
189© Springer International Publishing AG 2017
P.J. Rich, C.B. Hodges (eds.), Emerging Research, Practice, and Policy on
Computational Thinking, Educational Communications and Technology: Issues
and Innovations, DOI 10.1007/978-3-319-52691-1_12

Teacher Transformations in Developing
Computational Thinking: Gaming
and Robotics Use in After-School Settings

Alan Buss and Ruben Gamboa

Abstract The challenges of addressing increasing calls for the inclusion of
 computational thinking skills in K-12 education in the midst of crowded school
 curricula can be mitigated, in part, by promoting STEM learning in after-school
 settings. The Visualization Basics: Using Gaming to Improve Computational
Thinking project provided opportunities for middle school students to participate
in after-school clubs focused on game development and LEGO robotics in an
effort to increase computational thinking skills. Club leaders and teachers, how-
ever, first needed to develop proficiency with the computational tools and their
understanding of computational thinking. To achieve these goals, teachers partici-
pated in two online professional development courses. After participating in the
courses, teachers’ understanding of and attitudes toward computational thinking
skills were mostly positive. Observations of club sessions revealed that teachers
provided a mix of structured and open-ended instruction. Guided instruction, such
as using detailed tutorials for initial exposure to a concept or process, was most
commonly observed. One area identified for improvement was the duration of the
courses, which provided limited time for teachers to develop deep and robust com-
putational thinking skills. Despite this limitation, the data collected thus far sug-
gest that teachers’ understanding of and attitudes toward computational thinking
skills improved.

Keywords Game development • Robotics • Teacher professional development •
Computational thinking

A. Buss (*) • R. Gamboa
University of Wyoming, 1000 E. University Ave, Laramie, WY 82071, USA
e-mail: abuss@uwyo.edu; ruben@uwyo.edu

mailto:abuss@uwyo.edu
mailto:ruben@uwyo.edu

190

 Introduction

The history of US public schools is replete with calls for increased skills for dealing
with current and future challenges. These calls include improvements in problem-
solving and critical thinking skills (Educational Policies Commission, 1961),
twenty-first-century skills (Uchida, Cetron, & McKenzie, 1996), and, more recently,
computational thinking skills (Barr, Harrison, & Conery, 2011; Wing, 2006).
Responding to these calls is a significant challenge on multiple fronts, including
curriculum constraints and professional development. Demands on teachers’ time
to address existing curriculum requirements are high, leaving little or no room for
new content, such as with computational thinking (Grover & Pea, 2013; National
Research Council, 2011). Out-of-school activities, including after-school programs,
however, provide greater opportunities to address computational thinking (CT) due
to greater flexibility with curriculum and widely available web-based resources
(National Research Council, 2011).

In 2013 the University of Wyoming received NSF Innovative Technology
Experiences for Students and Teachers (ITEST) funding to implement a three-year
program focused on developing middle school students’ computational and spatial
visual thinking skills in after-school settings. The resulting program, Visualization
Basics: Using Gaming to Improve Computational Thinking (UGICT), helped public
school teachers and community members form after-school game development and
robotics clubs. As most club teachers did not have experience with programming or
robotics, professional development (PD) was provided in the form of two synchro-
nous web-based courses. Data were gathered on teachers’ understanding of CT and
instructional practices through the use of pre-post surveys and club observations.
This chapter focuses on results from years 1 and 2 of the grant project, in which 28
teachers in grades 4–8 from 18 schools in Wyoming participated.

 Theoretical Framework

While there is a definite “cool” factor for selecting game development and robotics
as tools for improving computational thinking skills, the use of such technology
tools for learning is rooted in the ideas of constructionism. The key to learning is
activity and experience (Dewey, 1916, 1958), whether through social interaction
(Lave & Wenger, 1991; Salomon & Perkins, 1998; Vygotskiĭ & Cole, 1978), play
(Honeyford & Boyd, 2015; Piaget & Inhelder, 1969), experimentation, or creation
and construction (Burke, O’Byrne, & Kafai, 2016; Kafai, 1995, 2006; Kafai &
Burke, 2013; Papert & Harel, 1991). Using programming to create new artifacts
such as games and robotic controls is an effective tool for learning computer science
concepts, mathematics, and problem-solving (Akcaoglu, 2016; Ardito, Mosley, &
Scollins, 2014; Denner, Werner, & Ortiz, 2012; Kafai, 1996; Li, 2010; Papert,
1980). Furthermore, the use of game design and robotics promotes a specific type of

A. Buss and R. Gamboa

191

thinking skills known as computational thinking (Atmatzidou & Demetriadis, 2016;
Bers, Flannery, Kazakoff, & Sullivan, 2014; Nickerson, Brand, & Repenning, 2015;
Repenning et al., 2015).

 Computational Thinking in K-12 Education

Capturing the essence of CT, particularly in the context of K-12 education, in a
simple definition is a vexing problem (Atmatzidou & Demetriadis, 2016; Barr &
Stephenson, 2011; Grover & Pea, 2013; NRC, 2011). The definitions of CT that
have been offered differ in some details, but they are largely consistent with one
another. One of the earliest and most widely accepted definitions is from Jeannette
Wing (2006), who emphasized that CT is a general attitude and broad skill set, as
opposed to an explicit and narrow list of facts.

Wing’s seminal ideas on CT had broad influence, and have been largely incorpo-
rated into the definition of CT from the International Society for Technology and
Education (ISTE) and the Computer Science Teachers Association (CSTA). These
groups are two of the main voices in the establishment of K-12 computing educa-
tion, and proposed an authoritative definition of CT comprised of two parts (Barr
et al., 2011). The first involves characteristics of the CT process, which include the
ability to:

Formulate problems in a way that enables the use of computers
Logically organize and analyze data
Represent data through abstractions such as models and simulations
Automate solutions through algorithmic thinking
Identify, analyze, and implement different possible solutions with efficiency in mind
Generalize this problem-solving approach to a wide variety of problems

Technical computing skills are not sufficient by themselves to solve problems via
the use of computing power. Problem-solving with computers is a difficult and often
lengthy process, so success also requires a set of attitudes that allow students to
persevere in the face of adversity. These attitudes include:

Confidence in dealing with complexity
Persistence in working with difficult problems
Tolerance for ambiguity
The ability to deal with open-ended problems
The ability to communicate and work with others

There is a rich and growing research base on the use of gaming and robotics to
address specific CT skills in students (Atmatzidou & Demetriadis, 2016), providing
evidence of increased communication and collaboration skills (Ardito et al., 2014;
Khanlari, 2013; Yuen et al., 2014), motivation (Webb, Repenning, & Koh, 2012),
complex problem-solving skills (Akcaoglu, 2016; Akcaoglu & Koehler, 2014),
abstraction (Nickerson et al., 2015), and transfer (Repenning et al., 2015).

Teacher Transformations in Developing Computational Thinking: Gaming and Robotics…

192

Another important issue is how much CT skills the teachers themselves need
(Repenning et al., 2015; Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014).
Additionally, simply having the CT skills may not be enough; self-awareness of
these skills may be necessary. While it is convenient to believe that teachers with
general skills and expertise in non-computing subjects can learn just enough com-
puting through professional development to introduce CT in their classrooms, we
believe that it is crucial that teachers have first-hand experience with the affective
challenges that face anyone who is learning CT.

 Professional Development of CT

Rather than attempting to address all of the elements of CT in the UGICT project,
an operational definition was developed based on the following precepts:

• Modeling is at the heart of CT.
• CT is not just about programming skills.
• Solutions can be generalized and transferred to other situations.
• CT is about persistence and dealing with failure.

To help teachers achieve these understandings and skills, the UGICT profes-
sional development focused around a set of modeling challenges involving both
game programming and robotics, such as writing a simple version of Pac-Man and
making a robot move in a circle with a 1 m diameter. From the computing perspec-
tive, these challenges may only be moderately difficult, requiring only sequential
thinking and the basic principles of variables, alternation, and loops. However, for
teachers who had little or no prior training in computing, these were daunting chal-
lenges. Additionally, teachers of different backgrounds found the challenges to be
easier or more difficult, depending on those backgrounds. It was also natural for
participants to find themselves working at different rates. This meant that the PD
had to be very flexible.

�Class�Descriptions

In the first 2 years of the UGICT project, 28 participating teachers enrolled in short
courses to prepare them for working with the target gaming and robotics technologies.
These courses focused on software functionality and an exploration of how gaming
and robotics can be used effectively to develop computational thinking skills, both
in the participating teachers and in their students.

In the first year of the project, a single 8-week course was delivered, with 4
weeks dedicated to gaming and 4 weeks to robotics. In the second year, additional
time allowed for the delivery of two 8-week courses, one for each technology. Due
to the low population density of Wyoming, it was infeasible to have classes meet

A. Buss and R. Gamboa

193

face-to-face every week. Class sessions were held synchronously online to allow for
screen and file sharing, chatting, and display of instructor webcam video. Class ses-
sions were held once a week in 2-hour blocks and were recorded.

During the gaming segment participants learned about programming using
AgentSheets, AgentCubes (Repenning, 2012), Scratch, and Bootstrap authoring
systems. The second segment introduced participants to building and programming
with the LEGO EV3 system. Common threads of the courses included (1) modeling
(meaning, data, and knowledge representation) as the heart of programming, (2) the
computational thinking skills that are required to build computer games and solu-
tions to robotics challenges, and (3) how these relate to appropriate STEM content
standards.

AgentSheets is a visual programming environment that can be used to create 2D
games and simulations. The playing field, called a worksheet, is comprised of a 2D
array of cells, each of the same size, e.g., 32 × 32 pixels. Each cell can house one or
more agents, which may be stacked on top of each other. Agents make up all of the
visual elements in the game, including the background, stationary objects like rocks,
an avatar for the player to control, the antagonists, and any other game components
such as robots and chairs. Programming in AgentSheets consists of choosing which
agents to place in a worksheet and providing behavior via custom rules.

Computational thinking is explicit in the AgentSheets and AgentCubes program-
ming environments through the idea of Scalable Game Design (SGD) (Repenning
et al, 2015). An important aspect of SGD is the psychological principle of flow,
which seeks to strike a middle ground between boredom and anxiety for students at
different stages in computational thinking. This is accomplished, in part, via a
sequenced curriculum with a progression of games that are increasingly difficult to
build and with different computational thinking patterns (see Fig. 1). Consequently,
as students progress in their technical skills, they are exposed to more challenging

Fig. 1 Interrelationship of
design challenges and
anxiety in determining
optimal flow (Source:
http://www.agentsheets.
com/education/scalable-
game- design/index.html)

Teacher Transformations in Developing Computational Thinking: Gaming and Robotics…

http://www.agentsheets.com/education/scalable-game-design/index.html
http://www.agentsheets.com/education/scalable-game-design/index.html
http://www.agentsheets.com/education/scalable-game-design/index.html

194

problems. In turn, as they work on more challenging problems, they learn more
computational thinking patterns, helping their skills develop further. In the end,
students are working on simulations, as opposed to games, but they learn that con-
cepts such as diffusion or hill climbing that they learned in the context of computer
games transfer very naturally to the context of simulations in science, public policy,
or any number of different fields.

The notion of computational thinking patterns is also pedagogically important in
SGD. The idea is that games and simulations are constructed using a relatively
small set of patterns, such as diffusion and hill climbing which are central to the
game of Pac-Man. In fact, programs in AgentSheets and AgentCubes can be
inspected mechanically for evidence that they use these patterns, which provides an
easy, automated way of measuring growth in computational thinking patterns, if not
the totality of computational thinking as defined by ISTE and CSTA.

Our PD program was designed to help teachers understand how to use
AgentSheets and AgentCubes and how these programs foster computational think-
ing. We proceeded by leading teachers through a sequence of activities that they
could use directly in their after-school program, and as we did so, we discussed the
CT skills and attitudes that were involved.

The very first task was to create one or more agents. In AgentSheets, the agents
are 2D image files, and as mentioned previously, are of a fixed size, e.g., 32 × 32
pixels. Similarly, agents in AgentCubes are 3D models that live inside a volume of
fixed size, e.g., 32 × 32 × 32 voxels. This activity was open-ended, and both instruc-
tors and participants had the opportunity to be as creative as they wished. Some
chose to use minimal artwork, creating nothing more than stick figures, or to find
suitable images on the Internet. Others, however, seized the opportunity to exercise
their creative talents and produce, for example, magnificent 3D plants and animals.
We encouraged this artistic exploration, because it gave teachers and students a
chance to make their creations uniquely theirs. An important aspect of this explora-
tion is that it gave participants the opportunity to bring in their sense of culture into
their project. There is great value in having each participant produce a different
game, one that is uniquely meaningful to him or her, as opposed to having all stu-
dents produce an almost identical version of Pac-Man.

The 2D image or 3D model is only a portion of the agent. Agents can have
more than one image, or depiction, which they can change programmatically.
The other portion of the agent is the programmatic part, which is encoded as a
list of behaviors. An agent’s behavior is grouped into methods, which are acti-
vated upon a trigger. For example, a method may be active when the agent is
asked to “move left,” or it may simply be active whenever the agent “is running.”
A method consists of one or more rules of the form IF some-condition-is-true
THEN do-some-action. The conditions can check the value of program variables
and agent variables, check which agents are in the agent’s cell or neighboring
cells, and also check for user actions, such as pressing the space bar or an arrow
key. The second task, then, was to add behavior to the agents, so that they would
respond to arrow keys. For instance, when the user pressed the left arrow key, the
agent moved left.

A. Buss and R. Gamboa

195

These first activities addressed many of the aspects of CT. In particular,
 participants could readily appreciate the power of abstraction. For example, agents
appear to follow a corridor, but the program is simply checking that the image in the
cell next to the agent is a depiction of a floor which can be transversed. Additionally,
participants were able to automate solutions through algorithmic thinking, such as
creating rules for controlling the movement of agents. In this case, the basics may
seem obvious: If the user presses the left arrow key, then the agent moves to the
adjacent left cell. However, even this simple rule is riddled with complexities, such
as “What if the agent is in the leftmost cell?” or “What if the cell to the left is
already occupied?” As this illustrates, before attempting the task participants needed
to clearly organize their thoughts, an act which is the essence of computational
thinking. Through these activities, participants also learned to appreciate the atti-
tudes necessary for success in these activities, such as the ability to work on open-
ended problems and persistence.

Persistence is probably the most important quality one needs to have when deal-
ing with computers. Computing professionals spend more time correcting their pro-
grams than writing them. Some errors are caused by nothing more than carelessness.
For example, once the rule for moving left is complete, it is easy to modify it to
create a rule for moving right. In doing so, however, it is possible, and even likely,
that the new rule is slightly wrong, perhaps by still moving the agent left instead of
right. These errors can be painful, and almost all participants experienced the frus-
tration of not being able to spot these trivialities immediately.

More subtle problems arose because of misunderstandings. The simplicity of
AgentSheets belies a very complex execution model. For example, consider two
agents close to each other. The one to the left moves right whenever the cell to the
right is unoccupied, and the one to the right does the same, but moving left. Is it
possible for both agents to move to an unoccupied cell at the same time? This
depends, of course, on the order in which the tests and movement of the agents take
place. In other words, this depends on the way that AgentSheets implements the
agent behavior, and these details are deliberately hidden from the programmer. It is,
after all, what makes AgentSheets simple.

Normally, this does not present a problem, because however AgentSheets chooses
to implement the agents’ behavior will not materially affect the outcome of the
game. In those cases where it does make a difference however, it is important to
determine exactly what will happen, and the only way to know is through experi-
mentation. The designing of good experiments, which is to say small programs,
requires more aspects of computational thinking. In particular, it requires partici-
pants to formulate problems in ways that enable the use of computers, and logically
organize and analyze data.

Once the participants understood the basics of AgentSheets, they could begin to
create playable games. So for the next activity, we asked the participants to consider
what makes an arcade-style game. The main components were quickly identified,
such as an avatar, one or more dangers, one or more goals, and one or more antago-
nists. The first project was the game of Frogger, with the frog as the protagonist,
trucks and water as antagonists, and the grotto across the river as the goal.

Teacher Transformations in Developing Computational Thinking: Gaming and Robotics…

196

To ease into this complex game, the participants first developed a simple game in
which a protagonist moved according to user inputs, and one or more antagonists
moved at random. Participants were given no further instructions, so had to be cre-
ative in choosing the game’s setting, characters and rules.

There was no single right solution to this activity, and many participants found
this freedom of choice unsettling. They received more detailed instructions for the
next activity, however, which was to recreate a small version of Frogger. Participants
were surprised to discover that no new skills were required to build Frogger. The
only differences were in scale and complexity, in that there were many more agents
in the game of Frogger.

The final project that participants were asked to build was a small version of Pac-
Man. The primary difference between Pac-Man and the first activity they engaged
in is the behavior of the ghosts. Whereas in the first activity the antagonists moved
at random, in Pac-Man the ghosts appear to follow the avatar. We emphasize the
word “appear,” because the ghosts are actually following a much simpler rule.
Again, this was used to build another connection to computational thinking, namely,
formulating problems in a way that enables the use of computers and representing
data through abstractions.

The way in which the ghosts appear to chase Pac-Man is quite clever, and we
openly shared this solution with the participants. The protagonist, Pac-Man, is a
source of “heat,” so the cell in which Pac-Man resides is very hot. Heat flows from
hotter cells to the neighboring cells in a process called diffusion, which SGD counts
as one of the basic computational thinking patterns. The ghosts can sense the tem-
perature of their cell and the surrounding cells, and they move toward the hottest
neighboring cell, breaking ties at random. This process is called hill climbing, and
it is another of the basic computational thinking patterns.

The combination of diffusion and hill climbing creates the illusion that the ghosts
are chasing Pac-Man, but in reality each process is a simple mathematical rule that
looks only at the value of “temperature” in neighboring cells. This last example
emphasizes the importance of abstraction in computational thinking. The entire
concept of “temperature” flowing from Pac-Man to its surroundings is a fable born
of abstraction. The more mundane reality is strictly about cell values and averages.
However, it is the essence of computation that seemingly complex behaviors – such
as ghosts chasing Pac-Man – are the product of simple rules. This is the last lesson
that participants gained from game programming, and it is an important one.

After learning how to build games with AgentSheets and AgentCubes, participants
switched to robotics with the LEGO EV3 system. Programming the EV3 is quite dif-
ferent than game programming with the SGD platform. EV3 programs are constructed
by dragging and connecting LEGO-style bricks on the screen. Each brick corresponds
to a programming concept, such as an IF-statement or a loop, and the connections
between the blocks specify the order in which blocks are executed. Blocks can have
different parameters, such as the amount of power for a specific motor, and parame-
ters may be filled in directly (e.g., 50%) or taken from another block by connecting
the two with a wire. Despite the LEGO-style interface, programming the EV3 is a lot
closer to traditional programming than the SGD platform, because the blocks and

A. Buss and R. Gamboa

197

wires correspond very naturally to programming language constructs, such as control
statements and variables. Moreover, the execution of an EV3 program is mostly
sequential, so that students can think of “which block is currently executing,” much as
programmers in Python or another traditional language think of “which line is cur-
rently executing.” This stands in contrast to AgentSheets and AgentCubes, where each
agent is executing its own program at the same time as all other agents, and as men-
tioned previously, this can lead to subtle timing interactions between agents.

There is, of course, another fundamental difference between game programming
with SGD and robotics programming with the EV3. Robotics programming includes
a physical component, which is the EV3 robot, its sensors, and the motors that com-
municate with the outside world. This creates an opportunity to emphasize a com-
putational thinking principle, namely, that programs are models of certain aspects of
a world. The world could be completely virtual, as in a game, where the laws of
physics may be substantially different than in our own. Or it may be our world, in
which case the model needs to capture enough of the real world to be useful. For
instance, in robotics, the model may need to take into account the friction between
the robot’s wheels and the ground.

The first robotics activity was intended to familiarize the participants with the EV3
“brick” robot, its motors, and sensors. Participants started with the most common sen-
sors, including the color and ultrasound sensors, which can be used to follow a road
and stop when approaching an obstacle. They also learned about the touch sensor,
which is commonly used as a button or to confirm contact with a fixed object.
Participants also learned about the buttons on the EV3 brick and how it can be con-
nected with a computer running the EV3 software, so they could download simple
programs to the robot. They were then given a simple task to build a robot with a single
motor and a rotation indicator. Building the robot was the focus of this task, which was
intended to help participants become comfortable with the physical materials.

Once this first task was complete, participants were asked to become familiar
with the EV3 programming environment. In particular, they learned about the dif-
ferent (virtual) blocks in the environment and how they interact with the input (sen-
sors) and output (motors) of the EV3 brick. They also learned the more abstract
blocks that correspond to programming concepts, such as wait, loops, conditionals,
and variables. The activities then turned to debugging programs. This process is
complicated in robotics, because the programming takes place on the EV3 environ-
ment, but the program is run in the actual EV3 brick. So when participants wrote a
program (by placing and connecting virtual LEGO blocks on the screen), they had
to imagine what the robot would do. Later, when they ran the program, they observed
what the robot actually did, and from those observations had to infer what went
wrong and make adjustments to the program.

Next, we gave the participants a program that drives the robot around a square.
However, the program intentionally contained four bugs, which the participants
were asked to find. Some of these bugs were subtle, and participants were unlikely
to find them without actually running the program and observing what the robot did.
For example, one of the bugs was that the robot turned right but said “left” as it did
so. The purpose of this exercise was twofold. First, it exposed participants to the

Teacher Transformations in Developing Computational Thinking: Gaming and Robotics…

198

unique challenges of debugging programs that run on a real-world robot. Second, it
reinforced the idea that debugging is a natural part of the programming process and
one that should not make them feel embarrassed or inadequate.

When participants engaged in a brute-force approach to the program/observe/mod-
ify cycle, they learned very little computational thinking. For example, suppose there
is a goal to move the robot by 20 cm, and the programmer commands the motors to
turn for 10 seconds. When the program is run the robot moves 21 cm, so the program-
mer changes the time to 9 s, which is not quite enough. By repeating this process, the
programmer can eventually find the time required to move 20 cm, but with no full
understanding of how the motor run time is related to the distance the robot travels.

A more nuanced approach is steeped in computational thinking. Instead of run-
ning the program once and seeing how far the robot moves, participants were
encouraged to run the program multiple times with the same settings and record
their observations. Surprisingly, the robot did not move the exact same distance
each time. What participants then recognized is that the real world includes some
variability; for example, as the robot moved along a carpet, it experienced different
drag due to loose strands in the material. By taking multiple observations, they
could find the average distance traveled for a given time, and from this table of facts,
they could infer the exact time required to move exactly 20 cm. All of this rein-
forced the idea that the program is really modeling an aspect of the real world.
Moreover, the simplistic model that is suggested by measuring the circumference of
the wheels ignores the interaction between the wheels and the ground, so only works
in ideal circumstances – what physicists refer to as “rolling without slipping.”

�Assessment�of�Teacher�CT�Attitudes�and�Practices

A pre-post survey of attitudes toward CT, modified from Yadav, Zhou, Mayfield,
Hambrusch, and Korb (2011), was administered to each cohort of participating
teachers. Twenty-one items presented statements about CT and CS in five key areas,
to which participants responded on a four-point strongly agree/disagree Likert scale
with no neutral option (see Fig. 2). These areas include understanding CT, self-
efficacy, intrinsic motivation, integration of CT in classroom practice, and career
relevance of CT.

Statement SA Agree Disagree SD

Computational thinking involves using computers to solve
problems.

Computational thinking can be incorporated in the
classroom by allowing students to problem solve.

Fig. 2 Sample CT/CS survey items

A. Buss and R. Gamboa

199

The first year cohort consisted of twelve teachers, so analyses of survey results
were not conducted for statistical significance. Descriptive data from the first cohort
of twelve teacher participants revealed that attitudes and dispositions toward CT
were positive and remained relatively stable in all five areas (see Fig. 3).

While participating in the PD classes, teachers demonstrated evidence of their
own computational thinking. For instance, one challenge the participants faced was
that of programming a robot to drive in the shape of an equilateral triangle, stopping
as close as possible to the start point. The robot construction guide was simplified
for quick assembly, using as few pieces as possible, including the use of a non-
turning rear wheel. The participants soon discovered that the robot design was not
adequate for what they needed to accomplish, both in terms of robot stability and
maneuverability. One teacher noted, “The drag on the back of the robot would cause
the robot to go off track and course. The attachments to the wheels are not tight so
that impacted it as well.” To solve this, some of the participants replaced the wheel
with a ball bearing. Another suggested, “You could also make a swivel wheel with
the NXT kit that doesn’t have the ball.”

Site visits were also made to conduct observations of teacher practices during
club sessions. From these observations, patterns of teacher behaviors emerged that
appeared to either facilitate or inhibit student success and CT development. Some
teachers, out of a desire to let students have maximum freedom to create and explore,
provided little direct instruction and left learning activities unstructured. These
teachers were mostly confronted with frustrated and unsuccessful students. One
middle school teacher, for instance, allowed students to work individually or in
groups on their unique robotics projects. No instruction on the use of programming
solutions or strategies was provided. As a result, students primarily used trial and
error to address problems. A student working by himself had built a robot that was
meant to drive forward and knock objects out of the way with a rotating arm. The
student repeatedly set the robot on the floor aimed at a specific object and activated
the program. Most of the tests resulted in the robot missing the object, as the rotat-
ing arm would randomly change the robot’s path. The student’s solution was to

3.7
3.6
3.5
3.4
3.3
3.2
3.1
3
2.9
2.8

Participant
Means (≤4.0)

Pre

Post

Fig. 3 Changes in teacher CT understanding and attitudes

Teacher Transformations in Developing Computational Thinking: Gaming and Robotics…

200

move the object closer to maximize the likelihood of contact. The student persevered
for the entire session, but was frustrated with his lack of success. It was later learned
that he had not considered the use of sensors to detect the object and had limited
programming expertise. Thus, his robot was programmed to simply drive forward in
a straight line.

The most successful teachers provided a mix of direct instruction and open- ended
exploration. These successful teachers were observed scaffolding student knowl-
edge of computational thinking through the use of specific tutorial lessons. This
often took the form of teaching a specific skill or concept at the beginning of a
 session. All of the teams would then be asked to create a simple program that would
then incorporate the skill or concept and then create a larger project. Students in one
club learned how to use a sound block to create a single tone on the music scale and
then string together four or five tones to play the beginning of a familiar tune. Teams
were then challenged to program their robots to move rhythmically or “dance”
while playing a full tune of their choice. One team successfully tackled the challenge
of programming the entire melody of “The Star-Spangled Banner.”

For gaming, many successful teachers used Frogger tutorials as a starting point for
their students. This allowed students to learn the functions of the software and game
design processes, including debugging, in a structured setting, with increasing level
of difficulty. Some teachers then asked students to use the Pac-Man tutorials, while
others asked students to create original maze games based on the same premise.

Regardless of the teaching approach, most of the teachers were observed pro-
viding encouragement and problem-solving hints and tips, while asking probing
questions to develop and extend computational thinking skills. These typically
took the form of “what if you were to,” “how would you,” and “have you consid-
ered” probes. To develop problem-solving skills, teachers stated that they also pro-
mote the use of other strategies, including drawing solutions, discussing alternative
solutions as teams, and relating challenges to more familiar circumstances. One
teacher said that she tells her students, “Failure is a learning opportunity, not an
end.” Another told her students to “work backward when you encounter a road-
block – see where the problem is.” Through this, she was trying to teach her stu-
dents the concept of “resilience.”

 Conclusion

We learned much from our observations. Probably the most important and hopeful
realization we made is that promoting computational thinking requires many skills
and that teachers already have most of them. Dealing with complexity, having per-
severance, and accepting open-ended problems are important skills in the computa-
tional thinking context, but this is not the only context in which these attitudes are
useful. Teachers are already consciously helping these students to develop these
skills, and where they need help is in placing these skills in the context of computa-
tional thinking.

A. Buss and R. Gamboa

201

Another observation we made regards the difference between computational and
technology skills. As a general rule, both students and teachers tended to be well
versed in technology. At the risk of overgeneralizing, we can also add that most
students tend to be more comfortable with technology than most teachers. This can
create an obstacle, as some teachers question whether they can teach their students
about computing at all. This fear, however, may stem from confusion between com-
putational thinking and knowing about technology. As we have seen, computational
thinking is a rich mixture of cognitive skills and attitudes, whereas knowing about
technology simply entails extensive time with the latest devices. What many stu-
dents and teachers fail to realize is that becoming an expert in playing video games
does not translate into expertise in programming, whether game programming,
robotics programming, or any other form. Familiarity with technology is helpful,
for example, in understanding about files, printers, or creating images, but it does
not lead directly into computational thinking.

We also found that classrooms that were focused on questions, as opposed to
answers, were more effective in fostering computational thinking. For instance,
when a student is failing at solving a problem, such as having a robot move in a
straight line for a specific distance, the teacher can respond either by suggesting a
solution or by asking an appropriate question. In this particular case, a teacher may
respond by showing the student how to change the block that controls the motors, or
she may ask the student how far he thinks the robot will go if the wheels turn ten
times. This type of inquiry leads to deeper insights and to the discipline at the heart
of computational thinking. Providing teachers with good questions to ask will better
prepare them to help their students to learn computational thinking, not just to solve
the computing problem at hand.

We also identified some deficiencies of the program, which should lead to changes
in future iterations. The PD class we offered teachers was only 8 weeks. This was
barely enough time to familiarize the teachers with the projects and activities that they
could share with their students in their after-school programs. Teachers were asked to
perform significant computing tasks, and not all could afford the commitment of time
required to finish these tasks. Consequently, many teachers were still uncertain about
their own abilities in computational thinking, and that led to significant stress as they
engaged with their own students. Moreover, the short time did not allow the teachers
to delve deeply into the question of methods for imparting computational thinking to
their own students. Both of these issues can be addressed by lengthening the PD.

Despite these limitations, the data already collected suggests that these after-
school programs do work in enhancing students’ computational thinking skills.
Moreover, teachers who are sufficiently confident in their own skills to let students
work independently – as opposed to blindly following instructions – are the most
effective. Further support to increase teachers’ comfort with computing and the
pedagogy of computational thinking will lead to improved success.

Acknowledgments This material is based upon work supported by the National Science
Foundation (DRL #1311810). Any opinions, findings, conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

Teacher Transformations in Developing Computational Thinking: Gaming and Robotics…

202

References

Akcaoglu, M. (2016). Design and implementation of the Game-Design and Learning program.
TechTrends, 60(2), 114–123. doi:10.1007/s11528-016-0022-y.

Akcaoglu, M., & Koehler, M. J. (2014). Cognitive outcomes from the Game-Design and Learning
(GDL) after-school program. Computers & Education, 75, 72–81. doi:10.1016/j.
compedu.2014.02.003.

Ardito, G., Mosley, P., & Scollins, L. (2014). WE, ROBOT: Using robotics to promote collabora-
tive and mathematics learning in a middle school classroom. Middle Grades Research Journal,
9(3), 73–88.

Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills
through educational robotics: A study on age and gender relevant differences. Robotics and
Autonomous Systems, 75(Part B), 661–670. doi:10.1016/j.robot.2015.10.008.

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: a digital age skill for every-
one: the National Science Foundation has assembled a group of thought leaders to bring the
concepts of computational thinking to the K-12 classroom. Learning & Leading with
Technology, 38(6), 20.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved and
what is the role of the computer science education community? ACM Inroads, 2(1), 48.
doi:10.1145/1929887.1929905.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and
tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72,
145–157. doi:10.1016/j.compedu.2013.10.020.

Burke, Q., O’Byrne, W. I., & Kafai, Y. B. (2016). Computational Participation. Journal of
Adolescent & Adult Literacy, 59(4), 371–375. doi:10.1002/jaal.496.

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can
they be used to measure understanding of computer science concepts? Computers & Education,
58(1), 240–249. doi:10.1016/j.compedu.2011.08.006.

Dewey, J. (1916). Democracy and education: an introduction to the philosophy of education.
New York: Macmillan.

Dewey, J. (1958). Experience and Nature (Vol. 1st ser, 2nd ed.). La Salle, IL: Open Court
Publishing Company.

Educational Policies Commission. (1961). The Central Purpose of American Education (p. 27).
Washington, D.C: National Education Association. Retrieved from http://eric.ed.
gov/?id=ED029836.

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A Review of the state of the field.
Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051.

Honeyford, M. A., & Boyd, K. (2015). Learning through play: portraits, photoshop, and visual
literacy practices. Journal of Adolescent & Adult Literacy, 59(1), 63–73. doi:10.1002/jaal.428.

Kafai, Y. (1995). Minds in Play: Computer Game Design As a Context for Children’s Learning.
Hillsdale, NJ: L. Erlbaum Associates Inc..

Kafai, Y. (1996). Software by kids for kids. Communications of the ACM, 39(4), 38.
Kafai, Y. (2006). Playing and making games for learning: instructionist and constructionist per-

spectives for game studies. Games and Culture, 1(1), 36–40. doi:10.1177/1555412005281767.
Kafai, Y., & Burke, Q. (2013). Computer programming goes back to school: Learning program-

ming introduces students to solving problems, designing applications, and making connections
online. Phi Delta Kappan, 95(1), 61–65.

Khanlari, A. (2013). Effects of robotics on 21st Century Skills. European Scientific Journal, 9(27.)
Retrieved from http://search.proquest.com.libproxy.uwyo.edu/docview/1524821792/abstract/
E91502C4C03E4CCEPQ/1.

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation (Learning
in Doing: Social, Cognitive and Computational Perspectives). Cambridge, UK: Cambridge
University Press.

A. Buss and R. Gamboa

http://dx.doi.org/10.1007/s11528-016-0022-y
http://dx.doi.org/10.1016/j.compedu.2014.02.003
http://dx.doi.org/10.1016/j.compedu.2014.02.003
http://dx.doi.org/10.1016/j.robot.2015.10.008
http://dx.doi.org/10.1145/1929887.1929905
http://dx.doi.org/10.1016/j.compedu.2013.10.020
http://dx.doi.org/10.1002/jaal.496
http://dx.doi.org/10.1016/j.compedu.2011.08.006
http://eric.ed.gov/?id=ED029836
http://eric.ed.gov/?id=ED029836
http://dx.doi.org/10.3102/0013189X12463051
http://dx.doi.org/10.1002/jaal.428
http://dx.doi.org/10.1177/1555412005281767
http://search.proquest.com.libproxy.uwyo.edu/docview/1524821792/abstract/E91502C4C03E4CCEPQ/1
http://search.proquest.com.libproxy.uwyo.edu/docview/1524821792/abstract/E91502C4C03E4CCEPQ/1

203

Li, Q. (2010). Digital game building: learning in a participatory culture. Educational Research,
52(4), 427–443. doi:10.1080/00131881.2010.524752.

National Research Council. (2011). Committee for the Workshops on Computational Thinking:
Report of a Workshop on the Pedagogical Aspects of Computational Thinking. Washington,
DC: National Academies Press.

Nickerson, H., Brand, C., & Repenning, A. (2015). Grounding Computational Thinking Skill
Acquisition Through Contextualized Instruction (pp. 207–216). Proceedings of the eleventh
annual International Conference on International Computing Education Research. Omaha,
NE: ACM Press. doi:10.1145/2787622.2787720.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York: Basic Books.
Papert, S., & Harel, I. (1991). Situating Constructionism. In Constructionism (pp. 1–11). Norwood,

NJ: Ablex Publishing Corporation. Retrieved from http://www.papert.org/articles/
SituatingConstructionism.html.

Piaget, J., & Inhelder, B. (1969). The Psychology of the Child. New York: Basic Books.
Repenning, A. (2012). Programming goes back to school. Communications of the ACM, 55(5), 38.

doi:10.1145/2160718.2160729.
Repenning, A., Webb, D. C., Koh, K. H., Nickerson, H., Miller, S. B., Brand, C., et al. (2015).

Scalable game design: a strategy to bring systemic computer science education to schools
through game design and simulation creation. ACM Transactions on Computing Education
(TOCE), 15(2), 1–31. doi:10.1145/2700517.

Salomon, G., & Perkins, D. N. (1998). Individual and social aspects of learning. Review of
Research in Education, 23, 1–24. doi:10.2307/1167286.

Uchida, D., Cetron, M., & McKenzie, F. (1996). Preparing-Students-for-the-21st-Century.
Lanham, MD: Rowman & Littlefield Education. Retrieved from https://rowman.com/
ISBN/9781578860470/Preparing-Students-for-the-21st-Century.

Vygotskiĭ, L. S., & Cole, M. (1978). Mind in Society: the Development of Higher Psychological
Processes. Cambridge: Harvard University Press.

Webb, D. C., Repenning, A., & Koh, K. H. (2012). Toward an emergent theory of broadening
participation in computer science education. In Proceedings of the 43rd ACM technical sympo-
sium on Computer Science Education (pp. 173–178). ACM. Retrieved from http://dl.acm.org.
libproxy.uwyo.edu/citation.cfm?id=2157191.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking

in elementary and secondary teacher education. Transactions on Computing Education, 14(1),
5:1–5:16. doi:10.1145/2576872.

Yadav, A., Zhou, N., Mayfield, C., Hambrusch, S., & Korb, J. T. (2011). Introducing computational
thinking in education courses. In Proceedings of the 42Nd ACM Technical Symposium on
Computer Science Education (pp. 465–470). New York, NY, USA: ACM.
doi:10.1145/1953163.1953297.

Yuen, T. T., Boecking, M., Stone, J., Tiger, E. P., Gomez, A., Guillen, A., & Arreguin, A. (2014).
Group tasks, activities, dynamics, and interactions in collaborative robotics projects with
 elementary and middle school children. Journal of STEM Education: Innovations and
Research, 15(1), 39.

Teacher Transformations in Developing Computational Thinking: Gaming and Robotics…

http://dx.doi.org/10.1080/00131881.2010.524752
http://dx.doi.org/10.1145/2787622.2787720
http://www.papert.org/articles/SituatingConstructionism.html
http://www.papert.org/articles/SituatingConstructionism.html
http://dx.doi.org/10.1145/2160718.2160729
http://dx.doi.org/10.1145/2700517
http://dx.doi.org/10.2307/1167286
https://rowman.com/ISBN/9781578860470/Preparing-Students-for-the-21st-Century
https://rowman.com/ISBN/9781578860470/Preparing-Students-for-the-21st-Century
http://dl.acm.org.libproxy.uwyo.edu/citation.cfm?id=2157191
http://dl.acm.org.libproxy.uwyo.edu/citation.cfm?id=2157191
http://dx.doi.org/10.1145/2576872
http://dx.doi.org/10.1145/1953163.1953297

	Teacher Transformations in Developing Computational Thinking: Gaming and Robotics Use in After-School Settings
	 Introduction
	 Theoretical Framework
	 Computational Thinking in K-12 Education
	 Professional Development of CT
	 Class Descriptions
	 Assessment of Teacher CT Attitudes and Practices

	 Conclusion
	References

