to use
DRAM to simulate NVRAM. The emulator system is a machine shipped with
60 Intel Xeon E7-4890 cores at 2.8GHz, running Linux kernel 3.10. We tested
SPLASH2 benchmark suite for single-threaded runs. We chose the best cache
size online once we have MRC. We compared our approach, SC, with three
alternatives:

– AT: the table approach used in the state-of-the-art Atlas [1].
– ER: the eager approach, which flushes cache lines instantly every time a per-

sistent store happens.
– LA: the lazy approach, which flushes all cache lines at the end of a FASE.

Table 1. The data flush ratios of different techniques.

Benchmarks ER LA AT SC AT/SC SC/LA

barnes 1.00000 0.00295 0.08206 0.00391 20.987× 1.325×
fmm 1.00000 0.00246 0.01683 0.00328 5.131× 1.333×
ocean 1.00000 0.09203 0.40290 0.16467 2.447× 1.789×
raytrace 1.00000 0.07140 0.13952 0.07918 1.762× 1.108×
volrend 1.00000 0.00219 0.03189 0.00219 14.561× 1×
water-nsquared 1.00000 0.00107 0.05334 0.00411 12.978× 3.748×
water-spatial 1.00000 0.00103 0.07122 0.00157 45.363× 1.524×
average 1.00000 0.02473 0.11396 0.03698 14.747× 1.893×

Table 1 shows the write-back ratios of the four techniques. SC outperforms
AT by 15× significantly, as a result of selection of the best cache size. As profiled,
these sizes are all different and hence workload-aware. Moreover, SC achieves the
best for volrend. We also measured performance in execution time for ER, AT,
and SC. Over ER, the speedup of SC ranges from 1.4× to 34.2×, with an average

Adaptive Software Caching for Efficient NVRAM Data Persistence 97

of 9.6×. The average speedup over AT is 2.1×. As tested, the online overhead
of MRC computation is negligible. LA reaches the lowest possible, 16%, since
it maximally combines data flushes. However, since all cache lines are written
back at the end of a FASE, CPU resources are wasted and hence performance
is extremely bad. For example, for volrend, LA is slower than AT by 17.8× in
running time.

References

1. Chakrabarti, D.R., Boehm, H.-J., Bhandari, K.: Atlas: leveraging locks for non-
volatile memory consistency. In: Proceedings of OOPSLA (2014)

2. Li, P., Ding, C., Luo, H.: Modeling heap data growth using average liveness. In:
Proceedings of ISMM (2014)

3. Li, P., Luo, H., Ding, C.: Rethinking a heap hierarchy as a cache hierarchy: a higher-
order theory of memory demand (HOTM). In Proceedings of ISMM (2016)

4. Xiang, X., Ding, C., Luo, H., Bao, B.: HOTL: a higher order theory of locality. In:
Proceedings of ASPLOS (2013)

Compiler Analysis and Optimization

Polyhedral Compiler Technology
in Collaboration with Autotuning Important
to Domain-Specific Frameworks for HPC

Mary Hall1,2 and Protonu Basu1,2(B)

1 School of Computing, University of Utah, Salt Lake City, UT 84103, USA
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94721, USA

pbasu@lbl.gov

Abstract. Domain-specific frameworks – including embedded domain-
specific languages and libraries – increase programmer productivity by
encapsulating proven manual optimization strategies into software mod-
ules or (semi-)automated tools. In such frameworks, optimizations and
optimization strategies capitalize on knowledge of the requirements of
a particular application domain to achieve high performance and archi-
tecture portability. While many strategies have been used to develop
domain-specific frameworks, this position paper argues the importance
of polyhedral compiler technology and autotuning for important classes
of high-performance computing domains. Such an approach has the fol-
lowing advantages over other strategies: (1) composability; (2) software
reuse; and, (3) facilitates performance portability.

Keywords: Domain-specific frameworks · Autotuning · Polyhedral
compiler technology

1 Introduction

The President’s National Strategic Computing Initiative of July 2015 established
as its first objective to accelerate the “. . . delivery of a capable exascale comput-
ing system that integrates hardware and software capability. . . ” If we look at
the architectural diversity among current supercomputers and also look forward
a few years, it is clear that a variety of specialized processor architectures (e.g.,
Nvidia Pascal GPUs vs. Intel Knights Landing many-cores) and memory sys-
tems (e.g., NVRAM and Near-Data Processing) will be developed, and different
vendors will provide dramatically different hardware solutions. Consequently,
attaining high performance of applications across different exascale platforms
may require fundamentally different implementations of software: different algo-
rithms, strategies for parallelization, loop order, data layout and mapping, and
exploiting SIMD/SIMT. This need for different implementations is at odds with
the goal of performance portability, whereby the same application performs well
across platforms without significant rewriting. A key concern of the organizations
targeting future exascale platforms is the high cost of developing and maintaining
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 101–105, 2017.
DOI: 10.1007/978-3-319-52709-3 9

102 M. Hall and P. Basu

performance-portable applications for diverse exascale architectures, including
many-core CPUs and GPUs. Thus, by achieving performance portability, we
will also dramatically increase programmer productivity.

Over the last several years, many researchers have addressed performance
portability using two key approaches. First, domain-specific frameworks – includ-
ing embedded domain-specific languages and libraries – encapsulate proven man-
ual optimization strategies into software modules and (semi-)automated tools
that can produce a collection of architecture-specific implementations. Such
frameworks achieve high performance because the optimizations employed and
the optimization strategy are specialized to the application domain. Second,
autotuning involves empirically exploring a search space of possible implemen-
tations to identify the best implementation for a particular execution context
(e.g., architecture and input data set). By automating the process of evaluating
alternatives, autotuning mitigates the need for extensive manual tuning.

While both concepts are well established in the research community, they are
nevertheless not widely deployed in the development of HPC applications. As
the HPC community prepares for exascale, we must begin now to develop and
harden the underlying software capability to provide performance portability
and increase programmer productivity; this technology must be ready in a few
years to be deployed in exascale applications.

In this position paper, we propose an approach that combines both concepts
and, like several research compilers for HPC, relies on polyhedral transforma-
tion and code generation, which represents loop nest computations mathemati-
cally as integer sets, composes sequences of transformations, and generates code
using polyhedra scanning. Polyhedral compiler technology and autotuning are
well suited to work in collaboration with each other. The mathematical rep-
resentation of polyhedral frameworks allows the compiler to try a variety of
optimization strategies and adjust optimization parameters and still count on
being able to generate correct code. Conversely, autotuning frees the compiler
developer from having to encode the optimization decisions using a one-size-fits-
all algorithm buried inside the compiler implementation. Instead, a variety of
optimization strategies can be explored, permitting more aggressive exploration
of which transformations to apply.

Our approach separates a high-level C/C++/FORTRAN implementation
from architecture-specific implementation (OpenMP, CUDA, etc.), optimization,
and tuning. Such an approach would enable exascale application developers to
express and maintain a single, portable implementation of their computation,
legal code that can be compiled and run using standard tools. An autotun-
ing compiler and search framework, in conjunction with expert programmers
and other tools, transforms the baseline code into a collection or search space
of highly-optimized implementations. Then autotuning is used to explore this
search space and derive final implementations that are best-suited for a specific
execution context. We believe such an approach is reaching a level of maturity
that it could realistically be deployed in the early 2020s timeframe for exascale,
but it will require institutional support and organization of the parallelizing com-
piler community to achieve this goal.

Autotuning Polyhedral Compiler Technology in HPC 103

The remainder of this position paper illustrates this approach to productivity
and performance portability and its advantages over other approaches to domain-
specific frameworks. It concludes by describing the challenges in deploying such
an approach in HPC exascale applications.

2 Overview of Approach

Although most of the domain-specific framework literature is not examining HPC
applications, the use of domain-specific frameworks in HPC dates back multiple
decades, including the Tensor Contraction Engine (a domain-specific compiler),
Chombo (a domain-specific C++ library), and high-performance libraries for
dense linear algebra (BLAS) and sparse solvers (PETSc).

Recent years have seen polyhedral compiler technology maturing and being
applied to code beyond kernels, and deployment in widely-used open source com-
pilers such as LLVM and gcc. Nevertheless, it is broadly considered by poten-
tial HPC users to be a technology that is too limited in applicability and too
hard to understand. Thus, other “simpler” approaches have gained traction in
the HPC application community: (1) specialized manually-written libraries; (2)
automatically-generated libraries like ATLAS, SPIRAL and FFTW; (3) special-
ization through C++ template expansion; (4) single-purpose custom DSLs; and,
(5) eDSL frameworks that rely on rewriting rules. While all of these approaches
have proven useful, they lack the composability and ability to optimize within
context that is afforded from polyhedral frameworks. Therefore, we argue that
polyhedral frameworks (in conjunction with autotuning) should be a building
block for constructing domain-specific optimization frameworks for HPC.

We draw from our experience in working with application developers and
applying the CHiLL autotuning compiler framework to HPC applications across
a variety of application domains over the last several years. When used for HPC
application code, we argue that the following features are valuable.

– Composable transformation and code generation: The importance of having a
general and robust transformation framework, where different collections of
transformations can be optionally used, is that the same tool can be applied
to multiple different application domains. For example, in the last three years,
CHiLL has targeted stencils and geometric multigrid, tensor contraction, spec-
tral element methods and sparse linear algebra.

– Extensible to new domain-specific transformations: New optimizations that
can be represented as transformations on loop nest iteration spaces can be
added to such a framework and composed with existing transformations. For
example, domain-specific transformations for geometric multigrid including
expanding ghost zones and partial sums for higher-order stencils have been
composed with existing communication-avoiding optimizations such as fusion
and parallel wavefront. For sparse matrices, inspector/executor code genera-
tion and support for non-affine transformations are composed with existing

104 M. Hall and P. Basu

tiling, skew, permute, shift and alignment operations. The tensor contraction
support does not require new transformations, but only a new tensor-specific
decision algorithm.

– Optimization strategies and parameters exposed to autotuning: Another
requirement is the ability to generate a variety of optimized code that can
be explored for different execution contexts. By exposing high-level expres-
sion of the autotuning search space as transformation recipes, the compiler
writer, an expert programmer or embedded DSL designer can directly express
how to compose transformations that lead to different implementations.

– Search space navigation: The compiler framework described above provides a
way of expressing a search space of different implementations of a computation
to target different execution contexts, including architectures, input data sets
and phases of a computation. Typically, this search space is prohibitively large
to explore in a brute force manner. Thus, autotuning incorporates sophisti-
cated external search space navigation tools that use heuristics and machine
learning to accelerate search space exploration and make it feasible. Examples
of search space navigation tools used in the HPC community include Orio,
Active Harmony and OpenTuner.

3 Deployment Challenges and Research Opportunities

There is a long history of parallelizing compiler technology in the HPC commu-
nity, and many promising ideas that never made it into practice. Yet combining
polyhedral frameworks and autotuning technology is well suited for code gener-
ation and optimization required for exascale. There are challenges to make this
vision of practical use to HPC application developers; first consider polyhedral
frameworks:

– The technology must be robust, widely available and with a long-term mainte-
nance plan. Thus, incorporation into open source compilers with large devel-
opment teams is needed. There must be a migration path for research advances
to move into practice.

– To extend existing open source polyhedral frameworks to support domain-
specific systems and autotuning, optimization strategies need to be exposed
to the expert programmer and/or domain-specific tool developer.

– The technology must be more broadly applicable. Restricting to loop nest com-
putations is appropriate for HPC, but we must go beyond affine array-based
codes; e.g., indirection used in sparse, adaptive and unstructured algorithms,
C++ iterators, parallel constructs must be supported.

For autotuning, a number of practical barriers remain:

– Search space navigation must be practical, which becomes more complex as
autotuning goals expand.

Autotuning Polyhedral Compiler Technology in HPC 105

– Autotuning needs to be part of an application’s build process to truly offer
performance portability and a path forward. By integrating into Makefiles,
autotuning can be repeated after changes to the code or retargeting the appli-
cation to new platforms or input data sets.

– Co-tuning of multiple related computations is needed to evaluate global opti-
mizations such as data layout.

Acknowledgments. This work has been supported in part by DOE award DE-
SC0008682 and NSF award CCF-1564074.

An Extended Polyhedral Model for SPMD
Programs and Its Use in Static Data Race

Detection

Prasanth Chatarasi(B), Jun Shirako, Martin Kong, and Vivek Sarkar

Rice University, Houston, TX 77005, USA
{prasanth,shirako,mkong,vsarkar}@rice.edu

Abstract. Despite its age, SPMD (Single Program Multiple Data) par-
allelism continues to be one of the most popular parallel execution mod-
els in use today, as exemplified by OpenMP for multicore systems and
CUDA and OpenCL for accelerator systems. The basic idea behind the
SPMD model, which makes it different from task-parallel models, is that
all logical processors (worker threads) execute the same program with
sequential code executed redundantly and parallel code executed coop-
eratively. In this paper, we extend the polyhedral model to enable analy-
sis of explicitly parallel SPMD programs and provide a new approach
for static detection of data races in SPMD programs using the extended
polyhedral model. We evaluate our approach using 34 OpenMP programs
from the OmpSCR and PolyBench-ACC (PolyBench-ACC derives from the
PolyBench benchmark suite and provides OpenMP, OpenACC, CUDA,
OpenCL and HMPP implementations.) benchmark suites.

Keywords: SPMD parallelism · Data race detection · Polyhedral
model · Phase mapping · Space mapping · May happen in parallel
relations

1 Introduction

It is widely recognized that computer systems anticipated in the 2020 time
frame will be qualitatively different from current and past computer systems.
Specifically, they will be built using homogeneous and heterogeneous many-core
processors with 100’s of cores per chip, and their performance will be driven
by parallelism, and constrained by energy and data movement [21]. This trend
towards ubiquitous parallelism has forced the need for improved productivity and
scalability in parallel programming models. Historically, the most successful run-
times for shared memory multiprocessors have been based on bulk-synchronous
Single Program Multiple Data (SPMD) execution models [10]. OpenMP [18]
represents one such embodiment in which the programmer’s view of the runtime
is that of a fixed number of threads executing computations in “redundant” or
“work-sharing” parallel modes.

As with other imperative parallel programming models, data races are a
pernicious source of bugs in the SPMD model. Recent efforts on static data
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 106–120, 2017.
DOI: 10.1007/978-3-319-52709-3 10

An Extended Polyhedral Model for SPMD Programs and Its Use 107

race detection include approaches based on symbolic execution [15,23], and
on polyhedral analysis [3,24]. Past work on data race detection using poly-
hedral approaches have either focused on loop level parallelism, as exemplified
by OpenMP’s parallel for construct, or on task parallelism, as exemplified by
X10’s async and finish constructs, but not on general SPMD parallelism.

In this paper, we introduce a new approach for static detection of data races
by extending the polyhedral model to enable analysis of explicitly parallel SPMD
programs.1 The key contributions of the paper are as follows:

1. An extension of the polyhedral model to represent SPMD programs.
2. Formalization of the May Happen in Parallel (MHP) relation in the extended

polyhedral model.
3. An approach for static detection of data races in SPMD programs.
4. Demonstration of our approach on 34 OpenMP programs from the OmpSCR

and the PolyBench-ACC OpenMP benchmark suites.

The rest of the paper is organized as follows. Section 2 summarizes the back-
ground for this work. Section 3 motivates the proposed approach for race detec-
tion. Section 4 includes limitations of the existing polyhedral model, and the
details of our extensions to the polyhedral model to represent SPMD programs.
Section 5 shows how the MHP relation can be formalized in the extended model
and describes our approach to compile-time data race detection. Section 6 con-
tains our experimental results for data race detection. Finally, Sect. 7 summarizes
related work, and Sect. 8 contains our conclusions and future work.

2 Background

This section briefly summarizes the SPMD execution model using OpenMP
APIs, as well as an introduction to data race detection, which provides the moti-
vation for our work. Then, we briefly summarize the polyhedral model since it
provides the foundation for our proposed approach to static data race detection.

2.1 SPMD Parallelism Using OpenMP

SPMD (Single Program Multiple Data) parallelism [9,10] continues to be one
of the most popular parallel execution models in use today, as exemplified by
OpenMP for multicore systems and CUDA, OpenCL for accelerator systems.
The basic idea behind the SPMD model is that all logical processors (worker
threads) execute the same program, with sequential code executed redundantly
and parallel code (worksharing, barrier constructs, etc.) executed cooperatively.

In this paper, we focus on OpenMP [18] as an exemplar of SPMD parallelism.
The OpenMP parallel construct indicates the creation of a fixed number of par-
allel worker threads to execute an SPMD parallel region. The OpenMP barrier

1 An earlier version of this paper was presented at the IMPACT’16 workshop [6], a
forum that does not include formal proceedings.

108 P. Chatarasi et al.

construct specifies a barrier operation among all threads in the current parallel
region. In this paper, we restrict our attention to textually aligned barriers, in
which all threads encounter the same textual sequence of barriers. Each dynamic
instance of the same barrier operation must be encountered by all threads, e.g.,
it is not permisible for a barrier in a then-clause of an if statement executed by
(say) thread 0 to be matched with a barrier in an else-clause of the same if
statement executed by thread 1. We plan to address textually unaligned barri-
ers as part of the future work. However, many software developers believe that
textually aligned barriers are better from a software engineering perspective.

The OpenMP for construct indicates that the immediately following loop
can be parallelized and executed in a work-sharing mode by all the threads in
the parallel SPMD region. An implicit barrier is performed immediately after
a for loop, while the nowait clause disables this implicit barrier. Further, a
barrier is not allowed to be used inside a for loop. When the schedule(kind ,
chunk size) clause is attached to a for construct, its parallel iterations are
grouped into batches of chunk size iterations, which are then scheduled on the
worker threads according to the policy specified by kind.

The OpenMP master construct indicates that the immediately following
region of code is to be executed only by the master thread of the parallel SPMD
region. Note that, there is no implied barrier associated with this construct.

2.2 Data Race Detection

Data races are a major source of semantic errors in shared memory parallel
programs. In general, a data race occurs when two or more threads perform
conflicting accesses (such that at least one access is a write) to a shared loca-
tion without any synchronization among threads. Complicating matters, data
races may occur only in some of the possible schedules of a parallel program,
thereby making them notoriously hard to detect and reproduce. A large vari-
ety of static and dynamic data race detection techniques have been developed
over the years with a wide range of guarantees with respect to the scope of the
checking (schedule-specific, input-specific, or general) and precision (acceptable
levels of false negatives and false positives) supported. Among these, the holy
grail is static checking of parallel programs with no false negatives and minimal
false positives. This level of static data race detection has remained an open
problem for SPMD programs, even though there has been significant progress
in recent years on race detection for restricted subsets of fork-join and OpenMP
programs [15,16,23], as well as for higher-level programming models [2–4,24].

2.3 Polyhedral Model

The polyhedral model is a flexible representation for arbitrarily nested loops [12].
Loop nests amenable to this algebraic representation are called Static Control
Parts (SCoP’s) and represented in the SCoP format, which includes four ele-
ments for each statement, namely, iteration domains, access relations, the pro-
gram schedule and dependence polyhedra/relations. In the original formulation

An Extended Polyhedral Model for SPMD Programs and Its Use 109

of polyhedral frameworks, all array subscripts, loop bounds, and branch condi-
tions in analyzable programs were required to be affine functions of loop index
variables and global parameters. However, decades of research since then have
led to a significant expansion of programs that can be considered analyzable by
polyhedral frameworks [8].

Iteration Domain, DS: A statement S enclosed by m loops is represented by
an m-dimensional polytope, referred to as the iteration domain of the statement.
Each point in the iteration domain is an execution instance i ∈ DS of the
statement.

Access Relation, AS(i): Each array reference in a statement is expressed
through an access relation, which maps a statement instance i to one or more
array elements to be read/written. This mapping is expressed in the affine form
of loop iterators and global parameters; a scalar variable is considered to be a
degenerate (zero-dimensional) array.

Schedule, ΘS(i): The execution order of a program is captured by the schedule,
which maps instance i to a logical time-stamp. In general, a schedule is expressed
as a multidimensional vector, and statement instances are executed according to
the increasing lexicographic order of their timestamps.

Dependence Relation, DS→T : Program dependences in polyhedral frame-
works are represented using dependence relations that map instances between
two statement iteration domains, i.e., i ∈ S to j ∈ T . These relations are then
leveraged to compute a new program schedule that respects the order of the
statement instances in the dependence.

3 Motivation

To motivate the proposed approach for static detection of data races, we discuss
an explicitly parallel SPMD kernel as an illustrative example.

Illustrative Example. The example shown in Figure 1) is a 2-dimensional Jacobi
computation from the OmpSCR benchmark suite [11]. The computation is paral-
lelized using the OpenMP parallel construct with worksharing directives (lines 5,
11) and synchronization directives (implicit barriers from lines 5, 11). The first
for-loop is parallelized (at line 5) to produce values of the array uold. Similarly,
the second for-loop is parallelized (at line 11) to consume values of the array
uold. The reduced error (from the reduction clause at line 11) is updated by
only the master thread in the region (lines 26–29). Finally, the entire compu-
tation in lines 5–29 is repeated until it reaches the maximum number of itera-
tions (or) the error is less than a threshold value. This pattern is very common
in many stencil programs, often with multidimensional loops and multidimen-
sional arrays. Although the worksharing parallel loops have implicit barriers, the
programmer who contributed this code to the OmpSCR suite likely overlooked the
fact that a master region does not include a barrier. As a result, data races are

110 P. Chatarasi et al.

1 #pragma omp parallel private (resid , i)//tid-thread id
2 {
3 while (k <= maxit && error > tol) { //S1
4 /* copy new solution into old */
5 #pragma omp for
6 for (j=0; j<m; j++)
7 for (i=0; i<n; i++)
8 uold[i + m*j] = u[i + m*j];

10 /* compute stencil , residual and update */
11 #pragma omp for reduction(+:error)
12 for (j=1; j<m-1; j++)
13 for (i=1; i<n-1; i++) {
14 resid =(ax*(uold[i-1+m*j] + uold[i+1+m*j]) + ay*(uold[i+m*(j-1)]
15 + uold[i+m*(j+1)]) + b*uold[i+m*j] - f[i+m*j]) / b;

17 /* update solution */
18 u[i + m*j] = uold[i + m*j] - omega * resid;

20 /* accumulate residual error */
21 error =error + resid*resid;
22 }

24 /* error check */
25 #pragma omp master
26 {
27 k++; //S2
28 error = sqrt(error) /(n*m); //S3
29 }
30 } /* while */
31 } /* end parallel */

Fig. 1. A data race between statements S1 (at line 3), S2 (line 27) on variable k and
another data race between statements S1 (at line 3), S3 (line 28) on variable error in
2-D Jacobi kernel from OmpSCR benchmark suite.

possible in this example since statement S1’s (at line 3) read access of variables
k, error by a non-master thread can execute in parallel with an update of the
same variables performed in statements S2 (at line 27) and S3 (at line 28) by the
master thread. These races can be fixed by inserting another barrier immediately
after the master region.

We observe that existing static race detection tools (e.g., [3,23]) are unable
to identify such races since they don’t model barriers inside of imperfectly nested
sequential loops in the SPMD regions. We also observe that existing dynamic
race detection tools such as Intel Inspector XE (2015 Update 1) in its default
mode miss this true race and hybrid race detection tools such as ARCHER [2]
incurred significant runtime overhead to detect this true race. In contrast, our
proposed approach using the extended polyhedral model can identify such races
at compile-time by effectively capturing execution phases from barrier direc-
tives via static analysis of SPMD regions.

4 Extended Polyhedral Model for SPMD Programs

In this section, we begin with discussing limitations of the polyhedral model for
analyzing SPMD programs. Then, we summarize our extensions to the polyhe-
dral model to support SPMD parallelism.

An Extended Polyhedral Model for SPMD Programs and Its Use 111

4.1 Limitations

The polyhedral model is an algebraic representation used in compiler techniques
for analysis and transformation of perfectly/imperfectly nested loops in sequen-
tial programs. Recent efforts [5] have extended polyhedral modeling techniques
to explicitly parallel programs, but assuming the “serial-elision” property i.e.,
the property that removal of all parallel constructs results in a sequential pro-
gram that is a valid (albeit inefficient) implementation of the parallel program
semantics. Note that SPMD programs don’t satisfy the “serial-elision” property
because (for example) removing a barrier from an SPMD region would alter the
semantics.

An interesting property of an explicitly parallel program is that it specifies
a partial execution order unlike a sequential program, which specifies a total
order. The schedule mapping (defined in Sect. 2.3) was originally introduced to
represent the total order present in a sequential program. However, it can also be
used to specify parallelism by assigning the same logical timestamp to multiple
statement instances, thereby indicating that they can be executed at the same
time. Still, this mapping is not always sufficient to capture the partial order in a
SPMD program. Hence, we extend the schedule mapping with space and phase
mappings (defined in the following sections) to explicitly capture the partial
order.

4.2 Space (Allocation) Mapping, ΘS
A

Space (Allocation) mapping assigns a processor stamp to a statement instance
‘S’ that indicates a logical processor id on which the instance has to be executed.
For the OpenMP program in Fig. 1, the space mappings for statements S1, S2,
and S3 are (tid), (0), and (0) respectively where tid is an iterator from the
logical parallel loop (line 1).

As a convenience for computing the space mappings, we (1) Replace the omp
parallel region header by a logical parallel loop that iterates over threads, (2)
Enclose the body of static scheduled worksharing loop in an if block with the
condition on the thread iterator to be a function of lower and upper bounds, the
loop chunk size and total number of threads participating in the worksharing
loop (the last two are treated as fixed but unknown program parameters), (3)
Insert an explicit barrier immediately after the worksharing loop (or) single
region if a nowait clause is not specified, (4) Enclose the body of master region
in an if block with the condition on the thread iterator to be zero. (Note that
these transformations are only performed for the purpose of program analysis,
and do not result in changes in the original program.)

Space mapping (physical thread distribution) of a statement instance may
contain non-affine and unknown functions when the statement instance is
enclosed in an OpenMP single construct or another OpenMP worksharing loop
with a static schedule, parametric chunk size and parametric number of threads.
However, we conservatively compare name and arguments of space mapping of
a thread with other threads to distinguish as two different threads.

112 P. Chatarasi et al.

4.3 Phase Mapping, ΘS
P

A key property of the SPMD programs is that their execution can be partitioned
into a sequence of phases separated by barriers. It has been observed in past work
that statements from different execution phases cannot execute concurrently [26].
Thus, only pairs of data accesses that execute within the same phase need to be
considered as potential candidates for data races. The phase mapping assigns a
logical identifier, which we refer to as a phase stamp, to each statement instance
‘S’. Thus, statement instances are executed according to increasing lexicographic
order of their phase-stamps.

Algorithm 1. Computation of phase mappings for statements in a SCoP
1 begin

/* Extract initial schedules (time stamps) */

2 θS := Statement schedules from SCoP

3 θB := Barrier schedules from SCoP

/* Compute a map from statements to barriers such that elements

of statements are lexicographically strictly smaller than

those of barriers */

4 δS→B := {x → y : θ(x) ≺ θ(y), x ∈ S, y ∈ B}
/* Build a map from time stamps of statements to time stamps of

barriers with lexicographically strictly smaller property */

5 δθ(S)→θ(B) := (θS)−1 ◦ δS→B ◦ θB

/* Extract a map from pairs of statement and barrier timestamps

to their time difference */

6 δ(S,B)→(θ(B)−θ(S)) := {(θ(x) → θ(y)) → (θ(y) − θ(x)) : x ∈ S, y ∈ B}
/* Compute a map from each statement time stamp to the time stamp

of the closest barrier instance for each lexical barrier */

7 β := dom(lexmin(δ(S,B)→(θ(B)−θ(S))))

/* Compute a map (reachable barriers) from each statement

instance to the closest barrier instance, among all lexical

barriers */

8 βS := lexmin(θS ◦ β) ◦ (θB)−1

/* Compute phase mappings by union of timestamp of the reachable

barrier instances to each statement instance */

9 Phase mappings, ΘS
P := βS ◦ θB

10 end

Algorithm 1 summarizes the overall approach to compute the phase map-
pings for statements in a given SCoP by taking regular statement and barriers
schedules as input (at lines 2–3 in Algorithm 1). In order to compute the phase
mappings, we define reachable barriers for a statement instance ‘S’ (at line 8

An Extended Polyhedral Model for SPMD Programs and Its Use 113

in Algorithm 1) as a set of barrier instances that can be executed after the
statement instance ‘S’ without an intervening barrier instance. For the OpenMP
program in Figure 1, reachable barriers for the statement S2 are the implicit
barrier instance (at line 9) in the next iteration of while loop and the implicit
barrier at the end of the parallel region (at line 31). The phase mapping for
a statement instance (at line 9 in Algorithm1) is computed as the union of the
schedule (timestamp) of all reachable barriers of the statement instance. There
exists only one such reachable barrier at run-time for a given dynamic state-
ment instance under the assumption of textually aligned barriers and it would
be one (based on the program parameters) from the statically determined set of
reachable barriers.

5 Static Data Race Detection

In this section, we begin with workflow of our tool(PolyOMP) for static data
race detection. Then, we explain the formalization of MHP relations using
the extended polyhedral model and describe our approach to static data race
detection.

5.1 PolyOMP Workflow

Fig. 2. Overview of PolyOMP

The overall workflow is summarized in
Fig. 2, which is implemented as an exten-
sion to the Polyhedral Extraction Tool
(PET) [22], and consists of the follow-
ing components: (1) Conversion from
input OpenMP-C program to Clang AST
with the help of Clang-omp (version:
3.5) [7] and LLVM (version: 3.5.svn),
(2) Conversion from Clang AST to PET
AST (defined in [22]) (with the sup-
port for omp parallel, for, parallel
for, barrier, single, master direc-
tives and nested parallel regions), (3)
Extract SCoP (refer to Sect. 2.3) from the PET AST, (4) Generate Extended
SCoP (SCoP with space and phase mappings) from the PET AST and the SCoP,
(5) Perform static race detection to detect races with the help of MHP relations.

5.2 Formalization of May Happen in Parallel (MHP) Relations

May Happen in Parallel (MHP) analysis determines if it is possible for execution
instances of two statement instances to execute in parallel [1]. In general, two
statement instances S and T can execute in parallel iff both of them are in the
same phase of computation (not ordered by synchronization, ΘA

P = ΘT
P) and are

executed by different threads (ΘS
A �= ΘT

A) in the region. Algorithm 2 summarizes
the overall steps to build the MHP relation on a given pair of statements S, T.

114 P. Chatarasi et al.

Algorithm 2. Building MHP relation between statement instances S, T
1 begin

/* Extract space and phase mappings of statements S and T */

2 ΘS
A, ΘT

A := Space mappings of S, T

3 ΘS
P , ΘT

P := Phase mappings of S, T

/* Compute a map from S to T such that they are in same phase */

4 δS→T
SamePhase := ΘS

P ◦ (ΘT
P)−1

/* Compute a map from S to T such that they are on same thread */

5 δS→T
SameThread := ΘS

A ◦ (ΘT
A)−1

/* Compute the cross product of S and T */

6 δS→T
CrossProduct := dom(ΘS

A) × dom(ΘT
A)

/* Compute a map from S to T such that they are run on different

threads */

7 δS→T
DiffThreads := δS→T

CrossProduct - δS→T
SameThreads

/* Build MHP relation by intersecting the same phase and

different thread maps of S and T */

8 δS→T
MHP := δS→T

DiffThreads ∩ δS→T
SamePhase

9 end

5.3 Race Detection

Detecting read-write and write-write data races becomes straightforward with
the availability of MHP relations. In general, there exists a race between state-
ments S and T on memory location ‘x’ iff MHP(S, T) is true, and access relations
of S and T intersect each other on memory location x and at-least one of them is
a write. Our approach considers all possible pairs of the statements in the SCoP
and builds race conditions as per the above criteria and solves for the existence
of solutions.

Our approach is guaranteed to be exact (with neither false positives nor
false negatives) if the input program satisfies all the standard preconditions of
the polyhedral model (without any non-affine constructs). Thanks to the PET
framework’s [22] ability to handle non-affine constructs (in both data subscripts
and control flow) elegantly in the form of may-write access relations, our app-
roach now incorporates may-write access relations while computing data races
and hence it may induce false positives (but not false negatives) for non-affine
programs.

Limitations. The current implementation supports OpenMP constructs such
as omp parallel for, parallel for, barrier, single, master directives
and nested parallel regions. Our tool currently does not perform any pointer
based analysis. However, previous works on pointer analysis can be added as a
pre-pass to our race detection stage to enhance the race detection. The support
for analyzing SPMD programs with lock-based synchronization and task-based
constructs are part of future work.

An Extended Polyhedral Model for SPMD Programs and Its Use 115

6 Experimental Evaluation

In this section, we present the evaluation of our approach for static race detection
using the extended polyhedral model. Tables 1 and 2 list the number of races
discovered by our PolyOMP tool in the OmpSCR and PolyBench-ACC suites, along
with the number of different OpenMP constructs in each benchmark. The exper-
iments have been performed on a quad core-i7 (2.2 GHz) machine with 16 GB
main memory.

6.1 OmpSCR Benchmarks Suite

OmpSCR, an OpenMP Source Code Repository [11], consists of OpenMP appli-
cations written in C, C++ and Fortran. There are 18 OpenMP-C benchmarks
in this repository, 6 of which use C structs and pointer arithmetic. Since we
defer support for C structs and pointer arithmetic in our current toolchain for
future work, our results focus on the remaining 12 OpenMP-C benchmarks in
OmpSCR, which are listed in Table 1.

Table 1. Race detection analysis over the subset of OmpSCR benchmark suite. #SPMD /
#WS / #Barriers : Number of SPMD regions, Number of worksharing directives in
a SPMD region, Number of barriers including implicit. PolyOMP - Detection time /
Reported / False +ves : Total time taken to detect races by PolyOMP, Number of
reported races, Number of false positives among reported. ARCHER / Intel Inspector
XE: Number of races reported.

Benchmark #SPMD #WS #Barriers PolyOMP ARCHER Intel Inspector

XE

Detection

time (s)

Reported False +

ves

Jacobi01 2 1 1 1.38 2 2 0 0

Jacobi02 1 2 2 3.91 2 2 0 0

Jacobi03 1 3 3 1.54 4 2 2 0

Lud 1 1 1 0.30 0 0 0 1

LoopA.bad 1 1 1 0.20 1 0 1 2

LoopA.sol1 2 1 2 0.44 0 0 0 2

LoopA.sol2 1 0 2 1.21 7 7 0 0

LoopA.sol3 1 0 2 1.19 7 7 0 0

LoopB.bad1 1 1 1 0.20 1 0 1 2

LoopB.bad2 1 1 1 0.21 1 0 1 2

LoopB.pipe 1 0 2 2.40 7 7 0 0

C pi 1 1 1 0.05 0 0 0 1

Total 14 12 19 13.03 32 27 5 10

This benchmark suite contains known races, as reported in prior work on
dynamic data race detection in the ARCHER tool [2]. Our evaluation shows that
PolyOMP is able to detect all of the documented races in the following applica-
tions using the static analysis algorithm in this paper: Jacobi03, LoopA.bad,

116 P. Chatarasi et al.

LoopB.bad1, LoopB.bad2. All reported races (column Reported) were manually
verified. (Note: each reported data race corresponds to a static pair of conflicting
accesses). The False +ves column shows the number of reported races that actu-
ally are false positives. In addition, we compared our reported races with those
reported by ARCHER2. Our tool computes races conservatively when unanalyz-
able control flow or data accesses are present and result in false positive races.
This is evident in benchmarks Jacobi01, Jacobi02, Jacobi03, LoopA.sol2,
LoopA.sol3 and LoopB.pipe since they contain linearized array subscripts,
thereby yielding 27 false positives. However, when the parallel region fully sat-
isfies all the assumptions of standard polyhedral frameworks (e.g., all array
accesses and branch conditions must be affine functions of the loop variables)
then all reported races are true races. Even though Intel Inspector XE (2015
update 1 with default mode) was able to identify the true races in LoopA.bad,
LoopB.bad1 and LoopB.bad2, it failed to detect the races in Jacobi03 (explained
in Sect. 3). Furthermore, it reported additional false races on the iterators
of parallel loops for benchmarks Lud, LoopA.bad, LoopA.sol1, LoopB.bad1,
LoopB.bad2 and C pi.

6.2 PolyBench-ACC Benchmark Suite

We also use PolyBench-ACC, another benchmark suite partially derived from the
standard PolyBench benchmark suite [13]. There are 32 OpenMP-C benchmarks
in this suite, for which we were unable to compile 10 benchmarks due to compile-
time errors arising from the usage of OpenMP directives in those codes. Thus, our
results focus on the remaining 22 OpenMP-C benchmarks in PolyBench-ACC.

All of the benchmarks in this suite have statically analyzable control flow,
affine subscripts and completely fit the assumptions of the polyhedral model.
found the races to be real. Moreover, our static analysis does not need to resort
to conservative estimations for these benchmarks, as they meet all the standard
affine requirements.

Currently, we are not aware of any prior work reporting data races in this
benchmark suite. Hence, we compared our reported races with those reported by
the Intel Inspector XE tool (2015 update 1 with default mode), which (unlike
ARCHER) is known to have false negatives even for a given input. Overall, our
tool reported a total of 61 races whereas Intel Inspector XE could only find
31 races. The details are presented in Table 2. A table entry marked with the
letter “H” indicates that the Intel Inspector XE tool would get into a hang mode
for that benchmark, while a table entry marked with the letter “A” indicates
that the Intel Inspector XE tool encountered an Application exception for that
benchmark. The explanations for the races in the PolyBench-ACC benchmark
suite are: (1) The majority of the data races in Cholesky and Gramschmidt
originate from conflicting accesses on scalar variables inside the worksharing
loops. These races can be fixed by privatizing the scalars; (2) Data races in

2 ARCHER is known to not have any false positives or false negatives for a given
input, but may have false negatives for inputs that it has not seen.

An Extended Polyhedral Model for SPMD Programs and Its Use 117

Table 2. Race detection analysis over the subset of PolyBench-ACC benchmark suite.
#SPMD/#WS/#Barriers: Number of SPMD regions, Number of worksharing direc-
tives in a SPMD region, Number of barriers including implicit. PolyOMP - Detection
time/Reported/False +ves: Total time taken to detect races by PolyOMP, Number of
reported races, Number of false positives among reported. Intel Inspector XE: Number
of races reported, Hang up (H) and Application exception (A).

Benchmark #SPMD #WS #Barriers PolyOMP Intel Inspector

XE

Detection

time (s)

Reported False

+ves

Correlation 1 4 4 2.30 0 0 H

Covariance 1 3 3 1.04 0 0 H

2mm 1 2 2 0.64 0 0 0

3mm 1 3 3 1.13 0 0 0

Atax 1 2 2 0.37 2 0 2

Bicg 1 2 2 0.43 2 0 2

Cholesky 1 1 1 0.49 28 0 8

Doitgen 1 1 1 0.54 0 0 0

Gemm 1 1 1 0.34 0 0 0

Gemver 1 4 4 0.75 0 0 0

Gesummv 1 1 1 0.52 0 0 0

Mvt 1 2 2 0.32 0 0 0

Symm 1 1 1 0.64 5 0 5

Syrk 1 2 2 0.39 0 0 0

Syr2k 1 2 2 0.52 0 0 0

Trmm 1 1 1 0.28 1 0 1

Durbin 1 2 2 0.73 6 0 0

Gramschmidt 1 1 1 0.36 12 0 8

Lu 1 1 1 0.33 5 0 5

Convolution-2 1 1 1 0.25 0 0 0

Convolution-3 1 1 1 0.42 0 0 A

Fdtd-ampl 1 1 1 1.62 0 0 0

Total 22 39 39 14.41 61 0 31

Atax and Bicg are on the common array elements which are updated inside a
sequential loop of the SPMD region; (3) Data races in remaining benchmarks
arise on shared arrays and on worksharing (parallel) outer loops.

7 Related Work

In this section, we discuss past work related to compile-time detection of data
races, and the analysis of textually aligned barriers present in SPMD programs.

7.1 Static Race Detection

There is an extensive literature on identifying races in explicitly parallel pro-
grams (at compile-time [3,4,15,16,23,24], run-time [20], and hybrid combinations

118 P. Chatarasi et al.

of both [19]). We focus our discussion on past work of static analysis techniques for
identifying data races in SPMD-style parallel programs.

Symbolic approaches have received a lot of attention in analyzing parallel
programs, mainly in the context of OpenMP. Yu et al’s [23] work checks the
consistency of multi-threaded programs with OpenMP directives using extended
thread automata (with a tool called Pathg). However, their race detection is only
guaranteed for a fixed number of worker threads. Ma et al. [15] use a symbolic
execution-based approach (running the program on symbolic inputs and fixed
number of threads) to detect data races in OpenMP codes, based on constraint
solving using an SMT solver. The data races reported from this toolkit (called
OAT) are applicable only to a fixed number of input threads, unlike our approach
which allows the number of threads to be unknown.

Polyhedral based approaches have gained significant interest in analyzing
parallel programs due to its ability to perform exact analysis on affine programs.
Basupalli et al. [3] presented an approach (ompVerify) to detect data races inside
a given worksharing loop using polyhedral dependence analysis. However, this
approach handled only affine constructs and was limited to worksharing loops,
rather than to general SPMD parallel regions. Yuki et al. [24] presented an
adaptation of array data-flow analysis to X10 programs with finish/async par-
allelism. In this approach, the happens-before relations are first analyzed, and
the data-flow is computed based on the partial order imposed by happen-before
relations. This extended array data flow analysis is used to certify determinacy
in X10 finish/ async parallel programs by identifying the possibility of multi-
ple sources of writes for a given read. Their extended work [25] formulated the
happens-before relations with X10 clocks in a polyhedral context. This approach
provides the race-free guarantee of clocked X10 programs by disproving all pos-
sible races. But, it doesn’t provide races present in the input program since
computing happens-before relations involves polynomials in a general case.

Atzeni et al. [2] introduced a hybrid static+dynamic approach (ARCHER) to
achieve high accuracy, low overheads on large applications to detect data races.
The static part of ARCHER tool leverages an existing polyhedral dependence
analyzer to identify races in a given worksharing loop. Our static approach can
be complemented with the dynamic analysis of ARCHER tool to further reduce
dynamic overheads as observed for the benchmark in Fig. 1 (refer to Sect. 3).

There has been attention given to the analysis of textually aligned barriers
at compile-time. The work by sYelick et. al on concurrency analysis [14] com-
putes MHP relations using a graph-based approach over single-valued expres-
sions. Then, concurrent statements are identified using a depth-first search from
a given statement. The MHP relations computed using graph-based approach
is conservative since it doesn’t analyze statements and barriers at the instance
level when they are enclosed in loops, in contrast to the exactness of our app-
roach for affine programs. It also doesn’t consider thread-mapping information
in computing MHP relations.

An Extended Polyhedral Model for SPMD Programs and Its Use 119

8 Conclusions and Future Work

This work is motivated by the observation that software with explicit parallelism
is on the rise, and that SPMD parallelism is a common model for explicit par-
allelism as evidenced by the popularity of OpenMP, OpenCL and CUDA. As
with other imperative parallel programming models, data races are a pernicious
source of bugs in the SPMD model and may occur only in few of the possible
schedules of a parallel program, thereby making them extremely hard to detect
dynamically.

In this paper, we introduced a new approach for static detection of data races
by extending the polyhedral model to enable analysis of explicitly parallel SPMD
programs. We evaluated our technique using 34 OpenMP programs from the
OmpSCR and PolyBench-ACC benchmark suites. We formalize the May Happen
in Parallel (MHP) relations by adding “space” and “phase” dimensions to the
schedule, and is guaranteed to be exact (with neither false positives nor false
negatives) for identifying data races if the input program satisfies all the standard
preconditions of the polyhedral model.

In summary, our contributions include the following: (1) An extension of the
polyhedral model to represent SPMD programs, (2) Formalization of the May
Happen in Parallel (MHP) relation in the extended model, (3) An approach
for static detection of data races in SPMD programs, and (4) Demonstration of
our approach on 34 OpenMP programs from the OmpSCR and PolyBench-ACC
benchmark suites.

As future work, we plan to leverage our framework to address problems such
as redundant barrier optimization, detection of false sharing patterns, deadlock
identification and coupling it with dynamic analysis techniques to prune false
positives arising from unanalyzable data accesses, as done in [2,17].

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of X10 programs. In: PPoPP, New York, NY, USA (2007)

2. Atzeni, S., Gopalakrishnan, G., Rakamarić, Z., Ahn, D.H., Laguna, I., Schulz, M.,
Lee, G.L., Protze, J., Müller, M.S.: Archer: effectively spotting data races in large
OpenMP applications. In: IPDPS (2016)

3. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P., Won-
nacott, D.: Polyhedral analysis for the OpenMP programmer. In: Chapman, B.M.,
Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS, vol. 6665,
pp. 37–53. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21487-5 4

4. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: a ver-
ifier for GPU Kernels. In: OOPSLA (2012)

5. Chatarasi, P., Shirako, J., Sarkar, V.: Polyhedral optimizations of explicitly parallel
programs. In: PACT (2015)

6. Chatarasi, P., Shirako, J., Sarkar, V.: Static data race detection for SPMD pro-
grams using an extended polyhedral representation. In: IMPACT (2016)

7. Clang, O.M.P.: CLANG Support for OpenMP 3.1. https://clang-omp.github.io

http://dx.doi.org/10.1007/978-3-642-21487-5_4
https://clang-omp.github.io

120 P. Chatarasi et al.

8. Collard, J.F., Barthou, D., Feautrier, P.: Fuzzy array dataflow analysis. In: Pro-
ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 1995, pp. 92–101. ACM, New York (1995)

9. Cytron, R., Lipkis, J., Schonberg, E.: a compiler-assisted approach to SPMD exe-
cution. In: Supercomputing, Los Alamitos, CA, USA (1990)

10. Darema, F., et al.: A single-program-multiple-data computational model for
EPEX/FORTRAN. Parallel Comput. 7(1), 11–24 (1988)

11. Dorta, A.J., Rodriguez, C., Sande, F.d., Gonzalez-Escribano, A.: The OpenMP
source code repository. In: PDP, Washington, DC, USA (2005)

12. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D.A. (ed.) Encyclopedia
of Parallel Computing, pp. 1581–1592. Springer, Heidelberg (2011)

13. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a High-Level Language Targeted to GPU Codes (2012)

14. Kamil, A., Yelick, K.: Concurrency analysis for parallel programs with textually
aligned barriers. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan,
P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 185–199. Springer, Heidelberg (2006).
doi:10.1007/978-3-540-69330-7 13

15. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in OpenMP programs. In: ICPP, Washington, DC, USA
(2013)

16. Mellor-Crummey, J.: Compile-time support for efficient data race detection in
shared-memory parallel programs. In: PADD, New York, NY, USA (1993)

17. O’Callahan, R., Choi, J.D.: hybrid dynamic data race detection. In: Proceedings
of PPoPP (2003)

18. OpenMP Specifications. http://openmp.org/wp/openmp-specifications
19. Protze, J., Atzeni, S., Ahn, D.H., Schulz, M., Gopalakrishnan, G., Müller, M.S.,

Laguna, I., Rakamarić, Z., Lee, G.L.: Towards providing low-overhead data race
detection for large OpenMP applications. In: Proceedings of the 2014 LLVM Com-
piler Infrastructure in HPC (2014)

20. Raman, R., Zhao, J., Sarkar, V., Vechev, M.T., Yahav, E.: Scalable and precise
dynamic datarace detection for structured parallelism. In: Proceedings of PLDI
(2012)

21. Sarkar, V., Harrod, W., Snavely, A.E.: Software Challenges in Extreme Scale Sys-
tems, Special Issue on Advanced Computing: The Roadmap to Exascale, January
2010

22. Verdoolaege, S., Grosser, T.: Polyhedral extraction tool. In: Second International
Workshop on Polyhedral Compilation Techniques (IMPACT 2012), Paris, France
(2012)

23. Yu, F., Yang, S.C., Wang, F., Chen, G.C., Chan, C.C.: Symbolic consistency check-
ing of OpenMp parallel programs. In: LCTES (2012)

24. Yuki, T., Feautrier, P., Rajopadhye, S., Saraswat, V.: Array dataflow analysis for
polyhedral X10 programs. In: Proceedings of PPoPP (2013)

25. Yuki, T., Feautrier, P., Rajopadhye, S.V., Saraswat, V.: Checking Race Freedom
of Clocked X10 Programs. CoRR abs/1311.4305 (2013)

26. Zhang, Y., Duesterwald, E., Gao, G.R.: Concurrency analysis for shared memory
programs with textually unaligned barriers. In: Adve, V., Garzarán, M.J., Petersen,
P. (eds.) LCPC 2007. LNCS, vol. 5234, pp. 95–109. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85261-2 7

http://dx.doi.org/10.1007/978-3-540-69330-7_13
http://openmp.org/wp/openmp-specifications
http://dx.doi.org/10.1007/978-3-540-85261-2_7

Polygonal Iteration Space Partitioning

Aniket Shivam1(B), Alexandru Nicolau1, Alexander V. Veidenbaum1,
Mario Mango Furnari3, and Rosario Cammarota2(B)

1 University of California Irvine, Irvine, USA
aniketsh@uci.edu

2 Qualcomm Research, San Diego, USA
rosarioc@qti.qualcomm.com

3 ICIB - National Council for Research, Pozzuoli, Italy

Abstract. This work presents a new set of loop transformations to
expose and maximize data locality in loop-nests with non-uniform reuse
patterns. The proposed set of transformations use the norms of the Poly-
hedral Model to represent loop-nests and then leverages such a represen-
tation to partition the iteration space into polygonally shaped partitions
with maximum locality. However, the partitioning algorithm tends to
produce partitions with complex geometry (shape) and with progres-
sively smaller number of iterations, which, in practice, introduces much
run-time overhead. This work also focuses on containing the number
of partitions and properly manage their geometry at run-time, to con-
tain unnecessary overhead. The proposed transformations also exposes
loop level parallelism, by grouping together independent iterations, thus
improving performance of both serial and parallel execution. In parallel
execution a selective mapping of partitions to threads based on the type
of reuse these partitions exhibit is proposed.

The proposed transformations show a consistent performance speedup
on serial execution (up to 1.2x over Polly) and parallel execution (up to
3.17x over PLuTo) of some loop-nests.

Keywords: Polygonal partitions · Shape and size independent tiling ·
Temporal locality · Polyhedral model

1 Introduction

Modern compilers, such as LLVM, GNU GCC and Intel ICC perform many loop
transformations, such as tiling, strip-mining, fusion and interchange [10], to
speedup program execution. Loop transformations, such as tiling [7], focus on
grouping iterations (tiles) to improve data locality. Such transformations effec-
tively speedup program execution when loop-nests exhibit uniform reuse dis-
tances between loop statements and across loop iterations. Tiles shape and
size, determined based on the cache hierarchy organization, are usually constant
and repeat during the loop execution to include all the iterations. For exam-
ple, in a doubly-nested loop where iteration Ii,j accesses array index Ai−1,j−1

and Ai+1,j+1, the formation of either square or rectangular tiles would help in
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 121–136, 2017.
DOI: 10.1007/978-3-319-52709-3 11

122 A. Shivam et al.

improving locality. Tiling ensures that data remains in cache until Ii−1,j−1 and
Ii+1,j+1 are computed.

However, tiling loop-nests with non-uniform reuse patterns still remains a
challenge, due to the impossibility of defining a single set of dependency vectors
which can govern a tile size and shape. For example, if iteration Ii,j accesses
array index Ai,j and Ai+j,j , neither a single fixed-shape tile nor a symmetric tile
can ensure improved cache data reuse during the whole execution of the loop-
nest. The technique proposed by Meister et al. [9] for partitioning loops works
irrespective of reuse pattern, i.e., it is not bound by constraint of shape and size
of the tiles or partitions. The price of such a technique, however, is that the
management of the boundary condition for the tiles introduces much instruction
overhead, which the halt condition of the original partitioning algorithm does
not account for.

This work proposes a new set of loop transformations to address the case of
loop-nests with non-uniform reuse patterns, and to cope with the management
of the execution of tiles of arbitrary shapes. Our proposed technique represents
a loop-nest in the norms of the Polyhedral Model and then categorize itera-
tions, i.e., create partitions based on the number of iterations that can linked by
the reuse of their accessed data elements. In principle, the process could indis-
criminately proceed until all the iterations in the loop belong to a partition.
Alternatively, the compilation process may be set to halt at a predefined maxi-
mum number of partitions. However, the number of partitions has to be selected
appropriately based on the characteristics of the loop-nest and the features of the
target architecture to achieve maximum performance. We show that an optimal
number of partitions can be determined per loop. Selecting more than the opti-
mal number of partitions would introduce much overhead at run-time, whereas
selecting less than the optimal number of partitions would miss a portion of
exploitable locality and hence reducing speedup in both cases.

The proposed technique is implemented using the integration of source-to-
source optimizer PLuTo1 with PolyLib2 library. The performance of the tech-
nique is compared against the combination of loop transformations already sup-
ported in Polyhedral Frameworks like Polly3 and like PLuTo [4] (later compiled
with ICC). Experimental results show a consistent speedup up to 1.2x w.r.t. Polly
on serial execution and up to 3.17x w.r.t. PLuTo on parallel execution.

The rest of the paper is organized as follows: Sect. 2 presents our proposed set
of loop transformations. Section 3 presents our experimental setup and results.
Section 4 presents and comments on prior and related work. Finally, Sect. 5 sum-
marizes our findings and presents our conclusive remarks.

2 Polygonal Iteration Space Partitioning

The proposed technique for generating the polygonal partitions of a loop-nest is
presented in this section.
1 PLuTo: http://pluto-compiler.sourceforge.net.
2 PolyLib: http://icps.u-strasbg.fr/∼loechner/polylib/.
3 Polly (LLVM Plugin): http://polly.llvm.org.

http://pluto-compiler.sourceforge.net
http://icps.u-strasbg.fr/~loechner/polylib/
http://polly.llvm.org

Polygonal Iteration Space Partitioning 123

2.1 Determining Reuse Using the Polyhedral Model

With the polyhedral representation of a nest of loops, a set of mathematical
equations can be derived for identifying the data accessed by the references in
a statement. For each instance of a statement in the body of a loop-nest, an
iteration vector I is defined. For instance, if the enclosed statement accesses the
data at a particular position of a multi-dimensional array A, the exact location
of the data (A(I)) can be calculated as: A(I) = R × I + r. The reference
matrix, R, is based on the coefficient of the iteration variables in the subscript
representing the data access in A. Whereas, the offset vector, r, represents the
constant from the subscript. For a D-dimensional array A, with N being the
depth of the loop-nest, R will be a D ×N matrix and r will be a D-dimensional
vector identifying an offset in each dimension. To provide a explanatory example,
consider the following loop-nest:

f o r (i = −N; i <= N; i++)
f o r (j = −N; j <= N; j++)

X[i , j] = Y[i , i+j +3] ∗ Y[i+j , j] ;

The reference Y[i,i+j+3] references a two dimensional array Y enclosed in a two

dimensional loop-nest. Therefore, R will be a 2 × 2 matrix,
(

1 0
1 1

)
. Each row

represents the projection of the reference along each dimension of the array, i.e.,
the value of subscript in each dimension (i and i+j+3). The column represents
the coefficient associated with each iteration variable (i and j) of the loop-nest.

The offset vector r is a column vector,
(

0
3

)
, representing the offset for reference

along every dimension, i.e., the constants in the subscript. An iteration I can
be substituted using a column vector (i j). Each reference to the array is an
unique combination of (R, r). The pair is represented as Γ to locate the accessed
data point by an iteration. Γ is a function which computes the image of the
polyhedron. In the above loop-nest, the two references to the array Y are written

as: Γi,i+j+3 =
(

1 0
1 1

)
I +

(
0
3

)
and Γi+j,j =

(
1 1
0 1

)
I +

(
0
0

)
.

Suppose, there is reuse of a data by two different references Γα and Γβ in
iterations Iα and Iβ respectively. Then, the dependence between two iterations
can be described using Eq. 1.

Γα = Γβ ⇔ RαIα + rα = RβI β + rβ (1)

Therefore using Eq. 1, as suggested in [9], the temporal reuse relation or
dependence relation, T , between Iα and Iβ can be formally represented by Eq. 2.

R−1
β RαIα + R−1

β (rα − rβ) = I β ⇔ TαβIα + tαβ = I β , if R is invertible. (2)

The reuse relation T is a combination of (Tαβ , tαβ), where Tαβ = R−1
β Rα

and tαβ = R−1
β (rα − rβ). Substituting a particular iteration in place of Iα yields

another iteration (Iβ) that reuses the same data. If and only if R is invertible,
then T can be computed. Therefore, the reference matrix R needs to be an

124 A. Shivam et al.

square matrix. This implies that it is critical for the application of this technique
that the dimensions of the involved array is same as the depth of the loop-
nest. This reduces the applicability to the loops with references that generate
an invertible reference matrix R and hence an invertible T . However, using R
and T makes it possible to determine if a data accessed by Iβ using Γβ is also
accessed by Iα using Γα, Iα = T−1

αβ Iβ - T−1
αβ tαβ . Therefore, the temporal reuse

relation T = (T, t) for the loop-nest in the example is: T =
(

0 −1
1 1

)
and

t =
(−3

3

)
using Eq. (2). In the example above, to check if the data accessed

by an iteration, say i = 2 and j = 1, using reference Γi,i+j+3, is also accessed by
another iteration using the reference Γi+j,j . Substituting the iteration vector by

(2,1) in Eq. 2,
(

0 −1
1 1

) (
2
1

)
+

(−3
3

)
, yields vector (−4,6). Therefore, it can

be concluded that iterations (2,1) and (−4,6) have reuse.

2.2 Partitioning Technique

The goal of our proposed technique is to identify and execute non-adjacent par-
titions of the iteration space in an order such that the data is reused in the
cache. For an unoptimized version of the loop-nest, this data would have been
flushed out of the cache before its reuse. These partitions are thereafter grouped
based on the locality of the data their iterations access. Hence, all the partitions
accessing the same set of data are aggregated. Assuming there are two references
Γα and Γβ to an array in a single statement in the loop-nest. The primary step
is to partition the iteration space (D) in three sets denoted by L, P1 and P2.

• P1 contain iterations that reference the data using Γα that another iteration
in D accesses by Γβ , i.e., these iterations have an image in D using relation T .

• Iterations referencing the data using Γβ that is also referenced by another
iteration in D using Γα form the set P2. These iterations are the images of the
iterations in P1. In other words, they have a Pre-Image in D (Image(T −1,D)).

• The rest of the iterations in D, i.e., the iterations that reference the data which
is not referenced by another iteration are included in the partition denoted
by L. These iterations neither project nor they are projected in D using T .
Hence, D = P1+P2+L.
The sets P1 and P2 can be further categorized into three subsets named C,
D1 and D2, in addition to L.

• C: These iterations belong to both P1 and P2, i.e., C =P1 ∩P2. Data accessed
by these iterations using both the references (Γα and Γβ) is also accessed by
other iterations.

• D1: These iterations belong to P1 only, i.e., D1 =P1-C or D1 =P1-P2. The
data accessed by Γα of these iterations is accessed by other iterations. Data
accessed by Γβ is not reused.

• D2: These iterations belong to P2 only, i.e., D2 =P2 − C or D2 =P2 − P1.
Similarly, the data accessed by these iterations using Γβ is reused, whereas
data accessed by Γα remains unused.

Polygonal Iteration Space Partitioning 125

(a) DC1 (b) C1 (c) DC2

(d) C2
(e) Set Representation

Fig. 1. Classification of iterations - formation of the sets DC1, C1, DC2, C2.

After categorizing the iterations based on the reuse of their accessed data, a
further sub-categorization is performed such that each subset is executed in a
specific order to improve the temporal locality. That is, iterations having reuse
among them and forming smaller partitions (DCk and Ck) are linked together.
Figure 1 shows a graphical illustration of how iterations are categorized.

• DC1: D1 iterations that link to D2 iterations by T , i.e., DC1 = D1 ∩T −1(D2).
• C1: C iterations that are linked to themselves by T , i.e., T (C1) = T −1(C1).
• DC2: D1 iterations that link to C iterations that link to D2 iteration, i.e., D1

iterations that link to D2 iterations by T 2, DC2 = D1 ∩ T −1(C) ∩ T −2(D2).
• C2: The remaining C iterations that form cyclic-link with one other iteration in

C, i.e., C iterations that are linked to themselves by T 2, C2 = C∩T −1(C)∩{I ∈
C|T 2I + Tt + t = I} − C1.
After k repetitions of the previous steps:

• DCk: D1 iterations that link to chain of k − 1 C iterations and at the end
link to a D2 iteration by T k, i.e., DCk = {I ∈ D1|Tt + t ∈ C, T 2I + Tt + t ∈
C,, T kI + T k−1t + ... + Tt + t ∈ DC2}.

• Ck: The remaining C iterations that are linked to themselves by T k forming
a cyclic-link of k C iterations, i.e., Ck = {I ∈ C|Tt + t ∈ C, T 2I + Tt + t ∈
C,, T kI + T k−1t + ... + Tt + t = C} − {C1 + + Ck−1}.

These repetitive steps generate partitions based on the number of iterations
that can linked by reuse of their accessed data elements. This partitioning tech-
nique requires a halting condition such that the number of steps of the algo-
rithms, k, can be determined and so does determines the number of partitions
that it creates. As mentioned in [9], the value of k can be chosen as: (a) If after
the kth repetition of the algorithm, the entire iteration space (D) is completely
partitioned. At this point T k is an identity matrix, where T is represented as(

T t
0..0 1

)
, and (b) If value of k is preset, the algorithm stops after the k repeti-

tions and put the rest of the iterations in Ck+1.

126 A. Shivam et al.

The partitions categorized as either DCi or Ci, where 1 ≤ i ≤ k, are disjoint
partitions spread across the iteration space. Therefore, the partitions labeled as
DCi can be numbered based on the position of their containing iterations in the
chain. In the DCi partitions, the first partition containing only D1 iterations are
labeled as DC0

i . The next i − 1 partitions containing C iterations are labeled as
DC1

i , DC2
i ,...,DCi−2

i and DCi−1
i . The last partition in the chain containing D2

iterations is labeled as DCi
i. The same naming paradigm is followed for Ci par-

titions. These i partitions are labeled as C0
i , C1

i ,...,Ci−2
i and Ci−1

i . The number
of iterations in the partitions of similar type is always equal, since the itera-
tions in the successive partitions are the images of the iterations in the previous
partition.

2.3 Orchestrating Formation of the Partitions

Premature Halting. An indiscriminate application of the algorithm introduce
overhead at run-time due to large number of small sized partitions, which is not
considered in the halting conditions defined above. The increase in the number
of partitions increases the control statement overhead in the restructured loop-
nest. Therefore, in the partitions with very few iterations the gain in performance
from better locality is overshadowed by the control overhead needed to manage
such partitions.

We introduced a termination method for the algorithm so that the control
statement overhead does not overshadow the speedup gained through maximiz-
ing locality, by predicting the minimum tile size. Specially in loop-nests where
the longest chain of linked iterations is very long, i.e., T k generates an identity
matrix for a very high value of k, say kmax, it is critical to find an optimal value
of k < kmax to protect gained speedup from increasing control overhead. This is
applicable to most loop-nests with one dimensional non-uniform reuse pattern.
Therefore, the algorithm is halted after partitioning for T k and the remaining
iterations form partition Ck+1. From our experiments, it can be deduced that
the algorithm must be halted if the number of iterations in newly generated
partitions is below 25 × 25, .i.e., 625 iterations.4

Multi-level Tiling. The partitions generated on each repetition of the tech-
nique are labeled as DCi and Ci, where 1 ≤ i ≤ k. Partitions labeled as DCi

or Ci are set of separate and distantly located partitions of the iteration space.
The execution order of these partitions influences the improvement in locality or
improved cache hit-miss ratio at a certain cache level. A single partition targets
the improvement in locality in the smallest cache with the least expensive data
transfer cost, ideally L1 cache. The set of partitions in DCi or Ci targets a larger
cache that can be either L2 or L3 cache. This technique guarantees that for loops
with non-uniform reuse pattern, the cost in terms of time spent in fetching data
for reuse is reduced by making it available in closest possible cache level.
4 The number of integer points contained by a parameterized polyhedron is computed
using the Ehrhart Polynomials as implemented in PolyLib.

Polygonal Iteration Space Partitioning 127

Locality on Parallel Execution of the Partitions. Loop-nests without any
loop-carried dependences can be executed in parallel without any constraints.
But tiling such loops can improve the performance by improving locality so
that the cost of data transfer is reduced. During parallel execution more fetches
from private memory and lesser fetches from the shared memory improves the
performance. Scheduling similar partitions (either a DCi or Ci, 1 ≤ i ≤ k) on the
same thread achieves the improvement in locality, since each thread finds the
required data in private memory.

2.4 Multi-reference Statements

We also extend the technique to statements with multiple references to the array
and also to stencil computations that exhibit fixed pattern reuse in multiple
directions. Every pair of temporal reuse relations lead to different partitions
which on combining would generate a single partition. Reuse along multiple
directions create a complex network of iterations linked by T , therefore it is
important to eliminate reuse relations such that iterations do not link to them-
selves by either T or T 2. For example, the reuse vector vi,j−1 and vi,j+1 link
themselves by T 2. Therefore, one of them must be eliminated. Also, vi,j must be
eliminated since it links to itself by T . One drawback of the original algorithm
is that some pairs of reuse vectors produce partitions which consume the entire
iteration space like vi,j+1 and vi+1,j . These pairs are eliminated. The aim is to
find the ‘pair ’ (best set of two references) from all the references that generate
the best possible partitions for maximizing locality.

Another heuristics to choose the pair is to select it based on the amount of
reuse in the partitions that it creates. A reuse count function as shown in
Eq. 3 is used to predict the amount of reuse in the partitions can be appended
in the original technique. This step involves choosing the best pair out of every
set of two references - from those left after eliminating the redundant references
- based on the amount of reuse that can be calculated from size of DCs and
Cs sets. When the algorithm is prematurely halted to reduce control statement
overhead as described in the previous section, the residual iterations that form
Ck+1 are not counted towards the reuse.

Reuse(Γα, Γβ) =

k∑

i=1

i × |DC0
i | +

k∑

i=1

i × |C0
i | (3)

This technique can also be extended to multiple statements enclosed in a loop-
nest. Since, reuse of data from an array might occur between references spanning
across multiple statements. These multiple references can be reduced to the best
pair of references exploiting the maximum locality.

2.5 Code Generation Paradigm

The code generation for these partitions begins by analyzing the polyhedron
representation for each partition. This polyhedron representation contains the

128 A. Shivam et al.

constraints (boundary hyperplanes) that define the affine boundaries for the
partitions. These constraints are then scanned using the Fourier-Motzkin algo-
rithm implemented in PolyLib and also using tools like CLooG [3]. CLooG gen-
erates code by scanning the polyhedrons and performs the union of distinct
polyhedron to produce code with the least control statement overhead. The
work in [9] suggests a methodology to scan just the initial partition from each
category, i.e., DC0

i for the DCi type partitions and C0
i for Ci type partitions. The

next steps is to derive the subscripts for the next iterations in the link using the
reuse relation T . Let, I, a column vector, represent the iterations in the DC0

i .
The subscript for the iterations in the following partitions DC1

i , DC2
i ,..., DCi

i are
derived from T (I), T 2(I),..., T i(I) respectively. The locality is exposed in the
successive statements since there is reuse between I and T (I) iteration, then in
T (I) and T 2(I) iteration, etc. This methodology is efficient unless the value of k
is high in which case it enormously expands the code size. The loop-nest for DCi

and Ci partitions encloses i+1 and i statements respectively. For some value of k,
the code will have a minimum of k loop-nests for either DC or C type partitions
and maximum of k × 2 (k DC plus k C) loop-nests. Each of them containing
statements between 0 and k. For a higher value of k, a better solution is to find
the union of the polyhedron representing a type of partitions (DCi or Ci) to gen-
erate code. Also, since each partition in DCi or Ci type partitions contain equal
iterations, they tend to form similar geometries. These geometries are recurring
patterns and hence code generation for them requires slight modification in the
boundary conditions of the control statements. These modification can be cap-
tured to form a basis for iterating through each partition of a particular type.
Hence, reducing the total count of loop-nests in the code.

An important part of the speedup comes from re-partitioning the generated
partitions to reduce boundary check overheads. This is performed by computing
these partial partitions and scanning them so as compute multiple partitions in
a single loop. The entire partitioning technique is shown in Algorithm 1.

For generating parallel code, we propose the use of OpenMP R© Sections.
It allows the selective mapping of a certain type of partitions onto a single
thread. This improves the locality in each thread which in turn reduces the
fetching of same data from shared memory on multiple threads. These sections
are dynamically scheduled to achieve load balancing. However, the generation
of a schedule for parallel execution of polygonal partitions of a loop-nest with
non-uniform data dependence remains a challenge. Because if the execution of
partitions as per the technique violates any data dependence, then modifying
the execution order without violating dependence disrupts locality.

3 Experiments and Results

For evaluating our technique, we choose four cases in which the corresponding
loop-nests exhibit different reuse patterns. These styles are: (a) Two Dimen-
sional Non-Uniform Reuse in which the reuse pattern varies along both
dimensions of a two dimensional iteration space; (b) One Dimensional Non-
Uniform Reuse in which the reuse pattern varies along a single dimension;

Polygonal Iteration Space Partitioning 129

Algorithm 1. Polygonal Tile Generation
1: Input: A loop-nest with potential reuse on a dataset (array).
2: Eliminate set of references that link iterations to themselves by either T or T 2.

(Sect. 2.4)
3: for each set of two references (Γα, Γβ) to the array do
4: Define the Reuse Relation T using the two references Γα and Γβ .
5: Generate coarse partitions of the iteration space (D):

P1 (Image(T ,D)), P2 (Image(T −1,D)) and L (No reuse).
6: Categorize P1 and P2 into: C=P1 ∩ P2, D1=P1 − P2 and D2=P2 − P1.
7: while D is not completely partitioned do
8: Create partitions (DCi and Ci) that have iterations linked by relation T i.
9: if Iterations in the generated partitions is below 25 × 25 then
10: k = i (Since the algorithm is halted, k is set to i.)
11: Put rest of the iterations in Ck+1.
12: break
13: end if
14: Increment i.
15: end while
16: end for
17: Remove the set of references that produce a single partition which consume the

entire iteration space. (Sect. 2.4)
18: On the remaining set of references, apply the Reuse Count Formula (Eq. 3) to

estimate the amount of reuse.
19: Choose the pair having the maximum reuse in their polygonal partitions for code

generation.
20: Scan the polygonal partitions using the Fourier-Motzkin algorithm to generate the

boundaries for the partitions.
21: Use the code generation tools like CLooG with modifications so as to generate

array subscripts using the function T i(I).
22: Output: Polygonally tiled iteration space that improves data locality.

(c) Symmetric or Uniform Reuse in which the reuse is generally among
neighboring iterations along a certain direction(s); (d) Multiple References
in which loop-nests contains multiple references to an array in a single statement,
e.g., as seen in benchmark suites like PolyBench5.

The compiled codes are analyzed for performance on Intel’s Sandy-Bridge
Core i7-2600 CPU @ 3.40 GHz. The processor has 4 cores (8 threads) with 32
KB L1 I/D cache, 1024 KB L2 cache and 8 MB LLC. Hardware performance
counters were analyzed for measuring performance metrics.

3.1 Case 1: Two Dimensional Non-uniform Reuse Pattern

In the loop-nest shown in Fig. 2, the references to the array Y can be represented

as: Γi, i+j+3 =
(

1 0
1 1

)
I +

(
0
3

)
, Γi+j, j =

(
1 1
0 1

)
I +

(
0
0

)
. Therefore, the

5 PolyBench/C 4.1: http://web.cse.ohio-state.edu/∼pouchet/software/polybench/.

http://web.cse.ohio-state.edu/~pouchet/software/polybench/

130 A. Shivam et al.

f o r (i = −N; i <= N; i++)
f o r (j = −N; j<= N; j++)

X[i , j] = Y[i , i+j +3] ∗ Y[i+j , j] ;

Fig. 2. Case 1: Loop-nest with two dimensional non-uniform reuse

(a) Polygonal partitions of the iteration
space for Case 1 - 6 = I (identity).

(b) RAR dependence in the loop-nest

Fig. 3. Partitions of the iteration space in Case 1.

temporal reuse relation T = (T, t) can be calculated using Eq. 2, where T =(
0 −1
1 1

)
and t =

(−3
3

)
. For this case k comes out to be 6, since T 6 is an

identity matrix. Therefore, the partitioning process would terminate after six
repetitions of the core algorithm. The remaining iterations in C are placed in
partition C6 as described in the technique. The graphical representation of the
partitioned iteration space is shown in Fig. 3a [9]. The partitioning algorithm
generates a fixed number of partitions, which is independent of the input size.
Hence, the partitions generated from this technique are scalable with the dataset
size. Since, the maximum value of k is 6, it generates a small number of partitions
which suggests that the control statement overhead will have negligible effect on

f o r (i = −N; i <= −4; i++) {
f o r (j = MAX(−N+3,− i−N−3); j <= −i−N−1; j++) {

X[i] [j] = Y[i] [i+j +3] ∗ Y[i+j] [j] ;
X[− j −3] [i+j +3] = Y[− j −3] [i +3] ∗ Y[i] [i+j +3] ;
X[− i−j −6] [i +3] = Y[− i−j −6][− j] ∗ Y[− j −3] [i +3] ;
X[− i −6][− j] = Y[− i −6][− i−j −3] ∗ Y[− i−j −6][− j] ;
X[j −3][− i−j −3] = Y[j −3][− i −3] ∗ Y[− i −6][− i−j −3] ;

}
}

Fig. 4. Index calculation for DC4 using reuse relation(T).

Polygonal Iteration Space Partitioning 131

performance. Therefore, there is no need to apply the halting condition described
in Sect. 2.3 in this case. Hence, the maximum value must be chosen to obtain
the finest partitions with the maximum reuse.

Dataset Size
1024 2048 4096

Im
pr

ov
em

en
t(

%
)

-50

0

50

100

150

200

250

300

350

400

450
L1 Cache Hits
L2 Cache Hits
LLC MPKI
Instructions Retired

Fig. 5. Case 1: % Improvement in L1, L2,
LLC and Instructions Retired Counters

The code shown in Fig. 4 presents
the application of the function T i(I)
where 0 ≤ i ≤ 6, as mentioned in
Sect. 2.5, to compute array subscripts
for disjoint but equivalent DC4 parti-
tions. This optimization reduces the
control statement overhead, as well
as increases the temporal locality due
to consecutive data accesses in sub-
sequent iterations. Also, because of
this there are less memory accesses
and therefore there is a constant 35%
decrease in instruction count. Figure 5
shows the increase in cache hits.

The serial code optimized using the technique shows up to 1.19x speedup
(Fig. 11a). For parallel execution, each type of partition is executed on a differ-
ent thread using OpenMP R© Sections so as to maximize data reuse on a core. On
parallel execution the speedup is even higher (up to 3.17x) as shown in Fig. 11b
due to the selective mapping of the partitions. Polly and PLuTo generate rectan-
gular tiles for the given program, since both of them do not use the information
from RAR dependence to optimize code for locality, unlike the proposed tech-
nique. Experimental results show scalability of performance with the input size
because even though the number of partitions remains constant, the size of the
partitions scales with the input size.

3.2 Case 2: One Dimensional Non-uniform Reuse Pattern

f o r (i = −N; i <= N; i++)
f o r (j = −N; j<= N; j++)

X[i , j]= Y[i , j] + Y[i , i+j+N] ;

Fig. 6. Loop-nest with one dimensional non-uniform reuse

The references to array Y for this case, shown in Fig. 6, are: Γi, j =
(

1 0
0 1

)
I +

(
0
0

)
, Γi, i+j+N =

(
1 0
1 1

)
I +

(
0
N

)
. Therefore, the temporal reuse relation

T = (T, t), assumes the following form, according to Eq. 2: T =
(

1 0
−1 1

)
, t =

(
0

−N

)
. For this case, the maximum value of k is too high. It is dependent

132 A. Shivam et al.

on the variable N , which is a representation of the dataset size, as such: T k =(
1 0

−k 1

)
, t =

(
0

−kN

)
.

(a) Reducing partition size (b) Computational Wave-front

Fig. 7. Partitions of the iteration space in Case 2.

Since the reuse is along the dimension J , refer to Fig. 7a, the maximum
value that k can reach is 2N − 1. As the algorithm moves towards −I direction,
it forms smaller partitions. This leads to the drawback of the original algorithm.
As described in the Sect. 2.3, an optimal value for k must be chosen such that
the achievable speedup is not diminished by the excessive control statement
overhead. Therefore, the algorithm must halt as soon as tile size reduces below
25×25 iterations. This is deduced from the experimental data as shown in Fig. 8a.
The optimal value of k was found to be around 30 in a small dataset (N = 1024),
40 in a medium dataset (N = 2048), and 60 in a large dataset (N = 4096). If

K (Number of Partitions)
20 30 40 60 100 200 400

S
pe

ed
up

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Small Dataset
Medium Dataset
Large Dataset
Baseline(Unpartitioned)

(a) Speedup vs Number of Partitions.

Dataset Size
1024 2048 4096

Im
pr

ov
em

en
t(

%
)

-400

-200

0

200

400

600

800
L1 Cache Hits
L2 Cache Hits
LLC MPKI
Instructions Retired

(b) % of Improvement in L1 and L2 hits,
LLC misses and Instructions Retired

Fig. 8. Case 2: Optimal number of partitions and improvement in counters

Polygonal Iteration Space Partitioning 133

a value of k is chosen to be lower than the optimal value, the loop execution
experiences a performance degradation due to low locality exploitation. On the
other hand, if a value of k is chosen to be larger than the optimal value, the
loop execution experiences a performance degradation due to control statement
overhead.

Another important contribution to the achieved speedup comes from a code
generation optimization which is discussed in Sect. 2.5. If partitions are exe-
cuted similarly as in Case 1, the control statement overhead will inhibit achieve
the maximum speedup achievable. By further splitting and executing them in
a variable step wave-front (Fig. 7b), the control overhead is reduced because
the loop boundary conditions are simplified. This method does not conform to
the originally proposed method of computing partitions of similar reuse pattern
together inside single loop nest. This wave-front method execute different parti-
tion types together inside the outer-most loop. It also improves spatial locality
due to reuse on same cache-line for multiple partition-types. The increase in
cache hits as shown in Fig. 8b is evident of improvement in locality.

On serial execution, the maximum speedup of 1.13x is achieved for the
medium dataset (Fig. 11a). Whereas, on parallel execution the speedup improves
with the size of the dataset reaching maximum of 2.27x (Fig. 11b).

3.3 Case 3 (Seidel-2D) and Case 4 (Jacobi-2D): Uniform Reuse
Pattern and Multiple References

Pa r t i a l loop−ne s t s expos ing reuse

f o r (i = 1 ; i < N; i++) {
f o r (j = 1 ; j< N; j++) {
A[i] [j]=(A[i −1] [j −1]+A[i −1] [j]+

A[i −1] [j+1]+A[i] [j −1]+
A[i] [j]+A[i] [j+1]+
A[i +1] [j −1]+A[i +1] [j]+
A[i +1] [j +1]) /9 . 0 ;

}
}

(a) Seidel-2D

f o r (i = 1 ; i < N; i++) {
f o r (j = 1 ; j< N; j++) {

B[i] [j]=(A[i] [j]+
A[i] [j −1]+
A[i] [j+1]+
A[i +1] [j]+
A[i −1] [j]) ∗ 0 . 2 ;

}
}

(b) Jacobi-2D

Fig. 9. Loop-nest with uniform reuse pattern and multiple references

Case 3 and 4 are stencil benchmarks taken from the PolyBench. Case 3 (Seidel
stencil) from Fig. 9a has multiple references in 8 directions. Therefore, the heuris-
tics mentioned in Sect. 2.4 must be applied to choose the best two references for
creating partitions. The reuse vectors vi,j−1 and vi,j+1 link themselves by T 2.
Therefore, one of the reuse relations must be eliminated. The same applies to
(vi−1,j−1, vi+1,j+1),(vi−1,j , vi+1,j) and (vi+1,j−1, vi−1,j+1).

134 A. Shivam et al.

Fig. 10. Partitions for stencils

Reference vi,j must also be removed
since its combination with any other
v generates multiple equivalent par-
titions along v. Therefore, references
vi,j+1, vi+1,j+1, vi+1,j , vi+1,j−1 and
vi,j must be eliminated. Also, some
pairs of reuse vectors produces parti-
tions which consume the entire iter-
ation space, i.e., the two references
(vi−1,j−1, vi,j−1) link every iteration
in the domain. Therefore, this pair of
references must be eliminated in addi-
tion to the pairs (vi−1,j , vi−1,j−1),
(vi−1,j , vi−1,j+1) and (vi−1,j−1, vi−1,j+1). Finally, vi,j−1 and vi−1,j are left
and they create the partitioning as shown in Fig. 10.

The two stencils show different performance results due to different amount
of reuse among iterations in the partitions. In the case of Seidel-2D, there is more
reuse between consecutive iterations inside a single sub-partition than Jacobi-2D,
due to additional reuse on vi+1,j−1 and vi−1,j+1 in Seidel-2D.

3.4 Improvement in Performance

Serial Execution. The performance of the polygonally tiled code, compiled
with LLVM (flags: -O3 -fno-inline-functions), is compared against Polly - an opti-
mizer for LLVM - optimized code (flags: -O3 -polly -polly-vectorizer = stripmine
-fno-inline-functions, tile size = 32 × 32). The lack of benchmarks exhibiting
non-uniform reuse pattern in standard benchmarks suites like SPEC CPU and
Polybench restricts the comparison of our technique to the existing techniques.

Small Dataset Medium Dataset Large Dataset

S
pe

ed
up

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
Case 1(2D Non-Uniform Reuse)
Case 2(1D Non-Uniform Reuse)
Case 3(Seidel-2D)
Case 4(Jacobi-2D)
Baseline(Unpartitioned)

(a) Speedup (Serial Execution)

Small Dataset Medium Dataset Large Dataset
0.5

1

1.5

2

2.5

3

3.5

S
pe

ed
up

Case 1(2D Non-Uniform Reuse)
Case 2(1D Non-Uniform Reuse)
Baseline(Unpartitioned)

(b) Speedup (Parallel Execution)

Fig. 11. Performance improvement

Polygonal Iteration Space Partitioning 135

Parallel Execution. The polygonally tiled code is compared for perfor-
mance against the code optimized using PLuTo-0.11.4 (flags: --tile --parallel
--diamond-tile, tile size = 32×32) that generate OpenMP R© code. PLuTo is cho-
sen for parallel execution because it generates better schedules for regular tiles
on parallel execution and supports diamond tiling. Both codes are compiled with
Intel’s ICC-15.0.4 compiler (flags: -O3 -xHost -ansi-alias -ipo -fp-model precise
-fno-inline-functions) and are executed across 8 threads.

4 Related Work

Loop tiling, its variants and combination with other loop transformations
[7,12,13] aim to optimize data locality along with other objectives, e.g., exhibit-
ing loop level parallelism [1,14]. Tiling techniques are concentrated on parti-
tioning the iteration space into group of iterations (tiles) of similar shape and
size. The factors determining the size of tiles may depend on memory hierarchy,
cache capacities, etc. When execution proceeds tile by tile, reuse distances are
no longer a function of the problem size, but a function of the tile size.

Optimal Tile Size and Parametrized Tiling. Determining the tile size
at compile-time usually produce suboptimal solution since the cache sizes for
the target architecture are not known in many situations. Parameterized tiling
techniques [8,11] have shown that it is possible to get comparable performance
and parallelism [6] as compared to statically compile-time generated tiled loop-
nests. However, tiling the loops with non-uniform reuse pattern is still a challenge
due to the inability of defining a single set of dependency vectors which can
govern a tiling size and pattern. Whereas, in our technique the size of the tiles
is solely determined by the reuse pattern of the loop-nest.

Modern Tiling Geometries. In addition to the variable sized tiles, some
recent work on the exploration of newer tiling geometries have shown some
promise, especially for stencil computations. The work in [2] shows that diamond-
shaped tiles - when executed in parallel - can achieve concurrent start for the
tiles which might not have been possible with regular rectangular/parallelogram
tiles. Tiling in the shape of variable-sized Hexagons [5] provides better local-
ity and concurrent execution of tiles for parallel architectures like GPUs. But,
varying tile shapes for better locality has not received similar attention. The
polygonal tiling technique presented in this work is not bound to a specific tile
shape. Instead, tile shapes are determined based on the iteration space’s reuse
pattern.

5 Conclusion

In this work, a polygonal tiling technique is presented, which is not constrained to
either the shape or the size of tiles that needs to be pre-determined. The shapes

136 A. Shivam et al.

and sizes are governed by the reuse pattern of the loop-nests. The proposed
technique partitions the iteration space and schedule the partitions to maximize
locality.

Our experiments on a set of loops exhibiting either non-uniform or uni-
form reuse patterns show that a significant portion of the achievable speedup
is missed when applying traditional loop tiling to such loops. Speedup is sig-
nificant for loops with non-uniform reuse pattern on serial execution as shown
in the case studies. Benefits of the presented polygonal tiles is even greater for
multi-threaded execution for such loops. High speedup (up to 3.17x) is achieved
and it consistently improves on increasing the input size.

Acknowledgments. We would like to thank Benôıt Meister and Vincent Loechner
for providing us with their implementation which laid the foundation for this work.
This work was supported in part by NSF award XPS 1533926.

References

1. Agarwal, A., et al.: Automatic partitioning of parallel loops and data arrays for
distributed shared-memory multiprocessors. TPDS 6(9), 943–962 (1995)

2. Bandishti, V., et al.: Tiling stencil computations to maximize parallelism. In: SC
2012, pp. 40:1–40:11. IEEE Computer Society Press, Los Alamitos (2012)

3. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 13, Juan-les-Pins, France, pp. 7–16, September 2004

4. Bondhugula, U., et al.: A practical automatic polyhedral program optimization
system. In: PLDI, June 2008

5. Grosser, T., et al.: Hybrid hexagonal/classical tiling for GPUs. In: CGO 2014, pp.
66:66–66:75. ACM, New York (2014)

6. Hartono, A., et al.: DynTile: parametric tiled loop generation for parallel execution
on multicore processors. In: IPDPS 2010, pp. 1–12, April 2010

7. Irigoin, F., Triolet, R.: Supernode partitioning. In: POPL 1988, pp. 319–329. ACM,
New York (1988)

8. Kim, D., et al.: Multi-level tiling: M for the price of one. In: SC 2007, pp. 1–12,
November 2007

9. Meister, B., Loechner, V., Clauss, P.: The polytope model for optimizing cache
locality. Technical report, Technical report RR 00–03, ICPS-LSIIT (2000)

10. Padua, D.A., Wolfe, M.: Advanced compiler optimizations for supercomputers.
Commun. ACM 29(12), 1184–1201 (1986)

11. Renganarayanan, L., et al.: Parameterized tiled loops for free. In: PLDI 2007, pp.
405–414. ACM, New York (2007)

12. Wolfe, M.: Iteration space tiling for memory hierarchies. In: Proceedings of the
Third SIAM Conference on Parallel Processing for Scientific Computing, pp. 357–
361. SIAM, Philadelphia (1989)

13. Wolfe, M.: More iteration space tiling. In: SC 1989, pp. 655–664. ACM, New York
(1989)

14. Xue, J.: Loop Tiling for Parallelism. Kluwer Academic Publishers, Norwell (2000)

Automatically Optimizing Stencil Computations
on Many-Core NUMA Architectures

Pei-Hung Lin1(B), Qing Yi2, Daniel Quinlan1,
Chunhua Liao1, and Yongqing Yan2

1 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
lin32@llnl.gov

2 University of Colorado, Colorado Springs, CO 80918, USA

Abstract. This paper presents a system for automatically supporting
the optimization of stencil kernels on emerging Non-Uniform Memory
Access (NUMA) many-core architectures, through a combined compiler
+ runtime approach. In particular, we use a pragma-driven compiler to
recognize the special structures and optimization needs of stencil com-
putations and thereby to automatically generate low-level code that
efficiently utilize the data placement and management support of a
C++ runtime on top of NUMA API, a programming interface to the
NUMA policy supported by the Linux kernel. Our results show that
through automated specialization of code generation, this approach pro-
vides a combined benefit of performance, portability, and productivity
for developers.

1 Introduction

Modern architectures increasingly use a large number of cores to boost appli-
cation performance. To reduce the cost of using a global bus to support cache
coherence, these cores are typically decomposed into a hierarchy of NUMA nodes,
illustrated in Fig. 1(a). Figure 1(b) shows the widely varying memory latencies
across the eight NUMA cores in a single compute node. To attain high perfor-
mance, applications need to be aware of these different latencies to reduce the
overhead of remote data accesses. In addition to the obvious performance bene-
fit, such a design offers potential portability to future architectures, which may
no longer support cache coherence across different NUMA nodes.

It is well known that significant developer effort is required to decompose an
application into separate memory spaces and then explicitly reference remote
data based on their locations. Instead of burdening developers with the effort,
which degrades their productivity, we propose an automated approach, where
user applications are written using a conventional SMP programming model,
e.g., OpenMP [18], and a compiler is used to automatically translate the high
level specifications down to a lower level implementation that explicitly manages
local and remote memory references and by invoking a runtime library, flexibly
manages the distribution and relocation of data.

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 137–152, 2017.
DOI: 10.1007/978-3-319-52709-3 12

138 P.-H. Lin et al.

Fig. 1. AMD 6380 CPU: (a) NUMA
hierarchy; (b) Latency distance matrix

Fig. 2. Stencil distance in a 2D repre-
sentation

This paper presents such a compiler and runtime combination for an impor-
tant class of scientific kernels, the stencil computations, which are generally
considered one of the most fundamental kernels of scientific simulations and are
widely used in solving problems such as partial differential equations. As illus-
trated by Fig. 2, a typical stencil kernel iteratively modifies each element of a
regular grid based on values of its neighboring elements. The number of neigh-
bors in the computation can vary significantly depending on the distances of the
neighbors and the dimension of the grid.

The regular structures of the stencils make them ideal candidates for high
performance computing on the latest ccNUMA (cache coherent NUMA) architec-
tures, which use inter-node communication between cache controllers to support
cache coherence across cores. A principle to obtaining high performance on such
systems is to have each core perform local computations most of the time and to
limit cache coherence induced traffic among neighboring nodes, thereby avoiding
traffic congestion. Such constraints are naturally satisfied by decomposing the
underlying grid of a stencil kernel, e.g., the one in Fig. 2, into blocks so that the
composition of the grid matches the underlying topology of the NUMA cores.
Then, each block of data, together with the computation that modifies it, can
be permanently allocated to its corresponding NUMA core, eliminating global
data movements and maintaining a consistent level of locality throughout.

We have developed a pragma-driven compiler and a runtime library to accom-
plish the above for stencil computations. The compiler is designed to recognize
the special structures of stencil computations and thereby to automatically gen-
erate low-level C code that explicitly distinguishes local and remove memory
references to efficiently utilize the underlying data placement and management
scheme supported by a runtime library on top of NUMA APIs (libnuma) [12].
We show that through automated specialized code generation for stencils, our
approach provides a combination of good performance, architecture portability,
and productivity for developers. Our technical contributions include:

– We present how to use specialized code generation to take advantage of the
structures of stencil codes and thereby automatically provide advanced opti-
mization support for these kernels on NUMA architectures.

Automatically Optimizing Stencil Computations 139

– We study the implications of varying optimization schemes for ccNUMA and
demonstrate the importance of coordinated compiler and runtime support.

The rest of the paper is organized as follows. Section 2 presents the pro-
gramming interface of our system. Sections 3 and 4 present our stencil compiler
and runtime library. Section 5 presents experimental results. Section 6 discusses
related work. Section 7 summarize our conclusions.

1: #pragma stencil s1 time <t> array [X*Y] <A0,Anext>
2: for (t = 0; t < timesteps; t++) {
3: if (t%2 == 0) { old_a = A0; a = Anext; }
4: else {a = A0; old_a = Anext; }
5: #pragma stencil s1 data <i,j> array <old_a,a> halo <-1,1> <-1,1> copy_halo
6: for (int i = 1; i < X-1; i++)
7: for (int j = 1; j < Y-1; j++)
8: old_a[i][j] = (a[i-1][j]+a[i+1][j]) + a[i][j-1] + a[i][j+1]))/4.0;
9: }

Fig. 3. Example: 2-D stencil with the optimization pragma

2 The Programming Interface

The programming interface of our system includes a set of pragma notations,
illustrated by lines 1 and 5 of Fig. 3, to describe various properties of a stencil.
Each pragma identifies an immediately following loop as part of a stencil com-
putation to be optimized, by specifying the following properties of the stencil.

– A name that uniquely identifies the stencil kernel, so that multiple pragmas
can be used to collectively define a single stencil. For example, both pragmas
in Fig. 3 use s1 as the stencil name, with line 1 specifying the time dimension
of the stencil, and line 5 the data dimensions.

– The time dimensions of the stencil, expressed using the notation t ime
<v0 . . . vm>, where each vi(i = 0, . . . ,m) specifies the index variable of a loop
that enumerates a time dimension of the stencil. In Fig. 3, the time dimension
is enumerated by the t loop at line 2 and specified inside the pragma at line 1.

– The data dimensions of the stencil, expressed using the notation data
<v0 . . . vn>, where each vi(i = 0, . . . , n) specifies the index variable of a loop
that enumerates different elements of a stencil data dimension. In Fig. 3, the
data dimensions are enumerated by the i and j loops at lines 6–7 and are
specified inside the pragma at line 5.

– The names and dimension sizes of the arrays used to store the stencil data,
specified using the notation array [d1∗. . .∗dm] <a0, . . . , al>, where d1∗. . .∗dm
defines the dimensionality (m) of the stencil, the size of each dimension,
and the name ai(i = 0, . . . , l) of each array, as illustrated by the [X*Y]
<A0,Anext> and <old a, a> declarations at line 1 and line 5 of Fig. 3.

140 P.-H. Lin et al.

– The neighboring references used to update each element of the stencil, spec-
ified using the notation halo <l0, r0> . . .<ln, rn>, where each <li, ri> (i =
1, . . . ,n) specifies the neighbors from the left (li) and right (ri) of data dimen-
sion i. For example, the simple stencil in Fig. 3 uses four neighbors, one from
each side of each dimension, to update each element.

– Optimization configurations, e.g., halo copy or halo no copy (the default
option) to indicate whether to pre-copy values of the neighboring references
to local variables before using them to update halo regions of each core.

Each pragma defines the immediately following loops as new components of the
stencil. Pragmas with the same identifier, which can span multiple procedures,
are required to collectively satisfy the following constraints.

– If a stencil has multiple pragmas, the data dimensions must be nested inside
the time dimensions. In particular, when across procedures, each inner pragma
must be inside a procedure invoked by the body of an outer one, and the
function that contains the inner pragma must not be invoked elsewhere for
other purposes (a function specialization pre-transformation can be applied
by the compiler to automatically support this property).

– Each pragma may introduce a set of arrays used to store the stencil data. All
stencil arrays must have the same size, and when multiple sets of arrays are
introduced, each inner declaration introduces a set of new names aliased to
those introduced by the outer pragmas.

– When modifying each element at subscript (v0, . . . , vn) of a stencil array, the
computation only uses elements from the other arrays that are within the
neighborhood of (v0+l1, . . . , vn+ln) and (v0+r1, . . . , vn+rn), where (li, ri)i =
0, . . . ,n is the hallo region of each dimension.

The compiler relies on the above properties to ensure safety and profitability
of optimizations. In particular, if the stencil modifies an array ai by reading
only neighbors from the other arrays, no synchronization is needed when using
OpenMP to parallelize the data dimension loops within each time step. On
the other hand, if ai is modified by reading its own neighborhood, additional
synchronizations are needed to make sure up-to-date values of ai are used. Our
system currently support only the first case (a.k.a. the jacobi type of stencils).

3 The Stencil Compiler

Figure 4 shows the algorithm implemented by our compiler to automatically
convert an annotated stencil kernel into its lower level implementation (llustrated
in Fig. 5) through the following three steps inside function transform-stencil.

– Data placement: decompose and copy the data onto the proper NUMA
cores, illustrated by lines 2–7 of Fig. 5, which create two new arrays of
type MulticoreArray<float>, a distributed array type defined in our runtime
library with pre-allocated data on the NUMA cores, and then concurrently
copy the original data into these distributed arrays. The original stencil code
is then modified to use the new arrays, named Anext and A0 In Fig. 5.

Automatically Optimizing Stencil Computations 141

transform-stencil (p : stencil pragma, input: stencil code to modify)
1: t=time loop(p); arr=stencil arrays(p,t); insert gen-distribution(p,arr) before t in input;

for each array a ∈ arr do: replace a with multicore arr(a) in t; enddo;
for each function g called inside t and parameter x of g s.t. x ∈ stencil arrays(p) do

replace x with multicore array(x) in g; enddo
2: d = data dims(p); local=gen-stencil-local(p, d); edges=gen-stencil-boundaries(p,local,d);

replace outermost loop(d) with gen manycore compute(local, edges) in input;
if configured to do so then apply aray copying opt(input, stencil arrays(p,d), hallo(p)) endif

3: insert gen-data-collection(p, arr) after t in input;

gen-stencil-local(p: stencil pragma, d: stencil data dimensions)
2.1: res = copy(outermost loop(d));
2.2: for each loop l ∈ d do:

locall = replace stencil size(l) with local-size(p, l) in l; replace l with locall in res; enddo
2.3: for each a[sub] ∈ res s.t. a ∈ stencil arrays(p) do: replace a[sub] with local ref(a[sub]); enddo

return res;

gen-stencil-boundaries(p: stencil pragma, local: local computation, d: stencil data dimensions)
res=empty; cdims = ∅;
for each loop l : for i = loi..hii ∈ d s.t. halo(p, l) = (halol, halor) do

2.4: leftl = rightl = empty;
2.5: for each iteration v of l s.t. loi + halol ≤ v ≤ loi do

leftv = replace i with v in copy(body of l); append leftv to the end of leftl; enddo
for each iteration v of l s.t. hii ≤ v ≤ hii + halor do
rightv = replace i with v in copy(body of l); append rightv to the end of rightl; enddo

2.6: left edge=replace l with leftl in copy(local); right edge = replace l with rightl in copy(local);
2.7: for each a[sub] in left edge s.t. a ∈ stencil arrays(p) and offset(sub,l) < loi do

replace a[sub] with remote stencil from left(r); enddo
for each a[sub] in right edge s.t. a ∈ stencil arrays(p) and offset(sub,l) > hil do

replace a[sub] with remote stencil from right(r); enddo
2,8: append gen-stencil-boundaries(p,left edge,cdims) with conditional at the end of res;

append gen-stencil-boundaries(p,right edge,cdims) with conditional at the end of res;
cdims = cdims ∪ {l};

enddo
return res;

Fig. 4. Algorithm: transforming stencil computations

– Many-core computing: deploy the NUMA cores, which have been pre-allocated
with stencil data in the constructor of the MulticoreArrays at line 2 of Fig. 5,
to each concurrently update their pre-allocated data (lines 14–18 of Fig. 5).

– Data collection: copy the distributed data at each NUMA core back to the
original stencil arrays, illustrated at lines 21–24 of Fig. 5.

The data placement and collection steps serve the purposes of copying data
back and forth between the original and the distributed stencil arrays. They rep-
resent the most significant overhead of the parallelization optimization and are
placed outside of the outermost time loop of the annotated stencil computation,
so that the overhead can be amortized when the computation is repeated many
times (which is typical in practice). As summarized at lines 16–17 of Fig. 5, the
many-core computing step extracts the following two components of the compu-
tation to be performed on each NUMA core.

The inner stencil, which modifies and reads only data that are on the local
core, illustrated by lines 3–5 of Fig. 6. The inner stencil is extracted by invoking
the gen-stencil-local algorithm in Fig. 4, which includes three steps: (2.1) make a
copy of the outermost data dimension loop, e.g., loop i in Fig. 3, which represents
a single time step iteration of the stencil; (2.2) modify the copy so that the upper

142 P.-H. Lin et al.

1: /* initialize local arrays and their dimensions on each core*/
2: MulticoreArray<float> _Anext(nz,ny,nx,CORE_NUM,0,true), _A0(nz,ny,nx,CORE_NUM,0,true);
3: int numberOfCores = _A0.get_numberOfCores();
4: #pragma omp parallel for private(i,j,k)
5: for (int core = 0; core < numberOfCores; core++) {
6: ... copy Anext and A0 into _Anext and _A0 ...
7: }
8: MulticoreArray<float>* _old_a, *_a;
9: #pragma stencil s1 time <t> array <_A0,_Anext>
10: for (t = 0; t < timesteps; t++) {
11: if (t%2 == 0) { _old_a = _A0; _a = _Anext; }
12: else {_a = _A0; _old_a = _Anext; }
13: #pragma stencil s1 data<i,j> array<_old_a,_a> halo<-1,1><-1,1> dist<blocked>
14: #pragma omp parallel for private(i,j,k)
15: for (int core = 0; core < numberOfCores; core++) {
16: ...compute 2D stencil on the local arrays of each core ...
17: ...compute boundary values by communicating with the neighbors ...
18: }
19: }
20: #pragma omp parallel for private(i,j,k)
21: for (int core = 0; core < numberOfCores; core++) {
22: ... copy _Anext and _A0 back into Anext and A0 ...
23: }

Fig. 5. Example: structure of lower-level implementation of Fig. 3

bound of each data dimension (e.g., X and Y in Fig. 3) is replaced with the size
of the local portion of the dimension (e.g., c.sz0 and c.sz1 in Fig. 6); and (2.3)
replace references to the global stencil arrays (e.g., old a and a in Fig. 5) to
instead use their local copies (e.g., old a local and a local in Fig. 6).

The stencil boundaries, which modify data located at either end of a data
dimension and need to read data from the neighboring cores to correctly perform
the updates. These boundary computations are extracted by invoking the gen-
stencil-boundaries algorithm in Fig. 4. Since two boundaries at both ends must
be considered for each data dimension, 2n cases are generated for a stencil of n
dimensions. As example, the boundary cases of the two-dimensional stencil in
Fig. 3 are illustrated at lines 6–23 of Fig. 6. The algorithm in Fig. 4 uses a variable
cdims to keep track of all the data dimensions already processed and uses two
variables, leftl and rightl, to store computations that modify either end (left or
right) of each data dimension l (step 2.4). Each boundary case is extracted from
loop l by removing the loop and replacing its index variable with an iteration
number in the left or right halo region of the dimension (step 2.5). Next, the
original l loop in the inner stencil is replaced with a corresponding boundary case
to generate left edge and right edge, which contain unrolled halo iterations
of l on the left and right boundaries respectively (step 2.6). Then, step 2.7
replaces the stencil array references that are outside the local core with remote
references that explicitly fetch the data from the neighboring cores. Finally, for
each stencil boundary computation already generated and saved in left edge and
right edge, invoke the gen-manycore-stencil-boundary function again to generate
computations at the corners of multiple distributed data dimensions (step 2.8),
which need to access remote data from two or more neighbors. All boundary

Automatically Optimizing Stencil Computations 143

1: float * a local = (* a).arr ptrs[core], * old a local = (* old a).arr ptrs[core];
2: Core<float>& c = (* a).core info[core];
3: for (i=1; i<c.sz0-1; i=i+1) /* computation with only local references */
4: for (j=1; j<c.sz1-1; j=j+1)
5: old a local[i+j*c.sz0] = (a local[i-1+j*c.sz0] + a local[i+1+j*c.sz0] +

a local[i+(j-1)*c.sz0] + a local[i+(j+1)*c.sz0])/4.0;
6: if (!c.is leftmost core[0]) /* left boundary computation at dimension 0*/
7: for (j=1; j<c.sz1-1; j=j+1)
8: old a local[j*c.sz0] = ((* a).arr ptrs[c.l neighbor[0]] [(c.l sz0-1)+j*c.l sz0]

+ a local[(1+j*c.sz0]+ a local[(j-1)*c.sz0] + a local[(j+1)*c.sz0])/4.0;
9: if (!c.is rightmost core[0]) /* right boundary computation at dimension 0*/
10: for (j=1; j<c.sz1-1; j=j+1)
11: old a local[c.sz0-1+j*c.sz0] = (a local[c.sz0-2+j*c.sz0]+(* a).arr ptrs[c.r neighbor[0]]

[1+j*c.r sz0] + a local[c.sz0-1+(j-1)*c.sz0] + a local[c.sz0-1+(j+1)*c.sz0])/4.0;
12: if (!c.is leftmost core[1]) /* left boundary computation at dimension 1*/
13:: for (i=1; j<c.sz0-1; i=i+1)
14: old a local[i] = a local[i-1] + a local[i+1]

+(* a).arr ptrs[c.l neighbor[1]] [i+(c.l sz0-1)*c.l sz0]+ a local[i+c.sz0)/4.0;
15: if (!c.is leftmost core[0]) /* if core is additionally on the boundary at dimension 0 */
16: { left-left corner computation ... }
17: if (!c.is rightmost core[0]) /* if core is additionally on the boundary at dimension 0 */
18: { right-left corner computation ... }
19: if (!c.is rightmost core[1]) /* right boundary computation at dimension 1*/
20: for (i=1; i<c.sz0-1; i=i+1)
21: old a local[i+(c.sz1-1)*c.sz0] = (a local[i-1+(c.sz1-1)*c.sz0]+ a local[i+1+(c.sz1-1)*c.sz0]

+ a local[i+(c.sz1-2)*c.sz0] +(* a).arr ptrs[c.r neighbor[1]][i])/4.0;
22: if (!c.is leftmost core[0]) /* if core is additionally on the left boundary at dimension 0 */
23: { left-right corner computation ... }
24: if (!c.is rightmost core[0]) /* if core is additionally on the right oundary at dimension 0 */
25: { right-right corner computation ... }

Fig. 6. Example: local and boundary computation per core

cases are then wrapped inside a sequence of if conditionals, shown at lines 6, 9,
12, 15, 17, 19, 22, and 24 in Fig. 6, before being appended to the result.

The low-level implementation in Fig. 6 is essentially the result of numerous
splitting and unrolling transformations to the nested data dimension loops of the
stencil. Each split loop nest contains a unique combination of local and remote
data references, with each remote reference triggering a data movement between
a pair of neighboring cores. Two benefits are offered by such an implementation.
First, the implementation knows and explicitly enumerates the exact location
of each data item and thus incurs no runtime address translation overhead and
requires no cache coherency support from the hardware. Second, the separa-
tion of different combinations of local vs. remote references allows additional
optimization opportunities, e.g., by prefetching the remote references explicitly,
shown as the last operation of step (2) of the algorithm in Fig. 4. The complex-
ity of the low-level implementation, while nearly impossible for a developer to
manually manage, is easily managed by compilers by recursively enumerating all
the boundary cases, as demonstrated, enhancing application portability.

4 Runtime Support

Our runtime library provides a C++ abstraction, the MulticoreArray tem-
plated class used at line 2 of Fig. 5, to support NUMA-aware stencil com-
putation. The abstraction internally integrates the thread decomposition and

144 P.-H. Lin et al.

scheduling support in OpenMP with data placement support through libnuma.
Each OpenMP thread is bound to a hardware core, through the system library
sched setaffinity(). The NUMA topology is referenced by the runtime for the
binding of OpenMP thread and hardware core, and libnuma is invoked in the con-
structor of the abstraction to allocate a distributed stencil array of the desired
data dimensions, with its internal data placed onto a pre-specified number of
different hardware cores. To minimize remote memory access latency, neighbor-
ing stencil data are allocated either on hardware cores located inside the same
NUMA node, or cores that belong to adjacent NUMA nodes. Halo region copying
is supported to help developers manage data movement across cores.

4.1 Thread Decomposition and Management Using OpenMP

Our runtime allows the number of hardware cores to be used for each data
dimension of the stencil to be specified when invoking the constructor of the
MulticoreArray abstraction. If unspecified, the maximal number of cores that
match the underlying system topology is used. and each core is allocated with
blocks of distributed data to be used for later computation. The runtime relies
on libnuma to retrieve NUMA distances, a relative distance in the machine
topology between two NUMA nodes, among all available NUMA nodes. A multi-
dimensional topology can be constructed with the available NUMA information.

Based on the core numbers to be used for each stencil dimension, the runtime
use the omp set num threads() and omp parallel for clause to setup the paral-
lelization environment. The system call sched setaffinity() is used to enforce CPU
affinity and bind the CPU core to a designated OpenMP thread. For example,
given a fully parallelized configuration using 64 OpenMP threads on a 64-core
machine, OpenMP threads with ID 0 to 7 will be bound to hardware cores with
ID 0 to 7. These 8 hardware cores reside in NUMA node 0 according to the
NUMA information from the hardware specification. This thread binding is dif-
ferent from the default OpenMP support, which binds an OpenMP thread to
any available hardware core based on the system status. In contrast, our runtime
exerts full control in the thread scheduling for the many-core hardware.

4.2 NUMA-aware Data Placement

Our runtime uses internal data structures inside the MulticoreArray abstrac-
tion to decompose a stencil array into a collection of sub-arrays. Each sub-array
separately stores the stencil data to be operated in a designated thread and is
stored in a continuous memory space on a hardware core, together with addi-
tional information about the size of the local data and pointers to data that
belong to its neighboring threads. Multi-dimensional distribution is used to dis-
tribute blocked data to the sub-arrays. By default, each sub-array (except the
last one) contains the same number of distributed elements. The runtime then
evenly assigns sub-arrays to OpenMP threads based on the sub-array IDs and
OpenMP thread IDs. Sub-arrays with adjacent ID numbers are assigned to the

Automatically Optimizing Stencil Computations 145

same NUMA node or adjacent NUMA nodes when possible. After the assign-
ment, the function numa alloc local() from libnuma is called by each thread to
allocate memory space for the distributed data, thereby enforcing all the dis-
tributed data are allocated to their designated OpenMP threads and hardware
cores/NUMA nodes. When the number of sub-arrays is more than the available
hardware cores, our runtime assigns multiple sub-arrays with neighboring IDs
to the same OpenMP thread. This again enforces that adjacent sub-arrays are
allocated to the same or neighboring NUMA nodes to reduce memory references
crossing NUMA nodes. All the threads use the numa alloc * functions from
libnuma to allocate local memory for their data.

Data elements inside a MulticoreArray object can be accessed in two dif-
ferent ways: (1) through a high-level interface that allows data to be accessed
based on their locations in the original stencil arrays using subscript notations,
with the subscripting operator internally translating the global coordinates to
the appropriate sub-arrays and local subscripts within the subarrays; and (2)
through the low-level interface, which directly references the sub-array pointers
and their local elements and is therefore much more efficient. The high-level
interface is provided to the developers for convenience, while the low-level inter-
face is used by our compiler, illustrated in Fig. 6, to ensure efficiency of the
generated code.

(a) No local halo (b) Detached halo

Fig. 7. Halo management Fig. 8. 3D Stencil

Our runtime is specialized for the NUMA architecture and is different from
the default OpenMP runtime in two key aspects: (1) it decomposes data based
on the NUMA topology to minimize exchanges across NUMA nodes, whereas
OpenMP uses the first-touch policy; and (2), it supports multi-dimensional data
decomposition, with data elements in each decomposed sub-array residing in
adjacent memory spaces for better spacial locality. Through the pragma-driven
programming interface, our combined runtime and compiler support allows
developers to inject domain-specific knowledge into the data and computation
decomposition process to maximize application performance.

4.3 Halo Data Management

As stencil data are distributed onto different cores and updated concurrently,
each thread needs data from its neighbors to update elements on the boundaries

146 P.-H. Lin et al.

of its local block. These neighboring data are called halo regions of each thread.
Our system supports two approaches to managing halo regions, illustrated in
Fig. 7. The first approach (shown in Fig. 7(a)) keeps the halo regions in the
remote memory, and the second (Fig. 7(b)) replicates the remote data on the local
core. The different storage forms impact the performance of the computation by
changing when the remote data is fetched (e.g., just in time before they are
used vs. far ahead of time using detached halo). Further, hardware with small
cache capacity may prefer no local halo storage to save space. The first halo
management approach, with computation fetching halo data remotely from the
neighboring cores, is adopted by the compiler generated code shown in Fig. 6.

5 Experimental Results

We implemented our stencil compiler by combining the POET program trans-
formation language [24] with the ROSE C/C++ compiler [19]. The compiler is
evaluated by using it to automatically generate low-level implementations for
four 3D stencil kernels, with 7-point, 13-point, 19-point, and 25-point updates
respectively. In particular, each kernel repetitively modifies two 3D stencil arrays
of the same size, with each element of one array modified using neighboring ele-
ments of the other. The 7-point stencil updates each element using two neigh-
boring elements from each dimension of the other array, as illustrated by the
2D stencil code in Fig. 3. The 13-point stencil updates each element using four
neighboring elements of each dimension, as illustrated in Fig. 8, and so on. Each
kernel has a baseline OpenMP implementation, where a single OpenMP parallel
for pragma is used to parallelize the outermost data dimension loop of each sten-
cil. In contrast, the implementation generated by our compiler (the stencilOpt
version) parallelizes all the data dimensions of the stencil instead of just the out-
ermost one as the preferred configuration. Further, each stencil array is placed
explicitly on the appropriate NUMA cores, and system-level affinity binding is
used to ensure each thread only modifies its local data. The baseline OpenMP
implementations have their data distributed among NUMA nodes following the
first-touch policy. The OpenMP thread affinity is also setup in OpenMP envi-
ronment. In contrast, the stencilOpt implementations use the data distribution
strategy described in Sect. 4.2.

All kernel implementations are evaluated on a 64-core AMD 6380 workstation
comprised of four sockets (16 cores per socket). Each core has a 16 KB L1 data
cache, and every two cores share a 2 MB L2 cache memory. Every 8 cores form
a NUMA node and share a 8 MB L3 cache. The NUMA distance matrix in
Fig. 1 shows the relative memory latencies among the different NUMA nodes,
and Fig. 1(a) shows the structure of the NUMA hierarchy. All implementations
were compiled on the machine using gcc with –O2 option. Each implementation
is evaluated five times, and its average performance is reported. The performance
variations across different runs are generally under 3%.

Automatically Optimizing Stencil Computations 147

Fig. 9. Speedups attained by our compiler over baseline OpenMP implementations

5.1 The Overall Performance

Figure 9 shows the speedups attained by using our compiler to automatically
generate low-level implementations (the stencilOpt implementation) for the four
3D stencil kernels, when the size of each data dimension ranges from 32 to
512 and the number of time iterations from 8 to 24. From these results, when
the number of time iterations is 24, our stencilOpt implementation were able
to perform better than the OpenMP implementation in all cases except for the
7-point stencil, which has the fewest neighboring data references, where the sten-
cilOpt implementation performed worse than the OpenMP one when the problem
sizes are ≤128. When the number of neighboring references increases, the sten-
cilOpt implementation has uniformly attained a speedup, ranging from factors
of 1.1 to 3.7, over the OpenMP implementation. In most cases when the problem
size or the number of neighboring references increases, so does the performance
speedup over the OpenMP implementation. The overall results indicate that the
stencilOpt implementation can manage memory and neighboring core communi-
cations much better than the baseline OpenMP implementation, indicating the
effectiveness of NUMA-aware data placement by our runtime.

When the number of time iterations equals 8, the speedups attained by sten-
cilOpt generally follow a similar pattern but are much worse than the time = 24
cases. This is because when many fewer iterations of the stencil computation
are repeated, there are insufficient reuses of the distributed stencil arrays to
compensate for the extra overhead of constructing the distributed stencil arrays
and copying back and forth between the original stencil arrays and the distrib-
uted ones. When amortized at least 24 times, which are much smaller than the
number of time iterations in realistic applications, the overhead is no longer a
significant factor in performance, and significant speedups can be attained.

5.2 Impact of Execution Configurations

Figure 10 compares the performance of the OpenMP and stencilOpt implemen-
tations when using different numbers of threads for the 7-point stencil kernel
when the array size is 2563 and when the computation is repeated 24 times. The

148 P.-H. Lin et al.

Fig. 10. Impact of thread configurations on 24 time iterations of 2563 7-point stencil

OpenMP implementations use the default OpenMP policy to schedule these
threads onto different hardware cores. On the other hand, the stencilOpt imple-
mentations explicitly bind the threads to individual hardware cores to match
the actual topology of the stencil when possible, e.g., by parallelizing all data
dimensions to form a n × n × n topology. From Fig. 10, the best performance
by OpenMP is attained when using only 8 out of the 64 cores available on the
machine. When more than 8 threads are used, the performance goes down due to
network congestions created by the data exchanges among the randomly assigned
cores. In contrast, the StencilOpt implementation is able to fully utilize the 64
cores available on the machine to attain close to a factor of 13 speedup over the
sequential implementation, compared to a factor of 5 by OpenMP attained when
using 8 cores. Although the stencilOpt implementation incurs more significant
overhead than the OpenMP baseline, as demonstrated when using fewer than
16 cores, the benefit of better data placement and communication management
outweighs the cost when using at least 32 cores.

Fig. 11. Impact of halo copying on 24 time iterations of 2563 7-point stencil

Automatically Optimizing Stencil Computations 149

5.3 Implications of Halo Management

Figure 11 compares the performance of stencilOpt implementations when using
detached halo management vs. using no explicit halo management, which is the
default option used in Sects. 5.1 and 5.2. In particular, the compiler supports
detached halo management by prefetching all the remote memory references
into local arrays before using the local copies in the actual computation. The
main benefit of pre-fetching halo regions is to enable each core reuse its local
copies within a single time step. However, the more remote memory references
are involved, the larger memory footprint each thread needs to hold all the local
copies, and the large footprints may incur additional cache misses when the
memory demand is high. For the 2563 7-point stencil with 24 time iterations,
the performance of stencilOpt either with or without halo copying is similar to
each other for a majority of cases except when using 256 threads, where since
each hardware core needs to host 4 threads, each thread has a smaller cache
allocation which is insufficient to hold all the local copies.

Note that halo copying is often used to simplify the complexity of software
development when manually implementing stencil computations on distributed
memory platforms, as it is impractical to manually enumerate the different com-
binations of local and remote references as shown in the automatically gener-
ated code in Fig. 6. Using a compiler + runtime combined approach make it
unnecessary to hardcode this optimization into the high level source code of the
computation, therefore promoting application productivity and portability.

6 Related Work

Existing work has recognized the importance of extending OpenMP compil-
ers to support NUMA architectures to attain high performance. For example,
Bircsak et al. [2] investigated user-supplied page migration and data layout
directives. Chapman et al. [6] evaluated various ways that OpenMP may be
used for performance-oriented programming on ccNUMA Architechtures. Huang
et al. [11] worked on enabling locality-aware computing in OpenMP by allow-
ing the developer to manipulate data locations hierarchically. The directives we
propose are specially tailored for using NUMA aware OpenMP to support the
optimization needs of stencil computations and are therefore not intended as
part of the general programming model of OpenMP.

Previous research on optimizing stencil computations have mostly focused
on enhancing their data locality and parallelism in concert [7,8,13,20,22,23] for
multi-core or GPU platforms. These approaches span both manual and auto-
matic code optimizations as well as automated performance prediction and
tuning of the optimization configurations (e.g., blocking factors). Bondhugula
et al. [4] developed an automated framework that performs parallelization and
locality optimizations of stencil codes using the polyhedral model. Liu and Li [15]
presented an asynchronous algorithm for reducing synchronization costs and
improving locality in stencil computations. Christen et al. [7] presented a strat-
egy for improving locality and exploiting parallelism in a stencil code appearing

150 P.-H. Lin et al.

in a Bio-heat equation targeting the Cell BE and Nvidia GPUs. Our work also
includes an automated source-to-source compiler for stencil computations. How-
ever, we target many-core NUMA architectures and aim to provide a directive
driven framework to support the automated cache management for stencil com-
putations on such architectures.

Datta et al. [9,10] presented an auto-tuning approach to search for the best
optimizations for stencil codes, including their data distribution schemes for
NUMA systems, However, their NUMA-aware strategy relies on the first-touch
memory policy to perform a page-based distribution. Shaheen and Strzodka [21]
focus on spatial-temporal data locality, parallelization, regular memory access,
and data-to-core affinity to provide efficient temporal blocking schemes for stencil
computations running on ccNUMA systems. Our NUMA-aware decomposition
and distribution is driven by topological features of both the stencil arrays and
the NUMA hierarchy. In addition to data-to-core affinity, our distribution con-
siders minimizing the overhead by selecting remote access links with the least
memory latencies.

Bolosky et al. [3] explored the relations between kernel-based NUMA man-
agement policies and multiprocessor memory architectures. Various research
efforts have focused on performance evaluation on NUMA architecture using
programming models such as OpenMP [6,17] or MPI [14]. Navarro et al. [16]
used Locality Communication Graph (LCG) to represent the data locality and
used compiler techniques to generate efficient loop iteration/data distribution
for NUMA machines. Other research efforts have focused on thread and mem-
ory placement [1], data distribution, migration, and replication [5]. This paper
present a NUMA study over the latest multi-core NUMA CPUs.

7 Conclusion

This paper presents a pragma-driven special purpose optimizing compiler to
automatically convert stencil computations in scientific applications to low-level
implementations that invoke a runtime library to explicitly manage the data
placement and remote memory references on NUMA many-core architectures.
Our automatically optimized code have consistently outperformed OpenMP
implementations that use first-touch policies to schedule the computations. We
show that through automatically specialized code generation for stencils, our
approach provides a combination of good performance, architecture portability,
and productivity for developers.

Acknowledgment. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. LLNL-CONF-697198.

Automatically Optimizing Stencil Computations 151

References

1. Antony, J., Janes, P.P., Rendell, A.P.: Exploring thread and memory placement on
numa architectures: Solaris and Linux, UltraSPARC/FirePlane and Opteron/Hy-
perTransport. In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.)
HiPC 2006. LNCS, vol. 4297, pp. 338–352. Springer, Heidelberg (2006). doi:10.
1007/11945918 35

2. Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J., Nelson, C.A., Offner,
C.D.: Extending OpenMP for NUMA machines. In: ACM/IEEE 2000 Conference
Supercomputing, pp. 48–48. IEEE (2000)

3. Bolosky, W.J., Scott, M.L., Fitzgerald, R.P., Fowler, R.J., Cox, A.L.: NUMA poli-
cies and their relation to memory architecture. In: ACM SIGARCH Computer
Architecture News, vol. 19, pp. 212–221. ACM (1991)

4. Bondhugula, U., Hartono, A., Ramanujan, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. In: PLDI 2008: Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 101–113, New York, USA (2008)

5. Bull, J.M., Johnson, C.: Data distribution, migration and replication on a
cc-NUMA architecture. In: Proceedings of the Fourth European workshop on
OpenMP (2002)

6. Chapman, B., Patil, A., Prabhakar, A.: Performance oriented programming
for NUMA architechtures. In: Eigenmann, R., Voss, M.J. (eds.) WOMPAT
2001. LNCS, vol. 2104, pp. 137–154. Springer, Heidelberg (2001). doi:10.1007/
3-540-44587-0 13

7. Christen, M., Schenk, O., Neufeld, E., Messmer, P., Burkhart, H.: Parallel data-
locality aware stencil computations on modern micro-architectures. In: IPDPS
2009: Proceedings of the 2009 IEEE International Symposium on Parallel and
Distributed Processing, pp. 1–10, Washington, DC, USA (2009)

8. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L.,
Patterson, D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing (SC 2008) (2008)

9. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L.,
Patterson, D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-
tuning on state-of-the-art multicore architectures. In: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, p. 4. IEEE Press (2008)

10. Datta, K., Williams, S., Volkov, V., Carter, J., Oliker, L., Shalf, J., Yelick, K.:
Auto-tuning the 27-point stencil for multicore. In: Proceedings of iWAPT2009:
The Fourth International Workshop on Automatic Performance Tuning (2009)

11. Huang, L., Jin, H., Yi, L., Chapman, B.: Enabling locality-aware computations in
OpenMP. Sci. Prog. 18(3), 169–181 (2010)

12. Kleen, A.: A NUMA API for Linux. Novel Inc (2005)
13. Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ramanujam, J., Rountev, A.,

Sadayappan, P.: Effective automatic parallelization of stencil computations. SIG-
PLAN Not. 42(6), 235–244 (2007)

14. Li, S., Hoefler, T., Snir, M.: NUMA-aware shared-memory collective communi-
cation for MPI. In: Proceedings of the 22nd International Symposium on High-
Performance Parallel and Distributed Computing, pp. 85–96. ACM (2013)

http://dx.doi.org/10.1007/11945918_35
http://dx.doi.org/10.1007/11945918_35
http://dx.doi.org/10.1007/3-540-44587-0_13
http://dx.doi.org/10.1007/3-540-44587-0_13

152 P.-H. Lin et al.

15. Liu, L., Li, V.: Improving parallelism and locality with asynchronous algorithms.
In: PPoPP 2010: Proceedings of the 15th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, New York, NY, USA, pp. 213–222. ACM
(2010)

16. Navarro, A., Zapata, E., Padua, D.: Compiler techniques for the distribution of
data and computation. IEEE Trans. Parallel Distrib. Syst. 14(6), 545–562 (2003)

17. Nikolopoulos, D. S., Papatheodorou, T. S., Polychronopoulos, C. D., Labarta, J.,
et al.: Is data distribution necessary in OpenMP? In: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, p. 47. IEEE Computer Society (2000)

18. OpenMP: Simple, portable, scalable SMP programming. http://www.openmp.org
(2006)

19. Quinlan, D., et al.: ROSE Compiler Infrastructure. http://www.rosecompiler.org/
20. Rivera, G., Tseng, C.-W.: Tiling optimizations for 3D scientific computations. In:

Supercomputing 2000: Proceedings of the 2000 ACM/IEEE Conference on Super-
computing, Washington, DC, USA (2000)

21. Shaheen, M., Strzodka, R.: NUMA aware iterative stencil computations on many-
core systems. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium (IPDPS), pp. 461–473. IEEE (2012)

22. Song, Y., Li, Z.: New tiling techniques to improve cache temporal locality. In:
PLDI 1999: Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, New York, NY, USA, pp. 215–228 (1999)

23. Song, Y., Xu, R., Wang, C., Li, Z.: Data locality enhancement by memory reduc-
tion. In: Proceedings of the 15th ACM International Conference on Supercomput-
ing, Sorrento, Italy (2001)

24. Yi, Q.: POET: a scripting language for applying parameterized source-to-source
program transformations. Softw. Pract. Exp. 42(6), 675–706 (2012)

http://www.openmp.org
http://www.rosecompiler.org/

Formalizing Structured Control Flow Graphs

Amit Sabne(B), Putt Sakdhnagool, and Rudolf Eigenmann

Purdue University, West Lafayette, IN 47907, USA
{asabne,psakdhna,eigenman}@purdue.edu

Abstract. Structured programs are believed to be easier to under-
stand, and compiler friendly [5,10,45]. However, compilers do not process
the source programs directly; they instead work on control flow graphs
(CFGs) of the programs. Unfortunately, there is little formalization of
structured CFGs. This paper shows how the lack of formalization has led
to varying interpretations of structured CFGs. The paper next presents
new formalization of structured CFGs which eliminates the ambiguity.
Structured CFGs gain importance as they ease compiler optimizations,
decompilation, and help reduce the performance degradation caused by
thread divergence on SIMD units. The paper elaborates on these ben-
efits. It also shows that compilers, both front-ends and back-ends, may
generate unstructured CFGs from structured program sources, which
necessitates mechanisms to obtain structured CFGs from unstructured
ones.

Keywords: Control Flow Graphs (CFGs) · Structured programming ·
Structured CFGs · Irreducible CFGs

1 Introduction

Structured programming is a paradigm where programs are written using just
three base constructs [12,45], namely, (i) sequence of statements, (ii) if -then-else
blocks, and (iii) loops. Structured programming was sought for many reasons,
two important ones being readability of the program [10,45] and ease of ana-
lyzing the control flow [5,45]. While optimizing programs, compilers operate on
the control flow graph (CFG) of the program, which is usually built upon an
intermediate representation (IR), and not on the program source itself. A CFG
is a directed graph wherein the nodes represent basic blocks and the edges rep-
resent control flow paths [5]. Because compilers work on CFGs, structuredness
of CFGs becomes a more important consideration than the structuredness of the
program sources. The existing notion of structured programming assumes that
compiler-generated CFGs of structured programs are structured. A key insight
of this paper is that structured CFGs do not follow directly from structured
program source codes.

The prevalent notion [14,39] of structured CFGs considers three base patterns
similar to the structured program constructs mentioned above. They comprise a
sequence (Fig. 1a), a selection (Fig. 1b), and a loop (Fig. 1c). We argue that such
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 153–168, 2017.
DOI: 10.1007/978-3-319-52709-3 13

154 A. Sabne et al.

(a) Sequence (b) Selection (c) Loop

Fig. 1. Pictorially represented base structured patterns

pictorial depiction of base patterns alone is insufficient and leads to imprecision.
The “definition” fails to clearly distinguish a structured CFG from an unstruc-
tured one. Consider the CFGs in Fig. 2, which do not show any obvious match-
ing to the base patterns. Creating structured CFGs contrasts with structured
programming, where just by looking for the presence of unstructuring-causing
constructs, such as goto and break statements, unstructuredness can be easily
detected. The difficulty in doing the same in CFGs arises because the pictorial
representations of the base structured patterns do not show how to compose the
patterns into larger CFGs or decompose large CFGs.

Fig. 2. Are these CFGs structured? The base patterns in Fig. 1 fail to answer.

The central contribution of this paper is to formalize structured control flow
graphs. The paper does so by providing formal definitions of the base structured
patterns. It then presents a conceptual framework, called folding, that replaces
base structured patterns identified by the formalization with single nodes. The
repeated application of folding determines whether a given CFG is structured
or not.

The rest of this paper is organized as follows: Sect. 2 presents preliminary
CFG concepts. Section 3 elaborates the insufficiencies of past work in defining
structured control flow graphs. Section 4 presents definitions that represent var-
ious phenomena in CFGs and describes our formalizations of structured control

Formalizing Structured Control Flow Graphs 155

flow graphs. Structured CFGs ease compiler optimizations and decompilation.
They lower the penalty of divergent execution on SIMD units. Section 5 details
these benefits. Section 6 elaborates avenues open for research. Section 7 presents
results showing the existence of unstructuredness in compiler-generated control
flow graphs. Section 8 concludes the paper.

2 Preliminaries

This section presents common definitions and concepts applicable to CFGs that
lay foundations of this work.

Definition 1. Path: A path between nodes A and B is an ordered list of adja-
cent edges and vertices. The list begins with an out-edge of A, and ends with an
in-edge of B.

Definition 2. Condition Node: Any node with two or more out-edges is called
a condition node.

Definition 3. Region: The region between two nodes (edges) A and B contains
all nodes and edges that are present on any path from A to B. Such nodes and
edges are said to be internal to the region.

Definition 4. Dominator: A node (edge) P is a dominator of a node (edge)
Q if every path from the entry node of the CFG that reaches Q has to pass
through P.

Each node or edge dominates itself. Each dominator of a given node (edge),
except itself, is said to be a strict dominator of the node (edge).

Definition 5. Post-dominator: A node (edge) Q is a post-dominator of a
node (edge) P if every path from P to the exit node of the CFG has to pass
through Q.

Each node or edge post-dominates itself. Each post-dominator of a given
node (edge), except itself, is said to be a strict post-dominator of the node
(edge). The dominator (post-dominator) relationships allow construction of a
dominator (post-dominator) tree of the CFG, wherein the parent of a node is
its strict dominator (post-dominator). The parent node of a given node in the
post-dominator tree is known as the immediate post-dominator (IPDOM) of
that node.

Definition 6. Single-entry-single-exit (SESE) region: The region between
two nodes (edges) A and B is SESE if all of the following are true:

– A dominates B
– B post-dominates A
– Every cycle containing A also contains B and vice versa.

156 A. Sabne et al.

A node (edge) is a SESE region by itself. Each base pattern in Fig. 1 rep-
resents a SESE region. For the selection pattern (Fig. 1b), node A is the entry
and node D is the exit. For the loop pattern (Fig. 1c), node A is the entry as
well as the exit. In Fig. 3, region between D and E is not SESE, while the region
between B and E is.

Definition 7. Loop condition node, loop path: A given condition node N
is said to be a loop condition node, if there is a simple path (all nodes along the
path have in/out-degree of one) that originates and ends at N. We refer to any
such path as a loop path.

Next, we describe the transformations that determine if a CFG is reducible
or not. We attribute the definitions to Hecht and Ullman [20].

Definition 8. T1: T1 is a transformation that removes an edge from a node
onto itself.

Fig. 3. Example of an irreducible CFG

Definition 9. T2: If a node B has a single predecessor node A, then trans-
formation T2 replaces nodes A and B with a single node C. Predecessors of A
become the predecessors of C. Successors of A or B become successors of C.

Definition 10. Reducible CFG: A CFG is reducible iff it becomes a single
node through repeated applications of T1 and T2, otherwise, it is said to be
irreducible.

Figure 3 shows an example of an irreducible CFG, where neither T1 nor T2
can be applied.

3 Previous Work on Defining Structuredness

This section outlines previous work on defining structured programs and CFGs.
As mentioned in the introduction, much prior work attempts to define struc-
turedness at the program source level [10,12,45]. Even in the terminology

Formalizing Structured Control Flow Graphs 157

Fig. 4. Base patterns for unstructuredness, from Williams [39]

Fig. 5. This CFG is considered structured in [8], although it maps to no structured
program!

used while describing structured programming, there is ample ambiguity, e.g.,
Knuth [28] suggests structured programs can have goto statements, while Mor-
reti et al. [31] consider programs with case statements to be structured too.
Many researchers [6,7,14,19,34] only used loosely-defined notion of structured
programming. Furthermore, as Sect. 7 will show, compilers can turn structured
programs into unstructured CFGs. It therefore becomes essential to define struc-
turedness of CFGs.

The first attempt of defining structured control flow graphs was from
Williams [39], who suggested that structured CFGs are composed of the base
patterns in Fig. 1, and unstructured CFGs must comprise one of the five pat-
terns of unstructuredness shown in Fig. 4. Later, Oulsnam [32] presented similar
patterns of unstructuredness. However, the lack of formalization in the defini-
tion means that sophisticated pattern matching must be done to assess the CFG
structuredness, toward which no algorithms were provided. E.g., the CFG on
the left in Fig. 2 neither matches base structured patterns in Fig. 1, nor the base
unstructured patterns in Fig. 4.

The latest attempt of defining structured CFGs is from Anantpur et al. [8].
However, their definition, although formal, does not truly capture the notion of
structured CFGs. Their definition recognizes unstructuring as scenarios where
(i) there exists an incoming/outgoing edge from a loop, or (ii) an edge exists
between a condition node and a node with multiple in-edges where there is no

158 A. Sabne et al.

dominator/post-dominator relationship between the two nodes. This definition
departs from the base patterns. Consider the CFG in Fig. 5, where all nodes
are strongly connected, with a common entry node, A. All nodes thus belong to
the same loop [3], meaning that the first condition is satisfied. Node A is the
only multiple in-edge node, but it dominates all other nodes. Hence the second
condition is satisfied too. Thus, this CFG will be considered structured in [8], in
spite of having no mapping to a high-level structured program.

Therefore, it is essential to formalize the notion of structured CFGs in a way
that enables an algorithmic mapping to the three high-level program constructs
used in structured programming.

4 Formalizing Structured CFGs

In this section, we formalize the notion of structured CFGs. We start by provid-
ing formal definitions for the base structured patterns. Next we introduce the
conceptual framework of folding, which decomposes CFGs into base patterns.
The section introduces terminology to define elements of a CFG, and proves
that structured CFGs are always reducible.

Restrictions on CFGs Considered: We consider CFGs with single entry and
exit nodes. There are no infinite loops, i.e., there exists a path from each node in
the CFG to the exit node. Symmetrically, each node in the CFG can be reached
from the entry node. Also, the maximum in-degree and out-degree for all
nodes is two. Generality is maintained since a CFG with any in-degree or out-
degree can be converted into a CFG with a maximum in-degree and out-degree
of two.

We begin by defining structured selection and loop condition nodes (nodes
with two out-edges).

Definition 11. Structured selection condition node, selection body:
A condition node N is a structured selection condition if for every path from
N to its IPDOM, the region between the first and last edges is SESE. Therefore,
the region between the structured selection condition and its IPDOM is SESE as
well, which is said to be its selection body.

Definition 12. Structured loop condition node, loop body: A structured
loop condition node is a loop condition node where there exists a SESE region
between one of its out-edges and in-edges. This SESE region is called the loop
body.

Definition 13. Unstructured condition node: If a condition node is neither
a structured selection condition node, nor a structured loop condition node, then
it is an unstructured condition node.

Examples: Node A in the base selection pattern (Fig. 1b) is a structured selec-
tion condition. Node A in the base loop pattern (Fig. 1c) is a structured loop

Formalizing Structured Control Flow Graphs 159

condition, with edge A→A being both the entry and exit edge of the SESE
region (left figure) or edge A→B being the entry edge and the edge B→A being
the exit edge of the SESE region (right figure). For condition node A in Fig. 6a,
G is the IPDOM. A→B→E→G is one path from A to G, on which the region
between the first and last edges is not SESE. Hence, A is not a structured selec-
tion node. Similarly, for no out-edge and in-edge pair of A, there exists a SESE
region. Therefore, A is not a structured loop condition node either. Hence, A is
an unstructured condition. On the other hand, in Fig. 6b, nodes U and T are
structured selection conditions, while VZ is a structured loop condition node.

(a) Unstructured CFG (b) Structured CFG

Fig. 6. Maximal folding

Now, we present formal definitions for the base structured patterns shown
in Fig. 1.

Definition 14. Base Pattern of Sequence: Two nodes, A and B, along with
an edge A→B are said to form a sequence if B is the sole successor of A, and A
is the sole predecessor of B.

Definition 15. Base Pattern of Selection: The pattern of selection contains
a structured selection condition node, its IPDOM, and the selection body. The
selection body must contain at least one node, and any path from the selection
condition node to the IPDOM can have at most one node.

Definition 16. Base Pattern of Loop: The pattern of loop contains a struc-
tured loop condition node, the loop body, and the entry and exit edges of the loop
body. The loop body can contain at most one node.

To determine if a CFG is structured, we introduce a new concept, called
folding.

Definition 17. Folding: Folding is a process of replacing a base structured
pattern with a single node in the CFG. During folding, any edge not belonging
to the base pattern, but having its source (sink) node in the base pattern, is
redirected so that the newly created single node is its source (sink).

160 A. Sabne et al.

Definition 18. Maximal Folding: Maximal folding repeatedly applies folding
to a CFG until no more base structured patterns exist.

The above formalization of base structured patterns removes ambiguity and
trivialises the process of folding. Implementing folding simply requires looking
for base patterns formed on each node, which is a constant time operation. Thus,
maximal folding is O(n), where n is the number of nodes in the CFG. Figure 6
shows examples of structured and unstructured CFGs and their maximally folded
equivalents.

Definition 19. Completely Foldable CFG: If a maximally folded CFG con-
tains a single node, then the CFG is called completely foldable.

Definition 20. Structured CFG: A CFG is said to be structured iff it is com-
pletely foldable. Otherwise, it is called an unstructured CFG.

Complete foldability, i.e., structuredness, implies that the CFG is composed
of the base structured patterns. While reducibility eases CFG analysis, it does
not determine if the CFG is structured or not. E.g., the CFG in Fig. 6a is
reducible, but is unstructured. Also, a structured CFG does not imply struc-
turedness of all condition nodes. E.g. in Fig. 6b, Z is an unstructured condition
node by itself.

Theorem 1. Structured CFGs are reducible.

Proof. Since a structured CFG is completely foldable, the idea here is to show
that each base structured pattern is reducible. As shown in Fig. 7a, a sequence
can be reduced into a single node by applying T2. Figure 7b shows that the
repeated application of T2 can reduce the base selection pattern, while Fig. 7c
shows that application of T2 (if the loop is not a self loop), or T1 (if the loop
is a self loop) can reduce the base loop pattern. The process of folding replaces
a base structured pattern with a single node. Since each base pattern can be
reduced by T1 and/or T2, it follows that instead of folding a base pattern, one
can apply T1 and/or T2, and a continued application would result in a CFG
containing a single node, implying reducibility.

(a) Sequence (b) Selection (c) Loop

Fig. 7. Reducibility of base patterns: Dashed nodes and edges belong to the base
structured patterns formalized in this paper

Formalizing Structured Control Flow Graphs 161

Corollary 1. Every irreducible CFG is unstructured.

Proof. Follows directly from Theorem 1.

Lemma 1. In a maximally folded CFG that can not be completely folded, there
must be at least one unstructured condition node.

Proof. Let us assume that all condition nodes in a CFG are either structured
selection conditions or structured loop conditions. Then, there must be some
(innermost) condition node whose body does not have a condition node. There
are two possibilities for this node:

Case 1: Structured Selection Condition: In this case, there can only be two
distinct, simple paths originating at this node that reach its IPDOM, since there
are no condition nodes in the selection body. By the definition of a structured
condition node, nodes on each of these paths are dominated by their first edge,
and hence none of their nodes can have two in-edges. Therefore both these paths
can only contain nodes with a single predecessor and a single successor, however,
as the CFG is maximally folded, there can at most be one node on either of these
two paths. Hence, the selection condition node, its IPDOM, and, the selection
body would match the base structured selection pattern.

Case 2: Structured Loop Condition: In this case, this node’s loop body can
only have nodes with a single predecessor and a single successor. With a similar
argument as in case 1, the loop body can only have at most one node. Hence, the
loop condition node, the loop body, and its entry and exit edges would match
the base structured loop pattern.

Thus, in both cases, a base structured pattern would exist in the CFG, which
is a contradiction. Hence, a maximally folded, but not completely folded CFG
must have an unstructured condition node.

5 Significance of Structured Control Flow Graphs

Structured control flow graphs ensure that the CFGs are reducible (Theorem1).
Irreducibility is a condition where one or more loops in a CFG have more
than one entry points. Irreducible CFGs are difficult to analyze. Many compiler
analyses and transformations take place only if the CFG is reducible [11,24–
26,30,36,44]. Dataflow analyses are known to be faster on reducible CFGs [22].
Even the standard compilers, such as gcc and llvm, do not optimize irreducible
loops. Several research projects have shown cases where specialized approaches
had to be taken, simply to cater to irreducible CFGs [23,27,41]. Ensuring struc-
turedness of CFGs will eliminate the need for such passes.

A well-known measure of control flow complexity is the number of knots [42]
it contains. A knot is an unavoidable crossing of two edges in a CFG. Structured
CFGs have no knots, and rank low on complexity. This simplicity also comes
into play in program decompilation. Structured CFGs can always be mapped
to high-level program sources, e.g., consider a Java bytecode with irreducibility,

162 A. Sabne et al.

(a) Unstructured CFG execution on a 2-
wide SIMD

(b) Equivalent Structured CFG execu-
tion

Fig. 8. Reducing the penalty of divergent execution on SIMD units using structured
CFGs

which cannot be translated to Java source code since representing irreducibility
requires goto statements that are not supported in Java.

Unstructured CFGs may result in slow execution on SIMD units. Consider
the CFG shown in Fig. 8a, where nodes P and Q are unstructured condition
nodes. For the two involved threads, T0 and T1, and for their shown execution
pattern shown in Fig. 8a, condition P behaves divergently, i.e., the two threads
execute different branch targets. Such divergent execution is handled using a
mechanism called reconvergence stack [43], wherein the diverged threads resume
joint execution only at the IPDOM of the divergent node. The node R, which is
computationally expensive, gets executed twice in this mechanism. A structured
equivalent of the CFG, shown in Fig. 8b, however, achieves combined execution
of node R from both the threads, lowering the overall execution time. In the
structured version of the CFG, the diverging threads at P are reconverged as
early as possible, by introducing a new IPDOM node Z for P. This transformation
requires additional predicate variables and branch instructions. In structured
CFGs, threads diverged on a condition cannot execute the same node before
they reconverge at the IPDOM, which is the key reason for the reduction in
divergent execution.

6 Avenues for Research

Most unstructured-to-structured program converters work on the program
source [4,6,7,9,10,19,34,38,45]. Compilers, however, work on CFGs, which are
internal representations. Various compiler passes are known to create unstruc-
tured CFGs, e.g., short-circuiting, inlining [43], jump threading, and tail-call

Formalizing Structured Control Flow Graphs 163

elimination [37]. Program source-level techniques can not remove such unstruc-
turedness. Therefore, CFG structuring techniques become essential.

Fig. 9. Node Splitting: D’ is a copy of D

The available unstructured-to-structured conversion techniques, both those
operating at the source level, and those operating at the CFG level [33,40] resort
to a mechanism called Node Splitting [3,21] to deal with irreducible CFGs. This
technique duplicates code to remove irreducibility. Node Splitting operates on
any node with at least two predecessors. This node is duplicated, and each
predecessor keeps a copy of this node. The out-edges of each copy are directed
to the same nodes as in the original graph. In Fig. 9, splitting just one node
results in a reducible CFG.

However, such node duplication can cause exponential code size blowup. Con-
sider Fig. 10, which contains overlapping irreducible loops (Loop1: H→E→F→H
and Loop2: H→G→H). In such a scenario, the CFG generated by Node Split-
ting would contain four copies of G, and two copies each of nodes F and H.
Carter et. al. [13] proved that reducible CFGs generated by Node Splitting can
get exponentially larger.

Fig. 10. Blowup caused by Node Splitting: Four copies of G, two copies each of F
and H

164 A. Sabne et al.

Due to the exponential blowup property of Node Splitting, paired with the
rarity of irreducible CFGs, standard compilers such as gcc and llvm forgo Node
Splitting, and loose out on optimizing irreducible codes. This behaviour of static
analyzers is exploited by software obfuscators. Software obfuscation intends to
make it practically impossible for an attacker to statically determine program
properties. To do so, it changes the nature of the code while retaining the func-
tionality. A common obfuscation technique inserts dummy edges in the CFG to
make it irreducible [13,16,17]. Malwares often insert fake irreducibilities, mak-
ing it difficult for static analyzers to detect them, as the equivalent reducible
CFGs would be exponentially larger. A research challenge is therefore to convert
irreducible CFGs into reducible ones without facing code explosion.

The second challenge is of reducing the divergent execution penalty on SIMD
units [35]. While many irreducible-to-reducible converters induce code duplica-
tion, some unstructured-to-structured CFG converters duplicate code even when
the CFG is reducible [45]. Duplicating code fundamentally removes the possi-
bility of improving code performance on SIMD units. On the other hand, the
predicate-based mechanism in Fig. 8b can improve the execution, without need-
ing duplication. However, generic techniques to achieve such transformation are
required. Furthermore, it is not quite known if such predicate-based approach
would still face code explosion [13,15]. Our ongoing work [1] offers a predicate-
based generic mechanism to convert unstructured CFGs into structured ones,
with only a polynomial code growth.

7 Unstructuredness in Compiler-Generated CFGs

We now show how compilers can induce unstructuredness in CFGs, even when
the source program is structured. We performed our experiments with the LLVM
[29] compiler (Version 3.8). Prior to determining whether a given CFG is struc-
tured or not, we convert it into an equivalent CFG where the in-degree and
out-degree of each node is at most 2.

Table 1 shows unstructuredness in the C implementation [2] of the NAS par-
allel benchmarks [18]. Although few functions in these applications have source-
level unstructuredness, i.e., the unstructuredness caused by constructs such as
break, goto, continue etc., the compiler front-end generated CFGs have higher
occurrences of unstructuredness. Applications MG, LU, SP, and BP have no
source-level unstructuredness; yet, the front-end generated CFGs for some func-
tions in these applications are unstructured. Program source-level structuring
techniques [6,7,9,10,19,34,45] cannot cater to such unstructuredness. Further-
more, optimized CFGs can be seen to contain more functions with unstructured
CFGs, which is a result of the compiler transformation passes. Benchmarks CG
and LU are exceptions; the LLVM compiler inlined unstructured functions in the
optimized versions, leading to a reduction in the total number of unstructured
functions.

Formalizing Structured Control Flow Graphs 165

Table 1. Unstructuredness of CFGs in NAS Benchmarks: Even the functions with
structured source code can have unstructuredness in the compiler front-end generated
CFG. Optimized CFGs are more likely to possess unstructuredness.

Benchmark #Functions #Functions with
unstructured
constructs

#Functions with
unstructured CFGs
generated from
front-end

#Functions with
Unstructured CFGs
after -O3

CG 16 1 3 2

FT 25 2 3 5

EP 10 1 1 1

MG 26 0 2 7

LU 27 0 3 2

SP 31 0 4 4

IS 13 2 1 1

BT 34 0 1 4

8 Conclusion

This paper has identified that structured programs do not necessarily imply
structured CFGs. Many previous definitions of structured CFGs have led to
ambiguities. The paper has formalized the notion of structured CFGs by pre-
senting formal definitions for the three base structured patterns that compose a
structured CFG. It introduced a conceptual framework of folding, which replaces
base structured patterns with single nodes, and helps determine whether or not
a given CFG is structured. The paper described the importance of CFG struc-
turedness, namely, (i) guaranteeing reducibility which results in better compiler
optimizations, (ii) ease of decompilation, and (iii) help reduce the performance
degradation caused by thread divergence on SIMD units. The paper also pre-
sented insufficiencies of the available unstructured-to-structured CFG converters
that result in excessive code duplication. Finally, experimental results showed
that both compiler front-ends and compiler transformation passes can induce
unstructuredness in programs.

References

1. Control flow structuring without code explosion [Under Submission]
2. Omni OpenMP benchmarks (2016). http://www.hpcs.cs.tsukuba.ac.jp/omni-comp

iler/download/download-benchmarks.html. Accessed 11 Mar 2016
3. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.

Addison-Wesley Longman Publishing Co., Inc., Boston (1986)
4. Allen, F.E., Cocke, J.: A program data flow analysis procedure. Commun. ACM

19(3), 137 (1976). http://doi.acm.org/10.1145/360018.360025
5. Allen, F.E.: Control flow analysis. In: Proceedings of a Symposium on Compiler

Optimization, pp. 1–19. ACM, New York (1970). http://doi.acm.org/10.1145/
800028.808479

http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/download/download-benchmarks.html
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/download/download-benchmarks.html
http://doi.acm.org/10.1145/360018.360025
http://doi.acm.org/10.1145/800028.808479
http://doi.acm.org/10.1145/800028.808479

166 A. Sabne et al.

6. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control depen-
dence to data dependence. In: Proceedings of the 10th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL 1983, pp. 177–189.
ACM, New York (1983). http://doi.acm.org/10.1145/567067.567085

7. Ammarguellat, Z.: A control-flow normalization algorithm and its complexity.
IEEE Trans. Softw. Eng. 18(3), 237–251 (1992). http://dx.doi.org/10.1109/32.
126773

8. Anantpur, J., R., G.: Taming control divergence in GPUs through control flow
linearization. In: Cohen, A. (ed.) CC 2014. LNCS, vol. 8409, pp. 133–153. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54807-9 8

9. Ashcroft, E.A., Manna, Z.: The translation of ‘go to’ programs to ‘while’ programs.
In: IFIP Congress, no. 1, pp. 250–255 (1971)

10. Baker, B.S.: An algorithm for structuring flowgraphs. J. ACM 24(1), 98–120
(1977). http://doi.acm.org/10.1145/321992.321999

11. Blackham, B., Heiser, G.: Sequoll: A framework for model checking binaries. In:
2013 IEEE 19th Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pp. 97–106, April 2013

12. Böhm, C., Jacopini, G.: Flow diagrams, turing machines and languages with only
two formation rules. Commun. ACM 9(5), 366–371 (1966). http://doi.acm.org/
10.1145/355592.365646

13. Carter, L., Ferrante, J., Thomborson, C.D.: Folklore confirmed: reducible flow
graphs are exponentially larger. In: Conference Record of POPL 2003: The 30th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New
Orleans, Louisisana, USA, 15-17 January 2003, pp. 106–114 (2003). http://doi.
acm.org/10.1145/640128.604141

14. Chapin, N., Denniston, S.P.: Characteristics of a structured program. SIGPLAN
Not. 13(5), 36–45 (1978). http://doi.acm.org/10.1145/953395.953398

15. Collberg, C., Nagra, J.: Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection, 1st edn. Addison-Wesley Professional,
Boston (2009)

16. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations
(1997)

17. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 1998. ACM, New
York (1998). http://doi.acm.org/10.1145/268946.268962

18. Division, N.A.S.: NAS Parallel Benchmarks (2016). https://www.nas.nasa.gov/
publications/npb.html/. Accessed 11 March 2016

19. Erosa, A., Hendren, L.: Taming control flow: a structured approach to eliminating
goto statements. In: Proceedings of the 1994 International Conference on Computer
Languages, pp. 229–240, May 1994

20. Hecht, M.S., Ullman, J.D.: Characterizations of reducible flow graphs. J. ACM
21(3), 367–375 (1974). http://doi.acm.org/10.1145/321832.321835

21. Hecht, M.S.: Flow Analysis of Computer Programs. Elsevier Science Inc., New
York (1977)

22. Hecht, M.S., Ullman, J.D.: Analysis of a simple algorithm for global data flow
problems. In: Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, POPL 1973, pp. 207–217., ACM, New
York (1973). http://doi.acm.org/10.1145/512927.512946

http://doi.acm.org/10.1145/567067.567085
http://dx.doi.org/10.1109/32.126773
http://dx.doi.org/10.1109/32.126773
http://dx.doi.org/10.1007/978-3-642-54807-9_8
http://doi.acm.org/10.1145/321992.321999
http://doi.acm.org/10.1145/355592.365646
http://doi.acm.org/10.1145/355592.365646
http://doi.acm.org/10.1145/640128.604141
http://doi.acm.org/10.1145/640128.604141
http://doi.acm.org/10.1145/953395.953398
http://doi.acm.org/10.1145/268946.268962
https://www.nas.nasa.gov/publications/npb.html/
https://www.nas.nasa.gov/publications/npb.html/
http://doi.acm.org/10.1145/321832.321835
http://doi.acm.org/10.1145/512927.512946

Formalizing Structured Control Flow Graphs 167

23. Hepp, S., Brandner, F.: Splitting functions into single-entry regions. In: Proceed-
ings of the 2014 International Conference on Compilers, Architecture and Synthe-
sis for Embedded Systems, CASES 2014, pp. 17:1–17:10. ACM, New York (2014).
http://doi.acm.org/10.1145/2656106.2656128

24. Hundt, R., Raman, E., Thuresson, M., Vachharajani, N.: Mao – an extensible
micro-architectural optimizer. In: Proceedings of the 9th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO 2011, pp. 1–
10. IEEE Computer Society, Washington, D.C. (2011). http://dl.acm.org/citation.
cfm?id=2190025.2190077

25. Kalvala, S., Warburton, R., Lacey, D.: Program transformations using temporal
logic side conditions. ACM Trans. Program. Lang. Syst. 31(4), 14:1–14:48 (2009).
http://doi.acm.org/10.1145/1516507.1516509

26. Kandemir, M., Banerjee, P., Choudhary, A., Ramanujam, J., Shenoy, N.: A
global communication optimization technique based on data-flow analysis and
linear algebra. ACM Trans. Program. Lang. Syst. 21(6), 1251–1297 (1999).
http://doi.acm.org/10.1145/330643.330647

27. Kleinsorge, J.C., Falk, H., Marwedel, P.: Simple analysis of partial worst-
case execution paths on general control flow graphs. In: Proceedings of the
Eleventh ACM International Conference on Embedded Software, EMSOFT 2013,
pp. 16:1–16:10. IEEE Press, Piscataway (2013). http://dl.acm.org/citation.cfm?
id=2555754.2555770

28. Knuth, D.E.: Structured programming with go to statements. ACM Comput. Surv.
6(4), 261–301 (1974). http://doi.acm.org/10.1145/356635.356640

29. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program
analysis & transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-
tion, CGO 2004, p. 75. IEEE Computer Society, Washington, D.C. (2004). http://
dl.acm.org/citation.cfm?id=977395.977673

30. Matosevic, I., Abdelrahman, T.S.: Efficient bottom-up heap analysis for symbolic
path-based data access summaries. In: Proceedings of the Tenth International Sym-
posium on Code Generation and Optimization, CGO 2012, pp. 252–263. ACM, New
York (2012). http://doi.acm.org/10.1145/2259016.2259049

31. Moretti, E., Chanteperdrix, G., Osorio, A.: New algorithms for control-flow graph
structuring. In: Fifth Conference on Software Maintenance and Reengineering,
CSMR 2001, Lisbon, Portugal, 14–16 March 2001, pp. 184–187 (2001). http://
dx.doi.org/10.1109/.2001.914984

32. Oulsnam, G.: Unravelling unstructured programs. Comput. J. 25(3), 379–387
(1982). http://dx.doi.org/10.1093/comjnl/25.3.379

33. Oulsnam, G.: The algorithmic transformation of schemas to structured form. Com-
put. J. 30(1), 43–51 (1987). http://dx.doi.org/10.1093/comjnl/30.1.43

34. Ramshaw, L.: Eliminating go to’s while preserving program structure. J. ACM
35(4), 893–920 (1988). http://doi.acm.org/10.1145/48014.48021

35. Sabne, A.J., Lin, Y., Grover, V.: Confluence analysis and loop fast-forwarding for
improving SIMD execution efficiency, 21 January 2014, uS Patent Ap. 14/160,426

36. Shankar, A., Sastry, S.S., Bod́ık, R., Smith, J.E.: Runtime specializa-
tion with optimistic heap analysis. SIGPLAN Not. 40(10), 327–343 (2005).
http://doi.acm.org/10.1145/1103845.1094837

37. Stanier, J., Watson, D.: A study of irreducibility in C programs. Softw. Pract.
Experience 42(1), 117–130 (2012). http://dx.doi.org/10.1002/spe.1059

http://doi.acm.org/10.1145/2656106.2656128
http://dl.acm.org/citation.cfm?id=2190025.2190077
http://dl.acm.org/citation.cfm?id=2190025.2190077
http://doi.acm.org/10.1145/1516507.1516509
http://doi.acm.org/10.1145/330643.330647
http://dl.acm.org/citation.cfm?id=2555754.2555770
http://dl.acm.org/citation.cfm?id=2555754.2555770
http://doi.acm.org/10.1145/356635.356640
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://doi.acm.org/10.1145/2259016.2259049
http://dx.doi.org/10.1109/.2001.914984
http://dx.doi.org/10.1109/.2001.914984
http://dx.doi.org/10.1093/comjnl/25.3.379
http://dx.doi.org/10.1093/comjnl/30.1.43
http://doi.acm.org/10.1145/48014.48021
http://doi.acm.org/10.1145/1103845.1094837
http://dx.doi.org/10.1002/spe.1059

168 A. Sabne et al.

38. Unger, S., Mueller, F.: Handling irreducible loops: optimized node splitting
versus DJ-graphs. ACM Trans. Program. Lang. Syst. 24(4), 299–333 (2002).
http://doi.acm.org/10.1145/567097.567098

39. Williams, M.H.: Generating structured flow diagrams: the nature of unstructured-
ness. Comput. J. 20(1), 45–50 (1977). http://dx.doi.org/10.1093/comjnl/20.1.45

40. Williams, M.H., Ossher, H.L.: Conversion of unstructured flow diagrams to struc-
tured form. Comput. J. 21(2), 161–167 (1978)

41. Wimmer, C., Franz, M.: Linear scan register allocation on SSA form. In: Proceed-
ings of the 8th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2010, pp. 170–179. ACM, New York (2010). http://doi.
acm.org/10.1145/1772954.1772979

42. Woodward, M., Hennell, M., Hedley, D.: A measure of control flow complexity in
program text. IEEE Trans. Softw. Eng. 5(1), 45–50 (1979)

43. Wu, H., Diamos, G., Wang, J., Li, S., Yalamanchili, S.: Characterization and trans-
formation of unstructured control flow in bulk synchronous GPU applications.
Int. J. High Perform. Comput. Appl. 26(2), 170–185 (2012). http://dx.doi.org/
10.1177/1094342011434814

44. Xie, Y., Aiken, A.: Saturn: a scalable framework for error detection using Boolean
satisfiability. ACM Trans. Program. Lang. Syst. 29(3), Article No. 16 (2007).
http://doi.acm.org/10.1145/1232420.1232423

45. Zhang, F., D’Hollander, E.H.: Using hammock graphs to structure programs.
IEEE Trans. Softw. Eng. 30(4), 231–245 (2004). http://dx.doi.org/10.1109/
TSE.2004.1274043

http://doi.acm.org/10.1145/567097.567098
http://dx.doi.org/10.1093/comjnl/20.1.45
http://doi.acm.org/10.1145/1772954.1772979
http://doi.acm.org/10.1145/1772954.1772979
http://dx.doi.org/10.1177/1094342011434814
http://dx.doi.org/10.1177/1094342011434814
http://doi.acm.org/10.1145/1232420.1232423
http://dx.doi.org/10.1109/TSE.2004.1274043
http://dx.doi.org/10.1109/TSE.2004.1274043

Dynamic Computation and Languages

Automatic Vectorization for MATLAB

Hanfeng Chen(B), Alexander Krolik, Erick Lavoie, and Laurie Hendren

School of Computer Science, McGill University, Montréal, Canada
{hanfeng.chen,alexander.krolik,erick.lavoie}@mail.mcgill.ca,

hendren@cs.mcgill.ca

Abstract. Dynamic array-based languages such as MATLAB provide a
wide range of built-in operations which can be efficiently applied to all
elements of an array. Historically, MATLAB and Octave programmers
have been advised to manually transform loops to equivalent “vectorized”
computations in order to maximize performance. In this paper we present
the techniques and tools to perform automatic vectorization, including
handling for loops with calls to user-defined functions. We evaluate the
technique on 9 benchmarks using two interpreters and two JIT-based
platforms and show that automatic vectorization is extremely effective
for the interpreters on most benchmarks, and moderately effective on
some benchmarks in the JIT context.

Keywords: Vectorization · Promoted shape analysis · MATLAB ·
Elementwise functions · Vectorizing user-defined functions

1 Introduction

Vectorization is a mature field which has been studied for decades. However,
there are new challenges and opportunities for using vectorization concepts to
speed up array-based programming languages such as MATLAB [8]. The key
insight is that many operations in MATLAB support both individual element
operations, such as op(a(i)), as well as elementwise (vectorized) versions that
apply op to all elements in an array using just one call, op(a). When a call is
made to a built-in operation over an entire array, the underlying implementa-
tion can then utilize highly tuned and parallelized libraries. For example, Math-
Works began supporting multithreading on elementwise functions in MATLAB
7.4 (R2007a).1 Thus, it becomes beneficial to replace loops that apply operations
on individual elements with one or more vectorized statements, where the oper-
ations are now applied to entire vectors or arrays. Indeed, this is standard advice
given to MATLAB and Octave [12] programmers as a way of hand optimizing
their programs.2,3

1 http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions
-benefit-from-multithreaded-computation.

2 http://www.mathworks.com/help/matlab/matlab prog/vectorization.html.
3 http://wiki.octave.org/FAQ#Porting programs from Matlab to Octave.

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 171–187, 2017.
DOI: 10.1007/978-3-319-52709-3 14

http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
http://www.mathworks.com/matlabcentral/answers/95958-which-matlab-functions-benefit-from-multithreaded-computation
http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
http://wiki.octave.org/FAQ#Porting_programs_from_Matlab_to_Octave

172 H. Chen et al.

In this paper we present an approach and tool (Mc2Mc)4 that automati-
cally detects loops that can be vectorized and automatically produces output
MATLAB code with vectorized instructions replacing the loops. In addition to
handling loops with built-in MATLAB operations, we also allow loops which call
user-defined functions by providing an analysis that determines if user-defined
functions have the appropriate elementwise behaviour. Furthermore, we support
if-conversion to allow even user-defined functions with conditionals.

We have implemented Mc2Mc based on the McLAB front-end and Tamer
infrastructure [4,9], and have used our implementation to study 9 benchmarks
on two interpreter-based systems and two JIT-based systems. In the interpreter
cases, the automatic vectorizer led to very large speedups on some benchmarks
and moderate speedups for others, with geometric mean speedups of 19.1x for
Octave 4.0 and 7.65x for MATLAB 2013 (JIT off). However, with systems sup-
porting JITs, such as MATLAB 2013a (1st gen JIT on) and MATLAB 2015b
(2nd gen JIT which is always on), the effect of vectorization is mixed with geo-
metric mean speedups of 1.02 and 0.77 respectively. There are still benchmarks
which benefit from over 10x speedup, however other benchmarks have loops
which are handled very effectively by the JIT, and vectorization can drastically
hurt performance. Thus, it no longer makes sense for a MATLAB programmer
to hand vectorize all of his/her code. However, our automatic vectorization sys-
tem would allow a programmer or execution engine to try various strategies and
identify those which benefit from vectorization.

The main contributions of this work are:

– We present a tool (Mc2Mc) that automatically transforms scalar MATLAB
programs to equivalent vector form;

– We propose an interprocedural promoted shape analysis to determine if scalar
code can be modified to vector form in loops and user-defined functions;

– We evaluate the performance of automatic vectorization on 9 benchmarks over
4 different execution engines.

In the rest of the paper we first provide more background about key features
of MATLAB in Sect. 2. We then provide a description of our techniques with an
overview of our approach in Sect. 3; a more detailed look at two key components,
promoted shape propogation in Sect. 4 and our handling of user-defined func-
tions in Sect. 5; and an outline the two final phases, data dependence analysis
in Sect. 6 and the actual vectorization in Sect. 7. Finally we provide our experi-
mental evaluation in Sect. 8, related work in Sect. 9 and conclude in Sect. 10.

2 Motivation and Background

MATLAB provides many features which enable vectorization. In this section,
we provide an introduction to those features, and a motivating example for our
vectorization transformation.

4 https://github.com/sable/mc2mc.

https://github.com/sable/mc2mc

Automatic Vectorization for MATLAB 173

Matrix Indexing: Matrix indexing provides a way to retrieve a collection of array
elements with one operation. Figure 1(a) shows a for loop which accesses items
of array m one at a time, and Fig. 1(b) shows the equivalent matrix indexing
version, which accesses all the items at indices stored in v. Also note that in
Fig. 1(b), the pre-allocation of array r is not needed.

Fig. 1. A for loop and equivalent using matrix indexing

Colon Operator: The colon operator is mainly used to create vectors, subscript
arrays and specify for iterations.5

Creating Vectors: The expression j:k generates a vector from j to k if j is
less than k. With an additional parameter i, the expression j:i:k produces
a vector from j to k with the stride i.

Subscripting Arrays: Matrix indexing can be introduced with the colon oper-
ator, such as m(1:n) where n ≤ length(m). Moreover, m(:) denotes all ele-
ments of m.

Iterating a for-loop: A simple for-loop header is for i=1:n, which indicates
that the for body should be executed once for every value of i in [1,n].

For Loop Vectorization: The main topic of this paper is automatic for loop
vectorization. To motivate this, we provide a small example in Fig. 2. Function
foovec is a vectorized version of foo. Both the original and vectorized versions
call the same user-defined function bar. This may seem strange, since foovec is
passing bar a vector, whereas the original foo was passing bar a scalar. However,

Fig. 2. Example vectorization

5 http://www.mathworks.com/help/matlab/ref/colon.html?searchHighlight=colon.

http://www.mathworks.com/help/matlab/ref/colon.html?searchHighlight=colon

174 H. Chen et al.

because all of the statements in bar work on both scalars and vectors in the
right way, bar can be called from the vector code, and bar will return a vector
of values. One important part of our work is automaticially identifying such
vectorizable user-defined functions.

To automatically vectorize the loop there are several things to check. Firstly,
we must apply some standard dependence tests. Secondly, for each built-in func-
tion called from the loop body, such as sqrt, we must ensure that it has appropri-
ate elementwise behaviour. Finally, for each user-defined function called from the
body of the loop, such as bar, we must ensure that the body of the called function
contains only vectorizable statements. Finally, the resulting vectorized program
can be cleaned up, in this case the unneeded initialization of B is removed.

3 Overall Structure of the Vectorizer

We have implemented our approach in a tool, Mc2Mc, which given a MATLAB
program, automatically identifies vectorizable sections and transforms scalar
code to the equivalent vector form. An overview of the workflow of Mc2Mc
can be found in Fig. 3.

Fig. 3. The workflow of Mc2Mc.

The workflow begins by parsing input MATLAB programs into TameIR,
a low-level representation used for analysis of MATLAB programs. The Tamer
framework provides a set of interprocedural value analyses for shape information
[6], as well as use-define and define-use chains that are used in later sections of
the vectorizer. Once the initial analyses have been completed, the inner loops
of the input program are collected for input to the vectorization algorithm. The
vectorization algorithm thus uses an inside-out approach for handling loop nests
[11]. Since the control flow of loops with nested if statements is not well suited for
vectorization, only loops without such control statements are considered further.

Automatic Vectorization for MATLAB 175

Next, our new interprocedural promoted shape analysis is performed,
determining whether scalar code can be correctly modified to an equivalent
vector form. By propagating shapes through user-defined functions we expose
additional areas for vectorization beyond built-in functions. While a user-defined
function may not contain loops, nested if statements are permitted. A function
is only considered vectorizable if all conditions and branches can be expressed
in equivalent vector form. Promoted shape propagation is discussed in greater
detail in Sect. 4 while user-defined functions and if-conversion are covered in
Sect. 5.

Candidate statements for vectorization are then checked for dependencies
that prevent vectorization. If no dependencies are found for a particular state-
ment, the vectorized code can then be generated. Since the vectorization algo-
rithm uses an inside-out approach, the pipeline may need to be rerun to handle
nested loops and if statements in user-defined functions. Once a fixed point is
reached, the newly vectorized code is statically optimized to remove unnecessary
colon operators. In addition, dynamic checks are inserted to further reduce the
performance impact of using the colon operators.

4 Promoted Shape Analysis

The promoted shape analysis is an interprocedural analysis that identifies the
expressions in the body of a for loop that (1) have a scalar value that is derived
directly or transitively from the loop index and that (2) can safely be promoted
from a scalar form to a vector form, derived directly or transitively from the
entire range of the loop index.

An expression (in a statement) can be promoted safely to a vector form
if it performs the same operations on the values represented by variables that
compose the expression over the entire range of the loop index.

In order to determine which expressions can be promoted safely, we perform
a fixpoint analysis on the shape of variables. Initially, the loop index is first
promoted from a scalar shape to a promoted shape, of the same shape as the
entire loop index range. The promoted shape therefore represents a tentative
replacement of the loop index variable scalar value with a vector that contains
its entire range. All other variables shapes are initialized to scalar, non-scalar, or
unknown (⊥) with the precise shape coming from the Tamer ValueAnalysis. The
shape information is then propagated through every statement of the loop body
and modified according to the effect of a statement’s operation. The previous
scalar shape of the output variables of a statement might be replaced with a
promoted shape if the operation of a statement is compatible with the promoted
shape of its input variable(s). If the operation is incompatible, the shape of the
output variable will become �.

Once the fixpoint is reached, all the statements that use a variable with a
shape of � cannot be safely converted to vector form and therefore need to stay
in the body of the for loop. All the others can potentially be moved outside of
the loop body and the expressions that use variables with a promoted shape can

176 H. Chen et al.

be promoted to their vector form, as long as no dependency exist between the
different statements (see Sect. 6).

In the remainder of this section, we first provide an explanation of the shape
abstraction we use. We then explain which operations are compatible with a
shape promotion. We finally provide the key parts of our promoted shape analysis
in pseudocode.

4.1 Shape Abstractions

There are five abstractions summarized in Table 1. The initial variable with an
unknown shape is denoted by ⊥. The scalar shape S is considered because it
can be extended in the context of elementwise operations. For the non-scalar N,
it means the shape is neither a promoted shape nor a scalar. It is fine to have
N in array indexing when the index is a scalar since the output of the array
indexing is a scalar. For a promoted shape P, it is initialized by loop iterators
and then propagated to variables. The � means there is no safe promoted shape
for vectorization.

Table 1. Definitions of abstractions

Type Description

⊥ An unknown shape

S A scalar which is not promoted

N A non-scalar which is not promoted

P A promoted shape

� A shape cannot be vectorized

Note that a promoted shape represents a promotion from a scalar to a one-
dimensional array. However some operations such as multidimensional array
indexing (e.g. A(i,i)) may return a two-dimensional array when the i index
variable is promoted (e.g. A(1:n,1:n)) rather than the diagonal of the matrix in
the original loop. The expression is therefore not compatible with a promoted
shape because it returns different values after the promotion. However, promo-
tion along a single dimension (e.g. A(i,j) to A(1:n,j)) is possible if the shape of
the array is compatible.

4.2 Compatible Operations

A unary function F satisfies the property of elementwise operations when it holds
R̂ =

−→
F (Â), where the

−→
F is a vectorizable function, the Â denotes the promoted

input parameter and the R̂ denotes the promoted return value. A promoted
operation is introduced in A → Â when a dimension in A is expanded to k0,
where k0 > 1. That means Â and A have the same number of dimensions, but
|Â| = k0×|A|, where the |A| is its cardinality. Let ρ(Â) denote the new dimension

Automatic Vectorization for MATLAB 177

(i.e. k0). Let Â = {A1, A2, . . . , An} and R̂ = {R1, R2, . . . , Rn}, where ρ(Â) =
ρ(R̂) = n, so that R̂ =

−→
F (Â) ⇔ [{R1, R2, . . . , Rn}] = F ({A1, A2, . . . , An}).

A built-in function (BIF), which satisfies the property of elementwise oper-
ation, is vectorizable. For a unary built-in function Fu, it can be described as
R̂ =

−→
Fu(Â). However, a binary function Fb has three possible cases in vectoriza-

tion. They are 1) R̂ =
−→
Fb(Â, B); 2) R̂ =

−→
Fb(A, B̂); and 3) R̂ =

−→
Fb(Â, B̂), where

the A and B denote input arguments. It should be noted that the lengths of the
argument A and B must agree in the third case.

User-defined functions are also compatible with input arguments in vec-
tor form under some conditions. An interprocedural sub-analysis, described in
Sect. 5, is performed when a user-defined function is called from the body of a
for loop to determine if the input arguments can indeed be promoted.

4.3 Key Parts of the Analysis

Initialization. The analysis starts from the innermost for loops. The variables in
the body of the innermost for loops are initialized with one of the abstractions
in Table 1. The loop index variables of all statements in the body of for loops are
initialized to the promoted shape. All other variables are initialized to the scalar
or non-scalar shape obtained from the Tamer ValueAnalysis. The pseudocode is
provided in Algorithm1.

Algorithm 1. Initialization
Data: a statement
Result: each variable with a promoted shape

1 foreach variable var in the statement do
2 if var.promotedShape has not been initialized then
3 if the statement is from a for-loop then
4 if var is the loop iterator then
5 var.promotedShape ←from a scalar to a vector (i.e. loop’s range);

6 else
7 if the shape of var is a scalar then
8 var.promotedShape ←Scalar ;
9 else

10 var.promotedShape ←Non-scalar ;

Promoted Shape Propagation in Statements. There are three important major
cases for the propagation of the flow information, with the first case further
sub-divided in three cases, as listed in Algorithm2.

The first major case is a call to a function. A function call may target a
built-in function or a user-defined function. For the BIFs, we separate them into
two groups: elementwise built-in functions (eBIFs) and non-elementwise built-in

178 H. Chen et al.

functions (nBIFs). The eBIFs are compatible with a vector form under some
conditions while most nBIFs are not. We therefore do not consider nBIFS and
their return value is always �. The rules for unary and binary eBIFs are defined
in Tables 2 and 3 separately. In the Table 3, the Nd returns N if both have the
same non-scalar promoted shape otherwise � and the Pd returns P if both have
the same promoted shape otherwise �. User-defined functions are covered in
Sect. 5.

Table 2. The propagation rule for unary
eBIFs

eBIF ⊥ S N P �
Output ⊥ S N P �

Table 3. The propagation rule for binary
eBIFs

eBIF ⊥ S N P �
⊥ ⊥ ⊥ � � �
S ⊥ S N P �
N ⊥ N Nd � �
P � P � Pd �
� � � � � �

The second major case concerns array indexing statements. For both
ArrayGetStmt and ArraySetStmt, the promoted shape of the index variable needs
to be the same as the shape of the array. Or the ArraySetStmt accepts a promoted
shape P on the left-hand side and a promoted shape S on the right-hand side.
In the ArrayGetStmt case, if so, the returned value’s shape is set to promoted,
otherwise it is set to �.

The last major case, with the CopyStmt, trivially copies the shape of the
left-hand side variable to the right-hand side variable.

4.4 An Example of Promoted Shape Analysis

To illustrate the promoted shape analysis, consider the loop from the func-
tion needle in the NW benchmark, as given in Fig. 4(a). In this example,
input itemsets is a matrix and penalty is a scalar. We would like to use our
promoted shape analysis determine if the loop can be converted to vector form.

Our Mc2Mc tool first converts the code to a lower-level three-address style
TameIR, as shown in Fig. 4(b). This means that each statement will now have
at most one operation, which simplfies the subsequent analysis.

Figure 4(c) shows the result of the promoted shape analysis after each state-
ment in the loop body. The loop iterator is used to get initial promoted shape.
At program point 2, the minus is an eBIF which takes a promoted shape P
(i.e. i) and a promoted shape S (i.e. 1). The output of the eBIF returns a pro-
moted shape P for the variable mc t1. Variable mc t1 and its promoted shape
are then included in the flow set. The next statement has a unary BIF, uminus,
which returns the same promoted shape as mc t1. At program point 4, the
variable penalty has a promoted shape S so that the eBIF times returns a pro-
moted shape P. At program point 5, the array indexing on the left-hand side

Automatic Vectorization for MATLAB 179

Algorithm 2. Promoted shape propagation
1 PropagateStmt(assignStmt, inSet)
2 (lhs, rhs) ←assignStmt;
3 ps ←� ;
4 if the assignStmt is a CallStmt then
5 op ←rhs.getFunctionName();
6 args ←rhs.getArguments();
7 if op is a unary eBIF then
8 ps ←UnaryFunctionTable(op, args[1].ps);
9 else if op is a binary eBIF then

10 ps ←BInaryFunctionTable(op, args[1].ps, args[2].ps);
11 else if op is a UDF then
12 ps ←PropagateUDF(op, args, inSet);

13 else if the assignStmt is an ArrayGetStmt then
14 ps ←GetArrayIndexShape(rhs, lhs);
15 else if the assignStmt is an ArraySetStmt then
16 ps ←GetArrayIndexShape(lhs, rhs) ;
17 else if the assignStmt is a CopyStmt then
18 ps ←CopyPromotedShape(rhs.ps) ;

19 genSet(assignStmt) = {(lhs,ps)} ;
20 killSet(assignStmt) = {any tuple contains lhs};
21 outSet(assignStmt) = (inSet(assignStmt) - killSet(assignStmt)) ∪

genSet(assignStmt);
22 return outSet

Fig. 4. An example of promoted shape analysis

is a one-dimension promotion and the variable mc t3 has the same promoted
shape. Therefore, the assignment is safe and the promoted shape of the variable
input itemsets is set to N. Finally, the analysis returns the set of promoted
shape information. If a set of statements has no promoted shape � and there are

180 H. Chen et al.

no cyclic dependences, the statements can be vectorized safely. We then perform
a final aggegration step on the TameIR, to produce back a MATLAB vectorized
statement, as shown in Fig. 4(d).

5 Handling User Defined Functions

One of the key contributions of our approach is that we can vectorize loops
which contain calls to user-defined functions (UDFs). The key insight is that
if the body of the UDF contains only vectorizable statements, then the calling
code can use the UDF as a vectorized operation. Since some UDFs contain condi-
tional if statements, we have also developed a MATLAB-specific if-conversion to
convert control dependence expressed as if statements into equivalent vectorized
statements without control dependences.

5.1 Promoted Shape Analysis for UDFs

When the promoted shape analysis encounters a call to a UDF, the initial pro-
moted shapes are propogated from the arguments of the call to the parameters
of the called UDF. The promoted shape analysis is then used to propogate pro-
moted shapes to all statements in the body of the UDF. At the end of the
dataflow analysis, the return values are checked before they are copied back to
the caller site. If any return value is neither a scalar nor a promoted shape, then
the UDF is not vectorizable and all return values are set to � and then returned.

Since UDFs may include conditionals, we must extend the promoted shape
analysis to handle conditional control flow. The key addition is that we apply
the promoted shape analysis to each branch of the conditional, and then merge
the results. More precisely, let op2 be the function for binary eBIFs defined in
Table 3, ps1 and ps2 are promoted shape from two different branches, and pscond
is the promoted shapes of the condition of the if. The merge operator gets a new
promoted shape with the following equation.

merge(ps1, ps2, pscond) = op2(op2(pscond, ps1), op2(pscond, ps2));

If a UDF is called multiple times from different caller sites, we follow a simple
rule to solve the possible conflicting results from the analysis. The rule is that a
UDF is kept the same no matter the changes in input arguments if the UDF is
still vectorizable with the new arguments. Otherwise, the UDF is not vectorizable
despite its prior result.

5.2 If-Conversion for UDFs

Some UDFs contain if statements, which would normally interfere with vector-
ization. However, there are some if statements which can be transformed into
vectorized statements, using primitive vector operations available in MATLAB
to combine results from the then and else branches.

Automatic Vectorization for MATLAB 181

Consider the example from the CNDF function of the Blackscholes (BS)
benchmark, given in Fig. 5(a). The original code, with explicit control flow cannot
be vectorized, because when InputX is promoted from a scalar to a vector, the if
condition will execute only once instead of once per item in the vector. However,
the computation can be converted to vector form as shown in Fig. 5(b). The
trick is to create a boolean vector of 0’s and 1’s containing the results of the
condition, and then to use this to select the appropriate values by multiplying
by 1 for all values that should come from the then branch (and 0 otherwise).
The same trick, with the negative conditions are used for the else branch. Then
the two vectors are combined, giving all the results for both branches.

Fig. 5. If-conversion from the CNDF function of the BlackScholes (BS) benchmark

In general, if-conversion takes place when promoted shape can be safely prop-
agated through the if-structure. Equivalently, the promoted shape must success-
fully propagate the new code after if-conversion. TameIR provides a simple if-
structure with only then- and else-block. We first identify the variables which
will be used in both the then- and else-block. We then analyze both branches
using input flow. For variables which are used only in one block, there are two
cases: (1) only used within block; or (2) remain after the if-block. The variables
in (1) can be kept the same while the variables in (2) must multiply with its
corresponding mask (i.e. cond or ∼cond).

6 Data Dependence Analysis

Besides promoted shape information, we consider the possible dependence
between statements. It is the key problem for program vectorization. We inves-
tigate the exact test, the GCD test [1], to tell whether data dependence exists.
If two statements cannot be decided by this test, we conservatively assume they
have data dependence. Furthermore, a dependence graph is built on the result
of the test. We split the graph into subgraphs in which each node connects but
there is no connection between subgraphs. A subgraph is a directed graph. The
Tarjan’s algorithm [13] for finding strong connected components is adopted to
identify possible acyclic subgraphs. Given an acyclic subgraph with no variable
having promoted shape �, we are able to get the topological order of each node in
the subgraph with a topological sort. When vectorizing, the topological ordering
is used to order the equivalent vector statements.

182 H. Chen et al.

7 Vectorization and Optimization

The statements in a loop are separated into two groups: (1) vectorizable state-
ments in a topological order and (2) non-vectorizable statements in a sequential
order. For the first group, the loop range is extracted and each statement is
vectorized and inserted above the loop. For the second group, the statements
are not vectorizable and thus remain as is. If all statements are vectorizable, the
resulting loop is empty and can be removed.

7.1 Special Cases

Function Replacement. MATLAB programs may contain many arithmetic oper-
ators, some of which can have different meanings depending on the operand
types. Multiplication (*) for instance can either be an arithmetic or matrix mul-
tiplication. In MATLAB, a built-in function mtimes provides matrix multipli-
cation while times performs an elementwise operation. With the Tamer Value-
Analysis, we can generate improved code by using the faster elementwise function
where possible. This replacement also applies to division (mrdivide vs. rdivide)
and power (mpower vs. power).

Idioms for Reductions. MATLAB programs also commonly use patterns within
loops, especially accumulation [2]. Using cycles from the dependence graph, com-
mon patterns can be replaced using the equivalent reduction operation. MAT-
LAB provides a built-in reduction function sum for accumulation. The Mc2Mc
tool is able to detect this idiom and generate vectorized code with the sum
function.

Special Built-in Functions. Some built-in functions are excluded from the pro-
moted shape analysis since they are not elementwise functions. However, they
can be analyzed to expose further vectorization opportunities. We identify two
such functions below.

Colon: Since we adopt an iterative method to vectorize loops from innermost to
outermost, the generated code from a previous iteration may contain multiple
calls to the colon operator. Since the colon operator is not elementwise, it
is not included in the initial promoted shape analysis. To expose further
vectorization, we give the return variable of a colon operator promoted shape
N. This allows vectorization of outer loops which require full promoted shape
information.

Transpose: Since the promoted shape of the function argument may be either
a row or column vector and the vectorized function may require a particular
shape to be semantically equivalent, we use the transpose built-in function to
transform the inputs as needed.

7.2 Code Optimization with Dynamic Checks

Since indexing using a colon operator has an impact on the performance of
vectorization, we explore dynamic checks to reduce the overhead caused by the

Automatic Vectorization for MATLAB 183

redundant array indexing. If a colon indexing covers all elements in an array,
the colon indexing can be replaced with an array name to improve performance.
Only the left-hand side of an assignment statement is considered for the dynamic
checks.

8 Evaluation

To study the performance of our automatic vectorization we have performed
experiments on a diverse set of benchmarks on four different execution engines.

8.1 Experimental Setup

The experiments were done on a desktop with an i7-3820 3.60 GHz (eight cores)
CPU and 8 GB RAM running Ubuntu 14.04 TLS. We selected four execution
engines. We used two interpreters: Octave 4.0, which is an open-source inter-
preter and MATLAB 8.1 (R2013a) with the JIT turned off. We used two JIT-
based systems: MATLAB 8.1 (R2013a) which has a 1st-generation JIT, and
MATLAB 8.6 (R2015b) which has a newer 2nd-generation JIT. Each bench-
mark was executed 5 times and the mean execution time is reported. We used
the Wu-Wei Benchmarking Toolkit to perform the experiments.6 The source
code of these experimemts is available on GitHub.7

There are total nine benchmarks chosen for the experiments, taken from the
Ostrich benchmark set which provides multi-language versions of benchmarks
covering a wide range of numerical categories (Dwarfs).8

Back-Propagation (BP): a method of training artificial neural networks. It
provides an interactive algorithm to update the weights in the given network.

Black-Scholes (BS): a computationally intensive algorithm which is used to
calculate the price for a portfolio of European options analytically with the
Black-Scholes partial equation (PDE).

Capacitance (CAPR): computes the capacitance of a transmission line using
finite difference and Gauss-Seidel iteration.

Crank-Nicholson (CRNI): computes the Crank-Nicholson solution to the
one-dimensional heat equation.

Fast Fourier Transform (FFT): computes FFT on a random data set as
input.

Monte-Carlo simulation (MC): approximates the value of π.
Needleman-Wunsch (NW): calculates optimal global alignment of two DNA

sequences.
Page-Rank (PR): link analysis algorithm.
Sparse Matrix-Vector Multiplication (SPMV): compressed sparse row

(CSR) format multiplication between a sparse matrix and a vector.

6 https://github.com/Sable/wu-wei-benchmarking-toolkit/.
7 https://github.com/Sable/lcpc16-analysis.
8 https://github.com/Sable/Ostrich.

https://github.com/Sable/wu-wei-benchmarking-toolkit/
https://github.com/Sable/lcpc16-analysis
https://github.com/Sable/Ostrich

184 H. Chen et al.

8.2 Experimental Results

To study the performance influence caused by the code vectorization, we
compared the original MATLAB code with the automatically vectorized code.
To produce the vectorized code we used our tool to identify and transform loops
which could be vectorized, and we replaced the original loops with the automat-
ically generated vector code.

Overall Performance. The results of our experiments are given in Table 4. There
are four multicolumns, one for each execution engine. For each of these there are
three columns: time for the original code, time for the automatically vectorized
code, and speedup which is the ratio of orig time/vect time. We also provide the
geometric mean speedup for each execution engine. A speedup of k means that
the vectorized version was k times faster than the original loop version. In Table 4
we have shown all speedups ≥ 1 as bold blue numbers. For each benchmark (i.e.
each row in the table) we show the time of fastest version over all the execution
engines as bold italic red numbers.

Table 4. Times (in seconds) and Speedups (SU) (orig. time/vect. time)

Octave 4.0 MATLAB 2013a MATLAB 2013a MATLAB 2015b
(interpreter) (interpreter) (1st gen JIT) (2nd gen JIT)

orig. vect. vect. orig. vect. vect. orig. vect. vect. orig. vect. vect.
Benchmark time time SU time time SU time time SU time time SU

BP 1855 0.83 2235 138.4 2.76 50.1 6.18 3.00 2.06 2.18 3.09 0.71
BS 97.1 0.20 485.5 28.84 0.14 206 4.84 0.13 37.2 1.35 0.09 15.0
CAPR 207.6 203.7 1.02 14.63 14.4 1.02 0.43 0.51 0.84 0.23 0.29 0.79
CRNI 2452 1075 2.28 248.7 119.7 2.08 7.67 40.9 0.19 3.05 3.66 0.83
FFT 80.88 76.2 1.06 12.95 13.0 1.00 3.83 7.05 0.54 1.25 2.13 0.59
NW 981.3 733 1.34 57.09 40.3 1.42 2.43 1.97 1.23 1.12 1.17 0.96
PR 511.3 5.00 102.3 49.75 1.95 25.5 1.28 1.16 1.10 1.08 1.15 0.94
MC 535.3 0.35 1529 128.3 0.59 217.5 3.75 0.55 6.82 0.93 0.46 2.02
SPMV 117.6 197.3 0.60 17.73 33.8 0.52 0.26 12.8 0.02 0.20 14.5 0.013

Geo Mean 19.1 7.65 1.02 0.77

The results are very interesting and show the relative importance of vectoriza-
tion for different types of execution engines and show that although vectorization
can lead to huge speedups, it is not always beneficial.

For the two interpreters we see excellent speedups due to vectorization. In
the case of Octave we see speedups of 2235x for BP and 1529x for MC. In fact,
these vectorized versions are the fastest overall, beating even the 2nd-generation
JIT in MATLAB 2015b. The speedups for MATLAB 2013a (interpreter) are also
quite impressive. However, the results also show that even with interpreters it
is not always worth vectorizing, as illustrated by the slowdowns for SPMV. In
this case the vectorized loop is the inner loop of the main computation, and the

Automatic Vectorization for MATLAB 185

main compuation outer loop is not vectorizable. The inner loop executes on a
vector of size 2, and thus is not a good candidate for vectorization.

In the case of the JIT execution engines, the results are more nuanced. Some
benchmarks show only a small performance improvement, and others have small
performance degradations. However, there still exist benchmarks where vector-
ization can give good speedups, namely BS and MC. Vectorization of BS gives
37.2x speedup for MATLAB 2013a (1st gen JIT) and 15x for MATLAB 2015b
(2nd gen JIT). The reason is that the two benchmarks successfully achieve loop
vectorization and UDF vectorization. The called UDFs are fully vectorized. The
function invocations in BS are more complex than MC. Therefore, it is more
difficult for the JIT to exploit possible parallelsim while our vectorizer achieves
this. However, with the JITs there can be even more drastic performance degra-
dations due to vectorization, as can be seen by the slowdown of SPMV. It would
seem that vectorizing an inner loop that has very few iterations not only intro-
duces overheads to that inner loop, but also likely interferes with the JIT’s ability
to generate efficient code for the entire loop nest.

9 Related Work

While vectorization is a mature field, there is no universal method for transform-
ing scalar programs into vector form. Existing approaches either use user input,
automated analyses or a combination of the two.

User-Guided Vectorization. Tian et al. implemented vector extensions to C and
C++, allowing the Intel C++ compiler to produce efficient SIMD instructions
without requiring low-level programming [14]. Using in-code directives, entire
user-defined functions can be vectorized in addition to for loops yielding signif-
icant performance improvements. In constrast, our implementation allows vec-
torization of user-defined functions without code annotations. Klemm et al. also
explored directive based vectorization by introducing non-vendor specific SIMD
constructs to OpenMP [5]. Since not all loops can be automatically vectorized,
experimental results show that using annotations improves performance over an
existing production auto-vectorizing compiler. While evaluating the effective-
ness of auto-vectorizing compilers, Maleki et al. also confirmed that production
compilers can handle many synthetic benchmarks but have difficulty automati-
cally vectorizing real world applications [7]. In our work, results show that auto-
vectorization can still provide significant performance increases to substantial
benchmarks, but that performance degredation is also possible, especially with
modern MATLAB JITs.

A mixed user-automatic approach to vectorization has been implemented
for MATLAB. Since vectorization of MATLAB code requires matrix sizes
and shapes, Birkbeck et al. allow user shape annotations to guide the auto-
vectorization techniques [2]. Additionally, a pattern based approach transforms
common code patterns to the equivalent MATLAB built-in. Our implementa-
tion uses the same principles for vectorization, but can automatically infer the
necessary shapes instead of using annotations.

186 H. Chen et al.

Array Programming Languages. Array programming languages such as R and
MATLAB are also important candidates for vectorization. Menon and Pingali
showed that source-to-source transformations of MATLAB, including vectoriza-
tion, can significantly improve program performance [10]. Vectorization allows
better exploitation of the underlying hardware and reduces the interpreter over-
head of repeatedly iterating the loop body. However, their exploration used
hand-optimized programs and did not consider function vectorization as in our
implementation. Chauhan and Kennedy introduced two optimizations: procedure
vectorization and procedure strength reduction, which improved the performance
of real digital signal processing applications [3]. The idea of procedure vectoriza-
tion is similar to our approach to UDFs, replacing a function call inside a loop by
a single function call with vectorized arguments. However, their transformation
is achieved by hand while we present an automatic method for handling UDFs.

The R programming language provides a popular built-in function lapply
which runs a given function on a list of input. By replacing the looping exe-
cution of lapply with a vectorized version of the supplied function, Wang et
al. achieved meaningful speedups [15]. However, their implementation is both
limited to lapply and can also generate inequivalent vector code from if state-
ments due to the semantics of the R ifelse built-in function. Our work accepts
more general input, and generates equivalent vector code when vectorizing if
statements.

10 Conclusions and Future Work

We have presented an automated technique to detect and transform loops to
vectorized code in MATLAB. Our approach introduces a new promoted shape
propogation analysis which is used to identify vectorizable statements and user-
defined functions.

We have implemented our approach as the Mc2Mc tool and used it to exper-
iment with 9 diverse benchmarks over 4 different execution engines. From our
experimental results we conclude that our automatic vectorizer can find and
transform loops in a wide range of benchmarks. The vectorized code is usually
faster, and sometimes three orders of magnitude faster, on interpreted engines.
There is less benefit for vectorizing on JIT systems, but there still exist bench-
marks where excellent speedups can be achieved by vectorizing. Our results also
show that the general advice of “vectorize to improve performance” is not always
true, especially in the JIT settings where vectorizing can interfere with the JIT.

In our future work we would like to integrate our automatic vectorizer into a
MATLAB or Octave IDE, so programmers could selectively vectorize loops. We
would also like investigate automatic and profile-driven techniques for deciding
when vectorization is beneficial, and perhaps also develop some “unvectorizing”
techniques for converting vectorized code to loops when vector code is deemed
to be less efficient.

Acknowledgments. We would like to thank the McLAB group for providing the
analysis framework, Tamer. This work was supported, in part, by NSERC.

Automatic Vectorization for MATLAB 187

References

1. Allen, R., Kennedy, K.: Automatic translation of Fortran programs to vector form.
ACM Trans. Program. Lang. Syst. 9(4), 491–542 (1987)

2. Birkbeck, N., Levesque, J., Amaral, J.N.: A dimension abstraction approach to
vectorization in Matlab. In: CGO, pp. 115–130 (2007)

3. Chauhan, A., Kennedy, K.: Reducing and vectorizing procedures for telescoping
languages. Int. J. Parallel Prog. 30(4), 291–315 (2002)

4. Dubrau, A.W., Hendren, L.J.: Taming MATLAB. In: OOPSLA, pp. 503–522 (2012)
5. Klemm, M., Duran, A., Tian, X., Saito, H., Caballero, D., Martorell, X.: Extend-

ing OpenMP* with vector constructs for modern multicore SIMD architectures.
In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 59–72. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 5

6. Li, X., Hendren, L.J.: Mc2FOR: A tool for automatically translating MATLAB to
FORTRAN 95. In: CSMR-WCRE, pp. 234–243 (2014)

7. Maleki, S., Gao, Y., Garzarán, M.J., Wong, T., Padua, D.A.: An evaluation of
vectorizing compilers. In: PACT, pp. 372–382 (2011)

8. MathWorks: MATLAB. http://www.mathworks.com/
9. McLAB: The McLAB tools for compiling MATLAB (2016). http://www.sable.

mcgill.ca/mclab/
10. Menon, V., Pingali, K.: A case for source-level transformations in MATLAB. In:

DSL, pp. 53–65 (1999)
11. Muraoka, Y.: Parallelism exposure and exploitation in programs. Ph.D. thesis,

Univ. of Ill. at Urbana-Champaign, Dept. of Comp. Sci. UMI(71–21189), February
1971

12. Octave: GNU Octave. https://www.gnu.org/software/octave/
13. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.

1(2), 146–160 (1972)
14. Tian, X., Saito, H., Girkar, M., Preis, S., Kozhukhov, S., Cherkasov, A.G., Nelson, C.,

Panchenko, N., Geva, R.: Compiling C/C++ SIMD extensions for function and loop
vectorizaion on multicore-simd processors. In: IPDPS, pp. 2349–2358 (2012)

15. Wang, H., Padua, D.A., Wu, P.: Vectorization of apply to reduce interpretation
overhead of R. In: OOPSLA, pp. 400–415 (2015)

http://dx.doi.org/10.1007/978-3-642-30961-8_5
http://dx.doi.org/10.1007/978-3-642-30961-8_5
http://www.mathworks.com/
http://www.sable.mcgill.ca/mclab/
http://www.sable.mcgill.ca/mclab/
https://www.gnu.org/software/octave/

Analyzing Parallel Programming Models
for Magnetic Resonance Imaging

Forest Danford1(B), Eric Welch1, Julio Cárdenas-Ródriguez2,
and Michelle Mills Strout1

1 Department of Computer Science, University of Arizona, Tucson, USA
{fdanford,welche,mstrout}@email.arizona.edu

2 Department of Medical Imaging, University of Arizona, Tucson, USA
cardenaj@email.arizona.edu

Abstract. The last several decades have been marked by dramatic
increases in the use of diagnostic medical imaging and improvements in
the modalities themselves. As such, more data is being generated at an
ever increasing rate. However, in the case of Magnetic Resonance Imaging
(MRI) analysis and reports remain semi-quantitative, despite reported
advantages of quantitative analysis (QA), due to prohibitive execution
times. We present a collaborator’s QA algorithm for Dynamic Contrast-
Enhanced (DCE) MRI data written in MATLAB as a case study for
exploring parallel programming in MATLAB and Julia. Parallelization
resulted in a 7.66x speedup in MATLAB and a 72x speedup in Julia.
To the best of our knowledge, this comparison of Julia’s performance
in a parallel, application-level program is novel. On the basis of these
results and our experiences while programming in each language, our
collaborator now prototypes in MATLAB and then ports to Julia when
performance is critical.

Keywords: MATLAB · Julia · Parallel programming languages · Par-
allel applications · Medical imaging · Dynamic Contrast-Enhanced MRI

1 Introduction

Over the last 30 years there has been a dramatic increase in the usage of Mag-
netic Resonance Imaging (MRI) and other imaging modalities in the research
and medical communities [26,27]. Simultaneously, there have been substantial
improvements to the underlying technologies themselves that allow for images to
be captured at significantly higher spatial and temporal resolutions. One of the
consequences of these improvements has been a massive increase in the amount of
data being generated [17]. For scientists and clinicians, this has often translated
to making the difficult decision to forgo a truly quantitative analysis (QA) and
instead sub-sample the available data to perform analyses and generate reports
within an acceptable time frame. One application that currently suffers this

F. Danford and E. Welch—Authors contributed equally

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 188–202, 2017.
DOI: 10.1007/978-3-319-52709-3 15

Parallel Programming Models for MRI 189

plight is Quantitative Analysis (QA) model-based Dynamic Contrast-Enhanced
MRI (DCE MRI) [21]. DCE MRI is used to visualize and characterize cancer-
ous tumors in animal models and humans. The results can be used to predict
patient-specific response to anticancer drugs and provide insight for new drug
discovery [10,20]. DCE MRI is thus highly valuable to clinical oncologists and
scientists. Our work in this study was in collaboration with a medical imaging
researcher who had developed a serial implementation of DCE MRI analysis code
written in MATLAB that had an unacceptable run time unless it used dramat-
ically sub-sampled datasets (≥ 50x). For example, evaluating the QA algorithm
on a breast cancer dataset [11] was estimated to take approximately six months,
which is not practical.

To understand the volume of data being generated, it is valuable to briefly
summarize the workflow of a DCE MRI experiment. Two separate regions, the
volume containing the tumor and a volume containing normal vascular tissue
(known as the reference region; in our case the leg), must be imaged continuously
for several minutes. The MRI machine generates a 2-dimensional double array
of intensities (at a specified spatial resolution) for every time point captured
during the imaging time frame. These volumes must be imaged twice - first as a
baseline to determine the tissue’s innate relaxation properties (TR volume), and
then many times after the injection of a gadolinium-based contrast agent (CA).
The CA’s properties cause a change in the relaxation properties of the tissue,
translating to different voxel intensities. These changes in signal intensity over
time are used to calculate the CA’s concentration, which is run through to a
non-linear least squares computation to estimate the permeability of the tumor
[20]. For more information, we refer readers to [5].

The computationally expensive portion of the QA DCE MRI algorithm lies
in the non-linear fitting step, which must be performed for each voxel containing
tissue in the image volume. Even in our heavily sub-sampled dataset, thousands
of non-linear least square problems must be solved. Analysis of the original serial
MATLAB code revealed that the majority of the workload could be computed
in an embarrassingly parallel fashion, as each spatial point in the volume is
independent of the others.

Given that the original code was already implemented in MATLAB and
the popularity of the language in the biomedical engineering community, the
straightforward approach to solving the performance problem was to imple-
ment an equivalent parallel implementation using the Parallel Computing Tool-
box (PCT) in MATLAB. However, this only improved performance on a by
7.66x using 12 cores at best. Therefore, we decided to do a case study where we
implemented a version in a newer language called Julia [4]. With Julia, we were
able to achieve an approximately 72x performance improvement over the serial
MATLAB implementation.
This paper makes the following contributions:

– We analyze the serial algorithm and identify areas where parallelization is
expected to increase performance.

190 F. Danford et al.

– We provide a more substantial benchmark for the Julia programming language
(previous publications only include microbenchmark results) via quantitative
performance data for the MATLAB and Julia versions.

– We provide a comparison of the process of writing parallel code in MATLAB
and Julia based on our experiences in this case study.

Based on the significant increase in performance observed in the Julia imple-
mentations (22x speedup for the serial version and 72x speedup in the parallel
version), our medical imaging researcher’s group has begun to translate their
performance critical code to Julia.

The remainder of the paper is organized as follows: Sect. 2 contains a thor-
ough description of the serial code and the experimental methodology. Sections 3
and 4 discuss the MATLAB and Julia languages and implementations. Section 5
details our results, Sect. 6 presents related work, and Sect. 7 concludes.

2 Analysis of the Serial MATLAB Code

The QA DCE MRI code consists of the following five tasks:

1. Loading the data
2. Segmenting the tissue from the background
3. Calculating T1 time (seconds) on a per-voxel basis via non-linear least squares

curve fitting to its phenomenological equation
4. Calculating the change in R1 as a function of time
5. Estimating the relative permeability between the tumor and muscle tissue

(RKtrans) using the linear reference region model and evaluating the goodness-
of-fit via the R2 value.

The original serial algorithm was revised to remove all unnecessary operations
(e.g. those done solely to produce human-interpretable images) and the standards
recommended by The MathWorks were enforced [31]. This resulted in about a
1.67x speedup (execution time of 46.33 ± 1.33 seconds vs. 77.36 ± 4.22 seconds).
This simplified version, whose execution time is profiled in Fig. 1, is used as the
baseline for all comparisons presented in the paper. The remainder of this section
analyzes the performance of the serial MATLAB implementation and describes
each task in more detail.

2.1 Experimental Methodology

The execution times reported are the average of five runs ± their standard devi-
ation measured after a warm up run whose time was not included. This allows
just-in-time (JIT) compilation to complete and parallel workers to initialize in
both languages to avoid comparing compiler speeds and efficiencies, and instead
provide a comparison of the performance of the computation in each language.
Given that these are one-off costs that are amortized over many datasets, the

Parallel Programming Models for MRI 191

contribution to the overall run time becomes negligible. All speedups reported
are comparisons of the T1 calculation (see Sect. 2.2).

Execution times were obtained by submitting jobs to a PBS scheduling sys-
tem on a high-performance computing cluster consisting of Lenovo NeXtScale
nx360 M5 compute nodes with Xeon Haswell E5-2695 V3 Dual 14-core processors
operating at 2.3 GHz. The dataset used for benchmarking the various implemen-
tations consisted of 5 time points, each composed of a 128×128 array of doubles.
MATLAB 2015b and Julia v.0.4.3 were used for these experiments.

Timing information in MATLAB was obtained using the built-in tic/toc
construct. These values were validated against MATLAB’s built-in code profiler
and were not found to be significantly different.

Fig. 1. Execution time for main tasks of serial MATLAB implementation.

2.2 Performance Bottleneck: T1 Calculation

As shown in Fig. 1, the T1 calculation accounts for approximately 97% of the
total run time on average. The disparity between the run time of the tumor and
leg volume arises due to the difference in the number of tissue voxels present
post-segmentation (3199 voxels vs. 1083 voxels). If we account for this difference,
it appears that the execution time for this function scales linearly, so there is
nothing intrinsically different about the tumor. In this task, each voxel from the
TR volume is fit to the following phenomenological equation to solve for T1:

S(t) = Mz(1 − e−TR/T1(t)) (1)

via MATLAB’s built-in non-linear least squares solver, lsqcurvefit. As the
calculations performed for each voxel is independent and the two TR volumes
are independent, they can be computed in an embarrassingly parallel fashion.
Parallelization efforts were focused on this function for the MATLAB and Julia
implementations and as such speedup results consider this section only.

2.3 Other Tasks

The raw output from the MRI machine is pre-processed into an array of dou-
bles that are stored in a MATLAB .mat file and a csv format for the Julia
implementation. MATLAB’s built-in command load() takes virtually no time
(Fig. 1), and the same is true of Julia’s readdlm function.

192 F. Danford et al.

Segmentation is performed using MATLAB’s built-in k-means clustering
algorithm (kmeans). A 1-D vector containing all voxels is provided as input and
the function categorizes each voxel as either tissue or background. MATLAB’s
built-in implementation of Otsus method to determine the gray-scale thresh-
old for binarization was also explored, but k-means generated the best mask
(results omitted). The k-means algorithm in the clustering package of JuliaStats
generated identical masks. The run time of this task is also negligible.

After T1 is calculated, two equations are combined to describe R1 (∝ CA
concentration) as a function of time, T1, and TR:

R1(t) = − 1
TR

· ln(1 − S(t)e−TR·R1(0)/S(0)) (2)

As this is a straightforward calculation that takes a negligible amount of time, we
do not parallelize it. At this point, concentration as a function of time is known
— that is, we have solved the non-linear relationship between voxel intensity and
CA concentration for both tissue volumes. The reference region model (RRM) [5]
is used to calculate the permeability of the CA, Ktrans, and the R2 value on a
voxel-by-voxel basis for the tumor tissue via a linear least squares fitting with
non-negativity constraints (lsqnonneg). Despite each voxel being independent,
the function runs for a short enough time that overhead costs would likely out-
weigh parallelization gains.

2.4 Performance Analysis Summary

To summarize, the tumor and reference region voxels are entirely independent
and are processed identically until the calculation of Ktrans. Additionally, in
all tasks that process the segmented tissue voxels, the calculations performed on
each voxel are independent, and can therefore be computed in an embarrassingly
parallel fashion. Analysis of the computations that occur within these tasks
does not reveal anything inherent to the code that would result in one language
handling the computation preferentially.

3 MATLAB Implementations

The DCE MRI algorithm was parallelized in MATLAB by a graduate student
who had several years of experience working with MATLAB and the Parallel
Computing Toolbox (PCT) in the biomedical domain. Using the PCT, a 7.66x
speedup over the serial code was achieved for the T1 calculation.

3.1 MATLAB Background

Because most scientists do not receive formal software engineering training [2],
MATLAB’s ease of use (e.g. weak and dynamic typing system, lack of need
to declare dimensions, etc.) and trusted libraries have made it a popular lan-
guage for scientific computing applications [9,23]. Additionally, the core inten-
tions of MATLAB’s parallel programming model (the PCT) were to extend the

Parallel Programming Models for MRI 193

aforementioned traditional strengths of MATLAB onto the cluster via first-class
language constructs to deal with embarrassingly parallel problems [24]. This
allows users to easily utilize multicore processors, GPUs and clusters with min-
imal modification of code or impact on readability.

However, MATLAB is not as performant as other programming languages,
especially those used for parallel programming [4]. MATLAB worker threads
that execute concurrent computation are heavyweight, and the PCT is propri-
etary and has limited scalability [15]. Additionally, the dynamic and complex
typing system results in significant overhead [1,8,14]. Despite these drawbacks,
in the realm of scientific computing, time to solution, readability, portability,
and maintainability often trump pure performance [2], so MATLAB is utilized
significantly [14].

As a bridge, continuous and significant work has been done on static analysis,
ahead of time speculation, JIT compilation, and automatically porting existing
code to more performant languages [1,9,13,15,16]. While automatically ported
code makes sacrifices in terms of both the highly human-interpretable syntax
and interactive nature of MATLAB, The MathWorks has adopted some of the
other techniques, and as of release 2015b MATLAB is now entirely JIT compiled
[29,30]. Based on selected case studies [30] and comparing the benchmarks per-
formed by the Julia language creators on MATLAB 2011a [4] to MATLAB 2015b
(http://julialang.org/), it appears that this has had a predominantly positive
impact on performance.

3.2 Parallelization Using the Parallel Computing Toolbox

For the DCE MRI application, the T1 calculation was rewritten so that every
voxel was fit in parallel, while the tissue was processed serially (version 1). Mod-
ifications to the serial code were minimal and consisted of slicing variables [18]
and changing the for to a parfor in the function shown in Fig. 2. As nested
parallelism is not supported in MATLAB, version 2 consisted of restructuring
the code to process both the tissues and voxels in parallel.

Table 1 contains the execution time, speedup, and efficiency for the paral-
lelized versions as a function of the number of cores provided to the MATLAB

Table 1. Summary of parallel MATLAB implementations

Version

1 2

cores Runtime (seconds) Speedup Efficiency Runtime (seconds) Speedup Efficiency

1 49.58 ± 1.90 0.93x 93.17% 50.09 ± 2.42 0.92x 92.21%

2 26.96 ± 0.18 1.71x 85.66% 25.26 ± 0.50 1.83x 91.44%

4 14.57 ± 0.14 3.17x 79.25% 13.86 ± 0.55 3.33x 83.30%

8 8.37 ± 0.20 5.52x 69.01% 7.95 ± 0.19 5.81x 72.64%

12 6.03 ± 0.14 7.66x 63.85% 6.17 ± 0.10 7.49x 62.43%

http://julialang.org/

194 F. Danford et al.

parallel pool for the T1 calculation. Versions 1 and 2 using 12 cores were the
most performant and achieved a 7.66x speedup at 63.85% efficiency and a 7.49x
speedup at 62.43% efficiency respectively. The execution time of versions 1 and
2 were not found to be statistically different as determined by a Two-Sample
Kolmogorov-Smirnov test (kstest2) at a p-value of .05. On average, it took
10.27 ± 1.48 seconds to initialize the parallel pool, which is nearly 45% of the
total execution time (for all sections) of the fastest version.

4 Julia Implementations

The DCE MRI algorithm was converted from MATLAB to Julia by a graduate
student who had never worked with MATLAB or Julia, had no experience with
medical imaging, and had no prior experience with parallel computing. Thanks to
several features of the two languages, this process was straightforward, as was the
parallelization of the T1 calculation, which ultimately resulted in a 72x speedup
over the serial MATLAB code. Julia v0.4.3 was used and timing information was
obtained using the @time macro as per the recommended best practices.

4.1 Julia Background

Julia was designed specifically for numerical and scientific computing, and has
a syntax similar to languages such as MATLAB and R, but has been shown
to outperform such dynamically-typed languages on microbenchmarks, often
achieving performance comparable to C and Fortran [4]. Julia’s creators have
indicated that the language’s speed is accounted for by its robust type inference
system, multiple dispatch, and high-performance LLVM-based JIT compiler that
generates optimized, on-the-fly native machine code directly [3].

Julia features built-in parallel capability [3], and although it is still in pre-
release, its user base has created a significant number of native libraries for the
language [25], as well as interfaces to commonly utilized libraries from other
languages such as NLopt.

4.2 Serial Julia Implementation

The run time of the T1 calculation in the serial Julia implementation was 2.07 ±
0.01 seconds, roughly a 22x speedup over the serial MATLAB version. Because
MATLAB and Julia were designed for programmability and are thoroughly doc-
umented, it was easy to investigate MATLAB functions and determine how to
implement them in Julia. Indeed, Julia seems to liberally “borrow” features from
many other languages, including MATLAB, and we found that many MATLAB
functions, such as the matrix manipulation function reshape, have been imple-
mented in Julia with nearly identical syntax and semantics (Fig. 5).

When required MATLAB functions had no equivalent in the Julia standard
library, it was easy to locate third-party, open-source libraries providing the
needed functionality. This occurred in the segmentation task — Julia did not

Parallel Programming Models for MRI 195

Fig. 2. Curve-fitting function in MATLAB and Julia

have a built-in k-means function. However, because Julia features a package man-
ager, typing the command Pkg.add("Clustering.jl") at the Julia command
prompt immediately downloaded the latest version of the library Clustering.jl
from a github repository (https://github.com/JuliaStats/Clustering.jl), and pro-
vided the use of its kmeans function, which had the same syntax as MATLAB’s
implementation. For the task involving least-squares curve fitting, a function
from the JuliaOpt package LsqFit.jl that appeared to mirror MATLAB’s
lsqcurvefit was inadequate, as it did not allow for bounds on the solution. An
interface allowing Julia to call the NLopt library, NLopt.jl, was used instead
(Fig. 2).

A few MATLAB functions involved in the permeability estimation step, such
as cumtrapz and nans, were not present in Julia, but it was straightforward to
simply implement them.

4.3 Parallelization of Julia Implementation

Julia allows for a variety of approaches to parallel programming, but for
the embarrassingly parallel computations required in this application, a sim-
ple shared memory model was sufficient. We utilized a special Julia datatype
designed for this purpose, called a SharedArray, which is accessible by multiple
processors. The demonstration code for SharedArrays in the Julia documenta-
tion provided a clear blueprint for our implementation. Following this example,
the key steps were to copy data from several arrays into SharedArrays, and cre-
ate two kernels that: (1) determined which voxels to process on each processor,
and (2) ran the appropriate subset of the least-squares curve-fitting calculations
on each processor.

https://github.com/JuliaStats/Clustering.jl

196 F. Danford et al.

Fig. 3. Functions involved in serial and parallel curve fitting in Julia

The first of these (Fig. 3a), which was essentially copied from the Julia doc-
umentation [32], partitions a collection of indices into equal-sized groups for
each processor. The second (Fig. 3b) merely substitutes an iteration over all
voxel indices for an iteration over the indices assigned to the worker running the
kernel.

As shown in Table 2, the parallelization produces gains of up to 3.24x over
the serial Julia implementation, with reasonable efficiency.

Table 2. Summary of parallel Julia implementations

Cores Execution time (seconds) Speedup relative to serial Julia Total efficiency

1 2.63 ± 0.37 0.79x 78.56%

2 1.47 ± 0.07 1.41x 70.53%

4 1.03 ± 0.09 2.01x 50.37%

8 0.71 ± 0.01 2.92x 36.51%

12 0.64 ± 0.06 3.24x 27.00%

5 Results

In this section, we evaluate our implementations of the researcher’s algorithm in
terms of performance and reliability, and report on differences in programmabil-
ity between MATLAB and Julia. We find that rewriting the algorithm in Julia
resulted in performance gains exceeding those of using the MATLAB PCT.

Parallel Programming Models for MRI 197

5.1 Performance

Quantitative performance metrics were generated for the parallel MATLAB,
serial Julia, and parallel Julia implementations for the T1 calculation. The most
performant version of parallel MATLAB achieved a speedup of 7.66x with 63.85%
efficiency. As shown in Fig. 4, the serial version of Julia achieved a 22.32x speedup
compared to the serial MATLAB version, a 72.32x speedup with parallelism,
and a 9.44x speedup when comparing the fastest parallel Julia implementation
with the fastest parallel MATLAB implementation. However, MATLAB exhibits
substantially more efficient parallelism compared to Julia (Tables 1 and 2).

Fig. 4. Speedup of Julia implementations relative to MATLAB implementations

5.2 Reliability

The results obtained with Julia were comparable to those obtained with MAT-
LAB. The T1 calculation results obtained from Julia had insignificant numerical
differences compared to the original MATLAB implementation: within the 1,083
signal pixels in the leg, the root mean square error (RMSE) was 7.90e-4 and the
maximum absolute difference (MAD) was 0.0108; within the 3,199 signal pixels
of the tumor, the RMSE was 9.07e-4 and the MAD was 0.0347. For the final
RKtrans calculation, the RMSE was 2.31e-3 and the MAD was 0.0744.

5.3 Programmability

MATLAB and Julia are similar in terms of syntax (Fig. 5) and expressive-
ness. The serial MATLAB and Julia implementations contain 292 and 244
source lines of code (SLOC) respectively. The fastest parallel implementation
in MATLAB contains 239 SLOC compared to Julia’s 284 SLOC. Productivity

198 F. Danford et al.

was also comparable after familiarity was gained with Julia — in both languages
it took approximately 1.5 h to parallelize the algorithm. This was somewhat sur-
prising given the differences in familiarity with the languages and parallelism.
The graduate student who learned MATLAB and Julia in tandem did not find
either language particularly more difficult to understand than the other — how-
ever, he was simply translating MATLAB code to Julia code, as opposed to
prototyping purely in Julia.

Fig. 5. k-means mask extraction code in MATLAB and Julia

One difference between the languages is that Julia’s error messages initially
appear cryptic, often including information about types that the programmer did
not specify, but were inferred during JIT compilation. In Fig. 6, an error arises
because size(out) returns a Tuple type, while the colon operator expects the
right-hand operand to be an integer. In MATLAB, comparable code runs with
no error, since the colon simply uses the first element of the 2×1 array returned
by size. MATLAB was generally found to be more “forgiving” than Julia.

Fig. 6. A typical Julia error message

Moreover, MATLAB’s Code Analyzer will infer and warn the programmer if,
for instance, there is code that would distribute a large array to many parallel
workers, while Julia does not provide warnings of this type. More broadly, the

Parallel Programming Models for MRI 199

MATLAB IDE was felt to be more convenient and powerful than using a Julia
the Juno IDE (http://junolab.org/) or a Jupyter Notebook (http://jupyter.org/).

Another difficulty that arose when implementing the algorithm in Julia was
locating a library that would provide the same functionality as MATLAB’s
lsqcurvefit function. The fact that a Julia library function with the same
name had been written, but which used a different algorithm that did not allow
bounds constraints, was troubling.

In spite of these hurdles, our experience suggests that learning Julia is com-
parable to learning a dynamically-typed programming language.

5.4 Limitations

Our implementations in the two languages used different algorithms for per-
forming the fitting for the T1 calculation: the MATLAB lsqcurvefit function
used the Trust-Region-Reflective Least Squares Algorithm from the Optimiza-
tion Toolbox, while the Julia version used a modified version of Powell’s imple-
mentation of the COBYLA algorithm in the NLopt library. In order to ensure
that the execution times were not different due to this distinction, the original
MATLAB implementation was altered to solve the non-linear fitting using the
NLopt library with the same parameters and objective function that the Julia
implementation did. The T1 calculation took 80.53 ± 0.41 seconds using NLopt
(compared to 52.40 ± 0.65 seconds using lsqcurvefit). The numerical differ-
ences between the two implementations were insignificant: The voxels in the leg
had an RMSE of 3.63e-04 and MAD of 4.25e-03, and the tumor had an RMSE
of 3.75e-04 and MAD of 1.06e-02. Since MATLAB is proprietary software, it is
difficult to determine the source of the performance differences observed in a
detailed fashion.

6 Related Work

To the best of our knowledge this is the first comparison of the performance of
two implementations of the linear reference region model (LRRM) for the analy-
sis of DCE MRI data. Smith et al. [25] recently described DCEMRI.jl, a Julia
implementation of the commonly used Tofts model for DCE MRI, and compared
it briefly against implementations in IDL [22] and R language [28]. DCEMRI.jl
was reported to be 24X faster than DCE@urLAB; both implementations used
the Levenberg— Marquardt algorithm (LMA). Additionally, DCEMRI.jl was
reported to be 10X faster than dcemriS4, but this is not a straight comparison
because dcemriS4 uses a Bayesian hierarchical approach for curve fitting that is
more demanding than the LMA.

Much research has been done on compiling and automatically paralleliz-
ing MATLAB [6,7,12,19]. We did not compare the Julia and MATLAB par-
allel implementations against what the most active MATLAB compiler project,
McLab at McGill, can perform and this is future work. One important con-
sideration in the selection of Julia was that it is a programming environment

http://junolab.org/
http://jupyter.org/

200 F. Danford et al.

that is gaining significant community support. For the medical imaging research
community to switch to a new programming platform, the platform will need to
show signs of significant community support and longevity.

A review of the literature found no references comparing Julia’s performance
to that of other languages for the same algorithm in an authentic parallel pro-
gramming application (i.e. beyond microbenchmarks).

7 Conclusion

Although the initial MATLAB code processed the benchmark data set on the
order of minutes, a typical experiment for a medical imaging researcher often
includes more and larger images, taken from dozens of patients, and may take
weeks to run. The 72x speedup achieved using Julia would reduce weeks to hours,
removing a significant constraint on researchers. Based on our experience while
writing this paper, Julia appears to be a very attractive, emergent programming
language for scientific computing.

As a result of our work on the DCE MRI algorithm, and his subse-
quent investigations into Julia, the research scientist has adopted the follow-
ing model: (1) prototype and validate in MATLAB, (2) use MATLAB to iden-
tify bottlenecks, (3) port performance-critical portions of code to Julia. Tak-
ing into account the results of this case study, we feel that it would not
be difficult for other research groups (who have already navigated the MAT-
LAB learning curve) to similarly utilize Julia. Furthermore, since none of
the performance gains found in this study resulted directly from the use of
MRI data, it seems likely that other scientific computing applications could
be prototyped rapidly in MATLAB, then efficiently ported to Julia for high-
throughput applications. The DCE MRI code in both languages can be found
at github.com/fdanford/LCPC2016 MATLAB Julia/.

Acknowledgments. An allocation of computer time from the UA Research Comput-
ing High Performance Computing (HPC) and High Throughput Computing (HTC) at
the University of Arizona is gratefully acknowledged by the authors.

References

1. Almási, G., Padua, D.: MaJIC: compiling matlab for speed and responsiveness. In:
ACM SIGPLAN Notices, vol. 37, pp. 294–303. ACM (2002)

2. Basili, V.R., Carver, J.C., Cruzes, D., Hochstein, L.M., Hollingsworth, J.K., Shull,
F., Zelkowitz, M.V.: Understanding the high-performance-computing community:
a software engineer’s perspective. IEEE Softw. 25(4), 29 (2008)

3. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to
numerical computing. arXiv preprint arXiv:1411.1607 (2014)

4. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: a fast dynamic lan-
guage for technical computing. arXiv preprint arXiv:1209.5145 (2012)

http://arxiv.org/abs/1411.1607
http://arxiv.org/abs/1209.5145

Parallel Programming Models for MRI 201

5. Cárdenas-Rodŕıguez, J., Li, X., Whisenant, J.G., Barnes, S., Stollberger, R., Gore,
J.C., Yankeelov, T.E.: The basic principles of dynamic contrast-enhanced mag-
netic resonance imaging. In: Bammer, R. (ed.) MR & CT Perfusion Imaging: Clin-
ical Applications and Theoretical Principles, chapter 31. Lippincott Williams &
Wilkins, Philadelphia (2016)

6. Casey, A., Li, J., Doherty, J., Chevalier-Boisvert, M., Aslam, T., Dubrau, A.,
Lameed, N., Aslam, A., Garg, R., Radpour, S., Belanger, O.S., Hendren, L., Ver-
brugge, C.: McLab: an extensible compiler toolkit for MATLAB and related lan-
guages. In: Proceedings of the Third C* Conference on Computer Science and
Software Engineering, C3S2E 2010, pp. 114–117. ACM, New York (2010)

7. Chauhan, A., Kennedy, K.: Optimizing strategies for telescoping languages: proce-
dure strength reduction and procedure vectorization. In: Proceedings of the 15th
ACM International Conference on Supercomputing, New York, pp. 92–102 (2001)

8. Chevalier-Boisvert, M., Hendren, L., Verbrugge, C.: Optimizing MATLAB through
just-in-time specialization. In: International Conference on Compiler Construction,
pp. 46–65. Springer, Heidelberg (2010)

9. De Rose, L., Padua, D.: Techniques for the translation of MATLAB programs
into FORTRAN 90. ACM Trans. Program. Lang. Syst. (TOPLAS) 21(2), 286–323
(1999)

10. DeGrandchamp, J.B., Whisenant, J.G., Arlinghaus, L.R., Abramson, V.G., Yan-
keelov, T.E., Cardenas-Rodrguez, J.: Predicting response before initiation of neoad-
juvant chemotherapy in breast cancer using new methods for the analysis of
dynamic contrast enhanced MRI (DCE MRI) data. In: International Society for
Optics and Photonics, SPIE Medical Imaging, pp. 978811–978811, March 2016

11. DeGrandchamp, J.B., Whisenant, J.G., Arlinghaus, L.R., Abramson, V.G., Yan-
keelov, T.E., Cárdenas-Rodŕıguez, J.: Predicting response before initiation of
neoadjuvant chemotherapy in breast cancer using new methods for the analysis
of dynamic contrast enhanced MRI (DCE MRI) data. In: Proceedings of SPIE,
pp. 9788:978811–978811-10 (2016)

12. DeRose, L., Gallivan, K., Gallopoulous, E., Marsolf, B., Padua, D.: A MATLAB
compiler and restructurer for the development of scientific libraries and applica-
tions. In: Preliminary Proceedings of the 8th International Workshop on Languages
and Compilers for Parallel Computing, pp. 18.1–18.18, May 1995

13. Doherty, J., Hendren, L., Radpour, S.: Kind analysis for MATLAB. ACM SIG-
PLAN Not. 46(10), 99–118 (2011)

14. Dubrau, A.W., Hendren L.J.: Taming MATLAB, vol. 47. ACM (2012)
15. Kumar, V., Hendren, L.: Compiling MATLAB for high performance computing

via x10. Sable Technical report 03 (2013)
16. Li, X., Hendren, L.: Mc2FOR: a tool for automatically translating MATLAB to

FORTRAN 95. In: 2014 Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering (CSMR-WCRE), pp. 234–
243. IEEE (2014)

17. Markonis, D., Schaer, R., Eggel, I., Müller, H., Depeursinge, A.: Using mapreduce
for large-scale medical image analysis. arXiv preprint arXiv:1510.06937 (2015)

18. MathWorks. Matlab parallel computing toolbox users guide (2016). www.
mathworks.com/help/pdf doc/distcomp/distcomp.pdf. Accessed 20 May 2016

19. Menon, V., Pingali, K.: A case for source-level transformations in MATLAB. In:
Proceedings of the 2nd Conference on Domain-Specific Languages, pp. 53–66.
USENIX Association, Berkeley, 3–5 1999

http://arxiv.org/abs/1510.06937
www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf
www.mathworks.com/help/pdf_doc/distcomp/distcomp.pdf

202 F. Danford et al.

20. O’Connor, J.P., Jackson, A., Parker, G.J., Jayson, G.C.: DCE-MRI biomarkers
in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J.
Cancer 96(2), 189–195 (2007)

21. O’Connor, J.P.B., Tofts, P.S., Miles, K.A., Parkes, L.M., Thompson, G., Jackson,
A.: Dynamic contrast-enhanced imaging techniques: CT and MRI. Br. J. Radiol.
84(2) (2011)

22. Ortuño, J.E., Ledesma-Carbayo, M.J., Simões, R.V., Candiota, A.P., Arús, C.,
Santos, A.: Dce@ urlab: a dynamic contrast-enhanced mri pharmacokinetic analysis
tool for preclinical data. BMC Bioinform. 14(1), 1 (2013)

23. Radpour, S., Hendren, L., Schäfer, M.: Refactoring MATLAB. In: Jhala, R., Boss-
chere, K. (eds.) CC 2013. LNCS, vol. 7791, pp. 224–243. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-37051-9 12

24. Sharma, G., Martin, J.: MATLAB: a language for parallel computing. Int. J. Par-
allel Prog. 37(1), 3–36 (2009)

25. Smith, D.S., Li, X., Arlinghaus, L.R., Yankeelov, T.E., Welch, E.B.: DCEMRI.jl:
a fast, validated, open source toolkit for dynamic contrast enhanced MRI analysis.
PeerJ 3, e909 (2015)

26. Smith-Bindman, R., Miglioretti, D.L., Johnson, E., Lee, C., Feigelson, H.S., Flynn,
M., Greenlee, R.T., Kruger, R.L., Hornbrook, M.C., Roblin, D., Solberg, L.I., Van-
neman, N., Weinmann, S., Williams, A.E.: Use of diagnostic imaging studies and
associated radiation exposure for patients enrolled in large integrated health care
systems, 1996–2010. JAMA 307(22), 2400–2409 (2012)

27. Smith-Bindman, R., Miglioretti, D.L., Larson, E.B.: Rising use of diagnostic med-
ical imaging in a large integrated health system. Health Aff. 27(6), 1491–1502
(2008)

28. Whitcher, B., Schmid, V.J., et al.: Quantitative analysis of dynamic contrast-
enhanced and diffusion-weighted magnetic resonance imaging for oncology in r.
J. Stat. Softw. 44(5), 1–29 (2011)

29. Matlab execution engine. http://www.mathworks.com/products/matlab/matlab-
execution-engine/. Accessed 26 Aug 2016

30. Loren on the art of matlab: Run code faster with the new matlab execution
engine. http://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-
new-matlab-execution-engine/. Accessed 26 Aug 2016

31. Techniques to improve performance. http://www.mathworks.com/help/matlab/
matlab prog/techniques-for-improving-performance.html

32. Parallel computing - julia language 0.4.7 predocumentation. http://docs.julialang.
org/en/release-0.4/manual/parallel-computing/. Accessed 11 July 2016

http://dx.doi.org/10.1007/978-3-642-37051-9_12
http://www.mathworks.com/products/matlab/matlab-execution-engine/
http://www.mathworks.com/products/matlab/matlab-execution-engine/
http://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine/
http://blogs.mathworks.com/loren/2016/02/12/run-code-faster-with-the-new-matlab-execution-engine/
http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html
http://docs.julialang.org/en/release-0.4/manual/parallel-computing/
http://docs.julialang.org/en/release-0.4/manual/parallel-computing/

The Importance of Efficient Fine-Grain
Synchronization for Many-Core Systems

Tongsheng Geng1(B), Stéphane Zuckerman2, José Monsalve2,
Alfredo Goldman1, Sami Habib3, Jean-Luc Gaudiot1, and Guang R. Gao2

1 PArallel Systems and Computer Architecture Lab,
Department of Electrical Engineering and Computer Science,

University of California, Irvine, USA
{tgeng,gaudiot}@uci.edu, gold@ime.usp.br

2 Computer Architecture and Parallel Systems Laboratory,
Department of Electrical and Computer Engineering,

University of Delaware, Newark, USA
{szuckerm,josem}@udel.edu, ggao.capsl@gmail.com

3 Computer Engineering Department, Kuwait University, Al-khalidiya, Kuwait
sami habib@me.com

Abstract. Current shared-memory systems can feature tens of process-
ing elements. The old assumption that coarse-grain synchronization is
enough in a shared-memory system thus becomes invalid. To efficiently
take advantage of such systems, we propose to use fine grain synchroniza-
tion, with event-driven multithreading. To illustrate our point, we study
a näıve 5-point 2D stencil kernel. We provide several synchronization
variants using our fine-grain multithreading environment, and compare
it to a näıve coarse-grain implementation using OpenMP. We conducted
experiments on three different many-core compute nodes, with speedups
ranging from 1.2× to 1.75×.

1 Introduction

In the past decade, the number of processing elements (PEs) found in general-
purpose high-performance processors has increased between fourty and a hun-
dred times, as demonstrated by, e.g., Intel R©’s Xeon and IBM R©’s POWER8
processors. Further, so-called accelerators have reached even higher PE counts
in recent years.

In the meantime, the programming models and program execution models
(PXMs) used by application scientists are mostly the same: MPI is used for inter-
node communication, and OpenMP is still favored for shared-memory computa-
tions. However, while the OpenMP standard has evolved to include finer-grain
tasks with OpenMP 3, and even provide ways to define task-dependence graphs
in OpenMP 4 [6], a large majority of application programmers still rely on a
coarse-grain style to express parallelism, i.e., they mostly use constructs tied to
parallel for loops, which in turn require the use of global barriers.

While the core count remained low in compute nodes, this approach was
still reasonable. However as we explained above, assuming a low core count is
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 203–217, 2017.
DOI: 10.1007/978-3-319-52709-3 16

204 T. Geng et al.

not realistic anymore. Synchronization usually leverages the use of atomic oper-
ations, which can seriously hamper performance in a multi-core, multi-socket
environment. In particular, memory-bound workloads tend to tax the intercon-
nection network linking sockets together. In general, high-performance based
synchronization constructs rely on some sophisticated variation of busy-waiting
(potentially mitigated with a sleep policy) which can hog the memory subsystem,
as the system software designer expects contention to be low and the workload
to be well-balanced—particularly in the case of embarrassingly parallel algo-
rithms and programs. Specifically, memory-bound workloads may suffer from
load imbalance due to saturated resources, e.g., FPUs shared by multiple PEs,
or contention on a given memory level. One such example is the use of partial dif-
ferential equation iterative solvers for linear equation systems, in particular the
application of Jacobi or Gauss-Seidel methods to a linear system by resorting to
a stencil-based iterative solver: every element of an n-dimensional grid depends
on its immediate neighbors, and potentially more remote ones. Such algorithms
are used in a multitude of applications, e.g., to solve Laplace equations used in
heat conduction and computational fluid dynamics solvers.

In this paper, we propose to demonstrate the need for fine-grain synchro-
nization even in the presence of rather coarse-grained workload partitioning. We
compare the coarse-grain parallelization of a 5-point stencil application imple-
mented with OpenMP to several variants using a fine-grain event-driven execu-
tion model. While there are various ways to optimize stencil codes, our intent is
to demonstrate that in a dependence-heavy context, yet with a uniform amount
of work per thread, fine-grain synchronization matters, even in “regular” general-
purpose systems1.

Our experiments show that even with a simple hierarchical scheme, the reduc-
tion in atomic operations and memory traffic in general benefits the overall exe-
cution of the program. We then further modify our variant so that parallel tasks
only communicate with their neighbors. The process itself is made easier thanks
to the integration in the task-definition semantics of event dependencies. More-
over, while we hand-coded our stencil computations using an implementation of
the Codelet Model, the process to parallelize such a workload in a hierarchical
manner is rather systematic and easy to follow.

We run our experiments on three different types of machines featuring ×86
processors, with a different number of processing elements per chip, but also a
different number of sockets per node. Our results show an improvement of up to
1.75× on the speedup obtained with OpenMP.

Section 2 presents the codelet model and its runtime implementation, which
we used to carry our experiments. Section 3 describes our approach to parallelize
our stencil application. Section 4 describes our experimental results. Section 5
describes other work related to fine-grain multithreading and stencil computa-
tions. Finally, we conclude in Sect. 6.

1 Note that we do not claim that our own environment is better than OpenMP 4.

The Importance of Efficient Fine-Grain Synchronization 205

2 The Codelet Model

The Codelet Model [21] is a fine-grain event-driven program execution
model which targets current and future multi- and many-core architectures
(A short introduction is available at http://www.capsl.udel.edu/codelets.shtml).
In essence, it is inspired by dataflow models of computation [8].

2.1 General Principles

Codelets: Definition and Firing Rules. The quantum of execution is the codelet, a
fine-grain task that executes a sequence of machine instructions until completion,
and runs on a von Neumann type of computation core. A codelet fires when all
its dependencies (data and resource requirements) are met. A codelet cannot be
preempted while it is firing, i.e., while it is executing on a computation core.

Codelet Graphs and Threaded Procedures. Each time a codelet produces data
items or releases a shared resource, it signals the other codelets that depend on
such data item(s) and/or resource(s). Such a group of codelets and their depen-
dencies can be modeled as a directed graph called a codelet graph (CDG). In
general, a given CDG statically specifies the dependencies between the codelets
it contains.

A Threaded Procedure (TP) is a container that comprises a CDG and data
to be accessed by the codelets it contains. A TP is essentially an asynchronous
function: once it has invoked a TP, its caller resumes its execution. The TP itself
can run anywhere on the machine once it has been scheduled for execution.

2.2 The Codelet Abstract Machine

The codelet model relies on a Codelet Abstract Machine (CAM), which models a
general purpose many-core architecture with two types of cores: synchronization
units (SUs) and computation units (CUs). A CAM is composed of clusters of
cores: each cluster contains at least one SU, one or more CUs, and some local
memory. Clusters are grouped together to form a chip, which itself has access to
some memory modules. Multiple chips can be grouped into a node, and multiple
nodes form a full machine. At each level of the hierarchy, an interconnection
network is assumed in order to allow for memory transfers.

A CAM is meant to be mapped on real hardware: the number of clusters, and
computation units per cluster will be directly influenced by the actual hardware
architecture on which a codelet program should be running. Further, different
configurations may be used on the same target hardware, depending on the
nature of the application.

2.3 A Codelet Runtime System

Our work relies on DARTS, a faithful implementation of the codelet model [19]. It
targets shared-memory nodes (there is no distributed memory implementation at
the time of this writing). DARTS executes on regular multi-core chips and assigns
a role to each core: a core is either a synchronization unit or a computation unit.

http://www.capsl.udel.edu/codelets.shtml

206 T. Geng et al.

3 Applying Fine-Grain Parallelism to Embarrasingly
Parallel Problems

This section describes how we started from an OpenMP coarse-grain implemen-
tation of a simple, naive 5-point stencil computation and reproduced its overall
structure using a codelet runtime system, to gradually refine the stencil code
parallelization and leverage finer-grain synchronization.

3.1 Basic Implementation of a Parallel Coarse-Grain 5-Point Stencil

The code presented in Listing 1.1 is a näıve OpenMP version of a coarse-grain
multithreaded 5-point stencil computation. To simplify the problem, we do not
consider the convergence test and only rely on a given number of time steps.
This version of the stencil code privatizes everything, so that each thread can
perform all computations (including pointer swapping and moving forward to
the next time step). The computation itself is located in a parallel for loop
(see line 15). We removed the implicit barrier at the end of the loop so that
threads that finish processing their own iteration chunk may proceed to swap
their source and destination pointers for the next time step. The only required
synchronization is the global barrier (line 17) before looping to the next iteration
in the while loop, to ensure that all threads have properly swapped their array
pointers before resuming the computation.

1void stencil_5pt(double* restrict dst , double* restrict src ,
2const size t n_rows , const size t n_cols ,
3size t n_steps)
4{
5typedef double (* Array2D)[n_cols];
6# pragma omp parallel default(none) shared(src , dst) \
7firstprivate(n_rows , n_cols , n_tsteps)
8{
9Array2D D = (Array2D) dst , S = (Array2D) src;
10size t n_ts = n_tsteps;
11while (n_ts -- > 0) {
12# pragma omp for nowait
13for (size t i=1; i<n_rows -1; ++i)
14for (size t j=1; j<n_cols -1; ++j)
15D[i][j] = 0.25 * (S[i-1][j]+S[i+1][j] + S[i][j-1]+S[i][j+1]);
16SWAP_PTR (&D,&S);
17# pragma omp barrier
18}
19}
20}

Listing 1.1. Näıve 5-Point Stencil kernel—OpenMP version. Everything has been
privatized, but threads can only proceed to the next time step if they all have swapped
their array pointers.

We first adapted the code of Listing 1.1 to our DARTS framework. The defin-
ition of codelets and threaded procedures is shown in Listing 1.2. The codelets
are defined with default dependence counts (0 for Compute, and 2 for Barrier),
but they can be overriden when they are effectively instantiated. The Stencil
TP is essentially a C++ struct which allocates the right amount of codelets for
a given cluster of cores, and holds the data which the codelets can access.

The Importance of Efficient Fine-Grain Synchronization 207

Table 1. Codelet Model macros and their meaning.

Keyword Description

DEF TP Defines a new threaded procedure

DEF CODELET Defines a new codelet

DEF CODELET ITER Defines a new codelet with a specific ID

SYNC Signals a codelet within the same TP frame

SIGNAL Signals a codelet in another TP frame

SIGNAL CODELET Signals a codelet from a TP setup phase

LOAD FRAME Loads the threaded procedure frame

FIRE(CodeletName) Code to run when CodeletName is fired

INVOKE(TPName,...) Invokes a new TP from a codelet

The listing of the first variant we implemented, which we call Naive in our
experiments (see Sect. 4), is not shown here due to lack of space. The Compute
codelet proceeds to execute the stencil operation for one time step over a chunk of
the data. When it is done firing, it signals the Barrier codelet, which collects all
the signals of all firing Computes. Barrier then proceeds to invoke a new Stencil
TP where the source and destination arrays are swapped in the parameters
list, and the time step is decreased. This variant performs poorly compared to
OpenMP, as we require DARTS to allocate a new codelet graph for each new time
step. The second variant still implements a coarse-grain synchronization scheme,
but this time, it has Compute codelets reset their dependence count when they
are fired. Barrier signals the end of the computation if there are no more time
steps, or it resets itself, and then signals Compute codelets. The code is provided
in Listing 1.32.

Fig. 1. A coarse-grain version of a näıve stencil computation. Each codelet resets itself
if there are remaining iteration steps.

2 Obviously, as we are writing directly using a runtime system API, the code has to
be more verbose than its OpenMP counterpart.

208 T. Geng et al.

The various keywords emphasized in bold red are macros defined to simplify
the writing of DARTS programs. A short description of the various keywords
is provided in Table 1. A graphical illustration of the codelet program (Näıve
Stencil-DARTS with reset function) is shown in Fig. 1.

1DEFCODELETITER (Compute , 0, NO_META_DATA);
2DEFCODELET (Barrier , 2, NO_META_DATA);
3DEFTP(Stencil) {
4// Data
5double *dst , *src;
6size t n_rows , n_cols , n_tsteps;
7// Code
8Compute* compute;
9Barrier barrier;
10
11Stencil(double* restrict p_dst , double* restrict p_src ,
12size t p_nRows , size t p_nCols ,
13size t p_nTSteps)
14: dst(p_dst), src(p_src)
15, n_rows(p_nRows), n_cols(p_nCols), n_tsteps(p_nTSteps)
16, compute(new Compute[g_nCU])
17, barrier(g_nCU ,g_nCU ,this ,NO_META_DATA)
18{
19for (size t cid = 0; i < g_nCU; ++cid) {
20compute[cid] = Compute{1,1,this ,NO_META_DATA ,cid};
21SIGNALCODELET(compute[cid]);
22}
23}
24};

Listing 1.2. Coarse-Grain 5-Point Stencil kernel—DARTS version. Stencil TP defi-
nition and its associated codelets.

1FIRE(Compute) {
2LOADFRAME(Stencil);
3typedef double (* Array2D)[n_cols];
4Array2D D = (Array2D) FRAME(dst), S = (Array2D) FRAME(src);
5const size t n_rows = FRAME(n_rows), n_cols = FRAME(n_cols),
6n_steps = FRAME(n_steps);
7
8size t cid = getID(), // current codelet ’s ID
9lo = lower_bound(n_cols ,cid),
10hi = upper_bound(n_cols ,cid);
11
12RESET(compute[cid]);
13for (size t i = lo; i < hi -1; ++i)
14for (size t j = 1; j < n_cols -1; ++j)
15D[i][j] = 0.25 * (S[i-1][j]+S[i+1][j] + S[i][j-1]+S[i][j+1]);
16SYNC(barrier);
17EXITTP();
18}
19
20FIRE(Barrier) {
21LOADFRAME(Stencil);
22i f (FRAME(n_tstep) == 0) SIGNAL(done), EXITTP();
23
24RESET(barrier);
25for (size t i = 0; i < g_nCU; ++i) SYNC(compute[i]);
26EXITTP();
27}

Listing 1.3. Coarse-Grain 5-Point Stencil kernel—DARTS version. Codelets reset
themselves until the last iteration step is reached.

The Importance of Efficient Fine-Grain Synchronization 209

3.2 Description of Parallel Stencil Computation Variants

Distributing the Computation Over Multiple Clusters in the Codelet Abstract
Machine. The code presented in Listing 1.3 is sufficient in case we map a codelet
abstract machine (CAM) which features only a single Synchronization Unit (SU,
see Sect. 2). However, this configuration centralizes all codelet graph creations
onto a single processing element. Further, it creates a single unique synchroniza-
tion object which will be accessed by all codelets to signal the end of their com-
putation. This will force the whole compute node to serialize memory accesses
when performing the synchronization step. As a result, we implemented a new
variant inspired by the very first näıve one, which partitions the codelet graph
into sub-graphs, and each contained within its own threaded procedure featur-
ing a local Barrier codelet, and each confined to a given cluster of cores to
maintain locality. Note that, following the original code, new TPs are invoked
for each new time step in the computation. However, to avoid paying the cost of
dynamically allocating the various codelets involved per cluster, the same array
of codelets is passed from invocation to invocation: the codelets are destroyed
only once the last iteration step has been reached. Figure 2 provides a high-level
view of the resulting codelet graph.

Fig. 2. A medium-grain version of a naive 5-point stencil computation. The computa-
tion is decomposed into several sub-codelet graphs, allowing a machine to hold multiple
synchronization units for a better workload balance.

Toward a Finer-Grain Approach. Our goal is to allow portions of work to proceed
with the next iteration step, as long as the shared rows they require to update
their portion of the matrix are up-to-date. We are still decomposing the work
along the rows of the matrices, but this time, each codelet simply signals its
neighbors when it is done updating the rows they depend on to move to the
next iteration step. Hence, some codelets may proceed to update the system at
step St+1 while others are still finishing step St. Figure 3 provides a diagram of
the resulting codelet graph. In this case, we create a single TP holding the whole
codelet graph, where all dependencies are statically determined. The stress on
the memory subsystem is not expected to be excessive, since signals are now
only sent between “neighboring” cores, thus confining atomic operations to PEs
that are physically close.

210 T. Geng et al.

Fig. 3. A fine-grain version of a naive stencil computation. A single TP is generated,
which holds the full codelet graph. Codelets only signal the neighbors which read and
write shared rows.

Reducing the Stencil Computation’s Footprint. The fine-grain approach we fol-
lowed in the previous section also makes it easier to reduce the memory footprint
of the computation. Rather than systematically using two matrices to iteratively
compute new values at each time step (subsequently requiring to exchange array
pointers), it is possible to allocate a small buffer per codelet in each invoked
TP. Each buffer must be large enough to hold a set of at least three full rows in
the matrix. The original naive loop thus becomes more complex, as each codelet
must now first write the new values of the system to its local buffer first, then
must write the newly updated row(s) back to the original matrix. However, this
scheme lends itself well to fine-grain synchronization. Indeed, as Fig. 3 only fea-
tures TPs, codelets, and their dependencies, but not the actual code or data
that are held in the TP frames, then it is also an adequate representation of
an “in-place” version of a fine-grain version of an n-point stencil computation.
However, this version suffers from the same limitation as the previous fine-grain
variant: it requires to invoke a single threaded procedure, thus forcing the codelet
abstract machine to be mapped with a single SU for the whole machine, and, in
turn, to accept that all TP creations will involve a potentially heavy serial step.

Fig. 4. A fine-grain in-place version of a näıve stencil computation. Multiple TPs can
be generated, which hold a portion of the overall codelet graph. Codelets only signal
the neighbors which read and write shared rows. A single matrix is required.

The Importance of Efficient Fine-Grain Synchronization 211

Hence, a final refinement is to allow for the distribution of the fine-grain
“in-place” variant over multiple TPs. While the previous variants, including the
initial fine-grain one, were relatively easy to implement, this specific implemen-
tation requires some careful coding when setting up the overall codelet graph, as
codelets will reset themselves and signal each other not only within the same TP
frame, but also across frames. However, the basic structure remains the same,
and it clearly can be automated by a compiler. The resulting codelet graph is
shown in Fig. 4. In this last variant, each codelet graph features three types of
codelets: Compute performs the actual computation, as before. The CheckDown
and CheckUp codelets are signaled when rows shared by “upper” and/or “lower”
neighbors are ready to be updated. In turn, they also signal other compute
codelets to let them know that the rows they are sharing with their neighbors
are cleared for reading.

4 Experimental Results

4.1 Experimental Setup

The hardware platforms characteristics are described in Table 2.

Table 2. Compute nodes characteristics. “PE”= “Processing element.” L2 and L3
caches are all unified. Hyperthreaded cores feature two threads per core. Platform A
features 64 GiB of DRAM; architectures B and C feature 128 GiB.

Platform Processor

type

Sockets # PEs

per

Socket

Total PEs L1D (KiB) L2 (KiB) L3 (MiB) Comments

A Intel Sandy

Bridge

2 16 32 32 256 20 Private

L2; hyper-

threading

B Intel Sandy

Bridge

4 12 48 32 256 15 Private

L2; hyper-

threading

C AMD

bulldozer

interlagos

4 12 48 16 2048 12 L2 & FPU

are shared

by 2 cores

Table 3 provides the information related to the system software running on
each compute node where we ran our experiments. Each platform offers a rela-
tively varied system software layer, with compilers and OS kernels being slightly
(or even widely) different from node to node. All experiments are run by pinning
threads to a given processing element (hardware thread or core), by setting the
OMP PROC BIND environment variable to true (for OpenMP). DARTS automati-
cally pins its work queues to the underlying processing elements.

212 T. Geng et al.

Table 3. System software stack used for the experiments.

Platform Linux distribution Kernel version GCC version

A CentOS 7.1 3.10.0 4.8.3

B Ubuntu 14.04.3 LTS 3.13.0 4.8.4

C Scientific Linux 6.1 2.6.32 4.9.3

4.2 Experimental Protocol
Platform A

Platform B

Platform C

Fig. 5. 5-point 2D stencil. Strong scal-
ing for a 3000×3000 input matrix. The
baseline is the pure sequential code.
We only show the two best perform-
ing DARTS variants.

We ran seven different variants of our sten-
cil code: Seq is our baseline and is a bench-
mark that runs sequentially; OMP runs the
same code as Seq with added OpenMP
directives; Naive is a single threaded
procedure implementation of the stencil
computation (see Sect. 3.1), NaiveTPsPtr
implements the same logic as Naive, but
distributes the work across several TPs;
FineGrain implements the fine-grain syn-
chronization scheme described in Sect. 3.2;
InPlace implements our in-place strategy
to run the stencil computation, using a sin-
gle TP; and InPlaceTPs implements the
same in-place variant, but distributes the
computation across multiple TPs which
then must issue inter-TP signals to satisfy
dependencies.

We ran our experiments using the fol-
lowing protocol: (1) All stencil computa-
tions run for 30 time steps, (2) Each vari-
ant instance is run 20 times to increase the
stability of the run, then the accumulated
times are averaged after removing the 2
most extreme values (min and max), and
(3) Each binary containing a variant is run
10 times from the command line, and we
average the accumulated times once again
(this is due to system-induced noise in
sequential, codelet, or OpenMP variants—
in particular for small input sizes).

4.3 Results

The results for strong scaling are shown
in Fig. 5. The default CAM is used in the
case of DARTS, which maps compute units

The Importance of Efficient Fine-Grain Synchronization 213

to PEs that are physically close to each other. As a result, we do not use the
entirety of the available aggregated cache capacity. In the OpenMP case, we
used OMP PROC BIND, to make sure that threads are pinned to a given PE. How-
ever they are assigned in a more random fashion (left to the discretion of the
OpenMP runtime and the OS), thus making better use of the overall caches.
Still, when resources start to be saturated, i.e., when more than half of the
processing elements are used, and start to compete for FPUs, caches, etc., the
DARTS variants outperform the OpenMP version. As the PE count increases, so
does the performance gap.

Platform A

Platform B

Platform C

Fig. 6. 5-point stencil computation. Weak
scaling. The baseline is the pure sequential
code.

In the weak scaling case, the results
for all variants are shown in Fig. 6. As
with the strong scaling case, FineGrain
and NaiveTPsPtr achieve the best per-
formance on Intel-based architectures
(A and B), with speedups reaching
up to 1.75× compared to OpenMP. The
OpenMP variant has a clear advan-
tage over DARTS when the workload fits
in the caches (i.e., when the matrix
size is 1000, or possibly 2000, as it
still partially fits in the caches). In
the OpenMP case, loops are statically
scheduled, thus ensuring that the same
PE processes the same chunk of data,
thus minimizing cache misses. In con-
trast, codelets in DARTS can be run by
any PE belonging to the same cluster
of cores. Hence a given data chunk may
be processed by different PEs over two
successive iteration steps, resulting in
additional cache trashing.

Once the data grows beyond the
capacity of L3 caches, DARTS gets
the upper hand: the finer-grain vari-
ants either issue “local” atomic oper-
ations between neighbors (as with the
FineGrain variant), or at least pro-
vide a hierarchical way to maintain
some locality within their cluster of
cores, thus reducing the overall mem-
ory traffic. In particular in the Intel
compute nodes (Platforms A and B),
the inclusive nature of the caches allows
the hardware to recognize when a
given memory location is owned by the
“local” L3, and thus avoids a costly
request for ownership across sockets.

214 T. Geng et al.

Unfortunately, Platform C features exclusive caches, thus forcing the hardware
to issue a broadcast to flush write buffers across the whole node, as it does not
know which other caches own a copy of the data [17].

4.4 Discussion

Coarse-grain synchronizations (e.g., barriers) tend to be implemented with a sin-
gle memory location. This has several negative consequences: (1) all processing
elements issue an atomic operation to the same location, forcing the other PEs
to flush their write buffers, sometimes more than once; (2) there is a “natural”
contention due to the target single location. By contrast, finer-grain synchro-
nization makes use of more locations with better locality effects. Write buffer
flushes still occur, but tend to be limited to writing back in L3 (at least in the
Intel case). In addition, codelets can better exploit the “slack” that exists when
a core is done running a thread, due to their event-driven nature.

Finer-grain synchronization clearly does provide better results on general-
purpose many-core systems, as shown in Figs. 5 and 6. However, which variant
works best varies significantly depending on which platform we run our tests. On
Intel-based compute nodes, our most refined variants did not perform very well
in the end: the InPlace and InPlaceTPs variants underperformed compared to
their most simple counterparts, and even compared to the coarse-grain OpenMP
version. We attribute this to too naive an implementation: while the InPlace
variant does require less memory than the original code, its implementation is too
simplistic: it makes use of dynamic allocation each time a computation codelet
is being fired, which in turn invokes the OS to perform the allocation itself. As
most codelets are fired within a very small time range, some serialization while
trying to access the OS’s memory allocator results in wasted time. As Intel-
based nodes feature inclusive caches, the data can only be as big as the L3s of
the system.

By contrast, as Platform C is AMD-based, caches are exclusive: the aggre-
gated size of the L2 caches equals the aggregated size of the L3s, effectively
doubling the overall size of the data that can be held in the caches. It also helps
with the InPlace and InPlaceTPs variants, as the local buffer allocated for the
fine-grain update of the matrix is held in a separate cache than the original
matrix. This is compared to the näıve, 2-array version which requires to con-
stantly read and write from and to memory through the L1 and L2 caches. The
AMD system also relies on write-through L1D caches (compared to Intel’s write-
back L1Ds), which allows for a better utilization of the L1D (there is roughly
four times more reads than writes in the stencil computation).

Moreover, as we intended to show the benefits of “pure” fine-grain synchro-
nization, without resorting to classical loop transformations, such as tiling or
loop skewing, even the allocation of just three complete rows is enough to quickly
fill L1D caches. For example, our smallest input size for a matrix, 1000 × 1000,
requires three rows of a thousand elements to implement the current in-place
variants. However, this represents already 2/3 of the L1D cache of the Intel-
based compute nodes, and overflows into the L2 cache in the case of the AMD

The Importance of Efficient Fine-Grain Synchronization 215

compute node. Hence, to obtain an efficient in-place variant, additional blocking
and tiling techniques are required. We intend to explore this research venue, but
to be fair to coarse-grain models, we must do the same for the näıve OpenMP
code.

5 Related Work

Fine-Grain Multithreading Program Execution Models. In recent years, several
attempts at providing more dynamic ways to create parallel work have been
proposed. Many such attempts are inspired by dataflow models of computation.
Among them, we can mention Concurrent Collection [11], an implementation of
dynamic macro-dataflow. It has shown encouraging results, including on stencil-
like computations [14]. XKaapi [9], OCR [15], and SWARM [12] all propose a
dataflow (or even codelet) inspired way to deal with multithreading. However,
they do not provide an explicit way to group dataflow tasks to ensure they
execute on a specific portion of the hardware (for example, to maintain spacial
and temporal locality), contrary to DARTS (which uses threaded procedures to
enforce codelet grouping). Other frameworks provide fine-grain multithreading
without being directly tied to dataflow. Chief among them are Cilk [5] and
Habanero [3].

Finally, the latest version of the OpenMP standard proposes a way to describe
task dependencies in a program [6], by describing dataflow-like dependencies in
the code. The resulting task dependence graph is obtained in a fully dynamic
manner. By contrast, DARTS’s codelet graphs tend to dynamically allocate chunks
of codelets which feature statically-defined dependencies.

Frameworks and Transformations for Stencil Computations. While this paper’s
intent is to advocate for finer-grain synchronization for large-scale general-
purpose compute nodes, and uses stencil kernels only as an example, we provide
a short description of related techniques and frameworks to optimize stencil
computations.

Classical loop optimization techniques provide very efficient ways to improve
sequential stencil computation. Loop tiling, locality optimization and paralleliza-
tion are the main methodology to improve stencil computation performance.
Loop tiling [1] manipulates hyperplanes from the iteration space to determine
the tile shapes for a given computation, as well as the scheduling order. Further
transformations include diamond tiling [2,4]. More recently, the manipulation of
the iteration space has led to better work scheduling for many-core devices. For
example, Shrestha et al. propose to perform transformations on the iteration
space using jagged-tiling to allow for a better concurrent start for processing
tiles in parallel [18].

Pochoir is a domain-specific language relying on Cilk that allows the user to
specify a given type of stencil computation to be generated automatically for
parallel execution [20]. Kamil et al. [7,10] propose a code generation and auto-
tuning framework for stencil computations targeted at multi- and many-core

216 T. Geng et al.

processors. Muranushi and Makino introduced the PiTCH tiling method [16],
which leverages a temporal blocking methodology which can achieve a target’s
optimal memory bandwidth ratio well-suited for multidimensional stencil compu-
tations. Lesniak introduced a block-based wave-front synchronization technique
for parallel stencil calculation [13].

6 Conclusion and Future Work

We have presented a study of a dependence-heavy application to advocate for
finer-grain and hierarchical synchronization in current high-performance general
purpose many-core compute nodes. Leveraging a runtime system implementation
of a fine-grain event-driven execution model, we have devised several variants to
study the best way to leverage fine-grain synchronization, and demonstrated that
by using finer-grained synchronization, even embarrassingly parallel workloads
can see their performance improve by up to 1.75× using regular work distribution
among cores.

Our future work includes rewriting the original näıve OpenMP code using
OpenMP 4.5’s task dependence constructs, and compare the resulting perfor-
mance with our own environment’s. While the fine-grain variants we have pre-
sented in this paper were hand-written, most of them can be implemented in a
compiler, using a syntax close or identical to OpenMP 4’s. We are in the process
of developing a compiler that translates OpenMP code to fine-grain event-driven
tasks, and generates automatically a multi-level synchronization scheme—we
believe OpenMP’s programming model is enough to express parallelism, but
that the Codelet Model provides a better program execution model.

Acknowledgments. This research is based upon work supported by the National
Science Foundation, under awards XPS-1439165 and XPS-1439097.

References

1. Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. SIGPLAN Not. 26(7),
39–50 (1991)

2. Bandishti, V., Pananilath, I., Bondhugula, U.: Tiling stencil computations to max-
imize parallelism. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2012. IEEE Computer
Society Press, Salt Lake City (2012)

3. Barik, R., et al.: The Habanero multicore software research project. In: Proceedings
of the 24th ACM SIGPLAN Conference Companion on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 2009. ACM, Orlando (2009)

4. Bertolacci, I.J., et al.: Parameterized diamond tiling for stencil computations with
chapel parallel iterators. In: Proceedings of the 29th ACM on International Con-
ference on Supercomputing, ICS 2015. ACM, Newport Beach (2015)

5. Blumofe, R.D., et al.: Cilk: an efficient multithreaded runtime system. J. Parallel
Distrib. Comput. 37(1), 55–69 (1996)

The Importance of Efficient Fine-Grain Synchronization 217

6. OpenMP Architecture Review Board. OpenMP Application Program Interface ver-
sion 4.0 (2013)

7. Christen, M., Schenk, O., Burkhart, H.: PATUS: a code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchi-
tectures. In: 2011 IEEE International Parallel Distributed Processing Symposium
(IPDPS) (2011)

8. Dennis, J.B.: First version of a data flow procedure language. In: Robinet, B.
(ed.) Programming Symposium. LNCS, vol. 19, pp. 362–376. Springer, Heidelberg
(1974). doi:10.1007/3-540-06859-7 145

9. Gautier, T., et al.: XKaapi: a runtime system for data-flow task programming
on heterogeneous architectures. In: 2013 IEEE 27th International Symposium on
Parallel Distributed Processing (IPDPS) (2013)

10. Kamil, S., et al.: An auto-tuning framework for parallel multicore stencil computa-
tions. In: 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS) (2010)

11. Knobe, K.: Ease of use with concurrent collections (CnC). In: Hot Topics in Par-
allelism (2009)

12. Lauderdale, C., Khan, R.: Towards a codelet-based runtime for exascale comput-
ing: position paper. In: Proceedings of the 2nd International Workshop on Adap-
tive Self-Tuning Computing Systems for the Exafop Era, EXADAPT 2012. ACM,
London (2012)

13. Lesniak, M.: PASTHA: parallelizing stencil calculations in Haskell. In: Proceed-
ings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore
Programming, DAMP 2010. ACM, Madrid (2010)

14. Liu, C., Kulkarni, M.: Optimizing the LULESH stencil code using concur-
rent collections. In: Proceedings of the 5th International Workshop on Domain-
Specific Languages and High-Level Frame-Works for High Performance Comput-
ing, WOLFHPC 2015. ACM, Austin (2015)

15. Mattson, T., et al.: OCR: the open community runtime interface. Technical report,
June 2015. https://xstack.exascaletech.com/git/public

16. Muranushi, T., Makino, J.: Optimal temporal blocking for stencil computation.
Procedia Comput. Sci. 51, 1303–1312 (2015). International Conference on Com-
putational Science, ICCS 2015 Computational Science at the Gates of Nature

17. Schweizer, H., Besta, M., Hoefler, T.: Evaluating the cost of atomic operations
on modern architectures. Technical report ETH Zurich, Department of Computer
Science (2015)

18. Shrestha, S., Manzano, J., Marquez, A., Feo, J., Gao, G.R.: Jagged tiling for intra-
tile parallelism and fine-grain multithreading. In: Brodman, J., Tu, P. (eds.) LCPC
2014. LNCS, vol. 8967, pp. 161–175. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17473-0 11

19. Suettlerlein, J., Zuckerman, S., Gao, G.R.: An implementation of the codelet
model. In: Wolf, F., Mohr, B., Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097,
pp. 633–644. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40047-6 63

20. Tang, Y., et al.: The pochoir stencil compiler. In: Proceedings of the Twenty-Third
Annual ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2011. ACM, San Jose (2011)

21. Zuckerman, S., et al.: Using a “codelet” program execution model for exascale
machines: position paper. In: Proceedings of the 1st International Workshop on
Adaptive Self-Tuning Computing Systems for the Exaflop Era, EXADAPT 2011.
ACM, San Jose (2011)

http://dx.doi.org/10.1007/3-540-06859-7_145
https://xstack.exascaletech.com/git/public
http://dx.doi.org/10.1007/978-3-319-17473-0_11
http://dx.doi.org/10.1007/978-3-319-17473-0_11
http://dx.doi.org/10.1007/978-3-642-40047-6_63

Optimizing LOBPCG: Sparse Matrix Loop
and Data Transformations in Action

Khalid Ahmad(B), Anand Venkat, and Mary Hall

University of Utah, Salt Lake City, UT 84112, USA
{khalid,anandv,mhall}@cs.utah.edu

http://ctop.cs.utah.edu/ctop/

Abstract. Sparse matrix computations are widely used in iterative
solvers; they are notoriously memory bound and typically yield poor
performance on modern architectures. A common optimization strat-
egy for such computations is to rely on specialized representations that
exploit the nonzero structure of the sparse matrix in an application-
specific way. Recent research has developed loop and data transfor-
mations for sparse matrix computations in a polyhedral compilation
framework. In this paper, we apply these and additional loop trans-
formations to a real application code, the LOBPCG solver, which per-
forms a Sparse Matrix Multi-Vector (SpMM) computation at each itera-
tion. The paper presents the transformation derivation for this appli-
cation code and resulting performance. The compiler-generated code
attains a speedup of up to 8.26× on 8 threads on an Intel Haswell and
30 GFlops; it outperforms a state-of-the-art manually-written Fortran
implementation by 3%.

1 Introduction

Sparse matrix computations arise in numerous engineering and science applica-
tions. Sparse matrices are represented by data structures that store only nonzero
elements, with additional auxiliary structures to identify the corresponding row
and column of each element [1,2]. Consider the representative sparse matrix-
vector multiplication (SpMV), a performance bottleneck in solving sparse linear
systems and eigenvalue problems because it is performed hundreds or thousands
of times during a single execution of an application [3]. Frequent indirection
through auxiliary arrays and a lack of data reuse lead to low computational
intensity, i.e. number of arithmetic operations per memory reference [4]. There
is extensive prior work dealing with the development, optimization, and improv-
ing the performance of parallel SpMV kernels for both multi-core and many-
core architectures, e.g. [1,3,5–9]. One common strategy is to specialize a sparse
matrix representation to exploit the nonzero structure of the sparse matrix and
thus reduce memory accesses and simplify the generated code. This approach
usually involves using an optimized library that converts to the desired repre-
sentation from a standard format such as Compressed Sparse Row (CSR) or
Coordinate (COO).
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 218–232, 2017.
DOI: 10.1007/978-3-319-52709-3 17

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations 219

While ideally a compiler can be used to perform these optimizations and data
transformations, compilers have been severely limited in their ability to optimize
sparse matrix computations due to the indirection that arises in indexing and
looping over just the nonzero elements. This indirection gives rise to non-affine
subscript expressions and loop bounds; i.e., array subscripts and loop bounds
are no longer linear expressions of loop indices. A common way of expressing
such indirection is through index arrays such as, for example, array B in the
expression A[B[i]]. Code generators based on polyhedra scanning are particu-
larly restricted in the presence of non-affine loop bounds or subscripts [10–14].
As a consequence, most parallelizing compilers either give up on optimizing such
computations, or apply optimizations very conservatively.

Recent work has developed non-affine support and loop and data transfor-
mations in a polyhedral transformation and code generation framework and
shown to be effective in optimizing SpMV for multicores and GPUs [15]. In
this paper, we demonstrate that such compiler technology can be extended so
that it is suitable for the far more complex support required by real applica-
tions. We apply our compiler transformations to optimize the Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) solver [16]. Specifically,
an important kernel within LOBPCG is the sparse matrix multi-vector mul-
tiplication (SpMM), which is a generalization of the SpMV kernel in which a
sparse m-by-n matrix A is multiplied by a tall and narrow dense n-by-k matrix
B (k << n). SpMM is used in a variety of sparse matrix computations such as
those using block Krylov subspace methods for solving several linear systems
simultaneously as well as obtaining several eigen pairs of eigenvalue problems,
e.g. [17–24]. Other applications that require SpMM operations include: (i) aero-
dynamic design optimization [25], (ii) the search engine PageRank algorithm,
and (iii) atmospheric modeling [24]. A characteristic of SpMM is that arithmetic
intensity is significantly higher than SpMV if access to the sparse matrix can be
reused by the vectors, as clarified in Table 1. In the table, nnz refers to the num-
ber of nonzero elements and n is the number of columns in the sparse matrix; k
is the number of dense vectors.

The remainder of the paper will demonstrate the applicability of prior
loop and data transformations and the new challenges that arise in optimiz-
ing LOBPCG for very large matrices that characterize the application in which
it is used [16]. The novel contributions of the paper are as follows: (1) we
apply these transformations to automatically generate an inspector that pro-
duces a new matrix representation, compressed sparse block (CSB), starting from
a standard compressed sparse row (CSR); (2) we generate an optimized SpMM,

Table 1. Arithmetic intensity of SpMV and SpMM.

SpMV k independent SpMV SpMM

Flops 2 * nnz 2k * nnz 2k * nnz

Words moved nnz + 2n k * nnz +2k * n nnz + 2k * n

220 K. Ahmad et al.

implemented for a symmetric matrix by computing both SpMV and SpMVT

(transposed SpMV) [1]; (3) we identify additional optimizations to reduce the
data movement for indexing expressions and optimize AVX SIMD execution;
and, (4) we demonstrate the collection of optimizations that lead to a 3% per-
formance gain over the manually-written state-of-the-art Fortran implementa-
tion [16].

The remainder of the paper is organized as follows. The next two sections
provide background on the CSR, COO and CSB storage formats, inspector/ex-
ecutor, the compiler approach and the LOBPCG solver. Section 4 provides the
compiler derivation of the optimized inspector and executor. We then discuss
the experimental setup and provide a performance comparison of the compiler-
generated code and the manual code. Section 6 discusses related work. Finally,
we conclude this work with a summary of contributions and ideas for possible
future work.

2 Background

The remainder of the paper relies on understanding sparse matrix storage for-
mats based on the example dense format (Fig. 1), inspector/executor paradigm
and an overview of the compiler approach, all briefly described in this section.

2.1 Storage Formats

Coordinate Storage Format (COO). COO is often used as the entry format
in sparse matrix packages [1,26]. In COO, a data vector stores the nonzero
elements of the matrix and two integer vectors, row and column, store the row
and column indices of the corresponding nonzero elements in the data vector.
Although nonzero elements and their corresponding indices can be stored in any
order, they are usually stored by ascending row order. The amount of required
storage is proportional to the number of nonzero elements. Figure 2 shows an
example of storing a matrix using COO.

Compressed Sparse Row (CSR). Like COO, CSR (see Fig. 3) stores the nonzero
elements of the matrix in a data array and column indices in an integer array.
The third array stores pointers to the beginning of each row of the matrix in the

Fig. 1. A 6*6 example sparse matrix. Fig. 2. The COO representation.

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations 221

Fig. 3. The CSR representation. Fig. 4. The CSB representation.

data and columns arrays. The rowpointers array is of size N+1, where N is the
number of matrix rows. The last element in the rowpointer array contains the
total number of nonzero elements in the matrix. CSR requires less storage for
row indices. In addition, the rowpointer array allows for easy computations of
some quantities of interest for a matrix such as the number of nonzero elements
in a row i = ptr[i+1]−ptr[i] and the total number of nonzero elements ptr[N+1].

Compressed Sparse Block (CSB). In the CSB format, matrix A is partitioned
into small blocks and each block is treated as a COO matrix. CSB consists of
three arrays blkptr, indices, and data. Array blkptr is a two-dimensional array
storing the offset of the first nonzero of each block. The indexarray stores the
concatenated row and column indices of nonzeros in a block; in Fig. 4, row and
columnindices are shown separately. Array data stores nonzeros. In CSB, a row
(column) of blocks is designated as a blockrow (blockcolumn).

2.2 Inspector/Executor

A general technique to analyze data accesses through index arrays and con-
sequently reschedule or reorder data at run time employs an inspector/execu-
tor paradigm whereby the compiler generates inspector code to be executed at
run-time that can collect the index expressions and then an executor employs
specific optimizations that incorporate the run-time information [27–30]. These
inspector/executor optimizations have targeted parallelization and communica-
tion [28,31] and data reorganization [32–36].

2.3 Overview of Approach

In this paper, we employ an inspector in conjunction with data transforma-
tions to convert a symmetric matrix from CSR to CSB format, and generate
an optimized, parallel executor for the CSB representation. The generation of
both optimized inspector and executor is performed by the CHiLL polyhedral
transformation and code generation framework. CHiLL’s operations are driven
by a transformation recipe which specifies the functions and loops to optimize
and the transformations to apply.

Recent work has extended CHiLL to support non-affine computations that
incorporate indirection through index arrays [15,37,38]. CHiLL is able to toler-
ate and maninputate non-affine loop bounds and array access expressions using

222 K. Ahmad et al.

the abstraction of uninterpreted function symbols, expanding on their use in
Omega [11]. Data transformations are composed with standard and non-affine
transformations in [15] to convert between matrix formats and realize optimized
executors by introducing transformations used in this paper, described as follows:

– make-dense takes as input a set of non-affine array index expressions and
introduces a guard condition and as many dense loops as necessary to replace
the non-affine index expressions with affine accesses. The make-dense trans-
formation enables further affine loop transforamtions such as tiling.

– compact and compact-and-pad are inspector-executor transformations; an
automatically generated inspector gathers the iterations of a dense loop that
are actually executed and the optimized executor only visits those iterations.
The executor represents the transformed code that uses the compacted loop,
which can then be further optimized.

– Using compact-and-pad, the inspector also performs a data transformation,
inserting explicit zeros when necessary to correspond with the optimized
executor. In this paper, compact-and-pad is used to reorder the data, but
does not add zeros.

In the remainder of the paper, we will describe LOBPCG and then present
how these transformations and others are used to derive an optimized imple-
mentation.

3 LOBPCG

LOBPCG is a subspace iteration method which starts with an initial guess about
the eigenvectors and refines the guess at each iteration of the solver [16]. It is used
in the Many-body Fermion Dynamics for nuclei (MFDn) application to study the
structure of light nuclei. At the heart of LOBPCG lies SpMM, which multiplies
a sparse matrix with multiple dense eigenvectors. Due to the very large size of
the input matrix used, the symmetry of the matrix is exploited to store only
half of the matrix entries to optimize for memory footprint. Since the matrix is
symmetric, performing SpMM using the entire matrix is accomplished by SpMM
over half of the symmetric matrix, followed by an additional transposed SpMM
(SpMMT) over the same half (Fig. 5).

Fig. 5. SpMM for symmetric matrix requires a matrix representation suitable for two
separate computations.

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations 223

Fig. 6. Parallelization strategy using CSB format. Nonzeros are represented by crosses.
Input matrix is blocked into β × β blocks. Blocks with dotted boundaries represent
symmetric portion of matrix which is not stored. SpMM is parallelized by block rows,
while transposed SpMM is parallelized by block columns.

SpMM can be trivially parallelized using CSR format by computing each row
computation in parallel. However computing the SpMMT in parallel using the
CSR format is difficult due to write conflicts on the output vector when the row
computations are parallelized. The Compressed Sparse Column (CSC) format
might be ideal for parallelization of SpMMT , but then a similar problem would
arise for computing SpMM using CSC.

The CSB format solves this problem by blocking the actual matrix dimen-
sions into square blocks of β ×β. It then determines the nonzeros falling in each
block and stores them in the COO format in addition to storing the start and end
offsets of each block. Now, SpMM can be parallelized by block rows since they
do not have any write conflicts and SpMMT can be parallelized by block col-
umn without conflicts. This strategy is illustrated in Fig. 6. Block-column-wise
parallelization for SpMMT is indicated by a vertical line while block-row-wise
parallelization is indicated by a horizontal line. The tiles with dotted bound-
aries are actually not stored but serve to illustrate that the actual matrix is
symmetric.

4 Compiler Approach

This section describes how make-dense and compact-and-pad are used to derive
the parallel SpMM implementation for symmetric matrices using CSB format,
which will be integrated into LOBPCG. The complete CHiLL transformation
recipe is shown in Fig. 7. In this section, we focus on the effects of make-dense

224 K. Ahmad et al.

Fig. 7. CHiLL script for SpMM based on the CSB format.

and compact-and-pad1, and describe additional optimizations needed to further
reduce the memory footprint and exploit SIMD execution.

4.1 Compiler-Generated Inspector to Derive CSB Representation

To expose the dense loops that correspond to the actual dimensions of the matrix,
the make-dense transformation is firstly called on the SpMM code yielding the
intermediate code shown in Fig. 8(a). Next, tiling is applied to the two outermost
loops to yield the β × β blocks in CSB. Here β is the tiling factor in Fig. 8(b).

Finally compact-and-pad is applied to the consecutive third and fourth
loop levels (i, l), which are treated as a single logical loop level. The input
sparse matrix is also reorganized by compact-and-pad into a new layout reflect-
ing the updated traversal order of the nonzeros. Additionally the offset index,
expl index 1 and expl index 2 arrays are populated.

The generated inspector is shown in Fig. 8(c). The offset of each β × β block
into the array of nonzeros is stored in P DATA1. Each entry of the array P1
corresponds to a single block, and the block’s nonzeros are stored as a linked
list because the size of the matrix is unknown. For each nonzero, its block is

1 Both compact and compact-and-pad use variations of the CHiLL compact command;
a matrix is provided as an argument for compact-and-pad.

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations 225

Fig. 8. Steps of generating the inspector.

226 K. Ahmad et al.

identified using the indices ii and ll. These indices specify the entry of P1,
whose linked list is appended with the nonzero. The row and column offsets
within the block correspond to indices i and l and are stored in the linked list
fields col [0] and col [1] respectively. The total count of nonzeros is stored
in chill count 1 and the individual nonzero count of each block is stored in
the corresponding entry in P1. Once all nonzeros have been gathered, the offset
and explicit index arrays are allocated within the memory for the right size. The
data is then copied from the linked list to the arrays and, the offset of each block
is updated using P DATA1.

4.2 Optimized Executor

The effect of compact-and-pad additionally results in an optimized executor.
The generated CSB code was parallelized using OpenMP directives across block
rows for SpMM and block columns for SpMMT . For transposed SpMM, the two
outermost loops were permuted so that the resulting code would be traversed
by block columns. A further optimization that reduced the memory footprint of
index arrays was declaring the row and column index arrays, or expl index 1 and
expl index 2 within a β × β block to be short data type. To detect that the size
of the index array used did not exceed the maximum allocatable size with 16
bits, the loop bounds and array access expressions were queried during compact-
and-pad to verify the maximum possible value of the array index expression.

Fig. 9. Optimized parallel executors.

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations 227

Also, the innermost loop of SpMM does not carry a dependence, and is data
parallel, and hence is parallelized with the SIMD pragma annotation for further
performance benefits. The pragma annotation is supplied via the transformation
interface with the loop level for the annotation, and the code generator inserts the
pragma at this loop level. The final parallelized codes for SpMM and SpMMT ,
containing SIMD pragmas are shown in Fig. 9.

5 Experimental Evaluation

In this section, we measure performance of the generated combined SpMM and
SpMMT executor code, and compare its performance to the manual FORTRAN
implementation in [16].

5.1 Methodology

The experiments were performed on an Intel i7-4770 (Haswell) CPU with 256 KB
L1 cache, 1 MB L2 cache, 8 MB L3 cache, and 32 GB of memory. The clock rate
is 3.40 GHz frequency, with 4 physical cpu cores and 8 threads. The Intel version
15.0.0 compilers were used: the Fortran compiler for the manual code and the C
compiler for the generated code.

Because our goal is to examine performance in the context of realistic engi-
neering and scientific problems that are used by MFDn, we consider large matri-
ces arising from the finite element discretization. Half of our application specific
test sparse matrix is generated by the original Fortan code in [16]. The matrix
has 2412469 rows, 2412566 columns and contains 429895762 nonzero elements
stored in single precision to reduce the total size of the file, which makes it easier
to handle and less time-consuming to read during program execution.

To obtain reliable timing measurements, each computation is run 100 times,
and the median value is recorded. The initialization of the codes are not included
in the timings as in a real world situation the environment can be set up once
and then reused for a large number of calculations. Performance in GFLOPs can
be calculated using the following equation, where nnz is number of nonzeros,
nvd is the number of dense vectors, and t is execution time in seconds.

GFLOPs = (nnz ∗ 4 ∗ nvd)/(t ∗ 109)

5.2 Performance Measurements

We show the performance in two ways. In Fig. 10, we examine performance as a
function of the number of dense vectors and threads using a beta value of 4096.
We used a number of different dense vectors = {1, 4, 8, 12, 16, 24, 32, 48, 64,
80, 96} and a number of threads = {1, 2, 4, 6, 8, 10}. As k increases, we see
a significant performance improvement which benefits from parallelization up
until about k = 16, and then the reuse becomes difficult to fully exploit. For
larger values of k, the best performance is achieved on fewer threads.

228 K. Ahmad et al.

Fig. 10. Performance in GFLOPs of generated implementations for varying numbers
of dense vectors and threads.

0.0X

0.1X

0.2X

0.3X

0.4X

0.5X

0.6X

0.7X

0.8X

0.9X

1.0X

1.1X

1.2X

Average (SpMM+SpMMT) Manual implementa on

Sp
ee

du
p

+ pragma simd

+ short vectors

baseline CHiLL

Fig. 11. Speedup attributed to different optimizations in the generated code as com-
pared to the manually-written Fortran code.

Figure 11 shows the increase in speedup due to using each optimization from
the previous section. We used a fixed blocking factor 4096 in this graph and com-
pute an average speedup from the results of the previous section. The baseline
generated code achieves only 0.77× of the performance of the manual Fortran
code. By using 16-bit indices for the row and column index arrays (short vec-
tor), and inserting the SIMD pragma, the compiler is able to achieve even better
performance than the original Fortran code, a speedup of 1.03×. We attribute
this difference to simplifications in the indexing that arise in the compiler imple-
mentation.

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations 229

6 Related Work

The majority of literature describes optimized SpMV implementations and
strategies targeting different architectures. However, work on SpMM and
SpMMT is not as prevalent.

6.1 Application-Specific Approaches

Applications such as biconjugate and quasi-minimal residual iterative linear
solvers require computing both SpMV and SpMVT (transposed SpMV) [1]. Gen-
erally this problem is solved by transposing the sparse matrix and then perform-
ing regular SpMV, and, intuitively this is expensive in space and data movement.
Buluc et al. developed the CSB storage format to compute SpMV and SpMVT

at the same time and requires similar storage to CSR or CSC [39]. This rep-
resentation was then used as part of parallel SpMM and SpMMT by Aktulga
et al. [16].

6.2 Compiler Approaches

Some compiler approaches begin with a dense abstraction of a sparse matrix
computation; these compilers then generate sparse data representations during
code generation, placing a burden on the compiler to optimize away the some-
times orders of magnitude difference in performance between dense and sparse
implementations [40–42]. To our knowledge, the only prior compiler approach
that starts with a sparse computation and derives new sparse matrix representa-
tions is that of Wijshoff et al. [43]. They convert code with indirect array accesses
and loop bounds into dense loops that can then be converted into sparse matrix
code using the MT1 compiler [44,45].

7 Conclusion and Future Work

This paper demonstrated the effectiveness of compiler-generated code for SpMM,
when used in the context of the LOBPCG solver on a real-world scientific appli-
cation at the scale of a problem that fits on a single socket. The key finding is
that compiler-generated C code can outperform manual code written in Fortran.
We discovered the importance of 16-bit index arrays and AVX SIMD execution
to match the manual code’s performance. We found out that the performance
benefits when using multiple vectors trails off when the vector becomes too large.

As a continuation of this work, we are exploring the generation of CUDA
code, which was not attempted by the application developers. Our future work
also includes comparing against the extended CSB implementation for GPUs
described in [46] to our implementation.

230 K. Ahmad et al.

References

1. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
2. Montagne, E., Ekambaram, A.: An optimal storage format for sparse matrices. Inf.

Process. Lett. 90(2), 87–92 (2004)
3. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In: Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, p. 18. ACM (2009)

4. Im, E.-J., Yelick, K.A.: Optimizing the Performance of Sparse Matrix-Vector Mul-
tiplication. University of California, Berkeley (2000)

5. Anzt, H., Tomov, S., Dongarra, J.: Implementing a sparse matrix vector product
for the sell-C/sell-C-σ formats on NVIDIA GPUs

6. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified sparse
matrix data format for modern processors with wide SIMD units (2013). arXiv
preprint arXiv:1307.6209

7. Lowell, D., Godwin, J., Holewinski, J., Karthik, D., Choudary, C., Mametjanov, A.,
Norris, B., Sabin, G., Sadayappan, P., Sarich, J.: Stencil-aware GPU optimization
of iterative solvers. SIAM J. Sci. Comput. 35(5), S209–S228 (2013)

8. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. ACM SIGPLAN Not. 45(5), 115–126 (2010)

9. Williams, S., Bell, N., Choi, J., Garland, M., Oliker, L., Vuduc, R.: Sparse matrix-
vector multiplication on multicore and accelerators. In: Scientific Computing with
Multicore and Accelerators, pp. 83–109 (2010)

10. Ancourt, C., Irigoin, F.: Scanning polyhedra with DO loops. In: ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, April 1991

11. Kelly, W.A.: Optimization within a unified transformation framework. Ph.D. dis-
sertation, University of Maryland, December 1996

12. Quilleré, F., Rajopadhye, S.: Generation of efficient nested loops from polyhedra.
Int. J. Parallel Program. 28(5), 469–498 (2000)

13. Vasilache, N., Bastoul, C., Cohen, A.: Polyhedral code generation in the real world.
In: Proceedings of the 15th International Conference on Compiler Construction,
March 2006

14. Chen, C.: Polyhedra scanning revisited. In: Proceedings of the 33rd ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
2012, pp. 499–508, June 2012

15. Venkat, A., Hall, M., Strout, M.: Loop and data transformations for sparse matrix
code. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2015)

16. Aktulga, H.M., Buluc, A., Williams, S., Yang, C.: Optimizing sparse matrix-
multiple vectors multiplication for nuclear configuration interaction calculations.
In: 2014 IEEE 28th International Parallel and Distributed Processing Symposium,
pp. 1213–1222. IEEE (2014)

17. Yamazaki, I., Dong, T., Solcà, R., Tomov, S., Dongarra, J., Schulthess, T.: Tridiag-
onalization of a dense symmetric matrix on multiple GPUs and its application to
symmetric eigenvalue problems. Concurr. Comput.: Pract. Exp. 26(16), 2652–2666
(2013)

18. Yamazaki, I., Tadano, H., Sakurai, T., Ikegami, T.: Performance comparison of
parallel eigensolvers based on a contour integral method and a Lanczos method.
Parallel Comput. 39(6), 280–290 (2013)

http://arxiv.org/abs/1307.6209

Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations 231

19. Campos, C., Roman, J.E.: Strategies for spectrum slicing based on restarted Lanc-
zos methods. Numer. Algorithms 60(2), 279–295 (2012)

20. Meerbergen, K., Vandebril, R.: A reflection on the implicitly restarted Arnoldi
method for computing eigenvalues near a vertical line. Linear Algebra Appl.
436(8), 2828–2844 (2012)

21. Morgan, R.B., Nicely, D.A.: Restarting the nonsymmetric Lanczos algorithm for
eigenvalues and linear equations including multiple right-hand sides. SIAM J. Sci.
Comput. 33(5), 3037–3056 (2011)

22. Jiang, W., Wu, G.: A thick-restarted block Arnoldi algorithm with modified Ritz
vectors for large eigenproblems. Comput. Math. Appl. 60(3), 873–889 (2010)

23. Baker, A.H., Dennis, J.M., Jessup, E.R.: On improving linear solver performance:
a block variant of GMRES. SIAM J. Sci. Comput. 27(5), 1608–1626 (2006)

24. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for
the Solution of Algebraic Eigenvalue Problems: A Practical Guide, vol. 11. SIAM,
Philadelphia (2000)

25. Pinel, X., Montagnac, M.: Block Krylov methods to solve adjoint problems in
aerodynamic design optimization. AIAA J. 51(9), 2183–2191 (2013)

26. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.
Nvidia technical report NVR-2008-004, Nvidia Corporation (2008)

27. Mirchandaney, R., Saltz, J.H., Smith, R.M., Nico, D.M., Crowley, K.: Principles of
runtime support for parallel processors. In: Proceedings of the 2nd International
Conference on Supercomputing, pp. 140–152 (1988)

28. Rauchwerger, L., Padua, D.: The LRPD test: speculative run-time parallelization of
loops with privatization and reduction parallelization. In: Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 1995 (1995)

29. Ravishankar, M., Eisenlohr, J., Pouchet, L.-N., Ramanujam, J., Rountev, A.,
Sadayappan, P.: Code generation for parallel execution of a class of irregular loops
on distributed memory systems. In: Proceedings of SC 2012, November 2012

30. Basumallik, A., Eigenmann, R.: Optimizing irregular shared-memory applications
for distributed-memory systems. In: Proceedings of the Symposium on Principles
and Practice of Parallel Programming (2006)

31. Saltz, J., Chang, C., Edjlali, G., Hwang, Y.-S., Moon, B., Ponnusamy, R., Sharma,
S., Sussman, A., Uysal, M., Agrawal, G., Das, R., Havlak, P.: Programming irreg-
ular applications: runtime support, compilation and tools. Adv. Comput. 45, 105–
153 (1997)

32. Ding, C., Kennedy, K.: Improving cache performance in dynamic applications
through data, computation reorganization at run time. In: Proceedings of the
ACM SIGPLAN Conference on Programming Language Design, Implementation,
pp. 229–241. ACM, New York, May 1999

33. Mitchell, N., Carter, L., Ferrante, J.: Localizing non-affine array references. In:
Proceedings of the International Conference on Parallel Architectures and Compi-
lation Techniques (PACT), pp. 192–202, October 1999

34. Mellor-Crummey, J., Whalley, D., Kennedy, K.: Improving memory hierarchy per-
formance for irregular applications using data and computation reorderings. Int.
J. Parallel Program. 29(3), 217–247 (2001)

35. Han, H., Tseng, C.-W.: Exploiting locality for irregular scientific codes. IEEE
Trans. Parallel Distrib. Syst. 17(7), 606–618 (2006)

232 K. Ahmad et al.

36. Wu, B., Zhao, Z., Zhang, E.Z., Jiang, Y., Shen, X.: Complexity analysis and algo-
rithm design for reorganizing data to minimize non-coalesced memory accesses on
GPU. In: Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming PPoPP 2013 (2013)

37. Venkat, A., Shantharam, M., Hall, M., Strout, M.M.: Non-affine extensions to
polyhedral code generation. In: Proceedings of Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2014 (2014)

38. Kaleem, R., Venkat, A., Pai, S., Hall, M., Pingali, K.: Synchronization trade-offs
in GPU implementations of graph algorithms. In: 30th IEEE International Parallel
and Distributed Processing Symposium (2016)

39. Buluç, A., Fineman, J.T., Frigo, M., Gilbert, J.R., Leiserson, C.E.: Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks. In: Proceedings of the Twenty-First Annual Symposium on Parallelism in
Algorithms and Architectures, pp. 233–244. ACM (2009)

40. Bik, A., Wijshoff, H.A.: Advanced compiler optimizations for sparse computations.
In: Supercomputing 1993 Proceedings, pp. 430–439, November 1993

41. Pugh, W., Shpeisman, T.: SIPR: a new framework for generating efficient code for
sparse matrix computations. In: Proceedings of the Eleventh International Work-
shop on Languages and Compilers for Parallel Computing, August 1998

42. Mateev, N., Pingali, K., Stodghill, P., Kotlyar, V.: Next-generation generic pro-
gramming and its application to sparse matrix computations. In: Proceedings of
the 14th International Conference on Supercomputing, Santa Fe, New Mexico,
USA, pp. 88–99, May 2000

43. Spek, H.L.A., Wijshoff, H.A.G.: Sublimation: expanding data structures to enable
data instance specific optimizations. In: Cooper, K., Mellor-Crummey, J., Sarkar,
V. (eds.) LCPC 2010. LNCS, vol. 6548, pp. 106–120. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19595-2 8

44. Bik, A.J.C., Wijshoff, H.A.G.: On automatic data structure selection and code
generation for sparse computations. In: Banerjee, U., Gelernter, D., Nicolau, A.,
Padua, D. (eds.) LCPC 1993. LNCS, vol. 768, pp. 57–75. Springer, Heidelberg
(1994). doi:10.1007/3-540-57659-2 4

45. Bik, A.J.C., Wijsho, H.A.G.: Automatic data structure selection and transforma-
tion for sparse matrix computations. IEEE Trans. Parallel Distrib. Syst. 7(2),
109–126 (1996)

46. Tao, Y., Deng, Y., Mu, S., Zhang, Z., Zhu, M., Xiao, L., Ruan, L.: GPU accelerated
sparse matrix-vector multiplication and sparse matrix-transpose vector multiplica-
tion. Concurr. Comput.: Practice Exp. 27(14), 3771–3789 (2015)

http://dx.doi.org/10.1007/978-3-642-19595-2_8
http://dx.doi.org/10.1007/3-540-57659-2_4

GPUs and Private Memory

LightHouse: An Automatic Code Generator
for Graph Algorithms on GPUs

G. Shashidhar(B) and Rupesh Nasre(B)

IIT Madras, Chennai, India
{shashi,rupesh}@cse.iitm.ac.in

Abstract. We propose LightHouse, a GPU code-generator for a graph
language named Green-Marl for which a multicore CPU backend already
exists. This allows a user to seamlessly generate both the multicore as
well as the GPU backends from the same specification of a graph algo-
rithm. This restriction of not modifying the language poses several chal-
lenges as we work with an existing abstract syntax tree of the language,
which is not tailored to GPUs. LightHouse overcomes these challenges
with various optimizations such as reducing the number of atomics and
collapsing loops. We illustrate its effectiveness by generating efficient
CUDA codes for four graph analytic algorithms, and comparing perfor-
mance against their multicore OpenMP versions generated by Green-
Marl. In particular, our generated CUDA code performs comparable to
4 to 64-threaded OpenMP versions for different algorithms.

1 Introduction

Processing big graphs in a reasonable time requires huge computing power as well
as ability to perform operations in parallel. Unfortunately, graph algorithms are
notoriously difficult to optimize and parallelize. The main source of difficulty in
graph algorithms stems from a technicality called irregularity. Graph algorithms
are irregular because their memory access, control-flow and communication pat-
terns cannot be predicted at compile time (as they depend upon the nature of
the input graph, which is unavailable during compilation).

In the last decade, we made a substantial progress in understanding graphs
and their access patterns in various algorithms. It has been shown that graph
algorithms indeed have a good amount of parallelism [8]. However, the analysis
and the parallelization techniques developed for regular programs (such as dense
matrix algebra) need not be best suited for graph-based computation [15]. Graph
algorithms are more amenable to dynamic processing, rather than compile-time
static processing performed for regular programs.

Over the years, researchers have optimized parallel graph processing for
multi-cores [9,10,19], GPUs [3,13], CPU clusters [1,12], and for heterogeneous
combination of these [5]. However, several of these codes can only be used and
modified by experts alone. Domain experts from various fields such as astron-
omy, physics, chemistry and biological sciences, who are not experts in high-
performance computing, often cannot directly utilize the proposed techniques.
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 235–249, 2017.
DOI: 10.1007/978-3-319-52709-3 18

236 G. Shashidhar and R. Nasre

One of the interesting approaches to allow non-experts to program in a
domain is using domain-specific languages (DSLs). DSLs have been quite suc-
cessful in various fields, such as matrix computations using MATLAB, string
processing using regular expressions, and statistical processing using R. In a
similar spirit, DSLs have been developed for graph algorithms with a hope for
non-experts to achieve reasonable performance without worrying about the intri-
cacies of the hardware platform or parallel execution. Unfortunately, graph DSLs
are currently limited to one type of platform. For instance, a graph DSL Green-
Marl [6] has a backend to generate code for multi-core CPUs, but is unsuitable
for GPUs. Efficient code-generation for GPUs is challenging due to separate
memories of CPUs and discrete GPUs (variables need to be defined, copied and
accessed appropriately in the generated code), GPUs being more suitable for
hierarchical computation spanning individual thread, warps, thread-blocks and
GPU threads (the compiler should be able to identify scenarios where such a
hierarchical code can be generated), lack of logical locks (which are routine in
CPU libraries), and generating code for various data structures using arrays and
offsets rather than pointers. We highlight and address these challenges in this
work. Following are our main contributions.

– We create a GPU backend for a graph DSL. In this process, we exploit various
architectural features of the GPU, and develop techniques to map the high-
level language constructs to efficient backend processing. While we use CUDA
as the target language, the techniques developed are general enough to be
applicable to other GPU languages as well.

– To reduce the learning curve for a programmer, we use the language speci-
fication of an existing DSL called Green-Marl, instead of developing a new
language. Green-Marl already has an OpenMP backend for multi-core execu-
tion. This also provides us with an opportunity to compare the efficiency of
LightHouse-generated GPU code with a well-optimized CPU backend.

– We overcome several GPU-centric challenges (separate memories, hierarchi-
cal computation, SIMD execution, etc.) by optimizing the abstract syntax
tree, and illustrate the efficacy of our compiler by generating four graph algo-
rithms: computing bipartite matchings, finding single-source shortest paths,
computing page-rank, and calculating conductance of a graph. Our experi-
mental evaluation reveals that the performance of the generated CUDA code
considerably varies compared to that of the multi-core CPU version (compa-
rable to 4 to 64-threaded OMP version), but overall, provides a productive
way to generate code for GPUs.1

2 Green-Marl Language Specification

In this section we introduce the constructs of the Green-Marl language. Green-
Marl has constructs that can be used to describe many graph analytic algorithms.
The language does not allow graph mutation, that is, the graphs are static. It

1 LightHouse code is available at http://pace.cse.iitm.ac.in/tools.php.

http://pace.cse.iitm.ac.in/tools.php

LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs 237

supports basic types such as nodes and edges as well as operations on collections
(such as a set of nodes or a sequence).

Algorithms in Green-Marl have a single procedure with input graph as argu-
ment along with the properties defined on the nodes and the edges of the graph.
The procedure returns a value or a property. The basic data types such as int,
bool, float are supported as property types. Nodes and Edges are also sup-
ported as basic collection types in Green-Marl. To access individual elements
in the collections, Green-Marl supports iterators. In particular, it provides node
and edge iterators to navigate the graph. The order in which the graph elements
are traversed is decided by the collection type (a set or a sequence).
1 Procedure t r i a n g l e c oun t i n g (G: Graph) : Long // Return value type
2 {
3 Long T;
4 Foreach (v : G.Nodes) {
5 Foreach (u : v .Nbrs) (u > v) {
6 Foreach (w: v .Nbrs) (w > u) {
7 I f ((w. HasEdgeTo(u))) {
8 T = 0 ;
9 }

10 }
11 }
12 }
13 Return T;
14 }

One of the advantages of the Green-Marl syntax is that most of the code
is sequential, which is very intuitive for the programmer. Parallelism is implic-
itly specified using a foreach construct. Combined with iterators, the foreach
loop allows a compiler to assign tasks to different processing workers (iterations
mapped to threads). Green-Marl follow the fork-join style of parallel execution.

At line 4 of triangle counting procedure, a set of parallel executions is
created starting the execution of the loop-body. At line 5, each running parallel
execution creates more parallel executions and waits for their completion at
line 11. Each of the outer parallel executions continues after line 11 and exits at
line 13. The scope of the iterators used inside a foreach statement is only within
the statement body.

The parallel execution style of Green-Marl has data races on the location read
from and written to concurrently. Green-Marl provides reduction statements to
provide determinism on some operations.
1 reducedValue += expr ;

expr values computed by all the parallel executions are reduced to
reducedValue such that the result would be the same as computed sequen-
tially. The reduction operation can be +, *, min, max, bitwise AND and OR.
reducedValue should be read only after all the parallel executions have finished
the execution of the reduction statement. Node and Edge properties can also be
reduced.
1 Foreach (n : G.Nodes)
2 Foreach (t : n .Nbrs)
3 n .A += t .B;

238 G. Shashidhar and R. Nasre

The property B is reduced into property A. The frontend of the Green-Marl
provides syntax checking to identify any conflicts in the locations being read
in expr and written to in reducedValue. In addition to the normal reduction
statement, Green-Marl provides constructs to gather values in the context which
minimized or maximized the expression.

Output of the Green-Marl compiler gm comp is a C++ code annotated with
OpenMP pragmas. This code needs to be compiled with another code containing
the main entry point to generate the final application.

Green-Marl Frontend: The front end provides the syntax checks and parallel
semantics checks, and generates an Abstract Syntax Tree (AST). The higher
level description of the program helps in identifying possible problems in the
parallel program semantics like data-races. For instance, consider this code:
1 Node Prop<Int> A; // node property
2 Foreach (n : G.Nodes)
3 Foreach (t : n .Nbrs)
4 n .A = t .A;

At line 4, the iterators t and n are used to update the node property A. The
property A is written through iterator n and read through iterator t. At this
point, there is no guarantee that n and t could not create a data conflict on A;
that is, n in one thread and t in another may refer to the same node leading
to a race. The frontend analysis finds that at line 3, iterator t is defined on
n’s neighbors. The analysis reduces iterator t to random access along n. At this
point there is a write by n and the random access read by reduction from t.
A data conflict exists between iterator t and n on the node property A. The
compiler issues errors on identifying such conflicts. After parsing and checking
of the input specification, the front end generates an AST representing various
constructs defined in the Green-Marl language.

Green-Marl Optimizations: A set of architecture independent transforma-
tions is applied on the AST: (i) Perform loop fusion which combines two foreach
loops that have the same type of iterator and no loop-carried dependence. (ii)
Combine assignments that are running on the same iterator type into a single
parallel loop. (iii) Hoist the temporary property definition out of the sequential
loop to save the repeated allocations and deallocations. (iv) Convert the reduc-
tion inside a sequential loop to a normal assignment. (v) Move a reduction to the
outermost parallel loop just after the definition/declaration of the target symbol.
If there is no such loop then the compiler converts the reduction to a normal
assignment. The output of this phase is a modified AST which is transformed
by the above mentioned optimizations.

Green-Marl Backend: The existing backend currently generates OpenMP
code for multi-core CPU processing. The backend traverses the AST and gener-
ates parallel for construct for the outermost foreach loop. For single value
reductions, atomic construct is utilized, while for multi-value assignments, a
lock-based code gets generated. Note that generating such a lock-based code
for GPUs is not an option due to inefficient execution of locks in the pres-
ence of hundreds of thousands of threads. Further, reductions on GPUs can be

LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs 239

accomplished by a hierarchical computation across warps and threads-blocks.
This demands careful management of cooperation across threads. Finally, the
generated C++ procedure may contain temporary as well as global variables.
Temporaries get converted to thread-local variables, while global variables can
be directly accessed by OpenMP threads. However, in CUDA, the globals from
CPU are not directly accessible on GPUs (unless unified memory is used for
storing data). This demands identifying the locations of variables’ access as well
as their definitions. If the two devices are different, the compiler needs to insert
code to explicitly transfer such variables across the two devices.

3 GPU Code Generation

This section presents the challenges that LightHouse faces for efficient GPU
code-generation of the Green-Marl language specification. Apart from translating
the usual constructs, LightHouse primarily involves four subtasks, which we
discuss in the following subsections.

3.1 Identifying Parallel Regions

This phase selects the part of the code to be run on the GPU. The Foreach
construct specifies parallelism implicitly. LightHouse generates a kernel corre-
sponding to the parallel loop. Only the outermost Foreach is selected to be run
on the GPU in parallel. For instance, for the code shown in Fig. 1, the outer
Foreach on line 6 gets converted to a kernel which contains the body of the
loop. Thus, loop iterations are executed by concurrently running threads. The
inner Foreach on line 7, on the other hand, gets compiled into a sequential for
loop executed by each thread within its kernel code.

1 Procedure Test (G: Graph ,
2 A: N P<Int>, root : Node) {
3
4 N P<Int> B;
5 Int rootValue ;
6 Foreach (n : G.Nodes) {
7 Foreach (s : n .Nbrs) {
8 n .B = n .A + s .A;
9 }

10 }
11 rootValue = root .B;
12 }

Fig. 1. Green-Marl example

Symbol Type Parent Allocate in

G Graph GPU
A NP< Int > GPU
B NP< Int > GPU
n Node::I G GPU
s Node::I n → G GPU
root Node CPU
rootValue Int CPU

Fig. 2. Symbol table for the program
in Fig. 1

3.2 Identifying Variable Location

Unlike in the CPU backend, LightHouse needs to identify the variable location
(whether on CPU or GPU). This is decided by a static pass which relies on a use-
def analysis to find out the variables read and written to at different instructions

240 G. Shashidhar and R. Nasre

in the program. LightHouse maintains a symbol table which is populated with
variables and their type information. All the variables inside the parallel regions
have to be accessible to the GPU. These variables are allocated in the GPU
(global) memory. Variables of primitive data types can be passed as parameters
to the kernel. Variables that need to be in the GPU memory are marked to have
a GPU Scope. In addition, a variable written in the GPU kernel but used in the
CPU code needs to be transferred to the CPU. For instance, Fig. 2 shows the
symbol table for the Green-Marl program in Fig. 1. The variables accessed inside
the foreach loop at line 6 need to be accessed in the GPU. This includes Graph
G, Node properties A and B, and Node iterators n and s. The iterator n traverses
all the nodes of G, and s traverses the neighbors of those nodes.

Each outermost foreach loop defines a new scope for the GPU. All the vari-
ables accessed in the foreach loop have to be declared and defined inside the
GPU scope. Node and Edge properties are converted to arrays. These arrays are
allocated space in GPU’s global memory and are sent as kernel launch parame-
ters. Temporary variables used inside the foreach loops are declared inside the
kernel and are added to the lexicographic scope of the kernel. Variables which
are defined and used outside the kernel are added to the CPU (Global) scope.

For the variables in the Global scope that are also accessed inside the foreach
loop, LightHouse creates a copy in the GPU Global memory. It modifies the
variable accesses inside the kernel to the corresponding copies in the GPU scope.

3.3 Generating Indices for Memory Accesses

Fig. 3. Graph in CSR format

The input graph is stored in Com-
pressed Sparse Row Format (CSR)
which consists of two arrays (another
array for weights). The row array R
has the adjacency list of all the nodes
in the graph. The column array C has
the indices into the row array for the
starting index of the adjacency list for
each node. Figure 3 shows an example

graph in the CSR format. For each iterator the index pattern based on the CSR
format needs to be generated for CUDA threads. The parent information of the
iterator in the symbol table is used to generate the index values.

For instance, consider the code snippet: Foreach(n: G. Nodes)... In this code,
n is an iterator on all the nodes in the graph. Running this foreach loop in
a fully parallel manner on GPU assigns one node to each CUDA thread. The
corresponding index pattern generated is as follows.
1 n = threadID ;
2 i f (n > numNodes)
3 re turn ;

Here n is the node id being processed by a thread, derived from the unique
id threadID of the thread, computed in CUDA as blockIdx.x * blockDim.x
+ threadIdx.x. Similarly for the pattern below,

LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs 241

1 Foreach (n : G.Nodes)
2 Foreach (s : n .Nbrs)
3 . . .

the inner foreach loop is converted into a sequential loop. Iterator s goes over
all the neighbors of n. The generated code is:
1 n = threadID ;
2 i f (n > numNodes)
3 re turn ;
4 f o r (i = C[n] ; i < C[n+1] ; i++) {
5 s = R[i] ;
6 . . .

Similar patterns are defined for in/out neighbors and in/out edge iterators.

3.4 Generating Code for Reduction Statements

Green-Marl provides min, max, add, mult, or, and, inc reduction constructs.
LightHouse converts these reduction operations to atomic operations on GPU.
1 Int T = 0 ;
2 Node src , dst ;
3 Foreach (s : G.Nodes)
4 Foreach (t : s .Nbrs)
5 T<src , dst> max= s .A + t .A<s , t >;

The assignment at line 5 performs a max-reduction of the expression s.A +
t.A to variable T and assigns the corresponding node ids to src and dst.

1 i n t T = 0 ;
2 GPUMemCpy(GPU T, T, HostToDevice) ;
3 KernelCal l<<<LaunchPara>>>(C, R, A) ;
4 GPUMemCpy(from , GPU from , DeviceToHost) ;
5 GPUMemCpy(to , GPU to , DeviceToHost) ;
6
7
8 Kerne lCal l (C, R, A) {
9 s = threadID ;

10 i f (s > NumNodes)
11 return ;
12 f o r (i = C[n] ; i < C[n + 1] ; i++) {
13 t = R[i] ;
14 expr = s .A + t .A;
15 atomicMax(&GPU T, expr) ;
16 i f (loca lExpr < expr) {
17 loca lExpr = expr ;
18 localFrom = s ;
19 loca lTo = t ;
20 }
21 }
22 So f twareBar r i e r () ;
23 i f (l oca lExpr == GPU T)
24 chooseThread = threadID ;
25 So f twareBar r i e r () ;
26 i f (chooseThread == threadID) {
27 GPU from = localFrom ;
28 GPU to = loca lTo ;
29 }
30 }

Fig. 4. Code for multiple atomic assignment

The language definition of
Green-Marl demands evalua-
tion of line 5 in an atomic
manner. That is, assignments
to T, src and dst must be
seen by other threads as hap-
pening together. We call its
type as multiple atomic assign-
ment statement. On CPUs, the
Green-Marl OpenMP backend
uses logical locks to imple-
ment multiple atomic assign-
ments. CUDA neither has a
support for such a statement
type, nor is it feasible to use
locks in the presence of hun-
dreds of thousands of con-
current threads. For efficiency,
we implement such reductions
using software barrier and
atomics. Figure 4 shows the
CUDA code generated for mul-
tiple atomic assignment state-
ment. All the threads store the

242 G. Shashidhar and R. Nasre

expression to be reduced (line 14) and perform an atomic minimum (or maxi-
mum) on the target global value (line 15). If the new expression value is lesser
(respectively, larger) than the previously computed value, then the values of the
sub-expressions are stored into local variables (line 17–19). All the threads syn-
chronize at the end of the foreach loop (line 22) and compare their individual
local copies of reduction expressions with the reduced value. Threads having
the same value are the potential threads which might have written the reduced
value. According to the language semantics, one of these potential threads must
assign the reduced value. All the potential threads write their threadID to a
unique location (line 24) and only one of the writes gets reflected at the end.
This thread is chosen to write its value of local sub-expressions to the global
value (lines 26–28). This ensures that only one of the potential threads which
had reduced the value to its minimum/maximum also writes the corresponding
sub-expressions to the global location.

Lines 22 and 25 use a call to SoftwareBarrier() which implements a global
barrier across all the threads on the GPU. A global barrier is a synchronization
primitive that guarantees that all threads from all the thread-blocks belonging to
a kernel reach a specific point in the code before any thread may progress beyond
that point. CUDA supports a barrier at the thread-block level (syncthreads).
However, a global barrier (across thread blocks) needs to be emulated in software.
We implement it without using atomics [13,21].

4 Program Optimizations

In this section we present three important GPU-specific optimizations that are
implemented in LightHouse to improve the performance of the generated CUDA
code. The optimizations work with the control-flow graph and the def-use chains.

4.1 Eliminating Atomics

Reduction of a boolean value can be implemented without using atomics by
initializing a value to the reduction variable and set the variable based on the
condition. As only one thread is enough to change the value of the reduction
variable, subsequent reduction does not change the semantics of the program.

atomicOr(&A, val);
becomes
// initialized outside kernel
A = false;
....
if (val) A = true;

atomicAnd(&A, val);
becomes
// initialized outside kernel
A = true;
....
if (!val) A = false;

In the above translated code, there is a data race on A, but the threads partic-
ipating in the race set A to the same value. So, the race is benign. In case of
multiple assignment statement, a sub-expression of type boolean can be assigned
similar to the above code without using the software barriers. This gets rid of
the limitation of the software barrier which demands all threads participating in
the barrier to be resident (which reduces concurrency).

LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs 243

4.2 Loop Collapsing

Typical implementations of graph algorithms are vertex-centric, that is, a vertex
is assigned to a thread and the thread operates on all its neighbors. When the
input graph’s degree-distribution is rather uniform, as in road networks, a vertex-
centric algorithm assigns almost equal amount of work per thread. However, for
a graph with skewed degree-distribution, as in social networks, a vertex-centric
algorithm suffers from high load-imbalance [2,22]. The problem is exacerbated
on GPUs as warp-threads execute in SIMD fashion. One way to remove the
load imbalance is to make the algorithm edge-centric, that is, transform the
traversal on neighbors of all the nodes to traversal on all the edges. One thread
is assigned to work on one edge which creates evenly balanced workload and
hence improved parallelism. In CSR representation of the graph, each thread
accesses contiguous memory locations on the edge list. CUDA combines such
contiguous memory accesses from a warp into a single global memory access
(called as memory coalescing). This increases the memory bandwidth of the
process and results in better performance.

Foreach(e:G.Edges) {
Foreach(s:G.Nodes) becomes s = e.FromNode();

Foreach(t:s.Nbrs) t = e.ToNode();

From Green-Marl language perspective, such a transformation can be depicted
as shown on the above. In this code, FromNode and ToNode are API that return
end-points of an edge. Such an approach needs an array of edges rather than
the CSR format. However, converting a vertex-centric algorithm to an edge-
centric version may change synchronization requirements. For instance, in a pull-
based implementation a thread operating on a vertex reads-in attributes from
its in-neighbors and updates the current vertex’s attribute. In such an approach,
each vertex is being written to by only one thread, and hence threads need not
synchronize their writes. However, when such a pull-based implementation is
combined with edge-centric version, single-writer guarantee cannot be enforced,
necessitating synchronization. Typically, for simple attributes (such as distance
of a vertex or pagerank value), an atomic instruction suffices for correct execution
(e.g., atomicMin for the shortest paths computation).

4.3 Full Device Occupancy

We also studied the effect of occupancy in the context of graph algorithms, by
generating codes with full-occupancy and otherwise. We observed in our experi-
ments that although occupancy is useful, its effect is limited in the case of graph
algorithms and gets overshadowed by other effects such as launch configuration,
memory coalescing, and thread-divergence.

4.4 Limitations of LightHouse

Although our code generator is automated, it can be improved in multiple
aspects, such as generating code for heterogeneous systems, supporting graph

244 G. Shashidhar and R. Nasre

mutation (would need changes in the language), reducing synchronization among
threads, and optimizations using GPU shared memory.

5 Experimental Evaluation

We added a CUDA backend to Green-Marl to read the AST and generate GPU
code as detailed in the previous sections. Thus, for the same graph algorithm
specification, we are now able to generate both OpenMP as well as CUDA codes.
This allows us to faithfully compare the performances of the generated programs.

Table 1. Benchmark graphs and baseline performance

Graph #Nodes #Edges OpenMP 1-thread (in msec)

(millions) (millions) MATCH SSSP COND PAGERANK

GATHER

PAGERANK

PROPAGATE

Epinions 0.076 0.509 11 11 1 48 139

LiveJournal 4.848 68.994 1432 1347 50 11818 21119

Pokec 1.633 30.623 273 1073 16 6267 8563

Orkut 3.073 117.185 687 3779 46 10724 20945

USA 23.947 57.709 1705 >35min 125 14312 26886

5.1 Experimental Setup

We generated CUDA and OpenMP codes for four graph analytic algorithms:
bipartite matching (MATCH), single-source shortest paths (SSSP), page-rank
(PAGERANK), and conductance (COND) of a graph. MATCH is a matching
algorithm where a random edge is selected as matching between two nodes. The
algorithm returns one of the maximal matchings and not the maximum match-
ing. Because of the randomness the algorithm can be run in parallel. SSSP
computes the shortest paths in a directed graph from a designated source ver-
tex, and uses a variant of Bellman-Ford algorithm. PAGERANK calculates the
importance of each node in the graph using the following formula.

PageRank(n) =
(1 − d)

NumNodes
+ d ∗

∑

tεIncomingNodes(n)

PageRank(t)
OutDegree(t)

(1)

COND identifies how well-knit a graph is based on the degree distribu-
tion. The four algorithms test various aspects of our code-generator: MATCH
involves testing data parallelism, SSSP tests generation of multi-atomic assign-
ment, PAGERANK tests floating-point operations, while COND tests reductions
and conditional evaluation of expressions.

Table 1 shows the benchmark graphs used in our evaluation along with their
sizes in terms of the number of nodes and number of edges. The sizes range from
0.5 million edges (for Epinions) to 117 million edges (for orkut). All the graphs

LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs 245

are obtained from SNAP [11]. The last columns of the table also show execu-
tion time of single-threaded OpenMP version for the three graph algorithms. We
use it as a baseline for comparison of multi-threaded OpenMP and CUDA ver-
sions. We also compare our generated SSSP code against hand-optimized CUDA
versions from LonestarGPU [3] and Totem [5]. Each algorithm implementation
is run in CUDA and OpenMP frameworks with 1, 4, 8, 16 and 64 threads.
The benchmarks for OpenMP are run on an Intel XeonE5-2650 v2 machine
with 32 cores clocked at 2.6 GHz with 100 GB RAM, 32 KB of L1 data cache,
256 KB of L2 cache and 20 MB of L3 cache. The machine runs CentOS 6.5 and
2.6.32-431 kernel, with GCC version 4.4.7 and OpenMP version 4.0. The CUDA
code is run on Tesla K40C device which has 2880 cores clocked at 745 MHz
with 12 GB of global memory. The GPU device is connected to the same CPU
device. CUDA OPT is the baseline version with Eliminating Atomics and Loop
Collapsing enabled. The execution time is taken after all the data necessary
for computation is copied to respective memories till the procedure ends.

5.2 Experimental Results

Figure 5a shows the speedup obtained by the OpenMP and CUDA versions
of MATCH compared to the single-threaded OpenMP version. We observe
that CUDA OPT considerably outperforms the OMP version’s maximum per-
formance. The algorithm has a nested Foreach loop which goes over neighbors of
all nodes. CUDA OPT converts this nested Foreach loop into a single Foreach-
on-edge loop. Further, it converts the reduction of a boolean variable inside the
nested Foreach loop to a normal assignment. Its high speedup is due to less
conflicts across threads and load-balanced task distribution.

Figure 5b shows the results for COND. We observe that the OpenMP version
performs considerably better and scales well, achieving a speedup of 9.3× for
orkut. COND has atomics-based reductions to a variable from all the nodes of
the graph which turn out to be slightly expensive in the presence of massive
multithreading such as GPUs. Nonetheless, CUDA OPT performs reasonably
good and is comparable to 4-threaded OpenMP version.

PAGERANK is run with damping factor d = 0.85 and error tolerance of
0.0001 for maximum 40 iterations. It can be implemented both as a gathering
or a propagating approach. In the former, every node gathers the pagerank of
its incoming nodes to calculate its own pagerank. An advantage of gathering is
that it does not need atomic writes, as every node is owned by a single thread.
Figure 5c shows Pagerank results, which indicate that OpenMP scales well with
number of threads. In case of CUDA, gather-based code improves synchroniza-
tion, but also increases load-imbalance, as each thread needs to sequentially
process all the incoming neighbors. On the other hand, in propagation-based
code, every node propagates its pagerank to its outgoing nodes. The propaga-
tion demands atomics, but due to CUDA OPT’s node-based to edge-based opti-
mization, the load-balance improves, leading to better performance, as shown in
Fig. 5d.

246 G. Shashidhar and R. Nasre

 0

 10

 20

 30

 40

 50

 60

Epinions

LiveJournal

Pokec

Orkut

USA

 S
pe

ed
 u

p
OMP-1T
OMP-4T

OMP-8T
OMP-16T

OMP-64T
CUDA

CUDA-OPT

(a) MATCH

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Epinions

LiveJournal

Pokec

Orkut

USA

 S
pe

ed
 u

p

OMP-1T
OMP-4T

OMP-8T
OMP-16T

OMP-64T
CUDA

CUDA-OPT

(b) COND

 0

 2

 4

 6

 8

 10

 12

 14

Epinions

LiveJournal

Pokec

Orkut

USA

 S
pe

ed
 u

p

OMP-1T
OMP-4T
OMP-8T

OMP-16T
OMP-64T
CUDA

CUDA-MaxBlocks

(c) PAGERANK-GATHER

 0

 2

 4

 6

 8

 10

 12

 14

Epinions

LiveJournal

Pokec

Orkut

USA

 S
pe

ed
 u

p

OMP-1T
OMP-4T

OMP-8T
OMP-16T

OMP-64T
CUDA

CUDA-OPT

(d) PAGERANK-PROPAGATE

 0

 10

 20

 30

 40

 50

 60

Epinions

LiveJournal

Pokec

Orkut

USA

 S
pe

ed
 u

p

OMP-1T
OMP-4T

OMP-8T
OMP-16T

OMP-64T
CUDA

CUDA-OPT
LoneStarGPU

Totem-Full-GPU
Totem-OPT

(e) SSSP

Fig. 5. Performance of MATCH, SSSP, PAGERANK and COND on input graphs

LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs 247

Figure 5e shows the speedup obtained by the OpenMP and the CUDA ver-
sions of SSSP compared to the single-threaded OpenMP version. We observe
that, in contrast to MATCH, the OpenMP version performs better in case of
SSSP up to 16 threads (8× speedup). In comparison, our CUDA version per-
forms consistently better for each graph. SSSP has a nested Foreach loop to
propagate the distance value to all its neighbors. Along with minimizing the
distance, each iteration marks the neighbors for propagation in the next itera-
tion. Due to the irregular nature of the graphs and the algorithm, the number
of conflicts on a memory location and load-imbalance increases with the num-
ber of threads. CUDA OPT converts the traversal of neighbors of all nodes
into edge-traversal which enables more parallelism. Totem’s peak performance is
achieved when all the graph nodes are processed on the GPU. It is hand-tuned
to minimize the synchronization usage. In addition, automated code-generation
of LightHouse has its bookkeeping overheads, which can be overcome by adding
more architecture-independent optimizations to LightHouse.

Overall, we illustrate that LightHouse was able to generate well-performing
CUDA versions from the same high-level description of the graph algorithms.

6 Related Work

Green-Marl [6] is a DSL for graph analytic algorithms running on shared memory
systems. We explain Green-Marl’s language features and code-generation briefly
in Sect. 2. We use Green-Marl’s specification as our language syntax. This allows
us to retain existing productivity of the programmer. Further, in our experience,
Green-Marl’s syntax is intuitive (close to algorithmic description), well-defined
and easy to learn; thus making it ideal for new domain experts.

Elixir [16] is a system for synthesizing irregular algorithms on multi-core
platforms. Programmers specify the parallel computation as a set of operators,
which is executed by multiple threads. Efficient execution of operators necessi-
tates a good scheduling, which is often application dependent. Therefore, Elixir
also provides a flexibility of specifying schedules, which could be customized as
per the needs of an application. This allows generation of multiple implementa-
tions of the same algorithm (operator). Elixir also performs auto-inferencing to
identify the next set of graph elements (nodes or edges) to be processed from
the specification. An extension of Elixir [17] uses planning to generate schedules
as well as synchronization automatically. Compared to Elixir, Green-Marl’s syn-
tax does not involve schedule specification and LightHouse targets GPUs which
pose different challenges as discussed throughout the paper.

Halide [18] is a DSL for image processing. It provides a set of filters and a
pipelined execution, where the output of one filter acts as input to the other.
Users can write their own filters and alter the schedule to achieve the best results.
Halide programs are restricted to stencils, in which the memory access pattern
is regular (known at compile-time). Similar to our goal, Halide generates code
for multiple platforms such as GPUs and heterogeneous CPU+GPU combina-
tion. LightHouse differs from the Halide compiler because the access patterns

248 G. Shashidhar and R. Nasre

of graph algorithms are irregular, requiring dynamic parallelization techniques.
This means that the related optimizations in case of graph algorithms need to
be deferred until run-time.

While there are only a few DSLs for irregular codes, there are several library-
based platforms and parallelization frameworks proposed for processing graph
algorithms. Galois [10] is a C++ framework for writing multi-core graph algo-
rithms. A salient feature of Galois is that it supports morph algorithms also,
wherein the graph structure changes. Ligra [19] is a framework for paralleliz-
ing input-dependent programs, such as graph algorithms. LonestarGPU [3] and
Totem [5] are frameworks for GPU and heterogeneous implementations of graph
algorithms respectively. Medusa [24] is a C/C++ library-based approach to par-
allelize graph algorithms on multiple GPUs. GPU code generators for sparse
matrix-vector multiplication [20] are also relevant.

Graph algorithms [10,15] have been shown to bear enough parallelism espe-
cially in the context of distributed [2,4,14] and heterogeneous systems [5]. G-
Streamline is a software-based runtime approach to eliminate control-flow and
memory-access irregularities from GPU programs [23]. DyManD is an automatic
runtime system for managing recursive data structures (like trees) on GPUs [7].
Our work does not replace these existing approaches, but instead, complements
them by allowing the optimizations to be generated automatically.

7 Conclusion

We proposed techniques for efficient GPU code generation of graph algorithms
from their high-level description. We reused an existing graph analytics DSL,
Green-Marl, as the front-end and added a CUDA backend called LightHouse. It
had to overcome several challenges specific to GPUs due to separate memories,
thread-hierarchy and SIMD processing on GPUs. We discussed unique issues
encountered in GPU code generation compared to those in CPU code generation.
We illustrated the effectiveness of our approach by generating CUDA code for
four graph algorithms and comparing their performance against that of their
OpenMP versions generated by Green-Marl. The performance benefits reveal
that DSLs provide an effective way of developing parallel algorithms.

References

1. Bader, D.A., Madduri, K.: Designing multithreaded algorithms for breadth-first
search and st-connectivity on the Cray MTA-2. In: ICPP 2006, pp. 523–530 (2006)

2. Buluç, A., Madduri, K.: Parallel breadth-first search on distributed memory sys-
tems. In: SC 2011, pp. 65:1–65:12. ACM (2011)

3. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs
on GPUs. In: IISWC 2012, pp. 141–151. IEEE Computer Society (2012)

4. Checconi, F., Petrini, F., Willcock, J., Lumsdaine, A., Choudhury, A.R.,
Sabharwal, Y.: Breaking the speed, scalability barriers for graph exploration on
distributed-memory machines. In: SC 2012, pp. 13:1–13:12 (2012)

LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs 249

5. Gharaibeh, A., Costa, L.B., Santos-Neto, E., Ripeanu, M.: A yoke of oxen and a
thousand chickens for heavy lifting graph processing. In: PACT 2012 (2012)

6. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and
efficient graph analysis. In: ASPLOS 2012, pp. 349–362 ACM (2012)

7. Jablin, T.B., Jablin, J.A., Prabhu, P., Liu, F., August, D.I.: Dynamically managed
data for CPU-GPU architectures. In: CGO 2012. ACM (2012)

8. Kulkarni, M., Burtscher, M., Inkulu, R., Pingali, K., Casçaval, C.: How much
parallelism is there in irregular applications? In: PPoPP 2009, pp. 3–14 (2009)

9. Kulkarni, M., Pingali, K., Ramanarayanan, G., Walter, B., Bala, K., Chew, L.P.:
Optimistic parallelism benefits from data partitioning. SIGARCH Comput. Archit.
News 36(1), 233–243 (2008)

10. Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G., Bala, K., Chew, L.P.:
Optimistic parallelism requires abstractions. PLDI 42(6), 211–222 (2007)

11. Leskovec, J., Sosič, R.: SNAP: a general purpose network analysis and graph mining
library in C++, June 2014. http://snap.stanford.edu/snap

12. Madduri, K., Bader, D., Berry, J., Crobak, J.: An experimental study of a parallel
shortest path algorithm for solving large-scale graph instances. In: ALENEX (2007)

13. Nasre, R., Burtscher, M., Pingali, K.: Morph algorithms on GPUs. In: PPoPP
2013. ACM (2013)

14. Pearce, R., Gokhale, M., Amato, N.M.: Multithreaded asynchronous graph traver-
sal for in-memory and semi-external memory. In: SC 2010, pp. 1–11 (2010)

15. Pingali, K., Nguyen, D., Kulkarni, M., Burtscher, M., Hassaan, M.A., Kaleem, R.,
Lee, T.-H., Lenharth, A., Manevich, R., Méndez-Lojo, M., Prountzos, D., Sui, X.:
The tao of parallelism in algorithms. In: PLDI 2011, pp. 12–25. ACM (2011)

16. Prountzos, D., Manevich, R., Pingali, K.: Elixir: a system for synthesizing concur-
rent graph programs. In: OOPSLA 2012, pp. 375–394. ACM (2012)

17. Prountzos, D., Manevich, R., Pingali, K.: Synthesizing parallel graph programs via
automated planning. In: PLDI, pp. 533–544. ACM (2015)

18. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines. In: PLDI 2013, pp. 519–530. ACM (2013)

19. Shun, J., Blelloch, G.E.: Ligra: A lightweight graph processing framework for
shared memory. In: PPoPP, pp. 135–146. ACM (2013)

20. Venkat, A., Shantharam, M., Hall, M., Strout, M.M.: Non-affine extensions to
polyhedral code generation. In: Proceedings of Annual IEEE/ACM International
Symposium on Code Generation, Optimization, CGO 2014, pp. 185:185–185:194.
ACM, New York (2014)

21. Xiao, S., Feng, W.: Inter-block GPU communication via fast barrier synchroniza-
tion. In: IPDPS, pp. 1–12. IEEE (2010)

22. Yoo, A., Chow, E., Henderson, K., McLendon, W., Hendrickson, B., Catalyurek, U.:
A scalable distributedparallel breadth-first search algorithmonblueGene/L. In: ICS,
p. 25. IEEE Computer Society (2005)

23. Zhang, E.Z., Jiang, Y., Guo, Z., Tian, K., Shen, X.: On-the-fly elimination of
dynamic irregularities for GPU computing. In: ASPLOS. ACM (2011)

24. Zhong, J., He, B.: Medusa: simplified graph processing on GPUs. IEEE Trans.
Parallel Distrib. Syst. 25(6), 1543–1552 (2014)

http://snap.stanford.edu/snap

Locality-Aware Task-Parallel
Execution on GPUs

Jad Hbeika(B) and Milind Kulkarni

Purdue University, West Lafayette, USA
{jhbeika,milind}@purdue.edu

Abstract. GPGPUs deliver high speedup for regular applications while
remaining energy efficient. In recent years, there has been much focus on
tuning irregular, task-parallel applications and/or the GPU architecture
in order to achieve similar benefits for irregular applications running on
GPUs. While most of the previous works have focused on minimizing the
effect of control and memory divergence, which are prominent in irregu-
lar applications and which degrade the performance, there has been less
attention paid to decreasing cache pressure and hence improving perfor-
mance of applications given the small cache sizes on GPUs.

In this paper we tackle two problems. First we extract data parallelism
from irregular task parallel applications, which we do by subdividing
each task into sub tasks at the CPU side and sending these sub tasks
to the GPU for execution. By doing so we take advantage of the mas-
sive parallelism provided by the GPU. Second, to mitigate the memory
demands of many tasks that access irregular data structures, we schedule
these subtasks in a way to minimize the memory footprint of each warp
running on the GPU. We use our framework with 3 task-parallel algo-
rithms and show that we can achieve significant speedups over optimized
GPU code.

1 Introduction

GPGPUs have proven themselves to be a cost-effective way of accelerating
applications. The single-instruction, multiple-thread (SIMT) execution model
of GPUGPUs provides massive amounts of parallelism while remaining energy
efficient. The hardware of the GPU is limited to keep power consumption low.
Most prominently, the SIMT execution model requires that all threads in a warp
perform the same instruction at the same time to enjoy parallelism; if different
threads do different work, some threads sit idle and parallelism is lost. Second,
there is relatively little hardware support for hiding latency—the core cannot
execute instructions out of order, nor are there forwarding networks to help miti-
gate the penalty of long-latency instructions—instead, the GPU relies on massive
multithreading to hide latency, keeping hundreds or even thousands of threads
in context to swap in and out during long-latency operations. Perniciously, this
means that not only does the GPU support massive parallelism, it needs massive
parallelism for effective execution. Finally, caches are small compared to their
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 250–264, 2017.
DOI: 10.1007/978-3-319-52709-3 19

Locality-Aware Task-Parallel Execution on GPUs 251

CPU counterparts, especially when considered on a per-thread basis (thousands
of threads spread a <1 MB cache very thin!)

As a result of these limitations, not all applications can execute efficiently
on GPUs. GPUs are well-suited to regular, data-parallel applications, where the
well-structured computation is performed on different pieces of data. In these
applications, the similarity of the computations performed in parallel means that
there are not substantial penalties for executing in a SIMT manner. Moreover,
the data-parallel nature of the application means that it is easy to generate
enough parallelism to fill the GPU, allowing for effective multithreading.

However, for task parallel applications, where parallelism arises from indepen-
dent, distinct tasks that run simultaneously, GPUs are not nearly as attractive
a target. First, the fork-join nature of task parallelism does not map well to
standard GPU programming models such as CUDA [11] or OpenCL [9]. Second,
even if there is data parallelism in these applications (either because individual
tasks have data parallel work, or because there is some parallel outer loop in the
application), there may not be enough parallelism to effectively use the GPU’s
resources. Third, even if the tasks of the program could be mapped to the GPU,
the limited memory subsystem of the GPU can lead to poor performance in
data-heavy tasks.

There has been recent work on turning task parallelism into data parallelism
to map task-parallel applications to hardware (including GPUs) that is made for
data parallelism [5,12,13]. These proposals either require hardware changes [5,
12] or target fine-grained data parallelism in SIMD units [13]. None of these
approaches consider locality.

In this paper, we propose a locality-aware, task-queue abstraction for mapping
task-parallel applications to GPUs. The basic approach is to expand task parallel
work on the CPU to generate a large number of tasks. These tasks are then
inserted into one or more task queues according to the type of computation they
perform and, crucially, the locality properties of the tasks. These queues are then
merged into a single queue that is sent to the GPU, where they are executed
in a data-parallel manner, with each task executing to completion on the GPU.
This model has several features. First, by expanding out the task-parallel work
on the CPU, we avoid needing to handle task-parallelism on the GPU; instead,
once execution begins on the GPU, it is purely data parallel. Second, because
the task queues are partitioned based on operation type, the tasks that execute
simultaneously are computationally similar, promoting efficient SIMT execution.
Finally, the locality-aware nature of the queues promotes tasks in the same
queue having overlapping memory footprints, reducing cache pressure and hence
improving performance relative to a locality-unaware approach.

We evaluate this queue abstraction on three applications: a task-parallel
implementation of the fast multipole method, and two data mining applications
that feature a mix of data-parallelism and task-parallelism, nearest-neighbor and
two-point correlation. In all three cases, we demonstrate that our locality-aware
approach delivers better performance than a locality-agnostic one. For the mixed
applications, not only do we show that our locality-aware approach is better than

252 J. Hbeika and M. Kulkarni

the locality-agnostic approach, but we also show that in the absence of very large
amounts of data parallelism (for example, only 200,000 data-parallel iterations),
our task-parallel approach, by exploiting additional parallelism, is also signifi-
cantly faster than the best-available implementations, which exploit only data
parallelism.

The remainder of this paper is organized as follows. Section 2 discusses some
previous works that considered different programing models for GPUs. Section 3
provides background on GPGPU programming and task parallelism. Section 4
discusses our basic task-queue-based technique for exploiting data parallelism in
task-parallel applications. Section 5 discusses the need for locality aware schedul-
ing of subtasks. Section 6 discusses the implementation, Sect. 7 evaluates our
system on the four applications mentioned above, and Sect. 8 concludes.

2 Related Work

Due to the increasing prevalence of hardware resources for data parallelism
(GPUs, SIMD units, etc.), there has been significant recent interest in tech-
niques for mapping task-parallel computations to data parallel hardware. Gaster
and Howes propose a channels abstraction for executing Cilk-style task-parallel
programs on GPUs, where the GPU hardware manages queues for each type of
task, and provides support for dequeueing and enqueuing new tasks [5]. Orr et
al. presented an instantiation of the channels model and showed its efficacy on
several small Cilk-style programs [12]. Both of these approaches require hard-
ware support, and hence are not suitable to executing task-parallel programs on
commodity data-parallel hardware. Moreover, the channels abstraction does not
consider locality between tasks; it only concerns itself with grouping together
tasks with similar computation.

More recently, Ren et al. described a series of code transformations that
transform task-parallel algorithms into blocked recursive algorithms: recursive
algorithms where each method invocation performs a block of tasks, rather than
a single task [13]. These blocks can be executed efficiently in a vectorized manner.
While Ren et al.’s general approach—transforming independent, parallel tasks
into data-parallel blocks of tasks—is similar to ours, their technique does not
apply in our setting for two reasons: (1) they target vector units on CPUs, and
hence can support code transformations that require fine-grained interleaving of
SIMD and scalar operations; (2) more importantly, the applications they study
only manipulate the stack, and hence their technique does not have to account
for locality considerations.

In a more general sense, models for executing work-queues on GPUs have
been studied extensively in the literature. The persistent threads model [7]
proposes maintaining a CPU-managed work-queue along with a specially-
designed GPU kernel where a limited number of threads each run a simple
get-work/execute-work loop until the software-managed queue is empty. This
style of programming can be conducive to expressing idioms, such as producer-
consumer dependences, that data-parallel programs are ill-suited to capture.

Locality-Aware Task-Parallel Execution on GPUs 253

This model has been used to implement several work-queue-style applications
[2,10]. For the most part, persistent-thread applications do not consider local-
ity in mapping tasks to threads. Moreover, unlike in a persistent thread model,
our approach does not attempt to limit the number of threads executing on the
GPU; instead, the entire queue of tasks is sent to the GPU at the same time, to
maximize the effectiveness of hardware multithreading.

Chen et al. do consider locality concerns in a persistent-thread-like model [3].
In their programming model, tasks in a task-queue can generate new tasks that
may operate on similar data to the parent tasks. They use a compiler-based code
transformation to map child tasks to the threads that executed the parent task,
to promote reuse. In contrast, our approach considers locality between the tasks
that are mapped to the same warp—in other words, locality between tasks that
are executed by different threads, rather than consecutively on a single thread—
in an attempt to improve memory coalescing and minimize cache pressure. Wu
et al. perform affinity scheduling, mapping tasks with overlapping footprints to
the same Streaming Multiprocessor (SM) [15]; this notion of locality is far more
coarse-grained than the warp-focused affinity scheduling we pursue. Moreover,
neither Chen et al. nor Wu et al. focus on the type of task-parallel applications
that we tackle.

Goldfarb et al. looked at mapping tree traversal applications to the GPU, as
with two of our example benchmarks [6]. They adopt a fully data-parallel app-
roach, meaning that their implementation relies on inputs with a large number
of traversals to obtain good performance. Moreover, they do not consider locality
between threads, relying on ad hoc, programmer-provided scheduling decisions.
Liu et al. expanded on this work by developing a hybrid scheduling framework
that attempts to reschedule traversals based on similarity [8]. As in Goldfarb
et al.’s work, Liu et al. only consider fully data-parallel implementations, and
rely on high degrees of data parallelism for their scheduling to be effective. Their
implementations, which represent highly optimized GPU implementations of tree
traversal applications, form the baseline for our experiments.

3 Background and Motivation

3.1 GPU Architecture and Limitations

A typical GPU consists of multiple streaming multiprocessor units (SMs), each
of which features multiple simple cores, a register file, an L1 cache, and a shared
memory used by threads within the same thread block to communicate (in
NVIDIA GPUs, the shared memory and L1 cache share the same hardware
structure, which can be partitioned between the two in different ratios, depend-
ing on the workload). There is also a shared L2 cache among all the SMs on the
GPU. Finally, there is an off-chip, global memory accessible by all the SMs.

Execution on a GPU consists of a kernel that is expressed in terms of a
thread grid—a set of threads that execute in parallel to complete the kernel1.
1 For convenience, we use NVIDIA’s CUDA terminology to explain the GPU program-

ming model; OpenCL has analogous constructs, but uses different terms.

254 J. Hbeika and M. Kulkarni

The thread grid is executed across one or more of the SMs on the GPU. To
facilitate this execution, the threads in the grid are partitioned into multiple
thread blocks. While different thread blocks may execute on different SMs, all
the threads in a single block are guaranteed to execute on a single SM. As a
result of this thread partitioning, threads in a thread block can communicate
through shared memory, but threads in a grid can only communicate through
global memory.

Within a thread block, execution proceeds by dividing the block into warps:
groups of 32 threads that execute simultaneously on the SM’s 32 cores. These
threads execute in a lockstep, SIMT (single instruction multiple thread) manner,
for efficiency: all threads must be executing the same instruction for computa-
tions to be performed in parallel, and if some threads want to execute different
instructions, some of the 32 cores sit idle until the threads in the warp return to
executing the same instruction. Paired with this control divergence is memory
divergence: if multiple threads in the warp issue a load, all the threads must wait
until all of the loads complete before proceeding. Hence, if some loads miss in
the cache, the entire warp can stall for a long time before resuming execution.

As a final complication, GPU cores are extremely simple—in order, no for-
warding networks, no branch prediction, etc. Instead, performance is maintained
in the face of pipeline stalls and memory divergence through massive multi-
threading: NVIDIA’s latest Kepler GPUs can keep up to 64 warps (2048 threads)
in context at the same time, and will context switch between these warps on
stalls. Note that this massive multithreading means that a GPU’s memory sys-
tem is much smaller than a CPU’s on a per thread basis: a CPU hardware
context (core) has access to a 64 KB private L1 cache, and a ∼1 MB L2 cache
and ∼6 MB L3 cache shared among 4–12 cores. In contrast, an SM’s 16–64 KB
of L1 cache is shared among up to two thousand threads, and its ∼1.5 MB of L2
cache is shared among all of the SMs in the system. On the flip side, while the
amount of memory per thread may be small, the GPU features extremely high
throughput to keep the threads fed.

These hardware features conspire in destructive ways when writing programs
that do not have very well-structured computation and memory accesses:

– A GPU needs large amounts of parallelism to sustain throughput under mem-
ory stalls.

– Memory stalls are more likely due to the SIMT architecture if different threads
in the same warp have divergent memory footprints, as each SIMT-coalesced
memory access is more likely to result in cache misses.

– These memory stalls require even more parallelism to hide the resulting
latency, which places even more pressure on the memory system.

Unsurprisingly, then, while GPU implementations attain extremely high
speedups over CPU implementations for data-parallel, regular applications, as
programs become less regular and less data-parallel, speedups become harder to
attain. This paper describes one approach to achieve good speedup for a class
of irregular, task-parallel applications.

Locality-Aware Task-Parallel Execution on GPUs 255

1 co r r (KDNode n , Point p , f loat r) {
2 i f (! canCorre la te (n , p , r)) return ;
3 else
4 i f (n . i s L e a f && d i s t (n , p) < r)
5 p . count .accum (1) ;
6 else i f (! n . i s L e a f)
7 spawn co r r (n . l e f t , p , r) ;
8 spawn co r r (n . r i ght , p , r) ;
9 }

Fig. 1. Example task-parallel algorithm for
point correlation

corr(n)

corr(n.l) corr(n.r)

corr(n.l.l.r)

Fig. 2. Computation tree for
point-correlation

3.2 Task Parallelism

In this paper, we consider mapping task-parallel applications on GPUs. In partic-
ular, we consider recursive and task-parallel applications where parallelism arises
from executing multiple recursive function invocations simultaneously. Figure 1
shows a task-parallel implementation of a recursive algorithm to compute two-
point correlation. The algorithm takes a point p and traverses a kd-tree struc-
ture to determine how many points in a metric space are within a specified
radius r of that point. Because the kd-tree is a binary tree, each subtree can
be searched independently, as indicated by the use of the spawn keyword (we
borrow the keyword from Cilk [1], perhaps the most well-known task-parallel
programming languages). Following the approach of Ren et al. [13], rather than
using sync and return values to perform the final correlation computation, we
instead accumulate into a Cilk-style reducer [4]. In Sect. 4, we explain how we
use this reduction approach in our implementations.

Two-point correlation has substantial amounts of parallelism, but, never-
theless, is poorly suited to mapping to a GPU: the parallel operations do not
arise from a data parallel loop; the parallel operations have very different mem-
ory footprints; and the computation itself is highly irregular. While some data-
parallelism does arise because this task-parallel computation can be repeated
for different points, there may not always be enough data parallelism to provide
the parallelism the GPU requires. The best-available GPU implementation of
point correlation [8] relies on massive data parallelism to effectively manage the
irregularity of the computation.

4 Data Parallel GPU Execution of Task Parallel Code

This section presents our basic technique for extracting data parallelism from
task-parallel programs. It shares some basic similarities with the approach of
Orr et al. [12] and Ren et al. [13], in that it “expands” out the task parallel
work to generate enough tasks that can subsequently be executed in a data
parallel manner. Unlike the prior two approaches, though, our approach focuses
on cooperation between the CPU and GPU to generate the necessary tasks.

256 J. Hbeika and M. Kulkarni

Fig. 3. Steps for executing task parallel code on GPU

4.1 Basic Technique

The key insight underpinning our approach is that the execution of a recursive,
task-parallel program with no syncs can be viewed as an execution tree: a pro-
gram begins at the root of the tree, and at each spawn call generates two leaves:
one for the spawn, and one for the continuation. If there is no continuation (i.e.,
the spawn is the last operation in the function), then only one leaf is generated.
Hence, in a code like the point correlation code of Fig. 1, non-base-case execu-
tions generate interior nodes of the tree with two leaves each, for each of the
spawn calls, and base case invocations of the corr method create leaves of this
execution tree. Figure 2 shows an example of the execution tree, with base-case
tasks shaded gray. Some of the nodes are labeled with the node argument passed
to the task. Note that the nature of the point correlation algorithm means that
the execution tree corresponds to the actual tree that is being traversed: each
method invocation corresponds to operating on a subtree of the overall kd-tree.
This connection will become pertinent in Sect. 5.

Because of the nature of task-parallel execution, the nodes in this computa-
tion tree can be executed in any order, provided that ancestors always execute
before descendants. As nodes are executed, the “frontier” of non-executed nodes
represents the set of tasks that are left to be executed (so, for example, in a
Cilk-style runtime system, the contents of the threads’ deques are this frontier).

Our execution model, then, is straightforward. Figure 3 illustrates the steps.

1. Partially expand the computation tree on the CPU, until a sufficient frontier
is generated. (The non-greyed out nodes in the computation tree shown in
step 1 of Fig. 3.)

2. Place all the tasks in this frontier into a queue (shown in step 2 of Fig. 3).
Note that each of these tasks, by definition, is independent from the others.
Moreover, each task can be executed to completion sequentially, executing
the entire subtree rooted at that task.

Locality-Aware Task-Parallel Execution on GPUs 257

1 co r r (KDNode n , Point p , f loat r) {
2 i f (! canCorre la te (n , p , r)) return ;
3 else
4 i f (n . i s L e a f && d i s t (n , p) < r)
5 p . count .accum (1) ;
6 else i f (! n . i s L e a f)
7 i f (! thresholdMet)
8 spawn co r r (n . l e f t , p , r) ;
9 spawn co r r (n . r i ght , p , r) ;

10 else
11 gpuQ . addTask (n . l e f t , p , r) ;
12 gpuQ . addTask (n . r i ght , p , r) ;
13 }

Fig. 4. Transformed point correlation algorithm to enable GPU task queue.

3. Execute this task queue in a data parallel manner on the GPU, with each
task maintaining its own reduction result (shown in step 3 of Fig. 3). Because
of the nature of reduction computations [4], each of these tasks can perform
its reductions independently.

4. Return the reduction objects (the squares in step 4 of Fig. 3 to the CPU to
be combined to produce the final result.

Note that because of the recursive nature of the tasks in the applications we
consider, each of the tasks has a fairly similar computational fingerprint. This
similarity between tasks helps reduce control divergence. Memory divergence,
though, is another issue, as Sect. 5 elaborates.

4.2 Generating GPU Task Queues

The process of enqueuing tasks into the task queue for execution on the GPU
is straightforward, and can be accomplished by a basic code transformation.
Because spawned tasks are independent of their execution, it is also safe to not
execute them, and instead defer their execution until a later point in time. Hence,
during sequential execution of a task-parallel program on the CPU, whenever a
threshold is hit, spawned tasks are not executed, but are instead enqueued onto
a task queue that will be sent to the GPU. Figure 4 shows a version of our point
correlation example that performs this enqueuing.

Note that we do not attempt to perform the CPU work in parallel, though it
could reasonably be parallelized; because the work up to the frontier represented
by the task queue is small compared to the overall work in the program, executing
this work sequentially is a minor overhead, and simplifies implementation.

4.3 Mixing Data Parallelism and Task Parallelism

As mentioned in Sect. 3.2, some applications have a mix of data and task par-
allelism. In particular, applications such as point correlation often have a data

258 J. Hbeika and M. Kulkarni

parallel outer loop (in this case, iterating over multiple points), where each iter-
ation of that data parallel loop performs task-parallel work.

Integrating such algorithms into our framework is simple: we merely execute
the data-parallel outer loop sequentially, and, upon entering a task parallel iter-
ation, execute it according to the scheme above. Because most of the work is
performed by the tasks enqueued into the GPU queue, the data parallel outer
loop will “finish,” having enqueued most of its computation into the GPU queue.
We can then execute the GPU queue and proceed as before. This transforma-
tion is safe, since the data-parallel iterations are independent of one another,
and each iteration’s task-parallel tasks are also independent, hence all the tasks,
even if they arise from different iterations, are independent.

Note that in the particular case of point correlation, this execution strategy
leads to poor data locality. Suppose we want to process 1000 points. Suppose,
further, that the enqueuing threshold for the task parallel computation is two
levels deep in the tree (as in Fig. 3). Then each point’s execution will lead to
the creation of four tasks, touching four different subtrees of the kd-tree, and
overall 4000 total tasks will be created, with 1000 tasks touching each subtree.
However, if the tasks are placed into the GPU queue in order, then each of a
point’s tasks will be placed contiguously into the queue. Because these threads
are likely to be placed in the same warp during GPU execution, each warp’s
memory footprint will span the entire tree, leading to very poor locality, and
hence poor performance. The next section discusses how to solve this problem.

5 Scheduling for Locality

The execution strategy outlined in the previous section solves the initial problem
of executing a task-parallel application on hardware built for data-parallelism.
But, as pointed out in Sect. 3.1, while GPUs are very efficient data-parallel exe-
cution engines, their efficiency comes with several drawbacks. In particular, the
memory resources of the GPU are not well-matched to the massive parallelism
that efficient execution requires: the GPU features substantial bandwidth (allow-
ing the threads to be fed), but very small cache resources. As a result, GPUs
work well in streaming workloads or workloads with small reuse footprints. But
in workloads with large amounts of reuse but also large footprints, the small
caches can dramatically reduce performance. Indeed, to avoid the thrashing
that can result from too many threads contending for the same small caches,
it is often necessary to reduce an SM’s warp count from 64 (the maximum
supported) to only four or five [14]. Unfortunately, the kinds of irregular, task-
parallel workloads we target are precisely workloads that feature substantial
parallelism (due to our execution strategy), but potentially-large memory foot-
prints (the trees traversed in point correlation, for example, can feature millions
of nodes). Another problem arises in combating memory divergence: while keep-
ing the footprint of a block to a minimum to avoid cache thrashing is important,
it is also important to ensure that the threads of a single warp do not encounter
widely varying memory latencies: if one thread in a warp encounters a cache
miss while the others do not, all the threads pay the penalty of that cache miss.

Locality-Aware Task-Parallel Execution on GPUs 259

To address these problems, we propose locality-aware queue scheduling. Orr
et al. proposed a multi-queue strategy for executing task parallel program where
different queues correspond to different types of computations (to reduce control
divergence) [12]. Instead, we propose to use multiple queues where different
queues correspond to different locality domains: an abstract notion of the region
of memory a task might access. We create a separate queue for each such locality
domain, and tasks expected to access similar regions of memory will be assigned
to the same queue. By placing threads from the same locality domain together,
we promote threads in the same warp touching similar pieces of memory, both
reducing footprints and decreasing memory divergence.

Locality-aware scheduling requires some understanding of the memory access
patterns of the tasks that are being scheduled. This is inherently an application-
specific property: various features of the application, and the specific task, might
be used to map the task to a particular locality domain. To support this type
of scheduling, we add an additional parameter to the addTask hook, where the
programmer can pass the result of evaluating a simple function to compute the
locality domain for the scheduled task.

In many cases, it is straightforward to determine a task’s locality domain.
For example, in tree-based benchmarks, we originally start with independent
tasks each accessing the whole tree i.e. we start with one locality domain. When
subdividing these tasks into independent subtasks, each traversal gets divided
into multiple traversals each accessing a part of the tree. This suggests a very
simple representation of each locality domain: the node the task is invoked on,
which is the root of the subtree it will access. Thus, the two addTask calls from
Fig. 4 can be replaced with the following:

1 gpuQ . getQueue (n . l e f t) . addTask (n . l e f t , p , r) ;
2 gpuQ . getQueue (n . r i g h t) . addTask (n . r i ght , p , r) ;

Note the effect of this implementation on the mixed data- and task-paral-
lelism scenario from Sect. 4.3. If there are four different subtrees that an enqueued
task could access, there will be four separate queues. Each point will enqueue
its four tasks onto the four separate queues, and task from different points that
access the same subtree will be placed next to each other in each of the queues,
promoting locality.

6 Implementation

This section describes a few aspects of implementing the scheduling and execu-
tion strategy from the previous two sections.

6.1 Determining the Queue Threshold

The pseudocode in Fig. 4 uses an arbitrary threshold for determining when to
stop expanding out the computation tree and to instead enqueue tasks into
the GPU queue for later execution. In general, the threshold is application-
specific, and possibly input-specific. However, we have found that a good rule

260 J. Hbeika and M. Kulkarni

of thumb is to ensure that the memory footprint of each task is fairly small.
Recall that GPUs have limited per-thread memory resources. Hence, if the tasks
in the task queue have large footprints, each thread will demand substantial
amounts of memory, increasing the per-block memory footprint and lowering
performance. Moreover, by keeping tasks relatively small, the likelihood that
tasks diverge significantly during execution is reduced, helping further mitigate
control divergence. Finally, by keeping individual task footprints small, the total
number of tasks increases (because the CPU waits longer before hitting the
enqueue threshold), creating enough parallelism to keep the GPU busy. So, for
example, in our point correlation example, we might set the threshold at a depth
such that the subtree visited by each enqueued task is relatively small.

6.2 Queue Merging

If there are many locality-based queues, the overhead of sending each queue to
the GPU separately can be prohibitive. Instead, once the queues are constructed
by the CPU expansion of the computation tree are complete, the queues are
merged into a single queue and sent to the GPU. Because the threads in the uni-
fied queue are still ordered according to their locality-based queues, the schedule
of execution will still be consistent with the locality-aware grouping.

6.3 Queue Size Reduction

If there are too many tasks in the queues after expansion, there may be too much
parallelism for the GPU, resulting in more scheduling overhead. To avoid this,
we implement a queue size reduction optimization. Rather than passing the task
queue to the GPU to be executed with a simple do-all loop, where each iteration
gets mapped to a separate thread, we can instead rewrite the task queue loop so
that each thread processes two (or more) tasks from the queue (essentially, by
strip mining the loop that processes the task queue). Because each thread will
execute consecutive tasks in the task queue, the locality-aware scheduling policy
will promote those two tasks’ having overlapping memory footprints, thus not
increasing the memory footprint of a given thread, coarsening the computation
without increasing cache pressure.

Note that this general strategy: of having a smaller number of threads exe-
cute a larger number of tasks by scheduling multiple tasks per thread, is similar
to the approach advocated by persistent threads [7]. A key difference is that
persistent threads approaches dynamically schedule tasks to threads, while we
statically schedule tasks to threads. While dynamic scheduling can be more flex-
ible, our static scheduling has two advantages: (1) static scheduling means that
the multiple tasks scheduled to each thread are guaranteed to come from the
same locality domain, improving locality; (2) static scheduling means that we
avoid the runtime overhead of managing the task queue.

Locality-Aware Task-Parallel Execution on GPUs 261

Fig. 5. Speedup of locality-aware FMM over locality-agnostic FMM

7 Evaluation

We evaluate our locality-aware task scheduling approach on three task-parallel
applications: fast multipole method (FMM), point correlation (PC), and nearest-
neighbor (NN). The CPU on which the experiments are conducted has 2 AMD
Opteron 6164 HE processors, each of which has 12 cores running at 1.7 GHz,
with 32 GB of system memory. The GPU on which the experiments are run
is an nVidia Tesla K20C with 5120 MB of RAM and 2496 CUDA cores. The
runtimes of our implementations include the time spent on the CPU to generate
tasks and communicate the task queue to the GPU, as well as the time to retrieve
the reduction objects from the GPU and complete the reduction. In other words,
our implementations’ runtimes are directly comparable to GPU-only execution.

7.1 Fast Multipole Method

The fast multipole method is a fast approximation algorithm for the n-body
problem. It operates by performing a bottom-up traversal of an quad-tree, at
each level of the tree computing for each subtree at that level the forces con-
tributed by the bodies in that subtree on neighboring subtrees. The task paral-
lelism in this program arises because the subtrees can be processed in parallel.

For FMM, we compare a locality-agnostic implementation of our approach
to one where subtrees represent locality domains, and hence tasks that operate
on the same subtree are grouped together. Figure 5 shows the speedup of the
locality-aware approach to the locality-agnostic approach, with two different
task granularities: one where tasks originate 6-levels deep in the tree, and one
where they originate 7-levels deep. We see that with the coarser-grained tasks,
being locality-aware provides a 1.34× speedup. With finer-grained tasks, where
grouping together similar tasks results in a smaller footprint that better utilizes
the GPU’s caches, we can achieve a 2.36× speedup over the locality-agnostic
implementation.

262 J. Hbeika and M. Kulkarni

Fig. 6. Speedup of PC over data-parallel GPU baseline

7.2 Point Correlation

Point correlation, our running example, is a mixed data- and task-parallel bench-
mark: each of a set of independent points traverses a tree (data parallelism),
and those points can traverse the tree in parallel by processing independent
subtrees simultaneously (task parallelism). Unlike for FMM, where we compare
the locality-aware and locality-agnostic implementations of our framework, for
PC, we also compare against an optimized GPU baseline [8]. This GPU baseline
exploits only data parallelism.

Figure 6 shows the speedup of our locality-agnostic and locality-aware task
queue implementations over the data-parallel baseline. We varied both the
enqueuing threshold (a given number of trees is the number of tasks per point
we generate) and the number of traversals we perform. We see that the locality-
aware implementation is consistently faster than the locality-unaware implemen-
tation. Indeed, the locality-aware implementation is consistently faster than the
baseline data-parallel implementation. Further, we see the effect of the enqueu-
ing threshold on performance: for this particular application, generating four
tasks per point provides a good balance between overhead (more tasks means
more work generating tasks and performing reductions on the CPU) and local-
ity. Finally, we see that when there are only a small number of traversals, the
data-parallel implementation is significantly slower than our mixed implemen-
tation, as we are able to generate additional parallelism to keep the GPU busy,
achieving a speedup of almost 3× over the optimized baseline.

7.3 Nearest Neighbor

We perform a similar experiment as PC for our nearest-neighbor benchmark,
again comparing our locality-agnostic and locality-aware implementations to
an optimized, data-parallel-only baseline. Figure 7 shows again that our mixed
implementations are consistently faster than the data-parallel-only implemen-
tation, and that adding locality awareness consistently adds performance. We

Locality-Aware Task-Parallel Execution on GPUs 263

Fig. 7. Speedup of NN over data-parallel GPU baseline

again see the effect of being able to exploit additional parallelism: for 20 K point
inputs, our locality-aware task queue implementation is over 50× faster than the
baseline!

8 Conclusions

This paper presented an approach to exploiting task-parallelism on GPUs by
performing partial execution on the CPU to generate a queue of data-parallel
tasks that can be executed on the GPU. We then showed how multiple such
task queues can be used to add locality-awareness, with the goal of shrinking
the memory footprint of individual warps to reduce cache pressure. Prelimi-
nary results are promising, showing not only that our approach to exploiting
task-parallelism can result in efficient implementations, but also that locality-
awareness can significantly boost performance. Indeed, for an implementation of
nearest-neighbor, our approach yields a performance improvement of 50× over
an optimized data-parallel implementation. Future work could explore methods
of defining locality domains for applications where statically defining the domain
is not possible.

Acknowledgments. The authors would like to thank the anonymous referees for their
comments and feedback regarding the paper. This work was supported in part by the
U.S. Department of Energy’s (DOE) Office of Science, Office of Advanced Scientific
Computing Research, under DOE Early Career Award DE-SC0010295. This work was
also supported in part by NSF awards CCF-1150013 (CAREER) and CCF-1439126.

References

1. Blumofe,R.D.,Joerg,C.F.,Kuszmaul,B.C.,Leiserson,C.E.,Randall,K.H.,Zhou,Y.:
Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput. 37(1),
55–69 (1996)

264 J. Hbeika and M. Kulkarni

2. Capodieci, N., Burgio, P.: Efficient implementation of genetic algorithms on GP-
GPU with scheduled persistent CUDA threads. In: 2015 Seventh International
Symposium on Parallel Architectures, Algorithms and Programming (PAAP), pp.
6–12. IEEE (2015)

3. Chen, G., Shen, X.: Free launch: optimizing GPU dynamic kernel launches through
thread reuse. In: Proceedings of the 48th International Symposium on Microarchi-
tecture, pp. 407–419. ACM (2015)

4. Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and other
Cilk++ hyperobjects. In: SPAA 2009, pp. 79–90 (2009)

5. Gaster, B.R., Howes, L.: Can GPGPU programming be liberated from the data-
parallel bottleneck? Computer 45(8), 42–52 (2012)

6. Goldfarb, M., Jo, Y., Kulkarni, M.: General transformations for GPU execution
of tree traversals. In: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (Supercomputing), SC 2013
(2013)

7. Gupta, K., Stuart, J.A., Owens, J.D.: A study of persistent threads style GPU
programming for GPGPU workloads. In: Innovative Parallel Computing (InPar)
2012, pp. 1–14 (2012)

8. Liu, J., Hegde, N., Kulkarni, M.: Hybrid CPU-GPU scheduling and execution of
tree traversals. In: Proceedings of the 21st ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP 2016, pp. 41:1–41:2, New York,
NY, USA. ACM (2016)

9. Munshi, A.: OpenCL parallel computing on the GPU and CPU. In: SIGGRAPH
10. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular

computations on GPUS. In: IEEE 27th International Symposium on Parallel &
Distributed Processing (IPDPS), pp. 463–474. IEEE (2013)

11. NVIDIA. CUDA. http://www.nvidia.com/object/cuda home new.html
12. Orr, M.S., Beckmann, B.M., Reinhardt, S.K., Wood, D.A.: Fine-grain task aggre-

gation and coordination on GPUs. In: ISCA 2014, pp. 181–192 (2014)
13. Ren, B., Jo, Y., Krishnamoorthy, S., Agrawal, K., Kulkarni, M.: Efficient execution

of recursive programs on commodity vector hardware. In: PLDI, pp. 509–520 (2015)
14. Rogers, T.G., O’Connor, M., Aamodt, T.M.: Cache-conscious wavefront schedul-

ing. In: Proceedings of the 45th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pp. 72–83, Washington, DC, USA. IEEE Computer
Society (2012)

15. Wu, B., Chen, G., Li, D., Shen, X., Vetter, J.: Enabling and exploiting flexible task
assignment on GPU through SM-centric program transformations. In: Proceedings
of the 29th ACM on International Conference on Supercomputing, pp. 119–130.
ACM (2015)

http://www.nvidia.com/object/cuda_home_new.html

Automatic Copying of Pointer-Based
Data Structures

Tong Chen, Zehra Sura(B), and Hyojin Sung

IBM T.J. Watson Research Center, New York, USA
{chentong,zsura,hsung}@us.ibm.com

Abstract. In systems with multiple memories, software may need to
explicitly copy data from one memory location to another. This copying
is required to enable access or to unlock performance, and it is especially
important in heterogeneous systems. When the data includes pointers
to other data, the copying process has to recursively follow the pointers
to perform a deep copy of the entire data structure. It is tedious and
error-prone to require users to manually program the deep copy code for
each pointer-based data structure used. Instead, a compiler and runtime
system can automatically handle deep copies if it can identify pointers in
the data, and can determine the size and type of data pointed to by each
pointer. This is possible if the language provides reflection capabilities, or
uses smart pointers that encapsulate this information, e.g. Fortran point-
ers that intrinsically include dope vectors to describe the data pointed
to. In this paper, we describe our implementation of automatic deep copy
in a Fortran compiler targeting a heterogeneous system with GPUs. We
measure the runtime overheads of the deep copies, propose techniques to
reduce this overhead, and evaluate the efficacy of these techniques.

Keywords: Parallel computing · Heterogeneous systems · Compilers ·
Memory

1 Introduction

Massive parallelism and heterogeneity are prevalent in current systems designed
for compute-intensive applications. These systems typically include multiple dis-
tributed memories, and software may need to explicitly copy data from one
memory location to another. In some cases, this copying is necessary for certain
processors in the system to be able to access the corresponding data. For exam-
ple, in a system with host processors and GPU accelerators connected via an
interconnect (e.g. PCIe), the system-wide memory and the on-chip GPU mem-
ory have separate address spaces. Host processors can directly refer to addresses
in the system-wide memory, but the GPU processors can only refer to addresses
in the on-chip GPU memory. Any program data operated on by the GPU has
to be explicitly transferred to/from the system-wide memory. In other cases, all
the processors in the system share a global address space, but because of non-
uniform memory access times, it may still be worthwhile to copy data between
different memory locations to combat performance loss due to NUMA effects.
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 265–281, 2017.
DOI: 10.1007/978-3-319-52709-3 20

266 T. Chen et al.

For application codes that use pointer-based data structures, the data to be
copied includes pointers to other data, and the copying process has to recursively
follow the pointers to perform a deep copy of the entire data structure. Further,
pointer address values in the copied data have to be fixed to refer to addresses
in the copied version of the data structure. It is tedious and error-prone to
require users to manually program the deep copy code for each pointer-based
data structure. Instead, a compiler and runtime system can automatically handle
deep copies if it can identify pointers in the data, and can determine the size and
type of data pointed to by each pointer. This is possible if the language provides
reflection capabilities, or uses smart pointers that encapsulate this information,
e.g. Fortran pointers that intrinsically include dope vectors to describe the data
pointed to.

While our ideas are generally applicable to distributed memory systems, in
this paper we focus on a CPU-GPU system with a host IBM POWER8 processor
connected to an NVIDIA Kepler GPU via PCIe. Currently, the most common
method used to program data transfers in such a system is to use the CUDA
API [15] which provides runtime library calls for memory management and data
transfers. However, this is a low-level API, and using it to manually program
data copies can adversely affect productivity of software development.

An alternative method is to use CUDA Unified Memory [9], which provides a
shared address space abstraction across the host processor and the GPU, with the
underlying implementation transparently and automatically handling all data
copies. Unified Memory is very easy to use from the programmer’s perspec-
tive, but it can degrade performance for some applications since it is a uniform
(one-size-fits-all) solution that works at page-based granularity and cannot be
customized per application.

Yet another method for programming data transfers in a CPU-GPU system
is to use a directive-based approach, such as OpenACC [17] or OpenMP [3] with
accelerator support. These provide high-level annotations that the programmer
can insert at appropriate points in the code to identify data that will be accessed
on the GPU. The OpenACC/OpenMP implementation then takes care of per-
forming data copies when necessary. This implementation not only performs
data transfers, but is also responsible for GPU memory allocation/de-allocation,
and for tracking data items that have been previously copied. The directive-
based approach has the advantage of allowing application-specific optimization
while also alleviating the tedium of programming to a low-level API. However,
the OpenACC and OpenMP standards currently do not support deep copy for
pointer-based data. Many applications include pointer-based data structures,
and to use OpenACC/OpenMP for such applications, programmers must either
devolve to using low-level APIs for copying their data, or they must re-structure
program data so that deep copy is not needed. The latter may involve major
code changes and may not be feasible. While the standards are evolving and
trying to address these issues, the deep copy problem is tricky to solve, in part
because OpenACC/OpenMP are geared towards high performance computing
and are sensitive to runtime overheads introduced due to specification of the
standards.

Automatic Copying of Pointer-Based Data Structures 267

In this work, we explored the design and performance implications of support-
ing deep copy semantics in a directive-based programming model for Fortran.
Our system integrates components at three levels:

1. Language features: In Fortran, implementing some language features (e.g.
dynamic array sections) makes it necessary for the executable code to be able
to store and access extra information for pointer fields and variables. The
format of this information is implementation dependent and is referred to
as a dope vector. There is a dope vector associated with each pointer, and
the information stored in dope vectors can be accessed by runtime library
code. Also, Fortran does not allow indiscriminate pointer casting or pointer
arithmetic, which simplifies pointer handling by an automatic system.

2. Compiler analysis: For all types used in an application (intrinsic or user-
defined types), information about the size and layout of each type is extracted
in the compiler and made available to the runtime system.

3. Runtime system: Runtime library functions implement the code for data
transfers, making use of dope vectors and compiler generated information
to perform pointer traversals for deep copy.

We inserted OpenMP map clauses in Fortran program codes to identify data
to be copied to or from the GPU memory. We modified our Fortran OpenMP
compiler and runtime implementation to automatically support deep copy for
all pointer-based data in the map clauses. Since Fortran pointers include dope
vectors that describe the data being pointed to, our system has ready access to
the information needed to support deep copy.

Contributions of this paper are as follows:

– We describe the design and implementation of our compiler and runtime
support for automatically copying pointer-based data structures in Fortran
OpenMP codes targeting a CPU-GPU system. Our algorithms include sup-
port for recursive data structures and cyclic pointer traversals (Sect. 2).

– We introduce techniques that can be applied to reduce the runtime overhead
of deep copy (Sect. 3).

– We collect experimental data to measure the runtime overheads of our deep
copy implementation, and evaluate the effectiveness of the techniques proposed
to mitigate this overhead (Sect. 4).

2 Design and Implementation

Figure 1 shows a code snippet for declaring a simple pointer-based list data
structure, and using OpenMP to copy and process the list on the GPU. Lines
7–9 form an OpenMP target region that is to be executed on the GPU. The
OpenMP map clause on Line 7 is used to identify data to be copied to and from
GPU memory. The map clause can be used with multiple options, for example
it can specify that data only be mapped to the GPU, or only be mapped from
the GPU. The default behaviour for mapping a data item is the following:

268 T. Chen et al.

– On entry to a target region, if there is no copy of the data item in GPU
memory, allocate it and transfer data to GPU memory.

– On exit from a target region, if this is the end of the lifetime of the data item,
transfer data from the GPU copy to the host copy, and de-allocate GPU mem-
ory. The OpenMP specification includes rules that a runtime implementation
has to use to keep track of the lifetimes of mapped data items.

2.1 Compilation

In our system, the compiler performs two functions relevant to data mapping.
First, it inserts calls to the OpenMP runtime library to handle data copying for
each data item specified in a map clause. These calls, Map Enter and Map Exit,
are illustrated in Fig. 1 and described in Sects. 2.4 and 2.5. Second, it collects
high-level type information and passes it to the runtime. In the example in Fig. 1,
information for 3 types is collected: real, integer, and ListElem. The format used
for passing type information is described in Sect. 2.2. The compiler can statically
determine if a data item requires deep copy (i.e. if it is of pointer type, or if
it contains pointer types), and if so, it passes the corresponding runtime type
descriptor index as a parameter to the OpenMP library call inserted for the map.
The runtime then uses this type descriptor information to recursively traverse the
entire data structure and perform deep copy. In our design, the user can control
when deep copy is performed by using an extension of OpenMP map-types to
override the automatic deep copy behavior in specific map instances.

1 real :: x
2 type ListElem
3 type(ListElem),pointer :: nextNode
4 integer :: data(N)
5 end type ListElem

6 type(ListElem),pointer :: headPtr

7 !$omp target
8 !!! process list on GPU
9 !$omp end target

/* Gather Type Descriptors */
1. real :
2. integer :

. ListElem :

 (&headPtr, ,);
/* Launch GPU Execution */

 (&headPtr, ,);

Compiler

SOURCE CODE PROCESSED CODE

map(tofrom:headPtr) Map_Enter

Map_Exit

3

3

3

Fig. 1. Example to illustrate compiler actions

Dope Vectors. Information in a pointer variable typically contains only the
address of the data pointed to. However, a Fortran pointer variable carries more
information, as illustrated in Fig. 2. This information, collectively called the dope
vector, is implementation dependent and may include the data address, a flag
to indicate if the pointer is associated with valid data, the size of data, and
shape of the data for array types. The shape information includes number of

Automatic Copying of Pointer-Based Data Structures 269

dimensions and bounds for each dimension. In our compiler, we use the existing
format for dope vectors as-is. Fortran pointers are typed, i.e. a given pointer
variable can only be associated with data of a matching type. The size of the
dope vector can vary depending on its associated data type, but this size is known
statically at compile time. The size of array data and bounds of array dimensions
may be dynamically determined and recorded at runtime in the corresponding
fields of the dope vector. Our system correctly handles copying of arrays with
dynamic lengths. Also, our compiler processes Fortran allocatable arrays and
Fortran pointers to arrays in a similar manner, and we treat them uniformly in
the copying implementation.

pc

pf

A

A

C-style Pointer

Fortran Dope Vector

addr

addr flag size

Fig. 2. Dope vector

ph

pg

Ah

Ag

Host Memory

GPU Memory

map(p)

ph

pg

Ah

Ag

Host Memory

GPU Memory

Bh

Bg

map(p)

(b) (a)

Fig. 3. Mapping fortran pointer-based
data

Deep Copy. When copying a Fortran pointer between memories, both the dope
vector and the data being pointed to have to be copied. Further, the address
in the copied dope vector has to be updated to refer to the copied version of
the data, as illustrated in Fig. 3(a). The runtime keeps track of data already
copied by recording the corresponding pair of dope vector addresses, and the
corresponding pair of data addresses, shown by the dashed lines in the figure.

When performing a deep copy, the data structure has to be traversed by
following pointers within the data being copied. For such pointers that are not
the top-level pointers, the dope vector is contained within the data already copied
over, as illustrated in Fig. 3(b). In this case, only the data being pointed to has
to be copied, and the address field in the dope vector has to be updated.

2.2 Runtime Type Descriptors

We introduced runtime type descriptors in our compiler and runtime system. To
traverse the data structure for deep copy, the runtime has to be able to identify
what parts of the data are pointer fields, and the type of data that these pointers

270 T. Chen et al.

refer to. The compiler has access to all type information for variables used in a
compilation unit. It can collect the information required for traversals and pass
it to the runtime by generating code to initialize runtime type descriptors on
program start-up.

. . .

1
2
3
4
5

8
4
X
Y
Z

Index Size Pointer Fields

0 3 1

Offset Type
Index

Dope
Vector
Type

X = (size of dope vector) + (N*4)

Fig. 4. Runtime type descriptors

Figure 4 illustrates the format of
the runtime type descriptor list. The
index of an element in the list serves
as an identifier for a data type (user-
defined or otherwise) in the program
code. There is an entry in the list for
each type that contains pointer fields
or that may be the target type asso-
ciated with a pointer variable. A list
entry is a type descriptor which is an
integer value giving the size of the
data type in bytes, followed by zero
or more integer-triplets. Each triplet
denotes a pointer field contained in the corresponding data type, and includes
the following information:

1. Offset: length in bytes from the start of the data type to the pointer field.
2. Type ID: the index of the type descriptor list corresponding to the type of

data pointed to by this pointer field.
3. Dope vector type: an identifier for the format of the dope vector corresponding

to this pointer field. Our compiler uses different dope vector formats for scalar
data versus arrays. For array types, each element of the array is traversed for
deep copy.

In Fig. 4, index 1 corresponds to real type, index 2 corresponds to integer type,
and index 3 corresponds to the ListElem type in the example code snippet of
Fig. 1.

2.3 Assumptions

For automatic copying, we assume that the structure of the data is immutable
during the time when multiple copies of the data exist. Specifically, this means
that pointer fields within the data structure cannot change their value (both
on the host, and on the GPU after the initial copy) during the lifetime of the
mapped data. As a result, some application codes will not benefit from our
automatic deep copy implementation and may need source code modification.
However, there exists a large set of applications that will not be limited by this
assumption. Note that the restriction applies only to pointers; other data fields
may be freely modified.

Non-mutable pointers enable a low-overhead implementation of automatic
deep copy. It may be possible to design algorithms that handle mutable data
structures and work well in practice, but this is out of the scope of this paper.

Automatic Copying of Pointer-Based Data Structures 271

2.4 Mapping Data on Target Entry

On entry to an OpenMP target region, the compiler generates host code to invoke
a runtime library function for handling the data copy for each data item specified
in a map clause. In our implementation we built upon an open-source OpenMP
library1, and modified it to support deep copy. Figure 5 shows the pseudocode
for the runtime implementation. In this code, variable MapCount is used to
track the lifetime of mapped data. We maintain MapCount for all data items
reachable through deep copy traversals. We introduced variables globalMapID
and MapID, which serve as timestamps to identify data items that have already
been processed in a specific Map Enter call. This allows our runtime to correctly
handle cyclic pointer traversals in recursive data structures.

Figure 5(a), excluding the bold lines 8–11, 14, 18, and 19, is the existing code
without support for deep copy. The Map Enter function is invoked for each top-
level data item to be copied. The runtime code keeps track of data that has been
previously copied, maintaining a list of corresponding host and GPU addresses.
It allocates GPU memory and transfers data for new copies. It also maintains
a counter called MapCount for each host address to keep track of the lifetime
of data copies. MapCount represents the number of top-level mapped variables
that can reach a given address, either directly or through pointer traversals. It
is used to automatically de-allocate GPU memory on exit from a target region
for copies that can no longer be referenced.

1 GetOrCreate (h_addr

2 d_addr = LookupCorrespondence (h_addr)

3 If (d_addr==NULL):

4 IsNew = true

5 /* Allocate GPU memory and

6 save addr in d_addr */

7 /* Record correspondence */

8 If (MapID[h_addr] == globalMapID):

9 Visited = true

10 Else

11 MapID[h_addr] = globalMapID

12 MapCount[h_addr]++

13 Map_Enter (h_addr, RT_Desc_ID

14 globalMapID++

15 <IsNew, d_addr> = GetOrCreate(h_addr

16 If (IsNew):

17 /* Copy contents h_addr to d_addr */

18 For each ptr field offset DV in h_addr:

19 Map_Enter_DC (h_addr+DV, d_addr+DV

21 Struct DopeVector DV:

22 flag IsAssociated

23 address Data

25 Map_Enter_DC (h_DV, d_DV, RT_Desc_ID

26 If (not h_DV.IsAssociated):

27 Return

28 <Visited, IsNew, d_addr> =

29 GetOrCreate (h_DV.Data

30 d_DV.Data = d_addr /* copy to GPU memory */

31 If (Visited):

32 Return

33 If (IsNew):

34 /* Copy contents h_DV.Data to d_DV.Data */

35 For each ptr field offset DV in h_DV.Data:

36 Map_Enter_DC(h_DV.Data+DV, d_DV.Data+DV

(a) (b)

Fig. 5. Pseudocode for copying data on target entry

1 Intel OpenMP Runtime Library: https://www.openmprtl.org.

https://www.openmprtl.org

272 T. Chen et al.

The bold sections of Fig. 5(a), together with the code in Fig. 5(b), are our
modifications for supporting deep copy. We introduced a variable, globalMapID,
that is incremented on each call to Map Enter and is unique to that instance of
the call. We also introduced a MapID variable for each host address mapped, and
set it to the globalMapID value whenever a host address is processed as part of a
Map Enter call. Lines 8–11, 14, and 31–32 allow us to correctly handle recursive
data structures when performing pointer traversals for deep copy. Lines 18–19
initiate the deep copy traversal by using the runtime type descriptor parameter to
identify pointer fields in the data corresponding to the address being mapped.
The Map Enter DC function is invoked for each of these pointer fields. This
function is similar to the top-level Map Enter function, except that it also checks
if the pointer is associated with data (lines 26–27 that handle null pointers), fixes
the pointer values in the GPU copy of the data (line 30), and handles recursive
traversal (lines 35–36).

Note that the pseudocode in Fig. 5 is simplified for clarity of presentation. The
actual implementation is more complex because it includes optimizations as well
as functionality to handle various map attributes that are part of the OpenMP
specification. The deep copy part of the code also handles these attributes, prop-
agating them in the recursive traversal. For aliasing of array sections, we impose
the same restrictions as the current OpenMP standard, i.e. the first time an
array is copied (mapped) in a target region, it must include all subsections of the
array that will be subsequently mapped during the lifetime of the initial array
copy. This allows us to reuse the existing logic in the runtime library to track
corresponding addresses for host and GPU copies and avoid creating multiple
copies of the same data.

2.5 Mapping Data on Target Exit

There is a runtime library function Map Exit analogous to the Map Enter func-
tion described in the previous section. On exit from an OpenMP target region,
the compiler generates host code to invoke this function for each data item in map
clauses associated with the target region. Map Exit uses the same globalMapID,
MapID, and MapCount variables as Map Enter, and it similarly traverses point-
ers for deep copy. The differences between the two functions are that:

– Map Exit copies data in the reverse direction, from GPU memory to host
memory.

– Map Exit decrements MapCount instead of incrementing it.
– Map Exit de-allocates GPU memory and deletes the correspondence when the

MapCount for an address becomes zero.

3 Optimizations

The ease-of-use and productivity benefits of automatic deep copy have to be
balanced with the runtime overhead of traversing data structures and performing
multiple transfers corresponding to pointers in the data. In this section, we
propose several techniques that can be used to reduce the runtime overhead.

Automatic Copying of Pointer-Based Data Structures 273

3.1 Transfers to/from GPU Memory

When a user-defined data type contains a mix of pointer and non-pointer data,
the pointer data has to be treated differently from the non-pointer data for
the purpose of transfers to and from GPU memory. This is because the pointer
address values in the GPU copy have to be fixed to point to data in GPU
memory (refer to line 30 of the code in Fig. 5). We describe 4 different techniques
to perform data transfers of structures with a mix of pointer and non-pointer
data. These techniques have different overheads depending on the number and
contiguity of pointer fields and the size of data fields in the data type. In Fig. 6, we
illustrate the techniques using a simple example. In the figure, p and X represent
host values for a pointer field and a data field, while pg and Xg represent the
corresponding GPU values. Dotted lines connect the same memory locations,
and numbered circles represent the sequence of operations.

p X

COPY TO
HOST GPU

pg X pg Xg p Xgp X

COPY FROM
GPU HOST

p X pg Xg p Xgpg X

p X pg X pg Xg

p X pg X pg Xg pg Xgpg X p Xg

p p

p X pg X pg X

p

pg Xg pg X p Xg

p

COPY FROM
GPU HOST

COPY TO
HOST GPU

p X pg Xp X

p X pg X

p X pg X

pg Xg p Xg

pg Xg p Xg

pg Xg

pg

p pp Xp

X p

p

p

p p

p

p

p

Xg

X

p Xg p

1

2

1

1
2

3 1 2

4
2 3 1

2

GPU HOSTHOST GPU

BASE

TCPY

BASE

TCPY

PCPY PCPY

Initial/Final
Host Data

Initial/Final
GPU Data

Temporary/
Intermediate

Transfer
Operation

Copy
Operation

1

p

Fig. 6. Techniques to optimize pointer-based data transfers

1. Basic Version (BASE)

Copy to GPU Memory: We first transfer the entire data structure to GPU
memory. Then, for each pointer field, we transfer the GPU address value to
the corresponding pointer field. Pointer fields are individually transferred only
if they are associated.

Copy from GPU Memory: In this case, we cannot transfer the entire data
structure to the host, since that will overwrite the original pointer address values
on the host. Instead, we individually transfer each contiguous non-pointer data
segment in the structure.

274 T. Chen et al.

2. Basic Version With Self-Managed Memory (BASE+)
This is the same as the BASE version except that it uses self-managed GPU
memory in the runtime. The CUDA library function, cudaMalloc, is used to
allocate GPU memory. Repeatedly invoking this function during a deep copy can
result in high overhead. In our implementation, we use a single call to allocate
a large GPU memory space, and then self-manage this space in the runtime
library to efficiently perform multiple smaller allocations and deallocations. All
following versions (TCPY and PCPY) also use self-managed GPU memory.

3. Version with Temporary Copies (TCPY)
For this version, we first create a temporary copy of the data structure on the
host.

Copy to GPU Memory: We overwrite the pointer address fields in the tem-
porary copy with the corresponding GPU address values. Then we do a single
transfer of the entire data structure from the temporary copy to GPU memory.

Copy from GPU Memory: We transfer the entire data structure from GPU
memory to the temporary host copy. Then we copy only the non-pointer data
from the temporary copy to the original data structure on the host.

4. Version with Temporary Pointer Value Copies (PCPY)
For this version, we assume that the pointers are not used on the host (due to
accesses in multithreaded host code) during the processing of the map clause.
This property can be determined by compiler analysis in some cases, or it can
be provided by the user via program annotations.

We first allocate temporary space on the host, and for each pointer field, we
copy the value of the host pointer to the temporary space.

Copy to GPU Memory: We update the pointer address values to correspond-
ing GPU address values in-place in the host copy of the data. We then transfer
the entire data structure to GPU memory. Finally, we restore the original pointer
values in the host copy.

Copy from GPU Memory: We transfer the entire data structure from GPU
memory to the host. Then for each pointer field, we copy the host address value
of the pointer from temporary space to its original location.

For TCPY and PCPY, the runtime checks if a data item has any associated
(non-null) pointers before it creates temporary copies on the host.

Table 1 gives the overheads associated with each technique in terms of number
of transfers, size of data transferred, and size of temporary copies on the host. We
assume S is the size of the data structure to be copied, DV is the size of a dope
vector, and M is the number of pointer fields in the data structure. Note that
the number of transfers for the copy-from case in the BASE versions depends
on the contiguity of pointer fields in the layout of the data structure.

Automatic Copying of Pointer-Based Data Structures 275

Table 1. Cost of different data transfer techniques

Number of transfers Size of transfers Size of host copies

BASE copy to 1+M S+M*DV 0

BASE copy from varies S–M*DV 0

TCPY 1 S S–M*DV

PCPY 1 S M*DV

3.2 Other Optimizations

In this section, we discuss some other optimizations that can be applied based
on information obtained from programmer annotations and/or sophisticated
analysis.

Structured Maps. In addition to the assumptions in Sect. 2.3, if it is known
that data transfer directives are only associated with structured program-
ming constructs2, then the runtime overhead can be reduced. In this case,
the globalMapID of Sect. 2.4 is used to track the level of the nesting struc-
ture by incrementing it on each Map Enter call and decrementing it on each
Map Exit call. The MapID for an address is set to the current nesting level only
when corresponding memory is newly allocated on the GPU in a Map Enter
or Map Enter DC call. That corresponding GPU memory is copied back/de-
allocated at the end of the structured nesting level (i.e. in the first Map Exit
call that decrements the globalMapID to a value less than the MapID for the
address). There is no need to maintain the MapCount for each mapped address.
Also, following default OpenMP semantics for data copying (without the always
modifier on the map clause), data is copied to GPU memory only when it is first
allocated and copied back only when it is de-allocated. As a result, there is no
need to recursively traverse the data structure multiple times. Only one traversal
at the beginning and one at the end of the lifetime of the mapped data is needed.
Thus, there is significant potential for improving runtime performance.

User Specified De-allocation. The runtime maintains a MapCount per
address so that it can automatically determine the end of the lifetime of a
mapped data item, i.e. when the data item should be copied back and de-
allocated from the GPU. If the programmer is solely responsible for specifying
this, e.g. by using the OpenMP delete map-type, then there is no need to main-
tain MapCounts, or to recursively traverse data structures multiple times. Thus,
performance can be improved.

2 This excludes the use of OpenMP directives such as target enter data and target
exit data.

276 T. Chen et al.

Asynchronous Transfers. By default, our implementation uses synchronous
data transfer calls. However, NVIDIA GPUs support asynchronous data trans-
fers using the CUDA Streams API. If sufficient bandwidth is available, multiple
transfers can be overlapped for better performance. For the techniques described
in Sect. 3.1, explicit synchronization is needed in the BASE versions when trans-
ferring data to the GPU, between the single transfer of the entire data and
the subsequent transfers for fixing individual pointer values. All other transfers
corresponding to the same OpenMP map clause can proceed in parallel.

Selective Pointer Traversal. Prior work [5] based on OpenACC described
ways for the programmer to specify which fields of a data structure to treat as
pointers to be traversed in an automatic deep copy implementation. Selective
pointer traversal can be applied in combination with any of the optimization
techniques discussed in this section.

4 Experiments

In this section, we report the results of experiments performed to measure the
overheads of our automatic deep copy implementation. We focused our measure-
ments on the time taken by the runtime library calls invoked for data mapping,
and on the time taken by data transfers. We ran our experiments on a system
with an IBM POWER8 LE host running Linux Ubuntu 14.04, connected to an
NVIDIA Kepler K40 GPU via PCIe, using CUDA version 8.0.

Our compiler system uses the IBM XL Fortran front-end to parse the
OpenMP source code. It then translates the output of the front-end to Clang
AST format. This Clang AST code is processed by the open-source Clang
OpenMP compiler to generate a binary that executes across the host and GPU.
We implement our runtime techniques by modifying the open-source runtime
library that is included with the Clang OpenMP compiler. For self-managed
GPU memory, we use a single call to cudaMalloc to initially allocate 2 GB of
GPU memory, and then manage this space in the runtime code.

We use the following benchmark codes for our evaluation:

– List: This code constructs and initializes a linked list of length 1024 on the
host, and then traverses the list on the GPU. The type of each list element is
as shown in Fig. 1. There are 3 versions of the code obtained by varying the
size of the list element: 128 bytes, 1 KB, and 1 MB.

– SplitList: This code uses a linked list where each list element has 2 data
fields that are separated by a pointer field in the middle. As before, there are
3 versions of the code, corresponding to sizes 128 bytes, 1 KB, and 1 MB.

– Tree: This is a height-balanced binary tree with 1024 nodes. Each node has
a left-child pointer, followed by a data field, followed by a right-child pointer.
There are 3 versions of the code, corresponding to node sizes 128 bytes, 1 KB,
and 1 MB.

Automatic Copying of Pointer-Based Data Structures 277

– UMT: This is the kernel version of the UMT application [2], which performs
three-dimensional, non-linear, radiation transport calculations. It is represen-
tative of real application code written using pointer-based data structures,
and requires automatic deep copy support for easily porting it to systems
with multiple memories. The data structure includes 3-level pointer chains,
with multiple pointer fields at levels 2 and 3. We insert OpenMP directives
to transfer 2000 nodes in the data structure to GPU memory. Total data size
transferred is approximately 2.2 GB.

Results for List, SplitList, and Tree
For benchmarks List, SplitList, and Tree, Fig. 7 shows the time in seconds taken
to process data transfers in the runtime. Data is separately presented for transfers
to the GPU (Fig. 7(a), (b), and (c)) and transfers from the GPU (Fig. 7(d), (e),
and (f)). There are 3 sizes for each benchmark, and 4 versions for each size
corresponding to the different techniques described in Sect. 3.1.

Fig. 7. Time taken for data transfers (seconds)

The data in Fig. 7 is used to compare the relative performance of the different
versions. The low performance of the BASE version clearly shows the benefit of
using self-managed memory. Overall, the results are as expected: the overhead
of the extra host copy in TCPY dominates when data size is 1 MB, and the
overhead of extra transfers when copying to the GPU in BASE+ dominates at
smaller data sizes. The results for size 128 bytes closely match those for size
1 KB, as latency costs dominate the transfer time for small data sizes. Note that

278 T. Chen et al.

for SplitList, when copying from the GPU, BASE+ always has higher overhead
than TCPY and PCPY. This is because SplitList has 2 data fields per node that
are separately copied back to the host in BASE+.

In Fig. 7(a), the versions for Tree take noticeably less time than List or
SplitList. Tree has 2 pointers per node but the total number of data transfers
for fixing pointer values in GPU copies in BASE+ is the same as the number
of transfers for List and SplitList. This is because our runtime does not initiate
any transfers for fixing pointers that are null, and the pointers in the leaf nodes
of Tree are all null. Since the overall number and sizes of transfers initiated for
all 3 benchmarks are similar for corresponding versions, the disparate times for
Tree are due to differences in data structure traversal and clustering/sequencing
of the data transfers. Profiling using nvprof shows that in this case the difference
can be attributed to time spent in various CUDA API calls, while the actual
transfer times are almost the same. Note that even though Tree BASE+ uses
more data transfers than Tree PCPY, it performs better for size 1 MB because
PCPY has greater overhead for copying the multiple pointers per node in Tree.

Figure 8 shows the percentage of effectively available bandwidth achieved for
each of the testcases in Fig. 7(a), (b), and (c). The effectively available band-
width is the maximum achievable bandwidth for the pattern of transfers dic-
tated by the data structure traversal (not the maximum bandwidth provided
in hardware). We compute the effectively available bandwidth by running a
manually coded CUDA version that only does GPU memory allocation/de-
allocation and the sequence of data transfers corresponding to each optimization
version. The CUDA version gives an optimistic upper bound on bandwidth, and
it does not include any overheads of our runtime such as data structure traversal,
address/offset computation, or checks and updates related to OpenMP imple-
mentation. Bandwidth is computed as the ratio of actual data transferred over
the wall clock time taken to execute the code that processes transfers. The per-
cent bandwidth achieved compared to the optimistic CUDA version is a measure
of the overhead in the OpenMP runtime library code. Note that this overhead
depends on data size for some optimization cases.

Fig. 8. Percentage bandwidth achieved compared to optimistic CUDA version

Automatic Copying of Pointer-Based Data Structures 279

In all cases except List and SplitList for 1 MB, we achieve 70% or greater
of the optimistic maximum bandwidth. As expected, the absolute values of the
bandwidth are proportional to the data size, e.g. bandwidth values for size 1 MB
are an order of magnitude larger than the values for size 1 KB. Also, for a given
benchmark/size, the optimistic bound computed for BASE is lower than that
computed for BASE+, which in turn is lower than that computed for TCPY
and PCPY. This explains why the percent bandwidths achieved by BASE and
BASE+ are relatively higher even though they spend more time processing data
transfers. On average across all cases, 77.5% of the effectively available band-
width is achieved.

We also implemented a version of our runtime using asynchronous data trans-
fers with two CUDA streams. However, for our testcases, the overheads asso-
ciated with asynchronous transfers (allocating/copying to pinned host mem-
ory, and API calls for synchronization) caused slowdowns in overall perfor-
mance. Further experiments are needed to determine if these overheads can be
overcome.

Results for UMT
We also measured the performance of automatic deep copy for transferring data
to the GPU in the UMT benchmark. For each version BASE, BASE+, TCPY,
and PCPY, Table 2 shows the time in seconds to process the data transfer, and
the bandwidth of the transfer in GB/s. As a reference, the absolute values of
the bandwidths achieved by the 1 MB size testcases in Fig. 8(a) ranged from
1.615 GB/s to 3.358 GB/s. The results of our initial experiments indicate that
the overhead of automatic deep copy may be tolerable for practical use cases.

Table 2. UMT transfers to GPU memory

BASE BASE+ TCPY PCPY

Time (seconds) 5.4382 3.3708 2.6548 2.3492

Bandwidth (GB/s) 0.4367 0.7045 0.8944 1.0107

5 Related Work

Prior work related to OpenACC [5,17] has addressed the issue of designing auto-
matic deep copy traversals, and it is supported to some extent in the Cray and
PGI Fortran compilers. However, overheads associated with deep copy are not
well understood. In our work, we described and implemented a specific algorithm
for deep copy that also supports cyclic pointer traversals, proposed optimization
techniques based on this algorithm, and performed experiments to measure the
overheads of different techniques.

The main advantage of our automatic deep copying approach is it enables
ease of programming. Software shared memory abstractions (e.g. [4,11,14]) pro-
vide another way to make programming easier. CUDA Unified Memory(UM) [9]
is a shared memory abstraction available on systems with NVIDIA GPUs. UM is

280 T. Chen et al.

an on-demand solution that works on OS page-size granularity, and can have very
high overhead in some cases. In contrast, our approach can incorporate prefetch-
ing optimizations, and can be specifically optimized for each application’s data
structures and access patterns.

The system used in our experiments has a PCIe interconnect between the
CPU and GPU. NVLink [7] is a custom high-bandwidth interconnect that can
be used with NVIDIA GPUs. We expect that using a system with NVLink will
help reduce the overheads associated with automatic deep copies.

Our implementation is based on OpenMP. The directives for data mapping
in OpenACC are very similar to those in OpenMP. There are other high-level
paradigms for programming heterogeneous systems, such as C++ AMP [8] and
Kokkos [6], both of which use the concept of data views. These aim to enable
performance portability for data accesses; they do not provide support for auto-
matically traversing recursive pointer-based data structures.

Garbage collection [13] techniques for memory management automatically
track the lifetimes of pointer-based data. In our algorithm, we also track the
lifetime of data encountered in deep copy traversals, except our case is simpler
because we follow OpenMP semantics. Specifically, we only track the number
of variables directly specified in map clauses that may reach a given data item
through deep copy traversal.

In our work, we rely on Fortran language features to completely automate
deep copy traversals. For other languages such as Java/C/C++, there exist
libraries and APIs for serialization that can be used to partially automate deep
copy traversals.

6 Conclusion

We designed and implemented automatic support for deep copy of pointer-based
data structures across multiple memories. We proposed several techniques that
can be applied to optimize the overhead of pointer-based data transfers. We
obtained experimental data to evaluate the overheads of our implementation in a
CPU-GPU system, and to determine the applicability of the different techniques
proposed. Overall, our work shows that automatic copying of pointer-based data
structures can be implemented using the compiler and runtime with manageable
overheads.

Acknowledgement. This work was supported in part by the United States Depart-
ment of Energy CORAL program (contract B604142).

References

1. MPI: A Message-Passing Interface Standard. Technical report, Knoxville, TN, USA
(1994)

2. CORAL Benchmark Codes: Single Node UMT Microkernel (2014). https://asc.
llnl.gov/CORAL-benchmarks/#umtmk

https://asc.llnl.gov/CORAL-benchmarks/#umtmk
https://asc.llnl.gov/CORAL-benchmarks/#umtmk

Automatic Copying of Pointer-Based Data Structures 281

3. OpenMP Application Programming Interface, v4.5 (2015). http://openmp.org/
wp/openmp-specifications

4. Bershad, B., Zekauskas, M., Sawdon, W.: The midway distributed shared memory
system. In: Compcon Digest of Papers (1993)

5. Beyer, J., Oehmke, D., Sandoval, J.: Transferring user-defined types in OpenACC.
In: Proceedings of Cray User Group (2014)

6. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos. J. Parallel Distrib. Comput.
74(12), 3202–3216 (2014)

7. Foley, D.: NVLink, Pascal and Stacked Memory: Feeding the Appetite for Big
Data. https://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-
ifeedng-appetite-big-data

8. Gregory,K.,Miller,A.:C++AMP:AcceleratedMassiveParallelismwithMicrosoft R©
Visual C++ R©. Microsoft Press, Redmond (2012)

9. Harris, M.: Unified Memory in CUDA 6. https://devblogs.nvidia.com/parallelfor
all/unified-memory-in-cuda-6

10. HSA Foundation: HSA Runtime Programmer’s Reference Manual, version 1.1
(2016)

11. Iftode, L., Singh, J.P., Li, K.: Scope consistency: a bridge between release consis-
tency and entry consistency. Theory Comput. Syst. 31(4), 451–473 (1998)

12. Jablin, T., Jablin, J., Prabhu, P., Liu, F., August, D.: Dynamically managed data
for CPU-GPU architectures. In: International Symposium on Code Generation and
Optimization (2012)

13. Jones, R., Hosking, A., Moss, E.: The Garbage Collection Handbook: The Art of
Automatic Memory Management. Chapman & Hall/CRC, Boca Raton (2011)

14. Keleher, P., Cox, A.L., Zwaenepoel, W.: Lazy release consistency for software dis-
tributed shared memory. In: International Symposium on Computer Architecture
(ISCA) (1992)

15. NVIDIA Corporation: NVIDIA CUDA C Programming Guide (2010)
16. NVIDIA Corporation: PGI Accelerator Compilers OpenACC Getting Started

Guide (2016)
17. OpenACC-Standard.org. The OpenACC application programming interface, v 2.5

(2015)
18. Tian, C., Feng, M., Gupta, R.: Supporting speculative parallelization in the pres-

ence of dynamic data structures. In: Programming Language Design and Imple-
mentation (2010)

http://openmp.org/wp/openmp-specifications
http://openmp.org/wp/openmp-specifications
https://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-ifeedng-appetite-big-data
https://devblogs.nvidia.com/parallelforall/nvlink-pascal-stacked-memory-ifeedng-appetite-big-data
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6
https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6

Automatic Local Memory Management
for Multicores Having Global Address Space

Kouhei Yamamoto1, Tomoya Shirakawa1, Yoshitake Oki1, Akimasa Yoshida1,2,
Keiji Kimura1, and Hironori Kasahara1(B)

1 Department of Computer Science and Engineering,
Waseda University, Tokyo, Japan

{yamamoto,tshira,okiyoshi}@kasahara.cs.waseda.ac.jp,
akimasay@meiji.ac.jp, kimura@apal.cs.waseda.ac.jp, kasahara@waseda.jp

2 Graduate School of Advanced Mathematical Sciences,
Meiji University, Tokyo, Japan

http://www.kasahara.cs.waseda.ac.jp

Abstract. Embedded multicore processors for hard real-time applica-
tions like automobile engine control require the usage of local memory on
each processor core to precisely meet the real-time deadline constraints,
since cache memory cannot satisfy the deadline requirements due to
cache misses. To utilize local memory, programmers or compilers need to
explicitly manage data movement and data replacement for local mem-
ory considering the limited size. However, such management is extremely
difficult and time consuming for programmers. This paper proposes
an automatic local memory management method by compilers through
(i) multi-dimensional data decomposition techniques to fit working sets
onto limited size local memory (ii) suitable block management structures,
called Adjustable Blocks, to create application specific fixed size data
transfer blocks (iii) multi-dimensional templates to preserve the original
multi-dimensional representations of the decomposed multi-dimensional
data that are mapped onto one-dimensional Adjustable Blocks (iv) block
replacement policies from liveness analysis of the decomposed data, and
(v) code size reduction schemes to generate shorter codes. The proposed
local memory management method is implemented on the OSCAR multi-
grain and multi-platform compiler and evaluated on the Renesas RP2 8
core embedded homogeneous multicore processor equipped with local
and shared memory. Evaluations on 5 programs including multimedia
and scientific applications show promising results. For instance, speedups
on 8 cores compared to single core execution using off-chip shared mem-
ory on an AAC encoder program, a MPEG2 encoder program, Tomcatv,
and Swim are improved from 7.14 to 20.12, 1.97 to 7.59, 5.73 to 7.38, and
7.40 to 11.30, respectively, when using local memory with the proposed
method. These evaluations indicate the usefulness and the validity of the
proposed local memory management method on real embedded multicore
processors.

Keywords: Parallelizing compiler · Local memory management · Mul-
ticore · Global address space · DMA · Data decomposition

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 282–296, 2017.
DOI: 10.1007/978-3-319-52709-3 21

Automatic Local Memory Management for Multicores 283

1 Introduction

As modern embedded systems demand for more performance with lower power
consumption, the architectural design of multicore processor has succeeded in
pursuing both requirements. However, in embedded multicores for hard real-
time control systems such as automobile engine control units, cache memory
cannot be used to meet hard deadline constraints. In these systems, multicore
architectures having local memories with addresses mapped to parts of global
address space have been generally used. Examples of such embedded multicore
processors are Renesas’s RP2 [15] and V850E2/MX4 [18].

Local memory is a fast on-chip memory which can be explicitly controlled
by software. Typically, local memory is reserved for data that is extensively
reused throughout the entire program. A similar class of fast on-chip software
controllable memory is scratch-pad memory [1,11]. Although the functionality of
scratch-pad memory is similar to local memory, scratch-pad memory is generally
smaller in size and is specialized for data locality on a finer region of the program.

The low latency and software manageable characteristics of local memory
offers guaranteed execution timing, which is a crucial property for real-time con-
trol embedded domains. Moreover, optimal mapping of data onto local memory
through software implementations can achieve data locality and satisfy deadline
requirements by removing runtime uncertainties by cache miss hits.

There remains a major obstacle when utilizing software based local memory
for embedded systems with multicore processors: the mapping and decompo-
sition of data onto local memory of each processor core. In other words, the
use of local memory considering data locality requires comprehensive control of
data placement and eviction by the programmer. To overcome this difficulty, a
promising approach is to build a compiler algorithm to automatically decompose
data and insert data transfer codes. Such compiler based approach will not only
prevent error-prone code productions otherwise done by the programmer, but
will also allow local memory optimizations to become available for a wide range
of applications.

In this paper, a local memory management method with data decomposi-
tion for software controlled un-cached local memory on multicore processors is
proposed to satisfy deadline constraints and obtain high performance. In par-
ticular, the method realizes local memory management techniques that deter-
mine data placement and replacement on local memory considering data locality
over the whole input C program. The data decomposition process decomposes
multi-dimensional arrays for each nested level. Additionally, data transfer costs
between multiple processor cores are mitigated through Direct Memory Access
(DMA) controllers. To allow automatic parallelization for various applications
using local memories, the method is implemented on OSCAR compiler, a C and
Fortran source-to-source multi-grain and multi-platform parallelizing compiler
[13]. The effectiveness of the proposed method is demonstrated through several
benchmark applications written in Parallelizable C [10] that have various data
sizes and dimensions.

284 K. Yamamoto et al.

The rest of the paper is organized as follows. Section 2 introduces related
works. Section 3 covers the proposed data decomposition method and local mem-
ory management method. Section 4 shows evaluation results of the proposed
methods on benchmark applications. Section 5 concludes the paper.

2 Related Works

There have been many researches on local memory management methods.
In static data management, data partitions and allocations remain constant

throughout the lifetime of the program. Avissar et al. proposed a compiler strat-
egy that automatically partitions and allocates data onto different memory units
[2]. Similar methods were reported by Steinke et al., utilizing a compiler exten-
sion technique for embedded systems to analyze the most frequently used data
and variable within the application for static mapping onto local memory [3].
Steinke’s analysis focuses mainly on reducing energy consumption by utilizing
energy efficient local memories over caches. Panda et al. reported a method to
partition scalars and array variables and map them onto on-chip scratchpad
memory at compile time [1]. Excess variables that could not fit on scratch-pad
memory are mapped onto off-chip memory. However, their approach is limited
to single thread execution environments. For static allocation of data onto multi-
core processor environments, Che et al. presented an integer linear programming
formulation and a heuristic technique to model code overlays and communica-
tion costs to maximize throughput of stream programs [4]. Their method shows
improvement on stream programs for static allocations, but does not mention
explicit mapping managements of data onto local memory. Similarly, Issenin et
al. proposed a data reuse method for loops on multicore processor environments
[8]. Their method focuses on data locality within loops, but does not consider
locality between tasks of the entire program.

To achieve flexibility for allocated variables during the entire runtime of
the program, several dynamic allocation algorithms for local memory are pre-
sented. Udayakumaran et al. proposed a dynamic allocation method that con-
siders runtime behaviors of the program running on a single core processor [5].
Specifically, their method copies frequently accessed data onto scratch-pad mem-
ory by compiler codes dynamically and evict unused data to free scratch-pad
space. However, the method is relevant only for single thread environments,
neglecting communication and synchronization costs that occur for multicore
processor environments. For multicore processor systems, Guo et al. proposed a
data allocation algorithm for scratchpad memories to reduce memory access cost
[6]. They incorporate a data duplication algorithm to extensively copy specific
data onto remote processor core’s scratch-pad memory to further reduce mem-
ory access costs. However, their method does not present explicit management
techniques for mapping data onto local memory. Kandemir et al. proposed a
data tiling strategy for multicore processor systems [7]. Their method focuses on
array-intensive applications, and aims to increase inter-processor data sharing
opportunities and minimize off-chip memory requests. Their technique, however,

Automatic Local Memory Management for Multicores 285

considers data locality within loops and does not extract locality that spreads
across the entire program.

As presented in this section, partitioning and allocating data onto software
managed memory has been attempted by various researchers. However, the
majority of the proposed solutions consider static or dynamic allocations of data
that only assume single thread environments. Moreover, previous methods do not
target data locality stretched across multiple coarse-grain tasks or local mem-
ory management techniques that extensively control the position of the stored
data on local memory. Therefore, an integrated analysis of dynamically allocat-
ing and evicting data on coarse-grain tasks, including arrays accessed within
nested loops, for software managed local memory under a multicore processor
environment, to our knowledge, has not been attempted so far.

3 The Proposed Local Memory Management Method

The target architecture of the proposed method consists of multiple processor
cores with an on-chip and/or off-chip centralized shared memory, or CSM. An
example architecture is the OSCAR multicore architecture shown in Fig. 1 [10].
Each processor core is equipped with local data memory, or LDM, for core private
data and a distributed shared memory, or DSM, for data shared among processor
cores. In embedded multicores, since the local memories are mapped to global
address space, they can be recognized as distributed shared memory. Often, local
memory is implemented by a single port memory and distributed shared memory
is implemented using two ports memory. Within this memory architecture, the
proposed method aims to exploit data locality of core private data on local
memory. The main idea of the proposed method is to decompose data so that a
working set can fit on LDM and the data on LDM can be reused among different
coarse-grain tasks.

An overview of the proposed compiler local memory management method
for multicores using adjustable block assignment and replacement technique is
summarized below.

1. Chooses block sizes for data transfer between shared memory and LDM specif-
ically for each application.

2. Divides all data in the application into constant size aligned block structures
called Adjustable Blocks. In contrast to other block allocation schemes such
as buddy memory allocators where block sizes are restricted to multiples of
powers of two and the granularity of the block is defined as a single page size,
Adjustable Blocks divide data into integer divisible sizes and can further
divide blocks into single word sizes for scalar variables.

3. Hierarchically decomposes multi-dimensional arrays by the outer-most loop
dimension until the decomposed array fits inside the chosen block size.

4. Maps each decomposed array to assigned blocks on LDM considering locality
optimizations.

5. Schedules eviction and reloading of blocks from LDM and shared memory.
Blocks with dead variables or blocks with variables that will be reused in the
most distant future have high replacement priorities.

286 K. Yamamoto et al.

Fig. 1. Overview of the OSCAR multicore architecture

3.1 Coarse-Grain Task Parallelization [13,14]

The input C program is initially divided into coarse-grain tasks, or tasks with
sufficient amount of work that can be efficiently scheduled to processors by the
compiler. Coarse-grain tasks are also called Macro Tasks (MTs), and are divided
into three categories: Basic Blocks (BBs), Repetition Blocks (RBs) for loops, and
Subroutine Blocks (SBs) for functions. RBs and SBs are hierarchically decom-
posed into smaller MTs if coarse-grain task parallelism still exists within the
task, as shown in RB number 7 in Fig. 2. After all MTs for the input program
are generated, they are analyzed to produce a Macro Flow Graph (MFG). MFGs
depict the control flow and the data dependencies of the entire input program
as a graph structure. Further, Macro Task Graphs (MTGs) are generated by
analyzing the earliest executable condition [13] of every MT and analyzing the
control dependencies and data dependencies among MTs on the MFG. MTGs
illustrate parallelism among MTs and are utilized as the baseline structure for
the proposed data localization method to extract data locality from the entire
input program. An example MFG and MTG is illustrated in Figs. 2 and 3.

The scheduling of MTs to processor cores can be done either statically at
compile time or dynamically at run time. The decision of static or dynamic
scheduling of MTs depends on the topology and the branch structure of the
MTG of the input program.

3.2 Data Decomposition Method

By analyzing the MTG of the input program, the data decomposition phase
decomposes RBs connected by data dependence edges on the MTG so that data
transfers among the data dependent RBs can be made through LDMs.

The data decomposition process begins by creating groups of loops, or Target
Loop Groups (TLGs), from the MTG that access the same arrays. The loops

Automatic Local Memory Management for Multicores 287

Fig. 2. Macro flow graph (MFG) Fig. 3. Macro task graph (MTG)

within these groups are then analyzed for dependencies through the Inter-Loop
Dependency (ILD) analysis phase [14]. Once this dependency analysis completes,
the number of required decompositions, namely the number of small loops each
loop should be decomposed into, is decided from the available LDM size and the
array sizes accessed by the decomposed loops.

3.2.1 Target Loop Group (TLG) Creation and Inter-Loop
Dependency (ILD) Analysis

Loops that access the same array are gathered into group of loops called TLGs.
The loop with the largest estimated time within a TLG is chosen as the baseline
loop for that specific TLG. This baseline loop is used as a criterion for the data
dependency check on the ILD analysis phase. Figure 4 depicts an example where
the baseline loop is chosen as RB3, which is data dependent on indices i and
i−1 of RB2 and i−1, i, and i+1 of RB1. The ILD analysis phase resolves data
dependencies between loops within the generated TLGs and detects relevant
iterations of those loops that have dependence with the iterations of the baseline
loop. Moreover, the ILD analysis phase detects Commonly Accessed Regions
(CAR), or array regions accessed by multiple processors, and Localizable Regions
(LR), or array regions accessed by a single processor, of each TLG. Data reuse

Fig. 4. Example of ILD analysis Fig. 5. A simple TLG with two loops

288 K. Yamamoto et al.

Fig. 6. Example of localizable regions (LR) and commonly acccessed regions (CAR)

can be performed on arrays accessed by LRs that stretch across multiple loops
within a TLG, since LRs encompass loop regions that can be safely kept in
LDMs of each processor. An example diagram of IR and CAR is shown in Fig. 6.
Figure 5 shows an example of a TLG. In this example, the second loop is chosen
as the baseline loop since its estimated cost is larger than the first loop. For the
indices of array a, iteration i of the baseline loop has dependencies on iteration
i of the first loop and iteration i+1 of the current loop.

3.2.2 Decomposition Count

The working set size of data shared across multiple decomposed small loops after
decomposition must be strictly less than the available LDM size of the target
processor core. To mitigate the algorithmic complexity for parameter calcula-
tions, the presented method chooses decomposition counts, namely the number
of small data portions each data should be decomposed into, that allows all
decomposed arrays within a TLG to simultaneously exist on LDM. By simpli-
fying the decomposition decision algorithm, the method guarantees mapping of
arbitrary sized arrays onto LDM with low overhead.

3.2.3 Extending the Data Decomposition Method
to Multi-dimensional Loops

Previous data decomposition schemes that exploit data locality mostly focus on
dividing the outer-most loop of a nested loop. Hence, these methods can not
treat cases where decomposition of the outer loop fails to generate array sizes
smaller than the available LDM size. In contrast, the data localization method
presented in this paper is safely applicable to loops with arbitrary dimensions.

Figure 7 depicts an example of decomposing only the outer-most loop of a
nested loop. In this example, dividing the outer-most loop still leaves behind
a 64 iteration inner loop, which accesses an array shared between two loops.
Previous data decomposition methods will fail to place the array onto LDM if
this target array size is larger than the available LDM size. Figure 8 illustrates an
example of decomposing both the outer and the inner loop of the original loop

Automatic Local Memory Management for Multicores 289

Fig. 7. Decomposition of only the outer loop

Fig. 8. Decomposition of outer and inner loops

code of Fig. 7. By calculating the necessary decomposition count from the total
array size and the LDM size, the decomposition process not only terminates on
the outer-most loop, but continues inwardly onto inner loops and decides the
decomposition count for each nest level. By hierarchically dividing each nest
level, data size of the accessed array can be significantly reduced, ultimately
allowing programs with large data size to adjustably fit on LDM.

3.3 Scheduling of Decomposed Loops

Decomposed loops with common iteration ranges are placed and executed on the
same processor core to achieve data locality. Decomposed loops with accessing
the same iteration ranges are grouped together into Data Localizable Groups
(DLGs) [14]. An example of DLG is shown in Fig. 6. Once DLGs are generated,
the decomposed small loops within each DLG are statically scheduled to the
same processor core.

3.4 Local Memory Management

The challenge of mapping and evicting decomposed data for LDM still remains.
To address this problem, the LDM memory management phase of the method
utilizes scheduling results of DLGs to make appropriate mapping decisions on
LDM and insertion choices of data transfer codes for every decomposed data.

After mapping decisions are determined from the DLG scheduling phase, the
method adopts Adjustable Blocks and Template Arrays for the actual mapping of
the decomposed data onto LDM [9]. Adjustable Blocks are hierarchical structures
of constant size blocks and are used to flexibly choose appropriate memory block
sizes for each application program. Template Arrays are mapping structures that
maps multi-dimensional arrays to specific one-dimensional blocks of LDM, and
are also used to maintain code readability of the indices of the arrays.

290 K. Yamamoto et al.

Fig. 9. Hierarchical structure of
adjustable blocks

Fig. 10. Overview of template arrays

3.4.1 Adjustable Blocks

The decomposition count of data varies with the characteristic and the com-
plexity of the application, which require the LDM management method to
handle arrays with arbitrary sizes. However, simply adopting memory blocks
with varying sizes is insufficient, since the data placement and eviction process
induces memory fragmentation. To avoid such inefficiency, the proposed method
maps data onto LDM using hierarchically aligned constant size blocks called
Adjustable Blocks [9]. The basic structure of Adjustable Block is depicted in
Fig. 9. Adjustable Blocks allow flexible selection of block sizes depending on the
data size present in the input program, and can be further divided into smaller
blocks with integer divisible sizes of the parent block, unlike buddy memory allo-
cators where block sizes are limited to multiples of powers of two. The constant
size blocks and the hierarchical structure of Adjustable Blocks allow efficient
mapping of blocks with varying size and dimension onto LDM as well as avoid-
ing performance critical fragmentations of LDM. For the current implementation
of the method, the block sizes of Adjustable Blocks are reduced by powers of 2
for each level down the hierarchy.

When the Adjustable Block size for each application program is decided, the
LDM address space is decomposed into a set of blocks. During parallel execution,
the decomposed data are loaded to a block and evicted from the block managed
by the compiler.

3.4.2 Template Arrays

LDM can be represented as a one dimensional array. Therefore, when a multi-
dimensional array is allocated onto LDM, the index calculation of the array
becomes complex. To overcome this complexity, the method introduces an array
mapping technique called Template Arrays [9]. Figure 10 displays an overview of
Template Arrays. The basic idea of Template Arrays is that each block on LDM

Automatic Local Memory Management for Multicores 291

corresponds to multiple empty arrays with varying dimensions. These arrays have
an additional dimension augmented to its structure to store the corresponding
block number. By maintaining block numbers for every array on each block,
the method manages to systematically decide which region and block of LDM
memory is appropriate for the target decomposed array. Moreover, by choosing
a block that has the same dimension with the target array, the mapping provides
better readability for the array indices.

3.4.3 Block Eviction Policy

To adjustably utilize LDM during the runtime of the program, the proposed
method appropriately evicts memory blocks guaranteed to be unused or to be
reused latest in the future from LDM to off-chip shared memory to create new
spaces for incoming variables, unlike Least Recently Used (LRU) policies where
variables with the longest unused period are evicted. The live and dead informa-
tion of each variable is analyzed by the OSCAR compiler. In order to minimize
data transfer latencies and fully utilize data locality, data with high probability
of being accessed again continues to reside on LDM. In particular, the method
adopts the following block eviction priority policy to maintain data locality,
listed from most to least significance:

1. Dead variables (variables that will not be accessed further in the program)
2. Variables that are accessed only by other processor cores
3. Variables that will be later accessed by the current processor core
4. Variables that will immediately be accessed by the current processor core

3.5 Data Transfer Between Off-Chip Memory

Data transfer codes between LDM and off-chip shared memory is inserted accord-
ing to the scheduling results of the DLGs as presented in Sect. 3.3. The method
assumes DMA controllers as the underlying data transfer hardware to allow fast
and asynchronous burst transfers between processor cores. The current imple-
mentation of the method explicitly inserts data transfer codes before MTs that
load data and after MTs that store data. Overlapping of data transfers and task
executions is not achieved due to a hardware bug in the RP2 multicore processor
used in this evaluation. Still, this MT-granularity data transfer policy minimizes
synchronization overheads and maintains data coherence with other processing
cores that work on the same array.

3.6 Code Compaction Method

3.6.1 Overview of the Code Compaction Method

The LDM management approach presented by previous researches produces
duplicated code for each decomposed loop. This straightforward scheme gen-
erates multiple copies of the loop body with different lower and upper bounds,

292 K. Yamamoto et al.

Fig. 11. Overview of the strip mining tech-
nique for nested loops

Fig. 12. Code compaction applied to
the nested loop on Fig. 7

effectively creating unique loop codes for each decomposition count. To prevent
such code bloat, the proposed method adopts code compaction techniques based
on strip mining [12]. Figure 11 depicts the strip mining scheme incorporated to
the method. By applying mid-grain parallelization to the outer-most blocking
loop, proper mapping onto processor cores and execution order can be guaran-
teed without applying scheduling.

3.6.2 Code Compaction Method for Multi-dimensional Loops

To utilize code compaction techniques for multi-dimensional loops, iteration
ranges among multiple loops within TLGs must first be aligned by loop peeling
[16,17]. After peeling the excessive iteration ranges for every loop, the target
loops are fused as a single MT. Figure 12 shows an example with multi-
dimensional loops, illustrating the code compaction method applied to the orig-
inal loop code on Fig. 7. Since the first and the second loops within the TLG on
Fig. 7 has different iteration ranges, the iteration of the first loop with indices
i = 15 and j = 63 will be peeled to match up with the smaller iteration ranges
of the second loop. Following this loop peeling, the method then performs loop
decomposition. If the decomposition count is 2, each loop nest will be divided
into 2 pieces, consequently performing strip mining with block sizes of 8 as the
outer loop and 32 as the inner loop.

4 Evaluations

To show the effectiveness of the method, this section presents evaluation
results on several benchmark applications. The method was implemented on
the OSCAR automatic parallelization compiler and tested on Renesas’s RP2
SH4A processor based 8 core homogeneous multicore processor [15]. The RP2
multicore processor is based on the OSCAR multicore architecture shown in the
previous section. Each processor core of RP2 is based on SH4A with 600 MHz,
and has dedicated LDM to freely load and evict data during program execution.
To share data among processor cores, each core has access to a processor wide

Automatic Local Memory Management for Multicores 293

Fig. 13. Architecture of the RP2 multicore processor

distributed shared memory. An overview of the RP2 architecture is depicted in
Fig. 13. RP2 is equipped with LDM (OLRAM) with a 1 clock cycle latency, dis-
tributed shared memory (URAM) on each processor core with a 2 clock cycle
latency, and a 128 MB DDR2 CSM with a 55 clock cycle latency. Data cache, or
D$, is not used for the evaluation. Every processor core is connected with SHwy,
which is Renesas’s standard bus.

4.1 Tested Applications

To evaluate the performance of the proposed data localization method, 5 sequen-
tial programs written in Parallelizable C [10], such as the example code in Fig. 7
used for the explanation of the proposed method, an AAC encoder, a MPEG2
encoder, SPEC95 Tomcatv, and SPEC95 Swim were used. Tomcatv and Swim
are chosen from the SPEC95 benchmark suite since both applications in this ver-
sion have data size small enough to fit into the limited off-chip CSM size of RP2.
The method applied one-dimensional decomposition to AACenc and Mpeg2enc,
and two-dimensional decomposition to the sample program, Tomcatv, and Swim.
These applications were compiled by the OSCAR source-to-source automatic
parallelization compiler for multiple platforms with the proposed method inte-
grated as part of OSCAR’s analysis phase, followed by a backend compilation
process by a native compiler for each target multicore processor to generate
machine codes. The 4 programs, except the example program of Fig. 7, are
explained below.

– AACenc is an AAC encoder application provided by Renesas Technology. For
evaluation, a 30 s audio file was used as input to generate an audio file with a
bit rate of 128 Kbps.

– Mpeg2enc is a MPEG2 encoder application which is part of the MediaBench
benchmark suite. For evaluation, a 30 frame video with a resolution of 352 by
256 pixels was used as input.

– Tomcatv is a loop-intensive benchmark application from the SPEC CPU95
benchmark suite. Before performing the LDM management method, loop
fusion and variable renaming were applied.

294 K. Yamamoto et al.

– Swim is a benchmark application that performs 2 dimensional array compu-
tations from the SPEC CPU95 benchmark suite. Before performing the LDM
management method, loop distribution and loop peeling were performed.

4.2 Evaluation Results

Figure 14 shows the experimental results of the applications on the RP2 8 core
processor. Since, to our knowledge, there are no other open-source compilers
that explicitly manage LDM, the results compare executions of the applications
that utilize the proposed LDM management method and off-chip CSM.

In the sample program of Fig. 7, the parallelized program by the OSCAR
compiler using off-chip CSM, or DDR2 memory, achieved speedups of 3.85 for 4
cores and 6.49 for 8 cores. On the other hand, the proposed LDM management
method obtained better speedups, such as 2.64 for single core, 12.61 for 4 cores,
and 20.64 for 8 cores, compared to single core executions using off-chip CSM.

For AACenc, the speedups using the off-chip CSM was 3.58 for 4 cores
and 7.14 for 8 cores compared with single core environment. By contrast, the
speedups for AACenc using the proposed LDM management method were 2.06
for 1 core, 8.94 for 4 cores, and 20.12 for 8 cores. For Mpeg2enc, the speedups
obtained using the off-chip memory were 2.00 on 4 cores and 1.97 on 8 cores
against sequential execution. The proposed method outperformed off-chip mem-
ory solutions by obtaining speedups of 2.33 for single core, 6.81 for 4 cores, and
7.59 for 8 cores. In Tomcatv, speedups achieved by utilizing the CSM were 3.18
for 4 cores and 5.73 for 8 cores. Compared to the CSM environment, the pro-
posed method obtained higher speedups of 1.88 for 1 core, 5.07 for 4 cores, and
7.38 for 8 cores. For Swim, speedups using the off-chip CSM were 3.76 for 4 cores
and 7.40 for 8 cores against 1 core execution. In contrast to those results, the
proposed method showed speedups of 1.33 for 1 core, 5.50 for 4 cores, and 11.30
for 8 cores. The evaluations show that the proposed LDM management method
achieves scalable speedups for embedded and scientific applications.

Fig. 14. Speedups of the proposed method (Local Memory) compared to executions
utilizing shared memory (Shared Memory) on benchmarks applications using RP2

Automatic Local Memory Management for Multicores 295

5 Conclusions

This paper has proposed automatic local memory management method with data
assignment to adjustable blocks chosen for each application utilizing data assign-
ment units between off-chip shared memory and local memory. The method also
incorporates multi-dimensional templates that allow programmers to understand
the parallelized program using local memory management. Utilizing local mem-
ory is necessary to satisfy deadline requirements for applications of embedded
systems, such as automobile engine control programs, with multicore proces-
sors. This software managed local memory control approach successfully decom-
poses large size data into smaller chunks so that the working set fits on local
memory, while avoiding fragmentation and maintaining readability of code using
Adjustable Blocks and Template Arrays. Data transfer between local memory
and off-chip memory is managed through insertion of data transfer codes between
coarse-grain tasks. Additionally, the proposed method allows reuse of data on
local memory over different loops. The proposed method further integrates code
compaction technique to mitigate code bloat, allowing the technique to suc-
cessfully decompose multi-dimensional arrays. The method was implemented
on the OSCAR source-to-source parallelization compiler to automatically gen-
erate data locality optimized code. Evaluations were performed on the RP2 8
core multicore processor equipped with off-chip shared memory and local mem-
ory. For the sample program in Fig. 7, the proposed local memory management
method achieved a speedup of 20.64 times for 8 cores against sequential exe-
cution using off-chip shared memory of RP2. Similarly, on 8 cores using local
memory, AACenc, Mpeg2enc, Tomcatv, and Swim obtained speedups of 20.12,
7.59, 7.38, and 11.30, respectively, against 1 core execution using the off-chip
shared memory. These results reveal that the proposed automatic local mem-
ory management method is effective for reducing execution times for embedded
applications with deadline constraints.

Acknowledgments. This work was partly supported by JSPS KAKENHI Grant
Number JP15K00085.

References

1. Panda, P.R., et al.: Efficient utilization of scratch-pad memory in embedded proces-
sor applications. In: Proceedings of European conference on Design and Test (1997)

2. Avissar, O., et al.: An optimal memory allocation scheme for scratch-pad-based
embedded systems. ACM Trans. Embed. Comput. Syst. 1(1), 6–26 (2002)

3. Steinke, S., et al.: Assigning program and data objects to scratchpad for energy
reduction. In: Proceedings of Design, Automation and Test in Europe Conference
and Exhibition (2002)

4. Che, W., et al.: Compilation of stream programs for multicore processors that
incorporate scratchpad memories. In: Proceedings of Design, Automation and Test
in Europe Conference and Exhibition (2010)

5. Udayakumaran, S., et al.: Dynamic allocation for scratch-pad memory using
compile-time decisions. ACM Trans. Embed. Comput. Syst. 5(2), 472–511 (2006)

296 K. Yamamoto et al.

6. Guo, Y., et al.: Data placement and duplication for embedded multicore systems
with scratch pad memory. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
32(6), 809–817 (2013)

7. Kandemir, M., et al.: Exploiting shared scratch pad memory space in embedded
multiprocessor systems. In: Proceedings of Design Automation Conference (2002)

8. Issenin, I., et al.: Multiprocessor system-on-chip data reuse analysis for exploring
customized memory hierarchies. In: Proceedings of Design Automation Conference
(2006)

9. Kasahara, H., et al.: U.S. Patent No. 8,438,359, U.S. Patent and Trademark Office,
Washington, DC (2013)

10. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.:
OSCAR API for real-time low-power multicores and its performance on multi-
cores and smp servers. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.)
LCPC 2009. LNCS, vol. 5898, pp. 188–202. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13374-9 13

11. Banakar, R., et al.: Scratchpad memory: design alternative for cache on-chip mem-
ory in embedded systems. In: Proceedings of International Symposium on Hard-
ware/Software Codesign (2002)

12. Wolfe, M.: More iteration space tiling. In: Proceedings of ACM/IEEE Conference
on Supercomputing (1989)

13. Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., Narita, S.: A multi-
grain parallelizing compilation scheme for OSCAR (optimally scheduled advanced
multiprocessor). In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.)
LCPC 1991. LNCS, vol. 589, pp. 283–297. Springer, Heidelberg (1992). doi:10.
1007/BFb0038671

14. Yoshida, A., et al.: Data-localization for Fortran macro-dataflow computation using
partial static task assignment. In: Proceedings of International Conference on
Supercomputing (1996)

15. Ito, M., et al.: An 8640 MIPS SoC with independent poweroff control of 8 CPU
and 8 RAMs by an automatic parallelizing compiler. In: Proceedings of IEEE
International Solid State Circuits Conference (2008)

16. Kennedy, K., et al.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann Publishers Inc., San Francisco
(2001)

17. Padua, D., et al.: Advanced compiler optimizations for supercomputers. Commun.
ACM 29, 1184–1201 (1986)

18. https://www.renesas.com/en-in/products/microcontrollers-microprocessors/v850/
v850e2mx/v850e2mx4.html

http://dx.doi.org/10.1007/978-3-642-13374-9_13
http://dx.doi.org/10.1007/978-3-642-13374-9_13
http://dx.doi.org/10.1007/BFb0038671
http://dx.doi.org/10.1007/BFb0038671
https://www.renesas.com/en-in/products/microcontrollers-microprocessors/v850/v850e2mx/v850e2mx4.html
https://www.renesas.com/en-in/products/microcontrollers-microprocessors/v850/v850e2mx/v850e2mx4.html

Run-time and Performance Analysis

Mapping Medley: Adaptive Parallelism Mapping
with Varying Optimization Goals

Murali Krishna Emani(B)

Lawrence Livermore National Laboratory, Livermore, USA
emani1@llnl.gov

Abstract. In modern day computing, the performance of parallel pro-
grams is bound by the dynamic execution context that includes inherent
program behavior, resource requirements, co-scheduled programs shar-
ing the system resources, hardware failures and input data. Besides this
dynamic context, the optimization goals are increasingly becoming multi-
objective and dynamic such as minimizing execution time while maxi-
mizing energy efficiency. Efficiently mapping the parallel threads on to
the hardware cores is crucial to achieve these goals. This paper proposes
a novel approach to judiciously map parallel programs to hardware in
dynamic contexts and goals. It uses a simple, yet novel technique by col-
lecting a set of mapping policies to determine best number of threads
that are optimal for specific contexts. It then binds threads to cores
for increased affinity. Besides, this approach also determines the opti-
mal DVFS levels for these cores to achieve higher energy efficiency. On
extensive evaluation with state-of-art techniques, this scheme outper-
forms them in the range 1.08x up to 1.21x and 1.39x over OpenMP
default.

1 Introduction

Modern day parallel computing landscape is rapidly evolving in all aspects: right
from applications composed of diverse workloads, middle-ware up to the hard-
ware. The diversity and dynamic nature of all elements in this vertical stack is
becoming more obvious than ever before. Given a parallel application is unlikely
to run on the same platform and the same environment for its lifetime, we need
a way to future-proof application development cost. The mainstream applica-
tions have no longer have the privilege of having exclusive access to hardware
resources; but have to share dynamically with co-executing applications. Simi-
larly, there is no longer a single optimization goal for the parallel applications.
Earlier either it used to be either of latency or throughput or energy efficiency.
However this is no longer the case. Multi-objective optimization is growing as
the ultimate desired goal for parallel applications and systems, such as high

This work was performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-CONF-696003.

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 299–313, 2017.
DOI: 10.1007/978-3-319-52709-3 22

300 M.K. Emani

throughput with minimum energy expenditure. Consider the case of software
applications on a mobile device or embedded system. In a scenario when it is
connected to external power source, the goal may be more on maximizing appli-
cation performance. But when the power source is disconnected, it no longer
has access to external power supply and has to rely only on its battery. In this
scenario, the goal of maximizing energy efficiency may become as important as
the application performance.

Thus the program performance is bound by the dynamic execution con-
text which we define as composed of factors such as inherent program behav-
ior, resource requirements, co-scheduled programs sharing the system resources,
hardware failures, ever-changing software versions, and input data. Over-
subscription with more software threads than the hardware threads may lead
to program slow-down due to delays in threads gaining access to hardware.
Under-subscription may result in poor resource utilization. Hence a judicious
parallelism mapping is crucial to improve program performance. Thread to core
affinity also impacts program performance. Frequent migration of threads and
the data in respective caches drastically degrades the performance. It is also
thus important to minimize thread placements across cores. Tuning CPU core
frequencies is one approach to control the power consumption in the system.
The frequencies can be lowered in many ways to improve power efficiency. Hence
reducing power and the execution time may lead to high energy efficiency. Most
of the existing approaches rely on a single mapping policy which remains the
same irrespective of the current system characteristics. There is no ability to
determine if this mapping is indeed optimal if the execution context changes.
Any monitoring mechanisms if present, are reactive in that they observe the
program execution with a configuration for few cycles. Based on the observed
behaviour, the program mapping is varied. It is highly unlikely that the map-
ping determined by these approaches will be optimal for evolving workloads and
hardware. Such policies cannot be easily advanced as they need radical changes
in the policy, which are expensive to be performed at runtime.

Our Idea: In this paper we focus on determining the best thread numbers for
every parallel section of a parallel program and binding them to hardware cores.
This is a key decision on maximizing parallelism with available resources. To
optimize for the energy efficiency, we also determine the optimal frequency level
for each core utilizing Dynamic Voltage Frequency Scaling (DVFS) mechanism.
In the program execution context, we primarily focus on contention due to co-
executing workloads, hardware failures and changes in the external power supply.
We take inspiration from early work [8] which shows that a mixture of specialized
models often outperforms a single policy. It maintains a collection of mixture of
models which can be added to and updated as time goes on, selecting the model
that is best suited to the current context. It avoids over-complex heuristics and
over-fitting training data by allowing different models to be selected based on
their worth. The work closest to our approach is the Ensemble mapping [5]. It
uses predictive modeling that considers different mapping policies called experts
at runtime and selects the one that is determined to be the optimal one at

Mapping Medley: Adaptive Parallelism Mapping 301

every parallel loop. As the program execution context changes, different mapping
policies will be dynamically selected at runtime. We extend and improve over
the ensemble technique to optimize for both execution time and power and also
consider the case of varying external power supply. We also optimize all executing
programs in the system unlike just the target program in the ensemble method.

Our technique Mapping Medley uses a collection of exclusive mapping
policies where each policy takes as input the execution context i.e. current co-
executing workload, hardware and power supply and then determines the best
threads numbers and optimum frequency levels for all cores. At runtime the
question of which mapping policy to select is crucial for achieving the optimiza-
tion goals. The standard method would be to run each policy for few runs or
cycles and observe the program behaviour, identify and select the best mapping
policy. Policy evaluation in such manner would be prohibitively expensive in
terms of the overhead incurred at runtime. We avoid this overhead by instantly
selecting the best expert based on the context. Our idea is to optimize program
performance and energy by determining best thread numbers, pinning them to
cores and determine optimal frequencies for the cores. Predictive modeling is the
core strategy to our approach.

This paper makes the following contributions:

– First to optimize multi-objective goals in varying execution contexts.
– Propose techniques to optimize execution time and energy efficiency simulta-

neously.
– Outperforms existing state-of-art approaches on extensive evaluation.

2 Related Work and Motivation

Related Work: The works closest to ours are Ensemble mapping [5] and
Feedback-driven technique [6]. The ensemble mapping approach employs ‘Mix-
ture of Experts’ concept [8] from machine learning domain. Here multiple spe-
cialized mapping policies called experts are employed which are offline trained
machine learning models. These individual experts determine thread numbers
and future system state. An online expert selector chooses the best expert based
on what expert predicted the most accurate system state. This technique aims
only at thread number prediction but does not mention about their placement
and run all cores at maximum frequencies. The feedback driven policy [6] uses
control theory-based techniques to tune different knobs based on feedback from
the system. It first changes the power control knob to get the power consump-
tion below a capped value and then tunes a performance knob to extract max-
imum performance possible. It relies on an incremental approach; tune for one
goal first and later tune for another goal. Though this approach may eventu-
ally find the optimal configurations, it may take a while to reach which is not
desirable at runtime. Our work directly tackles both execution time and energy
efficiency at once, thus ensuring quick arrival to an optimal configuration. The
approach presented in [14] uses analytic model to determine best number of

302 M.K. Emani

threads at runtime. It includes an observe-and-change policy where every par-
allel loop is run with random thread numbers for few cycles. Then based on
the observed performance, it builds an online regression model to determine the
optimal thread number. DVFS techniques are employed in solutions proposed
in [11] which change the processor frequencies, according to the code character-
istics and runtime information. A machine learning mapping policy is proposed
in [15]. The policy employs no way to adjust the policy based on the execu-
tion context changes and no method to measure its efficiency online. Another
ensemble search approach proposed in [2] involves running multiple configura-
tions at the same time on partitioned system space. Once a best configuration
is found, it replaces the previous best configuration. Multiple policy evaluation
at the same time limits the physical resource availability for the target program.
This problem worsens when the hardware is dynamic with changing number
of processors. Energy efficient parallelism is well studied in embedded systems
community dealing with computing devices with limited power sources in [3].
Adagio [13] is a runtime system that makes DVFS practical for complex high
performance computing applications. Implications of thread level parallelism on
performance and power are discussed in [9].

Motivation Example: In this section, we provide an example to motivate the
goal. The experimental set up is a co-execution of parallel programs with varying
thread numbers and a sudden change in the power supply at runtime. On a two
4-core Intel Xeon machine laptop with 16 GB RAM running Ubuntu 3.7 kernel,
we ran a target program pagerank from Green-Marl benchmark [7]. There is
a co-executing workload program cg with 4 threads till time t = 25 s and later
another workload is with 2 threads both from NAS benchmark suite [1]. The
number of processors remains constant throughout. We then simulated a change
in power supply to the system. Till 30 s, external power supply was connected
to this system after which it was disconnected leaving the system to run on its
battery power till the end of program execution. In this set up we evaluated
the target program performance and plotted the number of threads determined
by the OpenMP default scheme, analytic, feedback and ensemble techniques as
described in Sect. 4. The obtained speedups over default are 1x, 1.21x, 1.32x and
1.34x. We also then tried running the target exhaustively with all thread numbers
to identify the maximum possible performance (1.6x) and plotted the optimal
threads numbers. The thread numbers are plotted in the second graph in Fig. 1.
We also measured the energy consumption and plotted the energy efficiency
normalized over the default scheme. We observe that the evaluated techniques
fall short of the optimal thread numbers needed for best performance. They
become more unstable after time t = 30 s and for poor performance and energy
efficiency.

The figure demonstrates that there still is a large room for improvement
in execution time in terms of better thread numbers and energy efficiency. We
try to tackle this issue of how to quickly and efficiently obtain the best thread
numbers for maximizing speedup and optimal core frequencies for higher energy
efficiency. We discuss our idea in the next section.

Mapping Medley: Adaptive Parallelism Mapping 303

Fig. 1. Graph showing how #threads and energy efficiencies of different approaches
vary with a change in the power supply. The top graph shows the number of processors
and co-executing workload threads. The second graph shows the #threads determined
by default, analytic, feedback, ensemble and optimal values. The bottom graph shows
energy efficiency values normalized to the default policy. At time t=30 s, external
power supply is removed to run rest of the program execution on battery source. It can
be observed that all policies become unstable and move away from the optimal, with
a change in power supply and remain far from the optimal value.

3 Mapping Medley

3.1 Optimal Thread Number

The primary goal of this work is to achieve maximum speedup with minimum
energy expenditure. This goal can be achieved by tuning multiple configurable

304 M.K. Emani

parameters or knobs. In this work we limit the tunable parameters to (i) thread
number, (ii) thread placement and (iii) DVFS level of cores. on which the threads
are placed. We try to optimize (a) Execution time: We try to achieve best execu-
tion time by (a) determining the best number of threads for the target program
that minimizes the execution time and (b) setting up threads-to-core affinity
that minimizes data movement across cores. (b) Energy efficiency: Once the
optimal number of threads are determined and pinned to respective cores, we
then maximize energy efficiency. This can be achieved in multiple ways; here we
utilize the most widely used technique: changing the frequency levels of the cores
where the threads are mapped.

We built our approach over the mapping technique in [5]. This ensemble
technique is composed of multiple specialized mapping policies called experts.
Each expert is an offline trained linear regression model trained in a specific set-
ting. It has two predictors that predict (i) best thread number and (ii) expected
system state. The online expert selector evaluates the most appropriate thread-
predictor based on the current system state and determines thread numbers of
that predictor to be ideal at that point of time. Each expert is tuned on program
scalability and different hardware. The inputs to the thread predictor are a set
of features that capture both code and system characteristics obtained from the
compiler and the kernel respectively. The set of features are listed in Table 1.

Table 1. List of features and weights used in thread predictor obtained from [5]

Feature E1 E2 E3 E4

Memory-accesses 1.05 −0.84 0.14 0.05

Instructions −1.52 1.12 0.95 0.03

Branches 0.87 0.84 −0.87 −0.57

Software-threads −0.62 0.05 −0.48 0.004

Processors 0.98 0.98 0.99 0.92

Task queue size 0.003 0.02 −0.15 0.22

CPU load-1 0.002 0.03 0.473 0.01

CPU load-2 −0.013 0.227 −1.07 −0.62

Cached memory −0.07 0.002 0.007 0.03

Pages free list rate 0.004 −0.08 0.01 −0.14

Error −1.21 −6.8 −3.03 −2.5

We differ from [5] in the expert selection mechanism. They use a second
machine learning model environment predictor that predicts what the system
should be if the thread number was indeed optimal. This may cause additional
overhead and may not accurately capture the system state specially when the
power supply source varies. We use the four thread predictors or experts as in
[5]. Here each model determines a thread number based on the current paral-
lel section characteristics and execution context that include any co-executing

Mapping Medley: Adaptive Parallelism Mapping 305

workloads and hardware changes. Our approach now deploys a simple yet smart
technique where it switches between the largest thread number with external
power supply on and the least thread number when the external power supply is
off. The reason is that large number of threads increase the power consumption
though reduce the execution time. Note that if the power sources from a battery,
the optimization goal now prioritizes energy efficiency to execution time.

3.2 Thread Placement

Once the best number of threads are determined, we pin them to the cores to
minimize frequent thread migration. It is widely acknowledged that the place-
ment of parallel threads across cores can greatly affect the program performance.
Migrating a thread from one core to another also involves either moving the data
it requires from caches of current core to the caches of the core to which it is
migrated to. Else this thread has to remotely access its data from the caches
of core it was previously running on. Both mechanisms are highly expensive in
terms of the overhead and drastically degrade performance. Ideally threads fin-
ish their computation faster when the data they require is within caches of local
cores. In this approach, once the thread number is determined, these threads are
pinned to the hardware cores to enhance affinity. This reduces the chances of
potential problems with thread migration as discussed above. If the thread num-
ber of a current parallel section is lesser or equal to thread number of previous
parallel section, we do not change the affined cores. Only when the number of
threads are larger, we include more affined cores. The threads are affined using
sched setaffinity system call.

3.3 DVFS Level

Dynamic Voltage and Frequency Scaling (DVFS) is one of the methods to alter
the processor frequencies to reduce power consumption of the cores. Each proces-
sor can be assigned with a set of frequencies that varies with the processor family
and type. In our experiments the list of available frequencies is: (2.3, 1.8, 1.6,
1.4, 1.2, 1.0, 0.8) GHz. The frequency levels of each core can be tuned on-the-fly,
however, in this work we change the frequency levels of only the cores to which
threads are pinned to a single value. It may be noted that an optimal DVFS
level for cores is determined at every parallel section.

3.4 Components

The two components core to our approach are (i) thread predictor and (2) fre-
quency predictor. The thread predictor chooses best expert with its thread num-
ber and pins them to equal number of cores. The frequency predictor determines
the best DVFS level and sets corresponding frequencies to these cores. The idea
of our approach is shown in Fig. 2. We use likwid [10] to set CPU core frequen-
cies and measure the power consumption obtained from from the MSR registers
using likwid-powermeter.

306 M.K. Emani

Fig. 2. Mapping Medley approach. The input feature vector is passed to two compo-
nents (i) thread-predictor that determines the best number of threads and pins them
to equal number of cores (ii) frequency-predictor that determines the optimal DVFS
level and sets its corresponding frequency level to cores.

Thread-Predictor: Each expert policy takes code and system features as
inputs to determine a thread number each. Our thread predictor chooses the
best expert and its thread number based on the power supply status. It switches
between the largest thread number with external power supply on and the least
thread number when the external power supply is off. Let E1, E2, E3, E4 be the
four thread mapping policies or experts. Let c be the set of code features, s the
set of system features and p indicates the status of power supply, 0 for full (has
external power supply) or 1 for discharging (runs on battery power). Let t(Ei)
be the thread numbers of ith expert. Then the policy of this thread predictor
‘g’ is to determine the optimal thread number t (1–8) in this work as shown in
Eq. 1.

g(c, s, p) =

{
t|max(t(E1), .., t(E4)), if p = 0
t|min(t(E1), .., t(E4)), if p = 1

(1)

Thread Placement: The number of threads are then pinned to cores using 1:1
thread-to-core mapping. For example, if this model outputs 5 threads, then these
threads are affined to 5 cores. The affinity holds till the parallel section execution
is finished. Let Pmax be the maximum number of available processors and cj be
the jth core. The set of cores to pin these threads is (ci, ...ct) for any i, t < Pmax

and i < t chosen from the set of free cores.

Frequency-Predictor: Let l denote a DVFS level. The frequency predictor
model uses the policy ‘f ’ that takes the combined code, system and power supply
status as input feature vector and outputs the optimal DVFS level (0–6 in this

Mapping Medley: Adaptive Parallelism Mapping 307

work) as shown in Eq. 2. The corresponding frequency is then set to the cores
using: likwid-setFrequencies -c set-of-cores-to-pin -f predicted-frequency.

f(c, s, p) → l (2)

Machine Learning: Both thread predictor and frequency predictor are offline
trained machine learning models. We use linear regression model for the thread-
predictor and a support vector machine (SVM) for the frequency predictor. The
weights for four experts used by our thread predictor are listed in Table 1. These
weights when multiplied with values of the extracted features, yield a thread
number. Our thread predictor determines thread numbers that differ from [5]
as they take the power supply information as one of the input features. SVM
is a supervised classifier that assigns a class (DVFS level from 0–6) for every
given input. We evaluated the frequency predictor using a regression model, but
surprisingly it yielded poorer prediction accuracy of 78% compared to 89% of
SVM. Hence we chose SVM to build the frequency predictor model.

Training Data and Features: The training data is generated using the replicated
set up as in [5]. On two different hardware platforms, training programs are run
with co-executing workloads, while collecting all possible features. Two classes
of program scalability on two platforms provides the training data for the four
experts. Thread numbers are varied for each training run to determine the con-
figuration that yields least execution time. In another set of training runs, the
frequency levels are varied to determine the best DVFS level that has the least
energy consumption. These supervised models are cross-validated to avoid over-
fitting the data. They are trained on a set of training programs and evaluated
on new unseen test programs. The set of features are obtained after collect-
ing all possible features and then eliminating those which do not provide any
meaningful hints using entropy estimation.

Portability: It is always ideal to enable portability of the generated models to
avoid extensive retraining on every platform of interest. The thread predictor
captures basic system information as processors and memory in its feature set.
The frequency predictor gets the number of processors from thread predictor and
available set of frequencies from the kernel. It then determines the best frequency
level. Moreover, on a new platform with different hardware, the corresponding
set of available frequencies are known to choose the best one.

4 Experimental Setup

4.1 Platform

The hardware and software platform setup used in the evaluation experiments
is listed in Table 2. Note, we have not evaluated this work on hardware that
supports the Intel Turbo Boost Technology in this work and would consider that

308 M.K. Emani

as a planned future work. All the programs start execution at the same time and
continue till the other finishes. Each experiment was repeated 10 times and the
geometric mean value of execution time is reported. The energy efficiency is
computed by the product of measured power and the execution time. The power
consumed is obtained from likwid-powermeter [10] that reads power consumption
values from the model specific registers (MSR). Note that the measured speedups
and energy efficiencies are averaged for all co-executing programs.

4.2 Applications

We use a variety of parallel programs from benchmark suites of different compu-
tational behaviours each with largest input data set. These include all OpenMP-
based C programs from NAS [1], Parsec [12] and pagerank from Green-Marl
project [7] benchmark suites. To ensure fair comparison, we replicate a similar
experimental set up and workload applications from [5].

Table 2. Experimental setup

Hardware Laptop with two 4-core Intel Core i3-2350M, @ 2.30 GHz
16 GB RAM, 3 MB shared LLC

OS 64-bit Ubuntu, 3.7.10 kernel

Compiler gcc 4.6 -O3 optimization

Table 3. Programs that constitute two types of workloads.

Workload type Programs

Light (i) ep, bodytrack

(ii) is, ft

Heavy (i) pagerank, blackscholes, bt, sp

(ii) lu, freqmine, bt, freqmine

4.3 Competitive Policies

We evaluated our approach against the following state-of-art mapping policies.
The experimental setup along with same set of workload programs are replicated
to ensure fair comparison with the evaluated policies.

Default: OpenMP default policy [4] assigns a thread number equal to the cur-
rent number of available processors.

Analytic: In [14] an analytical model determines the degree of parallelism at
runtime based on observed speedups at fixed time-intervals and estimated using
regression techniques.

Mapping Medley: Adaptive Parallelism Mapping 309

Feedback: The feedback driven policy [6] uses techniques to adjust programs
performance and power by tuning different knobs based on feedback based on
control theory principles. It first changes the power control knob to get the power
consumption below a capped values and then changes to performance knob to
extract maximum performance possible.

Ensemble: The Ensemble technique [5] uses a mixture of offline trained machine
learning models that predict the best number of threads in dynamic program
environments. The experts are highly specialized based on the executing envi-
ronment and the online expert selector switches between experts choosing the
optimal one as and when required.

4.4 Experimental Scenarios

The dynamic execution context is composed of co-executing workloads and hard-
ware in terms of number of processors and power supply.

(i) Workloads: The external workload consists of multiple parallel programs
selected from the above benchmarks. We vary the number of workload programs
chosen from above programs classified as ‘light’ and ‘heavy’. For each workload
type, we consider different sets of programs as shown in Table 3. All results are
averaged over these different benchmark sets. The same external workload is
reproduced for all evaluated policies in all cases. This ensures a fair comparison
across different mapping policies.

(ii) Hardware: To reflect any change in hardware, we vary the number of avail-
able processors during program execution. Changes in the number of processors
can be due to several factors including hardware failures, assigning more/less
cores for other high/low priority jobs, turning them off for saving power. The
number of available processors is varied in two different frequencies: low and high
where it is changed at every 40 s and 10 s in low frequency and high frequency
settings respectively. We modify the processor count by switching ‘online’ values
(1 = enable, 0 = disable) for each CPU in /proc file-system. Disabling a CPU
is logically shutting it down on-the-fly. Hence no threads are scheduled on the
disabled cores.

(iii) Power supply: In all experiments, we reflect a change in the power by
starting each run with power supply on and later disconnecting it during program
execution. The status of power source can be observed from observing the battery
status value obtained from the kernel /sys/class/power supply/BAT0/status. If
the status values reads full, it implies that the system has external power supply,
else if it reads discharging, it means that power supply is no longer available and
the system has to utilize its battery power.

5 Evaluation

Here we show the summary of performance results of speedup and energy effi-
ciency of all policies, averaged across all the experimental settings on the eval-
uated scenarios. In all cases, the baseline is OpenMP 3.0 default policy and the

310 M.K. Emani

average values (geomean) are geometric means to avoid outliers. The measured
speedups are for both target program and any co-executing workloads and the
energy efficiency is across all cores.

(a) Speedup (b) Energy efficiency

Fig. 3. (a) Performance of program speedup all evaluated approaches averaged across
all programs and experimental settings. Our approach outperforms all by greatly
improving speedup by 1.39x over baseline. (b) Performance of energy efficiency of
all evaluated approaches. The medley approach outperforms all by significantly by
achieving 1.44x efficiency.

Speedup: Fig. 3(a) shows the summary of evaluation results for speedups across
all benchmark programs and all experimental scenarios. The x-axis shows each
scenario for workload type and frequency of hardware changes and the geomean.
The analytic, feedback, ensemble improve program speedup by 1.15x, 1.18x,
1.28x over the baseline. Our medley mapping outperforms all these competitive
techniques by recording 1.39x improvement over baseline. It has better speedup
of 21.28% over analytic, 18.19% over feedback and 8.14% over ensemble tech-
niques. The primary reason for these speedups is the optimal determination of
thread numbers along with minimizing frequent thread placements across cores
reducing latencies in data accesses.

OpenMP default policy assigns same number of threads as the number of
available processors. Due to increased resource contention caused by the dynamic
execution context and reduction in power source, it is unable to modify thread
numbers accordingly. The analytic technique sustains workload changes but does
not adjust to varying number of processors. It also suffers from frequent thread
movements across cores. The feedback policy relies on the signal it receives from
the system and changes configurations based on the observed system changes. It
is a reactive policy and tunes the available knobs for execution time and power in
exclusion. The ensemble approach is quick to react to execution context changes
and selects thread numbers owing to the presence of expert mapping policies. It
however does not pin down threads to cores which may lead to frequent changes

Mapping Medley: Adaptive Parallelism Mapping 311

in threads to cores placements. Our medley approach utilizes the same number
of threads as the ensemble, but also pins threads to hardware cores to reduce
any chance of thread migration to minimal. Therefore it further improves the
program execution time.

Energy Efficiency: Overall energy efficiency results. The values reported are
normalized to the OpenMP default baseline. The value more than 1 implies
that the policy achieved better efficient mapping over the baseline, else a poor
mapping in terms of energy consumption.

Figure 3(b) shows the energy efficiency values averaged across all evaluated
scenarios. It can be observed that our medley approach always achieves bet-
ter efficiency by lowering the power consumption and the execution time. It
improves over 1.44x over the baseline outperforming the compared approaches.
The ensemble technique also improves energy efficiency in a range of 1.12x to
1.55x. The feedback mechanism performs poorer due to the frequent change in
the number of processors where it rapidly changes its configuration leading to
fluctuations in thread numbers and DVFS levels. The analytic approach improves
energy in only two scenarios with light workloads, however, with heavy work-
loads it significantly drops down below the default baseline. This is due to the
increased execution time due to the enormous time taken to reach the optimal
thread number.

6 Analysis

6.1 Thread Number Variation with Change in Power

In this section we analyze the thread number counts averaged across all parallel
sections for all evaluated benchmarks, determined by all evaluated approaches
in two phases: before and after the change in the power supply. This is to under-
stand how the thread numbers are affected by the changes in optimization goals
and external parameters. It can be observed from Fig. 4 that with external power
supply on, all policies determine larger thread numbers most of the time. But
when the power supply is removed, the system relies on battery power. Now
all policies try to determine smaller thread numbers to minimize the energy
expenditure.

6.2 DVFS Level Variation with Change in Power

Figure 5 shows how frequently a DVFS level is determined by our approach before
(top) and after (below) the power supply change. The values are normalized
to 100%. It can be observed that with external power supply on, our policy
determines larger frequency levels for all cores to improve the execution time of
all running programs. After the power supply is removed, the goal to minimize
energy expenditure is prioritized and lower frequency levels are determined.

312 M.K. Emani

Fig. 4. Distribution of thread numbers by all evaluated policies before (top) and after
(below) the power supply change. With external power supply on, all policies determine
large thread numbers most of the time and vice-versa.

Fig. 5. Distribution of DVFS levels by our approach before (top) and after (below)
the power supply change. With external power supply on, our policy determines larger
frequency levels. After the power supply is removed, lower frequency levels are deter-
mined.

7 Conclusion and Future Work

We presented a novel parallelism mapping technique that optimizes execution
time and energy efficiency in dynamic execution contexts. The work is more

Mapping Medley: Adaptive Parallelism Mapping 313

relevant in modern day hardware devices where multiple workloads co-execute
with changes in hardware and the source of power supply. Our technique deter-
mines best number of threads at runtime and pins them to underlying hardware
cores and sets optimal core frequencies. As part of future work, we would like to
evaluate on embedded platforms and mobile devices running parallel workloads.
We also would explore changing DVFS levels per-core instead of all cores.

References

1. NAS 2.3. http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
2. Ansel, J., Pacula, M., Wong, Y.L., Chan, C., Olszewski, M., O’Reilly, U.-M., Ama-

rasinghe, S.: Siblingrivalry: online autotuning through local competitions. In: Pro-
ceedings of the 2012 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES 2012 (2012)

3. Cloutier, M.F., Paradis, C., Weaver, V.M.: Design and analysis of a 32-bit embed-
ded high-performance cluster optimized for energy and performance. In: Proceed-
ings of the 1st International Workshop on Hardware-Software Co-Design for High
Performance Computing, Co-HPC 2014 (2014)

4. Dagum, L., Menon, R.: OpenMP: an industry-standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

5. Emani, M.K., O’Boyle, M.F.P.: Celebrating diversity: a mixture of experts app-
roach for runtime mapping in dynamic environments. In: Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, Portland, OR, USA, 15–17 June 2015

6. Filieri, A., Hoffmann, H., Maggio, M.: Automated multi-objective control for self-
adaptive software design. In: Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE (2015)

7. Green-Marl. https://github.com/stanford-ppl/Green-Marl
8. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local

experts. Neural Comput. 3(1), 79–87 (1991)
9. Li, J., Martinez, J.F.: Power-performance implications of thread-level paral- lelism

on chip multiprocessors. In: IEEE International Symposium on Performance Analy-
sis of Systems and Software, ISPASS 2005, pp. 124–134. IEEE (2005)

10. “likwid,” https://github.com/RRZE-HPC/likwid
11. Merkel, A., Bellosa, F.: Memory-aware scheduling for energy efficiency on multicore

processors. In: Proceedings of the Conference on Power Aware Computing and
Systems, HotPower 2008 (2008)

12. “Parsec 2.1,” http://parsec.cs.princeton.edu/
13. Rountree, B., Lownenthal, D.K., de Supinski, B.R., Schulz, M., Freeh, V.W.,

Bletsch, T.: Adagio: making DVS practical for complex HPC applications. In: Pro-
ceedings of the 23rd International Conference on Supercomputing, ICS 2009, pp.
460–469. ACM, New York (2009). http://doi.acm.org/10.1145/1542275.1542340

14. Sridharan, S., Gupta, G., Sohi, G.S.: Adaptive, efficient, parallel execution of par-
allel programs. In: Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2014 (2014)

15. Wang, Z., O’Boyle, M.F.P., Emani, M.K.: Smart, adaptive mapping of parallelism
in the presence of external workload. In: Proceedings of the IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO), CGO 2013
(2013)

http://phase.hpcc.jp/Omni/benchmarks/NPB/index.html
https://github.com/stanford-ppl/Green-Marl
https://github.com/RRZE-HPC/likwid
http://parsec.cs.princeton.edu/
http://doi.acm.org/10.1145/1542275.1542340

The Contention Avoiding Concurrent
Priority Queue

Konstantinos Sagonas(B) and Kjell Winblad(B)

Department of Information Technology, Uppsala University,
Uppsala, Sweden

{Konstantinos.Sagonas,Kjell.Winblad}@it.uu.se

Abstract. Efficient and scalable concurrent priority queues are crucial
for the performance of many multicore applications, e.g. for task schedul-
ing and the parallelization of various algorithms. Linearizable concur-
rent priority queues with traditional semantics suffer from an inherent
sequential bottleneck in the head of the queue. This bottleneck is the
motivation for some recently proposed priority queues with more relaxed
semantics. We present the contention avoiding concurrent priority queue
(CA-PQ), a data structure that functions as a linearizable concurrent
priority with traditional semantics under low contention, but activates
contention avoiding techniques that give it more relaxed semantics when
high contention is detected. CA-PQ avoids contention in the head of the
queue by removing items in bulk from the global data structure, which
also allows it to often serve DelMin operations without accessing mem-
ory that is modified by several threads. We show that CA-PQ scales well.
Its cache friendly design achieves performance that is twice as fast com-
pared to that of state-of-the-art concurrent priority queues on several
instances of a parallel shortest path benchmark.

1 Introduction

The need for scalable and efficient data structures has increased with the number
of cores per processor chip which has steadily increased for the last decade. Con-
current priority queues in particular are important for a wide range of parallel
applications such as task scheduling [20], branch-and-bound algorithms [10], and
parallel versions of Dijkstra’s shortest path algorithm [18]. Typically, the inter-
face of concurrent priority queues consists of an Insert operation that inserts a
key-value pair (called item from here on) to the priority queue, and a DelMin
operation that removes and returns the item with the smallest key from the
priority queue. Strict (linearizable) priority queues require that the DelMin
operation always returns an item that had the smallest key of all items in the
priority queue at some point during the operation’s execution, while relaxed
priority queues can return an item that was not the one with the minimum key.

Research supported in part by the Linnaeus centre of excellence UPMARC (www.
upmarc.se).

c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 314–330, 2017.
DOI: 10.1007/978-3-319-52709-3 23

www.upmarc.se
www.upmarc.se

The Contention Avoiding Concurrent Priority Queue 315

Until quite recently, most research on concurrent priority queues has focused
on strict priority queues, e.g. [2,7,12,16–18,21]. Still, even in the 1990’s, there
have been a few papers on parallel priority queues that consider more relaxed
semantics [8,15].

Inspired by the realization that the DelMin operation induces an inherent
sequential bottleneck in the head of strict priority queues, some recent papers
have proposed relaxed priority queues for modern multicore machines [1,13,
19,20]. Even though all these proposals are successful in reducing the sequential
bottleneck in the head of the priority queue, they all have a performance problem
in that all DelMin calls access memory that is frequently written to by multiple
threads. This is especially expensive on NUMA machines, as it causes data to
be transferred between processor chips which in turn may cause long stalls in
the processor pipeline and contention in the memory system.

In this paper, we describe a new concurrent priority called the contention
avoiding concurrent priority queue or CA-PQ for brevity. CA-PQ does not have
the performance problem mentioned above. Furthermore, CA-PQ differs from
recent proposals in that it works as a strict priority queue when contention is
low. Its semantics is relaxed only when operations frequently observe contention.
Previously proposed relaxed priority queues have relaxed semantics even when
this is not motivated by high contention. This is a problem because unneces-
sary use of relaxed semantics causes items with high priority to be ignored by
DelMin, which can cause unnecessary computations and performance degrada-
tion in some applications. Finally, in contrast to related work, CA-PQ has two
contention avoidance mechanisms that are activated separately: one to avoid con-
tention in DelMin operations and one to avoid contention in Insert operations.

Using a parallel program that computes the single source shortest paths on
a graph, a benchmark which is representative for many best-first search algo-
rithms that use priority queues, we compare CA-PQ’s performance with that of
other state-of-the-art concurrent priority queues. As we will see, CA-PQ’s cache
friendly design lets it outperform all other data structures with a significant mar-
gin in many scenarios. Furthermore, CA-PQ’s adaptivity to contention helps it
perform well across a multitude of scenarios without any need to manually tune
its parameters.

We start by giving a high-level overview of CA-PQ (Sect. 2). We then describe
its operations in detail (Sect. 3) and the guarantees that they provide (Sect. 4).
Details of our implementation of the global CA-PQ component appear in Sect. 5.
We then contrast CA-PQ with related work (Sect. 6), experimentally evaluate
CA-PQ variants with other state-of-the-art data structures (Sect. 7) and con-
clude (Sect. 8).

2 A Brief Overview of the Contention Avoiding
Priority Queue

As illustrated in Fig. 1, the CA-PQ has a global component and thread local
components. When a CA-PQ is uncontended it functions as a strict concurrent

316 K. Sagonas and K. Winblad

Fig. 1. The structure of a CA-PQ.

priority queue. This means that the DelMin operation removes the smallest
item from the global priority queue and the Insert operation inserts an item
into the global priority queue.

Accesses to the global priority queue detect whether there is contention
during these accesses. The counters delmin contention and insert contention are
modified based on detected contention so that the frequency of contention dur-
ing recent calls can be estimated. If DelMin operations are frequently con-
tended, contention avoidance for DelMin operations is activated. If a thread’s
delmin buffer and insert buffer are empty and DelMin contention avoidance is
turned on, then the DelMin operation will grab up to k smallest items from the
head of the global priority queue and place them in the thread’s delmin buffer.
Grabbing a number of items from the head of the global priority queue can
be done efficiently if the queue is implemented with a “fat” skip list that can
store multiple items per node; see Fig. 1. Thus, activating contention avoidance
for DelMin operations reduces the contention on the head of the global pri-
ority queue by reducing the number of accesses by up to k − 1 per k DelMin
operations.

Contention avoidance for Insert operations is activated for a particular
thread when contention during Insert operations is frequent for that thread.
The Insert contention avoidance reduces the number of inserts to the global
priority queue by buffering items from a bounded number of consecutive Insert
operations in the insert buffer. When at least one of the delmin buffer and
insert buffer is non-empty, the DelMin operation takes the smallest item from
these buffers and returns it.

3 Implementation

We will now give a detailed description of CA-PQ’s implementation. First we will
describe the implementation of the two operations, Insert and DelMin. We will
then describe the general requirements for the global priority queue component.

3.1 Operations

The Insert Operation. Pseudocode for this operation can be seen in Algo-
rithm1. Items are inserted in the global priority queue (line 3) when contention
is low or when the number of items in the thread-local insert buffer equals its
capacity. By initially setting the buffer’s capacity to zero and setting it to a

The Contention Avoiding Concurrent Priority Queue 317

non-zero value when Insert operations frequently observe contention, these two
tests are folded into one; cf. line 2.

Algorithm 1. The Insert operation
1 Function Insert (pq, item)
2 if pq.local.insert buffer.size == pq.local.insert buffer.capacity then
3 contended = GInsert(pq.global pq, item);
4 if contended then pq.local.insert contention += INS CONT ;
5 else pq.local.insert contention -= INS UNCONT ;

6 else
7 InsertBufferInsert(pq.local.insert buffer, item);
8 end

The Insert operation on the global priority queue, called GInsert, returns
true if it observed contention during the operation and false otherwise. To esti-
mate the contention level for Insert operations in the priority queue, the
thread local counter insert contention is incremented by INS CONT if con-
tention was detected and is decremented by INS UNCONT if no contention
was detected (lines 4–5). In our implementation, INS CONT is equal to two and
INS UNCONT is equal to one. As we will soon see, these values ensure that
adaptation to contention in Insert operations will eventually happen if more
than one out of two Insert operations are contended for a sufficiently long
period of time. Finally, if the thread local insert buffer has a size that is less than
its capacity, the item is inserted into the insert buffer (line 7).

The DELMIN Operation. Pseudocode for this operation is displayed in Algo-
rithm2. If at least one of the thread local buffers is non-empty, the operation
removes the smallest item from these buffers (lines 4 and 7). If an item is removed
from the insert buffer, the buffer’s capacity is also decreased by one (line 6). This
is done to ensure that DelMin will fetch the minimum item from the global
priority queue at least once in a given number of DelMin operations performed
by a particular thread.

If both buffers are empty, the GDelMin operation is called on the global pri-
ority queue (line 9). This operation also returns an indication whether contention
was detected during the operation in addition to the removed minimum item (if
contention avoidance is turned off) or a buffer with the removed minimum items
(if contention avoidance is turned on). (If the global priority queue is empty a
special empty pq item is returned.) After the call to GDelMin, we record the
contention by adjusting the delmin contention variable (lines 10–11) in a similar
way as was done for the insert contention variable in the Insert operation. In
our implementation, the constants DELMIN CONT and DELMIN UNCONT
are set to 250 and 1 respectively. These values ensure that adaptation to con-
tention in DelMin operations will happen if more than one out of 250 DelMin
operations are contended during a long period of time.

We then proceed to check if delmin contention has reached one of the
thresholds for turning on or off contention avoidance on the global prior-
ity queue (lines 12–17). The thresholds called DELMIN RELAX LIMIT and
DELMIN UNRELAX LIMIT in the pseudocode are in our implementation set
to 1000 and −1000 respectively. Calling TurnOnDelMinRelaxation on the

318 K. Sagonas and K. Winblad

Algorithm 2. The DelMin operation
1 Function DelMin (pq, item)

2 switch SelectBufferWithSmallestKey(pq.local.delmin buffer, pq.local.insert buffer) do

3 case pq.local.delmin buffer do

4 return DelMinBufferDelMin(pq.local.delmin buffer);

5 case pq.local.insert buffer do

6 pq.local.insert buffer.capacity -= 1;

7 return InsertBufferDelMin(pq.local.insert buffer);

8 otherwise do

9 contended, ret val = GDelMin(pq.global pq);

10 if contended then pq.local.delmin contention += DELMIN CONT ;

11 else pq.local.delmin contention -= DELMIN UNCONT ;

12 if pq.local.delmin contention > DELMIN RELAX LIMIT then

13 TurnOnDelMinRelaxation(pq.global pq);

14 pq.local.delmin contention = 0;

15 else if pq.local.delmin contention < DELMIN UNRELAX LIMIT then

16 TurnOffDelMinRelaxation(pq.global pq);

17 pq.local.delmin contention = 0;

18 end

19 if pq.local.insert contention > INS RELAX LIMIT then

20 pq.local.insert buffer.max size = MAX INSERT BUFF SIZE;

21 pq.local.insert contention = 0;

22 else if pq.local.insert contention < INS UNRELAX LIMIT then

23 if pq.local.insert buffer.max size > 0 then

24 pq.local.insert buffer.max size -=1;

25 pq.local.insert contention = 0;

26 end

27 pq.local.insert buffer.capacity = pq.local.insert buffer.max size;

28 if ret val is a buffer then

29 pq.local.delmin buffer = ret val;

30 return DelMinBufferDelMin(pq.local.delmin buffer);

31 else return ret val ;

32 end

33 end

global priority queue will cause subsequent GDelMin calls to delete up to k
smallest items from the global priority queue and return these items in a buffer.
Doing the reverse call, TurnOffDelMinRelaxation will cause subsequent
GDelMin calls to only remove and return the smallest item.

We then go on to check if one of the thresholds for changing the contention
avoidance for Insert operations has been reached (lines 19–25). In our imple-
mentation, the constants INS RELAX LIMIT and INS UNRELAX LIMIT are
set to 100 and −100 respectively. Adapting to high contention for Insert
operations is done by setting the max size value of the insert buffer to the
constant MAX INSERT BUFF SIZE (500 in our implementation) on line 20.
When Insert operations experience low contention we decrease max size of the
insert buffer by one (line 24). We set the capacity of the insert buffer to the
max size value of the insert buffer on line 27.

Note that adaptation to contention in Insert operations is done by only
doing thread-local modification while adaptation to contention in DelMin oper-
ations is done by changing the state of the global component. One could also
implement DelMin contention avoidance by only changing a thread local flag if
the global priority queue exposes separate operations for deleting a single item
and a buffer of items. We expect this alternative design choice to work equally
well.

The Contention Avoiding Concurrent Priority Queue 319

At the end of DelMin’s code, we check if the value returned by GDelMin
is a buffer of items or a single item (line 28). If the value is a buffer, we set it to
be the thread local delmin buffer and return an item from that buffer. Otherwise,
if it is a single item, we simply return that item (line 31).

3.2 Global Concurrent Priority Queue Component

The requirements for the global priority queue are as follows. First, it should
support linearizable Insert and DelMin operations. Second, it should also
support a linearizable bulk DelMin operation that returns up to the k smallest
items from the priority queue in a buffer. Furthermore, all these operations need
to be able to detect contention so as the contention avoidance mechanisms are
activated. With these properties fulfilled, it is easy to see that the interface used
for the global priority queue in Algorithms 1 and 2 can be implemented. The
ability to turn off and on DelMin relaxation can be implemented by associating
a flag with the global priority queue. The GDelMin operation simply needs to
check this flag and use the bulk DelMin functionality to return a buffer of items
if the flag is on, or use the single-item DelMin functionality to return a single
item otherwise.

For the DelMin contention avoidance to work as intended, it is crucial that
the bulk DelMin operations can remove and return the k smallest items much
faster than doing k single-item DelMin operations. To make this possible, our
implementation of the global concurrent priority queue makes use of a skip list
data structure with fat nodes; see Fig. 1. As every skip list node in our imple-
mentation can store up to k items, the bulk DelMin operation can remove and
return up to k smallest items with as little work as the single-item DelMin
operation needs to do in the worst case. A k value that is equal to or greater
than the number of threads should be enough to eliminate most of the contention
in DelMin. Our implementation uses 80 as the value of k.

4 Properties

We will now state the guarantees provided by the CA-PQ. As some applications
might not need the contention avoidance for both Insert and DelMin, we will
first state and prove the guarantees of the CA-PQ variants derived by turning
these features off.

First note that turning off the contention avoidance for both Insert and
DelMin results in a strict priority queue. We call the data structure that results
from turning off contention avoidance for Insert operations CA-DM. To state
the guarantee provided by CA-DM we first have to define a particular time
period.

Definition 1 (Time period TP(k,Dn)). Let an integer k ≥ 1, D1, . . . , Dn be
the sequence of DelMin calls performed by a thread T on a priority queue Q,
and let j = max(1, n− k + 1). Then TP (k,Dn) is the time period that starts at
the time Dj is issued and ends when the call Dn returns.

320 K. Sagonas and K. Winblad

We can now state and prove the guarantee that the CA-DM priority queue
provides.

Theorem 1 (CA-DM DELMINGuarantee).The itemreturned bya DelMin
call D on a CA-DM priority queue Q is guaranteed to be among the k ·P smallest
items that have been inserted into the priority queue at some point in time t
during the time period TP (k,D), where P is the number of threads that are
accessing Q and k is the maximum size of the buffer returned by the global
priority queue that is used by Q.

Proof: Let t be the linearization point of the latest GDelMin call G (Algo-
rithm2, line 9) performed by the issuer of D before D’s return. Note that t must
then be in the time period TP (k,D) as the number of items in the delmin buffer
decreases by one in every DelMin call that does not get its item directly from
the global priority queue. All items in the buffer returned by the call G are
among the k · P smallest items in Q at the time of G’s linearization point. To
see this, note that no items in the global priority queue were smaller than the
at most k items returned by G at G’s linearization point and no more than
(P − 1) · k items can be buffered in the delmin buffers of other threads. ��

We call the priority queue derived from CA-PQ by turning off contention
avoidance for DelMin CA-IN. The guarantee provided by CA-IN is arguably
even weaker than that provided by CA-DM.

Theorem 2 (CA-IN DELMIN Guarantee). At least one in every m + 1
DelMin operations performed by a thread is guaranteed to be among the m ·
(P − 1) + 1 smallest items in the CA-IN priority queue Q at some point in time
during the operation’s execution, where m is equal to MAX INSERT BUFF SIZE
and P is the number of threads that are accessing Q.

Proof: At least one call D in every m+ 1 DelMin calls returns an item I from
a GDelMin call G since the capacity of the insert buffer is decreased when
items are removed from it (Algorithm 2, line 6). This item I must be among the
m · (P − 1) + 1 smallest items in the priority queue at the linearization point of
G since there can be at most m · (P − 1) smaller items in the insert buffers of
other threads. ��

The guarantee provided by a CA-PQ that has both contention avoidance for
DelMin and Insert operations turned on is very similar to that of CA-IN.

Theorem 3 (CA-PQ DELMIN Guarantee). At least one in every m + 1
DelMin operations performed by a thread is guaranteed to be among the m ·
(P − 1) + 1 smallest items in the CA-PQ priority queue Q at some
point in time during the operation’s execution, where m is equal to
k+MAX INSERT BUFF SIZE, k is the maximum size of the buffer returned
by GDelMin, and P is the number of threads that are accessing Q.

Proof: The proof is very similar to the proof of Theorem2. The difference is that
there is now also the delmin buffer so that m becomes slightly larger. ��

The Contention Avoiding Concurrent Priority Queue 321

All priority queue variants mentioned above also support the property speci-
fied in the theorem below which is important for the termination of many parallel
algorithms that employ concurrent priority queues.

Theorem 4 (DELMIN Deletes All). Let S be the set of all threads that have
issued operations on a priority queue Q and t be a specific point in time after
which no Insert operations are issued. If all threads in S issue a DelMin
operation after time t and all get the special item empty pq as results, then all
items that have been inserted into Q have been deleted and returned by DelMin
operations.

Proof: An item that is inserted into Q and has not yet been deleted is stored in
the global priority queue or in one of the thread-local buffers of threads in S.
It is easy to see that all these locations must be empty if all threads in S issue
DelMin operations after t and get the empty pq symbol as return value. ��

5 Our Implementation of the Global Priority Queue
Component

Our global concurrent priority queue is constructed from a contention adapting
search tree (CATree) [14] using a skip list with fat nodes as backing data struc-
ture. We refer to the original CATree paper for a complete description of the
CATree data structure and will here just briefly describe how we extended it to
support the DelMin operations. Fig. 2 shows the structure of a CATree. The

Fig. 2. The CATree data struc-
ture.

routing nodes are used to find the location of a
specific item in the data structure. The actual
items stored in the data structure are located
in the sequential data structure instances in
the last layer. These sequential data structures
are protected by locks in the base nodes where
they are rooted. Base nodes can be split and
joined with each other based on how much
contention is detected in the base node locks.
As the smallest items in a CATree are always
located in the leftmost part of the tree when
depicted as in Fig. 2, the DelMin operation
first finds and locks the leftmost base node in
the CATree. When the leftmost base node is empty it is joined together with
its neighbor using the CATree algorithm for low contention adaptation until the
leftmost base node is non-empty1. As depicted in Fig. 1, we reuse the fat skip
list nodes as delmin buffer and use a binary heap as insert buffer.
1 The only difference between the low-contention join function described in the CATree

paper [14] and the one used to create a non-empty leftmost base node is that the
latter uses a forcing Lock call instead of a TryLock call to lock the neighbor.
(This cannot cause a deadlock since no other code issues forcing lock calls in the
other direction).

322 K. Sagonas and K. Winblad

Traditional locks are well known to give poor performance when they are
contended [3,6,9]. Therefore, to improve the performance when base node locks
in the CATree are contended we use a locking technique that we call delegation
locking but that is also called combining in other places [3,6]. More specifically
we use a delegation locking technique, called queue delegation locking [9], when
locking base nodes. Delegation locking lets the current lock owner thread help
other threads perform their critical sections that are waiting to acquire the lock.
By doing so the throughput of critical sections executed on a particular lock
can be substantially increased because the current lock owner can keep the data
protected by the lock in its private processor cache while helping critical sec-
tions from other threads. Queue delegation locking has the additional benefit
compared to other locking algorithms that critical sections for which the issuing
threads do not need any return value (such as the Insert operation) can be
delegated to the lock owner without any need to wait for the actual execution of
the critical section. Linearizability is still provided as the order of the delegated
operation is maintained by a queue. Contention in the operations is detected by
checking whether another thread is holding the base node lock that the operation
needs to acquire.

Memory Management. The only nodes of the data structure that need
delayed memory reclamation in our CA-PQ implementation are the routing
nodes and base nodes in the CATree component. These nodes can be read by
multiple threads concurrently so it is unsafe to reclaim these nodes before it is
certain that no threads can hold references to them. To reclaim these nodes we
use Keir Fraser’s epoch based reclamation [4].

6 Related Work

Early attempts to construct concurrent priority queues, e.g. [7], were based on
heap data structures. More recent concurrent priority queues have often been
based on concurrent skip lists as empirical evidence suggests that this design is
more scalable than the heap based design [16]. Both the priority queue by Shavit
and Lotan [16] and the one by Sundell and Tsigas [17] handle DelMin by first
doing a logical deletion of the node to be deleted by marking it before it is phys-
ically removed from the skip list. The skip list based priority queue by Lindén
and Jonsson [12] (called Lindén from here on) also uses logical deletion before
physical removal but achieves better performance and less memory contention
by physically removing a prefix of logically deleted nodes in one go, in con-
trast to previous algorithms that physically remove one node at a time. Calciu
et al. have explored the idea of using combining and delegation to speedup the
DelMin operation. Their data structure [2] uses a sequential skip list managed
by a server thread for small keys and a concurrent skip list for larger keys to
exploit the parallelism of Insert operations. In a very recent work, Zhang and
Dechev have proposed a concurrent priority based on multi-dimensional linked
lists [21]. We consider all the above works on concurrent priority queues orthog-
onal to the main contribution of this paper which is a priority queue with more
relaxed semantics.

The Contention Avoiding Concurrent Priority Queue 323

Concurrent priority queues with relaxed semantics have also been proposed.
The MultiQueue data structure by Rihani et al. [13] is created from C · P
sequential priority queues protected by locks, where C is a constant and P
is the number of threads using the priority queue. An Insert operation in a
MultiQueue selects one of the sequential queues at random and inserts in that
queue. MultiQueue’s DelMin operation checks the minimum item in two of
the sequential priority queues selected at random (without acquiring locks) and
does the actual DelMin in the one of these priority queues with the smallest key
if that priority queue is successfully locked with a try-lock call. The process is
retried if the try-lock call fails. The MultiQueue does not provide any guarantee,
but an experimental evaluation suggests that DelMin often returns an item with
one of the smallest keys in the priority queue [13].

Alistarh et al. have created the SprayList which is a relaxed priority queue
based on the skip list data structure [1]. SprayList relaxes the result of the
DelMin operation by “spraying” into a random position close to the head of
the skip list. The SprayList guarantees that the item returned by DelMin is
among the O(P log3 P) smallest items with high probability, where P is the
number of threads.

For scheduling purposes in a task-based parallel programming framework,
Wimmer et al. have created relaxed priority queues that have different trade-
offs between quality of the items returned by DelMin and scalability [20]. Of
these, the queue that seems to perform best is called Hybrid k. A later pub-
lication, also by Wimmer et al., introduced the k-LSM priority queue [19].
k-LSM provides the structural guarantee that no more than k · P items might
be skipped by DelMin, where k is a configurable parameter and P is the num-
ber of threads. We will here focus on the k-LSM priority queue rather than
Hybrid k because the implementation of the latter is optimized for a particu-
lar task-based parallel programming framework, making it difficult to compare
with, and experiments by Wimmer et al. suggest that k-LSM performs slightly
better than Hybrid k [19]. The k-LSM data structure is based on so called log-
structured merge-trees (LSM) and consists of a thread local LSM component
and a shared relaxed LSM component. Insert inserts the item to the thread
local LSM component. If this results in a block larger than a certain size, that
block is merged into the shared LSM. DelMin compares one of the k smallest
items in the shared LSM with the smallest item from the local LSM and tries to
remove the smallest of those items.

All the above relaxed priority queues (MultiQueue, SprayList, Hybrid k and
k-LSM) utilize relaxations to avoid contention in DelMin operations. How-
ever, in contrast to CA-PQ, they all access non-thread-local memory in every
DelMin operation. As this shared memory is written to by many threads fre-
quently, many of these accesses induce cache misses. This can be expensive as
it causes the core executing the thread to wait for data to be transferred from
remote locations and causes contention in the memory system. On big multi-
cores, especially on NUMA machines with several processor chips, getting data
from remote locations can be several orders of magnitude more expensive than

324 K. Sagonas and K. Winblad

getting data from the same processor’s cache. There are two reasons why CA-PQ
can avoid the frequent remote memory accesses in DelMin. Firstly, its DelMin
fetches a block containing several items from the global priority queue, i.e., it
gets several items for a single cache miss (because several items can be stored
on the same cache line). Secondly, the guarantees provided by CA-PQ are more
permissive than those provided by SprayList, Hybrid k and k-LSM, which makes
it possible to allow CA-PQ’s DelMin to often be performed without checking
if other threads have changed the data structure.

Another major difference between CA-PQ and other relaxed priority queues
is that CA-PQ only activates relaxations when this is motivated by detected
high contention. As we will see in the next section, this makes it possible for
CA-PQ to achieve high performance in a wide range of scenarios.

7 Experimental Evaluation

We evaluate the scalability and performance of CA-PQ and the variants CA-IN
(Insert contention avoidance turned off), CA-DM (DelMin contention avoid-
ance turned off) and CATree (the global priority queue component of our algo-
rithm) in a parallel single-source shortest-path (SSSP) benchmark. The bench-
mark uses a parallel version of Dijkstra’s algorithm using a concurrent priority
queue; see Tamir et al. [18]. We note that we avoid the node locks used in this
parallelization by updating the node weights in compare-and-swap loops. CA-
PQ does not have a DecreaseKey operation that changes the key of an item
in the priority queue — such is also the case for the other concurrent priority
queues that we compare against. Changing the weight of a key in the priority
queue is therefore implemented by an Insert operation and the other refer-
ence to the node that might exist in the queue is lazily removed when it is
deleted by a DelMin operation. As noted by Tamir et al. [18], this lazy removal
scheme can induce some overhead over having a concurrent priority queue with
a DecreaseKey operation. To get a hint of how big this overhead might be, we
include the sequential version of Dijkstra’s algorithm that uses DecreaseKey
with a Fibonacci Heap [5] as priority queue as a base line. The overhead of
not having DecreaseKey operation seems to be quite low in many cases as
the sequential Dijkstra has similar performance as the parallel SSSP algorithm
using CA-PQ when using just one thread.

Data Sets. We include results from running the SSSP benchmark on the
California road network (called RoadNet from now on) and a social media net-
work obtained from LiveJournal (called LiveJournal from now on) [11]. RoadNet
is a relatively sparse network containing 1.95 million nodes connected to the
source involving 5.5 million edges. LiveJournal is a more dense network contain-
ing 4.4 million nodes connected to the source and 68 million edges. As we do
not have any natural weights for these networks we used two versions of these
networks. A weight of one on all edges is used in the unweighted version. In the
weighted version, a random weight from the range [0, 1000] is assigned to each
of the edges.

The Contention Avoiding Concurrent Priority Queue 325

Data Structures and Parameters. We compare our priority queues to Lindén
[12], MultiQueue [13], SprayList [1] and k-LSM [19]. Section 6 contains a descrip-
tion of these data structures. All implementations are those provided by their
inventors except the MultiQueue which is implemented by the authors of k-LSM.
We use the default parameters for SprayList as configured by its authors because
the SprayList was evaluated in a very similar benchmark to ours [1]. To find a
good value for the C parameter used by the MultiQueue, we ran the benchmarks
with C equal to 2, 4, 8, 16, 32 and 64. We found that the values 8 and 16 gave
the best performance and the difference between these two parameters was very
small in all cases. We therefore use MultiQueue with C = 16. Similarly, to find
a good value for the k parameter used by k-LSM we ran the experiments with
k equal to 2n for all integer values of n from 8 to 17. From this, we found that
k = 210 = 1024 gave the best performance on RoadNet and that k = 216 = 65 536
generally gave the best performance on LiveJournal. We therefore show k-LSM
with both k = 1024 (klsm1024) and k = 65 536 (klsm65536).

Methodology. We show results from a machine with four Intel(R) Xeon(R) E5-
4650 CPUs (2.70 GHz, turbo boost turned off), eight cores each (i.e. the machine
has a total of 32 physical cores, each with hyperthreading, which makes a total
of 64 logical cores). The machine has 128 GB of RAM and is running Linux
3.16.0-4-amd64. We compiled the benchmark which is written in C and C++
with GCC version 5.3.0 and used the optimization flag -O3. We have verified
our results by running the experiments on a machine with four AMD Opteron
6276 (2.3 GHz, in total 64 cores)2. Threads are pinned to logical cores so that
the first 16 threads in the graphs run on the first processor chip, the next 16
on the second, and so on. We ran each measurement three times and show the
average and error bars for the minimum and maximum in the graphs. As a sanity
check we compared the calculated distances against the actual distances after
each run.

Results. The results from the SSSP benchmark are displayed in Fig. 3. The
graphs show throughput N ÷ T on the y-axis, where N is the number of nodes
in the graph and T is the execution time of the benchmark in µs. We show
throughput rather than time because this makes the scalability behavior easier
to see. (The poor performance of some data structures would otherwise make
the results unreadable.) The dashed black line shows the performance of the
sequential Dijkstra’s algorithm with a Fibonacci heap. The red line with legend
Lock shows the performance of a binary heap protected by a lock.

RoadNet. Let us first look at the results for the RoadNet graphs shown in
Fig. 3a and b. With RoadNet, none of the data structures manages to provide
much increase in performance when more than one processor chip is utilized
(after 16 threads). However, in the scenario with edge weight range [0, 1000],
CA-PQ archives a speedup of 11 compared to its single thread performance

2 Results from the AMD machine and from additional scenarios as well as the
benchmark code are available at http://www.it.uu.se/research/group/languages/
software/ca pq.

http://www.it.uu.se/research/group/languages/software/ca_pq
http://www.it.uu.se/research/group/languages/software/ca_pq

326 K. Sagonas and K. Winblad

Fig. 3. Graphs showing results from the SSSP experiment. Throughput (# nodes in
graph ÷ execution time (µs)) on the y-axis and number of threads on the x-axis. The
black dashed line is the performance of sequential Dijkstra’s algorithm with a Fibonacci
Heap.

when running on 16 threads (remember that these 16 threads run on 8 cores with
hyperthreading). It is clear from the worse performance of CA-DM (Insert con-
tention avoidance turned off) and CA-IN (DelMin contention avoidance turned
off) that both contention avoidance mechanisms are beneficial to achieving this
performance in the relatively sparse RoadNet graph that gives high contention
both in Insert and DelMin operations. The data structure that achieves the
second best performance after CA-PQ in these scenarios is klsm1024. It is inter-
esting to note that klsm1024 also buffers inserted items in a thread local storage.

To investigate the reason for the performance further, we show number of
L2 cache misses (measured with hardware counters) divided by the number of
nodes in the graph in Table 1. As the L2 cache is private to a core on this
processor, more L2 cache misses is an indication of worse memory locality and
more accesses to memory modified by several thread. Unsurprisingly, CA-PQ
has the least amount of L2 cache misses in the RoadNet scenarios due to its
cache friendly design.

In the sequential version of Dijkstra’s algorithm each node is processed
exactly once. In the parallel version, this is not always the case as the node with
the smallest distance estimate is not always processed first. We can therefore

The Contention Avoiding Concurrent Priority Queue 327

Table 1. Waste and cache misses (64 threads). The column time shows execution
time in seconds, waste shows the number of nodes unnecessarily processed and the
column $miss shows number of L2 cache misses divided by number of nodes in the
graph.

Graph RoadNet LiveJournal

Weights 1 [0,1000] 1 [0,1000]

Time Waste $miss Time Waste $miss Time Waste $miss Time Waste $miss

CA-PQ 0.07 1730k 7.8 0.09 1927k 12.2 0.63 924k 30.1 0.47 353k 95.4

CA-RM 0.43 7k 14.8 0.38 11k 34.6 0.98 8 32.2 0.47 2k 94.1

CA-IN 0.14 2264k 8.2 0.48 2030k 27.3 1.25 1768k 37.0 2.34 714k 110.5

MultiQ. 0.18 8k 32.2 0.19 58k 36.1 0.56 39 63.4 0.93 2k 112.2

kl.1024 0.20 2498k 12.4 0.19 2222k 15.8 161.39 174 33980.3 7.63 3k 2538.5

kl.65536 0.44 28411k 82.5 0.42 26115k 105.6 4.76 688k 601.7 5.48 1857k 1192.7

Spray 2.51 134k 461.0 0.27 230k 88.3 8.33 41 314.9 2.39 7k 755.5

CATree 0.68 9 20.9 0.71 36 40.2 1.59 1 40.8 2.27 5 107.5

Lindén 3.39 206 108.4 1.01 252 114.6 7.96 21 142.6 4.64 0 353.1

Lock 7.06 210 39.7 11.02 490 59.0 17.01 54 62.4 49.73 86 163.4

use the number of nodes processed by the parallel algorithm as a measurement
of how precise the DelMin operation is (how far from the actual minimum
the returned items are). In the column “waste” of Table 1 we show the number
of nodes processed minus the number of nodes in the graph. We see that the
strict priority queues CATree, Lindén and Lock all do a small amount of wasted
work in both the unweighted and the weighted scenarios. CA-PQ, CA-IN and
the k-LSMs all waste quite a lot of work considering that RoadNet only has
1.95 million nodes. However, as the contention on the priority queue is high in
this scenario it can be less wasteful for the priority queue to be less precise in
order to reduce the contention inside the priority queue. As CA-PQ only acti-
vates the relaxed semantics when high contention is detected, one can see it as
opportunistic in the sense that it lowers precision and risks more wasted work
in the application only when time and resources would be wasted anyway due
to contention.

The MultiQueue achieves very good precision according to the waste estimate
but as each operation accesses at least one of the shared priority queues, it suffers
from bad memory locality; see Table 1. Since communication between processor
chips is more expensive than communication within the chip, the bad memory
locality of MultiQueue becomes apparent first when more than one NUMA node
is utilized; see Fig. 3a.

LiveJournal. We now go on to discuss the results from the graph LiveJour-
nal that can be seen in Fig. 3c and d. As the LiveJournal graph is relatively
dense there will be many priority queue items with the same distance (key)
while running the parallel SSSP. This is especially true in the unweighted case
(Fig. 3c). This can lead to a lot of contention in Insert operations as the skip
list based data structures (CA-*, SprayList, Lindén and CATree) all try to insert

328 K. Sagonas and K. Winblad

an item with the same distance in the same location. The MultiQueue however
is excellent in avoiding contention and achieves the best performance in the
unweighted LiveJournal (Fig. 3c). However, MultiQueue is tightly followed by
CA-PQ as CA-PQ is also good at avoiding contention with its contention avoid-
ance mechanisms and has good memory locality; see Table 1.

In the weighted LiveJournal scenario (Fig. 3d), where the contention in
Insert operations is not as high as in the unweighted case, CA-PQ and CA-DM
are by far outperforming the other data structures. Some hints about the reason
for this is given in Table 1: one can see that CA-PQ and CA-DM induces less L2
cache misses than the other data structures. However, we want to stress that the
number of L2 cache misses is a course-grained measurement of memory locality.
The cost of cache misses can differ depending on whether it is a read miss or
write miss and whether the miss causes communication outside the chip or not.

From Table 1, we see that CA-DM generally does relatively little wasted
work while CA-PQ is more wasteful which is natural as CA-PQ provides weaker
guarantees than those provided by CA-DM. This also explains why CA-DM
performs better than CA-PQ by a very small amount for most thread counts in
the weighted LiveJournal scenario.

A Note on Denser Graphs. We have also run experiments on randomly gener-
ated graphs that are more dense than the graphs used in the experiments we just
presented. (Refer to http://www.it.uu.se/research/group/languages/software/
ca pq for the results of these experiments.) Dense graphs tend to give an access
pattern on the concurrent priority queue with many more Insert operations
than DelMin in the beginning of the run and then many more DelMin than
Insert in the end of the run. CA-PQ is efficient in these kinds of scenarios
because of its cache friendly DelMin operation. For example, CA-PQ’s execu-
tion time on a graph with 100 edges per node and edge weights from the range
[0, 1000] is only about one third of the execution time of the second best data
structure in this scenario (SprayList). The access pattern produced by denser
graphs also explains why k-LSM performs badly with the LiveJournal graphs.
When DelMin operations are frequent and Insert’s are less frequent, most
DelMin calls will take items from the shared LSM, which induces contention
and cache misses.

Usefulness of Adaptivity. To investigate the usefulness of adaptively turn-
ing on the contention avoidance techniques we have run experiments where con-
tention avoidance for both Insert and DelMin are always turned on (not shown
in graphs to not clutter them). We found the performance of this non-adaptive
approach to be similar to CA-PQ in scenarios where Insert contention is high,
but significantly worse in scenarios with low Insert contention (e.g. LiveJournal
weight range [0, 1000]). Thus, CA-PQ’s ability to adaptively turn off and on the
contention avoidance techniques is beneficial because it helps it perform well in
a multitude of scenarios without any need to change parameters.

The Global Component. Finally, we comment on the performance of the strict
priority queue that we developed as the global component of CA-PQ which is

http://www.it.uu.se/research/group/languages/software/ca_pq
http://www.it.uu.se/research/group/languages/software/ca_pq

The Contention Avoiding Concurrent Priority Queue 329

called CATree in Fig. 3 and Table 1. CATree beats the state-of-the-art lock-free
linearizable priority queue by Lindén by a substantial amount in several of the
scenarios and especially when more than one NUMA node is used. We attribute
this good performance to the good memory locality provided by delegation lock-
ing and the fact that we use fat skip list nodes which increase locality and reduce
the number of memory allocations.

A Note on Thread Preemption. In our benchmark setup, thread preemption
is uncommon since we use one hardware thread per worker thread. In setups
where threads often get preempted or stalled for some reason, CA-PQ’s buffering
of items can be problematic, as small items can be stuck for a long period of time
in the buffers of these threads. It remains as future work to investigate solutions
for this problem, perhaps using a stealing technique similar to the one proposed
by Wimmer et al. [19].

8 Concluding Remarks

We have introduced the CA-PQ concurrent priority queue that activates relaxed
semantics only when resources would otherwise be wasted on contention related
overheads and on waiting. CA-PQ has a cache friendly design and avoids accesses
to memory that is written to by many threads when its contention avoidance
mechanisms are activated, which contributes to its performance advantage com-
pared to related relaxed data structures.

It would be interesting to investigate other strategies for adapting the relax-
ation. For example, one can experiment with a more fine grained adjustment
of the relaxation than what is done in CA-PQ or consider relaxation based on
feedback about wasted work from the application. However, the investigation of
such strategies is left for future work.

References

1. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The spraylist: a scalable relaxed
priority queue. In: Proceedings of 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, pp. 11–20. ACM, New York
(2015)

2. Calciu, I., Mendes, H., Herlihy, M.: The adaptive priority queue with elimination
and combining. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 406–420.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45174-8 28

3. Fatourou, P., Kallimanis, N.D.: Revisiting the combining synchronization tech-
nique. In: Proceedings of 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2012, pp. 257–266. ACM, New York
(2012)

4. Fraser, K.: Practical lock-freedom. Ph.D. thesis, University of Cambridge Com-
puter Laboratory (2004)

5. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

http://dx.doi.org/10.1007/978-3-662-45174-8_28

330 K. Sagonas and K. Winblad

6. Hendler, D., Incze, I., Shavit, N., Tzafrir, M.: Flat combining and the
synchronization-parallelism tradeoff. In: Proceedings of 22nd Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures, SPAA 2010, pp. 355–364.
ACM, New York (2010)

7. Hunt, G.C., Michael, M.M., Parthasarathy, S., Scott, M.L.: An efficient algorithm
for concurrent priority queue heaps. Inf. Process. Lett. 60(3), 151–157 (1996)

8. Karp, R.M., Zhang, Y.: Randomized parallel algorithms for backtrack search and
branch-and-bound computation. J. ACM 40(3), 765–789 (1993)

9. Klaftenegger, D., Sagonas, K., Winblad, K.: Delegation locking libraries for
improved performance of multithreaded programs. In: Silva, F., Dutra, I., Santos
Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 572–583. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-09873-9 48

10. Kumar, V., Ramesh, K., Rao, V.N.: Parallel best-first search of state-space graphs:
a summary of results. In: AAAI, vol. 88, pp. 122–127 (1988)

11. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collec-
tion, June 2016. http://snap.stanford.edu/data

12. Lindén, J., Jonsson, B.: A skiplist-based concurrent priority queue with mini-
mal memory contention. In: Baldoni, R., Nisse, N., Steen, M. (eds.) OPODIS
2013. LNCS, vol. 8304, pp. 206–220. Springer, Heidelberg (2013). doi:10.1007/
978-3-319-03850-6 15

13. Rihani, H., Sanders, P., Dementiev, R.: Brief announcement: multiqueues: sim-
ple relaxed concurrent priority queues. In: Proceedings of 27th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2015, pp. 80–82. ACM,
New York (2015)

14. Sagonas, K., Winblad, K.: Contention adapting search trees. In: 14th International
Symposium on Parallel and Distributed Computing, ISPDC, pp. 215–224. IEEE
(2015)

15. Sanders, P.: Randomized priority queues for fast parallel access. J. Parallel Distrib.
Comput. 49(1), 86–97 (1998)

16. Shavit, N., Lotan, I.: Skiplist-based concurrent priority queues. In: Proceedings of
14th International Parallel and Distributed Processing Symposium, pp. 263–268
(2000)

17. Sundell, H., Tsigas, P.: Fast and lock-free concurrent priority queues for multi-
thread systems. In: 2003 Proceedings of 17th International Symposium Parallel
and Distributed Processing Symposium, p. 84, April 2003

18. Tamir, O., Morrison, A., Rinetzky, N.: A heap-based concurrent priority queue
with mutable priorities for faster parallel algorithms. In: Proceedings of Principles
of Distributed Systems: 19th International Conference, OPODIS 2015 (2015)

19. Wimmer, M., Gruber, J., Träff, J.L., Tsigas, P.: The lock-free k-LSM relaxed prior-
ity queue. In: Proceedings of 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, pp. 277–278. ACM, New York
(2015)

20. Wimmer, M., Versaci, F., Träff, J.L., Cederman, D., Tsigas, P.: Data structures
for task-based priority scheduling. In: Proceedings of 19th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, pp. 379–380. ACM,
New York (2014)

21. Zhang, D., Dechev, D.: A lock-free priority queue design based on multi-
dimensional linked lists. IEEE Trans. Parallel Distrib. Syst. 27(3), 613–626 (2016)

http://dx.doi.org/10.1007/978-3-319-09873-9_48
http://snap.stanford.edu/data
http://dx.doi.org/10.1007/978-3-319-03850-6_15
http://dx.doi.org/10.1007/978-3-319-03850-6_15

Evaluating Performance of Task and Data
Coarsening in Concurrent Collections

Chenyang Liu(B) and Milind Kulkarni

Purdue University, West Lafayette, IN 47907, USA
{Liu441,Milind}@purdue.edu

Abstract. Programmers are faced with many challenges for obtain-
ing performance on machines with increasingly capable, yet increas-
ingly complex hardware. A trend towards task-parallel and asynchronous
many-task programming models aim to alleviate the burden of parallel
programming on a vast array of current and future platforms. One such
model, Concurrent Collections (CnC), provides a programming para-
digm that emphasizes the separation of the concerns–domain experts
concentrate on their algorithms and correctness, whereas performance
experts handle mapping and tuning to a target platform. Deep under-
standing of parallel constructs and behavior is not necessary to write par-
allel applications that will run on various multi-threaded and multi-core
platforms when using the CnC model. However, performance can vary
greatly depending on the granularity of tasks and data declared by the
programmer. These program-specific decisions are not part of the CnC
tuning capabilities and must be tuned in the program. We analyze the
performance behavior based on tuning various elements in each collec-
tion for the LULESH application using CnC. We demonstrate the effects
of different techniques to modify task and data granularity in CnC col-
lections. Our fully tiled CnC implementation outperforms the OpenMP
counterpart by 3× for 48 processors. Finally, we propose guidelines to
emulate the techniques used to obtain high performance while improving
programmability.

Keywords: Concurrent collections · LULESH · Coarsening · Parallel
programming

1 Introduction

Developing scientific applications for high performance computing is no easy
task. Knowledge of the scientific domain is necessary in order to understand
the underlying methods and equations required to solve the problem. Correctly
mapping and distributing that algorithm onto modern parallel architectures is
another task in itself. Modern clusters are increasingly sophisticated, with var-
ious forms of heterogeneous and homogeneous parallelism while sporting com-
plex memory hierarchies. A recent emergence of high-level programming models
aim to alleviate the burden of parallel programming on a vast array of future
c© Springer International Publishing AG 2017
C. Ding et al. (Eds.): LCPC 2016, LNCS 10136, pp. 331–345, 2017.
DOI: 10.1007/978-3-319-52709-3 24

332 C. Liu and M. Kulkarni

platforms. These frameworks, based on the asynchronous many-task model, split
programs into smaller units of computation and associated dependencies, relying
on runtime schedulers to correctly synchronize task execution. The programming
model we explore is Concurrent Collections (CnC), which is a data-driven task-
parallel programming model designed to change the way we approach parallel
programming.

The key motivation for developing in CnC is its separation of concerns philos-
ophy. The concerns of the domain expert, whose knowledge is used to correctly
develop the method and algorithm, is separated from that of the performance
expert, whose strengths are in hardware and software optimization. Programs
using CnC are expressed as a partially-ordered set of computations with explic-
itly defined dependencies and seamlessly exploit parallelism by following the
constraints of data dependencies using a data driven approach. The CnC sched-
uler synchronizes data and maps computational tasks to the target hardware at
runtime. However, dynamic runtime mapping does not always yield high perfor-
mance for the following reasons. Excessive fine-grain-parallelism will overburden
the scheduler, while sub-optimal data movement leads to poor memory perfor-
mance. In this paper, we analyze and quantify the effects of high level changes
to the granularity of collection items in CnC programs. We use step fusion and
tag tiling to coarsening task parallelism, while data is tiled to match the larger
computation blocks. We perform these optimizations on the Livermore Unstruc-
tured Lagrange Explicit Shock Hydro (LULESH) mini-app, a hydrodynamics
code created in the DARPA UHPC program [1,2].

We present the LULESH application, starting from a minimally constrained
implementation, and analyze opportunities to reduce the fine-grained parallelism
through step fusion and tag tiling. Previous work has shown that these high
level techniques improves performance, but does not outperform simple inter-
faces such as OpenMP [3]. However, with homogeneous tiling of the coarsened
execution along with data items, our optimized LULESH implementation out-
performs the LULESH 2.0.3 with OpenMP directives by 3× on 48 cores for a
603 sized problem. Finally, we present a recommended method for writing CnC
programs using automation tools for setting up CnC directives for increased
programming productivity.

2 Concurrent Collections Model

In this section, we provide some background on the Concurrent Collections
(CnC) programming model. We discuss the methodology for writing programs
using CnC and explain how it achieves its philosophy of separation of con-
cerns, making it a compelling model to use for programming applications such as
LULESH. A more in-depth description of CnC can be found in previous works
[4,5].

Unlike traditional programming approaches, the CnC programming para-
digm avoids expressing control flow or parallelism in its program structure. CnC
replaces the need for threads and locks or parallel regions, instead satisfying

Evaluating Performance of Task and Data Coarsening 333

dependence constraints using a data-driven execution model to exploit paral-
lelism. This model is an attractive solution for a domain scientists, whose concern
is focused on algorithmic correctness and stability. In contrast, CnC employs var-
ious tuners for performance experts to best map certain aspects of an application
to target platforms. These tuners are often used for machine-specific optimiza-
tions such as memory locality, thread affinity, and resource mapping for distrib-
uted applications [6]. CnC is also compatible with a number of programming
languages including C/C++, Python, Scala, and Haskell, and also supports var-
ious back-end runtime frameworks such as Intel’s Thread Building Blocks (TBB)
library, Open Community Runtime (OCR), and CnC-HC for GPUs [7–9]. In our
research, we use the C++ interface along with the Intel runtime and TBB based
work-stealing scheduler for its robustness and tendency to outperform the other
schedulers.

There are three basic building blocks that constitute a CnC program. These
are referred to as the collections, whose purposes are to establish the compu-
tation steps being performed, tag and prescribe those step with unique identi-
fiers, and express which data are consumed and produced by computation steps.
Figure 1 depicts the three collections and their relationships along with a high
level overview of the data-driven execution in CnC.

Fig. 1. CnC program and execution

The three types of nodes in Fig. 1 correspond to the computation steps
(ovals), data items (rectangles), and control tags (triangles) in CnC. The step
collection contains stateless computation steps of a program which are dynam-
ically instantiated when control tags such as Ta prescribe those steps. This col-
lection of tags usually contains temporal/spacial data to assist with control flow
and proper execution for dynamic steps. Finally, the set of producer/consumer
dependencies comprises the (data) item collection. Data items follow dynamic
single-assignment, meaning they are immutable, but elements in the data (item)
collection may have multiple dynamic instantiations using unique handles, sim-
ilar to hashing key/value pairs.

334 C. Liu and M. Kulkarni

The step collection contains a program’s computational steps, similar to that
in traditional functions. However, these steps do not modify global data, and
input/output dependencies are handled by CnC constructs. Steps routines must
use get constructs to access/consume data (item collection) inputs and put con-
structs to write/produce updated values. Valid steps must perform all get oper-
ations at the start of each step and put operations may only occur after all gets
finish. Additionally, each step may only have a single associated tag, but a single
tag may prescribe multiple steps. Steps will execute when a tag has prescribed
it, and all data dependencies are ready from previous steps or the environment.

While step collections specify the computation on data, control tags dictate
which steps are dynamically created during runtime. Tags can prescribe steps at
any time in the program, whether it be dynamically during runtime or during
program initialization. However, once a step is prescribed, the CnC runtime will
ensure that step executes before program completion. In Fig. 1, StepA begins
execution only once tag Ta prescribes it and D is supplied by the environment.
Similarly, StepB will not begin executing until tag Tb prescribes it and StepA
finishes producing the data for E. The CnC program terminates once the last
prescribed step is finished executing.

Conceptually, the CnC model is ideal for programmability on parallel plat-
forms; however, shifting too much burden from the programmers to the run-
time may become prohibitive for performance. After investigation, we find that
expressing algorithms as steps that correspond to equations of a method does
not translate into an efficient CnC program, unless task and data granularity
are considered. Tuners are not sufficient because they mainly focus on machine-
specific optimizations, whereas opportunities to reduce the runtime overheads
rely on coarsening the task and data granularity, which depend on program
structure.

3 LULESH Overview

In this section, we describe the LULESH 2.0 application and the details of the
algorithm written in CnC. LULESH is a fully-featured hydrodynamics mini-app
developed by Lawrence Livermore National Laboratory that simulates the effect
of a blast wave in a physical domain by explicit time-stepping [1]. LULESH is a
complex algorithm which performs both computation and communication based
work, and optimizations in its code should apply similarly to other applications
which exhibit stencil-like and/or time-stepping behavior.

The LULESH 2.0 specification is physics code that operates on an unstruc-
tured hexahedral mesh with two centerings. The element centerings (center of the
hexahedral) handles data for thermodynamic and physical properties whereas
the nodal centerings (the corners of each hexahedra) track spatial and kinetic
values such as the position and velocity. The application begins by initializing a
3-dimensional hexahedral mesh and initializing components for each centering.
The time-stepping begins as a force is then applied at the origin, updating the
kinetic values for all the nodal centerings. Once nodal computation completes,

Evaluating Performance of Task and Data Coarsening 335

a series of element-centered computations occurs, updating the thermodynamic
variables for all elements. More in-depth papers describing the LULESH algo-
rithm can be found in previous work by Karlin et al. [1,2].

One key observation is that a great deal of computation is performed
each iteration for both centerings. Furthermore, several computations are
3-dimensional stencil calculations that require neighboring communication,
which due to the dual-centered scheme, creates unique challenges for optimiza-
tion. Additionally, there are producer/consumer relationships that span across
cycles of time-stepping, making data synchronization a likely bottleneck. These
unique characteristics present more opportunities for optimization unlike those
in traditional (AxPy) matrix computation.

3.1 The LULESH Domain Specification

Following the CnC philosophy of separation of concerns, we map the LULESH
algorithm as a high level graph, with computation steps and producer/consumer
dependencies labeled. This domain specification of LULESH represents how a
domain scientist might describe the algorithm, as seen in Fig. 2. Each node in
the graph represents a vital computational required by the algorithm, and the
edges clearly depict from which steps that data is being produced and consumed
for. We list and give a brief description of each computational step.

Fig. 2. High-level LULESH algorithm

– Compute Delta Time: Prior to every iteration, this checks all element data
from the previous iteration to determine the next time step value. Has a
separate tag space.

– Compute Stress/Hourglass Partial Force: Forces are calculated for each
element using data from the previous iteration’s elements.

– Force Reduction: Partial forces for every node are summed up from 8 neigh-
boring elements.

336 C. Liu and M. Kulkarni

– Compute Velocity/Position: Kinetic values are computed for each node
using previous nodal forces/positions/velocities.

– Compute Volume/Derivative/Gradient/Characteristic: Physical pro-
perties are computed for each element using kinetic values.

– Compute Viscosity Terms: Previous values and gradient data from 6 ele-
ment neighbors is used to calculate element viscosity terms.

– Compute Energy Terms/Time Constraints: Thermodynamics/Physics
terms are calculated for each element using previous element data.

Using the domain specification, a direct translation is made to the CnC spec-
ification, which is a textual representation describing the step, tag, and data
collections. The CnC specification defines and declares most of the high level
information inside the CnC context required in the program. Whereas step com-
putation and data are the norm in traditional programming, tags are concep-
tually different. In the context, tags are declared along with which steps they
prescribe. The number of prescribed steps and unique tag identifiers are not
required for declaration; this occurs during runtime. In the following sections,
we discuss our approach for optimizing this minimally constrained LULESH
implementation.

Our baseline uses a CnC specification identical to that in Fig. 2. Three sets
of tags are used: per iteration, per node centering, and per element centering.
Every step computation performs its required computation according to the
hydrodynamics method, but the concerns for task granularity are neglected. In
the following sections, we describe the coarsening techniques for each collection
and its performance impact, with the task coarsening based on previous work
[10]. However, that work was incomplete due to the lack of cohesive tiling with
the data item collection members, which we include.

3.2 Step Fusion

Step fusion is an effective way to serialize multiple steps in a CnC program with-
out altering the underlying computation. The decomposed LULESH algorithm
has steps that operate on node and element centerings. Steps that share the same
tag and operate on the same data can be legally fused, creating a new legal algo-
rithm, as seen in Fig. 3. However, this fusion is only legal when dependencies
from previous steps are guaranteed to be ready under serial execution, or if the
resulting fused step would require interleaving with another step (or itself) and
become a coroutine. Therefore, computation requiring updated neighbor data
such as ghost exchanges cannot be fused because the data will likely come from
a step prescribed from a separate tag. When steps are fused, data dependencies
that exist between original steps are serialized in the fused step. The set of pro-
ducer/consumer data dependencies from each step are joined and become the
new set of producer/consumer dependencies for the fused step.

Step fusion is applied to the CnC-LULESH program to reduce the number
of step collection items from 13 down to 5. Figure 3 highlights the step computa-
tions that get fused in the updated algorithm. The leftmost node, Compute Delta

Evaluating Performance of Task and Data Coarsening 337

Fig. 3. Fused LULESH algorithm (Color figure online)

Time requires its own space of tags per iteration due to the delta time calcula-
tion, but the other steps are either in the nodal iteration space (red) or element
iteration space (blue/green), and can be properly fused. We fuse the force com-
putations (green) which require element-wise computations for all elements, as
well as the spatial/kinetic steps which operate on nodes (red). Fusing the force
computation reduces parallelism, but it is helpful in our case where abundant
parallelism exists. Also, the bottom 6 element computations (blue) can only be
fused into 2 routines, due to ghost exchanges at the viscosity step, requiring data
dependencies computed from the prior gradient step from multiple neighboring
elements, thus preventing legal fusion.

3.3 Tag Tiling

Tag tiling is an optimization used to reduce number of step prescriptions dur-
ing execution. While a naive implementation would prescribe every step in the
domain specification for each node and element, such a brute-force distribution
would not scale to larger problem sizes. Tag tiling replaces multiple dynamic
step instances by coalescing those tags into fewer larger step computations that
span multiple tags. Similarly to step fusion, tag tiling serializes the computation
in the new step. The new tiled computation will likely require large temporary
working sets, as well as code modifications to reorder computation and optimize
for potential locality.

In the LULESH code, we successfully tile all steps corresponding to the nodal
and element-wise tags. Each tile contains a 3-dimensional spatial region that
consists of the nodes or elements. Other tile shapes were considered, but we use
hexahedral blocks to minimize the number of ghost regions when performing
stencil updates. Implementing tag tiling involved minor changes to the steps
themselves, as loops were introduced to handle additional work, step prescrip-
tions were reduced, and indices remapped for correctness.

338 C. Liu and M. Kulkarni

The effects of step fusion and tag tiling extend beyond just coarsening the
task parallelism of the CnC program. The modified collections result in dif-
ferent behavior. Step fusion serializes dependencies between steps, eliminating
synchronization overhead caused from obligatory put and get calls. For steps
with common consumer dependencies, fusing those steps reduces the total mem-
ory bandwidth during runtime. In LULESH, tag tiling also reduces total data
communication required by step computations when neighboring data is local
to a tile, and there is possible data reuse between neighbors. However, these
optimizations require moderate changes to the step routines.

3.4 Data Tiling

Following task coarsening through tag tiling and step fusion, we can perform data
tiling optimizations to coarsen data in the item collection. Although the total
number of algorithmic steps is reduced along with the number of tags prescrib-
ing those steps, the data elements are singleton values dynamically assigned by
the CnC runtime, requiring a multitude of gets for each element or node depen-
dency in the tiled step. Although straightforward, revamping the data layout of
a program is a time consuming task, and potentially prohibitive depending on
the specific application. For LULESH, we modify kernel routines and place calls
inside CnC steps which provide flexible parameters and future modifications.

Modifications to core computations aim to take advantage of data locality
and reduce communication using larger block sizes. We create tiled objects and
use pointers to reduce unnecessary data movement. However, the data is treated
as immutable, using get/put clauses to ensure proper synchronization and exe-
cution. During the node-to-element force computation, we overlap node tiles at
element interfaces, propagating communications across tiles in a wave front man-
ner, removing the need for two-way communication to update both tiles. Spatial
stencil computation is also optimized and packed to match tile-size, requiring
additional code changes. Despite underlying code changes, performance benefits
from data tiling cannot be overlooked, especially in LULESH where numerous
data items are used at every node/element and sometimes persist for multiple
iterations.

We note that without first performing tag tiling, and ideally step fusion,
data-tiling is not a viable optimization. Without coarsened tasks, blocked data
is not useful under the strict dynamic-single-assignment properties of CnC item
collections. In our experiments, we compare this final full-tiled implementation
of LULESH to our other progressions as well as OpenMP implementations dis-
tributed by LLNL.

4 Results

In this section, we evaluate the performance of our multiple configurations of the
CnC LULESH application for a problem size of 603. These include the domain

Evaluating Performance of Task and Data Coarsening 339

expert baseline, a fused-only, a tiled-only, a fused & tiled, and a fully-tiled imple-
mentation. Additionally, we benchmark the LLNL LULESH 2.0.3 implementa-
tion with OpenMP directives as a comparison representing a more traditional
parallel programming model. We measure their execution times running on our
shared-memory system running on up to 48 processors. The following implemen-
tations are tested:

Baseline - Our baseline expresses the LULESH application at its most
decomposed level, with minimal dependence constraints. There are 13 steps,
35 data items, and 3 tags which prescribe steps for every iteration, node, and
element in the mesh, requiring dynamic step instances for each, but allow any
order of scheduling. The item collections also correspond to individual nodes
and elements in the mesh. It follows CnCs principles of expressing a program as
partially ordered computations and its dependencies, but excessive fine-grained
parallelism plagues performance.

Fused Only - Using step fusion, we reduce the step collection size from 13
to 5. This minimizes the number of prescribed dynamic steps as well as several
consumer/producer data dependencies, reducing the item collection size by 5.
However, communication and scheduling overheads prevent scaling.

Tiled Only - Tiling coarsens the tag space by prescribing blocks of work
corresponding to a 3-dimensional spatial block instead of individual element,
improving scalability and performance by reducing scheduling overhead and
improving data locality. A tilesize of 10–15 is typically used for a problem size
of 60 when running on 48 processors. The CnC specification is identical to the
baseline.

Tiled and Fused - Both step fusion and tag tiling are applied at a high level.
In step routines, we attempt to exploit locality for data that is shared between
common neighbors, as well as reuse common data inputs from fused steps. These
transformations require some coding changes and extra bookkeeping for extra
variables and computation re-ordering to preserve step-like properties required
by every CnC step. The corresponding CnC specification contains 5 steps, 27
data items, and 3 tags which prescribe steps for every tiled block. However, the
data items still pertain to individual elements and nodes.

Data Tiled - The data tiled code incorporates the optimizations from step
fusion and tag tiling, as well as tailoring each task with its working data set.
A single get and put reads or writes a block of variables for each tiled compu-
tation step, albeit most steps still require multiple gets due to needing multiple
data sets from different sources. The underlying computations are rewritten to
accommodate the updated data structures. There are still 5 steps, 27 data items,
and 3 tags, but data items are of a tiled construct.

4.1 Evaluation

Experiments were run on mesh sizes up to size 603 for 30 iterations, ten times per
configuration, with minimum and maximum results excluded to reduce variance.
The hardware is a shared memory, AMD Opteron 6176 SE system configured
with four 12-core processors (48 cores total) per socket, each processor running

340 C. Liu and M. Kulkarni

at 2.3 GHz, with 512 KB per-core level 2 cache, and 12 MB level 3 cache. Table 1
shows the timing results per-iteration for a mesh of dimension 603 for each
configuration.

Table 1. LULESH iteration runtimes (sec): 603 sized mesh

Number of cores

1 2 4 8 16 32 48

Baseline 148.40 141.68 135.18 154.89 160.27 154.70 158.47

Fused only 101.36 95.281 72.273 58.508 60.269 59.995 64.056

Tiled only 19.147 18.919 10.539 5.7492 3.4986 2.4606 2.2643

Tiled and fused 11.767 11.725 6.5347 3.9041 2.3639 1.6201 1.3920

Data tiled 0.2268 0.2339 0.1242 0.0644 0.0360 0.0255 0.0277

OpenMp 0.6882 0.3784 0.2167 0.1219 0.0852 0.0814 0.0833

Fig. 4. Performance speedup

Figure 4 shows the performance speedups against the sequential baseline for
our 4 benchmarks of LULESH in CnC and the provided OpenMP code from
LLNL. For our CnC baseline, 603 dynamic step instances are created for each
minimally-constrained step, performing and scaling extremely poorly. Apply-
ing step fusion reduces the number of steps by more than half, and results in
a 1.6–2.5× speedup, with some improvement in parallel execution. Fusion by
itself does not impact when compared to tiling, which coarsens the computa-
tion to a much greater extent. Looking at the tiled only implementation, we see
speedups of 60× compared to sequential baseline when running on 48 threads.

Evaluating Performance of Task and Data Coarsening 341

Fig. 5. Scalability results

This improvement is a result of coarser grained steps, reducing the synchroniza-
tion required by the scheduler to instantiate the schedule so many step instances.
In our next code iteration, we combine both step fusion and tag tiling technique,
yielding greater performance, but it still does not surpass the performance from
OpenMP. Finally, our fully tiled LULESH code with step and data tiling gives
an additional order of magnitude of performance improvement over purely task
coarsening implementations (note logarithmic axis). Tiling the data collections
to correspond to the step collections When compared to similar processor config-
urations in OpenMP, our CnC code outperforms it by 3× for 32 and 48 processor.
We reason that the OpenMP implementation has a number of inefficiencies, such
as requiring barriers before each ghost exchange, as well as extra data movement
to temporary buffers when updating data for reduction operators using multiple
threads. Because CnC utilizes an asynchronous task-parallel model, it is more
efficient than synchronous models such as OpenMP. However, both programs
perform the exact same computation—the difference being the scheduling of
work and movement of data.

In Fig. 5 we observe almost no scaling from the non-tiled implementations,
whereas the tiled codes exhibit weak scaling, starting at 4 processors. How-
ever, CnC dedicates one processor exclusively for scheduling purposes, whereas
OpenMP does not since parallelism must be explicitly expressed by the pro-
grammer. As a result, OpenMP offers an advantage when a few processors are
used, but our fully-tiled code scales more strongly. Scaling beyond 32 processors
should be possible, but we reason our machine configuration skews results at
48 cores. In the next section, we discuss the lessons learned and recommend an
approach for achieving high performance while maintaining programmability.

342 C. Liu and M. Kulkarni

5 Lessons Learned

In our study, we focus on the LULESH application, starting from the domain
expert’s minimally constrained algorithm, and applied high level fusion and tiling
transformations on the program by altering the step, data, and tag collections
while preserving program semantics. However, the applicability of these coars-
ening techniques are not limited to LULESH. Multiple factors contribute to
performance improvement over the baseline LULESH code. From the perspec-
tive of code modifications, step fusion requires the fewest modifications, while
data tiling requires an overhaul of underlying data structures and computation
code. Both step fusion and tag tiling give substantial speedup, with tag tiling
provides the most benefit, but it was a prerequisite for implementing data tiling
in our application. Once the cohesive tiling implementation was produced, the
performance of LULESH using CnC begins to shine and greatly outperforms the
OpenMP implementation.

In hindsight, the most efficient method would have been to decompose the
algorithm, compose the computation steps for generalized tiled data, and then
map those computations to a high level domain specification that can be mapped
to a valid CnC specification. Such a process would generate similar results to
our final implementation while providing flexibility to apply step fusion and tag
tiling for various tile sizes. We recommend using the CnC translator to gen-
erate source code containing the CnC context and additional scaffolding step
code from the high level specification. This translator was recently developed by
the CnC Habenero research group to assist their work on declarative tuning [6].
However, it is not a tuning mechanism, but an automation tool provided for pro-
gramming portability. Following their syntax to describe the CnC specification,
which include all tags collections, item collections, steps, and their dependencies,
source files will be generated that for the context as well as skeleton code for
each step with predetermined get and put constructs. The programmer’s pri-
mary responsibility is to initialize their problem, set up their work routines, and
insert the proper computation for each step. In our final tiled LULESH imple-
mentation, the CnC code and work routines were decoupled in such a way. Using
this translator along with modular kernel routines, while keeping granularity in
mind, should improve productivity while preserving performance for future CnC
applications.

6 Related Work

Parallelizing applications requires programmers to be keenly aware of a range
of system level as well as algorithmic details in order to achieve performance
speedup. Managing this level of detail remains a difficult task, even for the most
experienced programmers. In addition, determining the best trade-off between
programming portability and performance is an active research area. Concurrent
Collections is just one approach that uses a model that takes advantage of asyn-
chrony and task-based parallelism to efficiently program parallel applications.

Evaluating Performance of Task and Data Coarsening 343

Task Parallel Models. Researchers have begun to shift toward task-parallel
and asynchronous many-task models to provide performance portability for high
performance scientific applications. In recent years, programming models such as
CnC, Charm++, Legion, OpenMP 4.0 have began a trend toward programmabil-
ity with task-parallel support, but none have matured into a one-size-fits all solu-
tion [3,11,12]. Legion avoids employing data-drive execution and instead focuses
on controlling execution via mapping interfaces, opposite to the CnC approach.
Charm++ offers similar constructs to CnC, but uses a message passing interface
for driving execution and offers fewer high level abstractions. OpenMP has long
been a recognized for its superior ease of parallel programmability, but has only
recently supported task-based parallelism. In our work, we show our CnC tuned
version of LULESH greatly outperforms older models such as OpenMP, but we
surmise performance would at least rival those of newer task-based models.

Tiling. Although tiling is a well-known technique, there are few practical
ways to obtain automatically tiled code. Researchers have long tried to obtain
coarse grained task parallelism since the early versions of OpenMP [13]. Other
approaches have employed polyhedral frameworks such as PLuTo to generate tile
loop iterations for matrix based computations, as seen in Kong et al. [14,15].
However, their approach creates coarsened computation for affine loops con-
tained matrix computations, unlike LULESH, which requires irregular control
flow using data dependencies from various computation methods. Another sim-
ilar work that has connections to both CnC and polyhedral compilation frame-
works is Data Flow Graph Representation (DFGR), an intermediate graph rep-
resentation for macro-dataflow programs [16]. In their work, Sbirlea et al. utilizes
the CnC specification to produce tiled code, but those tiles leverage OpenMP
directives to achieve parallelism.

7 Conclusion

In this paper, we discuss and evaluate the performance impact of coarsening
the step, tag, and data collections of the LULESH written in CnC. Although
Concurrent Collections offers intuitive parallel programming constructs, achiev-
ing good performance requires program tuning that does not directly follow
the separation of concerns philosophy. In our work, we demonstrate the effects
of task and step coarsening to improve the performance and scalability of the
LULESH application. We begin with a decomposed LULESH algorithm con-
sisting of minimally constrained computational steps. Step fusion and tag tiling
optimizations improve performance by coarsening the task-granularity of the
program, and creates the opportunity to additionally tile the data collection to
reduce data synchronization overheads. This fully tiled CnC LULESH code out-
performs OpenMP parallel implementations by 3× for up to 48 processors and
exhibits scalable performance. In our discussion, we present the CnC translator
as a means of generating CnC code to handle control flow and data synchro-
nization between steps. In the future, we hope to extend the functionality of the

344 C. Liu and M. Kulkarni

translator tool as well as provide better abstractions for handling task and data
coarsening in CnC.

CnC goes beyond just scientific applications. The CnC philosophy to app-
roach algorithms using collections is aimed to abstract layers of complexity of
hardware mapping and work scheduling at the thread level. Dedicated tuners
exist for that purpose of optimizing platform-specific hardware, but our con-
tribution is to identify the ideal CnC code to run on those machines. Naive
programmers will be quick to discredit the merits of CnC when they believe
the ease of programmability comes at the price of poor performance when their
application is minimally constrained. Instead, using the available CnC transla-
tor and an approach that takes task granularity in mind, one can achieve both
programmability and performance in CnC.

Acknowledgments. This research is supported by the Department of Energy under
contract DE-FC02-12ER26104. We would also like to thank Ellen Porter, Kath Knobe,
Nick Vrvilo, and Zoran Budimlic for their comments and feedback during discussions
regarding CnC.

References

1. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., et al.: Lulesh programming model
and performance ports overview. Technical report, Lawrence Livermore National
Laboratory (LLNL), Livermore, CA (2012)

2. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Livermore, CA,
August 2013

3. OpenMP C and C++ Application Program Interface (2002)
4. Budimlić, Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg,

J., Peixotto, D., Sarkar, V., Schlimbach, F., et al.: Concurrent collections. Sci.
Program. 18(3–4), 203–217 (2010)

5. Burke, M.G., Knobe, K., Newton, R., Sarkar, V.: Concurrent collections program-
ming model. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp. 364–371.
Springer, Heidelberg (2011). doi:10.1007/978-0-387-09766-4 238

6. Chatterjee, S., Vrvilo, N., Budimlić, Z., Knobe, K., Sarkar, V.: Declarative tuning
for locality in parallel programs. In: Proceedings of the 45th International Confer-
ence on Parallel Processing, ICPP 2016, August 2016, to appear

7. Sb̂ırlea, A., Zou, Y., Budimĺıc, Z., Cong, J., Sarkar, V.: Mapping a data-flow pro-
gramming model onto heterogeneous platforms. In: ACM SIGPLAN Notices, vol.
47, pp. 61–70. ACM (2012)

8. Habanero-Rice: Concurrent collections on OCR (2015)
9. Frank Schlimbach, I.C.: Intel concurrent collections for C++ for Windows and

Linux (2015)
10. Liu, C., Kulkarni, M.: Optimizing the LULESH stencil code using concurrent col-

lections. In: Proceedings of the 5th International Workshop on Domain-Specific
Languages and High-Level Frameworks for High Performance Computing, p. 5.
ACM (2015)

http://dx.doi.org/10.1007/978-0-387-09766-4_238

Evaluating Performance of Task and Data Coarsening 345

11. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis, p. 66. IEEE
Computer Society Press (2012)

12. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++, vol. 28. ACM (1993)

13. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel
processing on SMP using OpenMP. In: Midkiff, S.P., Moreira, J.E., Gupta, M.,
Chatterjee, S., Ferrante, J., Prins, J., Pugh, W., Tseng, C.-W. (eds.) LCPC
2000. LNCS, vol. 2017, pp. 189–207. Springer, Heidelberg (2001). doi:10.1007/
3-540-45574-4 13

14. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: Pluto: a practi-
cal and fully automatic polyhedral program optimization system. In: Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI 2008), Tucson, AZ. Citeseer, June 2008

15. Kong, M., Pop, A., Pouchet, L.N., Govindarajan, R., Cohen, A., Sadayappan, P.:
Compiler/runtime framework for dynamic dataflow parallelization of tiled pro-
grams. ACM Trans. Archit. Code Optim. 11(4), 61:1–61:30 (2015)

16. Sbirlea, A., Pouchet, L.N., Sarkar, V.: DFGR an intermediate graph representation
for macro-dataflow programs. In: 2014 Fourth Workshop on Data-Flow Execution
Models for Extreme Scale Computing (DFM), pp. 38–45. IEEE (2014)

http://dx.doi.org/10.1007/3-540-45574-4_13
http://dx.doi.org/10.1007/3-540-45574-4_13

Author Index

Aananthakrishnan, Sriram 24
Ahmad, Khalid 218
Amato, Nancy M. 40
Aurangzeb 88

Baranowski, Mark 24
Basu, Protonu 101
Bronevetsky, Greg 24

Cammarota, Rosario 121
Cárdenas-Ródriguez, Julio 188
Chakrabarti, Dhruva R. 93
Chatarasi, Prasanth 106
Chen, Hanfeng 171
Chen, Tong 265

Danford, Forest 188
Deb, Diptorup 3

Eigenmann, Rudolf 88, 153
Emani, Murali Krishna 299
Engelmann, Christian 73

Fidel, Adam 40
Fowler, Robert J. 3
Furnari, Mario Mango 121

Gao, Guang R. 55, 203
Gaudiot, Jean-Luc 203
Geng, Tongsheng 203
Goldman, Alfredo 203
Gopalakrishnan, Ganesh 24

Habib, Sami 203
Hall, Mary 101, 218
Hbeika, Jad 250
Hendren, Laurie 171
Hukerikar, Saurabh 73

Kasahara, Hironori 282
Kimura, Keiji 282
Kong, Martin 106

Krolik, Alexander 171
Kulkarni, Milind 250, 331

Landwehr, Aaron 55
Lavoie, Erick 171
Li, Pengcheng 93
Liao, Chunhua 137
Lin, Pei-Hung 137
Liu, Chenyang 331
Liu, Yu-Hang 18
Livingston, Kelly 55

Meister, Benoît 55
Monsalve, José 55, 203

Nasre, Rupesh 235
Nicolau, Alexandru 121

Oki, Yoshitake 282

Porterfield, Allan 3

Quinlan, Daniel 137

Rauchwerger, Lawrence 40
Riedel, Colton 40

Sabido, Francisco Coral 40
Sabne, Amit 153
Sagonas, Konstantinos 314
Sakdhnagool, Putt 153
Sarkar, Vivek 106
Shashidhar, G. 235
Shirakawa, Tomoya 282
Shirako, Jun 106
Shivam, Aniket 121
Strout, Michelle Mills 188
Sun, Xian-He 18
Sung, Hyojin 265
Sura, Zehra 265

Veidenbaum, Alexander V. 121
Venkat, Anand 218

Welch, Eric 188
Winblad, Kjell 314

Yamamoto, Kouhei 282
Yan, Yongqing 137

Yi, Qing 137
Yoshida, Akimasa 282

Zuckerman, Stéphane 55, 203

348 Author Index

	Preface
	Organization
	Contents
	Large Scale Parallelism
	QUARC: An Array Programming Approach to High Performance Computing
	1 Introduction
	1.1 The LQCD Problem Domain
	1.2 The QUARC Approach

	2 An Array Programming Approach to Parallelism
	2.1 QUARC Array Transformations
	2.2 An Array-Transformation Mechanism
	2.3 Parallel Code Generation

	3 QUARC Language Design
	3.1 QUARC Arrays
	3.2 Array Addressing Modes
	3.3 Array Operators
	3.4 Array Statements

	4 The QOPT Architecture
	5 Array Expressions to Optimized Code
	5.1 Preprocessing
	5.2 Q_k Expression Tree Generation and Early Optimizations
	5.3 Late Scalarization

	6 Related Work
	7 Status and Work in Progress
	References

	Utilizing Concurrency: A New Theory for Memory Wall
	Abstract
	1 Introduction and Highlight
	2 The Theoretical Treatment of Memory Sluice Gate Theory
	3 Experimental Results and Conclusion
	References

	ParFuse: Parallel and Compositional Analysis of Message Passing Programs
	1 Introduction
	2 Background
	2.1 Compositional Analysis
	2.2 Prior Work: Dataflow Analysis of MPI Programs

	3 Approximating MPI Semantics
	4 MPI Analyses in ParFuse
	5 ParFuse Framework
	5.1 Analysis Composition Recipe
	5.2 Illustration: Configurable Analysis of MPI Programs

	6 Experimental Results
	7 Related Work
	8 Concluding Remarks
	References

	Fast Approximate Distance Queries in Unweighted Graphs Using Bounded Asynchrony
	1 Introduction
	2 Approximate Breadth-First Search
	2.1 Algorithmic Description
	2.2 Error Bounds
	2.3 Bounds with Tolerance
	2.4 Combined Bounds

	3 Implementation
	4 Experimental Evaluation
	4.1 Breadth-First Search

	5 Related Work
	6 Conclusion
	References

	Energy Avoiding Matrix Multiply
	1 Beyond Traditional Tiling: Targeting Exascale
	2 Energy Efficient Tiling
	2.1 Tiling Principles---The Matrix Multiplication Example
	2.2 Energy Efficient Tiling

	3 Hilbert Inspired Global Layout
	3.1 Measuring S Empirically
	3.2 Decomposition Rules for Layout

	4 Tiling Up and Down a Hierarchy Efficiently
	4.1 Aggregating Tiles
	4.2 Creating Tasks

	5 Experimental Results
	5.1 Testbed
	5.2 Tiling Related Results
	5.3 Machine Related Results

	6 Related Work
	7 Conclusion
	References

	Resilience and Persistence
	Language Support for Reliable Memory Regions
	1 Introduction
	2 Havens: Reliable Memory Regions
	3 Using Havens for Resilience-Driven Memory Management
	3.1 Basic Operations
	3.2 Haven Library Interface
	3.3 Protection Schemes for Havens

	4 A Haven Type System
	4.1 Goals
	4.2 Type Annotations for Havens
	4.3 Subtyping Annotations
	4.4 Defining Lifetimes
	4.5 Example: Vector Addition

	5 Application-Level Resilience Models Using Havens
	6 Experimental Results
	7 Related Work
	8 Conclusion
	References

	Harnessing Parallelism in Multicore Systems to Expedite and Improve Function Approximation
	1 Introduction
	2 Function Approximation and Available Parallelism
	2.1 Building History
	2.2 Preparing Approximations
	2.3 Monitoring Quality
	2.4 Improving Approximations

	3 Experimental Results
	4 Conclusion
	References

	Adaptive Software Caching for Efficient NVRAM Data Persistence
	1 Introduction
	2 Software Cache
	3 Adaptive Write Caching
	4 Preliminary Results
	References

	Compiler Analysis and Optimization
	Polyhedral Compiler Technology in Collaboration with Autotuning Important to Domain-Specific Frameworks for HPC
	1 Introduction
	2 Overview of Approach
	3 Deployment Challenges and Research Opportunities

	An Extended Polyhedral Model for SPMD Programs and Its Use in Static Data Race Detection
	1 Introduction
	2 Background
	2.1 SPMD Parallelism Using OpenMP
	2.2 Data Race Detection
	2.3 Polyhedral Model

	3 Motivation
	4 Extended Polyhedral Model for SPMD Programs
	4.1 Limitations
	4.2 Space (Allocation) Mapping, SA
	4.3 Phase Mapping, SP

	5 Static Data Race Detection
	5.1 PolyOMP Workflow
	5.2 Formalization of May Happen in Parallel (MHP) Relations
	5.3 Race Detection

	6 Experimental Evaluation
	6.1 OmpSCR Benchmarks Suite
	6.2 PolyBench-ACC Benchmark Suite

	7 Related Work
	7.1 Static Race Detection

	8 Conclusions and Future Work
	References

	Polygonal Iteration Space Partitioning
	1 Introduction
	2 Polygonal Iteration Space Partitioning
	2.1 Determining Reuse Using the Polyhedral Model
	2.2 Partitioning Technique
	2.3 Orchestrating Formation of the Partitions
	2.4 Multi-reference Statements
	2.5 Code Generation Paradigm

	3 Experiments and Results
	3.1 Case 1: Two Dimensional Non-uniform Reuse Pattern
	3.2 Case 2: One Dimensional Non-uniform Reuse Pattern
	3.3 Case 3 (Seidel-2D) and Case 4 (Jacobi-2D): Uniform Reuse Pattern and Multiple References
	3.4 Improvement in Performance

	4 Related Work
	5 Conclusion
	References

	Automatically Optimizing Stencil Computations on Many-Core NUMA Architectures
	1 Introduction
	2 The Programming Interface
	3 The Stencil Compiler
	4 Runtime Support
	4.1 Thread Decomposition and Management Using OpenMP
	4.2 NUMA-aware Data Placement
	4.3 Halo Data Management

	5 Experimental Results
	5.1 The Overall Performance
	5.2 Impact of Execution Configurations
	5.3 Implications of Halo Management

	6 Related Work
	7 Conclusion
	References

	Formalizing Structured Control Flow Graphs
	1 Introduction
	2 Preliminaries
	3 Previous Work on Defining Structuredness
	4 Formalizing Structured CFGs
	5 Significance of Structured Control Flow Graphs
	6 Avenues for Research
	7 Unstructuredness in Compiler-Generated CFGs
	8 Conclusion
	References

	Dynamic Computation and Languages
	Automatic Vectorization for MATLAB
	1 Introduction
	2 Motivation and Background
	3 Overall Structure of the Vectorizer
	4 Promoted Shape Analysis
	4.1 Shape Abstractions
	4.2 Compatible Operations
	4.3 Key Parts of the Analysis
	4.4 An Example of Promoted Shape Analysis

	5 Handling User Defined Functions
	5.1 Promoted Shape Analysis for UDFs
	5.2 If-Conversion for UDFs

	6 Data Dependence Analysis
	7 Vectorization and Optimization
	7.1 Special Cases
	7.2 Code Optimization with Dynamic Checks

	8 Evaluation
	8.1 Experimental Setup
	8.2 Experimental Results

	9 Related Work
	10 Conclusions and Future Work
	References

	Analyzing Parallel Programming Models for Magnetic Resonance Imaging
	1 Introduction
	2 Analysis of the Serial MATLAB Code
	2.1 Experimental Methodology
	2.2 Performance Bottleneck: T1 Calculation
	2.3 Other Tasks
	2.4 Performance Analysis Summary

	3 MATLAB Implementations
	3.1 MATLAB Background
	3.2 Parallelization Using the Parallel Computing Toolbox

	4 Julia Implementations
	4.1 Julia Background
	4.2 Serial Julia Implementation
	4.3 Parallelization of Julia Implementation

	5 Results
	5.1 Performance
	5.2 Reliability
	5.3 Programmability
	5.4 Limitations

	6 Related Work
	7 Conclusion
	References

	The Importance of Efficient Fine-Grain Synchronization for Many-Core Systems
	1 Introduction
	2 The Codelet Model
	2.1 General Principles
	2.2 The Codelet Abstract Machine
	2.3 A Codelet Runtime System

	3 Applying Fine-Grain Parallelism to Embarrasingly Parallel Problems
	3.1 Basic Implementation of a Parallel Coarse-Grain 5-Point Stencil
	3.2 Description of Parallel Stencil Computation Variants

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Experimental Protocol
	4.3 Results
	4.4 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

	Optimizing LOBPCG: Sparse Matrix Loop and Data Transformations in Action
	1 Introduction
	2 Background
	2.1 Storage Formats
	2.2 Inspector/Executor
	2.3 Overview of Approach

	3 LOBPCG
	4 Compiler Approach
	4.1 Compiler-Generated Inspector to Derive CSB Representation
	4.2 Optimized Executor

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Performance Measurements

	6 Related Work
	6.1 Application-Specific Approaches
	6.2 Compiler Approaches

	7 Conclusion and Future Work
	References

	GPUs and Private Memory
	LightHouse: An Automatic Code Generator for Graph Algorithms on GPUs
	1 Introduction
	2 Green-Marl Language Specification
	3 GPU Code Generation
	3.1 Identifying Parallel Regions
	3.2 Identifying Variable Location
	3.3 Generating Indices for Memory Accesses
	3.4 Generating Code for Reduction Statements

	4 Program Optimizations
	4.1 Eliminating Atomics
	4.2 Loop Collapsing
	4.3 Full Device Occupancy
	4.4 Limitations of LightHouse

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

	Locality-Aware Task-Parallel Execution on GPUs
	1 Introduction
	2 Related Work
	3 Background and Motivation
	3.1 GPU Architecture and Limitations
	3.2 Task Parallelism

	4 Data Parallel GPU Execution of Task Parallel Code
	4.1 Basic Technique
	4.2 Generating GPU Task Queues
	4.3 Mixing Data Parallelism and Task Parallelism

	5 Scheduling for Locality
	6 Implementation
	6.1 Determining the Queue Threshold
	6.2 Queue Merging
	6.3 Queue Size Reduction

	7 Evaluation
	7.1 Fast Multipole Method
	7.2 Point Correlation
	7.3 Nearest Neighbor

	8 Conclusions
	References

	Automatic Copying of Pointer-Based Data Structures
	1 Introduction
	2 Design and Implementation
	2.1 Compilation
	2.2 Runtime Type Descriptors
	2.3 Assumptions
	2.4 Mapping Data on Target Entry
	2.5 Mapping Data on Target Exit

	3 Optimizations
	3.1 Transfers to/from GPU Memory
	3.2 Other Optimizations

	4 Experiments
	5 Related Work
	6 Conclusion
	References

	Automatic Local Memory Management for Multicores Having Global Address Space
	1 Introduction
	2 Related Works
	3 The Proposed Local Memory Management Method
	3.1 Coarse-Grain Task Parallelization
	3.2 Data Decomposition Method
	3.3 Scheduling of Decomposed Loops
	3.4 Local Memory Management
	3.5 Data Transfer Between Off-Chip Memory
	3.6 Code Compaction Method

	4 Evaluations
	4.1 Tested Applications
	4.2 Evaluation Results

	5 Conclusions
	References

	Run-time and Performance Analysis
	Mapping Medley: Adaptive Parallelism Mapping with Varying Optimization Goals
	1 Introduction
	2 Related Work and Motivation
	3 Mapping Medley
	3.1 Optimal Thread Number
	3.2 Thread Placement
	3.3 DVFS Level
	3.4 Components

	4 Experimental Setup
	4.1 Platform
	4.2 Applications
	4.3 Competitive Policies
	4.4 Experimental Scenarios

	5 Evaluation
	6 Analysis
	6.1 Thread Number Variation with Change in Power
	6.2 DVFS Level Variation with Change in Power

	7 Conclusion and Future Work
	References

	The Contention Avoiding Concurrent Priority Queue
	1 Introduction
	2 A Brief Overview of the Contention Avoiding Priority Queue
	3 Implementation
	3.1 Operations
	3.2 Global Concurrent Priority Queue Component

	4 Properties
	5 Our Implementation of the Global Priority Queue Component
	6 Related Work
	7 Experimental Evaluation
	8 Concluding Remarks
	References

	Evaluating Performance of Task and Data Coarsening in Concurrent Collections
	1 Introduction
	2 Concurrent Collections Model
	3 LULESH Overview
	3.1 The LULESH Domain Specification
	3.2 Step Fusion
	3.3 Tag Tiling
	3.4 Data Tiling

	4 Results
	4.1 Evaluation

	5 Lessons Learned
	6 Related Work
	7 Conclusion
	References

	Author Index

