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Abstract  Computational thinking (CT) refers to a set of processes through which 
people arrive at solutions to problems using principles based in computer science. 
A CT approach to problem-solving is increasingly valuable in education and work-
place settings as the economy grows more dependent on digital literacy. Given the 
importance of CT, it is essential to assess these skills. However, a reliable assess-
ment tool is absent from the current literature. This chapter, therefore, defines CT 
across the Ontario (Canada) Elementary School curriculum in elementary class-
rooms and addresses the need for effective instructional strategies and assessment 
of CT-related problem-solving abilities. Finally, we establish where CT concepts 
and skills already exist or are missing from the curriculum and suggest a workable 
tool to assess CT based on existing literature.
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�Introduction

A growing digital economy and the need for an ever increasing percentage of the 
population to work with twenty-first century skills (e.g., problem-solving, creating, 
collaborating, communicating, critical thinking) demand that these skills be 
addressed and supported starting from an early age and that they remain a focus as 
students develop (Dede, 2010). Learning theory for a digital age emphasizes authen-
ticity, audience, and authorship—children are creating, sharing, and learning with 
purpose (Bellanca & Brandt, 2010). The Computer Science Teachers Association 
(CSTA) and the International Society for Technology in Education (ISTE) (2011) 
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suggest that the following dispositions or attitudes accompany these skills: 
“confidence in dealing with complexity, persistence in working with difficult 
problems, tolerance for ambiguity, the ability to deal with open-ended problems, 
and the ability to communicate and work with others to achieve a common goal or 
solution” (p. 7). Although these skills and dispositions do not require technology, 
they are supported by and encouraged in a digital environment. Computational 
thinking and problem-solving are related to higher-order thinking skills that are 
recognized as fundamental to success in a digital age.

Computational thinking can be considered a specific type of problem-solving 
(i.e., approaching a problem with a particular mind-set utilizing computer technol-
ogy). Computer programming involves the identification of a problem and the cre-
ation of a solution using a language and logic that directs a computer to perform 
actions leading to that solution. Computational thinking (CT) takes computer sci-
ence outside of the computer lab and makes it accessible to everyone, rather than 
computer programming, often seen as a narrow and “tedious, specialized activity, 
accessible only to those with advanced technical training” (http://scratch.edu, 2016).

Considering and using computational thinking across disciplines to solve prob-
lems places computer programming within the reach of students at any age. A 
change in emphasis in learning, from knowledge acquisition to higher-order knowl-
edge construction, makes it important for teachers to transform practice to approach 
computational thinking for students in all disciplines and not solely in computer 
science. Introducing creative and critical thinking is not a brand new endeavor for 
teachers (Griffin, 2014), but it can be more deliberate, specifically recognizing 
when a computer can help us to gather, analyze and manipulate data, create simula-
tions, and persist with complex and difficult problems (Barr & Stephenson, 2011; 
CSTA & ISTE, 2011; Voskoglou & Buckley, 2012; Wing, 2006).

What is missing from the literature, and most learning frameworks, however, is 
a valid and reliable assessment of computational thinking skills. Some research 
recommends using multiple assessments in a “systems of assessments” approach to 
assessing computational thinking (Grover, 2015). However, employing many 
assessment tools can be costly and onerous. We, therefore, propose a more compre-
hensive assessment of computational thinking skills to provide an understanding of 
how such skills may be applied across disciplines.

Computational thinking is not, and should not be, an additional area of curricu-
lum content, but rather an integrated component of already existing curricula. 
Teachers may not be prepared to include more content in what many describe as an 
“overcrowded” curriculum. One school principal, Brian Nichols, summarized an 
online “#edchat” (i.e., a weekly Twitter discussion of educators; 2010) on “how to 
manage standards and an overloaded curriculum,” using three key themes: pre-
paredness, essentiality, and integration. He suggests that in “covering the curricu-
lum,” teachers need to choose content and skills that prepare students for a workforce 
dependent on “the ability to create new ideas, synthesize information, and problem 
solve with people all over the globe.” Further, teachers must identify what is 
“essential” and integrate such skill sets across disciplines rather than addressing 
problem-solving strategies in isolation.
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This chapter identifies a working definition of computational thinking across the 
curriculum in Ontario’s elementary classrooms and addresses the need for effective 
instructional strategies and assessment of problem-solving abilities. Further, we ana-
lyze where CT concepts and skills already exist or are missing from the Ontario 
Elementary School curriculum (Ministry of Education, Ontario, Canada). Finally, we 
suggest a workable CT assessment tool based on existing literature and current find-
ings (Brennan & Resnick, 2012; Hesse, Care, Buder, Sassenberg, & Griffin, 2015; 
Voogt, Fisser, Good, Mishra, & Yadav, 2015; Wilson, Scalise, & Gochyyev, 2015).

�What and Where Is Computational Thinking?

�A Working Definition

Before a construct can be discussed, debated, and analyzed, an agreed-upon defini-
tion is generally a starting point. Wing’s (2006) definition of computational thinking 
is considered to be that starting point although many researchers and educators have 
reviewed the definition, massaged its components, and set it in context since (e.g., 
Barr & Stephenson, 2011; National Research Council, 2010; Shelby & Woollard, 
2013). In a recently published examination of computational thinking in compul-
sory education, Voogt, Fisser, Good, Mishra, and Yadav (2016) spoke to the need for 
a definition of computational thinking that includes “peripheral skills” important to 
CT but not “necessary and sufficient” if CT is to be implemented in the practice of 
teachers across disciplines.

Researchers have identified seven core concepts that are useful in programming, 
including sequences, loops, parallelism, events, conditionals, operators, and data. 
Computational practices consist of eight terms and refer to how one is learning: 
experimenting and iterating, testing and debugging, reusing and remixing, and 
abstracting and modularizing. Computational perspectives capture how program-
mers’ perspectives are impacted during CT in three ways: expressing, connecting, 
and questioning.

The purpose of this chapter is not to review the historical development of the 
definition of the term, but rather to set a working definition in context for assessing 
CT across the curriculum in an elementary school setting using coding as a tool to 
teach this approach to problem-solving. The challenge is to identify where and 
when the concepts, practices, and perspectives that define computational thinking 
are, can, and should be introduced to learners.

Given the importance of computational thinking in the future, it is of related 
interest where and how much the present elementary curriculum addresses CT and 
associated processes. Indeed, an understanding of how the existing curriculum 
already addresses CT can (1) establish a starting place for educators who wish to 
expand the curriculum to incorporate or expand CT resources and (2) provide edu-
cators with evidence of where they already address CT. In effect, we suggest that 

Assessing Computational Thinking Across the Curriculum



254

adapting current teaching materials should not be intimidating. This could increase 
openness to dialogue around where CT may be “hiding in plain sight” within the 
current elementary school curriculum.

As an example, we conducted a systematic content analysis of the Ontario 
Elementary School curriculum (grades 1 through 8) for 38 terms (see Table 1) asso-
ciated with computational thinking (Brennan & Resnick, 2012; Grover & Pea, 
2013; Scratch Ed, 2016; Yadav et al., 2011). Content analysis refers to a research 
technique for making inferences from data to their context (Krippendorff, 2012). 
The goal of a content analysis is to systematically review and extract text into mean-
ingful categories, which can then be used to draw conclusions.

Our primary research questions in this content analysis included:

	1.	 Frequenciesacross subject areas: How often do the specific phrases “computa-
tional thinking” and “problem-solving” appear in the Ontario Elementary School 
curricula and across which subject areas? How often do CT-related terms (and 
their iterations) appear in the Ontario Elementary School curricula and across 
which subject areas?

	2.	 Grade level: In which grade levels are students introduced to CT-related terms 
(and their iterations) across the Ontario Elementary School curricula?

	3.	 Context/location: In which sections of the Ontario Elementary School curricula 
do CT-related terms (and their iterations) appear?

�Method

Ontario curriculum documents are accessible to the public in multiple formats. We 
specifically analyzed the text files versus the print or PDF files given the large vol-
ume of data. In total, the Ontario curriculum documents total 1496 pages. Subject 
areas include kindergarten, mathematics, arts, sciences, language, health and physi-
cal education, social studies, French as a second language, and Native language 
studies (average page count was 187 pages). The Ministry of Education mandates 
that each year a number of subject areas enter the review process, so they remain 
relevant and age appropriate. Thus, educators, parents, and students at least once 
between 2005 and 2015 have reviewed subjects comprehensively.

In the current study in particular, we reviewed kindergarten, mathematics, arts, 
science and technology, health and physical education, social studies, French as a 
second language, and Native language studies for frequencies of terms. Then, we 
narrowed our search to a subset of terms and disciplines (i.e., mathematics, science 
and technology, language, and arts), focusing on areas relevant to our future applied 
research in classrooms. We reviewed each subject area for frequency of terms as 
well as context and location (i.e., curriculum expectations, front matter). Two 
trained researchers (i.e., graduate students in social psychology and business/com-
puter science) conducted analyses, and any discrepancies were resolved through 
discussion. As well, we conducted an in-depth content analysis of the context, 
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Table 1  Computational thinking key terms searched in content analysis

Key term Derivatives

  1.	 Abstract Abstractinga; abstraction
  2.	 Algorithm Algorithmic
  3.	 Analyse Analysis; analyze; analyzes; analyzed
  4.	 Apply Application; applied; applying
  5.	 Automate Automated; automatically; automation
  6.	 Code Coder; coding; coded; codes
  7.	 Collection
  8.	 Computational thinking Computational
  9.	 Compute Computed; computes; computer; computing
10.	 Conditionalsa

11.	 Connecting
12.	 Data Data analysis; data collection; data representation
13.	 Debugginga

14.	 Decompose Decomposed; decomposing; decomposition
15.	 Eventsa

16.	 Experimentinga

17.	 Expressinga

18.	 Generalize Generalization; generalized; generalizing
19.	 Identification
20.	 Iteratinga

21.	 Logic Logical
22.	 Loopsa

23.	 Management
24.	 Model Modeling; modeling
25.	 Modularizinga

26.	 Operators
27.	 Parallel Parallelization
28.	 Problem
29.	 Problem-solve Problem-solves; problem-solvers; problem-solving
30.	 Questioninga

31.	 Recursive
32.	 Remixinga

33.	 Representation
34.	 Reusinga

35.	 Sequencea

36.	 Simulate Simulated; simulation
37.	 Technology Technological
38.	 Testinga

aTerms from Brennan and Resnick (2012) used in specific search.
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grade, and location of the terms within the curriculum document (i.e., curriculum 
expectations or front matter) using only the concepts, processes, and perspectives 
identified by Brennan and Resnick (2012). Preliminary results of the more specific 
content analysis of the disciplines are presented here (See Table 2). A more detailed 
examination of the results within context will be included in a forthcoming article 
by Hennessey, Mueller, Beckett, and Fisher (Unpublished manuscript).

To first determine frequencies of our terms across the various curricula, we wrote 
a script using Python (the programming language) to search for each word using 
regular expression pattern matching (see Goyvaerts, 2016). The script was designed 
to find all terms associated with CT processes. Included in this larger search were 
the focal CT definition terms delineated in Brennan and Resnick (2012). The script 
was designed to match all variations of each word stem in our search list [e.g., we 
searched for all variations of “code” such as “coding,” “coded,” “coder,” and “codes” 
with the pattern cod(e|ing|ed|er|es)] while excluding words that were nested within 
other words which were not of interest (e.g., variations of “sequence” were found; 
however, variations of “consequence” were excluded). The most up-to-date version 
of each curriculum was searched with the script. Wherever possible, the plaintext 
version of the curriculum was searched. However, not all of the most up-to-date 
curricula have a plaintext version made publicly available. In these cases, the PDF 
version was first converted to a text file in order to be searched. This conversion 
process is inherently imperfect, and as such, the final frequency count for these cur-
ricula is expected to be a slight underestimation, as the converted text may have 
been broken up in the conversion process such that the regular expression would no 
longer match.

�Results and Discussion

Frequencies of CT-related terms appear in Table 1. Our analyses showed that while 
the exact phrase “computational thinking” does not appear in the Ontario Elementary 
School curricula, the term “computational” alone appears sparsely and only in the 
mathematics curriculum (15 instances), mostly in a title describing “computational 
strategies.” Iterations of the term “compute” appear more frequently in the mathe-
matics curriculum (30 instances), but are less frequently cited in arts (10 instances), 
language (11 instances), or the science and technology (3 instances) curricula. The 
phrase “problem-solve” and its iterations appear with more frequency than “compu-
tational thinking” in the mathematics (459 instances) and science and technology 
(134 instances) curricula; however, “problem-solving” is sparsely mentioned in the 
arts (76 instances) and language (38 instances) curricula.

Although CT itself is not found explicitly in the current elementary curriculum, 
there are related terms present across disciplines. Initial frequency analyses indi-
cated that terms associated with CT mostly appeared in the mathematics (1,259 
instances) and arts (935 instances) curricula. These terms were also fairly com-
monly used in science and technology (886 instances). Terms associated with CT 
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appeared somewhat often in the language (522 instances), kindergarten (447 
instances), and health and physical education (276 instances) curricula and less fre-
quently in the Native languages (53 instances) document.

A more specific analysis of the mathematics, science and technology, arts, and 
language documents using the computational concepts, practices, and perspectives 
from Brennan and Resnick’s (2012) definition suggests that the frequencies of terms 
differ across disciplines and grades and that concepts are addressed more often than 
practices or perspectives. See Table 2 for frequencies of each term across different 
subject areas.

All four of the disciplines we examined include the terms “data” and “events.” 
The mathematics curriculum, not surprisingly, uses the term “data” much more fre-
quently than the other three disciplines. Both arts and language, however, also 
include the term “sequences,” while mathematics and science, interestingly, do not. 
The only other specific CT concept that was found in the documents was “opera-
tors” (3 instances) in the science and technology curriculum. Any specific CT prac-
tices were referred to only in the science and technology curriculum—“testing” (19 
instances) and “reusing” (3 instances). Only 1 instance of “abstracting” was found 
in the arts. Frequencies of terms defined as CT perspectives (i.e., “expressing,” 
“connecting,” and “questioning”) were spread more evenly across the documents—

Table 2  Frequency of CT concepts, practices, and perspectives in mathematics, science and 
technology, language, and arts curricula

Subject area Mathematics Science and technology Language Arts

Key term concepts

Data 253 28 5 3
Events 21 12 33 36
Operators 0 3 0 0
Sequences 0 0 3 8
Loops 0 0 0 0
Parallelism 0 0 0 0
Conditionals 0 0 0 0
Practices

Testing 0 19 0 0
Reusing 0 3 0 0
Abstracting 0 0 0 1
Incremental 0 0 0 0
Iterative 0 0 0 0
Debugging 0 0 0 0
Remixing 0 0 0 0
Modularizing 0 0 0 0
Perspectives

Connecting 23 2 17 7
Expressing 2 1 4 2
Questioning 1 1 9 4
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all had at least 1 instance of each term, but not in large numbers. The perspective of 
“connecting” was used most frequently in mathematics, followed by language, 
while language and arts included “questioning” more often than mathematics or 
science, each with just a single instance.

This initial analysis of instances of computational thinking terminology within 
the curriculum across disciplines suggests that terms related to the concepts of com-
putational thinking can be found within the current curriculum, but specific terms 
unique to computer programming are not. It appears that a questioning and connect-
ing perspective is a part of the current content in the elementary curriculum in the 
language and arts disciplines, suggesting that students may be learning the concepts 
and perspectives that form a foundation for computational thinking. What may be 
missing are the actual practices involved in computational thinking.

Examining “where” instances of CT-related terms are found within the curricu-
lum may shed additional light on the meaning of the analysis. See Fig. 1 for a break-
down of percentages in location within the curriculum document.

The largest percentage of CT-related terms in the language and mathematics cur-
ricula is found in specific expectations—the “what” or content that is to be taught—
while analysis of both the science and arts curricula indicates that CT-related terms 
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are most frequently found in the front matter of those documents, the “how” the 
subject is to be taught, the program planning, assessment and evaluation, and 
general overview of the discipline.

Aside from the frequency of computational thinking-related terms across disci-
plines, the developmental sequence across grades is also of interest. “Computational 
thinking” specifically is not a term used in any of the curriculum documents at any 
grade, but “solving problems” and “problem-solving” are terms used in increasing 
quantity within the documents. See Fig. 2 for the progression across grades in each 
of the four discipline areas examined in more detail.

Politicians, industry leaders (e.g., Google; Wing, 2014; Code.org), parents, and 
the computer science community are encouraging educators, beginning at the ele-
mentary level, to “transform” their teaching practices so that CT is added to current 
curriculum (Barr & Stephenson, 2011; Repenning, Webb, & Ioannidou, 2010). 
These types of sweeping changes and calls for transformation in educational prac-
tice and content rarely see immediate or substantial change. Identifying what cur-
rently “works” and sharing with educators where this way of thinking can be found 
in their curriculum and what these concepts, practices, and perspectives look like 
across grades and disciplines serves as a first step in making the necessary adjust-
ments to twenty-first century education. Jun, Han, Kim, and Lee (2014) examined 
the computational literacy of Korean elementary students using information and 
communications technology (ICT) literacy as a broader issue, suggesting that the 
curriculum needs to be revised to include computational problem-solving skills and 
that teaching methods need to be more accessible and effective for teachers. 
Preliminary review of the Ontario Ministry of Education Curriculum for elementary 
students indicates that specific skills and practices used in computer programming 
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may need to be included in revised and updated curriculum, but CT perspectives and 
ways of questioning may already be present in the curriculum—hiding in plain 
sight. A key question then is how educators teach these skills, practices, and per-
spectives to develop computational thinking across the disciplines and grades and 
how those concepts and skills are measured and assessed.

�Teaching Computational Thinking and Problem-Solving 
Through Coding Across Disciplines

Developments and advancement in programming languages and digital technology 
have made coding and computer programming more accessible and user friendly, 
and Dr. Wing’s (2006) vision possible. More recently, a debate (see Charlton & 
Luckin, 2012; Barr & Stephenson, 2011; Naughton, 2012) has emerged suggesting 
that not everyone can, or should, be a computer scientist, with arguments analogous 
to those suggesting that you do not need to be a mechanic to drive a car. However, 
twenty-first century global problems—social, economic, and environmental—
demand that our educational institutions develop citizens who are able to approach 
these problems in creative and innovative ways, refining problems, developing solu-
tions, and evaluating outcomes virtually and in real life (Barr & Stephenson, 2011). 
The sheer volume of information available and the data involved in solving these 
problems require computer-supported approaches .

Computational thinking enables the scaling of problem-solving. According to 
Constable (2005),

“…Computers change the scale at which resources can be examined, and they already pro-
vide sufficient discriminatory powers that scale and speed compensate for their currently 
limited intelligence as they draw conclusions, make predictions, and participate in discover-
ies…The challenge for society is to assimilate digital knowledge and to improve the human 
condition by its application.” (p. 1)

Coding has been introduced and perhaps even “hailed” as a panacea to ensure 
that learners are indeed introduced to, and develop, the ability to solve complex 
twenty-first century problems using computer programming. US President Obama’s 
2017 budget, in fact, includes four billion dollars to support computer science in 
schools, identifying computer science as a “basic skill” in his Computer Science for 
All initiative (Shear, 2016).

Computational thinking can be made accessible to students and teachers through 
concrete approaches to computer coding. Utilizing the potential and benefits of 
computer coding to develop skills and strategies across disciplines and across devel-
opmental levels will begin to provide a foundation for the development of computa-
tional thinking for everyone. Activities to learn and improve specific skills can be 
used across grade levels from kindergarten to grade 12, e.g., abstraction, algorithms 
and procedures, automation, simulation, and parallelization (CSTA & ISTE, 2011). 
In order to measure the effectiveness of the activities and the impact on problem-
solving beyond those activities, tools measuring these twenty-first century skills 
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must be developed, validated, and utilized. Problem-solving can be measured using 
complex, authentic examples in context or using a confined approach with one or 
two solution problems within limitations (Voskoglou & Buckley, 2012; Voskoglou 
& Perdikaris, 1993). Further evidence can then be collected through the use of ver-
bal protocol, interviews, and naturalistic observation, and one can use computers to 
track strategies and approaches to problems within Web or applications.

Resources have been developed and utilized to support teachers in the kindergar-
ten to grade 12 environment using computer coding to represent problems and col-
lect data (e.g., CSTA & ISTE, 2011). Advances in computer technology have created 
applications and programs that allow the user to build and create without knowing a 
complex computer language. One such application was developed at MIT and is 
available to users online: Scratch (http://scratch.mit.edu). The platform was designed 
for students from ages 8 to 16 but is used by people of all ages across learning con-
texts and disciplines. Using “drag, drop, and click” blocks of code, users can build 
projects to animate, simulate, tell stories, and make music. Utilizing a software 
application such as Scratch, measuring problem-solving ability before and after its 
use across curriculum areas (disciplines) and age levels, will allow us to assess the 
impact of instruction related to computational thinking on problem-solving ability 
and introduce CT to teachers and students (see Koehler & Ackaolgu, 2014).

The key question is whether learning to code is an effective method for developing 
problem-solving that transfers across disciplines and contexts. An examination of 
the curriculum and how CT is addressed, or not, at the elementary level serves as a 
starting point for measuring computational thinking using a systematic approach.

�Measuring Computational Thinking and Problem-Solving

Even when using the most effective teaching methods, teachers cannot assume that 
learning occurs. It is well documented that students develop and learn at different 
rates (Angelo & Cross, 1993; Cashin, 1990; Drake, Reid, & Kolohan, 2014; Sternberg, 
1986, 2009) and teaching quality varies from classroom to classroom; therefore, 
teachers should not assume all students have grasped what has been taught (Western 
and Northern Protocol for Collaboration in Education, [WNPC], 2006). As a result, 
classroom assessment and evaluation are essential to measure what students have 
learned. To date, extensive research exists on traditional classroom assessment strat-
egies that promote effective instruction and student learning (Andrade, 2009; 
Brookhart, 2009; Black, Harrison, Lee, Marshall, & Wiliam, 2003; Black & Wiliam, 
2009; Dann, 2014; Earl, 2003; Hattie, 2012).

What’s lacking presently in classroom assessment research is the twenty-first cen-
tury context of classroom assessment. Specifically, with the influx of new skills 
deemed necessary for the twenty-first century (e.g., computational thinking skills), 
teachers are at a loss of how to teach and assess such skills (Griffin & Care, 2015; 
DiCerbo, 2014). In fact, the Association for Computing Machinery (ACM) and the 
Computer Science Teacher Association (CSTA) stress the major factor that limits 
computational thinking into schools is the lack of assessments available to teachers.

Assessing Computational Thinking Across the Curriculum
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Computational thinking has a wide application beyond computing itself. It is 
the process of recognizing aspects of computation in the world and applying tools 
and techniques from computing to understand and reason about natural, social, and 
artificial systems and processes (Csizmadia et  al., 2015). It allows students to 
tackle problems, to break them down into solvable chunks, and to devise algo-
rithms to solve them. Therefore, computational thinking concentrates on students 
performing a thought process, not on the production of artifacts or evidence. This 
in itself can be problematic for assessment because it is difficult to measure actual 
thought processes.

Although we advocate for a systems of assessment approach whereby “assessment 
as, of, and for learning” are used purposely, we recognize that “assessment as 
learning” plays a large role in effective “assessment of” students’ computational 
thinking. That is, in order for teachers to truly know what and how students are 
thinking, students are required to demonstrate their thought processes in some way. 
One of most effective methods for assessing student thinking is the think-aloud 
method (Ahonen & KanKaanranta, 2015). Two methods are available for collecting 
student think-aloud data: concurrent and retrospective think-alouds (Ericsson & 
Simon, 1993). During a concurrent think-aloud, students think aloud as they com-
plete a task with the intent of unveiling the cognitive processes they engage in and 
the information they attend to while they are solving a problem (Leighton & Gierl, 
2007). In contrast, retrospective think-alouds are conducted after students have 
solved the problem, providing students an opportunity to describe any metacogni-
tive processes in which they engaged while solving the problem (Ericsson & Simon, 
1993). Although both methods can provide rich accounts of students’ computational 
thinking, concurrent think-alouds collect data from short-term memory which is 
preferable when assessing computational thinking skills because they are not tainted 
by perception, providing the most accurate representation of knowledge and ability. 
And yet, this method can be costly in terms of time and scale. It is unreasonable to 
expect teachers to be able to use it writ large. Recently, however, easier accessibility 
to new and older technologies in schools, such as audio and video recordings and 
screencasting with student narration, mitigates some of the caveats of the think-
aloud method.

Metacognition is often tied with think-alouds as it requires students to think 
about their own thinking (Flavell, 1979). Think-alouds and metacognitive processes 
are at the crux of deep, purposefully “assessment as learning.” Computational 
thinking is a systematic thinking process, and for this reason the think-aloud is a 
valuable method for properly understanding how computational thinking happens 
at the cognitive level. That is, this method provides teachers with rich student data 
about how the student is thinking through a problem, consequently allowing the 
teacher to provide deliberate, personalized instruction to further student learning.  
However, one of the drawbacks of this method is that younger children are not 
always aware of their own cognition, and therefore thinking aloud could distract 
them from the task. This brings to light that metacognition is not an innate ability; 
it must be taught. Volante and Beckett (2011) suggested a “lockstep process” to 
teaching AaL; that is, teachers provide guidance to students when cultivating evalu-
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ative knowledge and expertise and reflecting on what they have learned. It is benefi-
cial for teachers to provide students with a pool of appropriate strategies to bring 
their own performance closer to the desired goal (Sadler, 1989). This argument is 
strongly aligned with Earl’s (2003) conceptual framework of the three purposes of 
assessment in that she believes teachers should establish an environment in which 
AaL is central to student learning and that all other assessments are rooted in such 
practices.

The bidirectional transmission between teacher assessment (i.e., AaL and AfL) 
and student self-assessment (i.e., AaL) is a vital factor for optimal assessment of 
computational thinking. What remains to be created in the area of computational 
thinking though is an assessment tool that will allow teachers to evaluate CT and 
scaffold additional teaching and learning. Before an assessment tool can be devel-
oped, a clear description of what is being assessed is required.

We provide a set of teacher verbal protocols to aid in the evaluation of students’ 
computational thinking processes. By asking these types of questions, teachers will 
be able to gain a deep understanding of students’ computational thinking ability and 
how it relates to problem-solving outside of coding. Specifically, the questions are 
broken down by processes so that teachers can pinpoint which are areas of strength 
and areas of needed improvement.

The questions are categorized based on skills and processes that are inherent to 
computational thinking and as such would be useful skills to transfer across disci-
plines to solve problems. For instance, in order to evaluate students’ algorithmic 
thinking across disciplines, teachers can ask “Can the student create a set of steps to 
solve a problem” and “Can the student solve similar problems with the same set of 
steps or principles?” See Table 3 for a possible list of questions. By using this set of 
questions, teachers may gain a more comprehensive understanding of students’ 
ability to transfer computational skills and processes into other disciplines  and 
guide further instruction.

This set of questions can also be used as a communication tool between teachers 
and students. Evaluation as communication can promote student learning and devel-
opment of computational thinking and problem-solving skills. Specifically, a dis-
cussion (with these questions as a guide) can confirm with students the quality of 
their performance and provide insight on how they can improve and further develop 
their computational thinking skills. The questioning in and of itself encourages and 
scaffolds metacognition and computational thinking. With that said, our intention is 
not to reduce or oversimply the evaluation of computational thinking only to these 
sets of skills. We recognize this as a starting place and a means to support discussion 
and provoke thought around how to assess computational thinking skills. Ultimately, 
computational thinking is a process and therefore should not be evaluated as an end 
product. It is an ongoing learning progression through grade levels and across sub-
ject areas to eventually produce effective and productive twenty-first century think-
ers. Future research will examine the “think-alouds” of children as they participate 
in tasks intended to develop computational thinking to further inform the types of 
questions to be used in assessment of CT and provide criteria and examples of 
development across grades and disciplines.

Assessing Computational Thinking Across the Curriculum



264

�Conclusion

The demand for CT to be integrated into elementary education is clear. What that 
looks like in terms of curriculum, practice, and assessment is not well defined. The 
data analysis process itself that was used in this research was an example of utilizing 
computational thinking and coding processes to analyze an expansive set of 
information such as the Ontario Curriculum documents. This chapter provides a 

Table 3  Assessment tool for concepts, processes, and perspectives in problem-solving and 
computational thinking

Skill (source) Questions

Algorithmic thinking Can the student create a set of steps to solve a problem?
Can the student solve similar problems with the same set of 
steps or principles?

Decomposition Can the student break down the problem into smaller, more 
manageable parts?

Generalization/inferencing Can the student transfer prior knowledge and skills? Can the 
student identify patterns, similarities, and connections 
between prior and current problems?
Can the student make inferences?

Abstraction Can the student evaluate what is valuable information and 
what is not? Can the student remove unnecessary 
information?
Can the student add or remove details to clarify a problem?

Evaluation Can the student evaluate if the solution is a good one?
Incremental/iterative thinking Can the student identify a concept for the project?

Can the student develop a design plan?
Can the student implement the design plan?
Is the student comfortable adapting the plan in response to 
new or different information?

Testing and debugging Can the student develop strategies for dealing with 
problems?
Can the student anticipate and plan for problems?
Is the student comfortable using a trial and error method?

Reusing and remixing Is the student efficient in researching relevant information?
Can they use research to their advantage while maintaining 
authenticity?
Can the student embed others’ work into their own in a 
meaningful way?
Does the student have critical code reading ability?

Modularizing Can the student put together smaller parts to make something 
larger?
Can the student piece together parts of a solution to solve a 
problem?

Note: Categories of skills were informed by Brennan and Resnick (2012) and Csizmadia et al. 
(2015)
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preliminary analysis of one provincial-level elementary curriculum and recognizes 
the existence of computational thinking and related terms across disciplines.  
For example, there is an emphasis on CT-related concepts and perspectives in 
seemingly unrelated disciplines of language and the arts, with fewer instances of 
specific practices necessary for computer programming as evidenced by the low 
prevalence of key terms. Computational thinking is present in a variety of forms and 
contexts in the existing curriculum as both content (i.e., curriculum expectations) and 
pedagogical approaches (in planning, teaching strategies, and assessment). Educators 
therefore need to build on current expectations in each discipline to further develop 
CT as a way of thinking from elementary education onward. This chapter acknowl-
edges the importance of identifying and defining CT as a metacognitive thinking 
process that teachers assess in collaboration with students. A set of questions is pro-
posed to allow teachers and students to communicate the development of problem-
solving skills across disciplines and developmental stages, serving as a foundational 
assessment tool for measuring CT in instruction and research.
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