
291© Springer International Publishing AG 2017
P.J. Rich, C.B. Hodges (eds.), Emerging Research, Practice, and Policy on
Computational Thinking, Educational Communications and Technology: Issues
and Innovations, DOI 10.1007/978-3-319-52691-1_18

Principles of Computational Thinking Tools

Alexander Repenning, Ashok R. Basawapatna, and Nora A. Escherle

Abstract Computational Thinking is a fundamental skill for the twenty-first
century workforce. This broad target audience, including teachers and students with
no programming experience, necessitates a shift in perspective toward Computational
Thinking Tools that not only provide highly accessible programming environments
but explicitly support the Computational Thinking Process. This evolution is crucial
if Computational Thinking Tools are to be relevant to a wide range of school disci-
plines including STEM, art, music, and language learning. Computational Thinking
Tools must help users through three fundamental stages of Computational Thinking:
problem formulation, solution expression, and execution/evaluation. This chapter
outlines three principles, and employs AgentCubes online as an example, on how a
Computational Thinking Tool provides support for these stages by unifying human
abilities with computer affordances.

Keywords Computational Thinking Process • Three stages of the Computational
Thinking Process • Computational Thinking Tools • Principles of Computational
Thinking Tools

 Introduction

The term Computational Thinking (CT), popularized by Jeannette M. Wing (2006),
had previously been employed by Papert (1996) in the inaugural issue of Mathematics
Education. Papert considered the goal of CT to forge explicative ideas through the
use of computers. Employing computing, he argued, could result in ideas that are

A. Repenning (*) • N.A. Escherle
School of Education, University of Applied Sciences and Arts Northwestern
Switzerland FHNW, Windisch 5210, Switzerland
e-mail: alexander.repenning@fhnw.ch; nora.escherle@fhnw.ch

A.R. Basawapatna
Department of Mathematics and Computer Information Systems, SUNY Old Westbury,
Old Westbury, NY 11568, USA
e-mail: basawapatnaa@oldwestbury.edu

mailto:alexander.repenning@fhnw.ch
mailto:nora.escherle@fhnw.ch
mailto:basawapatnaa@oldwestbury.edu

292

more accessible and powerful. Meanwhile, numerous papers, e.g., Grover and Pea
(2013), and reports, e.g., National Research Council (2010), have created many dif-
ferent definitions of CT. Recently, Wing (2014) followed up her seminal call for
action paper with a concise operational definition of CT: “Computational thinking
is the thought processes involved in formulating a problem and expressing its
solution(s) in such a way that a computer—human or machine—can effectively
carry out.”

While the term Computational Thinking is relatively new, the process implied by
Wing can be recognized as a computationally enhanced version of the well-
established scientific method. Based on Wing’s definition, the Computational
Thinking Process (Fig. 1) can be segmented into three stages. The example in Fig. 1
of a mudslide simulation is used to illustrate the three Computational Thinking
Process stages:

 (1) Problem formulation (abstraction): Problem formulation attempts to conceptu-
alize a problem verbally, e.g., by trying to formulate a question such as “How
does a mudslide work?” or through visual (Arnheim, 1969) thinking, e.g., by
drawing a diagram identifying objects and relationships.

 (2) Solution expression (automation): The solution needs to be expressed in a non-
ambiguous way so that the computer can carry it out. Computer programming
enables this expression. The rule in Fig. 1 expresses a simple model of gravity:
if there is nothing below a mud particle, it will drop down.

Fig. 1 Three stages of the Computational Thinking Process

A. Repenning et al.

293

 (3) Execution and evaluation (analysis): The computer executes the solution in
ways that show the direct consequences of one’s own thinking. Visualizations—
for instance, the representation of pressure values in the mudslide as
colors—support the evaluation of solutions.

As shown in Fig. 1, Computational Thinking is an iterative process describing
thinking with computers by synthesizing human abilities with computer affordances.
The three stages describe different degrees of human and computer responsibilities.
The solution execution appears to be largely the responsibility of the computer and
the problem expression largely the responsibility of the human. Although problem
formulation is typically considered the responsibility of the human, computers can
help support the conceptualization process as well, for instance, through facilitating
visual thinking.

 Principles of Computational Thinking Tools

The fundamental goal of a Computational Thinking Tool is to support all stages of
the Computational Thinking Process outlined above. Programming should be, and
can be, an exciting new literacy in the sense described by diSessa (2000) enabling
constructivist learning for all (see Yager, 1995). Using traditional programming lan-
guages severely limits this practice outside of computer science class contexts. For
example, a student in a STEM class attempting to make a basic predator prey simu-
lation with traditional programming languages may have to write hundreds of lines
of code. Conversely, the goal of Computational Thinking Tools leads to three core
principles corresponding to the three stages of the CT process. Computational
Thinking Tools should support:

 (1) Problem formulation: Similar to playing with numbers in a spreadsheet,
using a mind map tool, or just doodling on a whiteboard, Computational
Thinking Tools should empower users to explore representations without the
need to code.

 (2) Solution expression: Computational Thinking Tools should employ end-user
programming approaches (see Lieberman, Paternò, & Wulf, 2006;
Repenning, 2001), to allow computer users who may not have or may not
want to gain professional programming experience and to create relevant
computational artifacts such as games (Repenning et al., 2015) and simula-
tions (Repenning, 2001).

 (3) Solution execution and evaluation: Computational Thinking Tools should
include accessible execution visualization mechanisms helping users to com-
prehend and validate computational artifacts such as simulations.

The AgentCubes online end-user programming environment (Ioannidou,
Repenning, & Webb, 2009; Repenning, 2013b; Repenning & Ioannidou, 2006;
Repenning et al., 2014) will be employed as an example to illustrate these principles,

Principles of Computational Thinking Tools

294

but these principles can be applied to any CT Tool. The AgentCubes user interface
is relatively simple. The toolbar at the top of Fig. 3 provides a number of controls to
start/stop a simulation, to manage worlds, and to operate the 3D camera. The panel
to the left contains all the user-defined agents. The top panel is the current world.
The three bottom panels contain the drag and drop programming environment with
the condition palette to the left, the agent behavior in the middle, and the palette of
actions to the right. The following sections discuss the three Computational Thinking
Tool principles and provide concrete examples through AgentCubes.

 Supporting Problem Formulation

Problem formulation is a conceptualization process (Repenning et al., 2015) dealing
with abstractions often based on verbal or visual thinking, which can be supported
by tools. Computational Thinking Tools can support visual thinking by offering
various evocative spatial metaphors. Mind map tools capture concepts as nodes and
links (Willis & Miertschin, 2005). Spreadsheets (B. A. Nardi & Miller, 1990) are
two-dimensional grids containing numbers and strings. The versatile nature of grids
has helped spreadsheets to become the world’s most used programming tools. Tools
such as Boxer (diSessa, 1991) and ToonTalk (Kahn, 1996) employ the notion of
microworlds based on containers to represent relationships. In logo, Papert (1993)
argues the notion of a turtle helps users comprehend difficult geometric
transformations through body syntonicity, that is, the ability for people to project
themselves, as turtle, into geometric microworlds. Papert (1993) and Turkle (2007)
consider the use of evocative objects to think with as a powerful conceptualization
approach. All these tools help the forging of abstractions serving as the beginning of
a path from problem formulation to solution expression. Wing (2008) suggests that
finding these kinds of abstractions is an essential part of Computational Thinking:
“In working with rich abstractions, defining the ‘right’ abstraction is critical. The
abstraction process—deciding what details we need to highlight and what details
we can ignore—underlies computational thinking” (p. 3718).

Abstractions need to be made explicit to enable transfer. Ideally, Computational
Thinking Tools should not only support users to find rich, evocative abstractions but
also make these abstractions explicit in order to facilitate their transfer and applica-
tion within other problem-solving contexts. For instance, the use of phenomenalis-
tic (Michotte, 1963) abstractions describing object interactions such as collision and
diffusion was found to support student formulation of STEM simulations in middle
school curricula (Koh, Basawapatna, Bennett, & Repenning, 2010; Repenning
et al., 2015). In our research, the patterns found to be especially helpful in allowing
students to create elements of games and simulations we termed Computational
Thinking Patterns (CTPs). Figure 2 lists examples of Computational Thinking
Patterns. For example, the collision CTP describes both the interaction of a truck
hitting a frog in a Frogger-like game and the interaction of molecules colliding in a
STEM simulation. Similarly the generate CTP could describe a ship shooting lasers

A. Repenning et al.

295

in a Space Invaders-type game but also two foxes mating and creating offspring in
a predator prey simulation. Learning these CTPs provides students with a useful
high-level language to begin thinking about a problem before coding begins, and
previous research has shown that novice users can recognize these patterns across
contexts and implement them in their project creations (Basawapatna, Koh,
Repenning, Webb, & Marshall, 2011).

 How AgentCubes Supports Problem Formulation

AgentCubes online supports the problem formulation stage similarly to a mind map
tool by enabling users to organize information visually setting the stage for coding.
At the problem formulation stage, AgentCubes online can be used much like a
whiteboard is used for drawing. The 2D or 3D objects, called agents, created by
users are similar to Papert’s objects to think with (Papert, 1993). In AgentCubes,
information can be organized in 3D space to create 3D worlds. Similar to Minecraft,
users create one-, two-, or three-dimensional grids and stacks by placing agents
using the pen tool (Repenning et al., 2014). At this stage no coding is necessary.
Users can explore their worlds by employing 3D camera tools to navigate or manip-
ulate their worlds by adding, removing, and rearranging agents. AgentCubes allows
users to select any agent and assume its perspective by switching to first-person
camera mode. This ability, we speculate, may help to achieve the body syntonicity
(Repenning & Ioannidou, 2006) that Papert is referring to.

Visual thinking is supported by AgentCubes online through a four-dimensional
grid structure called the agent matrix (Fig. 3). The grid is based on cells organized
as rows, columns, and layers. Each cell, in turn, contains a stack of agents. Agents
can be simple textured shapes such as cubes, spheres, or cylinders but can also be
quite sophisticated user-created 3D shapes implemented as inflatable icons
(Repenning et al., 2014). Users’ ability to produce their own 3D shapes has been
identified as an important creativity tool to overcome affective challenges of pro-
gramming, but it can also be useful to quickly sketch out 3D worlds similar to the
use of a cocktail napkin in the formulation stage depicted in Fig. 1.

Change: One agent changes into another
 agent.
Absorb: One agent makes another agent
 disappear.
Transport: One agent transports another
 agent.
Push: One agent pushes another agent.
Random Movement: An agent moves
 randomly.
Tracking: One agent chases another
 agent.
Keyboard Movement: keyboard button
 presses control an agent’s movement.

Fig. 2 Examples of
Computational Thinking
Patterns

Principles of Computational Thinking Tools

296

As an example, an interesting problem could be how to generalize a 2D
 side- scrolling game into a 3D scrolling game. In Fig. 3, the grid has been enabled to
show the AgentCubes cell structure of a game called “Flabby Bird 3D,” which is a
generalization of the popular 2D scrolling phone game “Flappy Bird.” In Flabby
Bird 3D, the objective is to navigate a bird called Flabby past oncoming cubes.
Usually, a player would see this game from the first-person camera viewpoint of
Flabby (Fig. 4). The enabled grid helps to reveal the 3D scrolling approach of the
game. To the right there is a solid wall of cube maker agents creating cubes (an
example of the generate CTP) with an increasing probability depending on the level
of the game. These cubes are flying toward Flabby as depicted in Fig. 4. Playing the
game, by seeing it from Flabby’s point of view, the player gets the illusion of flying
through a never-ending labyrinth of walls. To make the game more challenging, the
approaching walls reconfigure occasionally.

Breaking down game descriptions into explicit abstractions enables students to
transition from problem formulation to solution expression (Repenning et al., 2015).
Computational Thinking Patterns serve as framework of useful abstractions describ-
ing the interactions between objects and the interaction of users with objects. For
instance, the creation of Flabby Bird involves the implementation of various
Computational Thinking Patterns such as collision, generation, absorption, and
keyboard control. Part of the support structure for this activity is external. For
instance, some teachers hang up posters describing the Computational Thinking

Fig. 3 AgentCubes online environment depicting a side view of an example “Flabby Bird 3D” game

A. Repenning et al.

297

Patterns and make students refer to these posters when working on problem
formulation tasks. However, it is essential that the Computational Thinking Tool
provides for a solution expression that is an intuitive implementation of the problem
formulation. It should be noted that this step can be fully integrated into the tool
itself. For example, tools that allow users to program agents directly, through
Computational Thinking Patterns, have successfully been piloted in the past, further
bridging the act of problem formulation with solution expression (Basawapatna,
Repenning, & Lewis, 2013).

 Supporting Solution Expression

The goal of Computational Thinking is to be an instrument for problem solving that
is not limited to computer scientists or professional programmers. For example,
assuming an educational context, such as STEM classes, Computational Thinking
Tools need to be viable in noncomputer science classes by avoiding the need for
difficult and excessive coding. CT employing traditional programming tools is
likely to introduce a significant amount of accidental complexity, as opposed to
dealing with the intrinsic complexity (Dijkstra, 2001) of the problem-solving pro-
cess. If the intended outcome is to become a professional programmer, then this
approach may be highly effective or indeed entirely necessary.

If instead the goal is to become a Computational Thinker, then the resulting over-
head and lack of support may turn into an insurmountable educational obstacle.
Focusing less on the notion of essence but on understandable mappings, natural

Fig. 4 First-person view perspective of the “Flabby Bird 3D” game

Principles of Computational Thinking Tools

298

programming (Myers, Pane, & Ko, 2004) attempts to better align the expression of
a solution with the problem formulation based on peoples’ intuitive comprehension
of semantics such as the use of Boolean operators. Rittel differentiated the notion of
human computer interaction from human problem-domain interaction (Rittel &
Webber, 1984) to clarify this important philosophical dichotomy. Guzdial (2015)
reached a similar conclusion in the context of computing education by suggesting
that “If you want students to use programming to learn something else [e.g., how to
author a simulation] then limit how much programming you use” (p. 48). The limi-
tation of accidental complexity can be supported at three different levels:

 (1) Syntax: Visual programing approaches such as drag and drop programming
(Conway et al., 2000; Repenning & Ambach, 1996; Resnick et al., 2009a;
2009b) can avoid frustrating syntactic challenges such as missing semicolons.

 (2) Semantics: Live programming (Burckhardt et al., 2013; McDirmid, 2013;
McDirmid, 2007) and similar approaches help users to understand the meaning
of programs by illustrating the consequences of changes to programs.

 (3) Pragmatics: Domain-oriented (Fischer, 1994) or task-specific (B. Nardi, 1993)
programming languages support users in employing programming languages to
achieve their goals.

 How AgentCubes Supports Solution Expression

At the syntactic level, AgentCubes offers drag and drop programming, which its pre-
decessor, AgentSheets, pioneered over 20 years ago (Repenning & Ambach, 1996). A
first version of AgentSheets initially introduced the idea of agent-based graphical
rewrite rules (Repenning, 1994, 1995), a programming by example (Repenning &
Perrone, 2000; Repenning & Perrone-Smith, 2001) approach to define the behavior
of agents by demonstrating it. However, the graphical rewrite rules were ultimately
considered to be too constraining (Schneider & Repenning, 1995). Meanwhile, the
benefits of drag and drop programming have become quite clear, and consequently
drag and drop programming has proliferated to a very large number of programming
environments for kids (Conway et al., 2000; Resnick et al., 2009a; 2009b).

Semantic support is considerably harder than syntactic support (Repenning,
2013a). At the level of semantics, AgentCubes offers not only live programming
(McDirmid, 2013; McDirmid, 2007) but also a technique called Conversational
Programming (Repenning, 2013a). Conversational Programming will observe the
agent a user is interested in and then annotate the program behaviors of that particu-
lar agent in its particular situation by running the program one step into the future
to illustrate which agent behavior rules will evaluate to true, which will evaluate to
false, and which rules will not be tested. For instance, in a Frogger-like game, a user
can click the frog agent and look at its behavior rules to see what will happen to the
frog after it has just jumped in front of a car moving toward it. In this case, if the
frog-car collision pattern is programmed correctly, the behavior rule wherein the
frog dies and the game restarts will be annotated by Conversational Programming to
appear as true.

A. Repenning et al.

299

Of the three levels, pragmatics is the most challenging one to support. One might
naturally want to have a simple mapping between the problem domain and the solu-
tion domain. However, the least amount of code cannot be the only objective. For
example, languages such as APL are well known for their parsimonious nature but
not for their general readability. Instead, programs should be short and intuitive
expressions of a given idea. An example may help to illustrate this.

The 15-square puzzle, shown in Fig. 5, is a classic children’s toy. The game con-
sists of sliding 15 numbered squares into a sorted arrangement, 1–15, in a 4 × 4 grid.
Many computer program implementations of the game exist. From a CT point of
view, the core idea is simple: click the square you want to slide into the empty space.
From a coding point of view, however, efforts can vary widely. A Python program
to implement the “click to slide” functionality (see Sweigart, 2010) quickly runs
into hundreds of lines of code not including the functionality to solve the puzzle.
The view here is not to be negative regarding coding. If a CS class codes the
15-square puzzle to learn about arrays, loops, animations, or Python syntax, then
writing the 300 lines of code could be extremely beneficial.

An AgentCubes implementation, in contrast, will include very little coding over-
head. The “click to slide” functionality requires only four rules, checking if there is
an empty spot adjacent to the clicked square and then moving into that spot. This is
depicted in Fig. 6. Trading in clarity for brevity, one could even employ the more
arcane MoveRandomOn (background) AgentCubes action to solve the 15-square
puzzle benchmark in a single line of code. Comparing Python to AgentCubes seems
hardly fair. In AgentCubes the notion of a grid, animations, and even numbered
squares already exists. This is what domain orientation (Fischer, 1994) can do. It
reduces coding overhead by providing and implementing abstractions to help users
express a solution succinctly.

Of course, domain orientation introduces trade-offs. For instance, it would not be
advisable to write a compiler in AgentCubes. Similar to spreadsheets—which have
been used creatively to create amazing projects such as flight simulators and

Fig. 5 15-square puzzle

Principles of Computational Thinking Tools

300

Fig. 6 AgentCubes online
implementation of the
15-square puzzle with four
rules

planetary models—AgentCubes’ grid structure maps well onto a wide variety of
projects such as 2D/3D games, simulations, and cellular automata. For instance, a
simple version of the Pac-Man game can be implemented in just ten rules (if/then
statements) including collaborative AI (Repenning, 2006) and win/lose detection.

Studies show that students can use such system affordances of AgentSheets and
AgentCubes to successfully implement the Computational Thinking Patterns
planned in the formulation step in game and simulation development (Repenning
et al., 2015). Studies also show that users are highly motivated to create these arti-
facts, speaking to the power of reducing coding overhead (Repenning, Basawapatna,
Assaf, Maiello, & Escherle, 2016). Guzdial (2008) points out the importance of
avoiding coding overhead in education and refers to a number of languages explored
in computer science education to establish essence by employing implicit loops and
other task-specific (B. Nardi, 1993) constructs. An example of this approach in
AgentCubes is the built-in management of parallelism. For instance, even a very
large number of agents, looking like boxes, moving around randomly in a three-
dimensional world, will automatically reshuffle and stack up correctly in parallel
with very little code. Computing trajectories that can be executed in parallel,
determining the order of boxes stacked up, would be complex code to write.

A. Repenning et al.

301

 Supporting Execution and Evaluation

The execution and evaluation stage can be supported by helping users debug their
programs as well as reveal their misconceptions. Pea (1983) describes debugging as
“systematic efforts to eliminate discrepancies between the intended outcomes of a
program and those brought about through the current version of the program” (p. 3).
Given that the computer does not currently “understand” the problem, it will not be
able to automatically compute these discrepancies, but there are still strategies for
Computational Thinking Tools to aid the debugging process. One strategy is to sim-
ply reduce the gap between solution expression and solution execution and evalua-
tion. Punch cards are the classical negative example resulting in an extremely large
gap. As this gap increases, users quickly lose sight of the causal relation between
changes made to a program and manifestations of different behaviors exhibited by
running the modified program (Repenning, 2013a).

Live programming (McDirmid, 2013) can help by enabling users to instantly see
the consequences of any change to a program. Unfortunately, there are issues such as
the halting problem in computer science theory with practical consequences, suggest-
ing that it is not actually possible to determine all consequences of arbitrary program
changes. However, for a more constrained class of programs, including spreadsheets,
this is not a problem. Very much in the spirit of live programming, spreadsheets will
instantly update results when formulae or cell values are changed by a user.

A Computational Thinking Tool would support visualization through the inclu-
sion of easy-to-use visualization affordances. Additionally, a Computational
Thinking Tool may apply the idea of visualization to itself by annotating programs
in ways to make discrepancies between the programs users have and the ones they
want more understandable (Repenning, 2013a).

 How AgentCubes Supports Execution and Evaluation

To support the goal of visualizing the consequences of one’s own thinking, a num-
ber of visualization techniques are included in AgentCubes. In the mudslide exam-
ple (Fig. 1 solution execution and evaluation), it helps considerably to understand
the pressure distribution among the thousands of agents employed in the model. The
simple visualization scheme mapping each pressure value into a single color helps
the forging of explicative ideas by depicting pressure buildup.

Particularly useful when making simulations, AgentCubes supports the plotting
of simulation properties. An example would be to plot the number of predators and
prey in an ecological simulation. One can also use 3D plotting to visualize value
fields in real time. For instance, in a city traffic simulation, 3D plots (Fig. 7) show
the spatial distribution of wait times in the city over the world grid itself. Finally,
AgentCubes online narrows the gap between solution expression and execution
through Conversational Programming (introduced above in Supporting Solution
Expression) (Repenning, 2013a), extending the notion of live programming
(McDirmid, 2013).

Principles of Computational Thinking Tools

302

Even when a game is not running, by selecting an agent in the world, AgentCubes
will execute relevant code fragments one step into the future and annotate the code,
specifying which rule will execute, in order to visualize potential discrepancies
between the programs users have and the programs users want (Pea, 1983). This
indicator can guide users into another iteration cycle depicted in Fig. 1 yielding
more useful representations.

 Conclusions

Computational Thinking Tools should support Papert’s vision of enabling users to
forge explicative ideas through the use computers. By minimizing coding overhead,
Computational Thinking Tools can allow all users to focus on the essence of abstrac-
tion, automation, and analysis. In contrast to traditional programming environ-
ments, Computational Thinking Tools support all three stages, problem formulation,
solution expression, and execution and evaluation, of the Computational Thinking
Process. This support will make Computational Thinking feasible to a wide range of
applications including STEM, art, music, and language.

Acknowledgments This work is supported by the Hasler Foundation and the National Science
Foundation under Grant Numbers 0833612, 1345523, and 0848962. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of these foundations.

Fig. 7 Bird’s eye view of a city traffic simulation in AgentCubes with an overlaid 3D plot of traffic
wait times with the higher red peaks indicating a longer wait

A. Repenning et al.

303

References

Arnheim, R. (1969). Visual thinking. Berkley, CA: University of California Press.
A. Basawapatna, K. H. Koh, A. Repenning, D. C. Webb, & K. S. Marshall. (2011). Recognizing

computational thinking patterns. Paper presented at the the 42nd ACM technical symposium
on computer science education (SIGCSE), Dallas, TX, USA.

Basawapatna, A. R., Repenning, A., & Lewis, C. H. (2013). The simulation creation toolkit: An
initial exploration into making programming accessible while preserving computational think-
ing. Paper presented at the 44th ACM technical symposium on computer science education
(SIGCSE 2013), Denver, CO, USA.

Burckhardt, S., Fahndrich, M., Halleux, P. D., McDirmid, S., Moskal, M., Tillmann, N., & Kato,
J. (2013). It's alive! continuous feedback in UI programming. Paper presented at the proceed-
ings of the 34th ACM SIGPLAN conference on programming language design and implemen-
tation, Seattle, WA, USA.

Conway, M., Audia, S., Burnette, T., Cosgrove, D., Christiansen, K., Deline, R., & Pausch, R.
(2000). Alice: Lessons learned from building a 3D system for novices. Paper presented at the
CHI 2000 conference on human factors in computing systems, The Hague, Netherlands.

Dijkstra, E. W. (2001). The end of computing science? Communications of the ACM, 44(3), 92.
doi:10.1145/365181.365217.

diSessa, A. A. (1991). An overview of boxer. Journal of Mathematical Behavior, 10, 3–15.
diSessa, A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA: MIT.
Fischer, G. (1994). Domain-oriented design environments. In Automated software engineering

(Vol. 1, pp. 177–203). Boston, MA: Kluwer Academic.
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.

Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051.
Guzdial, M. (2008). Education: Paving the way for computational thinking. Communications of

the ACM, 51, 25–27.
Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for

everyone. Synthesis Lectures on Human-Centered Informatics, 8, 1.
Ioannidou, A., Repenning, A., & Webb, D. (2009). AgentCubes: Incremental 3D end-user develop-

ment. Journal of Visual Language and Computing, 20(4), 236–251.
Kahn, K. (1996). Seeing systolic computations in a video game world. Paper presented at the pro-

ceedings of the 1996 IEEE symposium of visual languages, Boulder, CO, USA.
Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the automatic recog-

nition of computational thinking for adaptive visual language learning. Paper presented at the
conference on visual languages and human centric computing (VL/HCC 2010), Madrid, Spain.

Lieberman, H., Paternò, F., & Wulf, V. (Eds.). (2006). End user development (Vol. 9). Dordrecht:
Springer.

McDirmid, S. (2007). Living it up with a live programming language. Paper presented at the pro-
ceedings of the 22nd annual ACM SIGPLAN conference on object-oriented programming sys-
tems and applications (OOPSLA '07).

McDirmid, S. (2013). Usable live programming. Paper presented at the SPLASH onward!,
Indianapolis, IN, USA.

Michotte, A. (1963). The perception of causality. (T. R. Miles, Trans.). London: Methuen
Myers, B. A., Pane, J. F., & Ko, A. (2004). Natural programming languages and environments.

Communications of the ACM, 47(9), 47–52. doi:10.1145/1015864.1015888.
Nardi, B. (1993). A small matter of programming. Cambridge, MA: MIT.
Nardi, B. A., & Miller, J. R. (1990). The spreadsheet interface: A basis for end user programming.

Paper presented at the INTERACT 90–3rd IFIP international conference on human-computer
interaction, Cambridge, http://www.miramontes.com/writing/spreadsheet-eup/

National Research Council, Committee for the Workshops on Computational Thinking, Computer
Science and Telecommunications Board, Division on Engineering and Physical Sciences.

Principles of Computational Thinking Tools

http://dx.doi.org/10.1145/365181.365217
http://dx.doi.org/10.3102/0013189X12463051
http://dx.doi.org/10.1145/1015864.1015888
http://www.miramontes.com/writing/spreadsheet-eup/

304

(2010). Report of a workshop on the scope and nature of computational thinking. Washington,
DC: National Academies.

Papert, S. (1993). The children’s machine. New York, NY: Basic Books.
Papert, S. (1996). An exploration in the space of mathematics educations. International Journal of

Computers for Mathematical Learning, 1(1), 95–123.
Pea, R. (1983). LOGO programming and problem solving. Paper presented at symposium of the

annual meeting of the American Educational Research Association (AERA), “Chameleon in
the Classroom: Developing Roles for Computers” Montreal, Canada, April 1983.

Repenning, A. (1994). Bending icons: Syntactic and semantic transformation of icons. Paper pre-
sented at the proceedings of the 1994 IEEE symposium on visual languages, St. Louis, MO.

Repenning, A. (1995). Bending the rules: Steps toward semantically enriched graphical rewrite
rules. Paper presented at the proceedings of visual languages, Darmstadt, Germany.

Repenning, A. (2001). End-user programmable simulations in education. Paper presented at the
HCI international 2001, New Orleans.

Repenning, A. (2006). Collaborative diffusion: Programming antiobjects. Paper presented at the
OOPSLA 2006, ACM SIGPLAN international conference on object-oriented programming
systems, languages, and applications, Portland, Oregon.

Repenning, A. (2013a). Conversational programming: Exploring interactive program analysis.
Paper presented at the 2013 ACM international symposium on new ideas, new paradigms, and
reflections on programming and software (SPLASH/Onward! 13), Indianapolis, Indiana, USA.

Repenning, A. (2013b). Making programming accessible and exciting. IEEE Computer, 18(13),
78–81.

Repenning, A., & Ambach, J. (1996). Tactile programming: A unified manipulation paradigm sup-
porting program comprehension, composition and sharing. Paper presented at the 1996 IEEE
symposium of visual languages, Boulder, CO.

Repenning, A., & Ioannidou, A. (2006). AgentCubes: Raising the ceiling of end-user development
in education through incremental 3D. Paper presented at the IEEE symposium on visual lan-
guages and human-centric computing 2006, Brighton, UK.

Repenning, A., & Perrone, C. (2000). Programming by analogous examples. Communications of
the ACM, 43(3), 90–97.

Repenning, A., & Perrone-Smith, C. (2001). Programming by analogous examples. In H. Lieberman
(Ed.), Your wish is my command: Programming by example (Vol. 43, pp. 90–97). San Francisco,
CA: Morgan Kaufmann Publishers.

Repenning, A., Basawapatna, A., Assaf, D., Maiello, C., & Escherle, N. (2016). Retention of flow:
Evaluating a computer science education week activity. Paper presented at the special interest
group of computer science education (SIGCSE 2016), Memphis, Tennessee.

Repenning, A., Webb, D. C., Brand, C., Gluck, F., Grover, R., Miller, S., et al. (2014). Beyond
minecraft: Facilitating computational thinking through modeling and programming in 3D.
IEEE Computer Graphics and Applications, 34(3), 68–71. doi:10.1109/MCG.2014.46.

Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., et al. (2015).
Scalable game design: A strategy to bring systemic computer science education to schools
through game design and simulation creation. Transactions on Computing Education (TOCE),
15(2), 1–31. doi:10.1145/2700517.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., & Kafai,
Y. (2009a). Scratch: Programming for all. Communincation of the ACM, 52(11), 60–67.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner,
A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009b). Scratch: Programming for
all. Communications of the ACM, 52, 60.

Rittel, H., & Webber, M. M. (1984). Planning problems are wicked problems. In N. Cross (Ed.),
Developments in design methodology (pp. 135–144). New York, NY: Wiley.

Schneider, K., & Repenning, A. (1995). Deceived by ease of use: Using paradigmatic applications
to build visual design. Paper presented at the proceedings of the 1995 symposium on designing
interactive systems, Ann Arbor, MI.

A. Repenning et al.

http://dx.doi.org/10.1109/MCG.2014.46
http://dx.doi.org/10.1145/2700517

305

Sweigart, A. (2010). Invent your own computer games with Python, A beginner’s guide to computer
programming in Python.

Turkle, S. (2007). Evocative objects: Things we think with. Cambridge, MA: MIT.
Willis, C. L., & Miertschin, S. L. (2005). Mind tools for enhancing thinking and learning skills.

Paper presented at the proceedings of the 6th conference on information technology education,
Newark, NJ, USA.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

Transactions of the Royal Society, 2008(366), 3717–3725.
Wing, J. M. (2014). Computational thinking benefits society. http://socialissues.cs.toronto.edu/

index.html%3Fp=279.html
Yager, R. (Ed.). (1995). Constructivism and learning science. Mahway, NJ: Lawrence Erlbaum

Associates.

Principles of Computational Thinking Tools

http://socialissues.cs.toronto.edu/index.html?p=279.html
http://socialissues.cs.toronto.edu/index.html?p=279.html

	Principles of Computational Thinking Tools
	 Introduction
	 Principles of Computational Thinking Tools
	 Supporting Problem Formulation
	 How AgentCubes Supports Problem Formulation

	 Supporting Solution Expression
	 How AgentCubes Supports Solution Expression

	 Supporting Execution and Evaluation
	 How AgentCubes Supports Execution and Evaluation

	 Conclusions
	References

