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Preface 

 Emerging Research, Practice, and Policy  
on Computational Thinking

Computational thinking is quickly becoming an essential literacy for modern learn-
ers (Wright, Rich, & Leatham, 2012). The International Society for Technology in 
Education recently defined computational thinking as students “develop[ing] and 
employ[ing] strategies for understanding and solving problems in ways that lever-
age the power of technological methods to develop and test solutions” (http://www.
iste.org/standards/standards/for-students-2016). The US Bureau of Labor Statistics 
projects that the need for computer programmers will be three times greater than the 
current number of computer science graduates. Perhaps more importantly, many 
contend that people in a diversity of fields will need to demonstrate the ability to 
think computationally and to manipulate technology to advance our abilities in dif-
ferent fields (Wing, 2009). Thus, computing is no longer a topic of study just for 
programmers, but for all pupils.

At the time of this writing, computing has become a compulsory topic in school 
in over a half dozen different countries, with over a dozen more committing to make 
it so by 2020 (Balanskat & Englehardt, 2015), including a handful that ask students 
to learn computing from the earliest levels. With this increasing attention to the need 
to teach computing at earlier ages comes the responsibility to study and understand 
effective teaching and learning practices in computing education, especially for 
non-computer science students. Up to this point, most attention has focused on 
changing policies and practices. This volume is an attempt to bring together emerg-
ing research around computational thinking, from primary education to high school 
and on through higher education.

We issued a call for chapters and received dozens of submissions, demonstrating 
that there are many who are studying the emerging practices of teaching computing 
to new groups. The chosen 25 chapters represent authors from nearly a dozen differ-
ent countries. Each chapter was first reviewed editorially and then peer-reviewed by 
other authors. The resulting volume is divided into six different sections: (a) K-12 
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education, (b) higher education, (c) teacher development, (d) assessment practices 
in computational thinking, (e) computational thinking tools, and (f) computational 
thinking policies.

Chapters in K-12 education represent the ways in which computing has been 
implemented in a public school context during the formative years. D’Alba and 
Huett share the result of working with middle and high school students in an after- 
school context in which parents played a collaborative role in learning to code. 
Seneviratne presents the successes and challenges of working specifically with high 
school girls, a typically underrepresented group in computer science education. 
Jones-Harris and Chamblee describe the results of working with African-American 
students in a precalculus course. Delcker and Ifenthaler describe how one German 
state is implementing a new required computer science course in their upper sec-
ondary schools. Finally, Tatar, Harrison, Stewart, Frisina, and Musaeus explore the 
type of thinking that must first occur in order to prepare middle school students to 
begin to think computationally and its associated challenges.

Higher education chapters present a look at the ways in which computational 
thinking is being integrated with university courses to improve instruction across a 
diverse range of subjects. Musaeus, Tatar, and Rosen explore what computational 
thinking would look like in medical education and how this might improve students’ 
analytical abilities. Rambally demonstrates how computational thinking can 
improve students’ abilities to understand discrete mathematical structures. Quaye 
and Dasuki propose a method for teaching computational thinking in an introduc-
tory programming course in Nigeria using a virtual world context. Kaya and 
Cagiltay show how focusing on computational thinking in an introductory comput-
ing course for non-CS majors can successfully lead to increased understanding of 
core concepts. Liu, Perera, and Klein report on efforts to teach computational think-
ing while promoting collaboration, problem-solving, and the sharing of educational 
resources.

The teacher development section focuses on the preparation of teachers who 
formerly had received no training in computing and how they might successfully 
teach it to their pupils. The chapters by Hester-Croff and Buss and Gamboa both 
report on efforts to train teachers to foster and recognize computational thinking 
patterns in middle and high school students. Both Yadav, Gretter, Good, and Mclean 
and Sadik, Ottenbreit-Leftwich, and Nadiruzzaman focus on how to prepare preser-
vice teachers during their formative teacher education to teach computational think-
ing. Toikkanen and Leinonen report on the design and executing of a MOOC with 
over 1000 teachers as they prepare for the mandatory integration of computing in 
primary education in Finland.

The section on assessment practices in computational thinking attempts to better 
understand what and how to measure as students engage with computational think-
ing practices. Mueller, Becket, Hennessey, and Shodiev analyzed Canada core com-
petencies for alignment with computational thinking practices. In so doing, they 
found several areas where computational thinking might already be assessed in 
related topics and discuss areas for improvement and integration. Grover proposes 
a system of assessments that go beyond measuring just cognitive outcomes. She 
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then demonstrates how this is being applied in a middle school course on founda-
tions of computational thinking.

The tools section shares resources for teaching, assessing, and implementing 
computational thinking. Repenning, Basawapatna, and Escherle present a frame-
work for different tools that scaffold learners through three important stages of 
computational thinking: problem formation, solution expression, and execution/
evaluation. Lawanto, Close, Ames, and Brasiel demonstrate how the Dr. Scratch 
tool can be used to measure students’ computational thinking skills. Similarly, 
Brasiel et al. outline the development, use, and research of the FUN! Tool, a Python- 
based framework for measuring minute-by-minute interactions in the Scratch 
environment.

Policy chapters demonstrate the changing landscape and efforts of different gov-
ernments and groups as they attempt to implement computational thinking. Pan 
describes the restructuring of CS0, a required introductory computing course for all 
non-CS majors in the People’s Republic of China, to include computational think-
ing principles and practices. Similarly, in response to the Korean government’s des-
ignation to include software education as part of its core curriculum by 2018, Lee 
presents an exposition of representative projects created from a group of 72 pilot 
schools nationwide that showcase how computational thinking might be integrated 
into the curriculum. Ruberg and Owens describe a district-wide approach to imple-
menting computing from kindergarten all the way through grade 12, including both 
in-school and after-school efforts to integrate computing across the curriculum. 
Finally, Kafai and Burke, two of the early promoters of computational thinking, end 
the book with a reconceptualization of computational thinking to the broader notion 
of computational participation, an idea that promotes the integration of computing 
into communities of practice that extend beyond simply problem-solving and creat-
ing to also including individual and group expression and everyday solutions to life.

Together, these chapters paint a picture of the emerging research and practice 
surrounding efforts to include the teaching and learning computational thinking in 
an increasingly computational world. While they are by no means a comprehensive 
report of all that is occurring, it is our hope that they are representative of the chal-
lenges and successes that students, teachers, and policy makers face as computing 
becomes an essential and required subject of study.

Provo, UT, USA Peter J. Rich
Statesboro, GA, USA Charles B. Hodges 
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ondary programs and careers, and (4) assessing computational thinking in educa-
tion. While these lines of research are distinct, they are connected by an overarching 
theme of diversity promotion and discrimination reduction. Eden was the 2014/2015 
Laurier Graduate Researcher of the Year and creator of the photo-research exhibi-
tion #DistractinglySexist: Confronting Sexism in Canada’s Tech Triangle. Her work 
has been funded by the Social Sciences and Humanities Research Council of Canada 
(SSHRC), the Ontario Graduate Scholarship (OGS), and the Society for the 
Psychological Study of Social Issues (SPSSI), and she is the student research coor-
dinator of the Laurier Centre for Women in Science (WinS).

Kim C. Huett is an assistant professor in the Department of Educational Technology 
and Foundations at the University of West Georgia, where she has taught for 8 
years. Prior to teaching in higher education, Kim taught English and Spanish at the 
secondary level for 6 years in Texas and Georgia public schools. Currently, she is 
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actively involved in bringing computer science education to young people through 
uCode@UWG and through K-12 school-based outreach programs. Her research 
interests include the design of K-12 student-centered learning environments and 
K-12 computer science education. In 2015, Kim published a qualitative study 
exploring the use of multimedia case studies in introductory engineering courses in 
the Journal of STEM Education: Innovations and Research. Kim has received sev-
eral teaching awards, including the 2014 University System of Georgia Regents’ 
Online Teaching Excellence Award and Outstanding Distance Learning Faculty and 
Distinguished Educator awards from the Instructional Technology Council (2012).

Dirk Ifenthaler is chair and professor for learning, design, and technology at the 
University of Mannheim, Germany; adjunct professor at Deakin University, 
Australia; and affiliate research scholar at the University of Oklahoma, USA. His 
previous roles include professor and director, Centre for Research in Digital 
Learning at Deakin University, Australia; manager of applied research and learning 
analytics at Open Universities, Australia; and professor for applied teaching and 
learning research at the University of Potsdam, Germany. He was a 2012 Fulbright 
Scholar-in-Residence at the Jeannine Rainbolt College of Education at the University 
of Oklahoma, USA. Dirk Ifenthaler’s research focuses on the intersection of cogni-
tive psychology, educational technology, learning science, data analytics, and com-
puter science. His research outcomes include numerous coauthored books, book 
series, book chapters, journal articles, and international conference papers, as well 
as successful grant funding in Australia, Germany, and the USA – see Dirk’s web-
site for a full list of scholarly outcomes at www.ifenthaler.info. He is editor in chief 
of the Springer journal Technology, Knowledge and Learning (www.springer.
com/10758).

Phil Janisiewicz is a data scientist consultant who works with Dr. Sarah Brasiel in 
the Department of Instructional Technology and Learning Sciences at Utah State 
University conducting research in data management and data modeling. Phil sup-
ports research projects by investigating and implementing new models and tech-
niques for predicting student learning and behavior and inferring the relevance and 
impact of recommendations and personalized content, using a rich corpus of student 
data. This is a strategic role where he is responsible for identifying new analysis 
methods and pursuing the execution of projects with a high level of autonomy. For 
more than 5 years, Phil has been involved in designing and developing databases, 
web-based applications, analysis methods, and data visualization  techniques. He 
has also worked to develop and implement data management plans that ensure the 
confidentiality and protection of data and participant information. The research 
projects  he has participated include projects funded by the US Department of 
Education, the National  Science Foundation, and the Bill and Melinda Gates 
Foundation. He has designed and implemented security and quality assurance mea-
sures to meet the highest regulations for data management.

Soojeong Jeong is a Ph.D. student in the Department of Instructional Technology 
and Learning Sciences at Utah State University. She earned an M.A. in education, 
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with an emphasis in educational technology, from Korea University in Seoul, South 
Korea. She also holds a B.A. in education and a B.S. in mathematics education, both 
of which she obtained at the same university. While studying for her master’s degree, 
Soo participated in many projects related to the use of technology to improve human 
learning. She also studied how using laptop computers influences college students 
during class for her master’s thesis. In addition, she worked as a math instructor and 
a private tutor for middle and high school students for about 10 years. Currently, 
Soo is studying how new technologies promote math achievement for elementary 
and middle school students. Her main research interests include cognitive load the-
ory, mathematics education, metacognition, and meta-analysis.

Cristal Jones-Harris is a 2015–2016 recipient of the Albert Einstein Distinguished 
Educator Fellowship sponsored by the US Department of Energy and Oak Ridge 
Institute of Science and Education (ORISE). Her fellowship is located at the 
National Aeronautics and Space Administration (NASA) at Goddard Space Flight 
Center in Greenbelt, MD, and NASA Headquarters in Washington, DC. Dr. Jones-
Harris is a Georgia Southern University 2010 alumna (Ed.D., curriculum studies) 
from the College of Education. She has taught computer science, robotics, and 
information technology to middle and high school students and teachers to promote 
interdisciplinary approaches to STEM teaching and learning. Dr. Jones- Harris has 
conducted numerous presentations, facilitated teacher workshops, and worked with 
state and federal agencies to broaden participation in STEM education.

Kadir Yucel Kaya is a research assistant and Ph.D. candidate at the Department of 
Computer Education and Instructional Technology, at the Middle East Technical 
University (METU), Ankara, Turkey. He received his B.S. from the same depart-
ment in Dokuz Eylul University in 2009. His research interests include computer 
programming education, visual programming, computational thinking, and game- 
based learning. His dissertation is about developing a visual programming course 
for novice programmers. In addition to research, he works also as a teaching assis-
tant for several courses including multimedia design and development, instructional 
design operating systems, and visual programming for Android OS. He currently 
lives in Ankara, Turkey.

Yasmin B. Kafai is professor of learning sciences at the University of Pennsylvania. 
She is a researcher and developer of tools, communities, and materials to promote 
computational participation, crafting, and creativity across K-16. Her recent books 
include Connected Code: Why Children Need to Learn Programming and the forth-
coming Connected Gaming: What Making Video Games Can Teach Us About 
Learning and Literacy (both with Quinn Burke), Connected Play: Tweens in a 
Virtual Worlds (with Deborah Fields), and editions such as Textile Messages: 
Dispatches from the World of E-Textiles and Education and Beyond Barbie and 
Mortal Kombat: New Perspectives on Gender and Gaming. Kafai earned a doctor-
ate in education from Harvard University while working with Seymour Papert at 
the MIT Media Lab. She is an elected fellow of the American Educational Research 
Association and past president of the International Society for the Learning 
Sciences.
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Jerry W. Klein has broad experience in learning and instruction in both the public 
and private sectors including 20 years at Bell Laboratories creating technical train-
ing programs for software design engineers. Dr. Klein’s experience includes teach-
ing math in an inner-city middle school, implementing individualized math and 
reading programs for the K-8 Hopi Indian schools, and directing a project to deliver 
graduate-level teacher education programs in rural areas of West Virginia. As a free-
lance instructional designer, Jerry directed the development of an interactive multi-
media instructional program for the Air Force on data fusion and developed a 
manufacturing technician certification program for the Virginia Council on 
Advanced Technology Skills. Recent projects include working with the faculty at 
Embry-Riddle Aeronautical University to develop courses in mathematical model-
ing and developing standardized courses for Embry-Riddle Aeronautical University’s 
high school dual enrollment program. Jerry also is an adjunct professor in the 
Department of Instructional Design, Development and Evaluation at Syracuse 
University. He received a Ph.D. in instructional systems design and an M.S. in edu-
cational research and testing from Florida State University and a B.A. in mathemat-
ics, physics, and secondary education from Adams State University of Colorado.

Kevin Lawanto is a master’s student in the Department of Instructional Technology 
and Learning Sciences (ITLS) at Utah State University. He holds a bachelor of sci-
ence degree in psychology. Kevin’s research interest includes neuroscience, cogni-
tion and metacognition, and game-based learning. During his studies, he has 
coauthored several research papers and posters for journals and conferences across 
the USA. During his study, he also had the experience working as a research techni-
cian in the brain and behavior laboratory at the Utah Science Technology and 
Research (USTAR) facility where he was involved in conducting rodents’ behavior 
analysis, perfusion, brain sectioning, and staining. Currently, he is working as a 
research assistant in the Active Learning Lab in the Department of ITLS. His mas-
ter’s thesis focuses on understanding the development of computational thinking as 
students learn to program in Scratch, an application developed by MIT and used by 
students all over the world.

Miran Lee is a principal research program manager of the Microsoft Research 
Outreach Group at Microsoft Research where she is responsible for academic col-
laboration in Korea and Asia-Pacific regions. Lee joined Microsoft Research Asia in 
2005 as university relations manager to build long-term and mutually beneficial 
relations with academia. She is based in Korea, where she engages with leading 
research universities, research institutes, and relevant government agencies. She 
establishes strategies and directions, identifies business opportunities, designs vari-
ous programs and projects, and manages the budget. She works with students, 
researchers, faculty members, and university administrators to build strong partner-
ships and works closely with the research groups at Microsoft Research, focusing 
on research collaboration, curriculum development, talent fostering, and academic 
exchanges. She has successfully ran a number of global and regional programs such 
as Gaming & Graphics, Web-Scale NLP, Machine Translation, eHealth, SORA 
(Software Radio), Kinect, and Microsoft Azure for Research.
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Teemu Leinonen is an associate professor of new media design and learning at 
Aalto University School of Arts, Design and Architecture in Helsinki, Finland. 
Teemu holds over two decades of experience in the field of research and develop-
ment of web-based learning. Teemu conducts research, designs, and publishes in 
different forums. He has published two books, over ten peer-reviewed or invited 
book chapters, over 20 peer-reviewed scientific articles in journals and conferences, 
and more than 15 software prototypes. Furthermore, Teemu has served as a member 
of the program committee, reviewer, or jury member in over 20 international confer-
ences and festivals. Teemu is a well-known advocate of open-source/free software 
in education, free knowledge, and open education.

Hong P. Liu was awarded a Ph.D. in mathematics and M.S. in computer science at 
the University of Arkansas Fayetteville in 2000. He currently serves as a professor 
in mathematics and computing at Embry-Riddle Aeronautical University, Daytona 
Beach, Florida. He taught a wide variety of mathematics courses ranging from 
lower-division undergraduate mathematics to graduate courses, including statistics, 
computer sciences, and software engineering courses. He published 30 articles and 
book chapters in partial differential equations, software engineering, data mining, 
and computational science education. He also serves as the advisor of the SIAM 
student chapter at Embry-Riddle and mentors a team of student researchers in SIAM 
chapter to build a fleet of autonomous underwater vehicle called Eco-Dolphins. 
Hong Liu served as the PI and co-PI of 12 funded projects in software development, 
robotics, and undergraduate STEM education.

Taylor Martin is principal learning scientist at O’Reilly Media. Her research has 
involved examining how people learn from doing or active participation, both phys-
ical and social. She has examined how mobile and social learning environments 
provided online and in person influence content learning in mathematics, engineer-
ing, and computational thinking using learning analytics methods to understand 
learning processes at a fine-grained level.

Tamika McLean is a doctoral student in the Educational Psychology and 
Educational Technology program at Michigan State University. She did her under-
graduate studies at the University of Notre Dame where she received a B.S. in com-
puter engineering and B.A. in psychology. Her research interest is STEM education 
focusing on students’ thinking and learning. Her research is examining how stu-
dents’ understanding and conceptualization of STEM concepts are represented or 
developed in both formal and informal learning environments. Some of her projects 
involved working in an after-school program called 2020 Girls to increase the access 
of technology education to girls in grades 4–8 through the Information Technology 
Empowerment Center (ITEC) in Lansing, Michigan.

Julie Mueller is an associate professor with the Faculty of Education at Laurier 
teaching in the areas of educational psychology and physical education. She is the 
current president of the Canadian Association for Teacher Education. Dr. Mueller’s 
research in the area of integration of technology for teaching and learning has been 
supported by both internal and external grants including a 3-year SSHRC Standard 
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Research Grant. She is currently working under an SSHRC Insight Development 
Grant to address emerging questions related to computational thinking and assess-
ment across disciplines at all levels of education from kindergarten to postsecond-
ary. Dr. Mueller has mobilized knowledge from her research in a variety of ways 
stretching from traditional book chapters and empirical journals in both education 
and psychology (e.g., Computers and Education, Journal of Educational 
Psychology), through national and international conference presentations and 
invited talks, to practitioner-directed publications (e.g., Put Their Learning in Their 
Hands: A Guide to iPad Implementation in the Classroom) and multiple media out-
lets including CBC Radio, TVOntario, Twitter, and podcasts.

Peter Musaeus is an associate professor, educational scientist, and faculty devel-
oper, who researches transformational learning and medical curriculum. Since 
2011, Peter has been a tenure-track associate professor in health sciences education 
at Aarhus University. He has been a visiting professor/scholar at the University of 
Central Florida, UC-Berkeley, University of Sussex, and Virginia Tech.

Hamid Nadiruzzaman is a doctoral student in instructional systems technology at 
Indiana University. He is also serving as an associate instructor in the School of 
Education. Prior to this, he had taught middle and high school math in a public 
school in Kansas. His research interests are problem-based learning, design 
problem- solving, teacher education, technology integration in K-12, and computer- 
supported collaborative learning. He has been a member of AECT and AERA and 
actively presents at their conferences.

Anne-Ottenbreit Leftwich is an associate professor of instructional systems tech-
nology at Indiana University, Bloomington. Dr. Ottenbreit-Leftwich’s expertise lies 
in the areas of the design of digital curriculum resources, the use of technology to 
support preservice teacher training, and the development/implementation of profes-
sional development for teachers and teacher educators. Dr. Ottenbreit-Leftwich has 
experience working on large-scale funded projects, including projects supported by 
the US Department of Education. Her current research focuses on teachers’ value 
beliefs related to technology and how those beliefs influence teachers’ technology 
uses and integration. She is currently working on a project associated with K-12 
teachers’ uses of technology, particularly iPads and computer science education.

Aileen Owens is the director of technology and innovation for South Fayette 
Township School District. Aileen has an extensive 15-year history and diverse expe-
riences building and leading innovative teaching and learning opportunities in K-12 
and higher education. Since joining the South Fayette team in 2010, Aileen has 
focused on building a vertically aligned computational thinking initiative K-12. 
Challenged and supported by The Grable Foundation to make innovation happen in 
Western Pennsylvania, Aileen has been developing and leading outreach initiatives 
in computational thinking to schools in the region through the STEAM Innovation 
Summer Institute. She is the recipient of the Consortium for School Networking 
(CoSN) Frank Withrow Outstanding CTO Award 2016; Digital Innovation in 
Learning, Administrator Trailblazer Award 2014; the Digital Innovation in Learning, 
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Administrators Winners Choice Award 2014; and PAECT Chief Technology Officer 
of the Year 2015. She shares and collaborates with educators nationally, recently 
presenting at ISTE 2015, World Maker Faire NYC 2015, Scratch@MIT 2014, and 
the Digital Media and Learning Conference 2014. Aileen is actively involved in the 
Pittsburgh Remake Learning Network. For more information, please see http://
www.aileenowens.net and http://www.steaminnovation.net/.

Tien-Yo (Tim) Pan is university relations director of Microsoft Research Asia, 
responsible for the lab’s academic collaboration in the Asia-Pacific region. Tim Pan 
leads a regional team with members based in China, Japan, and Korea engaging 
universities, research institutes, and certain relevant government agencies. He estab-
lishes strategies and directions, identifies business opportunities, and designs vari-
ous programs and projects that strengthen partnership between Microsoft Research 
and academia. Tim Pan earned his Ph.D. in electrical engineering from Washington 
University in St. Louis. He had 20 years of experience in the computer industry and 
cofounded two technology companies. Tim has great passion for talent fostering. 
He served as a board member of St. John’s University (Taiwan) for 10 years, offered 
college-level courses, and wrote a textbook in information security.

Sirani M. Perera has received a B.Sc. special degree in mathematics with first- 
class honors from the University of Sri Jayewardenepura, Sri Lanka, in 2004; a 
master’s degree of advanced study in mathematics with honors from the University 
of Cambridge, UK, in 2006; and a Ph.D. in mathematics from the University of 
Connecticut, USA, in 2012. She works as an assistant professor in the Mathematics 
Department at Embry-Riddle Aeronautical University while working in the field of 
numerical linear algebra. Her research focus is to derive fast algorithms and use 
those in signal processing, image processing, solving systems of questions, theories 
of interpolations, approximations, orthogonal polynomials, and eigenvalue prob-
lems. As an early career woman in mathematics, she has received fellowships and 
scholarships including Advanced Doctoral Fellowship (2012), Doctoral Dissertation 
Fellowship (2012), and Predoctoral Fellowship (2010) by the University of 
Connecticut, USA; Industrial Research Scholarship (2008) by City, University 
London, UK; and Shell Centenary Scholarship by the Cambridge Commonwealth 
Trust (2005–2006), University of Cambridge, UK.

Ago MacGranaky Quaye was educated in Ghana, Canada, and the USA. He also 
worked as a programmer analyst and was a member of the programming team who 
helped in the implementation of the Social Security and National Insurance Trust 
System in Ghana. In January 2006, Ago moved from Virginia State University to 
join the AUN. He is the department head of the information systems and informa-
tion technology program. He loves to teach, mentor, and interact with his colleagues 
and students. Dr. Quaye has published many articles in peer- reviewed, scholarly 
journals.

Gerard Rambally is a professor of computer science in the Department of 
Mathematics and Information Sciences at the University of North Texas at Dallas. 
He earned his bachelor’s degree in mathematics from the University of Saskatchewan, 
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Canada; his master’s degree in mathematics from the University of Waterloo in 
Ontario, Canada; and his doctoral degree in computer science from the University 
of Oregon, USA. Dr. Rambally has served as an academic dean for 13 years. He 
teaches both computer science and mathematics courses at UNT Dallas and has 
published research papers in the areas of computational thinking, computers in edu-
cation, algorithms, bioinformatics, and artificial intelligence.

Alexander Repenning is the Hasler professor and chair of computer science educa-
tion at the PH FHNW (School of Teacher Education at the University of Applied 
Sciences and Arts Northwestern Switzerland), a computer science professor at the 
University of Colorado, and a founder of AgentSheets Inc. He is directing the 
Scalable Game Design initiative at the University of Colorado. Repenning’s research 
interests include education, end-user programmable agents, and artificial intelli-
gence. He has worked in research and development at Asea Brown Boveri, Xerox 
PARC, Apple Computer, and Hewlett-Packard. Repenning is the creator of the 
AgentSheets and AgentCubes simulation and game computational thinking tools. 
He has offered game design workshops in the USA, Mexico, South America, 
Europe, and Japan. His work has received numerous awards including the Gold 
Medal from the mayor of Paris for “most innovative application in education of the 
World Wide Web,” as well as “best of the best innovators” by ACM, and has been 
featured in WIRED magazine. Repenning has been a Telluride Tech Festival hon-
oree for contributions to computer science. Repenning is an advisor to the National 
Academy of Sciences, the European Commission, the National Science Foundation, 
the Japanese Ministry of Education, and the Organisation for Economic Co-operation 
and Development (OECD).

Michael Rosen is an associate professor of anesthesiology and critical care medi-
cine at the Johns Hopkins University School of Medicine. He is a human factors 
psychologist with research interests in the areas of teamwork and patient safety as 
well as simulation-based training, performance measurement, naturalistic decision 
making, and quality and safety improvement. In 2009, he was a co-recipient of the 
M. Scott Myers Award for Applied Research in the Workplace from the Society for 
Industrial and Organizational Psychology. This award was given in recognition of 
his work in developing innovative team decision-making training for explosive ord-
nance disposal teams, including a simulation-based curriculum and performance 
measurement tools.

Laurie F. Ruberg received her Ph.D. in curriculum and instruction at Virginia Tech. 
She served as a visiting assistant professor in the College of Education and Human 
Services at West Virginia University while writing this chapter. She currently heads 
up a small business called PLANTS (plant lessons and engaging technology sys-
tems), which provides innovative e-learning curriculum for K-12 schools and com-
munity audiences. Previously, she served as senior instructional designer and 
associate director for the NASA Classroom of the Future at Wheeling Jesuit 
University for 19 years. Her instructional design, development, and evaluation proj-
ects have been funded by the National Science Foundation (NSF), National 
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Aeronautics and Space Administration (NASA), Department of Labor, Mine Safety 
and Health Administration, TechConnect West Virginia, and regional foundations. 
Her research interests include instructional design, program evaluation, and online 
learning, where she has received awards for multimedia high school biology cur-
riculum design (1999), NASA Explorer Schools evaluation (2007), and a nomina-
tion for outstanding teaching in the WVU Online Instructional Design and 
Technology master’s degree program (2016).

Olgun Sadik is a doctoral student in the Instructional Systems Technology program 
at Indiana University. He worked 3 years as a computer science teacher and taught 
programming at a high school before he moved to academia. As a doctoral student, 
he taught programming and multimedia applications to preservice teachers in a 
computer educator licensure program and worked on redesigning the certification 
program courses based on the current CS education standards. His current research 
interests include computer science education, teacher education and professional 
development, and teacher technology integration in K-12. He had experience work-
ing in National Science Foundation projects and published studies on technology 
integration and CS education.

Oshani Seneviratne obtained her Ph.D. in computer science from the Massachusetts 
Institute of Technology (MIT) in 2015 under the guidance of Prof. Sir Tim Berners-
Lee. She earned a master’s degree (2009) in computer science from MIT and a 
bachelor of science (Hons) degree (2007) in computer science and engineering from 
the University of Moratuwa, Sri Lanka. Oshani’s primary research focus has been 
content reuse on the web. For her doctoral work, she has developed a web protocol 
called HTTPA (Hypertext Transfer Protocol with Accountability) and reference 
Transparent Web Systems. She was the computer science instructor for MIT 
Women’s Technology program in 2010 and has also taught mathematics for com-
puter science and linked data ventures courses at MIT. Additionally, she was the 
lead technical instructor for MIT Accelerating Information Technology program 
(now called Global Startup Labs) in Kenya and the Philippines where she taught 
university undergraduate and master’s level students to build socially impactful 
mobile phone applications.

Hasan Shodiev is an adjunct professor of physics and computer science, special-
izing in the development and study of new technologies for computational thinking 
and visualization in science education. His work on computational thinking resulted 
in a publication and presentations in a number of regional and international confer-
ences on education. He is coauthor of an SSHRC Insight Development Grant on 
computational thinking and assessment across disciplines at all levels of education 
from kindergarten to postsecondary.

Michael Stewart is a Ph.D. candidate in computer science at Virginia Tech.

Deborah Tatar is professor of computer science and, by courtesy, psychology at 
Virginia Tech, where she is also a member of the Center for Human-Computer 
Interaction and the program for Women and Gender Studies; a fellow of the Institute 
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for Creativity, Arts, and Technology; and a fellow of the Institute of Gerontology. 
She holds a doctorate in psychology from Stanford and a bachelor’s degree in 
English and American literature and language from Harvard. She spent 16 years 
working in industry and industrial research. Established accomplishments in com-
puter science and related fields include her 1986 LISP textbook and her early CSCW 
(computer-supported collaborative work) projects, including her analysis of the 
Xerox PARC Colab project. Much of her work focuses on the design of multiuser 
face-to-face systems, especially those designed to fit into and improve classroom 
interactions. This interest dovetails with an interest in the design of technologies as 
background, the notion of zensign (that what is left out can be as important as what 
is put into a user interface), phenomena of sharing, and human attention. She cares 
about how people’s images of themselves are shaped by their interactions with 
technology.

Tarmo Toikkanen is a researcher of educational psychology and designer of learn-
ing environments at Aalto University School of Arts, Design and Architecture in 
Helsinki, Finland. His design work has influenced thousands of classrooms and 
teachers across Europe. Tarmo is a seasoned teacher trainer and disseminator of 
academic findings to wider audiences. He works with many nonprofit organizations 
in Finland and internationally, e.g., Creative Commons, EFF, Wikimedia Foundation, 
EU Code Week, and several technology and teacher associations. He’s lately joined 
LifeLearn Platform as their chief science officer, working to create a global channel 
where learners and learning opportunities meet.

Aman Yadav is an associate professor in educational psychology and educational 
technology at Michigan State University. Dr. Yadav’s research focuses on computa-
tional thinking, computer science education, and problem-based learning. His work 
has been published in a number of leading journals, including the ACM Transactions 
on Computing Education, Journal of Research in Science Teaching, Journal of 
Engineering Education, and Communications of the ACM. Dr. Yadav teaches 
courses on computational thinking, educational research methodology, learning 
theories, cognition, and computing technologies at the undergraduate and graduate 
level. He serves as an associate editor for the ACM Transactions on Computing 
Education, a journal that publishes research on computing education. He is the 
teacher education representative on the CSTA board and chairs the CSTA Assessment 
Task Force.
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Learning Computational Skills in uCode@
UWG: Challenges and Recommendations

Adriana D’Alba and Kim C. Huett

Abstract In order to compete in a global economy, higher education institutions, 
K-12 schools, government officials, school districts, teachers, and afterschool pro-
grams must provide students with opportunities to acquire computational thinking and 
twenty-first century skills. In the United States, thousands of new jobs in areas such as 
computer science, database administration, software development, and information 
research open each year; yet, there are not enough American students graduating with 
those degrees, thus having to fill computing positions with international workers. In 
addition, other professional fields such as healthcare, education, financial services, 
and administration are becoming more technology dependent, requiring their employ-
ees to acquire computational skills. Recognizing this need, and the often-dishearten-
ing lack of opportunities outside the classroom for students to be inspired and to 
acquire computational skills, the College of Education at the University of West 
Georgia opened a coding club for kids 7–17 in the spring of 2014 named uCode@
UWG. This chapter presents those efforts, and the current status of the program.

Keywords Computational thinking • Social interaction • Afterschool programs • 
Parental involvement • Advanced placement courses

 Introduction

In January of 2016, the White House launched an initiative named “Computer sci-
ence for all” (Smith, 2016), which aims to provide American students with the com-
puter science (CS) skills needed to be globally competitive. Speaking at the State of 
the Union, President Obama proposed that every student from kindergarten through 
high school should have access to computer science and mathematics courses, in 
order to be equipped with the computational thinking skills to become not only 
consumers but creators of technology. In his plan, President Obama called for a 
$4.1 billion budget distributed in 3 years to provide professional development for 
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teachers and expand access to high-quality instructional materials. In addition, 
renewing funding for current and previous supported programs for CS such as 
National Science Foundation (NSF) and the Corporation for National and 
Community Service (CNCS) were noted priorities. The president requested the 
involvement from governors, mayors, and educational leaders to expand their sup-
port for CS in schools. As read in the Office of the Press Secretary (2016) press 
release of January 30, 2016, “by some estimates, just one quarter of all the K-12 
schools in the United States offer CS with programming and coding, and only 28 
states allow CS courses to count towards high-school graduation, even as other 
advanced economies are making CS available for all of their students” (para. 2). 
Other nations are further along in making CS central to curricula. In 2014, CS 
became part of England’s primary school curriculum. Israel, New Zealand, and 
some states in Germany have updated their CS high-school syllabus, and Australia 
and Denmark are doing the same (A is for Algorithm, 2014).

In the United States, the situation is different. According to The College Board (2015), 
during the 2014–2015 academic year, from all the 21,594 schools across the country 
offering Advanced Placement (AP) courses to one or more students, only 4310 schools 
offered the AP Computer Science A course, and the number of males who enrolled in 
those was overwhelmingly larger than their female counterparts (38,216 vs. 10,778).

In the State of Georgia (USA), only 1658 students took the AP Computer Science 
A test in 2015. Of those, 817 were White (49%), 174 were Black (10%), 491 were 
Asian (29%), and 97 students (5%) identified themselves as Hispanic. Considering 
that in the same period, 108,301 students in Georgia public schools were enrolled in 
AP courses, and 82,936 students in Georgia public high schools completed AP 
exams, this indicates that approximately 1% of Georgia AP students took the AP 
Computer Science A test. Across the 2015 Georgia high-school population of 
501,252, the percentage of students taking the high-school AP Computer Science A 
test is only slightly greater than zero (Georgia Department of Education, 2015).

In an effort to make computer science more accessible and engaging, the National 
Science Foundation aided the College Board to develop the AP Computer Science 
Principles (National Science Foundation, 2014). Schools will begin offering it in the 
fall of 2016, and the first test will be administered in the summer of 2017. The 
course content was specifically designed to appeal to a wider group of students, by 
teaching the creative aspects of computing and computational thinking, and helping 
students to be creators, and not only consumers of technology. Students will apply 
creative processes to develop artifacts, which will solve computational problems.

 Why Computational Thinking Is Important

Wing (2006) defines computational thinking (CT) as a skill that everyone, not only 
computer scientists, should acquire in order to design systems, solve problems, and 
understand human behavior, by drawing on the concepts fundamental to computer 
science. Computational thinking requires people to understand what humans can do 
better than computers, what computers can do better than humans, and how 
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answering those questions can solve problems by designing efficient systems. Some 
characteristics of CT include:

• Formulating problems and using computers and other applications to solve them
• Logically organizing and analyzing data
• Deciding which details in a problem need to be highlighted and which ones can 

be ignored, also known as the abstraction process
• Representing data with models and simulations
• Automating solutions through a series of steps, known as algorithmic thinking
• Identifying, analyzing, and implementing possible solutions by using the most 

efficient and effective combination of steps and resources
• Generalizing and transferring this problem-solving process to a wide variety of 

problems (Wing, 2008)

According to the Bureau of Labor Statistics (2015), from the years 2014 to 2024, 
national employment in computer and information technology will grow 12%, and 
488,500 jobs will be added. In addition, more industries and jobs of the future will 
require that employees possess training in CS and demonstrate computational think-
ing. The White House indicates that by 2018, 51% of all the Science, Technology, 
Engineering, and Mathematics (STEM) jobs will be in CS-related fields, and a 
growing number of industries, including healthcare, education, financial services, 
and transportation, will require employees trained in CS (Office of the Press 
Secretary, 2016, January 30). The data indicate a clear need to acquire computa-
tional thinking and computer science skills, especially among younger generations 
who will fill the jobs of the future, which is one of the rationales for the creation of 
uCode@UWG, a computer club for kids hosted at the University of West Georgia.

The idea of introducing computational thinking for all as coined by Wing (2006) 
is not new, especially in K-12 settings. In the decade of the 1980s, Seymour Papert, 
Cynthia Solomon, Wally Feurzeig, and others introduced the programming lan-
guage Logo in local schools near the Massachusetts Institute of Technology (MIT). 
The language, developed at MIT, was used to train children to think logically and 
solve problems (Papert, 1980, 1996). Among other activities, students were able to 
program a turtle robot and produce line graphics on the floor or on tables.

This exercise was adapted at uCode@UWG, for an activity (Fig. 1) that con-
sisted of using the language Scratch, developed by the Logo Foundation at the 
Massachusetts Institute of Technology—http://el.media.mit.edu/logo-foundation/
index.html—to program finch robots, designed at the Carnegie Mellon’s CREATE 
lab (http://www.cmucreatelab.org/).

 Learning Environments to Teach Computational Thinking 
and Computer Science

Despite the importance of introducing CT and CS concepts to students to fill the 
jobs of the future, there is a lack of CS programs and courses available for students 
enrolled in the American educational system. Fortunately, initiatives, such as Code 
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Academy, https://www.codecademy.com/; Google Code School, https://www.code-
school.com/google; CoderDojo, https://coderdojo.com/; Girls who Code, http://
girlswhocode.com/; and many others, are allowing American students to access col-
laborative sessions with mentors and volunteers in safe learning environments. In 
2013 Google partnered with Facebook, Apple, Microsoft, Khan Academy, and 
Yahoo!, among other institutions, to create the nonprofit Hour of Code—http://hou-
rofcode.com—which aims to expand participation in computer science education 
by making it available in more schools and to change policies in all 50 US states to 
categorize CS as part of the math/science core curriculum.

Another Google initiative, named CS First—https://www.cs-first.com/—for kids 
ages 9–14, was offered as an afterschool and summer activity. As of 2015 it had over 
1400 afterschool programs across America. A report from the Afterschool Alliance 
(2011) suggests that afterschool programs are having a positive impact in academic 
achievement, through the improvement of students’ education and behavior. For 
example, 60% of students enrolled in afterschool and summer programs in Chicago 
are pursuing degrees in STEM-related fields, and 95% of those who participated in 
Chicago afterschool programs have graduated high school. Participants of STEM 
afterschool programs are becoming familiar with the engineering design process, 
computer coding, web development, robotics, and other such technologies 
(Krishnamurthi, Ballard, & Noam, 2014).

In a 2010 employee survey, Google (2010) discovered that 98% of its Computer 
Science majors had had CS exposure prior to college. That exposure varied from 
reading about CS, afterschool programs or camps, or middle and high-school CS 
classes. In 2011 the organization launched the now defunct Computing and 
Programming Experience (CAPE), which aimed to expose early secondary school 
students to computer science.

Other informal educational initiatives similar to afterschool programs started to 
surge to fill the need for CS in schools. In 2011, James Whelton and Bill Liao 
opened the first CoderDojo in Dublin, Ireland (CoderDojo, 2013). As of January 
2016, there are over 875 dojos in 63 countries. CoderDojo is a nonprofit organiza-
tion focused on teaching children from 7 to 17 how to make the shift from  consumers 

Fig. 1 Left, fifth graders using the first turtle robot (Image used with permission of Cynthia 
Solomon). Right, participants at uCode@UWG using Scratch and Finch robots
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of computer programming to producers of technology by learning to program and 
use Scratch, HTML, CSS, JavaScript, Python, and Ruby, among other languages. 
During the sessions, children have the opportunity to develop computational think-
ing skills related to problem solving, creativity, abstraction, and collaboration. 
Students show progress by earning different belts, in a fashion similar to martial 
arts. CoderDojo is volunteer-based and requires the involvement of mentors, par-
ents, community stakeholders, and children.

 uCode@UWG: Teaching Computer Science to Children 
and Parents

Faculty and staff in the Department of Educational Technology and Foundations (ETF) 
and in the Department of Computer Science at the University of West Georgia under-
stand the importance of teaching computational thinking and CS concepts to K-12 
students, not only to awaken their interest in programming but to provide them with the 
foundational learning required in a wide variety of careers. In the spring of 2014, a 
faculty group began the planning phase to create an informal learning environment for 
coding inspired by the CoderDojo model (D’Alba, Huett, Remshagen, & Rolka, 2015).

In August 2014, uCode@UWG, a free computer-programming club aimed at 
kids 7–17 offered its first session. The mission of uCode@UWG is to provide an 
environment where kids can access computer programming—conceptually and cul-
turally—in a fun, informal environment, supported by experts and caring volunteers 
in the local community of Carrollton, Georgia. Kid participants, mentors, and vol-
unteers come from within and beyond the county.

uCode@UWG is a coding club sponsored by the College of Education (COE) 
and the College of Science and Mathematics (COSM), and receives support from 
the Office of Research and Sponsored Projects, and Information Technology 
Services. In addition to providing free of charge coding sessions for kids from 7 to 
17 years and their parents and guardians, the monthly club offers research and edu-
cational experiences for undergraduate students enrolled in the College of Education, 
and faculty involved in the project are receiving credit toward promotion and/or 
tenure. In addition, the club provides opportunities for community outreach and 
contributes to build a positive public image of the University of West Georgia. 
uCode@UWG involves a group of faculty and professional experts in different 
areas such as education, computer science, administration, and mathematics, who 
are committed to give back to the community by providing free access to the rich 
human and infrastructural resources at the university.

The majority of volunteers in the program were experts in computer science. 
Each session had a “lead mentor” who was responsible for conceiving of and direct-
ing the session, and one or more “support mentors” who wandered among students 
during instruction to assist in a one-on-one format. Three mentors were recruited 
from the university computer science department, three from the educational tech-
nology, one from facilities, and three from the university technical support unit.  
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In addition, ten mentors came from private industry and included several  professional 
web developers, software engineers, app developers, and the owner of a technology 
services consulting firm. Five mentors were computer science students at the under-
graduate and graduate levels. At the university, mentor recruitment happened 
through the university “daily report” announcement mechanism, emails to the uni-
versity community, and through a booth set up at an undergraduate fair for recruit-
ing students to service opportunities. Outside of the university, recruitment happened 
primarily through involvement with a regional technology organization. uCode rep-
resentatives explained the project and invited tech workers to participate. This two- 
prong approach produced a large enough body of mentors to create the 
mentor-to-learner ratios needed. Often, mentors invited other mentors, and this also 
helped to grow the group. A lead mentor might spend between one and 10 h prepar-
ing educational materials and posting them to the uCode@UWG wiki page for their 
learners or to another site like GitHub.

In addition to volunteers who mentored in computer science, uCode@UWG 
made use of a small number of volunteers—between one and four per session—to 
aid in logistical and hosting functions such as putting out parking signs or signing 
in participants upon arrival. Those were recruited from within the College of 
Education or were parents of students attending uCode.

 The Logic Model of uCode@UWG

In the autumn of 2013, the authors of this chapter began conversations about 
opening a free, informal computer-programming club housed at the university, 
along the lines of the CoderDojo model. Though the concept of developing a 
computer- programming club seemed fairly straightforward, further examination 
revealed the necessity and value of systematic program planning to crystalize 
personally held assumptions and goals, to clarify programmatic purpose, and to 
serve as a guide for ongoing conversations related to systematic improvements 
of the program.

Through logic modeling, the organizers identified necessary resources and stake-
holders at the university and within the community, outlined activities involved in 
running the program and related strategies (see Tables 1 and 2), and set goals for 
intended results (W. K. Kellogg Foundation, 2004).

Intended results were broken down into three levels of impact: short-term out-
puts would refer to immediately observable deliverables related to administering 
sessions (e.g., number of flyers disseminated, number of females served in a given 
session, number of coding sessions offered on a given Saturday); longer-term out-
comes related to changes expected to occur at an individual level within 1–6 years 
(e.g., participant changes in knowledge and skill, growth in CS mentor self- efficacy); 
and still longer-term impacts occurring at the organizational and community level 
(e.g., increased enrollments in CS in  local K-12 schools, increased local teacher 
capacity for supporting CS learning in K-12).

A. D’Alba and K.C. Huett
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Multiple drafts of the logic model were developed from January through July 
2014 as organizers met with stakeholders involved in the process. Through meetings 
with COE and COSM faculty, leaders in the Information Systems Technology 
department, and leaders in the Office of Research and Sponsored projects, the orga-
nizers expressed the logic model through a presentation followed by constructive 
exchange of ideas. In this way, the model was continually refined over a 6-month 
process leading up to the first event. The logic model has been a useful tool for 
expressing “who we are, what we do, how we do it, and to what effect” and guiding 
constructive conversations among organizers, mentors, and parents. It continues to 
be refined at the end of each year during the summative organizer meeting (Fig. 2).

Table 1 Logic model: planned work—resources and activities

Resources/inputs → Activities →
Mentors to lead kids through CS
Volunteers to assist with events
UWG faculty/staff to run program, conduct 
evaluation, and research
Support of COE, COSM, & ITS; public 
safety & ORSP
Community input (e.g., schools, 
businesses, public library)
Marketing
Learning space in COE with parking and 
storage
Technology hardware and support
Data collection forms

12 Dojo events (@ 3 h)
• Exploring coding and other CS domain 
knowledge and skills through fun projects
• Mentors spurring interest
• Volunteers facilitating
• Setup and breakdown
Recruit mentors and volunteers
Training for mentors and volunteers
Curriculum development
Visit other dojos; interface with community
Promote the dojo and maintain an RSVP list
Submit IRB for data collection
Conduct formative evaluation activities

Table 2 Logic model: intended results by outputs, outcomes, and impact

Outputs → Outcomes → Impact

12 3-h Saturday sessions 
from August 2014–July 
2015
B: 15–30 kids served per 
session
B: A 2:1 kid/mentor ratio
B: At least 3 volunteers per 
session
B: Capture kid CS artifacts
B: Document and capture 
each session’s “plan”
B: Distribute 100–200 flyers
B: Attract at least 25% 
females and at least 25% 
disadvantaged
B: Attract at least 1 K-12 
teacher per session (as 
parent, volunteer, or mentor)
B: Attract repeat visitors

Change in attitudes regarding CS 
domain with increases in interest, 
awareness, willingness to test/
play/fail/persevere, and 
development of mentor identity 
and reduced fear/anxiety
Changes in knowledge and skills 
in CS domain with increased 
abilities in computational thinking 
and problem-solving with 
technology
Changes in knowledge and skills 
in practice fields/project-based 
learning with collaboration, 
reflection, and ownership of 
learning
Changes in mentor knowledge/
skills in designing project-based 
environments

G: Strengthen internal 
university relationships
G: Strengthen university-
community relationships
G: Increase no. of students 
pursuing CS-related 
coursework/specialization 
in HS or postsecondary
G: Reduce the barriers for 
minorities and females 
into the CS field
G: Increase local teacher 
capacity and willingness to 
support CS domain 
interests among students

Note. B benchmark, G goal
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At uCode@UWG, students take ownership of their learning and engage in a 
 self- paced, challenging, and collaborative environment. Often, parents are working 
along with their children not only helping them to finish the tasks but also learning the 
concepts presented at the sessions. Using a project-based learning approach (Barrows, 
1992; Blumenfeld, Krajcik, Marx, & Soloway, 1994; Solomon, 2003; Tretten & 
Zachariou, 1995; Thomas, 2000), students are constructing knowledge in a highly 
engaging technology environment (Bell, 2010). At the beginning of each session, the 
students start developing a small task, which then builds upon itself, with mentors and 
volunteers guiding and advising them continuously. To mention an example, in the 
September–November 2015 period, the younger group of students (7–12 years old) 
was asked to animate a turtle using the programming  language Python, by coding 
color paths that turned into geometrical shapes (Fig. 3). Once the mentor showed 
them how to code a color and draw a square path, volunteers challenged them to 
change it to a different color and to try other shapes. Often, kids were seen incorporat-
ing new lines to the code without any guidance or intervention and offering advice to 
other children. Through the deliberate toolset choice of Python and GitHub (for hous-
ing coding starting points), the mentors sparked kids’ and parents’ interest in coding 
by connecting them to tools and practices used in the everyday workplace, such as 
automated systems for security, data and IT management, smart machines, simulators 
of phenomena, robotics, and virtual collaboration, among others.

 The Sessions

As of April 2016, the team has offered 14 monthly sessions with two different tracks 
or topics. Each session has lasted between 3 and 3½ h, and the number of volunteers 
and mentors has varied; however, each session counted with at least two lead men-
tors (one per track) and five to seven volunteers distributed between the two tracks. 
The topics for the sessions have varied from teaching HTML and Scratch to pro-
gramming in Java and Python and using the website codeacademy.com. The ses-
sions covered basic principles of the programming languages, and students were 

Fig. 2 The Idea Space, where kids provided suggestions and thoughts for upcoming sessions
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able to develop their own websites, games in Scratch, or animations in Python, 
which they could take home after the session ended. The first period, or Year1, had 
a total of eight sessions and ran from August 2014 to April 2015. The average num-
ber of students attending each of the sessions was 25, with the largest number of 
students occurring in August 2014 (n = 44) and the smallest number in September 
2014 (n  =  7). During Year2, a total of six sessions occurred from September to 
December 2015, resumed in February and ended in April 2016. The average age of 
children who attended uCode in both Year1 and Year2 was 10.7 years. A table with 
the numbers of mentors, volunteers, topics covered, ages of attendees, sex of partici-
pants, and average numbers can be consulted in the Appendix.

One of the requirements at uCode@UWG is that kids 12 years or younger must 
be accompanied by a parent or guardian during the sessions. Parents of older stu-
dents can drop them off and pick them up once the session has ended.

Previous to launching the first session of uCode, the team met several times to talk 
about logistics and marketing. The College of Education (COE) offered two class-
rooms, and its media library, the TecHUB, provided a cart with 15 PC laptops. Forty-
four children attended the first session in August 2014, and the two tracks offered 
were HTML and Scratch. Previous to the session, parents registered their children by 
phone or through Meetup (http://www.meetup.com/). Organizers provided instruc-
tions for parking, and participants were encouraged to bring their own laptops.

 Seeking Feedback from Session Participants

The team placed two boards in the back of the classrooms, named “The Idea Space” 
(Fig. 2), where kids noted their level of knowledge about coding and provided feed-
back and suggestions for next sessions. The idea for the boards was adapted from a 
visit to a CoderDojo in Atlanta (https://www.versionone.com/). The board included 
four introductory messages (i.e., I have not coded before, I have a project, I would like 
to help starting a project, and I would like to show something I did), and three 

Fig. 3 Kids and parents learning to program in Python and creating shapes with a digital turtle
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feedback notes (What do I want to learn next session, What can you help us with, and 
How can we improve?), where kids and their parents could post their ideas. The team 
met briefly after each of the sessions to review the feedback, talk about what went 
right and what could be improved, and to start suggesting ideas for the next session.

This informal feedback system was used during the first sessions of Year1, until the 
team decided to migrate uCode to the COE computer classrooms in January 2015. This 
allowed the team to ease the administrative load for uCode and focus on the content of 
the sessions, as there was no longer a need to work on logistics to setup the classrooms, 
previous to the sessions. Feedback started to get collected with an end-of-session form.

In addition to having eight monthly sessions at the University of West Georgia in 
Year1, the team offered Scratch programming to 150 third grade students at a local 
Title 1 elementary school from January–April 2015 and to 40 gifted students at a 
local middle school in May 2015.

 Transitioning to Year 2 of Coding Program

At the end of Year1, the team, mentors, and volunteers met to conduct an informal 
summative evaluation of uCode. At this meeting, it was decided to continue offering 
uCode for a second year, as the team recognized its impact in the local community 
and the importance of the program for the COE as a source for educational research, 
service, outreach, and public presence. However, the number of sessions was cut, 
from one each month to three sessions in fall 2015 and three sessions in spring 
2016, to allow the members of the team to focus on other academic responsibilities. 
It was also decided to offer dynamic project-based content that builds throughout 
3-month blocks, rather than having individual-content monthly sessions.

The first meeting of Year2 occurred in September 2015 with the attendance of 41 
students. After the winter break, the February 2016 session registered an attendance 
of 51 children. This session offered three tracks: Scratch, HTML, and Minecraft 
Modding with Java. The team eliminated the use of Meetup and started using 
Facebook for announcements, communications, and session reservations. All the 
documentation and supportive materials are kept in a university-supported Google 
Drive folder, and the team maintains constant email communication and receives 
input from mentors and volunteers when planning the sessions. The team continued 
collecting feedback from attendees using exit questionnaires and conducting infor-
mal interviews with parents and children.

 Parental Involvement in Learning at uCode@UWG

Although learning is a layered process that involves different stakeholders such as 
administrators, teachers, parents, students, and their peers, this section takes a closer 
look at the role of parental involvement in learning, as parents play an essential role 
in their children’s experience at uCode@UWG.
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Parents enjoy being involved in their children’s school life (Christenson, 2003; 
Jeynes, 2007) and worry that responsibilities such as work, lack of time, and 
demands from other children prevent them from becoming more involved (Williams, 
Williams, & Ullman, 2002). Studies report that parental involvement in student 
homework seems to be related to student achievement (Hoover-Dempsey et  al., 
2001; Parker, Boak, Griffin, Ripple, & Peay, 1999), and parents believe their 
involvement will make a positive difference (Hoover-Dempsey & Sandler, 1997; 
Jeynes, 2007; Lee & Bowen, 2006).

Seven parents who attended uCode@UWG with their children were interviewed 
in the spring of 2015. Four of them had brought their kids to every session, one of 
them was a first-time visitor, and two had attended one or two sessions. Five of them 
were female. All of them had two or more children, and one parent was homeschool-
ing their kids. The uCode team wanted to understand their motivation to bring their 
children to the sessions, their parental involvement in school, their participation in 
afterschool activities and their children’s homework and wanted to know how inter-
ested and motivated their children were in pursuing computer science careers.

All the seven parents were said to be very involved with their children’s home-
work, but not all of them were involved in school activities; four cited lack of time 
or having to work. When asked why they were bringing their kids to uCode, some of 
the individual responses were “to learn something new and useful,” “his friend came 
last month and he wanted to learn computers too,” and “jobs are going to be towards 
programming and making games so I want her to learn that.” Their responses suggest 
parents want their kids to be prepared for the future and learn useful skills. 
Researchers also asked parents why they thought their kids were interested in com-
puter science. Individual responses varied from having someone at home who works 
on computer science (parent or relative) who inspires them, showing interest in com-
puter games and wanting to learn how to make them (three parents responded some-
thing similar regarding their kids playing computer games), wanting to learn to use 
the computer since they were very young (2–3 years old), and using computers at 
school and wanting to learn more about them. These responses seem to be related to 
the accessibility to computers at home/school and wanting to learn how they work.

These responses corroborate the literature on parent involvement cited earlier in 
this section. As the Office of the Press Secretary (2016) notes:

• More than nine out of ten parents… say they want CS taught at their child’s 
school. They understand that today’s elementary, middle and high school stu-
dents are tomorrow’s engineers, entrepreneurs, and leaders who must be equipped 
with strong computational thinking skills and the ability to solve complex prob-
lems. (The Need for CS for All, Sect. 1, para. 2)

As mentioned earlier in the chapter, parents are welcome to stay at uCode. Those 
who do, almost always, are actively engaged with their children in the event (see 
Fig. 4), and some of them have expressed further interest in learning to code. They 
often are seen using the lab computers to participate in the lessons, helping the kids, 
or asking the mentors where to get more information about the programs used in the 
session. According to Hoover-Dempsey and Sandler (1995), there are three mecha-
nisms of parental influence on children’s educational outcomes: modeling, 
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 reinforcement, and direct instruction (p. 319). When parents participate in activities 
related to schooling, such as reviewing homework, engaging with teachers and men-
tors, or attending school events, children are more likely to emulate this behavior. 
Parents often give praise and rewards related to school success, thus reinforcing a 
good performance and propelling positive educational outcomes. In addition, par-
ents who practice direct instruction in the form of commands, requests for correct 
answers, working with their children to solve a problem, or asking for other ideas 
on how to solve homework issues have a positive effect on children’s learning. 
Researchers have observed nearly all the parents consistently displaying these three 
behaviors at uCode sessions (see Fig. 4).

 Child Interactions at uCode@UWG

The uCode team wanted to observe the social interactions (see Fig. 5) occurring in 
the sessions, to better understand the collective dynamics happening in uCode, par-
ticularly regarding collaboration, leadership, and decision-making, which are 

Fig. 4 Parents participating actively in the sessions

Fig. 5 Engagement and group collaboration at uCode

A. D’Alba and K.C. Huett



15

essential twenty-first century skills. The literature about social interaction is 
 extensive, and it often focuses on one or many of its features (Fahy, 2006; Synder & 
Swann, 1978).

The team selected Bales (1950) to categorize the behaviors occurring at uCode, 
as his work is considered to be seminal in the analysis and classification of social 
group interaction (Burke, 2006; Keyton, 2003).

Bales proposed 12 categories of interaction (see Fig. 6), while acknowledging 
that there are three broad variables that can affect the occurrences in a certain social 
interaction: (1) personalities of the individual members, (2) characteristics that 
those members have in common, and (3) the organization of the group. However, as 
he argued, there is a series of conditions arising from the nature of the social exer-
cise, which change as the group interaction moves through time.

The team selected the September and October 2015 sessions to conduct unobtrusive 
observations solely with children, as they are considered to be the primary participants 
at uCode@UWG. The analysis and coding of the observations offered an effective 
classification of the verbal and nonverbal behaviors presented by the students.

Seventeen participants were chosen randomly (seven in September, ten in 
October), and the team conducted individual unobtrusive observations for a period 
of time between 5 and 10  min per person. Every time the participant expressed 

Fig. 6 Bales Social Interaction System showing the four behavioral areas and the 12 categories
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 certain behavior that fell into Bales’ categories (verbal or nonverbal), it was 
 annotated on a table. Figure 7 shows the students observed during each month and 
the list of Bales categories. The participant code refers to the sex (M for male, F for 
female), and age of the student.

Categories 2, “Shows tension release, jokes, laughs, shows satisfaction,” and 3, 
“Agrees, shows passive acceptance, understands, concurs, complies” presented the 
majority of occurrences. This can be interpreted as students having fun, releasing 
tension, and showing enthusiasm, pleasure, and joy during the sessions (Category 2) 
and expressing confirmation, conviction, and concurrence about what they are learn-
ing (Category 3). In addition, students showed 14 occurrences in Category 5 “Gives 
opinion, evaluation, analysis, expresses feeling, wish.” This, according to Bales, is 
the most frequently used category in many observation situations, and it includes 
problem-solving decisions and expressions of understanding or insight. Another cat-
egory where students showed a higher number of occurrences (n = 18) was Category 
1, “Shows solidarity, raises other’s status, gives help, reward.” This includes any act 
showing sympathy or similarity of feeling, expressing desire for cooperation, show-
ing a nurturing attitude, complimenting, or congratulating others.

Another category that was noteworthy is 4, “Gives suggestion, direction, imply-
ing autonomy for other” with students, showing 11 occurrences. Bales included in 
this category any act that takes the lead in the activity, such as attempting to guide, 
to persuade, and to inspire people to perform some actions.

Results of the data analysis suggest students are presenting collaborative, leader-
ship, and decision-making skills when attending the sessions at uCode. Children are 
creating partnerships with others, are providing suggestions, and are becoming 
leaders by offering guidance to their peers. It is not clear from the investigation if 
these skills are a result of their participation at uCode, as the team is still conducting 
follow-up interviews to corroborate findings; however, the interactions show 
uCode@UWG provides a positive and nurturing environment for learners.

The occurrences or behaviors presented at uCode@UWG are tied to what 
Brennan and Resnick (2012) listed as the three computational thinking perspectives, 
included in their computational thinking framework: kids are expressing themselves 
through the development and creation of coding projects, they are connecting and 
creating partnerships with others during the sessions, and they are questioning how 
technology works and how they can use it to make sense of the world.

Fig. 7 Occurrences presented in participants selected for unobtrusive observations
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 Next Steps and the Future of uCode@UWG

The team remains committed to the project and is exploring opportunities for its 
expansion. Recruitment of expert mentors and volunteers is a priority, as they are 
the vital force driving uCode. There are several inquiries being explored to conduct 
qualitative research, including parents’ perceptions of learning in uCode, mentors’ 
experiences, student’ attitudes toward computer science after attending uCode, and 
parental engagement, among others. In addition, researchers will attempt to conduct 
in-depth individual interviews with parents and kids to corroborate findings regard-
ing social interaction and to investigate new lines of research that emerged from the 
parents’ individual interviews, such as peer motivation to attend uCode and self- 
motivation to learn computer science.

There are some challenges at uCode that need to be addressed: The team 
needs to design a better way for student placement in the different session 
tracks, not only by age but by the amount of experience they already have 
regarding the topics. Some kids already know what is being taught at the ses-
sions, and although they seem to take a leadership role by helping their peers, 
some become disengaged. A possible solution worth exploring is to ask parents 
beforehand their children’s baseline knowledge and subdivide the tracks in 
beginners and experts using names that are appealing to the kids and are related 
to UWG, e.g., using the University mascot—a wolf—and naming the groups 
Scratch pups and Scratch alphas. The team is receiving continuous feedback 
and advice from mentors and volunteers and engaging in conversations with 
expert scholars to address these issues. A second area that needs further analysis 
is a better understanding of the reasons behind parents halting their children’s 
attendance after one or more sessions. Is it because of their kids’ experience at 
uCode, or are there other factors preventing them from attending more fre-
quently? The team needs to do a better job gathering summative feedback from 
children and adult attendees.

Originally, uCode@UWG was a one-year project that started with a conversa-
tion between two colleagues from the Department of Educational Technology and 
Foundations at the University of West Georgia. Today, 2 years later, the program 
has grown and continues to present valuable learning opportunities for kids, par-
ents, faculty, administrators, and the local community. The team remains dedicated 
to the project and hopes to inspire other higher education institutions to open their 
doors and share their human resources and facilities, to provoke the minds of the 
younger generation, and to prepare them for the challenges of an increasingly com-
petitive world.
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 Overview of Sessions from August 2014 Through April 2016

Month  
and year

No. of 
sessions Sessions offered

No. of 
mentors

No. of 
volunteers

No. of 
coders

Median 
age Sex

August 
2014

2 Scratch; HTML 4 3 44 11 19 
fem.
25 
male

September 
2014

2 Java; HTML and 
CSS

5 5 7 11 4 fem.
3 male

October 
2014

2 Java; HTML and 
CSS

5 3 42 12 22 
fem.
20 
male

November 
2014

3 Java; Scratch; 
Snap + Finch  
Robots

4 3 20 11 7 fem.
13 
male

December 
2014

4 Java; Scratch; 
Snap + Finch 
Robots; Hour of 
Code

3 3 23 10 12 
fem.
11 
male

January 
2015

4 Java; Scratch; 
Snap + Finch 
Robots; Code 
Academy

5 5 20 11 9 fem.
11 
male

March  
2015

3 Java; Scratch; 
Snap + Finch  
Robots

3 4 22 11 10 
fem.
12 
male

April  
2015

1 Minecraft Modding 
with JavaScript

3 8 24 13 9 fem.
15 
male

Average numbers for Year1 4 4.2 25.2
September 
2015

2 Python: Shapes and 
Turtles; Python: 
Puzzles and Games

7 2 41 11 18 
fem.
23 
male

October 
2015

2 Python: Shapes  
and Turtles; Python: 
Puzzles and Games

8 2 30 11 13 
fem.
17 
male

November 
2015

2 Python: Shapes and 
Turtles; Python: 
Puzzles and Games

7 2 22 11 8 fem.
14 
male

February 
2016

3 Web Design; 
Scratch; Java 
Programming in 
Minecraft

10 2 51 12 22 
fem.
29 
male

(continued)
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Month  
and year

No. of 
sessions Sessions offered

No. of 
mentors

No. of 
volunteers

No. of 
coders

Median 
age Sex

March  
2016

3 Web Design; 
Scratch; LittleBits

11 2 29 11 12 
fem.
17 
male

April  
2016

2 Web Design;  
Scratch

7 2 19 12 8 fem.
11 
male

Average numbers for Year2 8.3 2 32
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Making Computer Science Attractive to High 
School Girls with Computational Thinking 
Approaches: A Case Study

Oshani Seneviratne

Abstract Computational thinking is a fundamental skill that extends beyond 
computer science. Conceptually it involves logic, algorithms, patterns, abstrac-
tion, and evaluation. The approach for developing a computational mind-set may 
involve experimenting, creating, debugging, and collaborating. Due to certain 
implicit biases and societal and cultural factors, girls may not be exposed to these 
computational thinking concepts and approaches. This has resulted in a decrease 
in the number of women in computer science since the 1980s. This chapter sum-
marizes some of the challenges faced when teaching introductory computer sci-
ence to high school girls and the approaches taken to overcome those challenges.

Keywords Gender issues • Computational thinking techniques

 Introduction

Gender gap in computer science is a much-studied topic in the recent years (Margolis 
& Fisher, 2003). According to a report titled “Why So Few?” (Hill, Corbett, & 
Rose, 2010), only a very small percentage of girls, around 0.4 %, entering college 
intend to major in computer science, and women only made up 14 % of all com-
puter science graduates, down from 36 % in 1984. In a 2009 poll of young people 
aged 8–17, only 5 % of girls had said they were interested in an engineering career. 
Another recent poll found that while 74 % of college-bound boys aged 13–17 said 
that computer science or computing would be a good college major for them, only 
a 32 % of their female peers said the same (Association for Computing Machinery; 
WGBH Educational Foundation, 2009). It has also been shown that, from early 
adolescence, girls express less interest in math or science careers than boys do 
(Lapan, Adams, Turner, & Hinkelman, 2000; Turner, 2008). Even girls and women 
who excel in mathematics often do not want to pursue computer science or any 

O. Seneviratne (*) 
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e-mail: oshani@csail.mit.edu

mailto:oshani@csail.mit.edu


22

other STEM fields. Given these disparities, there are many academic programs at 
various institutions that are trying to address the problem head on and break the 
glass ceilings in which women may be discouraged in pursuing a career in computer 
science.

The MIT Women’s Technology Program (WTP)1 is a program that has been run-
ning since 2002 with the goal of attracting more high school girls to engineering and 
computer science. WTP facilitates a rigorous residential summer program for high 
achieving college bound girls who are either high school juniors or seniors from all 
over the USA who did not have any prior exposure to computer science. The hall-
mark of the program is that, it introduces the concepts in a hands-on team-based 
format with a focus on problem solving. The program has daily lectures, labs with 
fun team-based projects, and several hours of homework. There are no grades for 
WTP because the program encourages students to go outside their comfort zones 
and not worry about a perfect score or making mistakes. During my doctoral studies 
at MIT, I was very fortunate to teach computer science through WTP to high school 
girls. The teaching staff included myself who was the main instructor responsible 
for preparing and delivering all the material, and tutors who help the students during 
the labs and their homework. The tutors are typically advanced undergraduate stu-
dents who are majoring in computer science.

Before the summer program began, it was my responsibility, as the instructor, to 
prepare the curriculum for basics of computer science with comprehensive exam-
ples, mini quizzes, and projects the students can try out. Learning in WTP is sup-
posed to be incremental, where the lessons would build up from the previous day. 
The curriculum covered basic syntax for programming in Python, control struc-
tures, functions, object-oriented programming, data structures, algorithms, and 
recursion. Students were expected to complete challenging conceptual exercises, 
daily programming assignments, and a final project.

Despite all the preparations we took, when the program started, the teaching staff 
realized that the students’ perception towards computer science needs to be changed 
to instill a computational thinking mind-set before going ahead with the lessons. 
The high school girls were previously exposed to concepts such as patterns and 
abstraction through high school level math and science courses. However, we 
noticed that some of the students had difficulty in applying such skills they already 
had to learning basics of computer science theory.

The reasons were twofold: (1) gender-based stereotypes and (2) learning subject 
matter they were not exposed to before. Although the first issue is only applicable to 
girls, the second issue is equally applicable to both genders.  The following sections 
illustrate the above-mentioned issues in depth along with the approaches we took to 
overcome those challenges.

1 http://wtp.mit.edu/.
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 Overcoming the Gender Stereotypes

 Overcoming Implicit Gender Bias

As the teaching staff, it was our duty to encourage a supportive community spirit of 
learning together (Johnson & Johnson, 1987), so that the learning process will not 
be overwhelming to the students during the fast-paced short summer course. So, in 
this spirit of learning together, we facilitated a classroom discussion on what com-
puter science meant to the students at the beginning of the course. We asked few 
open-ended questions like: “Who has met a computer scientist/programmer?”, 
“What do you think computer scientists do?”, etc. Based on some of the answers, it 
was clear that some of the students had certain implicit gender stereotypes. A family 
member, an older friend, or a friend of a friend was “into computers,” but many of 
them were male, and it seemed as if the students would most certainly equate these 
people they knew to asocial geeks who keep to themselves typing all day in dark 
basements and do not see the light of day. As for what they think the computer sci-
entists do, most of the students (rightfully) had the impression that computer sci-
ence meant coming up with code, but they didn’t equate that to solving problems.

As explained in the “Blindspot” (Banaji & Greenwald, 2013) even among indi-
viduals who actively reject gender stereotypes, implicit bias can be common. This 
bias not only affects individuals’ attitudes toward others but may also influence their 
own interest in math and science topics. This indirectly hinders a girl’s computational 
thinking skills. Not only would a girl more likely to associate computer science with 
men than with women, but she may also encounter negative opinions for women in 
such “masculine” positions. It was shown that as early as elementary school, children 
are aware of these stereotypes and can express stereotypical beliefs about which sci-
ence courses are suitable for females and males (Joyce & Farenga, 2000). Furthermore, 
girls and young women have been found to be aware of, and negatively affected by, 
the stereotypical image of a scientist as a man (Luce et al., 2008). Even looking at my 
own (the author’s) career path as a computer scientist and of my very few female 
peers, I can see that women face a particular set of difficulties when they are in a 
male-majority field. The presence of female role models can be hard to come by 
when you’re one of the only girls in your computer science class.

 No Need for Self-Inflicted High Standards

Studies have shown that girls hold themselves to a higher standard in subjects like 
math (Correll, 2004). Because of this, girls are less likely to believe that they will 
succeed in a STEM field such as computer science, and therefore, are less likely to 
express interest in a career in computer science. In a study done in 2005, it was 
found that gender differences in self-confidence in STEM subjects begin in middle 
school and increase in high school and college, with girls reporting less confidence 
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than boys do in their math and science ability (Pajares, 2005). In part, boys develop 
greater confidence in STEM through experience developing relevant skills, and girls 
may lose the opportunity to develop such skills due to their vulnerability in losing 
confidence in STEM areas.

However, WTP was a level playing field, because all the students were girls. 
Plus, WTP did not emphasize on grades, but rather on learning in a collaborative 
environment. So, since none of the girls had the pressure to hold themselves to high 
standards, we encouraged them to be very confident about their abilities, ask ques-
tions, and learn from each other.

 Female Role Models

As mentioned above, computer science has a bad image among girls, or they were 
not confident in the skills they already had. Thus, it was clear that we had to address 
the stereotypes the students associated with computer science. A study reported an 
increase in girls’ interest in computer science and engineering after the girls were 
exposed to a 20-min narrative delivered by a computer-generated female agent 
describing the lives of female engineers and the benefits of computer science and 
engineering careers (Plant, Baylor, Doerr, & Rosenberg-Kima, 2009). Therefore, 
getting to know female computer scientists who can potentially be the girls’ role 
models can be a huge boost to the girls’ self-confidence and increase their interest 
in the field.

Thus, we decided to get the girls exposed to as many female role models as pos-
sible during the program. Unlike in their high school environments, during the sum-
mer long program, the students already had lot of access to female role models. The 
staff members of WTP including the tutors were all female, and the girls felt espe-
cially connected to the tutors since they were only few years senior to them. We 
made sure that the students felt comfortable talking to anybody in the staff during 
the classroom sessions, during programming labs, and during after-hours in which 
they completed their homework. Problem solving is an iterative process (Wing, 
2006), and acquiring the skills needed to solve or debug a solution to a problem can 
take a long time or maybe even impossible if the proper support structures are not 
present, and the students may be discouraged early on and do not develop an inter-
est. This is especially important since the students really need to come out of their 
comfort zones and experiment with the unknown in order to fix an error in their 
program. For a novice this can be very intimidating, and thus having access to peo-
ple who can help them can be very beneficial. The students should not be in a posi-
tion to give up the entire field if they were not able to correctly write their first 
program, or debug their code, or do not understand something that can be useful in 
figuring out the underlying basic CS concepts.

Interacting with women who use computer science in their professional lives 
gives them an idea of something to go after besides an endless string of code. 
Therefore, we organized a lunch series throughout the duration of the program and 
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invited successful female computer scientists, professors, engineers from the indus-
try, and female CS Ph.D. students at MIT, to talk to the high school girls informally 
about how they first got into computer science and what they are passionate about 
other than computer science. Most of the speakers were working to solve some very 
interesting challenges such as finding cures for diseases like cancer, tackling global 
warming, developing renewable energy sources, developing robots to help the 
elderly, working on speech synthesis, and understanding the origins of the universe, 
to name a few. In fact few of the guests did not even identify themselves as computer 
scientists as their day-to-day work was in some other field such as physics or chem-
istry. However, they all were influenced by computer science at some point in their 
lives. Many of the guests had very interesting hobbies, including playing musical 
instruments, hosting shows on the local radio station, running marathons, and even 
performing in dance and music festivals! They all had very interesting stories to 
share about how they got interested in the field and how computer science has 
helped in their day-to-day lives. After hearing these stories, the girls had several role 
models to look up to, and most of them later indicated in their WTP exit surveys that 
this experience positively changed their attitudes toward computer science.

 Emphasizing the Importance of Female Presence in Science 
and Technology Innovation

We also wanted to make it clear to the students that computer science is now a dis-
cipline that is playing a key role in invention and creation across all sorts of disci-
plines from biological science to film and animation. This expansion of the field of 
computer science and how critical it is across all disciplines increasingly makes it 
more meaningful to study computer science and related technologies. As computers 
have become integrated into other disciplines like digital media, including music 
and film, the geek image has shifted from that of a socially isolated person to include 
a chic geek image where it can be cool to know about computers. So, the students’ 
perception towards computer science as just “coding” is no longer applicable. Thus, 
the “geek” image is improving. Movements such as the “#ILookLikeAnEngineer” 
and “#ILookLikeAProgrammer” hashtag on social media introduce women who 
contribute to the society in meaningful ways as computer scientists and engineers 
(Guynn, 2015).

In the classroom, we discussed some examples of the dangers of not having 
enough female participation in technical roles. For example, some early voice- 
recognition systems were calibrated to typical male voices. As a result, women’s 
voices were literally unheard. Many of the computer games were designed to cater 
to young males, and it would be difficult to find games that are equally amenable to 
both genders. Similar cases are found in many other industries. For instance, a pre-
dominantly male group of engineers tailored the first generation of automotive 
 airbags to adult male bodies, resulting in avoidable deaths for women and children 
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(Margolis & Fisher, 2003). Discussing such imbalances in gender in fields that are 
near and dear to our lives can be detrimental to our society, and the students seem to 
understand the broader implications. With a more diverse workforce that includes 
equal participation from women, scientific and technological products, services, 
and solutions are likely to be better designed.

 Effective Teaching Methodologies

 Show and Tell

We wanted to teach the students that programming isn’t just about using a particular 
language. The 1972 Turing award winner Edsger Dijkstra had once said “teaching 
code to programmers is like teaching how to use telescopes to astronomers” (Haines, 
1993). The syntax is vitally important but utterly trivial. Therefore, to help the stu-
dents understand that computer science is not about typing at the computer all day, 
or learning some esoteric programming language, we utilized several props in the 
classroom to convey the message that a computer language is merely a tool. We 
brought in things like a canvas and a paintbrush to the classroom. Just as these are 
tools for an artist to paint an imagery that was conceptualized in her mind, the com-
puter is a tool to either express an idea or solve a problem that will be difficult 
without the tool (i.e., the computer). This kind of “show and tell” approach was very 
effective throughout the program, as it was very exciting to have physical objects 
that would not normally belong in a computer science lecture room.

 Classroom Discussions

Since many of the concepts in computer science cannot be easily demonstrated 
using the above-mentioned show and tell approach, we thought of filling in the gap 
with the day-to-day activities the students engage in using computers. For example, 
for the very first lesson where algorithms were introduced, we asked the students to 
get into groups and discuss what things they do in their day-to-day activities that use 
a computer, what kind of things are easy for a computer to do but hard for a human 
to do, and vice versa. The students came up with examples such as “web search,” 
“email,” and “Facebook.” Going by their interest areas, we tried to explain how 
computer scientists have made those services work. Search engines such as Google 
use algorithms to put a set of search results into order, so that more often than not 
the result we’re looking for is at the top of the front page. Likewise, the Facebook 
news feed is derived from our friends’ status updates and other activity, but it only 
shows that activity which the algorithm thinks we will be most interested in seeing. 
The recommendations we get from Amazon, Netflix, and eBay are algorithmically 
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generated, based in part on what other people are interested in. Given the extent to 
which so much of our lives are affected by algorithms, we iterated the importance 
of learning algorithms, so that they can also create a novel algorithm that can help 
solve a problem.

Based on some of the initial answers we got, we realized that the students 
thought computers are only those devices that have screens, keyboards, and mice 
in addition to the microprocessor, memory, etc. They did not know other household 
devices that they had access to, such as calculators, smartphones, cars, and 
Roombas as “computers”. Therefore, we wanted to illustrate the ubiquity of com-
puter science. The calculator app on our smartphones is able to perform complex 
calculations that would take a normal human a considerable amount of time to 
compute, the GPS in our cars is able to tell us directions, and there are other such 
examples where the computing capabilities that are already readily available to the 
students are easily overlooked: Computers in our cars help us with cruise control 
and to display information based on the inputs to its sensors; Roombas in our 
houses clean the floor in an autonomous manner without any human intervention 
whatsoever; gaming consoles are able to load the programs and respond to the 
inputs from the joysticks or even use our body movements in the case of innova-
tions like Kinect.

Discussion on these everyday-computing devices proved to be a very good exer-
cise and a good entry point to explain what computer programs are capable of. All 
such devices that have a computer inside need to be programmed using an algo-
rithm. Even a simple application such as the calculator needs the user to understand 
and interpret the problem before the calculator can help out with the arithmetic.

 Examples First, Theory Later

Some research studies have found that men outscore women by a medium to large 
margin in the area of spatial skills, specifically on measures of mental rotation 
(Linn & Petersen, 1985) (Voyer, Voyer, & Bryden, 1995). Well-developed three- 
dimensional spatial-visualization skills are a must for subfields of computer sci-
ence such as robotics and computer graphics. However, studies have found that 
spatial skills are not innate but developed (Sorby & Baartmans, 2000). Lego 
Mindstorms where students can take things apart and put them back together 
again and do visual block programming can greatly help develop these essential 
spatial skills. In our experience, many computer science programs often focus on 
technical aspects of programming early in the curriculum with a strong focus on 
theory and without much focus on the applications of the concepts. This can be a 
deterrent to students, who may be interested in broader, multidisciplinary applica-
tions. Thus, during the course of WTP, we always made it a point to talk about the 
applications; no matter how trivial they might be related to the topic, the students 
are learning.
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 Teaching Algorithms

When delivering the lessons beyond these introductory concepts, we always made 
it a point to start the lecture with a fun activity related to the lesson. For example, 
to illustrate what an algorithm is like and how they can get started to conceptualize 
algorithms, we asked a volunteer to explain how to write a program to make a pea-
nut butter and jelly sandwich. We brought the ingredients necessary to make the 
sandwich to the class; and a staff member was acting as the computer, and the 
volunteer was the programmer. The student volunteer had to give the staff member 
the exact steps as to how to make the sandwich. The end goal was the delicious 
sandwich.

The instructions have to be “programmed” in a certain order, and if it is not in the 
desired order, the computer (i.e., the staff member) will not perform the actions. For 
example, if the student said, “spread jelly on bread,” and at that time the jelly jar was 
not open, the staff member will not perform any activity since the jelly was not 
reachable. Instead, the staff member will make a funny face to indicate the error. 
Once the student realized the mistake and mentioned “open jelly jar” before “spread 
jelly on bread,” the staff member would perform the activities, and the volunteer got 
the peanut butter and jelly sandwich as reward. Even though this was a very simple 
example, students enjoyed this exercise very much, and they really got the idea that 
writing a program is like writing a recipe and can be very relatable to the activities 
we perform in our day-to-day lives.

 Teaching Loops and Conditionals

Another such activity involved marching as a preamble to loops and conditionals, 
where a student had to follow a path through the classroom to reach a certain desti-
nation based on the instructions given. Then the class was asked to come up with the 
pseudocode to illustrate what the student volunteer performed. This resulted in a 
very engaging atmosphere, where students were able to conceptualize the program, 
and also were able to discuss their code in a collective manner.

 Teaching Functions

We had the most interesting set of challenges when teaching functions. Some of the 
popular mistakes that students made were confusing the “return” statement with 
“print” (in python), not understanding that a function remembers where it came 
from and goes back there when it is done, and that a function can be used to encap-
sulate blocks of code. Many of these concepts were a bit abstract for many of the 
students. With an example involving dessert recipes, we were able to illustrate that; 
for example, a chef can delegate different parts of a dessert (say, tiramisu()) to other 
worker chefs. These worker chefs can act as routines that create subparts of the 
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dessert like ladyfingers() and cream(). If the chef wants to make another dessert 
such as ice cream() or parfait(), she can call the same cream() function that was 
used in tiramisu(). Although it was tempting to introduce things like stacks when 
teaching functions, we thought that it may be a bit too overwhelming for these 
beginner level students at WTP. It should be introduced only at an advanced level 
or if a student questions about the inner workings of function calls.

 Teaching Sorting

For the lesson on sorting, going with the same approach of a fun activity before 
class, we asked several students to line up and asked the rest of the class to come up 
with a way to order them according to their height. To our surprise, the students 
came up with bubble and selection sort algorithms by themselves! We also utilized 
online videos available on different sort techniques before diving into the nuts and 
bolts of implementing the algorithms. Visuals are powerful tools in the classroom, 
and there is no better way to teach such abstract concepts.

 Live Examples

In order to complete the homework assignments, the students had to use Linux 
machines. But many of them were not familiar with the operating system. Therefore, 
the teaching staff decided to do a live demonstration of the system. The staff mem-
ber would perform something, and the students were expected to follow. We also did 
a live debugging session during class, highlighting the instructor’s thought process 
that went in to fixing the problem and also showing how to use the tools that are at 
the disposal to them.

 Let’s Build a Game!

While many parents often worry about recreational “screen time”, some educators 
now believe that gaming could be a way to get girls interested in coding and even 
to increase the numbers of girls in computer science. Therefore, we decided to 
have the students implement a Tetris game for the final project. Even though the 
task of implementing a game seems daunting, most of the components that were 
already required were completed in previous lab sessions. However, since the proj-
ect may seem overly ambitious especially given all the difficulties some of the 
students were having during the previous lab sessions, we told them to work in 
pairs for the project. All the groups had a working game in the end and had time to 
play with it in class. Pretty much all of them were excited to have the working 
product in the end.

Making Computer Science Attractive to High School Girls with Computational…



30

 Results

Through several classroom activities, we managed to teach some of the core prin-
ciples of computational thinking that many of the girls already knew by intuition: 
Logic is essential for predicting and analyzing things we want to be computed, 
algorithms to make steps and rules about executing an idea, decomposition to break-
ing down a problem to manageable chunks, patterns for spotting and using similari-
ties, abstraction for removing unnecessary details from a given problem and 
generalizing to fit a broader class of problems, and, finally, evaluation to verify 
whether the solution worked for a given problem or not (Wing, 2006).

Since the start of MIT WTP in 2002, over 500 students have participated in the 
program so far. According to the WTP Director and WTP-EECS Track Coordinator, 
Cynthia Skier, of the 431 students who have participated in WTP over the years, 
over 64 % are in a field of engineering or computer science, while another 21 % are 
in math or science fields. Furthermore, the numbers from the 2015 cohort show 
increased enthusiasm in computer science toward the end of the program. The stu-
dents were asked about their perception toward computer science and STEM in 
general, both before and after the commencement of WTP. The percentage of stu-
dents definitely planning to take college classes in computer science moved from 38 
% before starting WTP to 80 % after completing WTP. 60 % listed CS as a probable 
college major in the exit surveys, which was a 50 % increase over the numbers in 
the entrance surveys. Some of the answers to qualitative questions in the exit survey 
indicated that the students got a better understanding and a better outlook on CS 
after the program. Many students liked the lunch series where we brought in female 
role models to talk to the students, the activities conducted before the lessons, and 
the final project where the students had to build a functioning computer game.

This upward trend in girls’ interest in computer science is evident at the national 
level as well. In 2013 girls only made up 18.5 % of A.P. computer science test takers 
nationwide2. In three states, no girls took the test at all. During the recent years, 
these numbers have been growing steadily. In 2014 25 % of the A.P. computer sci-
ence test takers were female3, and in 2015 that number increased to 27%4. While 
these numbers are not representative of the population, many efforts by educators 
and nonprofit organizations seem to have made positive impact in making computer 
science attractive to girls. Over the years, WTP has produced many shining stars 
who were equipped with the necessary computational thinking skills. One of the 
best examples is Tamara Broderick, who in 2002 completed WTP as a high school 
student and in 2015 returned to MIT as an assistant professor5.

2 http://research.collegeboard.org/programs/ap/data/participation/ap-2015.
3 http://research.collegeboard.org/programs/ap/data/archived/ap-2014.
4 http://research.collegeboard.org/programs/ap/data/participation/ap-2015.
5 https://www.eecs.mit.edu/news-events/media/tamara-broderick-woman-technology.
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 Conclusion

Utilizing computational thinking approaches coupled with strong role models can 
especially be useful for getting young girls interested in computer science. It is our 
belief that girls are easily discouraged from computer science due to many reasons 
that are not related to their personal capabilities. Even though the girls have many 
computational thinking skills, they are either not aware of them or hold themselves 
to very high standards.

From our experience with WTP, the approaches to instill computational thinking 
in high school girls who have not been exposed to computer science previously are 
numerous: First, the students should be guided in an encouraging manner with men-
torship, fun activities, and ample computer science related exercises. Second, they 
should be encouraged to tinker with a solution by iterating and playing around with 
multiple solutions ready to throw away any solution if needed. Third, the debugging 
process should be mastered, where the focus is to find and fix the errors introduced 
from the creation and tinkering processes, without getting frustrated or losing sight 
of the end goal. Thus, a collaborative and supportive environment with plenty of 
guidance can help gain the necessary skills to think like a computer scientist and 
achieve one’s full potential.
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 Introduction

Problem-solving ability is essential in gaining mathematical understanding (Seeley, 
2005). Exposure to mathematical problem-solving tasks increases students’ meta-
cognitive ability or knowledge about their own thinking coupled with making effec-
tive strategy choices. Metacognitive processes in precalculus and an alternative 
curriculum, computer science, were identified to see if a relationship exists in devel-
oping mathematical problem-solving ability. When students are engaged in the 
active process of why certain problem-solving strategies are appropriate or inap-
propriate [metacognition], they are analyzing mathematical problem-solving tech-
niques (Siegler, 2003). “Analytical thinking is among the central goals of 
mathematics education, in part because it is an inherently constructive process” 
(Siegler, 2003, p. 299). Computational thinking have a relationship to mathematical 
thinking as it uses analytical thinking processes to solve a problem (Wing, 2008).

The core element of computational thinking is to develop or gain abstract knowl-
edge. “Abstractions are the mental tools of computing” (Wing, 2008, p.  3718). 
Through this analytical thinking process of building abstract intelligence or abstrac-
tion, computational thinking is defining the right abstraction: what learning has 
emphasis (foreground) and what tools or mediums are used to deliver the learning 
or content (background). Abstraction is defined as layers: the “layer of interest and 
the layer below” (Wing, 2008, p. 3718). Once the right abstraction is gained through 
the process of mental math, computational thinking and mathematical understand-
ing are developed.

Mathematical understanding, known as “mental math,” develops conceptual 
ability (Seeley, 2005). Conceptual ability is a metacognitive process where concept 
attainment and concept formation meet. Conceptual ability occurs when students 
use metacognitive thinking processes in a problem-solving task. Metacognition is 
intelligent thinking that occurs during planning and monitoring of a person’s actions. 
“Metacognitive thought is thought that can be directed by the thinker that is con-
scious, intentional, intelligent, logically or empirically falsifiable and verbally com-
municable” (Fox & Riconscente, 2008, p. 378).

Computing concepts, such as computer science, are used to interpret those deeper 
abstractions that allows communication capabilities such as representing and pro-
cessing data through use of a computer (Wing, 2008) and is part of our metacogni-
tive ability. Learning computer science using an object-oriented programming 
language, such as Java, also is a process of creating increasingly more complex 
conceptual structures (conceptual ability) to solve a problem (Blume & Schoen, 
1988). Zahorik (1997) posits “problem-solving tasks are critical to the growth of 
student [programming] constructions” (p.  32). Students learn new programming 
constructs with embedded domain-specific content, and based on the ability to cre-
ate executable programs, students learn the problem-solving strategies as accom-
modating new knowledge and as the process of developing mathematics 
problem-solving ability. This construction is through a process of concept attain-
ment. Concept attainment occurs through classifying and categorizing objects. 
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Students make connections with prior domain knowledge and classify which 
 object- oriented programming constructs are needed to create a program. Prior 
knowledge is categorized with programming knowledge to develop programming 
instructions, which forms an executable program application or software. Concept 
formation is the programming instructions (classified domain knowledge catego-
rized with programming constructs) needed to create an executable program. 
Studies in mathematics problem-solving and computer programming have identi-
fied similar problem-solving strategies when students are engaged in a mathematics 
or computer science task. Studies involving African-American students have found 
metacognitive and problem-solving ability is best developed through analytical 
thinking processes (Berry, 2003; Malloy, 1994; Siegler, 2003). Therefore, to increase 
African-Americans’ problem-solving ability is to promote their analytical ability. 
The research questions for this study were:

 1. What problem-solving strategies do African-American students who have taken 
or are jointly enrolled in precalculus and AP computer science course demon-
strate when solving precalculus problems?

 2. What problem-solving strategies do African-American students who have taken 
or are jointly enrolled in precalculus and AP computer science courses demon-
strate when solving computer science problems?

 3. Are there relationships between the problem-solving strategies African- American 
students who have taken or are jointly enrolled in precalculus and AP computer 
science use to solve precalculus and computer science problems?

 Literature Review

The National Council of Teachers of Mathematics (NCTM) (1980) Agenda for 
Action publication posited that the mathematics curriculum be organized around 
problem-solving. The National Council of Teachers of Mathematics (2000) 
Principles and Standards for School Mathematics [PSSM] noted problem-solving 
as one of the five overarching process standards for all school mathematics (National 
Council of Mathematics, 2000, p. 30). PSSM defined problem-solving as:

[E]ngaging in a task for which the solution method is not known in advance. In order to find 
a solution, students must draw on their knowledge, and through this process, they will often 
develop new mathematical understandings. Solving problems is not only a goal of learning 
mathematics but also a major means of doing so. (p. 52)

Problem-solving is the course of action of finding an unknown and using 
problem- solving behavior in developing an answer. Problem-solving is a form of 
human intelligence using procedures, or a “scheme of well-related operations” 
(Polya, 1962, p. 122) as a series of organized thoughts and processes. Polya (1957) 
posits solving a problem is a four-stage process: understanding the problem, devis-
ing a plan, carrying out the plan, and looking back (Polya, 1957). Understanding the 
problem is obtaining mathematical knowledge or facts. However, devising a plan is 
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fundamental to determining which method or strategies are appropriate in obtaining 
a solution (Polya, 1957). Planning is fundamental to the problem-solving process. 
Without knowing what methods or strategies to use to solve a problem, an individ-
ual lacks the planning stage of problem-solving and may be unable to produce an 
accurate solution (Rudder, 2006).

Bruner, Goodnow, and Austin (1962) define problem-solving behavior as the 
processes of thinking. Thinking is carried out through classification or categorizing 
knowledge construction known as conceptual thinking. To think conceptually 
begins with a process of classifying objects by placing objects into a category or 
finding connections of these objects having relational attributes. Classifying an 
object with another object is finding criteria or defining attributes that groups the 
object into a category. Classifying is the process of categorization. Devising strate-
gies is the nature of the process as well as strategic cues. These facets describe 
problem-solving or decision-making behavior. The process of categorization defines 
all cognitive ability (Bruner, Goodnow, & Austin, 1962).

Metacognition is intelligent thinking that occurs during planning and monitoring 
of a person’s actions. Garofalo and Lester (1985) defined two aspects of metacogni-
tion: (1) knowledge of cognition and (2) regulation of cognition. Knowledge of cog-
nition is a person’s knowledge about the cognitive abilities, processes, and resources 
relating to the performance of specific cognitive tasks. Knowledge of cognition is 
redefined as a set of beliefs and derived from facts or nonfacts. These beliefs are 
known as subjective knowledge. Knowledge of cognition is categorized based on the 
influence of person, task, or strategy factors on performance. The person category is 
the belief about oneself and others as cognitive beings. The task category deals with 
requirements, scope, and conditions of tasks’ and their difficulty level. Strategies 
include “having knowledge of general and specific cognitive strategies along with an 
awareness of potential usefulness for approaching and executing certain tasks” 
(Garofalo & Lester, 1985, pp. 164–165). Using rote and procedural strategies does 
involve cognition but not metacognition.

Research on African-American students and problem-solving has produced 
several findings. Malloy (1994) found a majority of the problem-solving behaviors 
(strategies) eighth-grade African-Americans exhibited were the backward strategy, 
list or chart, and pattern strategy, drawing a picture or making a list or chart, disre-
gard unnecessary data, and logical deduction. Few strategies student exhibited were 
guess and check, forward strategy, and the algebraic method.

Berry (2003) found African-American students’ learning preference is relational 
understanding. The relational style of learning is synonymous to African-Americans’ 
cultural style, such as the “freedom of movement, variety, creativity, divergent 
thinking, inductive reasoning and focus on people” (Berry, 2003, p. 246). Siegler 
(2003) found African-American students’ mathematical problem-solving ability 
can be improved by increasing their “metacognitive or knowledge about their own 
thinking” (p. 294).

There have been several studies linking computer programming with mathemati-
cal problem-solving processes or strategies. Wells (1981) sought to identify similar 
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processes and strategies in programming [BASIC (Beginners All-purpose Symbolic 
Instruction Code)] and mathematical problem-solving by observing the partici-
pants’ behaviors. Wells found strategies such as trial and error or guess and check, 
recall-related problems, and looking back strategies were prevalent in computer 
programming. Blume and Schoen (1988) researched the problem-solving processes 
of eighth-grade programmers [BASIC (Beginners All-purpose Symbolic Instruction 
Code)] and nonprogrammers. Blume and Schoen found programmers and nonpro-
grammers did not have statistically significant differences in the planning process 
and frequent or effectiveness in utilizing variables and equations in obtaining a cor-
rect solution. Willis (1999) conducted a quantitative studies to investigate whether 
object-oriented programming had a higher influence of problem-solving ability than 
structured languages. Willis found increased problem-solving ability is linked to 
object-oriented programming (OOP). Stockwell (2002) conducted a quantitative 
study to see if undergraduate college students who learn computer programming 
using an object-oriented programming software, C+, had gains in mathematics 
skills. Stockwell found a strong relationship between learning C programming and 
developing mathematics skills.

 Participants

The participants in the study were five African-American high school students and 
one high school graduate, totaling six students, enrolled in an urban school in a 
suburban area in Georgia. The school has a diverse student body, with an 89 % 
African-American student population. The first author was the instructor of the AP 
computer science class and the researcher for this study. There were a total of 11 
students in the AP computer science course. Students were selected if they were 
jointly enrolled in an AP computer science and an advanced mathematics course 
(precalculus) to assess levels of problem-solving ability. The students’ ages ranged 
from 16 to 19 years old. Participants [all names have been changed] are further 
described in Table 1:

Table 1 Participant information

Name Description

Jay Male senior jointly enrolled in precalculus and AP computer science
Diane Female senior jointly enrolled in precalculus and AP computer science
John Male senior jointly enrolled in precalculus and AP computer science
Nancy Female senior jointly enrolled in precalculus and AP computer science
Donald Former male student. During the previous year, Donald was a senior and took 

precalculus and AP computer science courses concurrently. Currently majoring in 
computer engineering

Belinda Female senior jointly enrolled in precalculus and AP computer science
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 Methods

This study used a mixed-methods research design. Precalculus problem-solving 
activities were obtained from the text, Advanced mathematical concepts: Precalculus 
with applications (Holliday, Cuevas, McClure, Carter & Marks, 2001), used to 
teach the course. The computer science problems were obtained from the texts, Java 
software solutions for AP computer science Lewis, Loftus, & Cocking, 2007) and A 
guide to programming in Java (Brown, 2007), used to teach the course. Students 
solved two comparable precalculus mathematics problems and two computer sci-
ence problems regarding quadratic equations and trigonometric ratios shown in 
Appendix 1. Two certified mathematics teachers and two university professors 
reviewed the precalculus problems, and two computer science experts assessed the 
computer science problems to determine relevance to course objectives and correla-
tion between task expectations. A problem-solving strategy classification list based 
on Wells (1981), Blume and Schoen (1988), Malloy (1994), Rudder (2006), and 
Sarver’s (2006) problem-solving frameworks was developed to code students’ 
problem- solving strategies when solving mathematics or computer science 
(Appendix 2). An analytic problem-solving scoring scale was adapted from the 
books How to Evaluate Progress in Problem-Solving by Charles, Lester, and 
O’Daffer (1987) and Mathematics Assessment: A Practical Handbook for Grades 
9–12 by the National Council of Teachers of Mathematics (1999). The analytic 
scoring scales from the texts were blended and reorganized based on Polya’s four- 
step process by using the understanding a problem, devising a plan (planning a 
solution), carrying out a plan (implementing a strategy), and looking back (getting 
an answer) categories (Appendix 3). A retrospective interview protocol was devel-
oped based on Malloy’s (1994) protocol (Appendix 4).

Problem-solving sessions were conducted in a private office. A digital video 
camera with audio capabilities was positioned in the office to provide full, body- 
length view of the student. A desktop computer was setup for students to complete 
computer science problems. Math problems were documented using a pencil and 
paper format. Students were informed of the presence of a video camera and were 
asked to pay no attention to the equipment. The problem-solving activity comprised 
of two sessions. Session One consisted of a think-aloud protocol session solving 
precalculus problems followed by a retrospective interview. Session Two consisted 
of a think-aloud protocol session solving computer science problems using Java 
followed by a retrospective interview. The first author and a co-rater viewed the 
videotapes of each session separately to identify students’ behaviors to map their 
problem-solving processes using the problem-solving strategies from the strategy 
list. Retrospective interviews were used to code additional strategies or thought 
processes that may not have been verbalized by the student during the think-aloud 
sessions. The frequency of problem-solving strategies within each phase was calcu-
lated. To determine inter-rater agreement of problem-solving strategies, the 
researcher and co-rater used the videotape transcriptions to code strategies. 
Differences in coding were discussed and resolved between the first author and 
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 co- rater for coding precision. For instance, during the think-aloud session, if a 
 student was reading aloud or went back to the problem sheet to reread the problem 
statement, the code of “A1” (reading the problem silent or aloud) was mapped as a 
strategy. Mathematics and computer science teachers graded student participants’ 
precalculus and computer science solutions using the researchers’ analytic scoring 
scale, respectively.

 Results

Jay utilized a high frequency of problem-solving strategies and high phase score in 
the understanding the problem, planning a process, and implementing the plan 
phases when solving precalculus and computer science problems. For precalculus 
problem #1, Jay utilized the understanding the problem (orientation process) and 
planning the process (organization process) phases and had a high problem-solving 
ability. For precalculus problem #2, Jay utilized the understanding the problem 
phase (orientation process) and had a low problem-solving ability. For computer 
science problem #1, Jay utilized the implementing the plan phases (execution pro-
cess) and had low problem-solving ability.

For computer science problem #2, Jay utilized the implementing the plan phase 
(execution process) and had average problem-solving ability.

Belinda had a high frequency of problem-solving strategies and high phase score 
in the understanding the problem, planning a process, implementing the plan, and 
looking back phases when solving precalculus and computer science problems. For 
precalculus problem #1, Belinda utilized the understanding the problem (orientation 
process), planning the process (organization process), and looking back phases (ver-
ification process) and had average problem-solving ability. For precalculus problem 
#2, Belinda utilized the understanding the problem (orientation process), planning 
the process (organization process), and looking back phases (verification process) 
and had average problem-solving ability. For computer science problem #1, Belinda 
utilized the implementing the plan phase (execution process) and had high problem-
solving ability. For computer science problem #2, Belinda utilized the implementing 
the plan phase (execution process) and had average problem-solving ability.

Donald had a high frequency of problem-solving strategies and high phase score 
in the planning a process and implementing the plan phases when solving precalcu-
lus and computer science problems. For precalculus problem #1, Donald had no 
frequency of problem-solving strategies and had low problem-solving ability. For 
precalculus problem #2, Donald utilized the planning the process phase (organiza-
tion process) and had low problem-solving ability. For computer science problem 
#1, Donald utilized implementing the plan phase (execution process) and had aver-
age problem-solving ability. For computer science problem #2, Donald had imple-
menting the plan phase (execution process) and had low problem-solving ability.

Diane had a high frequency of problem-solving strategies and high phase score 
in the understanding the problem and implementing the plan phases when solving 
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precalculus and computer science problems. For precalculus problem #1, Diane 
utilized the understanding the problem phase (orientation process) and had low 
problem-solving ability. For precalculus problem #2, Diane utilized the implement-
ing the plan phase (execution process) and had average problem-solving ability. For 
computer science problem #1, Diane utilized the implementing the plan phase (exe-
cution process) and had low problem-solving ability. For computer science problem 
#2, Diane utilized the implementing the plan phase (execution process) and had low 
problem-solving ability.

Nancy had a high frequency of problem-solving strategies and high phase score 
in the understanding the problem, planning a process, implementing the plan, and 
looking back phases when solving precalculus and computer science problems. For 
precalculus problem #1, Nancy utilized the planning the process phase (organiza-
tion process) and had high problem-solving ability. For precalculus problem #2, 
Nancy utilized the planning the process phase (organization process) and had high 
problem-solving ability. For computer science problem #1, Nancy utilized the 
understanding the problem (orientation process) and implementing the plan phase 
(execution process) and had low problem-solving ability. For computer science 
problem #2, Nancy utilized the understanding the problem (orientation process), 
planning the process (organization process), and looking back phases (verification 
process) and had high problem-solving ability.

John had a high frequency of problem-solving strategies and high phase score in 
the understanding the problem, planning a process, implementing the plan, and 
looking back phases when solving precalculus and computer science problems. For 
precalculus problem #1, John utilized the understanding the problem phase (orien-
tation process) and had low problem-solving ability. For precalculus problem #2, 
John utilized the understanding the problem (orientation process) and planning the 
process phases (organization process) and had high problem-solving ability. For 
computer science problem #1, John utilized the looking back phase (verification 
process) and had high problem-solving ability. For computer science problem #2, 
John utilized the implementing the plan phase (execution process) and had average 
problem-solving ability.

Results confirmed that students who utilized all four problem-solving phases or 
episodes in sequence had average to high problem-solving ability. Students who 
utilized the first phase of problem-solving and understanding the problem had low 
problem-solving ability. Students who utilized the second problem-solving phase, 
planning the process or fourth phase, and verifying the outcomes of the plan had 
high problem-solving ability. Students who utilized the problem-solving phase out 
of sequence or had a missing problem-solving phase within a mathematics or com-
puter science problem-solving task had low or average problem-solving ability. 
Students who utilized the organization episode or planning the process phase within 
the sequence of problem-solving phases or as a sole phase during the mathematics 
or computer science tasks obtained high levels of problem-solving ability. Devising 
a plan, which is fundamental to continuing the problem-solving task, involves the 
utilization of metacognitive abilities such as developing understanding and setting 
up alternatives or possibilities.
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Results found that computer science problems allowed students to engage and 
maximize mathematical problem-solving activity. Students engaged in solving 
computer science problems took long periods of time to obtain a solution. Computer 
science problems ranged from 30 to 90 min to solve. Computer science problems 
were open ended by deciding which mathematics content knowledge and which 
Java programming construct to use to obtain a correct solution. Students’ computer 
science solutions were varied in procedure or method used in solving the problem. 
Students utilized the highest frequency of problem-solving strategies in all four 
problem-solving phases, particularly in the implementing the plan phase or execu-
tion phase. Students are engaged in high levels of mathematical problem-solving 
activity using a cognitive process, execution, which is regulation of behavior to 
conform to plans. Execution strategies are identified in the implementing the plan 
phase and were utilized most by students in this study when solving computer sci-
ence problems.

Students reached average or high problem-solving ability in the “C” quadrant or 
implementing the plan phase. This is equivalent to Polya’s carrying out the plan 
problem-solving phase or broad category of execution on the metacognitive frame-
work. Implementation is a cognitive skill that allows one to execute a strategy 
based on his or her understanding, analysis, and planning. Students must have 
proficiency in the “A” and “B” quadrants to move forward to execution process or 
implementing the plan phase. Table 2 shows the level of problem-solving ability 
based on Polya’s four steps of problem-solving aligned with the problem-solving 
process when solving two precalculus (P1, P2) and two computer science prob-
lems (CS1, CS2).

 Conclusions

Since the progressive movement in the 1960s, education reforms involved “a ‘think-
ing’ curriculum aimed at deep understanding” (Darling-Hammond, 1996, p.  8). 
Dewey ideals in the twentieth century are similar to the computer era of the twenty- 
first century (Darling-Hammond, 1996). Problem-solving ability is a constructivist 
activity involving metacognition, which is individualized learning and self- regulated 
behavior of one’s control of their thoughts and actions. Metacognition is intelligent 
thinking that occurs during planning and monitoring of a person’s actions. Students 
solved precalculus and computer science problems and were engaged in varying 
levels of metacognitive ability. The National Council of Teachers of Mathematics 
stated that “Conceptual understanding is an essential component of the knowledge 
needed to deal with novel problems and solutions” (National Council of Teachers of 
Mathematics, 2000, p.  20). Similarly, computational thinking “complements and 
combines mathematical [and engineering] thinking” (Wing, 2006, p.  35). When 
engaged in computer science, it inherits mathematical thinking concepts usually 
found in all sciences where the foundations rely on mathematics (Wing, 2006). 
Computer science and mathematics complement one another. Data indicate that (1) 
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computer science develops conceptual ability through knowledge construction of 
object-oriented programming concepts taught in AP computer science; (2) solving 
precalculus problems utilizes regulation of cognition or making effective decision-
making strategies to obtain a correct solution; and (3) computer science and precal-
culus complement one another by developing similar metacognition strategies 
needed to solve both mathematics and computer science tasks. These findings are 
similar to Wells (1981), Willis (1999), and Malloy (1994) findings. In general, pre-
calculus concepts enable students to have a knowledge base of mathematics formu-
las and choose an appropriate and effective strategy with objectives, known as the 
planning stage or devising a plan during the problem-solving task. Precalculus 
mathematics concepts allow effective strategy choices and decision- making known 
as regulation of cognition, which is the second aspect of metacognition. 
Recommendations based on this study are:

• Encouraging African-American students to enroll in computer science courses 
has the potential to enhance problem-solving skills in mathematics courses.

• School administrators can utilize the computer science curriculum as an alterna-
tive to mathematics support or mathematics laboratory courses to engage stu-
dents in problem-solving tasks.

• Mathematics lab assignments infused with computer science curriculum have 
the potential to promote mathematics problem-solving strategies.

• African-American students’ problem-solving ability can be improved by increas-
ing their metacognitive ability through problem-solving and knowledge about 
their own thinking (Siegler, 2003) via computer science classes.

These recommendations are systemic reform approaches to “the advancement of 
teaching” (Darling-Hammond, 1996, p.  7), to look beyond how students learn 
according to the standards or how we assess and evaluate based on rote learning. We 
need to offer approaches based on students’ needs and foster personalized learning 
to develop intellectual knowledge aimed at strategies inclusive of diverse learners 
(Darling-Hammond, 1996). Thinking or intellectual curriculum can be accom-
plished through computational thinking, where metacognitive skills are practiced, 
cognitive thinking is developed, and mathematics problem-solving activity is 
actualized.
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Episode 1 strategies/indicators (A) 
[reading and understanding phase]

Episode 2 strategies/indicators (B) [planning the 
process]

1. Reading the problem silent or aloud
2. Restating the problem in his or her own 

words/reminding himself or herself of 
the requirements of the problem

3. Asking for clarification of the meaning 
of the problem

4. Stating or asking whether he or she has 
done a similar problem in the past/
knowledge of a similar problem

5. Representing the problem by drawing a 
picture, writing key facts, or making a 
table, diagram, or list

6. Representing the problem by assigning 
variables or using symbolic notation

7. Says that he/she doesn’t understand 
problem

8. Other

1. Describing an approach that he or she intends 
to use to solve the problem (steps to be taken 
or a general strategy to be used)

2. Using deductive or inductive reasoning
3. Synthesizing (creating)
4. Stating operative proposition (theorem, pattern 

search, equation, algorithm, etc. such as 
Pythagorean theorem, Gauss theorem, system 
of equations, percentage formula, pattern 
recognition, factoring, summation formula, 
ratios, computation, probability knowledge, 
algebra, counting)

5. Using a calculator
6. Stating that he/she has forgotten procedure 

stating that he/she has forgotten how to solve
7. Stating that he/she will try random trial and 

error
8. Other

 Appendix 1

Precalculus problems Computer science problems

1. State the number 
of complex roots 
of the equation 
18x2 + 3x – 1 = 0. 
Then find the 
roots (Holliday 
et al., 2001, 
p. 207)

1. Create a Quadratic Equation application that gives the solution to 
any quadratic equation. The application should prompt the user for 
values for a, b, and c (ax2 + bx + c = 0) and then display the roots, 
if any. Use the quadratic equation. The application output should 
look similar to:

Enter value for a:
Enter value for b:
Enter value for c:
The roots are:
(Brown, 2007, p. 126)

2. The sine of an 
acute <R of a 
right triangle is 
3/7. Find the 
values of the 
reciprocal 
trigonometric 
ratios for this 
angle (Holliday 
et al., 2001, 
p. 289)

2. Create a TrigFunctions application that displays trigonometric and 
reciprocal ratios given the following conditions: The sine of an 
acute <R of a right triangle is 3/7. Find the values of the reciprocal 
trigonometric ratios for this angle. The application should display 
output similar to:

The angle in degrees:
Sine: Cosine: Tangent:
The values in radians are:
The Math library (Java) provides methods for performing trigonometric 
functions
Class Math (java.lang.Math) Methods
sin (double angle)—returns the sine of angle, where angle is in radians
cos (double angle)—returns the cos of angle, where angle is in radians
tan (double angle)—returns the tan of angle, where angle is in radians. 
to Radians (double deg) converts degrees to radians
(Brown, 2007, p. 128)

 Appendix 2
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Episode 1 strategies/indicators (A) 
[reading and understanding phase]

Episode 2 strategies/indicators (B) [planning the 
process]

Episode 3 strategies/indicators (C) 
[implementing the plan]

Episode 4 strategies/indicators (D) [verifying the 
outcomes of the plan]

1. Using successive approximations 
(using trial and error)

2. Engaged in an orderly, coherent, and 
well-structured series of calculations/
uses algorithm

3. Stop working to see what has been 
done and where it is leading

4. Reviews solution
5. Checks that all hypothesis have been 

used or checks solution
6. Corrects any errors
7. Says he/she cannot remember formula, 

algorithm, etc.
8. Other

Obtaining an intermediate correct or incorrect 
solution by:

1. Checking the solution by substitution, 
retracing

steps, or if the solution makes sense
2. Checking that the solution satisfies conditions
Obtaining a final correct or incorrect solution by:
3. Questioning uniqueness of solution
4. Expresses liking for problem
5. Solving problem by alternate method
6. Attempting to simplify solution
Reaching an impasse by:
7. Expressing uncertainty about solution shows 

concerns for performance and admits confusion
8. Other

NOTE: Non-verbal strategies are shown in plain text. Verbal strategies are shown in italics text. 
Verbal strategies will be coded for the retrospective interview. Non-verbal strategies are coded for 
the think-aloud protocol sessions

 Appendix 3

Understanding the problem phase [Episode 1]
2: Complete understanding of the problem is illustrated by choice of models or
diagrams to reframe problem
1: Part of the problem misunderstood—weak choice of way to represent the
problem
0: Little evidence of understanding
Planning a solution (choosing a strategy) phase [Episode 2]
2:         Chooses a correct strategy that could lead to a correct solution
1: Chooses a strategy that could possibly lead to a solution, but route has many pitfalls or is 

inefficient
0:         Inappropriate strategy chosen
Execution of the solution (carrying out the plan) phase [Episode 3]
2:         Implements a correct strategy with minor errors or no errors
1: Implements a partially correct strategy, or chooses a correct strategy but implements it poorly
0: Poor strategy with poor implementation, or correct strategy with no implementation
Looking back phase [Episode 4]
2: Checks solution for accuracy. Solution is correct and has correct label for the answer
1: Checks solution for accuracy, but there is a computational error or partial answer for a 

problem with multiple answers
0: Student does not utilize heuristics of checking for accuracy. There is no answer or wrong 

answer based on an inappropriate plan
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 Appendix 4

Retrospective Interview Questions adapted from Malloy (1994).

 1. What were you thinking when you first read the problem?
 2. Explain the precalculus (or computer-programming problem) in your own 

words.
 3. Was there anything that you did not understand about the problem?
 4. Did you understand the problem right away?
 5. Have you ever solved the other problems like this before?
 6. If you drew a picture or diagram, ask: Can you show me your diagram or picture 

and tell me about it?
 7. Tell me about your thoughts as you solved the problem. What steps or algorithm 

do you have to solve the problem?
 8. How did you feel about solving the problem?
 9. Could you have found the answer to the problem another way?
 10. How did you decide to solve the problem the way you did?
 11. For computer science: Did you program compile and execute at the first attempt? 

If not, what did you do to see if the program generated the correct output?
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Abstract The German school system is very complex and inconsistent, due to the 
policy of states being responsible for the state curricula. One of the most heteroge-
neous fields is the teaching of computer science (CS). Although the topic is becom-
ing more and more important for students growing up in a digital media society, 
stakeholders are not able to find common ground on the matter of whether and how 
computer science should be taught at German schools. With the beginning of the 
2016–2017 school year, the State of Baden-Württemberg is planning to introduce a 
new state curriculum. In this curriculum, named Educational Plan 16, computer sci-
ence is integrated into the higher secondary track schools as an interdisciplinary 
task. This chapter introduces computational thinking as a thinking method that (1) 
enables stakeholders in Germany to integrate computer science into their classes 
and (2) close the gap between different classes to support an interdisciplinary 
approach to computer science teaching. Reaching these targets involves meeting 
specific personal, institutional, and systemic conditions and overcoming existing 
limitations. This chapter also describes the possibility of strengthening an approach 
to an international computer science education by developing and distributing com-
putational thinking projects across national borders.
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 Introduction

The school system in Germany is highly influenced by the federalist structure of the 
German state, leading to a vast variety of curricula. While some subjects are taught 
equally throughout the country, there are great differences with regard to computer 
science (CS) teaching and the usage of technology, ranging from computers and 
smartphones to interactive whiteboards as well as personalized learning platforms. 
In recent years, approaches for coping with the increasing presence of technology 
in student life have seemed hastily developed and often inconsistent, leading to situ-
ations in which computer science became mandatory in 1 year just to be canceled 
the following year. From summer 2016 on, the State of Baden-Württemberg is intro-
ducing a new state curriculum focusing on media literacy as an integral part of stu-
dents’ skills (Bildungsplan 2016, Educational Plan 2016). To reach this goal, the 
state is integrating media literacy into a variety of courses. The following text will 
give an overview of the newly developed state curriculum, with a focus on the inte-
gration of media literacy and the linking of computer science with other courses in 
Baden-Württemberg’s higher track secondary school.

 German Education: International Context

Due to the great international differences between educational systems, it is first nec-
essary to provide a short introduction to the German school system to be able to 
compare the presented ideas with programs from other countries. As mentioned 
above, the school system is not standardized, even within Germany itself. The state-
ments made in this text apply only to the State of Baden-Württemberg, where chil-
dren attend primary school for 4 years, from the age of 6–7 to 10–11. In the 5th grade, 
students are split up between lower (ending at 9th grade), middle (at 10th grade), and 
higher track secondary schools (at 12th grade), primarily according to their perfor-
mance in primary school. This text focuses on the higher track secondary schools, the 
so-called Gymnasiums, which are comparable to grammar schools (GB) or sixth 
form colleges and preparatory high schools (US). The Gymnasium is classified at 
ISCED level 3 (OECD, 2015). In 2014–2015, approximately 313,000 students were 
enrolled at Baden-Württemberg’s 459 Gymnasiums (Bundesamt, 2015). Classes 
taught in the Gymnasiums are aiming at providing the students with an extensive 
knowledge, therefore distributing lessons evenly on the different fields, namely, 
German, mathematics, foreign languages (e.g., English, French, Spanish), as well as 
natural and human science. As students get older, they can specialize in a specific 
track. Those tracks are (1) the natural science track, focusing on biology, chemistry, 
and physics; (2) the human science track, approaching history and social studies; and 
(3) the linguistic track, adding an additional language to a student’s curriculum. 
Although a specialization is possible, students still have to take mandatory classes in 
German, mathematics, and at least one foreign language.
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 Computer Science in German Higher Track Secondary 
Schools

The lack of consistency between the school systems of the German states is reflected 
in the diversity of computer science (CS) courses implemented into the states’ cur-
ricula. In five states (out of 16), CS is a mandatory course every higher track second-
ary school student has to take, while in five other states, CS is not offered at all. 
There are a variety of different models, ranging from mandatory courses to no 
courses: In the State of Schleswig-Holstein, the schools themselves decide whether 
to offer CS as a mandatory or elective course, while in Brandenburg they can decide 
whether to provide any CS courses at all. In Berlin, CS is mandatory in grades 7 and 
8 and becomes an elective course in grades 9 and 10. Hessen’s approach is to offer 
CS for the first 4 years of school but without a strict educational plan, which is only 
introduced in higher grades. The state curricula are subject to often radical and 
quick changes, for example, in the State of Hamburg, where CS was mandatory 
until 2013. As early as October 2014, attempts were made to change the voluntary 
courses back to mandatory again. Furthermore, the content of the different CS 
courses and CS teaching models described above shows great diversity.

Differences in CS implementation into higher track secondary schools can only 
partially be put down to the federalist character of the German school system. A 
second, more complex cause is the lack of a unified definition for CS. Compared to 
other classes, the extent of CS seems too great for stakeholders to be able to find 
common ground on where CS teaching should start and which topics should be left 
out of the curriculum. Stakeholders’ opinions about which CS content should be 
taught in schools range from basic computer skills (e.g., using office software) to 
programming knowledge and a discussion of media society.

By not trying to limit CS teaching to specific topics, Baden-Württemberg’s 2016 
state curriculum circumvents the need for a closed definition. The following section 
will present the understanding of CS and the interdisciplinary teaching approach of 
this new curriculum.

 Computer Science in the Baden-Württemberg’s 2016 State 
Curriculum

The Educational Plan 2016 (EP16 for short) is the successor of the Educational Plan 
2004, which was the outcome of an educational reform inside the Baden- 
Württemberg school system. Developed over 10 years, EP04 was built around a 
competency approach, marking a paradigm shift in the Baden-Württemberg school 
system, because it switched the focus to student competencies (output) and away 
from learning material and courses (input) (von Hentig, 2004). The competency- 
oriented approach remains one of the main characteristics of the newer EP16. 
Additionally, it formulates a unified curriculum for the lower and middle track 
schools for the first time (Schulentwicklung, 2015a). Another core development is 
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the introduction of six key objectives, each representing a set of skills and  knowledge 
that is to be taught in an interdisciplinary context (Schulentwicklung, 2015b):

• Sustainable development literacy
• Diversity literacy
• Health promotion and prevention
• Labor market orientation
• Media literacy
• Consumer literacy

Media literacy (ML) will be the main key objective discussed in this text, because 
it is the main source for CT potential and potential CT ideas in the EP16. ML is 
characterized as an important part of general education due to the evolving media 
society and the role it plays in students’ everyday life.

The understanding of media literacy in the EP16 is very similar to a framework 
proposed by Lin, Li, Deng, and Lee (2013), where, in addition to four types of lit-
eracy (functional consuming, critical consuming, functional presuming, critical pre-
suming), a set of ten indicators is introduced (consuming skill, understanding, 
analysis, synthesis, evaluation, presuming skill, production, distribution, participa-
tion, and creation). These indicators have equivalent counterparts in the media lit-
eracy section of the EP16.

To specify the key objective of ML, the authors of the EP16 subsume eight items 
under the term “media literacy” (Schulentwicklung, 2015c): (1) media society, (2) 
media analysis, (3) information and knowledge, (4) communication and coopera-
tion, (5) production and presentation, (6) youth media law, (7) informational self- 
determination and data privacy, and (8) information technology basics.

The items are not distinct but rather overlap partially. Furthermore, they include 
sets of skills and knowledge that are traditionally taught in multiple classes. The 
EP16 acknowledges the widespread presence of ML in more than one class by 
labeling it an interdisciplinary task, and as a direct result, ML topics have to be 
comprehensively implemented into every class. For example, “media society” could 
be a relevant topic in a social studies class, whereas the item “information technol-
ogy basics” is more closely related to a technology or mathematics class.

The plan of strengthening the role of ML aspects involves wide-ranging objec-
tives. The main goals are to empower students to “consciously face the challenges 
of media society” and to teach the ability to “include media in everyday life in a 
meaningful, thoughtful, and responsible way” (Schulentwicklung, 2015c).

Computer science is an important part of the key objective of ML, although it is 
not explicitly stated as “computer science.” The creators of the EP16 seem to avoid 
the established terms to underline the ideas of integrated CS teaching introduced by 
the new curriculum and also to avoid the public debate that is causing the multiple 
models of CS teaching in German schools. In Germany, the word Informatik is com-
monly used as an expression for topics related to CS and finds its expression in the 
item “information technology basics” in the EP16. Apart from the semantics of the 
items, another way to locate CS aspects in the EP16 is to compare the definition of 
CS teaching in K–12 (Tucker et al. 2003) with the description of school subjects:  
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In the EP16, a table is created for each subject that shows the planned contributions 
to the key objectives. An analysis of these subjects exposes the existence of certain 
criteria included in the definition mentioned above. The following section describes 
the contributions of the subjects “natural science and technology” and “mathemat-
ics” as examples for existing CS principles in the EP16.

 Natural Science and Technology: ML Contribution

Important aspects of CS are taught in this class. It highlights the topic of informa-
tion processing against the backdrop of the relation between nature and technology. 
Principles of analog and digital (en)coding as well as basic controlling and regula-
tion systems are key elements for younger students. As the students’ knowledge 
increases, fundamental principles of algorithms become part of the curriculum. Not 
only do the students learn how algorithms work in theory, but they are also taught to 
develop their own algorithms, including the coding of decisions and logical opera-
tors. Additional topics are the opportunities and risks of information technology 
(Schulentwicklung, 2015d).

 Mathematics: ML Contribution

In mathematics, the CS focus lies on the extraction, examination, validation, and 
critical reflection of statistical data. Students conduct their own survey using techni-
cal tools, such as computers, tablets, smartphones, and adequate software. In using 
software for spreadsheets or to display geometric figures, students enhance their 
understanding of mathematics and learn how the software works. Another objective 
is the use of media to strengthen the students’ skills in presenting their own thoughts 
and solutions. The contribution of mathematics to CS education overlaps with those 
of physics, chemistry, and every other class in which data can be collected and 
analyzed.

The counterparts of these contributions in the definition include programming, 
hardware design, databases, information retrieval, software design, and logic. CS is 
tightly integrated into the key objective of ML and therefore also into the EP16. The 
examples used above also show how media (CS) can be integrated “into everyday 
life in a meaningful, thoughtful, and responsible way” (Schulentwicklung, 2015c), 
one of the key objectives of ML. Computers, software, or, in more general terms, CS 
skills are used to solve problems or find explanations that occur in different subjects 
or topics. Instead of learning how to write an algorithm with the goal of “learning 
how to program,” students learn how to write an algorithm to find a solution they 
come across in mathematics. For example, instead of using a made-up table pro-
vided by the teacher, students collect their own data from an experiment to discover 
coherencies with computer software they use or build themselves.
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For some students (and teachers), this is not something new, because CS is 
already integrated into their curricula in one way or another. This could be due to a 
special science class that focuses on the use of computers or because the teacher 
likes to use and teach CS as part of his or her teaching methods. The presence of CS 
in schools is not groundbreaking in general, but the way the EP16 integrates CS into 
different topics offers great opportunities for students at higher track schools in 
Baden-Württemberg to develop and improve their CS skills, because it exposes stu-
dents to CS not by chance (e.g., because a teacher uses technology) but as a 
requirement.

Teachers and students alike have to meet essential conditions to profit from the 
new EP16 and especially from the interdisciplinary approach to CS teaching. 
Computational thinking can help to prepare and support stakeholders with the suc-
cessful transition to this new principle.

 Using Computational Thinking for Interdisciplinary 
Computer Science Teaching

The following short summary illustrates the capability of computational thinking for 
an interdisciplinary approach to teaching CS at schools. In 2006, Jeanette Wing rein-
troduced the term computational thinking to describe the process of “drawing on the 
concepts fundamental to computer science” to solve problems, design systems, and 
understand human behavior (Wing, 2006, p. 33). To do so, well-known concepts are 
used, including problem decomposition, data representation, and modeling, as well 
as less familiar ideas, such as binary search, recursion, and parallelization (Barr, 
Harrison, & Conery, 2011). Stephenson and Barr formulate a more tangible defini-
tion, calling CT an approach to “solving problems in a way that can be implemented 
with a computer…, a problem solving methodology that can be automated and trans-
ferred and applied across subjects” (p. 51). A set of characteristics that can further 
enhance the understanding of CT, especially in a K–12 environment, was compiled 
in the computational thinking teachers’ resources (Barr & Stephenson, 2011):

 1. CT is not only the way to formulate problems so they can be solved using a 
computer.

 2. It is also the logical organization and analysis of data.
 3. Models and simulations are introduced to represent data through abstraction.
 4. By thinking in algorithms, students can create automated solutions.
 5. One of the goals is to achieve the most efficient and effective combination of 

steps and resources by identifying, analyzing, and implementing a variety of 
possible solutions.

 6. The whole process of solving one particular problem can be generalized and 
transferred to a variety of problems.

In addition, “dispositions and attitudes [which] are an essential dimension of 
CT” are listed. CT helps to give students confidence in their skills for dealing with 
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complex, difficult, or open-ended problems. They also develop a tolerance for 
 ambiguity as well as the ability to work as a team to achieve a common goal or solu-
tion (Barr & Stephenson, 2011).

The reason why computational thinking is a useful principle for teaching CS in 
an interdisciplinary context can be summarized as the idea of “common language” 
or “common principle.”

Common language is the term for a cluster of words and expressions that is used 
by everyone working with CT. We have already encountered some of these words, 
such as “data collection,” “abstraction,” “algorithm,” or “simulation,” which are 
often used in different senses depending on the context. For a biologist, data collec-
tion can mean counting the cells in a petri dish, while data collection for a sociologist 
could be conducting an interview. A physician interprets reading the value shown on 
a thermometer as data collection. All of this is data collection and could be inter-
preted as “gathering information that can be used in the problem solving process.”

The important thing about common language is the generalized usability of words in 
more than one context: If a biology teacher is talking about data collection and teaches 
students how to collect biological data, students will be able to transfer their data col-
lection skills to other subjects, under the premise that both teachers are using the same 
expression, namely, data collection. If the biology teacher is talking about “counting 
cells” and the physics teacher is talking about “reading the thermometers,” a transfer of 
knowledge is less likely to happen. The principles of CT allow various subject-specific 
words to be subsumed under a common expression, a common language, which could 
also be referred to as common knowledge of CT concepts and capabilities.

This common language not only supports a students’ transfer of knowledge 
between subjects; it also helps them to communicate with each other using words 
like “sequences, inputs, outputs, saved value, how complex the solution is” (Barr & 
Stephenson, 2011, p.  51). The common language also helps teachers to prepare 
projects or classes, especially when cooperating with a teacher from another sub-
ject. The idea of a common language is closely related to the idea of common prin-
ciples present in computational thinking.

Common principle refers to the utilization of the same steps and concepts 
throughout different projects. Teachers and students engaged in computational 
thinking do not only possess a common knowledge for a process but also share a 
strategy for bringing together different processes in a distinct order or making the 
same references between different steps of a project with the goal of finding a 
 solution to a problem which can be supported with a computer. As with common 
language, the common principle can be used to transfer knowledge from one subject 
to another. Especially in an interdisciplinary approach to CS education, transferring 
ideas and concepts between the different subjects is a key concept.

Through common language and principles, computational thinking builds up a 
platform on which students and teachers can share ideas and thoughts between 
 different subjects. Additionally, computational thinking also offers a way to solve 
real- life problems. The fact that real-life problems are often similar between differ-
ent subjects is a reason to use computational thinking as a link between those sub-
jects. One way to link two problems is to use a principle of CS to function as an 
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abstraction of the original problem. During this interdisciplinary process, students 
gain knowledge about a multitude of aspects. They learn to find similarities between 
problems and tasks and are enabled to transfer and alter solutions between and for 
those problems. CS skills and methods used for this process become learning tools 
and learning content at the same time.

The ideas behind computational thinking are hard to grasp, and it seems impos-
sible to explain the concept without using examples (Computational thinking—
Teacher resources second edition). To show the way computational thinking can be 
utilized in a CS teaching process, we present an example from a German CS teach-
ing project in the following section.

 Practice Example: “Kids in Command”

The following example from a project by Alexandra Quiring-Tegeder shows what an 
interdisciplinary CS project might look like, which basic CT characteristics can be 
found in it, and how it could be implemented in the EP16. The project “Kids in 
Command” aims at introducing students to the world of computers, especially pro-
gramming language and algorithms, and can be seen as a modified version of the 
Marching Orders activity by Computer Science Unplugged (ComputerScienceUnplugged, 
2005; Quiring-Teder, 2016).

 Setting and Task

A path that leads through the room is created in the school’s gym, including differ-
ent obstacles. The task is to lead a robot (played by a student) along the path by 
using special commands, which are given by the other students.

 Theoretical Background

Machines follow strict instructions, which are given by humans. These instructions 
are also called the programs or programming of machines. Which aspects are impor-
tant if a human wants to program a machine? What happens if a machine only fol-
lows strict instructions?

By leading each other through the obstacle course, the students learn how impor-
tant it is to give precise instructions and what happens if the instructions are unclear 
or can be understood in multiple ways. Most likely, students will run into obstacles 
or simply stop when a command is wrong and therefore learn through personal 
experience which commands are useful. Additionally, they will understand the prin-
ciple of programming language, where a word or an expression means only one 
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thing (e.g., “move,” “stop”). These expressions have to be understood by humans 
and machines alike and can be further refined through additional information (“turn 
90° to the left,” “move five steps forward”).

 Adding Complexity

Students can literally program each other by using audio records of their instructions. 
They create a chain of commands for a specific path, which can be interpreted as an 
algorithm. Afterward, a robot student can listen to the audio record and follow the 
algorithm. Students can get feedback directly from their partners when instructions 
are unclear or in the wrong order by simply watching them walk through the gym.

A more complex execution that gets even closer to real-life programming is the 
use of a simplified program language that shortens the original commands (e.g., “t 
90 l,” “m 5 f”) or combines complex tasks to form a single command. Another idea 
is to let multiple robots walk through the course from different directions, adding 
timing components to the task.

 Use for Interdisciplinary CS Teaching

The project combines aspects of the subjects technology, sports, and language and 
can be conducted for students of different ages, depending on the complexity that is 
chosen. While younger students can be taught through the initial voice-command 
structure, more experienced and skilled students could even write a program that 
shows the instructions on a smartphone or similar device. Teachers can also vary the 
focus on the different subjects by implementing movements (e.g., “do a squat”) or 
by only allowing expressions in a foreign language.

The students’ understanding of programming basics can be fostered through the 
connection between abstract expressions and real-life actions. When the teacher 
tells the students to “program” their robots, “implementing” their “commands” in 
the form of “algorithms,” the students learn to use adequate vocabulary. Transporting 
the learning content in a playful way can change students’ perception of CS as a 
topic that deals with rigid constructs.

 The Role of CT

Many CT concepts can be found in the “Kids in Command” project. Before students 
can start to program their robots, they need to have a close look at the task, espe-
cially the structure and complexity of the obstacle course. They have to gather the 
information that is needed and check constantly to ensure that they do not miss a 
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step: They are collecting and analyzing data. The next step is the representation of 
the data using words or symbols to visualize the path the robot will follow. The 
general task has to be broken up into smaller sections: Which phrases are good 
instructions? When is the right time to give an instruction? Which measurements of 
distance are reliable? Using abstractions and algorithms, students can create a pro-
gram that allows the robot to complete the obstacle course. The guided movements 
of the robots can be interpreted as a simulation of the students’ plans and thoughts 
on mastering the task (ComputerScienceUnplugged, 2005).

The knowledge gained through the process of generating a program for the 
robot can be transferred to other subjects as well as to other situations in the stu-
dents’ lives. Students can learn the importance of adequate instructions and 
expressions, for example, when they are giving a presentation. If they want their 
listeners to comprehend a topic, they have to “speak the same language.” 
Presenters cannot use terms that are unknown, or if they do, they have to explain 
them first. The presentation has to follow a basic structure to prevent important 
information from being excluded. The instructions given to the robot can be com-
pared to instructions given when a person is asking for directions. The two situa-
tions are very similar regarding the need for accuracy of expressions or shared 
concepts for measuring distances.

 “Kids in Command” in the EP16: Basic Course in Media 
Education

The basic course in media education was created for 5th grade students under the 
assumption that children’s skills and knowledge concerning media differ a lot at this 
time in their lives. The main goal of the basic course is to compensate for these dif-
ferences in skills and knowledge and to enable students to participate together in 
further media education involving teaching on CS foundations. The “Kids in 
Command” project seems to be a good way to start CS teaching in schools, because 
it does not require any CS knowledge in its most basic form. Additionally, it can be 
used to start the teaching and utilization of basic ideas and concepts of computa-
tional thinking, enabling the students to increase their knowledge on CS and CT 
through further projects.

 Limitations and Difficulties

Modeling the secondary track high school education in regard to CS aspects involves 
a multitude of conditions, which can be categorized as personal, systemic, and insti-
tutional. Although the conditions overlap in part, we will present them separately to 
allow a closer look at the different aspects.
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 Personal Conditions

Interdisciplinary integration of CS elements with the help of CT is a big challenge 
for teachers at higher track secondary schools. To be able to successfully teach CS, 
teachers must possess CS as well as CT knowledge themselves. The preparation of 
teachers is key for the success of CS teaching, as is CT implementation into this 
process. According to a report by Initiative D12, teacher education in Germany does 
not place sufficient emphasis on media competency (including CS competency). 
The teaching of CS skills is often not a (mandatory) part of teacher education at 
universities, which are seldom equipped with enough technical and personal (media) 
infrastructures. Continuing education for teachers often concentrates solely on the 
handling of technical devices (e.g., interactive whiteboards) instead of teaching 
methods and CS skills. In addition, teachers who lack certain skills are less likely to 
attend continuing education programs (Wetter, Martin, & Rave, 2014).

Well-trained teachers are the key to a successful realization of CT-based CS 
teaching, and the responsible authorities have to create and support effective and 
efficient ways to enhance teacher education. In addition, teachers and trainee teach-
ers have to open themselves up to using CT and CS in their classes. Their beliefs can 
function as a barrier for further development (Ertmer, 2005). Changes in curricula 
almost always mean a greater workload on teachers, especially when they have to 
add new material to their existing knowledge base. In the case of CS and CT, a web- 
based, state-wide network could help teachers to exchange thoughts, ideas, and 
projects, strengthening the position of CS through the use of CT. The contact with 
teachers who already have CT experience can help those who do not to learn more 
about CT techniques they might already be using without knowing it and show them 
where CT can be fitted into existing methods (Wetter, Martin, & Rave, 2014).

 Institutional Conditions

The second group of conditions can be categorized as institutional. The inadequate 
equipment available at universities has already been mentioned above, but it is a 
common situation at German schools as well. Many schools are not properly con-
nected to the World Wide Web, lacking a sufficient broadband connection or school- 
wide wireless connectivity. Existing and future equipment (both software and 
hardware) is often maintained by teachers, who are rarely fully trained for this spe-
cial task. Additionally, schools often do not provide access to digital material, or the 
material does not meet legal requirements.

The main reason the conditions are not met or are only partially met is insuffi-
cient funding. Strengthening CS teaching at schools means first providing the edu-
cational system with enough money to be able to equip schools with adequate 
devices and software as well as personnel and infrastructure. Ideas for compensat-
ing for some of the deficits and reducing costs for the schools are implementing 
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bring-your-own-device projects or reducing administrative costs by hiring technical 
staff responsible for more than one school.

Institutions have to supply teachers with additional time and workspace to 
encourage continuing education, especially as it applies to CS. Additionally, teach-
ers must be granted access to cooperative projects to create synergies between 
teachers with different levels of knowledge and experience in CS education.

 Systemic Conditions

The current CS teaching situation in Germany is highly fragmented. There is no 
institution that could lead a nationwide approach to a homogenous CS curriculum. 
Bringing together the different state stakeholders is a complicated task, even within 
the states themselves (Wetter, Martin, & Rave, 2014). Resources invested in pro-
grams with the potential to improve the implementation of CS in schools are often 
used in ineffective and inefficient ways, because they are seldom realized over an 
extended period of time or in a large area. Statements about the sustainability and 
success of such programs are therefore difficult to verify.

The lack of interdisciplinary cooperation between teachers can also be seen as a 
systemic condition that limits the employment of CT methods. The current system 
is not designed to bring different stakeholders together due to the competitive situ-
ation regarding financial and human resources. Improving the situation for a field 
(e.g., CS) almost always places other subjects in danger of losing resources, leading 
to a defensive attitude toward changes in curricula.

 International Context

Although the present chapter embeds the idea of interdisciplinary CS education 
using CT principles in the context of the new EP16  in Baden-Württemberg, 
Germany, the basic ideas are in no way limited or restricted to a particular country. 
The interdisciplinary CS–CT teaching and learning approach is flexible enough to 
build up a CS curriculum or extend and improve existing curricula in all European 
school systems, regardless of whether they require (1) no CS education, (2) partial/
voluntary CS education, (3) interdisciplinary CS education, or (4) consistent man-
datory CS education. It is not restricted to the higher secondary track schools envis-
aged in the presented text, to a certain form of school, or to students with a particular 
state of knowledge or of a certain age.

Although the problems described in this chapter are a representation of the cur-
rent situation in Germany, the limitations can be transferred to other national set-
tings, as can the theoretical benefits. Most likely, systems already supporting the 
cooperation of subjects and teachers are using some of the techniques already. 
Furthermore, the approach or parts of the approach will be more easily realized in 

J. Delcker and D. Ifenthaler



61

countries with an existing CS curriculum, assuming that those countries are less 
restricted regarding the limitations presented in this article.

The effects of teachers cooperating outside of their subjects within a nation 
through the use of common CT language and CT principles could foster an interna-
tional exchange of educational experiences, ideas, and projects. The project “Kids 
in Command” provides an example of how globalized teaching methods can over-
come national borders in this way.

 Conclusions and Perspective

The interdisciplinary approach to CS education integrated into the EP16 is not 
based on the principle of computational thinking. In fact, the creators of the EP16 
do not provide any guidelines on how CS should be integrated in practice. Even so, 
the CT principles can function as a method to close the gap between the theoretical 
foundation of the EP16 and the situations at schools. Forcing schools to integrate 
CS into all subjects demands methods and principles based on the transfer of knowl-
edge and sufficient flexibility for more than one subject. Apart from the limitations 
owing to institutional restrictions, the keystones of the concept on which CT is 
based are the personal effort of teachers to cooperate with their colleagues and the 
students’ ability to transfer knowledge between subjects. These fundamentals are 
massively influenced by the teachers’ eagerness to improve the CS education of 
their students. Support by education system authorities and stakeholders is not yet 
sufficiently focused yet will be crucial for the upcoming challenges of CS 
integration.

Curricular reforms are one of the most widely discussed processes in Germany 
and Baden-Württemberg. In the past years, discussions and stakeholders have focused 
on different schooling modes, such as the conversion from a 13- to a 12-year higher 
secondary school track or the changes to the system of mandatory courses in upper-
level classes, following the EP04. The EP16 redirects public interest to content- 
related aspects or more specifically to the philosophy and anthropology on which the 
curriculum is based. Critics of the EP16 interpret the key objective of achieving 
diversity literacy as interfering with students’ and parents’ right to sex education. In 
light of this situation, the changes and ideas made to improve the state of CS educa-
tion are in danger of being left by the wayside. Education researchers are thus called 
on to make an effort to introduce teachers to CS and CT principles in training and 
practice, creating an environment in which CS education can be fostered. Existing 
CS education projects have to be further developed and analyzed to reduce the danger 
of wasted resources, and evidence for the practicality of the CT method is required to 
improve acceptance and the integration of CT into curricula. The introduction of the 
EP16 marks an ideal point in time to provide guidance to stakeholders and initiate 
research projects on the introduction of CS education. By investing in thoughtfully 
planned, widespread, long-term studies, educational researchers can help to design 
projects, methods, and environments that enable teachers to improve their CS 
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 teaching. As a result, the CS knowledge of students can be improved, equipping them 
with the necessary tools and capabilities for media society.

If the interdisciplinary approach to CS education and the use of CT principles prove 
to be helpful for students and teachers in Baden-Württemberg, other states might inte-
grate it into their own curricula, leading to a higher CS education standard throughout 
Germany. Through exchange and cooperation, teachers from all over Europe could 
profit from the experience made and the knowledge gained from the EP16.
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Abstract The idea of computational thinking (CT) has resulted in widespread 
action at all levels of the American educational system. Some action focuses on 
programming, some on cognition, and some on physical action that is seen as 
embodying computational thinking concepts. In a K–12 educational context, the 
observation that computing is usually about some non-computational thing can lead 
to an approach that integrates computational thinking instruction with existing core 
curricular classes. A social justice argument can be made for this approach, because 
all students take courses in the core curriculum.

Utilizing university students in co-development activities with teachers, the cur-
rent study located and implemented opportunities for integrated computational 
thinking in middle school in a large, suburban, mixed-socioeconomic standing 
(SES), mixed-race district. The co-development strategy resulted in plausible theo-
ries of change and a number of different educational projects suitable for classroom 
instruction. However, a major outcome of the study was to advance the importance 
of proto-computational thinking (PCT). We argue that, in the absence of preexisting 
use of representational tools for thinking, proto-computational thinking may lead to 
enhanced facility in computational thinking per se. At the same time, the absence of 
opportunities for proto-computational thinking may leave students less open to 
acquiring sophisticated approaches to computational thinking itself. An approach 
that values proto-computational thinking may be uncomfortable because it calls 
attention to implicit ceilings in instruction, especially in low-SES circumstances. 
We argue for addressing those ceilings through proto-computational thinking.
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 Introduction

Computational thinking (CT) has been considered important, necessary (Wing, 
2006), and also controversial (Computer Science and Telecommunications Board, 
2010). While teaching children something about computing is widely accepted as 
important, it is not always clear who needs to learn what and why? Is programming 
the essential thing? If CT is something more than programming, what is it? How do 
we know whether CT has been achieved in teaching and learning?

Although Wing’s article crystallized the need for educators to take action, it entered 
into an intellectual arena that was already rife with history. Universities had long been 
teaching programming and computer science more generally. Educational research had 
long sought to teach a wide variety of topics, including programming, in K–12 educa-
tion settings utilizing the affordances of technology. The notion of CT brought these 
two communities together. It stands to reason that many efforts to increase CT in K–12 
education do so directly, by implementing programming. The direct approach leads to 
institutional foci (such as the revamping and creation of the CS Advanced Placement 
exam), the creation of frameworks and standards, and new curricula (Computer Science 
Principles (https://code.org/educate/csp), Exploring Computer Science (http://www.
exploringcs.org/), Beauty and Joy of Computing (http://bjc.berkeley.edu/), and 
Computer Science Fundamentals (https://code.org/educate/k5)). The direct approach 
may incorporate elements not on the computer at all (CS Unplugged (http://csun-
plugged.org/)) (Kafura & Tatar, 2011). And this approach may utilize tools and curri-
cula that bear explicit connection to the rich philosophical and empirical basis of the 
learning sciences (National Research Council, 1999), such as Scratch (http://scratch.
mit.edu/) (Resnick et al. 2009; Maloney et al. 2004; Wolz, Stone, Pullmood, & Pearson, 
2010), NetLogo (https://ccl.northwestern.edu/netlogo/) (Resnick & Wilensky, 1998; 
Wilensky & Stroup, 2000; Wilensky & Stroup, 1999; Wilensky, 2002), and AgentSheets/
AgentCubes (Repenning, Webb, & Ioannidou, 2010).

The direct approach to teaching computer science has many advantages, including 
that it harnesses directed effort and experiences from universities and keeps a focus on 
the goal of training more people in computer science. However, it also has risks and 
limitations. The most fundamental of these is how CT interacts with issues of equity. 
For the foreseeable future, the direct approach to CT is likely to be at best optional for 
most middle and high school students. More affluent students are more likely to both 
attend schools that offer sophisticated computing and to take advantage of the oppor-
tunity, contributing to the more general association between parental socioeconomic 
standing (SES, a measure that combines wealth and education) and student achieve-
ment. In the United States, students who come from the lowest 10th percentile of 
parental income are more likely on the average to be 3–4 years behind students from 
the 90th percentile of parental income in middle and high school (Reardon, 2011).

In this chapter, we report research that started from another approach, integrated 
computational thinking (ICT). This approach complements direct instruction but 
utilizes existing teachers in core curricular classes that every pupil takes. This 
approach is relatively widespread in elementary school (http://stelar.edc.org/
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authors/joyce-malyn-smith), where teachers are well positioned to enact an inte-
grated approach and in informal learning contexts (the PBS program “Peg and Cat” 
whose narratives concern structured problem-solving involving pattern- recognizing, 
representation, and logic). The integrated approach is less common in older grades, 
although the CT-STEM project in the Center for Connected Learning and Computer- 
Based Modeling at Northwestern (http://ct-stem.northwestern.edu/) builds on a 
long history (Resnick & Wilensky, 1998) to create embedded activities at the high 
school level (Weintrop et  al. 2016). A number of initiatives at the University of 
Delaware have targeted students at middle and high school as well as elementary 
levels (Mouza, Marzocchi, Pan, & Pollock, 2016a, 2016b; Burns, Pollock, & 
Harvey, 2012; Pollock & Harvey, 2011; Pollock, McCoy, Carberry, Hundigopal, & 
You, 2004). In particular, the Teams4Youth project (https://sites.google.com/site/
computeteams4youth/) engages undergraduates in computer science through the 
mechanism of a university class in work with teachers to develop CT activities for 
in-class use. Compute Teams4Youth focuses on game design for education, using 
XO Laptops and working with a local, high-needs charter school.

Like the Teams4Youth project, the project reported here piloted a method of 
developing integrated computational tasks that depended on university teams, 
here composed of graduate students in human–computer interaction and under-
graduate Capstone students in software engineering. The teams were to identify 
possible locations for ICT tasks, engage in participatory design with the teach-
ers in a partner district, and implement the integrated tasks in the classrooms. 
The co-design mechanism featured (a) asking teachers to identify subject matter 
that was difficult for students to learn and (b) identifying joint CT opportunities/
content-area opportunities through iterative team-based efforts with guidance 
from Virginia Tech (“VT”) faculty. A constraint of the undergraduate capstone 
class was that initial testing of a prototype had to be completed by the end of the 
semester.

The mechanism of producing integrated tasks was quite successful. Over the 
course of two class offerings, the project produced six projects that were imple-
mented at least once in the classroom. Each of these mini-projects was founded 
around a theory of change that articulated how using the technology in a certain way 
was likely to lead to enhanced student learning.

The purpose of this chapter is to consider a complex outcome: in our study, the 
result of student classroom observations, interviews with teachers, and participa-
tory engagement rarely led to activities that fit the prototype of CT if CT means 
using elements easily recognizable to computer scientists as computer science, 
that is, creating algorithms and meta-level descriptions of code, coding, engaging 
in explicit acts of structure creation, structured top-down problem-solving, and so 
forth. Instead, we found important opportunities to address proto-computational 
thinking (PCT). PCT consists of aspects of thought that may not put all the ele-
ments of CT together in a way that clearly distinguishes them from other human 
intellectual activity. PCT activities may draw out the use of a representation, stim-
ulate thought about the utility of different representations, partially instantiate 
abstractions, or increase focus on a systems’ level analysis. They might emphasize 
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systematicity in problem-solving but not emphasize problem-solving in ways that 
are enactable on a computer. We argue that a focus on PCT is uncomfortable because 
it may call out deficits in prior instruction in low-SES circumstances. However, 
these students require a response that acknowledges deficits while building on existing 
strengths and interests.

 Background: The Integrated Computational Thinking Project

The integrated computational thinking (ICT) project generated novel classroom 
activities with the dual aims of (1) increasing CT in 6–12 grade (6–12 G) class-
rooms and (2) improving instruction in core content areas: mathematics, science, 
social sciences, and language arts.

The long-term aim was to significantly impact CT by providing 4–6 activities for 
each core curricular area for every year from 6 to 12 G. Every activity had to address 
the immediate needs of teacher and student in core curricular areas, but no single activ-
ity had to embody CT in its entirety. Instead, the aim was to build a program of that 
focuses on aspects of CT, each of which contributes to overall learning progressions.

The method that the ICT project used to generate the individual activities consti-
tuted novel and ongoing research whereby VT students were grouped in class and 
paired with classroom teachers in a participatory design context. The university 
student–classroom teams constituted an engine for idea generation, exploration, and 
implementation. This engine or laboratory of ideas resulted in preliminary, usable 
classroom activities that embody a facet of CT as well as a facet of thinking about 
focused classroom content. The preliminary idea generated by the team would then 
be iteratively refined, made ready for more widespread use, and integrated into a 
larger program of presenting facets of CT.

�Project�Settings

Virginia Tech worked with a large, mixed-SES, mixed-race district in central Virginia 
that was committed to the use of technology in everyday teaching practice. A district-
wide laptop program provided every student from 6th to 12th G with 24/7 access to 
a district-owned laptop, and every school with staff not only for technical support but 
also for support for the development and use of laptops in the classroom.

The ICT project meant piloting not only the VT class itself but multiple forms of 
coordination with the district, including teacher recruitment, technical coordination 
(about firewalls, servers, student software, and so forth), and coordination with the 
teachers by both project personnel and university students. Although not discussed 
in this paper, we also gathered demographic and attitudinal information about teach-
ers and students, conducted before and after in-depth (1–1/2  h) semi-structured 
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interviews with the project teachers, and conducted 30+ semi-structured interviews 
with teachers, principals, and technical support personnel across the district before 
the beginning of the VT classes. These interviews helped us understand the local 
context of the school and its participants including teacher backgrounds, political 
concerns including teaching conditions in a mixed-school district, relationship with 
the department and the school, and prior experiences with technology and teaching. 
In the interviews, we investigated teachers’ perceptions about their students’ diffi-
culties. We saw teachers as change agents and wanted to elicit their views on how 
technology could fit into their classrooms in a more active way to solve problems 
relating to students’ difficulties with subject matter.

�Methodology

The investigative methodology combined research through design (Zimmerman, 
Forlizzi, & Evenson, 2007), design-based research (Cobb, Confrey, Lehrer, & 
Schauble, 2003), and participatory design (Ehn, 1989; Kensing & Blomberg, 1998) 
supplemented by ethnographically informed qualitative methods. The focus in 
these methods is on uncovering important components of fit to the socio-technical 
system that must be addressed by the design and that may be overlooked by other 
methods.

�The�VT�Classes�and�the�Teachers

During spring and fall 2012, 8 graduate and 16 undergraduate students formed six 
project groups working with six 8th grade teachers, one 7th grade, and one 6th grade 
teacher. Undergraduates were in a senior capstone class in software engineering; grad-
uate students were in an upper-level seminar on human–computer interaction. The two 
16-week classes met at the same time in the same place. They were conducted on a 
studio model, with one 3-h meeting a week. After teams were formed, some members 
of each team were able to travel to the schools to observe classes and meet teachers. 
Subsequently, the team conducted semi-structured interviews over Skype of the teach-
ers about the class, teaching condition, and their use of representations in teaching. 
They met with the teachers once a week via Skype or Flashmeeting as well as com-
municating through the VT scholar website, email, phone, and Google docs. Some 
members of each VT team were able to travel to the classrooms on 2–3 more occasions, 
with the professors spending two supplementary days on-site. University students took 
notes and recorded video that was available for analysis by the entire team, using two 
cameras per classroom observation. Teams developed projects using the technological 
infrastructure (mostly Java) that was most expedient for them. Middle school students 
and teachers accessed programs to be downloaded via websites.
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Teachers were recruited by and through the school district. In spring 2012, 
they consisted of 8th grade teachers with considerable classroom experience 
(more than 5 years), a history of proactive engagement as teacher leaders, and 
previous participation in the district digital initiative. All teachers taught with 
technology in the sense of using technological products in the classroom, but 
none had a stake in what constitutes CT. Two teachers were drawn from earth 
sciences, three from English, and one from mathematics. All taught in high- to 
mixed-SES schools within the district but half had prior experience in low-SES 
environments. In fall 2012, we continued to work with one 8th grade earth sci-
ence teacher and one 8th grade English teacher and added a 6th grade mathemat-
ics and a 7th grade social studies teacher, both from high-poverty schools (nearly 
all students eligible for free and reduced price lunch), one of which was desig-
nated as “failing” and the other of which was close to such designation. Failing 
was an assessment based on student performance on high-stakes standardized 
tests. The schools were, respectively, 96% and 91% African-American.

The six activities were in the areas of English (two projects), mathematics (algebra, 
fractions), earth science, and social studies. Based on teacher interest and availabil-
ity, the second VT class continued the development of the earth science and one of 
the English projects to conduct a second iteration implementation and design and 
initiated two new projects: one in mathematics (fractions) and one in social studies. 
Each project was brought successfully to the stage of preliminary classroom use, in 
regular classroom teaching, by the teams and the co-participating teachers. Given 
the challenge of going from initial ideation to classroom implementation in one 
semester and the number of skills that the university students had to master, we did not 
attempt to create measures of student learning gains. The goal was proof-of- concept 
for the approach.

During the VT classes, the researchers operated as active participant observers 
(Spradley, 1980; Kensing & Blomberg, 1998). The participant observers had 
access to all participants, sites, documents, and technological artifacts. Here we 
focus on the relationship between middle school teachers, the affordance of the 
classroom materials including technologies and middle school students, as illus-
trated in Fig. 1.

Fig. 1 Instruction as interaction (Cohen, Raudenbush, & Ball, 2003)
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 Initial Observations and the Move to PCT

There are many different concepts of CT (Computer Science and Telecommunications 
Board, 2010), and these have been evolving quickly over the past few years (Grover 
& Pea, 2013). We started with open-ended descriptive approach that included 
two facets: (a) the representation and manipulation of information that a computer 
scientist might regard as constituting a model and (b) the representation and manip-
ulation of processes. The idea was to cast a wide and opportunistic net. The strategy 
would be to call out existing CT components more explicitly.

�Initial�Findings

 Teacher Reports

Teachers were asked what was difficult for their students to learn. A wide range of 
problems were articulated including that students did not pay enough attention to 
the details of language morphology, that is, how words work to form phrases, 
phrases work to form sentences, sentences work to form paragraphs, and paragraphs 
work to form stories (English); that they did not understand what they were reading 
in document-based research (social studies); that they did not understand scale in 
earth science; and that they did not understand coefficients: “what a, b and c do in 
the equation y = ax2 + bx + c” in algebra. Two comments that we focus on in this 
paper were that “students ‘got lost’ doing web searches” (in English class) and that 
students would “add 1/2 and 1/3 by adding the top and adding the bottom to get 
2/5.” The teacher who reported this difficulty with fractions was a 6th grade teacher 
charged with teaching fractions to students who had failed the 5th grade high-stakes 
mathematics test that focused on fractions. He also reported a series of what we 
might characterize as systems-level problems with place value and borrowing, in 
which students somehow missed the crucial meaning of notations and numerals, 
meaning that is given by the place that those notations and numerals have in the 
larger system. Students struggled with negative numbers, whether “−6” was bigger 
or smaller than, say, “1”. These kinds of problems are well documented in the litera-
ture on mathematics education (Empson & Levi, 2011; Empson, 1999; Steffe, 2010; 
Norton & Wilkens, 2013) (which might possibly be why the teacher picked these 
students and cases to report to us).

 Illustrations and Instructions Versus Representations

In general, students interacted with handouts made by the teacher, with resources 
made available online by special school content providers or, rarely, with textbooks. 
Teacher handouts generally involved a paragraph setting up the activity followed an 
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ordered list of steps that walked the students through a process (without making 
process an object of reflection).

Teacher handouts and online resources were frequently decorated with illustrations. 
Across the range of classes, visual stimuli consisted pictures of people (a famous 
scientist), everyday situations (coal burning in a power plant), or readily observable 
phenomena (lightning to illustrate atmospheric weather). The pictures often illus-
trated narratives about the topic studied. Across all classes, there were very few uses 
of tables, graphs, schematic processes, or visual explanations (such as timelines).

 Confirmation of Confusion: English

Our observation of students in one of the English classes included some of the 
2 weeks of instruction that they received by the librarian on conducting web-based 
research and subsequent classes in which the students conducted web-based research 
for projects. We confirmed that, as the teacher had reported, students, indeed, 
appeared to be lost and confused doing web searches, often sitting and staring at the 
screen without moving for long periods of time and sometimes making bad choices 
about what to click through on (e.g., choosing sites that offered papers for sale 
rather than providing information useful for completing the assignment). Their con-
fusion caused us to begin to reflect on how and what search engines represent for 
students. Search engines, quite naturally, prioritize the presentation of search results, 
as if the user has no trouble remembering the question that led to the choice of terms 
that led to those particular results. Yet the results of a search may distract students 
from their original question or how that question was translated into search terms. 
If they click through on a hit, they then return to the same confusing page.

 Inactivity in the Math Classroom

In the 6th grade mathematics classroom, we observed the teacher using two kinds of 
representations to teach. He drew long rectangles on his Smart Board (an electronic 
whiteboard) and divided them into portions to illustrate wholes and parts of frac-
tions. He also used number lines centered on zero to scaffold questions about the 
addition of negative and positive numbers. With his help, students in whole class 
discussion could walk through exercises based on these representations and arrive 
at correct calculations. But by the second week of school, they were almost uni-
formly slumped over and disengaged. The instruction that we witnessed was quite 
focused on the operations of adding negative numbers rather than, for example, an 
integration of the representational affordances of the number line with motivation 
for executing the desired operations.
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�Few�Opportunities�for�CT

In general, we did not perceive the kinds of openings to CT that we had anticipated. 
The middle school students did not seem to be engaging with content in a way that 
was complex enough to admit of the kind of intervention we had initially imagined. 
In particular, there was very little use of data. Data provides opportunities for CT 
because the structuring of data for purposes of analysis creates information. Some 
opportunities did present themselves to create interventions that would have tied 
curriculum together with central CT processes and patterns. But the elements that 
appeared most like CT turned out to support learning that the teachers considered 
unproblematic or trivial. Second, the little ideas that we had for CT seemed unim-
portant when compared to the more general lack of representation and systems 
thinking.

�Proto-computational�Thinking

While many definitions of CT are aspirational or normative, that is, they describe 
the behavior and practices that researchers and educators would like to see as an 
outcome of their interventions, our approach had been developmental from the start. 
We found that classroom activities did not appear to be using sufficiently rich and 
complex material to afford the full form that would allow a computer scientist to 
immediately identify the augmentations as CT. However, we found that we were 
able to look for opportunities to promote proto-computational thinking by promot-
ing some aspect of systematicity or even the need for systematicity.

The provisional strategy we develop was to perceive PCT opportunities where:

 1. Students might not perceive that a system exists.
 2. Systems thinking could be an outcome rather than a prerequisite for student 

action.
 3. Problem-solving could be developed into a more important and explicit activity, 

something that could itself be subject to reflection, scrutiny, and analysis.
 4. Students could engage in representation, structure creation, or sequencing, espe-

cially through creating, contrasting, and analyzing alternative representations, 
even when an entire system of representation tied to action was not possible.

 5. The abstract and formal could be made concrete and manipulable.

Sometimes the interventions turned out to be quite simple. Sometimes they 
entailed the development of an entirely new approach to pedagogy in the area. We 
offer one example of each.
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 Two Examples

Two examples illustrate the identification of possible areas and the design of support 
for integrated PCT through a combination of technology and curriculum. The first 
example was quite simple. The second was only realized well enough in the semes-
ter to suggest that the direction was promising and that it required quite complex 
technology and curricular adjustments.

�CritiSearch

CritiSearch starts from one English teacher’s observation that her students “get lost 
doing research.” In the K–12 context, the word “research” is usually used to mean 
online searching for information, so “getting lost doing research” means that students 
became overwhelmed and distracted when conducting online searches. This obser-
vation suggested a strategy of putting the students in charge of making judgments 
about search results.

This teacher taught 8th grade in a largely white, mixed-SES school, with less than 
30% of students eligible for free and reduced price lunch. Her classes were usually 
20–25 students. She felt free to engage students with many creative and personalized 
tasks, and her walls were adorned with student drawings. Students received 2 weeks 
of instruction on research from the school librarian at the beginning of the school year.

The tool we developed (Fig. 2) sits in (or on) the browser and gives the user the 
ability to demote or promote search results without reformulating the search. It can 
be conceptualized as a kind of brutally simple markup language for search results, 
leading to the re-representation of the material. In an example shown in Fig. 2a, the 
student “researches” a typical 8th grade book, John Hersey’s Hiroshima. The results 
of this search remind us that search engines can produce confusing results. Even 
excluding sales sites, the student is faced mostly with non-scholarly options. Without 
CritiSearch, he/she must distinguish between useful and non-useful hits and make a 
choice about which hit to follow first. After following a hit and returning to the search 
page, he/she must repeat the task of distinguishing between useful and non-useful 
hits before being able to make a second selection. Attempting to refine the search 
terms might be a better choice, but it also constitutes a distraction. It means thinking 
not about the task at hand, but what constitutes a better search term for a search 
engine. This means conceptualizing different ways that the search engine might con-
fuse the task at hand with other, similar tasks. In all cases, the student is distracted, 
rather than reinforced, from the accomplishment of the initial goal.

With CritiSearch, the students leave marks to record the work that they have already 
done to distinguish which hits are useful. Students receive the initial list of hits (Fig. 2a). 
They mark some as important by rolling the cursor over them and  hitting the “thumbs-
up” icon. This turns each hit they select in this way green (Fig. 2b). They may also hit 
the “x” icon to cross hits out (see also Fig. 2b). The CritiSORT button allows them to 
move the green (selected as important) hits to the top and the x’d out (selected as unim-
portant) to the bottom (as in Fig. 2c). Any categorization can be changed at any time.
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Fig. 2 The CritiSearch tool provides a simple interface for searching and reflection about the 
nature of search. (a) An initial search on a typical 8th grade book leads to many irrelevant options. 
(b) The student marks some as irrelevant, some as potentially important, and some (not shown) not 
at all. (c) Hitting “CritiSORT” rearranges the screen, demoting the irrelevant and making new 
options easily visible. Note the Undo and “Recent Search” options
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CritiSearch does not teach students how searching works, either algorithmically 
or as a networked process. CritiSearch implements support for PCT because rather 
than posing the problem of how search engines arrive at their list of hits for the 
student—clearly a CT problem—it stops short. It instead draws students’ attention 
to the hits themselves, which are presumably relevant to the student’s current pur-
poses. It implicitly raises a contrast between what the student is seeking and what 
the search engine provides by asking the student to take action that distinguishes 
between the two. This contrast implicitly raises a question of why the search engine 
provides what it does; however, CritiSearch does not demand that this question 
dominate in the moment that the student is conducting the research.

A proto-computational thought here is that it is important to convey to the student 
that searching is a process. Figure 3a shows a drawing from a student in the class who 
was asked to illustrate what happens to the computer when you type words into a 
search engine and press return—not what happens on the screen, but what the search 

Fig. 3 Even after 2 weeks of instruction from the librarian, student understanding of search as 
computer process differs. (a) One 8th grade student’s drawing of what happens to the computer 
when we type words into a search engine and press return. (b) Another student’s drawing, from the 
same class
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engine does. In fact, the student has not drawn the computer’s process of searching at 
all. This student has illustrated how a person may get a recipe by searching for how to 
bake a cake. With the recipe, the person may bake the cake. This is the person’s process. 
However, Fig. 3b shows another more sophisticated response to the same prompt from 
the same class. This student has labeled the drawing “Google searches the Internet” and 
shows a large stick figure labeled “Google” calling out “Let’s go!” to three smaller stick 
figures labeled “English language,” “language arts”, and “England” from one house to 
another. The prompt itself was clear to someone for whom the question of process was 
already well understood, but others may have no clear idea that computers are governed 
by processes that are decided by people, and that could operate differently.

Another implicit property of the design of CritiSearch is to support the more 
general notion that representations produced by a search engine need not be taken 
at face value but can be evaluated and rearranged, quietly encouraging the discovery 
of human agency as consumers.

CritiSearch permits the student to get distractions out of the way. It allows them to 
promote promising material right away. By itself, this action may lay the groundwork 
for critical thinking. It puts the computer in the position of responded to the human 
need rather than enforcing the human’s adaptation to the computer. However, it also 
creates the possibility of a more pointed opportunity for CT itself—later. The items 
that the student marks as irrelevant are not deleted, but demoted. After the student has 
conducted their research, he/she can, by himself or herself or in a class, consider the 
category of demoted items and the category of promoted items as wholes, thinking 
about how to construct better search terms in the future. The design of search terms is 
an example of language use, which is of interest both in the study of English and CT.

The initial response of students in the class suggested that they liked using it. 
Furthermore, once given the URL, several students reported using it, unprompted, 
in research for other classes and even showing it to other students. There were even 
hints of a “meme-like” spread of the idea. Furthermore, the teacher was enthusias-
tic. We have since redesigned it and are currently studying the new design.

The point of this account is to draw attention to the way this simple proto- 
computational design can introduce important questions that lay the groundwork for 
inquiry about what how computational systems work and how we interact with them.

�The�Sound�of�Fractions

CritiSearch is a simple technology that is meant to adjust the user’s point of view 
about searching slightly. The Sound of Fractions (SoF) is more complex as an idea, a 
technology, and a curricular focus. As mentioned earlier, we conducted observations 
in a 6th grade arithmetic class in a school designated as “failing” by the state. Almost 
all children were eligible for free and reduced price lunch. The school was 96% 
African-American. These particular children had failed their 5th grade high- stakes 
mathematics test that largely featured fractions. One of the university students 
observed that all the students in this class were drumming with their fingers. Another 
observable element was that students were slumped over, inactive, and slow to respond 
even by the second week of classes. The university students conjectured that this was 
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because the 6th graders were bored. Elements of the situation included that, having 
publicly failed the high-stakes test and being put in a special class, they were asked to 
have double periods of mathematics every school day. This mathematics largely rep-
licated the curricula and approaches that they had seen earlier. The curriculum was 
reinforced through the use of an online mathematics learning system that one of the 
university students described in his reflection as “miserable drill and practice.”

“Bored” is an everyday word describing an everyday feeling for some teenagers. 
And as mentioned earlier, the study participants’ in this study were often observed 
to be tapping their fingers. Sometimes this kind of tapping and other fidgeting is 
seen as learned behavior to be extinguished either because it is seen as distracting 
by teachers or because it is indicative of lack of self-monitoring (Szwed & Bouck, 
2013) and/or effortful control (Valiente, Lemery-Chalfant, Swanson, & Reiser, 
2008). However, we viewed this behavior as constituting a potential starting point 
for engagement because it acknowledged the students’ position. On inquiry we also 
found out that, as it happened, all the children in the class were in the school band; 
they were also aware of and attached to hip-hop music and familiar with percussive 
polyrhythms. Thus, the idea arose of teaching them fractions through percussion.

The Sound of Fractions started from the idea that there are many parallels 
between percussive rhythm and fractions. Both are systems that require attention to 
units at different scales at the same time. In music, we might point to the experience 
of “beats” and “measures.” Indeed, the term “beat” may be used to describe ele-
ments at different levels of abstraction—including both a demarcation of time and a 
rhythmic pattern. The fact that the word has dual meanings suggests that it captures 
an embodied and felt experience of a tie between the larger units of the music and 
the individual beats. This is important because it relates to a crucial concept in the 
psychology of fraction learning: that we must “require students to mentally iterate a 
unit-fractional part of a whole, establishing a multiplicative relationship between 
part and whole” (p. 5, Norton & Wilkens, 2013).

Furthermore, many people are able to interact with complexity in musical pat-
terns not only through pleasure in listening but also through embodied experiences 
such as dancing and drumming. Our curricular and representational intention was to 
work backward, as it were, from an experience of complex phenomena (the simul-
taneous experience of larger and smaller patterns within the percussive pattern) 
experienced through drumming on tables, alone and together, and making predic-
tions about that drumming (such as “which beat will come first, your third one or 
his?”) to the creation of similar visual and auditory patterns using technology and 
from there to more standard mathematical representations.

Figure 4 shows the first implementation of “the Sound of Fractions.” Hitting the 
play button caused the four different instruments (snare, high hat, kick drum, and 
synthesizer) to play in tandem. Students could change the number of beats per mea-
sure by clicking on an instrument area (in the figure, the snare is selected) and then 
using the slider to change the beats per measure. Clicking on the rectangle that 
represented the beat toggled between turning that beat on and off. Long rectangles 
were chosen to represent the measures and subdivided to represent the beats because 
that is a representation that the teacher used to teach fractions.
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The theory of improvement in PCT lay in the focus on the relationships between 
different representations. Students could easily see, hear, and feel the relationship 
between different patterns. The teacher could pose questions about the relationships 
between modalities, about which rhythmic element would be played before others in 
relationship to how many parts there were in the measure, about equivalence between 
different portions of the representations, and about the naming of particular beats. 
These are fractional questions. They are also questions that expose properties of rep-
resentations. CT involves choosing amount different representations because of par-
ticular properties. PCT simply involves noticing that representations have properties.

On the initial trial, the students loved first drumming on the table and then using the 
Sound of Fractions to create rhythms. This was encouraging and very gratifying for 
the university student teams, although they noted that the students probably would 
have appreciated any novelty. We had developed a curricular approach and lesson 
plan; however, the classroom implementation proved only a partial success mathemat-
ically because the students could answer questions by visual inspection without actu-
ally manipulating and exploring the important interface elements. That is, although 
we were on the track of PCT, the representations did not sufficiently support explora-
tion. By analogy, it operated more like a calculator than an abacus. Additionally, 
although the interface showed that a person could make sums that constituted equiva-
lent fractions—that is, one fourth could be made by playing the first of four beats, the 
second of four, the third of four, the fourth of four, the first two of eight, the second 
and third of eight, and so forth—the students had seen many prior illustrations of 
equivalence. The representation did not seem to raise questions. We also came to see 
that by reproducing the rectangular representation that the teacher was already work-
ing with, we had also reproduced the limitations of that particular representation. We 
needed to create a situation that contrasted different visual representations but tied 

Fig. 4 Initial implementation of the Sound of Fractions
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those representations together through reproducing auditory and embodied similarity. 
Following on Bransford and Schwartz’ (1999) notion of contrasting cases, we also 
needed to turn standard mathematical fractional statements such as one half from a 
foregone conclusion, into the solution of an interesting problem.

Understanding fractions means understanding that, even though 16 is bigger than 15, 
that same representation written as one and then six denotes a smaller thing than one five 
when that one and six is below the line in a denominator. Numbers are symbols that are 
given meaning by the system in which they are embedded, whether that is through place 
value, in fractional notation, or on a number line. A full notion of CT involves represent-
ing models of situations with objects whose properties must be aligned with relevant 
processes that use them. The curriculum and redesigned system need to end up with 
such an alignment; however, the PCT idea that we gleaned from the classroom experi-
ence was that we had to reintroduce the students to the idea of a system and that we 
could do so through an embodied physical analogy that makes it easier to see the impor-
tance of experiencing both parts and wholes as mutually defining.

 Discussion

We started with the call for CT and suggested why an integrated approach might be 
important. We examined one mechanism, a class, for achieving such integration. 
The idea of PCT emerged as a result of our program of interaction with classrooms 
and teachers, especially in low-SES schools. Although we had the chance to inves-
tigate and implement curricula and technology that might have looked more like 
standard CT on the surface, our diagnosis of the situations at hand emphasized the 
importance of broad thinking that focused on elements both difficult for students to 
master and that arguably undergird a mastery relationship toward technology.

The strengths in the overall approach are that we addressed issues that at least 
one teacher saw as being on his/her critical subject area teaching path, that our 
approach supports equity though integration in classes that all students take, and 
that our designs respond directly to the situation as we found it. One limitation is 
that, because the project was primarily concerned with whether we could work with 
undergraduate and graduate teams to create novel tasks and ideas, we did not take 
the projects all the way to demonstration of efficacy at scale.

However, we think it is important to write about this approach and our directions. 
Part of the rationale for integrated CT has to do with issues of equity in schools. We 
entitled it “PCT: the Uncomfortable Underpinnings.” PCT activities are by defini-
tion underpinnings. They are uncomfortable when we are drawn to them because we 
perceive deficits in schooling. The students in the failing 6th grade that we observed 
could and perhaps ought to have been learning about representational fluency earlier 
in their school experience. Some students in the more affluent 8th grade English 
class already knew about the workings of the search engines; but others had no 
inkling that there was anything that required explanation.
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A question raised by this work about the future is what it means to teach CT 
without addressing PCT. We know that we can teach students as young as 8 to pro-
gram and, arguably, you cannot program without some notion of CT. But limitations 
similar to those we observed in this district might stop students from reaching the 
full prospects of CT, even when using curricula and materials that are highly suc-
cessful in other contexts. The science of education has not yet provided a fully 
accepted explanation why school performance is so highly correlated with socio-
economic standing, but we do know that there is a history of so-called lethal muta-
tions (Brown & Campione, 1996, p. 291) by which innovations are implemented in 
ways that lose their pedagogical point. Furthermore, the poorest children are the 
least likely to have opportunities to interact with technology in an engaging way that 
propels their thinking toward future use (Dolan, 2016; Becker, 2000). Just as “16” 
has a different meaning when under the line of a fraction than it does when above, 
our curricula may have different significance under conditions of school poverty. 
PCT is not in competition with CT. But it is also not just a primitive kind of CT. It 
is a cultural phenomenon. The definition of CT, the goals of ICT, and the acknowl-
edgment or failure to acknowledge the importance of PCT are political as well as 
epistemological acts and hence important because our well-meant interventions in 
the area of CT may reinforce existing social inequities.

Acknowledgments We would like to thank and acknowledge the contributions of the district 
administration and teachers we worked with as well as colleagues and especially students at VT, 
especially Taylor O’Connor, Siroberto Scerbo, Dennis Kafura, and Stephanie Rivale. Thanks to 
Whitney Wall Bortz. We would also like to thank the NSF, which awarded us planning Grant No. 
CNS-1132227. NSF is not responsible for findings of the work reported.

References

Becker, H. J. (2000). Who’s wired and who’s not: Children’s access to and use of computer tech-
nology. The Future of Children, 10(2), 44–75.

Bransford, J., & Schwartz, D. (1999). Rethinking transfer: A simple proposal with multiple impli-
cations. RRE, 24(1), 64–100.

Brown, A., & Campione, J.  (1996). Psychological theory and the design of innovative learning 
environments. In  On procedures, principles and systems. Mahwah, NJ: Lawrence Erlbaum.

Burns, R., Pollock, L., & Harvey, T. (2012). Integrating hard and soft skills: Software engineers 
serving middle school teachers, ACM SIGCSE Computer Science Education (SIGCSE).

Cobb, P., Confrey, J., Lehrer, R., & Schauble, L. (2003). Design experiments in educational 
research. Educational Researcher, 32(1), 9–13.

Cohen, D.  K., Raudenbush, S.  W., & Ball, D.  L. (2003). Resources, instruction, and research. 
Educational Evaluation and Policy Analysis, 25(2), 119–142.

Computer Science and Telecommunications Board. (2010). Report of a workshop on the scope and 
nature of computational thinking. Washington, DC: National Academy.

Dolan, J. (2016). Splicing the divide: A review of research on the evolving digital divide among 
K–12 students. Journal of Research on Technology in Education, 48(1), 16–37.

Ehn, P. (1989). Work-oriented design of computer artifacts (2nd ed.). Stockholm: Arbetslivscentrum.

Proto-computational Thinking: The Uncomfortable Underpinnings



80

Empson, S. B. (1999). Equal sharing and shared meaning: The development of fraction concepts 
in a first-grade classroom. Cognition and Instruction, 17(3), 283–342.

Empson, S.  B., & Levi, L. (2011). Extending children’s mathematics: fractions and decimals: 
innovations in cognitively guided instruction (p. 272). Portsmouth, NH: Heinemann.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. 
Educational Researcher, 42(1), 38–43.

Kafura, D., & Tatar, D. (2011). Initial experience with a computational thinking course for com-
puter science students. In  Proceedings of the 42nd ACM technical symposium on computer 
science education (sigCSE’11) (pp. 251–257).

Kensing, F., & Blomberg, J.  (1998). Participatory design: Issues and concerns. Computer- 
Supported Cooperative Work, 7(3–4), 167–185.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004). Scratch: A sneak 
preview [education]. In  Proceedings of the second international conference on creating, con-
necting and collaborating through computing (pp. 104–109). IEEE.

Mouza, C., Marzocchi, A., Pan, Y.-C., & Pollock, L. (2016a). Development, implementation and 
outcomes of an equitable computer science after-school program: Findings from middle-school 
students. Journal of Research on Technology in Education (JRTE), 48, 84.

Mouza, C., Marzocchi, A., Pan, Y.-C., & Pollock, L. (2016b). Equitable computer science teach-
ing: Implementation and outcomes from middle school students. In American Educational 
Research Annual Meeting.

National Research Council. (1999). How people learn: brain, mind, experience, and school. 
Washington, DC: National Academy.

Norton, A., & Wilkens, J.  (2013). Supporting students’ constructions of the splitting operation. 
Cognition and Instruction, 31(1), 2–28.

Pollock, L. & Harvey, T. (2011). Combining multiple pedagogies to boost learning and enthusi-
asm. ITiCSE‘11, pp. 258–262.

Pollock, L., McCoy, K., Carberry, S., Hundigopal, A., & You, X. (2004). Increasing high school 
girls' self confidence and awareness of cs through a positive summer experience. In ACM 
SIGCSE Technical Symposium on Computer Science Education, pp. 185–189.

Reardon, S. F. (2011). The widening academic achievement gap between the rich and the poor: 
New evidence and possible explanations. Whither Opportunity, 2011, 91–116.

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of 
a checklist for getting computational thinking into public schools. In Proceedings of sigCSE 
'10, the 41st conference on computer science education.

Resnick, M., & Wilensky, U. (1998). Diving into complexity: Developing probabilistic decentralized 
activities through role-playing activities. Journal of the Learning Sciences., 7(2), 153–172.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, H., Eastmond, E., Brennan, K., Millner, 
A., Rosenbaum, E., Silver, J., Silverman, B., & Kafai, Y. (2009). Scratch: Programming for all. 
Communications of the ACM, 52(11), 60–67.

Spradley, J. P. (1980). Participant observation. New York, NY: Holt, Rhinehart and Winston.
Steffe, L.  P. (2010). The partitioning and fraction schemes. In L.  P. Steffe & J.  Olive (Eds.), 

Children’s fractional knowledge (pp. 315–340). New York, NY: Springer.
Szwed, K., & Bouck, E. C. (2013). Clicking away: Repurposing student response systems to lessen 

off-task behavior. Journal of Special Education Technology, 28(2), 1–12.
Valiente, C., Lemery-Chalfant, K., Swanson, J., & Reiser, M. (2008). Prediction of children's aca-

demic competence from their effortful control, relationships, and classroom participation. 
Journal of Educational Psychology, 100, 67–77.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). 
Defining computational thinking for mathematics and science classrooms. Journal of Science 
Education and Technology, 25(1), 127–147.

Wilensky, U. (2002). Modeling nature’s emergent patterns with multi-agent languages. Evanston, 
IL: Northwestern University.

D. Tatar et al.



81

Wilensky, U., & Stroup, W. (1999). Learning through participatory simulations: Network-based 
design for systems learning in classrooms. In Proceedings of the conference on computer sup-
ported collaborative learning.

Wilensky, U., & Stroup, W. (2000). Networked gridlock: Students enacting complex dynamic phe-
nomena with the hubnet architecture. In The fourth international conference of the learning 
sciences (June 14–June 17, 2000), pp. 282–289.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.
Wolz, U., Stone, M., Pullmood, S. M., & Pearson, K. (2010). Computational thinking via interac-

tive journalism in middle school. In Proceedings of sigCSE '10, the conference on computer 
science education, pp. 239–243.

Zimmerman, J., Forlizzi, J., & Evenson, S. (2007). Research through design as a method for inter-
action design research in HCI. In  Proceedings of the SIGCHI conference on human factors in 
computing systems (pp. 493–502). New York, NY: ACM.

Proto-computational Thinking: The Uncomfortable Underpinnings



Part II
Higher Education



85© Springer International Publishing AG 2017 
P.J. Rich, C.B. Hodges (eds.), Emerging Research, Practice, and Policy on 
Computational Thinking, Educational Communications and Technology: Issues 
and Innovations, DOI 10.1007/978-3-319-52691-1_6

Medical Computational Thinking: Computer 
Scientific Reasoning in the Medical 
Curriculum

Peter Musaeus, Deborah Tatar, and Michael Rosen

Abstract Computational thinking (CT) in medicine means deliberating when to 
pursue computer-mediated solutions to medical problems and evaluating when such 
solutions are worth pursuing in order to assist in medical decision making. Teaching 
computational thinking (CT) at medical school should be aligned with learning 
objectives, teaching and assessment methods, and overall pedagogical mission of 
the individual medical school in relation to society. Medical CT as part of the medi-
cal curriculum could help educate novices (medical students and physicians in 
training) in the analysis and design of complex healthcare organizations, which 
increasingly rely on computer technology. Such teaching should engage novices in 
information practices where they learn to perceive practices of computer technology 
as directly involved in the provision of patient care. However, medical CT as a 
teaching and research field is only beginning to be established in bioinformatics and 
has not yet made headway into the medical curriculum. Research is needed to 
answer questions relating to how, when, and why medical students should learn to 
engage in CT, e.g., to design technology to solve problems in systemic healthcare 
and individual patient care. In conclusion, the medical curriculum provides a mean-
ingful problem space in which medical computational thinking ought to be devel-
oped. We argue not for the introduction of a stand-alone subject of medical CT, but 
as researchers, teachers, clinicians, or curriculum administrators, we should strive 
to develop theoretical arguments and empirical cases about how to integrate the 
demand for medical CT into the medical curriculum of the future.
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 Introduction

Medicine is undergoing a computational revolution that has yet to lead to curriculum 
reform. This essay argues that the medical curriculum provides a meaningful prob-
lem space in which medical computational thinking (CT) ought to be developed. 
The medical curriculum is a meaningful context for CT because medicine and CT 
share a focus on relevance and problem-solving or decision making leading to 
change or design of solutions. We conceive of medical CT as medical students’ (and 
physicians’) ability to know when a computer-mediated solution to a medical prob-
lem is worth pursuing. It includes processes often associated with CT such as using 
heuristics of reduction, transformation, simulation, and abstraction (Wing, 2008). 
Medical CT is about formulating problems and their solutions (Wing, 2006) in the 
context of medicine and computer-mediated tools for facilitating diagnosis, treat-
ment planning, and monitoring of health. Our use of the notion of computational 
thinking (CT) follows Ado’s classical definition:

We consider computational thinking to be the thought processes involved in formulating 
problems so their solutions can be represented as computational steps and algorithms. An 
important part of this process is finding appropriate models of computation with which to 
formulate the problem and derive its solutions (Aho, 2012, p. 833).

Wing credits the following formulation to Aho:

Computational thinking is the thought processes involved in formulating problems and their 
solutions so that the solutions are represented in a form that can be effectively carried out 
by an information-processing agent (Cuny, Snyder, Wing cited in Wing, 2010).

In summary, medical CT highlights the importance of how medical novices learn 
to think through the strengths and limitations of computational designs as they 
apply to modern complex healthcare systems.

 Chapter Overview

In this chapter we draw broadly from the research fields of medical education, medi-
cal informatics, and medical decision making. We will argue that medical CT could 
bridge these research fields in focusing on computer-mediated medical reasoning 
and problem-solving as a design process. Thus, educational researchers, clinicians, 
and medical school administrators can gain inspiration from the computational rev-
olution in the biosciences and medicine in order to help reform the medical curricu-
lum toward encompassing medical CT. In short, medical CT might be a necessary 
infusion of new ideas into the established medical curriculum, but currently there is 
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no basis for recommending it as a stand-alone subject with easily integrated sets of 
skills. Medical CT is a way of reasoning that must be integrated at different lev-
els (subject, year, difficulty, etc.) of the medical curriculum.

 A Plea for Medical CT

There are three reasons why medical CT is pertinent in the medical curriculum. 
First, computer technology and computational biosciences are rapidly transforming 
medicine. Computer decision support is increasingly implemented at hospitals to 
improve clinical workflows (Kaushal, Shojania, & Bates, 2003), online consulta-
tions, electronic health records practice (Audet et al., 2004), individualized health 
monitoring and algorithms for treatment (Steinhubl, Torkamani, & Topol, 2015), 
and in robotic surgery (Diana & Marescaux, 2015). Yet computer science is not 
taught at most medical schools apart from as an implicit part of a (graduate) course 
on biostatistics.

Second, CT in the sense defined in the introduction has not been given explicit 
educational political attention by leading educational institutions in medicine 
such as the Institute of Medicine in the United States or the Graduate Medical 
Council (GMC) in Britain. The Dutch Federation of University Medical Centres 
recommends that medical students as future doctors learn about computer tech-
nology and electronic resources for computation, but as the following chapter will 
elaborate, medical CT is much more than merely learning about computer 
technology.

Third, concrete initiatives have been made to introduce computational subjects in 
curricula similar to medicine. Thus, proponents of genomics, i.e., the science of 
studying the genome through computational means, make perhaps the strongest 
plea for a new computational subject that should be taught at medical school. 
Notably, Nelson and Mcguire (2010) argue that genomics should be taught at medi-
cal school. We believe that their rationale for introducing genomics could be 
extended to apply to medical computational thinking (CT):

The time has come to make changes not in the factual content of medical education but in 
the thinking process that physicians in this century will need to manage the unique chal-
lenges of the information explosion (Nelson & McGuire, 2010, p. 2).

The plea for genomics indicates a need for medical curriculum reform toward 
integrating courses with emphasis on CT where medical students learn to use com-
puting activities to learn to regulate their thinking as medical decision makers and 
navigators in the expanding (exploding) universe of information.

In summary, computational tools are pervasive in biomedicine, but not yet in the 
medical curriculum or in medical educational research. As research is rapidly emerg-
ing on computational bioscience and more slowly on teaching of computational bio-
science, we lack directions on the relevance for medical education. We lack didactic 
queries into computational thinking as an important competence in medical education. 
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It is likely that the medical curriculum will increasingly start drawing from computa-
tional biosciences. However,  several questions need to be investigated in terms of 
what medical CT is and how it should be integrated into medical school.

 Curricula Issues

In this section we will discuss nine issues we take to be important for medical CT to 
be integrated in the medical curriculum. The issues raise questions first about the 
content or subject matter of medical CT, i.e., clarifying the role of computer literacy, 
assessment, abstraction, and diagnosis. Second, the principal issues raise challenges 
relating to the practicalities of introducing CT into the medical school relating to 
new subjects.

�Delineating�Medical�CT�

As our definition in the introduction made clear, we follow those who argue that CT 
is much more than computer fluency and computer literacy. Other subjects and con-
cerns compete at the curricula level with CT in terms of what medical students are 
supposed to learn. In this section we will first delineate medical CT from various 
levels of computer literacy/fluency/proficiency. Second, we will delineate medical 
CT from computer programming.

The first question is whether medical students should become computer literate. 
Computer literacy can briefly be defined as the act of knowing about computers or 
knowing how to use relevant computer software for medical problem-solving. It 
would be too easy to claim that computer proficiency is not at some level a pre- 
requirement for medical CT because computers have been ubiquitous in medical 
education for several years (Ellaway & Masters, 2008; McAuley, 1998). Simpson 
et al. (2002) argue in the context of Scottish undergraduate medical education that 
as the practice of medicine is becoming more complex in terms of knowledge and 
use of technology, medical students must learn about computer technical skills:

[Being competent] in basic information-handling skills ranging from simple record keeping 
to accessing and using computer-based data. As well as having the technical skills to under-
take such tasks it is important that graduates appreciate the role of informatics in the day- 
to- day care of patients and the advancement of medical science in genera (Simpson et al., 
2002, p. 140).

According to Simpson’s list, required skills include being able to use common 
software such as e-mail and word processing, using statistical packages and medical 
databases. This list might strike the computer scientist as very low in ambition: 
What about using computational techniques to derive at higher-order thinking, 
computer- mediated problem-solving, understanding dynamic systems, or whatever 
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we might think CT is given that it goes beyond computer literacy? Physicians strive 
to restore health not devise and manage whole system hospital care. Furthermore, 
medical students are educated as decision makers rather than experts in computa-
tional bioinformatics or computer science.

 The second question is whether medical students should learn computer pro-
gramming. Pioneering attempts by Denning (2010) have been made to teach 
computing to noncomputer science majors including liberal arts students. Being 
able to program is a more advanced skill than computer literacy. One argument 
for medical students to learn programming is that they need computing skills 
before they can learn medical CT. This is the argument for proponents of teaching 
CT in bioinformatics that without a certain prerequisite in programming CT is 
not achievable.

[A] single one-semester course, which does not assume a basic programming course as a 
prerequisite, is likely to miss the goal of teaching computational thinking and computa-
tional concepts to life science students. If basic programming is taught from scratch, not 
enough time will be left for the higher level computational concepts and their relations to 
biology, so the depth of coverage of computational thinking will be smaller (Rubinstein & 
Chor, 2014, p. 3).

Thus, Rubinstein and Chor (2014) argue that life science students need a basic 
course on programming and software tool handling before being given a course on 
computational thinking. For instance, a procedural course on how to use a particular 
tool (R, Python, etc.) might mask the underlying or more abstract computational 
ideas, but without recourse to basic programming skills, the bioscience, and proba-
bly also by implication the medical, student cannot comprehend the underlying 
computational scientific ideas that lie behind CT. If life science and bioinformatics 
students have a hard time building computational models, how should medical stu-
dents who are not trained in bioinformatics fare when given the task of building 
computer models of healthcare systems? The answer is that we do not know, but 
probably medical students should be first given introductory programming and sec-
ond asked to build simple models before they can acquire deeper level CT. Rubinstein 
and Chor (2014) suggest that a technical courses on concrete bioinformatics tools 
does not teach deep-level thinking about computation.

This begs the related question whether programming skills should be entry-level 
requirements to medical school? In the USA, students entering medical school are 
currently under no obligation to take computational coursework (Nelson & 
McGuire, 2010). The situation is similar in Europe and Asia where students enter 
medical school at university right after high school: Computer skills are not an 
entry requirement for medical students, and computational thinking (CT) is to our 
knowledge neither taught systematically nor on the grand scale at any medical 
school in the world. Empathy and scientific reasoning are more closely aligned with 
the traditional role of doctoring and hence deemed as more important entry-level 
requirements compared with computer programming skills. In summary, research 
is lacking on the role of computer science, programming, not to say CT in the 
(undergraduate and graduate) medical curriculum: What should medical students 
learn, how and when?
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Third, there is the question about whether medical students should learn any-
thing remotely resembling computer science. We agree with Wing’s various (2006, 
2008) assertion that CT is more than computer literacy and basic programming 
skills. Medical students should develop the ability to know when a computer- 
mediated solution to a medical problem is worth pursuing. This has been pointed 
out by Wing (2006, 2008) and Denning (2010) who argue that teaching CT to 
noncomputer majors should teach competences such as using heuristics of reduction, 
transformation, simulation, and abstraction (Wing, 2008). Clearly this goes far 
beyond computer literacy, but it is arguably unrealistic to expect a medical student 
or physician in training who has no programming skills to write and apply code to 
medical tasks such as designing health systems of diagnosis and care. It is hardly 
the best use of resources to design a curriculum where students or physicians in 
training spend too much time coding the information systems for health systems. 
However, it could be a learning objective that they learn to be on the teams that are 
developing such information systems. To be effective members of a health transdis-
ciplinary team, some knowledge of the domain expertise of others is required; 
hence a curriculum incorporating medical CT must reflect this.

In summary, given the pervasiveness of computers in healthcare, we might 
demand some level of computer proficiency in medical students. While computa-
tional biology students clearly need programming skills, this is hardly yet a realistic 
demand to make on medical students. But acquaintance with programming could 
make medical students progress toward higher-order CT, and hence it could be ben-
eficial for the medical curriculum administrators aiming to strike a balance between 
computer literacy and full-fledged computer science competences. Without getting 
stuck in the nitty-gritty, but important questions about subject matter, the aim should 
be clear: Educating medical students to be able to move on to explore advanced 
areas of computing and design of computer-mediated healthcare.

�Medical�CT�Could�Facilitate�Students’�Learning�to�Diagnose

In the following we will investigate whether integrating medical CT into the medi-
cal curriculum could help medical students learn critical diagnostic reasoning. Our 
argument is that CT might teach medical students to (1) diagnose as a string of 
actions, (2) avoid fixation errors, (3) avoid pseudodiagnosticity, and (4) perceive 
abstractions in diagnosis. The underlying argument is that medical CT could teach 
students to qualify their diagnostic choices.

First, CT could be introduced in subjects emphasizing diagnosis. Diagnosis can 
be conceived as an instrument of thinking for the doctor because the diagnosis helps 
the doctor perceive a problem and cascade a string of actions with various effects on 
the patient’s and doctor’s further actions (Pauli, White, & McWhinney, 2000). Thus 
a central tenet of medicine is that the physician acts as decision maker and that 
medical student must learn to think critically about complex situations involving 
diagnosis. It is becoming commonplace that the physician’s acts of diagnosis rely 
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on computer tools developed in bioinformatics and computer science. 
Interdisciplinary research in cognitive informatics is casting light on how physi-
cians think, diagnose, and problem solve as mediated by computer technologies 
(Patel et al., 2009; Patel, Kaufman, & Cohen, 2014; Patel, Kaufman, & Kannampallil, 
2013). For instance, attending physicians routinely use laboratory tests to diagnose 
patients, and these tests derive increasingly from computational bioscience, most 
notably from computational genomics (Dhar, Alford, Nelson, & Potocki, 2012; 
Nelson & McGuire, 2010). In spite of this seminal work on medical reasoning 
within cognitive informatics, the field of medical education knows preciously little 
about how to teach medical reasoning such as diagnosis. Needless to say, we know 
even less about how CT can be integrated into the teaching of diagnosis.

But, one lesson about how to teach medical diagnosis through computational 
means would be to delineate rather than decompose diagnosis: CT could support the 
teaching of diagnosis as a string of actions. Shortliffe and Blois (2006) point out that 
diagnosis should not be decomposed and that diagnosis should not be conceived or 
indeed taught as a modular activity. The point is that diagnosis is not an activity 
decomposed into fragmented and isolated acts where one or more acts delimit what 
might be called the diagnosis (Elstein, 2009). The problem is when medical students 
are led to view diagnosis as a process that physicians carry out in isolation before 
choosing therapy for a patient or proceeding to other modular tasks rather than 
viewing diagnosis as an ongoing process. A number of classical studies have shown 
that this model is oversimplified and that such a decomposition of cognitive tasks 
may be quite misleading (Elstein, Kagan, Shulman, Jason, & Loupe, 1972). This 
research suggests that by learning to engage in CT as an iterative process, students’ 
diagnostic skills might improve.

Second, CT could teach students about fixation errors. Shortliffe and Blois 
(2006) argue that a physician must be flexible and open-minded in order to continu-
ously update and possibly alter the original diagnosis. CT might help the clinician 
avoid the diagnosis fixation problem where the clinician too early fixes on one set 
of alternative diagnoses and thus become biased toward other evidence. Teaching 
computational diagnosis should remind the student that patient treatment and 
assessment involves an ongoing or iterative process of analysis of data and treat-
ment results, monitoring of progression of disease (Leblanc, Brooks, & Norman, 
2002; Shortliffe & Blois, 2006). CT might remind the student to keep a scientific 
and open mind about alternative hypotheses. Teaching CT could help medical stu-
dents identify when categorization into classes of diseases, for instance, is possible 
and when the ambiguity and messiness of diagnostic reasoning make this impossi-
ble because of multiple and mutually overlapping or embedded explanations and 
diagnoses (Monteiro & Norman, 2013). Although basic CT might involve basic 
categorization tasks, higher-level medical CT should engage students to identify 
features of the patients’ diseases that do not call for separable options, but nested 
paths (ibid).

Third, medical CT might be integrated in the medical curriculum in order to 
teach students about pseudodiagnosticity. Working with computer-mediated diag-
nostic tools might help medical students understand Bayesian reasoning and avoid 
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what by Doherty, Mynatt, Tweney, and Schiavo (1979) was labeled pseudodiag-
nosticity referring to failure to correctly identify and select relevant information 
for diagnosis. This reasoning draws from Bayesian reasoning, where Bayes’ theo-
rem can be used to evaluate the probability of event A in relation to event B in 
which the dispersion of the disease in the population is known (Kern & Doherty, 
1982). Pseudodiagnosticity then is the effect of selecting irrelevant information in 
diagnostic tasks. Medical students need to learn to make balanced judgment of 
single symptoms in relation to a single diagnosis (Kern & Doherty, 1982). The 
point is that it could be relevant to teach medical students in Bayesian reasoning in 
order to increase medical students’ ability to choose appropriate symptom infor-
mation and thus perform differential diagnosis.

Fourth, medical CT might be aligned with the purpose of teaching students about 
abstraction. Abstraction in medicine can mean using algorithms that are guidelines 
in some often abbreviated, yet useful format that have been developed in virtually 
any clinical medical specialty (Elstein, 2009; Kassirer, 2010). It would be a worthy 
learning objective if medical CT could help the medical student see the limitations 
of these algorithms or of diagnostic heuristics because computer science had a tradi-
tion for abstraction and evaluation superior to other scientific fields, but we sin-
cerely doubt it. In particular how abstraction can serve medical diagnosis and help 
the student understand the essence of a subject matter or in the clinical situation use 
models to ameliorate a risk for information overload and high degree of contin-
gency (Patel et al., 2009). Computer models might possibly reduce a complex clini-
cal situation to one that is more manageable with reduced redundancy. While this is 
practical, it also raises the risk of simplification and various errors including flawed 
inductive reasoning and the simplistic idea that abstraction in computer science can 
somehow help transcend the physical dimension of time and space, the contingen-
cies and plethora of clinical cases demanding a clear diagnosis.

In summary, diagnosis is arguably among the most important activities about 
which medical students need to develop critical assessment and reasoning. Since 
computer technology in modern healthcare is a central aid to physicians’ diagnosis, 
medical students should learn to use and design improvements in such diagnostic 
tools. Hence the benefits of teaching medical students about the strengths and limi-
tations of computational diagnosis tools might be considerable.

 Medical CT Could Teach Medical Students to Analyze Data

This section deals with the question whether medical students should learn to 
engage in CT in order to become better data analysts. This concern is pertinent 
since, according to the American Association of Medical Colleges, a third of the 
students entering medical school have non-science and non-mathematics back-
grounds as evident in the following quotation:
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Toward this aim, physicians with integrity and sophistication should partner closely with 
computer and data scientists to reimagine clinical medicine and to anticipate its ethical 
implications. It is important to systematically validate data from mobile health and 
consumer- facing technologies, particularly for cases in which dynamic intervention is pro-
vided (Darcy, Louie, & Roberts, 2016, p. 552).

Given the transformation of medicine into a data science (Steinhubl, Torkamani, 
& Topol, 2015), there might both be a concern that doctors become data centric and 
lose touch with patients or equally that they become illiterate in using computational 
thinking. In other words there is a need for assessing what it could mean to educate 
physicians to become competent data analysts by learning CT.

Aligned subjects with CT such as statistical computation and bioinformatics are 
taught in computational medicine that exists as a research field e.g., Johns Hopkins 
University. But medical CT, or something like computational medicine, is generally 
not taught or systematically built in to the medical curriculum at any medical 
school anywhere in the world. What we know is that medical students are taught 
medical statistics either as a stand-alone course or in subjects like social medicine 
or epidemiology. Thus medical students learn to formulate statistical/mathematical 
models of medically relevant phenomena (Freeman, Collier, Staniforth, & Smith, 
2008). This focus on statistics in medical school goes back at least to the 1993 
General Medical Council report Tomorrow’s Doctors which recommended that 
medical education be required to promote the critical evaluation of evidence. Here 
they are likely to learn to use computer programs or statistical packages.

But the concern is that medical students might not necessarily learn to abstract 
representations from complex data or to computationally represent complex medical 
phenomena. Nelson and McGuire (2010, p. 2) write in their plea for genomics teach-
ing in medical school and CME: “The growing field of genomics provides the most 
visible example of the explosion of medical data, but it is still only one component 
of the rapidly changing face of modern health care.” In the face of an explosion in 
medical data and in the opportunities for extracting such data, computational meth-
ods such as machine learning are needed to help physicians make sense of this data.

We can summarize and say that evidence is mounting that medical students will 
need to develop skills in manipulating computational data mining tools such as 
machine learning and evaluate how such tools can be used in delivering integrated, 
person-centered healthcare.

 Discussion: Integrating Medical CT into the Curriculum

Introducing computational thinking as a new subject into the medical curriculum 
introduces three challenges:

1. New subjects in the medical curricula need a research (and/or political) base. 
The first challenge is that a new subject needs to be well founded in some sort of 
justification such as research based, needs assessment, a political agenda, patient 
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perspective, etc. New subjects in the medical curricula such as the clinical sub-
jects of patient safety, quality insurance, and team training or the more funda-
mental subjects such as mathematics arguably have stronger justifications (more 
educational research, for instance) than say a new subject called medical CT. In 
other words there are also good arguments why say patient safety should be 
taught at (any) medical school in the world, as we hope to have provided good 
reasons why medical CT should be introduced.

Perhaps medical CT does not stand first in line for being elected as a new 
subject at medical school. Research is lacking on what medical CT could mean 
and we need to show how medical CT can be aligned with existing subjects and 
curricula goals. For instance, given that there is irrefutable evidence that large 
numbers of patients are harmed by healthcare delivery systems, it could be 
argued that patient safety should be a priority in the healthcare curricula at all 
levels. The need medical CT is addressing is a bit more general, but cuts deep 
into many subjects in a similar fashion as patient safety does; it is not restricted 
to a 1-week course, but about creating a whole curriculum. In other words, the 
new field of medical CT might stand side by side with other worthy subjects not 
readily introduced into the medical curriculum. This speaks to the need to inte-
grate medical CT into existing subjects rather than attempt designing a stand-
alone (say 1-week summer) course as argued in the following.

2. CT must be integrated into other subjects rather than compete with them. Our 
argument is that CT must be integrated into the medical curriculum, i.e., become 
part of several relevant subjects ranging from statistics, biochemistry, to clinical 
medicine that could be argued briefly in terms of five overlapping lines of 
evidence:

First, following the integrated science introductory curriculum developed at 
Princeton University (by David Botstein and William Bialek) and elaborated by 
others to show that CT should not be a stand-alone course (Qualls & Sherrell, 
2010). If this argument holds for medical education, and we believe it does since 
medicine is a bioscience and a clinical science, CT needs to be integrated into the 
curriculum in order to be effectively learned.

Second, with reference to the earlier mentioned point that medical CT should 
not be introduced as a mere instrumental course, as if CT was merely a proce-
dural skill. CT should not be reduced to course in how to use bioinformatics 
tools, but the underlying computational ideas and principles should be explained 
(Pevzner & Shamir, 2009).

Third, CT should be introduced early in the medical curricula as part of clini-
cal as well as bioscience learning in order for medical students to see their pro-
fession at a holistic level rather than individual subjects by making connections 
among different subjects say genetics and pharmacology and pathology by giv-
ing students a sense of the conceptual base of the computer models they can learn 
about to model these subjects.

Fourth, CT should be aligned with the idea of encapsulating concepts in the 
medical curriculum. It should not be left to the medical student to bridge CT with 
other medical subjects. When working with basic biosciences and patients early 
in the curriculum, medical CT should be integrated into these subjects.
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Fifth, it has repeatedly been found that medical students are burdened with a 
big working load (Bordage, 1987). Thus it could be questioned whether CT can 
seamlessly be added to the medical curricula; it is not clear whether there is 
room for CT in medical education as a stand-alone course or even if it is expected 
that medical students learn CT on top of what other requirements they have. A 
strong case must be made how CT can aid the medical student to use other sub-
jects (statistics, clinical medicine, etc.) and not just be an added burden.

3. CT should avoid making false promises. Ambitious, high-flung promises seem to 
follow new subjects in order to make a political strong case for being implemented. 
Examples of problems include when proponents promise that this or that subject 
can teach thinking or critical reasoning. Care must be taken with medical CT not 
to repeat potential pitfalls as when other subjects were introduced (such as “human-
ities in medicine,” “writing medical science,” or “critical thinking”). Perhaps in 
order to gain acceptance, some subject might end up making unwarranted or hard 
to defend claims about their effectiveness in producing valued goods such as 
(humanities in medicine) producing empathy or (writing courses) producing scien-
tific thinking. So proponents of CT should be careful not to make such promises.

To be clear, the issue here is not with any particular subject such as “humani-
ties in medicine,” which is a subject with well-documented rationale and positive 
effects on student professionalism. The point is not to compete with the humani-
ties and social sciences subjects in medicine, but seek to integrate itself into these 
and in fact most biological and medical subjects. For instance, a subject such as 
“medical ethics” could be a course that could integrate CT and pose two critical 
questions: What are the alienating effects of computer technology on patient-
physician relations? What are the possible moral dimensions of computational 
thinking on the practice of medicine?

A related problem is that it remains to be explained how medical students can 
learn critical or computational thinking—or any other thinking—in the abstract, i.e., 
without attending to the subject or material that the student is acquiring. Such 
generic thinking subjects risk becoming detached from the immediate concerns of 
medical students which are to pass the next difficult exam or engage in clinical 
duties immediately seen as relevant to being a physician unless they are taught by 
physicians or experts who know medicine. Medical CT should not run into the same 
risk of being perceived as detached from the main concerns of being a physician.

In summary, it could be argued that the rapidly expanding biosciences stand 
next in line to be adopted together with computer science into medical curricu-
lum. However, that would be to underestimate how much resistance medical 
curricula reforms can encounter.

 Concluding Discussion

Medical computational thinking should not be introduced hastily as the next subject 
in vogue in the medical curriculum. As we have argued, medical CT should be care-
fully integrated into the clinical and social and bioscientific subjects. This way 
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student will have a basis when they learn at the bedside and laying the foundations 
for their clinical practice. Becoming a clinician who can use computational tools to 
solve clinical problems starts with teaching integrated CT in other subjects in the 
medical curricula. But it also requires medical teachers who are steeped in computer 
scientific reasoning and can demonstrate how this produces clinical improvements 
and help treat patients.

Future work must investigate how the medical curriculum can integrate compu-
tational bioinformatics while at the same time keeping a focus on students’ early 
patient contact and the lesson that complex health solutions are value driven and 
constrained in terms of cost and capability. We need research to develop blueprints 
for how computing skills can be integrated seamlessly into the curriculum and 
whether it should replace other subjects. Furthermore, future studies must elucidate 
how the medical curriculum can teach medical students and novice physicians to 
become competent members of multidisciplinary health teams that design medical 
computational solutions. Medical students need to know enough about other ways 
of thinking and skill sets to interact effectively without necessarily spending time on 
large-scale computer coding.

Medical CT, as an educational task, could be about reasoning, exploring, trying 
things out virtually, and perhaps designing and evaluating, and given this content it 
might help develop an attitude of inquisitiveness in the students. Medical CT might 
specifically develop a theoretical attitude toward health and medicine around the 
notion of uncertainty and risk in decision making. Such uncertainty is amenable to 
be modeled in computational models and in models involving risk

If medical CT were taught internationally, resource sharing could occur across 
medical schools. Medical CT can become a welcomed addition to the medical cur-
ricula if a research based can be build. Medical CT calls for research investigating 
and initiatives supporting how healthcare is in the midst of a computational trans-
formation. We need to address a vision for the future of how the medical curriculum, 
from the pregraduate, graduate, to postgraduate level, can support the teaching, uti-
lization, and design of computational medical science and healthcare.
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Integrating Computational Thinking 
in Discrete Structures

Gerard Rambally

Abstract Computational thinking (CT) is broadly defined as the thought processes 
involved in formulating problems and their solutions so that the solutions can be 
automated. In this twenty-first century, computation is fundamental, and often 
unavoidable, in most endeavors, thus computing educators have the responsibility to 
instill in future generations of scientists, mathematicians, and engineers key compu-
tational thinking skills. There is a compelling case to be made for the infusion of CT 
skills into the K-16 education of everyone, given the pervasiveness of computers in 
all aspects of our lives. This poses the following critical educational challenge: how 
and when should students learn CT and how and when should it be taught? While 
discussions, deliberations, and debates will likely continue, the tightly knitted rela-
tionship between computational thinking and mathematical thinking suggests that 
one avenue to acquire CT skills is to integrate CT in the K-16 mathematics curricu-
lum. This chapter describes a study that uses a problem-driven learning pedagogical 
strategy and the APOS theoretical framework to integrate computational thinking in 
CSCE 2100, a sophomore level discrete structures course which is a required course 
for all Information Technology majors. Results demonstrate that integrating compu-
tational thinking in a discrete structures course can effectively and significantly 
influence students’ understanding of a range of CT concepts.

Keywords Abstraction • Algorithmic thinking • Computational thinking • Heuristic 
reasoning • Problem reduction • Problem transformation

 Introduction

There is no universally agreed upon definition of computational thinking (CT). 
However, Wing (2006) demonstrated through a wide range of examples that CT 
involves the thought processes in formulating problems and their solutions so that 
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the solutions are represented in a form that can be effectively carried out by an 
information-processing agent. Computational thinking centers on principles and 
practices that are fundamental to the computational sciences. It includes epistemic 
and representational practices, such as problem reduction, transformation, and mod-
ularization; recursion and iteration; parallel processing; constructing multiple layers 
of abstraction; problem decomposition; modeling and simulation; creating repre-
sentations; testing, verification, and error correction; and heuristic reasoning. These 
practices are also central to reasoning and problem-solving in mathematics.

There is ample evidence that mathematical thinking (MT) is central to CT. For 
example, Computing Curriculum 2001 (Roberts, 2002) included discrete structures 
in the undergraduate CS core curriculum, and most undergraduate CS curricula nor-
mally require discrete structures, calculus, linear algebra, and probability (Henderson, 
Baldwin, et  al., 2001). Rich, Leatham, and Wright (2013) illustrated the cross-
domain influence on learning mathematics and computer programming. Their anal-
ysis of two convergent principles, namely, core attributes and duality, revealed 
important causal, correlational, and anecdotal relationships when learning comple-
mentary subjects as mathematics and computer programming. The pedagogical 
implication is profound: mathematics, when taught and applied effectively, provides 
a set of powerful intellectual tools that leads to strong analytical skills. Mathematics 
is an indispensable tool for problem-solving and conceptual understanding in com-
puting. MT directly translates into thinking recursively, iteratively, abstractly, logi-
cally, precisely, and procedurally. Through these experiences students explicitly 
learn a number of critical CT principles and more importantly, develop a cognitive 
model for computational phenomena. Knuth (1985) observed that MT and CT share 
several modes of thought, particularly in representation of reality, reduction to sim-
pler problems, abstract reasoning, information structures, and algorithms.

Many researchers have put forward convincing arguments that mathematical 
thinking plays a crucial role in CT (Henderson et al., 2001; Larson, Fitzgerald, & 
Brooks, 1996; Sobel, 2000). It is the purpose of this research to capitalize on the 
synergistic relationship between CT and MT to instill in students key computational 
thinking skills. This study reports on the results of our experimentation that assesses 
the impact of teaching discrete structures via a computational thinking approach. In 
one section of a sophomore level discrete structures course, concepts in discrete 
structures were taught using the traditional problem-driven approach without the 
integration of CT concepts. In another section, concepts in discrete structures were 
taught using a problem-driven approach that infused CT concepts. Using a problem- 
driven learning pedagogical strategy and the APOS theoretical framework to teach 
concepts in discrete structures, students were exposed to a range of key CT skills. 
The study demonstrates a minds-on, seamless (i.e., no new content), problem-driven 
integration of CT in discrete structures which expose students to crafting solutions 
for problems in a representation that can be executed by an information-processing 
agent, thereby fostering key computational thinking skills without computer 
programming.
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 Theoretical Basis

The APOS theoretical analysis proposes a model of cognition. A model of cogni-
tion is a description of specific mental constructions that a learner might make in 
order to develop an understanding of mathematical concepts. These mental con-
structions are called A ctions, P rocesses, and O bjects, which an individual orga-
nizes into S chemas; resulting in the theoretical framework being referred to as 
the APOS Theory (Asiala et al., 1996). The APOS Theory, a constructivist theory 
of learning, is an extension of Piaget’s (1970) theory of reflective abstraction 
(Dubinsky, 1991) applied to the cognitive development of mathematical con-
cepts. An individual may use several types of reflective abstraction, such as inte-
riorization, coordination, encapsulation, de-encapsulation, reversal, and 
generalization to construct the mental structures: actions, processes, objects, and 
schemas.

In developing a theoretical description of a learner’s thinking about a concept 
and designing pedagogy to help the learner develop the mental constructions (action, 
process, object, and schema) related to the concept, a three-component framework 
is used. First, a preliminary genetic decomposition is devised, which is a model of 
cognition. This model of cognition is a detailed description of the mental construc-
tions (actions, processes, objects, and schemas) that a learner might make in order 
to develop an understanding of the concept.

Secondly, based on this theoretical analysis, instructional materials are devel-
oped and implemented. It is in this second component of the framework that the 
instructional materials include pedagogical strategies integrated with CT principles. 
Pedagogical strategies considered in this component include cooperative/collabora-
tive learning, inquiry-based learning, direct instruction, problem-based learning, 
quest-based learning, visualization, drill-and-practice, and project-based learning. 
In this second phase, an empirical assessment of the preliminary genetic decompo-
sition is conducted by having learners complete the instructional treatment that 
echoes the preliminary genetic decomposition. In this second component of the 
APOS-CT framework, the instructional treatment always includes a CT component, 
which is necessary to stimulate cognitive processes that resulted in the assimilation 
of investigated concepts.

Thirdly, observations of the learner’s thinking provide an opportunity to col-
lect and analyze data. Analysis of the data is used to determine whether the pre-
liminary genetic decomposition closely approximates the learner’s thinking or 
whether revision is necessary. The revised genetic decomposition is accompanied 
by revision of the instructional materials. Implementation of this revised instruc-
tion allows for further data collection and analysis, which may result in addi-
tional revisions of the genetic decomposition. The cycle is repeated until the 
epistemology of the concept is understood and an effective pedagogical approach 
has materialized.
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 Related Work

The Alabama Math, Science, and Technology Initiative (AMSTI) implemented an 
instructional treatment involving the immersion of computational thinking into the 
high school mathematics curriculum. The instructional treatment introduced stu-
dents in high schools math classes to CT skills such as abstraction and generaliza-
tion via computer programming (Jenkins, Jerkins, & Stenger, 2012). Participants in 
this study were first introduced to a problem, and then they were guided through the 
process of developing mini-programs for each mathematical concept needed and to 
write a general expression for each mathematical concept. The participants then 
created a Python program that solved the initial problem for specific cases. Finally, 
the participants wrote a convincing argument that their solution was true in general. 
The primary outcome of this study showed that participants in this instructional 
treatment made significant improvement in their ability to abstract, generalize, and 
write a convincing argument. A major difference between the AMSTI study and the 
study reported in this chapter is no computer programming was utilized in this study 
to teach CT concepts.

McMaster (2008) characterized two frameworks for mathematics, one based on 
proving theorems and the other based on solving problems. By examining word 
frequencies in various traditional, applied, and computational mathematics books, 
they developed two scales for measuring the theorem-proving gestalt or problem- 
solving gestalt exhibited in these textbooks. A Logical Math scale measures 
theorem- proving gestalt and a Computational Math scale measures problem- solving 
gestalt. Their research concluded that the word frequencies suggest that 
Mathematical, Abstract, and Computational (MAC) thinking framework integrate a 
broad array of topics relevant to computing. They showed that the word groups 
“model/modeling” and “algorithm/method” describe the main approach utilized in 
MT and CT to solving problems.

A number of computing organizations and researchers have identified areas of 
focus regarding MT in computer science education and have proposed undergradu-
ate computing curricula that integrate appropriate mathematics throughout the cur-
ricula (Henderson et  al., 2001; Roberts, 2002). Such curricula promote the 
connections between logic and programming (Henderson, 2003), reinforce the view 
of algorithms as constructive proofs (Lu & Fletcher, 2009), apply mathematical 
concepts such as relations to relational database systems (Gorman, Gsell, & 
Mayfield, 2014), Boolean algebra to computer architecture (Baldwin, Walker, & 
Henderson, 2013), and grammars to compilers (Henderson, 2003).

At the K-12 level, the CSTA and ISTE working group identified five dispositions 
that reflect values, motivations, feelings, and attitudes applicable to CT (Barr & 
Stephenson, 2011). Kmoch (2013) demonstrated the strong synergism of MT and 
CT by exploring the correlations between these CT dispositions and the eight learn-
ing outcomes from the Standards for Mathematical Practice (SMP) that are included 
in the Common Core State Standards in Mathematics.
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 CT Skills Integrated in Discrete Structures Concepts

 Algorithmic Thinking

Using heuristic reasoning and algorithmic thinking to develop efficient solutions is 
a critical computational thinking skill. Exposing students to algorithmic thinking 
can be accomplished while discussing concepts such as the greatest common divi-
sor. Recall that the greatest common divisor of two nonnegative integers p and q, 
denoted GCD (p, q), is the largest integer that divides both p and q evenly.

Euclid’s algorithm (Cormen, Leiserson, Rivest, & Stein, 2001) which uses the 
modulus (mod) operator is an elegant solution for finding the GCD (p, q). Euclid’s 
algorithm is based on repeated applications of the equality GCD (p, q) = GCD (q, p 
mod q) until p mod q is equal to 0. Since GCD (p, 0) = p, the last value of p is also 
the greatest common divisor of the initial p and q. For example, GCD (75, 30) = 
GCD (30, 15) = GCD (15, 0) = 15.

Students can then be exposed to the following more structured English- 
description of Euclid’s algorithm to compute the GCD (p, q):

Step 1: If q = 0, return the value of p as the GCD and stop; else, go to Step 2.
Step 2: Divide p by q and assign the value of the remainder to r.
Step 3: Assign the value of q to p and the value of r to q. Go to Step 1.
Step 2 provides an excellent opportunity for instructors to expose students to the 

modulus operator, which is explicitly used in the pseudocode below. Instructors 
may now convert this structured English version of the algorithm into the following 
pseudocode:

GCD (p, q)
while (q ≠ 0) do
  r ← p mod q;
  p ← q;
  q ← r;
return p;

The algorithm accepts, as input, two parameters p and q which are nonnegative 
integers. The output, namely, the GCD, is contained in the returned value, p.

Instructors may now compare the efficiency of Euclid’s algorithm with the effi-
ciency of the exhaustive linear search algorithm for computing the GCD. This com-
parison provides the opportunity to discuss yet another key computational thinking 
skill—that of choosing an appropriate representation for a problem. It also empha-
sizes the core CT concept of a function, which is indispensable in modularizing 
solutions to complex problems.

Exposing students to algorithmic thinking can also be accomplished while dis-
cussing concepts in combinatorics such as the permutations, combinations, and sub-
sets. Consider the problem of generating all the permutations of the elements of a 
set. For simplicity, assume that the elements of the set are the integers from 1 to n. 
Recall that the set {1, …, n} has n! permutations.

Integrating Computational Thinking in Discrete Structures
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One algorithm for generating all permutations in non-lexicographical order is the 
Johnson-Trotter algorithm (Johnson, 1963; Trotter, 1962). In this algorithm, a direc-
tion is associated with each component k in a permutation. The direction is indi-
cated by an arrow above the component in question,

      →  → ←   ←
e.g., 2 3 4 1.

Using this notation, the component k is said to be mobile if its arrow points to a 
smaller number adjacent to it. Thus, in the example immediately above, only 4 is 
mobile, while 3, 2, and 1 are not. Note that if an integer is on the rightmost column 
pointing to the right, it is not mobile. Similarly, if an integer is on the leftmost col-
umn pointing to the left, it is not mobile. The Johnson-Trotter permutation algo-
rithm may be stated as follows:

      PERMUTATIONS (n)                              ←←     ←
      Initialize and display the first permutation as 1     2  … n ;
      while (a mobile integer k still exists) do
      {
        Identify the largest mobile integer k;
         Swap k and the adjacent integer to which its arrow points;
        Invert the direction of all integers that are larger than k;
        Display the permutation;
      }

The algorithm accepts, as input, a positive integer n. The output is a list of all 
permutations of {1, …, n}. Tracing the PERMUTATIONS algorithm for n = 3 pro-
duces the following output with the largest mobile integer shown in bold:

     ←←←   ←←←    ←←←    →←←    ←→←   ←←→
     1    2   3         1   3   2    3   1   2     3   2   1    2   3   1    2   1   3

Exposing students to tracing Euclid’s algorithm to calculate the greatest common 
divisor of two integers and the Johnson-Trotter algorithm to generate permutations 
is precisely the type of minds-on activity that will strengthen their algorithmic 
thinking skills.

 Problem Transformation

Another key skill of computational thinking is reformulating a difficult problem 
into one whose solution is familiar, using techniques such as reduction, transforma-
tion, modularization, or simulation. This subsection will address the technique of 
transformation, while the next subsection will focus on the technique of reduction.
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Consider the problem of generating all the subsets of a given set A = {a1, a2, …, 
an}. Recall that the set of all subsets of a set is called its power set and the number 
of elements in the power set is 2n.

The problem of generating the power set can be used to illustrate the technique 
of transforming a problem into one that is computationally tractable and efficient. 
This transformation is based on the one-to-one correspondence between all 2n sub-
sets of an n element set and all 2n bit strings of length n.

Consider the case of n = 3. The problem now reduces to finding all the subsets of 
A = {a1, a2, a3}. Since all bit strings of length 3 are 000, 001, 010, 011, 100, 101, 
110, and 111, the one-to-one correspondence between the subsets and the bit strings 
easily yields the power set, as illustrated in (Table 1).

As illustrated in (Table 1), there is a one-to-one correspondence between all 2n 
bit strings b1, …, bn of length n and all 2n subsets of an n element set A = {a1, a2, …, 
an}. The simplest way to establish such a correspondence is to assign ai as an ele-
ment of the subset if bi = 1in the corresponding bit string and if bi = 0 then ai is not 
an element of the subset. With this correspondence established, we can generate all 
the bit strings of length n by generating successive binary numbers from 0 to 2n – 1, 
padded, when necessary, with an appropriate number of leading 0s.

The technique of transformation can also be illustrated by solving the problem 
of computing xn. The transformation technique utilized to compute xn is based on 
the representation change idea. Specifically, represent n as a binary string, i.e., let n 
= bQ … bq … b0. This implies that the value of n can be computed by evaluating the 
polynomial p(2) = bQ2Q + … + bq2q + … + b0. For example, if n = 23, its binary 
representation is 10111 and 23 = 1*24 + 0*23 + 1*22 + 1*21 + 1*20. Thus, 
x x x Q b bn p b

q
qQ

= = + + + +( )2 2
02  .

Consider the problem of computing 39. Since 9 = 10012, then 39 = 31001. (The 
notation 10012 simply means that the number 1001 is being represented in the base 
2 or binary number system.) A simple technique for computing binary exponentia-
tion is as follows: Since the leading digit in the bit string representing the exponent 
is always 1, set the initial value of the accumulator to the base (in this case 3) then 
continue scanning the bit string and square the last value of the accumulator for each 
bit. If the current bit is 1, also multiply the value in the accumulator by the base (i.e., 
3 in this example). So 39 can be computed as follows:

Binary digits of the exponent: 1 0 0 1
Product accumulator: 3 32 = 9 92 = 81 (81)2*3 = 19,683

This technique can be formally described using the following algorithm:

Table 1 Mapping the 1-1 correspondence between the 23 subsets of the set A = {a1, a2, a3} and the 
23 bit strings

Decimals 0 1 2 3 4 5 6 7

Bit strings 000 001 010 011 100 101 110 111
Subsets ∅ {a3} {a2} {a2, a3} {a1} {a1, a3} {a1,a2} {a1, a2, a3}

Integrating Computational Thinking in Discrete Structures
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        BinaryExponentiation (x, bQ ... b0)
        power ← x;
        for i ← Q – 1 downto 0 do
          power ← power * power;
          if bi = 1 then power ← power * x;
        return power;

Thus the problem of computing decimal exponentiation was transformed into the 
simpler problem of computing binary exponentiation. The BinaryExponentiation 
algorithm accepts as input a number x and a binary string bQ…b0 representing n. It 
computes xn by scanning the binary string from left to right. The BinaryExponentiation 
algorithm is significantly more efficient than the brute-force algorithm for comput-
ing xn.

 Problem Reduction

The problem-solving strategy of problem reduction can be summarized as follows: 
in order to solve a problem, reduce it to another problem that you know how to solve.

Recall that Euclid’s algorithm was used above to calculate the greatest common 
divisor of two nonnegative integers p and q, denoted GCD (p, q). Now consider the 
problem of finding the least common multiple of two positive integers, p and q, 
denoted LCM (p, q). Recall that the LCM (p, q) is defined as the smallest integer 
that is divisible by both p and q. For example, LCM (18, 60) = 180. A middle-school 
algorithm for computing the LCM is to compute the product of all the common 
prime factors of p and q times the product of p’s prime factors that are not in q times 
the product of q’s prime factors that are not in p. For example,

18 = 2 * 3 * 3
60 = 2 * 2 * 3 * 5
LCM (18, 60) = (2 * 3) * 3 * 2 * 5 = 180.
A far more efficient algorithm for computing the least common multiple can be 

designed by using problem reduction. Notice that the product of LCM (p, q) and 
GCD (p, q) includes every prime factor of p and q exactly once and therefore is the 
product of p and q. This generates the formula

LCM (p, q) * GCD (p, q) = p * q  → LCM (p, q) = (p * q) /GCD 
(p, q)

where GCD (p, q) can be computed using the efficient Euclid’s algorithm. For 
example:

LCM (18, 60) = (18 * 60) /GCD (18, 60) = 1080/6 = 180.
So we have reduced the problem of finding the least common multiple to the 

problem of finding the greatest common divisor.
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 Heuristic Reasoning with Backtracking

Utilizing heuristic reasoning to develop efficient solutions is yet another key CT 
skill. As an application of the power set (discussed above), consider the subset-sum 
problem which involves finding the subsets of a set S = {s1, …, sn} of n positive 
integers whose sum is equal to z. For example, for S = {1, 3, 4, 7, 11} and z = 8, 
there are two solutions: {1, 7} and {1, 3, 4}. Instructors can demonstrate the ineffi-
ciency of using exhaustive search to solve the subset-sum problem and then use 
heuristic reasoning with backtracking to generate a more efficient solution.

An exhaustive search algorithm for the subset-sum problem is as follows:
Step 1: Determine all the subsets of the set of n items given.
Step 2: Compute the sum of the elements of each subset.
Step 3: Identify the subsets whose sum is equal to z.
As a specific example, consider finding the subsets of the set S = {1, 3, 4, 7, 11} 

whose sum is equal to 8, i.e., z = 8. Table 2 shows an implementation of the exhaus-
tive search algorithm.

Recall that the number of subsets of an n-element set is 2n. Thus, an exhaustive 
search algorithm for the subset-sum problem is extremely inefficient. With a 
20- element set, there will be 1,048,576 subsets to evaluate, and with a 30-element 
set, there will be 1,073,741,824 subsets to evaluate. Instructors can use such data as 
an obvious gateway into developing a more efficient solution for the subset-sum 
problem and discuss other CT concepts such as heuristic reasoning, search space, 
state-space trees, branch-and-bound and backtracking. One heuristic that can be 
utilized is to sort the set’s elements in increasing order. Thus, s1 ≤ s2 ≤ … ≤ sn. The 
state-space tree can be constructed as a binary tree as shown in Fig. 1 for S = {1, 3, 
4, 7, 11} and z = 8. The number inside a node is the sum of the elements already 
included in subsets represented by the node. The inequality below a leaf indicates 
the reason for its termination. Note that every subtree of the tree represents a subset 
of the given set.

The root of the tree represents the starting point. At this point, no decisions have 
been made about any of the elements of the set. The left child of the root represents 
inclusion of s1 in a subset being sought. The right child of the root represents 
exclusion of s1 in a subset being sought. Similarly, the left children of all nodes of 
the first level of the tree correspond to inclusion of s2, while the right children of 
all nodes of the first level of the tree correspond to exclusion of s2, and so on. 
Therefore, a path from the root to a node on the ith level of the tree dictates which of 
the first i members of the set have been included in the subset represented by that node. 
The sum, s′, of these elements is recorded inside the node. If s′ = z, then one solution 
has been found. To find other possible solutions, continue by backtracking to the 
node’s parent. If s′ ≠ z, two heuristics dealing with inequalities can be utilized, 
namely, the node can be terminated as non-promising if either of the following 
inequalities is true:

s′ + si+1 > z (i.e., the sum s′ is too large)
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( )  (i.e., the sum s′ is too small)

If a node is non-promising, continue by recursively backtracking to the node’s 
parent as illustrated in Fig. 1. This heuristic state-space backtracking algorithm also 
finds the solution subsets {1, 3, 4} and {1, 7}. However, in the exhaustive search 
algorithm, all 32 subsets had to be evaluated, while only 18 subsets had to be evalu-
ated in the heuristic state-space backtracking algorithm.

Table 2 Implementation of 
the exhaustive search 
algorithm for the subset-sum 
problem

Subset Sum Sum = 8

∅ 0 No
{1} 1 No
{3} 3 No
{4} 4 No
{7} 7 No
{11} 11 No
{1, 3} 4 No
{1, 4} 5 No
{1, 7} 8 Yes
{1, 11} 12 No
{3, 4} 7 No
{3, 7} 10 No
{3, 11} 14 No
{4, 7} 11 No
{4, 11} 15 No
{7, 11} 18 No
{1, 3, 4} 8 Yes
{1, 3, 7} 11 No
{1, 3, 11} 15 No
{1, 4, 7} 12 No
{1, 4, 11} 16 No
{1, 7, 11} 19 No
{3, 4, 7} 14 No
{3, 4, 11} 18 No
{3, 7, 11} 21 No
{4, 7, 11} 22 No
{1, 3, 4, 7} 15 No
{1, 3, 4, 11} 19 No
{1, 4, 7, 11} 23 No
{1, 3, 7, 11} 22 No
{3, 4, 7, 11} 25 No
{1, 3, 4, 7, 11} 26 No
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 Problem Representation

Another critical computational thinking skill involves choosing an appropriate rep-
resentation for a problem or modeling the relevant aspects of a problem to make it 
tractable.

To illustrate the technique of choosing an appropriate representation, consider 
the problem of computing the value of a polynomial.

 p x a x a x a xn
n

n
n( ) = + +…+ + 
 

1
1

1 0a  (1)

at a given point x. For example, evaluate p(x) = 3x4 – x3 + 2x2 + x – 5 at x = 3.
Horner’s rule (Cormen et al., 2001) is a very elegant and efficient algorithm for 

evaluating a polynomial. Horner’s rule illustrates clearly the value in choosing an 
appropriate representation for a problem and is based on representing p(x) by a 
formula different from (1) above. The new representation is obtained from (1) by 
successively taking x as a common factor in the remaining polynomials of decreas-
ing degree:

 p x a x a x x an n( ) ( ( ) )= … + +… + 1 0  (2)

For example, transforming the representation of the polynomial p(x) = 3x4 – x3 + 
2x2 + x – 5 using Horner’s algorithm, we get.

Fig. 1 State-space tree of the backtracking algorithm for the subset-sum problem with S = {1, 3, 
4, 7, 11}, z = 8
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Using the representation in formula (2), we can now substitute a value for x at 
which the polynomial needs to be evaluated. This is far more efficient than using 
formula (1). The calculation can be structured with a three-row table, as illustrated 
in (Table 3). The first row contains the polynomial’s coefficients listed from the 
highest an to the lowest a0. Include all coefficients equal to zero, if any. The first 
entry in the second row contains an. The remaining entries in the second row are 
used to store intermediate results. Thus, the next entry is computed as the x’s value 
times the last entry in the second row plus the next coefficient from the first row. The 
final entry computed is the answer, i.e., p(3) = 232. The third row is used simply to 
show the relationship to formula (3).

Evaluating a polynomial using the transformed Horner’s representation can also 
be accomplished using an algorithmic representation. This provides yet another 
opportunity to reinforce algorithmic thinking in the mathematics curriculum. 
Horner’s algorithm may be written as follows:

        Horner(P[0..n], x)
        v ← P[n];
        for i ← n -1 downto 0 do
           v ← x * v + P[i];
        return v;

Horner’s algorithm accepts as input an array P[0…n] of coefficients of a polyno-
mial of degree n stored from the lowest to the highest and a number x. The value of 
the polynomial at x is returned in the variable v.

Horner’s algorithm could also provide an excellent gateway into another key 
computational thinking skill, that of using heuristic reasoning and algorithmic 
thinking to develop efficient solutions. The time efficiency for evaluating a polyno-
mial in standard form, i.e., Eq. (1), is exponential, while the time efficiency for 
Horner’s algorithm is linear. The number of multiplications, M(n), and the number 
of additions, A(n), are given by the same sum:

Table 3 Evaluating p(x) = 3x4 – x3 + 2x2 + x – 5 at x = 3 using Horner’s representation

Coefficients 3 −1 2 1 −5

x = 3 3 3*3 + (−1) = 8 3*8 + 2 = 26 3*26 + 1 = 79 3*79 + (−5) = 232
Components 
of formula (3)

Value of 3x − 1 Value of 
x(3x – 1) + 2

Value of x(x(3x – 
1) + 2) + 1

Value of 
x(x(x(3x – 1) + 2) 
+ 1) – 5
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    n-1
    M(n) = A(n) = Σ 1 = n ∈ Θ(n)
    i=0

 Recursion

Another key skill of computational thinking involves mastering the concepts of 
recursion and iteration. After all, the computing constructs, sequencing, selection, 
iteration, and recursion, are the building blocks of algorithms. The concept of recur-
sion can be illustrated by solving the problem of multiplying large integers. Many 
cryptographic algorithms require multiplication of integers that are over 100 digits 
in length. Such integers are obviously too large to fit in a single memory word of 
current computers and therefore require special treatment.

Consider the problem of multiplying two n-digit integers x and y where n is a 
positive even number. One approach to solving this problem uses the divide-and- 
conquer technique recursively. Specifically, both numbers are divided in the middle. 
Denote the first half of x by x1 and the second half by x0, and the first half of y by y1 
and the second half by y0. Using this notation, x = x1x0 implies that x = x110n/2 + x0 
and y = y1y0 implies that y = y110n/2 + y0. Thus:

z = x * y = (x110n/2 + x0) * (y110n/2 + y0)
= (x1 * y1)10n + (x1 * y0 + x0 * y1)10n/2 + (x0 * y0)
Now apply the same divide-and-conquer technique recursively to compute (x1 * 

y1), (x1 * y0), (x0 * y1), and (x0 * y0). The recursion is stopped when n = 1.
Consider the case of n = 4 and the specific problem of computing 1928 * 3746. 

Let x = 1928 and y = 3746. Dividing both numbers in the middle yields x1 = 19, x0 
= 28, y1 = 37, and y0 = 46. Therefore, x = 19 * 102 + 28, and y = 37 * 102 + 46. Thus, 
z = x * y = (19 * 102 + 28) * (37 * 102 + 46)

 = ∗ + ∗ + ∗ + ∗( ) ( ) ( )19 37 10 19 46 28 37 10 28 464 2

 (4)

Now apply the divide-and-conquer technique recursively to compute (19 * 37).
19 * 37 = (1 * 101 + 9) * (3 * 101 + 7)
= (1 * 3)102 + (1 * 7 + 9 * 3) 101 + (9 * 7)
Note that now n = 1, i.e., all multiplications involve one-digit numbers and so the 

multiplications can be performed, yielding
19 * 37 = (3)102 + (7 + 27)101 + 63 = 300 + 340 + 63 = 703.
Similarly, apply the divide-and-conquer technique recursively to compute (19 * 

46), (28 * 37), and (28 * 46) which will produce 874, 1036, and 1288. Finally, 
unwind the recursion using backward substitutions in Eq. (4) above to generate the 
answer of 7,222,288.
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 Abstraction

One school of thought claims that computing is all about constructing, manipulat-
ing, and reasoning about abstractions. Thus, having the ability to use multiple layers 
of abstraction to understand and solve problems in an efficient manner is a critical 
CT skill.

The concept of abstraction can be illustrated by solving the prerequisite-course 
problem (Cormen et al., 2001) which involves sequencing a set of courses so that a 
student takes the prerequisite course first. Consider the following specific example: 
A student must take a set of five required courses {C1, C2, C3, C4, C5} to fulfill the 
requirements for some degree program. The courses can be taken in any order as 
long as the following course prerequisites are met:

C1 and C2 have no prerequisites,
C3 requires C1,
C4 requires C2, C3, and C5
C5 requires C2.
What is the most efficient order in which the student should take the courses to 

ensure that all course prerequisites are met?
Let’s illustrate how abstractions such as directed graphs (digraphs) can be used 

to solve this problem. This problem can be modeled by a digraph, as shown in 
Fig. 2, in which vertices represent courses and directed edges illustrate prerequisite 
requirements.

Using this abstraction, the problem becomes as follows: can the vertices in the 
digraph be listed in such an order that, for every edge in the digraph, the vertex 
where the edge starts is listed before the vertex where the edge ends? Finding such 
an ordering is referred to as topological sorting. A necessary and sufficient condi-
tion for topological sorting to be possible is that the digraph has no cycles. The 
topological sorting algorithm is based on a decrease and conquer technique and can 
be stated as follows:

• Repeat
• Identify in a remaining digraph a source, which is a vertex with no incoming 

edges, and delete it along with all the edges outgoing from it.
• If there are several sources, break the tie arbitrarily.

C1 C3

C2 C4

C5

Fig. 2. The prerequisite 
structure of the courses 
represented as a digraph
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• If there is no source and vertices still exist, stop because the problem cannot be 
solved.

• Until (all vertices have been deleted).
• The order in which the vertices are deleted yields a solution to the topological 

sorting problem.

Figure 3 illustrates an execution of the topological sorting algorithm and gener-
ates the solution: C1, C3, C2, C5, and C4. Note that the topological sorting algo-
rithm may generate several alternative solutions.

 Controlled Experiment

The purpose of this study was to discover whether, by infusing CT concepts in dis-
crete structures, students are better able to formulate solutions to problems so that 
the solutions are represented in a form that can be effectively automated.

To determine the impact of this APOS-CT approach on students’ acquisition of 
CT skills, a quasi-experimental study was conducted in two sections of CSCE 2100, 
a sophomore level discrete structures course at a midsize south-western state uni-
versity. Each course met over a 15-week semester in two 75-min sessions each 
week. The same instructor taught both sections, using the same example problems, 
the same homework problems, and the same content material. In Sect. 1, the control 
group, concepts in discrete structures were taught using the traditional problem- 
driven approach and the APOS framework without the integration of CT concepts. 
In Sect. 2, the treatment group, concepts in discrete structures were taught using a 
problem-driven approach and the APOS framework that infused the CT concepts 
discussed in the previous section.

 Participants

The control group had 12 students, 10 of whom were males and 2 females. Eight of 
these students were IT majors, while the other four were mathematics majors. All of 
the students had taken one computer science course, namely, Computer Science I, 

delete C1                          delete C3 delete C2           delete C5         delete C4
C2 C4 C4

C5

C1 C3 C3

C2C2 C4C4 C4

C5 C5 C5

Fig. 3 Illustration of topological sorting for the five-course prerequisite problem
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which is a computer programming course in Java. All of the students had also taken 
Calculus I, which was the highest level of mathematics course taken. Both Computer 
Science I and Calculus I are prerequisites for the Discrete Structures course. The 
treatment group had 11 students, 9 of whom were males and 2 females. Eight of 
these students were IT majors, while the other three were math majors. All of these 
students had also taken Computer Science I and Calculus I.

 Instructional Treatment

In the instructional treatment of the treatment group, instruction proceeded under 
the assumption that participants were familiar with the three basic programming 
constructs, namely, sequence, decision, and repetition. The APOS theory of concept 
acquisition augmented with CT concepts was applied with the treatment group. This 
constructivist approach implemented the following archetype: First, a problem was 
selected whose solution required utilizing one or more of the key CT skills dis-
cussed above. The second step focused on students’ understanding of the problem 
(decontextualize), such as identifying the range and type of input, identifying the 
output, thinking about special cases, etc. The third step focused on designing an 
algorithm to solve the problem. Various algorithm design techniques were dis-
cussed. Students designed their algorithms using pseudocode, a natural language 
high-level description of an algorithm that uses the structural conventions of pro-
gramming languages, but is intended for human reading rather than machine read-
ing. In the fourth step, students had to prove that their algorithm yields the required 
result for every legitimate input using techniques such as mathematical induction. 
Finally, students analyzed their algorithm to determine the time efficiency using the 
big theta notation (Θ).

 Data Collection and Analysis

At the end of the semester, students from both groups participated in a number of 
graded activities designed to test their CT abilities. These activities involved tracing 
algorithmic solutions to problems; designing algorithmic solutions; detecting errors in 
algorithmic solutions; applying abstractions and heuristics to solve problems; refor-
mulating problems using transformation, reduction and modularization; and choos-
ing appropriate representations for problems. The results are summarized in Table 4. 
We used a statistical difference of means test to analyze the two groups, in which a 
student’s t-statistic of at least 1.33 (representing 90% confidence) was required to 
demonstrate significance.
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 Results and Discussion

All 12 students from the control group and all 11 students from the treatment group 
completed the course. All students in both groups participated in all the skills test 
activities. As the results in Table 4 show, there was no significant difference between 
the two groups’ algorithm tracing skills. This could be explained by the fact that 
both groups had a course in computer programming. However, the treatment group 
had made significant improvement in their ability to design algorithmic solutions; to 
detect errors in algorithmic solutions; to utilize abstractions and heuristic reasoning; 
to reformulate problems using techniques such as reduction, transformation, and 
modularization; and to choose appropriate representations for problems.

Tracing algorithms. Students from the control group and the treatment group 
were given 30 min in a classroom setting to trace three algorithms of varying diffi-
culty. For example, the intermediate level question was to trace the following algo-
rithm for the array [W, I, M, B, L, E, D, O, N] and generate the contents of the array 
after two iterations of the outer for loop:

     SelectionSort(A[0..n – 1])
            for i ← 0 to n – 2 do
                    min ← i;
                    for j ← i + 1 to n – 1 do
                            if (A[j] < A[min])min ← j;
                    swap A[i] and A[min];

There was no statistically significant difference in the scores between the two 
groups. This could be explained by the fact that both groups had successfully com-
pleted a course in Java programming and were familiar with tracing computer pro-
grams and algorithms.

Designing algorithmic solutions. Students from the control group and the treat-
ment group were given 45 min in a classroom setting to design three algorithms to 
solve three different problems of varying difficulty. For example, the intermediate 
level question was to design a presorting-based algorithm for finding the median of 
a list of n numbers which are stored in an array, A. The algorithm must have a maxi-
mum computing time of Θ(n log n).

Table 4 Summary of the skills test results for the two groups

Skills test activity Treatment group Control group t

Tracing algorithms 42.1/50 41.4/50 0.93
Designing algorithmic solutions 35.2/40 27.3/40 1.36
Detecting algorithmic errors 44.0/50 33.8/50 1.39
Applying abstractions and heuristics 23.5/25 19.7/25 1.35
Reformulating problems 22.7/25 17.6/25 1.38
Choosing appropriate representations 12.6/15 10.2/15 1.37
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The treatment group outscored the control group on this activity to a degree 
exceeding statistical significance (90% confidence). In the control group, raw scores 
ranged from a low of 11 to a high of 31 out of 40, with an average score of 27.3. In 
the treatment group, raw scores ranged from a low of 26 to a high of 38 out of 40, 
with an average score of 35.2.

Detecting algorithmic errors. Students from the control group and the treatment 
group were given 45 min in a classroom setting to identify and correct logic errors 
in three algorithms to solve three different problems of varying difficulty. For exam-
ple, the intermediate level question was to identify and correct the errors in the fol-
lowing algorithm so that the algorithm evaluates a polynomial at a given point, x:

     EvalPoly(P[0..n], x)
           p ← P[0];
           for i ← n downto 0 do
                   p ← x * p + P[i];
           return p;

The treatment group outscored the control group on this activity to a degree 
exceeding statistical significance (90% confidence). In the control group, raw scores 
ranged from a low of 21 to a high of 38 out of 50, with an average score of 33.8. In 
the treatment group, raw scores ranged from a low of 32 to a high of 50 out of 50, 
with an average score of 44.

Applying abstractions and heuristics. Students from the control group and the 
treatment group were given 45 min in a classroom setting to apply abstractions and 
heuristics to solve three different problems of varying difficulty. For example, the 
intermediate level question was to draw the binary tree representing the following 
infix expression: 9/(6 – 3) + 5 * (3 + 1). Using the binary tree, convert the expression 
to postfix notation and then evaluate the postfix expression using a stack.

The treatment group outscored the control group on this activity to a degree 
exceeding statistical significance (90% confidence). In the control group, raw scores 
ranged from a low of 9 to a high of 22 out of 25, with an average score of 19.7. In 
the treatment group, raw scores ranged from a low of 18 to a high of 25 out of 25, 
with an average score of 23.5.

Reformulating problems. Students from the control group and the treatment 
group were given 45 min in a classroom setting to reformulate three problems of 
varying difficulty using the techniques of transformation and/or reduction. For 
example, in the intermediate level question, students were given the following algo-
rithm which determines whether all the elements in a given array are distinct:

       ElementUniqueness(A[0..n – 1])
              for i ← 0 to n – 2 do
                 for j ← i + 1 to n – 1 do
                   if A[i] = A[j] return false;
              return true;

They were then asked to write a transform-and-conquer version of this algorithm 
by first sorting the elements of the array.
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The treatment group outscored the control group on this activity to a degree 
exceeding statistical significance (90% confidence). In the control group, raw scores 
ranged from a low of 7 to a high of 20 out of 25, with an average score of 17.6. In 
the treatment group, raw scores ranged from a low of 17 to a high of 25 out of 25, 
with an average score of 22.7.

Choosing appropriate representations. Students from the control group and the 
treatment group were given 45 min in a classroom setting to choose and apply vari-
ous representations to solve three different problems of varying difficulty. For 
example, the intermediate level question was to represent a given digraph as an 
adjacency matrix and then solve the topological sorting problem for the digraph 
using the adjacency matrix.

The treatment group outscored the control group on this activity to a degree 
exceeding statistical significance (90% confidence). In the control group, raw scores 
ranged from a low of 5 to a high of 12 out of 15, with an average score of 10.2. In 
the treatment group, raw scores ranged from a low of 10 to a high of 14 out of 15, 
with an average score of 12.6.

In summary, solutions proposed by the treatment group in all of the test activities 
were more sophisticated, elegant, and robust than solutions proposed by the control 
group. Furthermore, based on the results of several other studies (Kynigos, 2007; 
Sherin, 2001), it is safe to extrapolate and conclude that integrating CT in mathe-
matics courses, in general, can serve as an effective vehicle for learning a wide 
range of CT and MT concepts more robustly than with the traditional APOS method.

 Conclusions

Statistical analysis of our results give promising indications that infusing CT in a 
discrete structures course does, in fact, positively and significantly impact the acqui-
sition of CT skills of students that participate. We found it possible to provide prac-
tical, concrete, learning experiences about a variety of CT concepts using a 
problem-driven approach rather than programming. Our experience suggests that 
students developed firm mental models of various elements of CT and were able to 
apply such cognition to solve a range of discrete structures problems so that the 
solutions are represented in a form that can be effectively automated.

This study attempted to provide concrete experimental evidence of the synergis-
tic relationship between CT and MT.  Motivated by this relationship, this study 
 demonstrated that CT as an important tool for problem-solving and an effective aid 
to the conceptual understanding of mathematics. The central hypothesis of this 
study is that the development of MT in the K-16 curricula can be synergistically 
supported by a mathematics curriculum that integrates CT.

While this study was conducted at the post-secondary level, it is more important 
to introduce CT concepts much earlier, specifically, in the K-12 mathematics curri-
cula. It is important to emphasize that integrating CT in the mathematics curriculum 
is just one of many possible avenues to expose K-16 students to CT, which in turn 
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can improve their MT. Future work should involve collaborative efforts of educators 
and computer scientists to develop concrete examples of how computational think-
ing could be embedded in the core content areas, from literacy and the arts to math-
ematics and science.
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Abstract The paper outlines how computer science students in developing 
 countries can acquire computational skills using visual game programming environ-
ments aimed at motivating them to learning programming. The study shows how 
visual game programming using Alice supports various concepts of computational 
thinking and also how these concepts enhance the learning of introductory com-
puter programming. We based our analysis on 15 first-year computer science stu-
dents of the American University of Nigeria who used Alice in their introduction to 
computer science course. The results of the study show that Alice motivates students 
to learn programming and also enhances the successful use of computational think-
ing skills such as problem solving, debugging, simulation, algorithm building, and 
collaboration. The study concludes with some implications for theory and practice.

Keywords Computational thinking • Programming • Alice 3D

 Introduction

Efforts are being made by universities in developing countries to ensure that their 
graduates are not left behind in the competitive global information society; thus, 
these universities have adopted computing degree programs in almost all their uni-
versities (Dasuki, Ogedebe, Kanya, Ndume, & Makinde, 2015). Many of these uni-
versities have adopted the IEEE/ACM simulated computing curricular (Bass & 
Heeks, 2008). Computing programming courses using various programming lan-
guages dominate these curricular depending on the length of the program whether 
it’s 4 years or 3 years. Sarpong, Authur, and Owusu (2013) explain computer pro-
gramming to be an art that involves a person’s ability to deduce problems into solu-
tions. Computer programming is a crucial skill that must be grasped by any 
individual interested in pursuing a career in the computing sciences. Despite the 
reforms by universities of developing countries and the strong and growing need for 

A.M. Quaye • S.I. Dasuki (*) 
American University of Nigeria, Yola, Nigeria
e-mail: aquaye@aun.edu.ng; salihu.dasuki@aun.edu.ng

mailto:aquaye@aun.edu.ng
mailto:salihu.dasuki@aun.edu.ng


122

computer scientists to stimulate economic growth, students’ interest in computer 
science degrees have continued to plunge globally (Kelleher & Pausch, 2007).

Various factors contribute to the loss of student interest in degrees in computer 
science. One major factor is the perceived difficulty in any degree course that 
involves programming (Bergin & Reilly, 2005; Kelleher & Pausch, 2007). This dif-
ficulty has, therefore, resulted in the high failure and dropout rates in introductory 
programming courses at the university level. Furthermore, students’ lack of comput-
ing skills has further hindered their learning and understanding of programming. As 
such, there have been calls for the integration of computing skills into the tools and 
teaching concepts in computer science education (Wing, 2008; Armoni, Meerbaum-
Salant, & Ben-Ari, 2015). In computer science education, these skills have been 
referred to as computational thinking. Within the computer science domain, there 
has been wide debate on the definition of computational thinking (CT). However, 
the most referred definition in the literature is that of Jeannette Wing (2006) who 
defines computational thinking as a problem-solving approach concerned with con-
ceptualizing, developing abstractions, and designing systems which overlap with 
logical thinking and require concepts fundamental to computing.

Various studies have argued that it is essential for students to develop skills in CT 
before being introduced to introductory programming courses (Qualls & Sherrell, 
2010; Kazimoglu, Kiernan, Bacon, & MacKinnon, 2012; Lee et al., 2011; Han, Kim, 
& Wohn, 2015). As such, researchers in the domain of computer science education 
have conducted various studies to understand the different skills and approaches that 
constitute CT and which methods and tools can be used to teach and support students 
enrolled for computer science majors (Kazimoglu et al., 2012; Moreno, 2012; Katai 
& Toth, 2010). The use of visual programming using game- plays has been proposed 
as a pedagogical framework for learning computational skills on the one hand and 
motivating students to learn programming on the other hand (Lee et al., 2011; Han 
et al., 2015). In the current literature, studies that explored computational thinking 
through programming for university students taking computer science courses have 
been done in developed countries (Moreno, 2012; Katai & Toth, 2010). There has 
been little or no research in the context of developing countries.

Thus, in this paper, we examine how visual programming using Alice can support 
tertiary-level students in developing countries with computational skills and moti-
vate them to learn introductory programming language. The next section reviews 
the relevant literature on computational thinking. The research method, the research 
setting, and the analysis of the case are then presented. The final section concludes 
the study and provides some practical and theoretical implications.

 Computational Thinking

It is widely accepted in the literature that students perceive the learning of pro-
gramming difficult and boring, thus resulting in a high failure rate in introductory 
programming courses. According to Moreno (2012), it is significant for students to 
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focus not only on semantics and syntax of programming languages, but also 
 demonstrate an understanding of patterns evident in programming. To accomplish 
this, the notion of computational thinking has been a trending research area par-
ticularly within the computer science domain with the aim of incorporating com-
putational thinking into all levels of the computing education curriculum (Qualls & 
Sherrell, 2010; Wing, 2006). According to Wing (2006), CT involves five key ele-
ments, namely, conditional logic, distributed processing, debugging, simulation, 
and algorithm building. Wing noted that CT combines all the vital skills that are 
involved in solving problems with logical and systematic thinking and also engi-
neering and mathematical thinking.

Berland and Lee (2011) go further to classify CT into five categories and two 
stages. The five categories include conditional logic, algorithm building, debug-
ging, simulation, and distributed computation. The two stages are local logic and 
global logic. Dierbach et al. (2011) on the other hand identify the critical set of CT 
as identifying and applying problem decomposition, evaluating, building algo-
rithms, and developing computational models to problems. Ater-Kranov, Bryant, 
Orr, Wallace, and Zhang (2010) noted that the two common computational skills 
that are dominant in the literature are problem solving and critical thinking. 
Kazimoglu et al. (2012) noted that there is a lack of precise categories of CT skills, 
thus making it difficult to teaching CT across various disciplines outside computer 
science (Ater- Kranov et  al., 2010). To this end, digital game design and visual 
programming tools have been proposed as frameworks to teach both CT and intro-
ductory programming concepts at the same time because games are motivational 
and attractive in nature.

Werner, Campe, and Denner (2012) outline an innovative game model for learn-
ing computational thinking (CT) skills through digital game-play. They analyze how 
this game supports various CT concepts and how these concepts can be mapped to 
programming constructs to facilitate learning introductory computer programming. 
Han et al. (2015) on the other hand introduce Entry, a visual programming applica-
tion which is developed to facilitate student’s computational thinking. As an 
HTML5-based visual programming platform, Entry provides students with little or 
no programming background with an integrated environment in which they not only 
learn programming in an easy and fun way but also create, post, and share their own 
programs. Werner et al. (2012) examine students learning of computer science con-
cepts via Alice game programming. They noted that Alice game design demon-
strates a successful use of high-level computer science concepts such as 
student-created abstractions, concurrent execution, and event handlers. Other tools 
that have been discussed to support computational skills and motivate students into 
learning introductory concepts of programming include strategic board games 
(Berland & Lee, 2011) and mobile game development (Grover & Pea, 2013). Despite 
these efforts, there are still calls for more studies to show how game design can be 
associated with CT and how the teaching and learning of introductory programming 
can be supported by game design (Ibrahim, Yusoff, Omar, & Jaafar, 2011; Sung 
et al., 2011). Werner et al. (2012) go further to state that there is paucity of empirical 
evidence in developing CT for the purpose of learning programming through playing 
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digital games. Thus, there is a pressing need to have a better understanding of the 
impact of gaming in the teaching and learning of introductory programming courses 
and the development of CT skills through visual game programming.

To address this issue, this study explores Alice visual game programming 
and its benefits in motivating students in a developing country to learn introduc-
tory programming concepts and acquiring CT skills at the same time. We dem-
onstrate how Alice visual game programming motivates students to learn 
programming and also how it supports students’ computation thinking skills 
which are integral elements of learning programming. The following section 
discusses the philosophical assumptions underpinning this study. It also intro-
duces the research strategy and the methods used for conducting the research. 
Both the methodology and its associated methods were chosen with the aim of 
having a ‘valid’ research approach commensurate with the limited resources 
available for this study.

 Methodology

 Research Design

The research is based on a case study method because it enables multiple methods 
of data collection to gather information from one or a few entities such as people, 
groups, or organizations (Benbasat, Goldstein, & Mead, 1987). The research was 
carried out at the American University of Nigeria (AUN) in North East Nigeria. Our 
choice of AUN was a selection of convenience: the authors are faculty members in 
the computing department and were involved in the teaching of programming 
courses. The study was explanatory in nature (Yin, 2003) with the aim of under-
standing how Alice 3D animated programming language motivates students to learn 
programming using concepts of computation thinking. Fifteen first-year computer 
sciences students enrolled in the introduction to computer science course taught by 
one of the authors. Participation in all parts of the study was voluntary, and we are 
reporting on all the 15 students who indicated interest to participate in the study 
(see Table 1 for participant information).

Table 1 Participant information

Demographic description Frequency

Age 18–20 12
21–25 3

Gender Male 7
Female 8

Major Computer science
Software engineering

10
5

Status 1st year 15
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 Game Activity

The students were asked to create an animated boat racing game using Alice 3D 
visual programing, a free and innovative 3D programming environment that is 
designed to introduce students to object-oriented programming. Some of the stu-
dents have never programmed before nor had any related experience with using 
Alice, although there were four of them who had little experience of Ruby program-
ming language due to their participation in the university’s computer science club. 
The students were encouraged to feel free to discuss during the course of the game 
design. One major goal of the course was to provide an opportunity for students to 
learn the fundamental concepts of introductory programming language and problem 
solving. Qualitative data collection methods consisting of observations and inter-
view with students working with Alice are the basis of viewpoints presented in this 
paper. The qualitative methodology was chosen over the quantitative methodology 
due to its ability to show how the students learn programming using computational 
skills via Alice over time and to provide an account of the context within which the 
learning process is taking place.

Each interview lasted between 30 min and 1 h and was conducted during the 
two-day workshop of teaching Alice during the research fieldwork. Interviewees 
were asked probing follow-up questions on new and emerging topics as well as 
given opportunities to raise any other issues they considered relevant. Overall, a 
total of about 17 h from the interviews were compiled, organized, and analyzed. 
One of the authors acted as a practitioner researcher who Oates (2006) described as 
someone who already has a job and decides to put on a researcher’s “hat” to inves-
tigate their own work organization.

In this study, observation was very important as the authors could observe the 
difficulties faced by the students while learning programming in various program-
ming classes. A total of approximately 2 h of observation was conducted, and two 
pages of observation notes were compiled. Data collected from interviews and 
observations were analyzed using thematic analysis, a process of encoding qualita-
tive information (see Table 2). The themes and key concepts that were identified 
were related to concepts of computational thinking (see Table  2). Five themes 
related to computational thinking were identified, namely, problem solving, debug-
ging, simulation, developing algorithm, and collaboration. The data collected 
formed the basis of analysis presented in the next section (Table 3).

 Case Narrative

The students were presented with lab workshop to design a motorboat racing game. 
In the racing game, the player is required to steer a boat with the arrow keys through 
various rings trying to beat the clock to the finish line. The player must maneuver 
through each ring before getting to the finish line, and a score will keep track of how 
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many rings the player has driven through. The students already had Alice installed 
on their laptops a week before this lab session and had already sketched the various 
scenes of their game; thus, once they arrived in the classroom, they immediately 
started the lab tutorials to design the game world using the water template and two 
objects which are the motorboat and the torus. Many of the students did not have 
any difficulties carrying out this task as they had already created rough sketches of 
how they wanted the virtual world to look like and also had gone through the Alice 
user interface before coming into the workshop. Alice already has built-in action 
commands; hence, the students immediately added the action “move” for the boat.

Table 2 Sample of themes and transcript excerpts used in thematic coding

Themes Meaning and sources
Sample-coded excerpts from transcripts/
field notes

Problem  
solving

CT has been defined as a 
problem-solving approach 
(Wing, 2006)

“I was so confused but after brain 
storming with my friends, we designed a 
plan and we decided we will create a 
timer object and link it to the motorboat 
because when the boat starts moving, the 
timer should start and then when we solve 
that problem we will move to the next”

Debugging Debugging is a vital element  
of both programming and  
CT (Wing, 2006)

“Me and my friends are going the 
instructor tomorrow during his office 
hours in order to debug this game. I don’t 
feel comfortable that my animation is not 
working. I thought I could show my 
friends what I have developed but it 
doesn’t seem so”

Simulation Simulation is modeling or 
testing of algorithms or logic 
(Wing, 2006)

“My friends’ boat was flying rather than 
moving on the waters. Apparently he 
forgot to link the move method within the 
water object to the move method within 
boat object”

Developing 
algorithm

It is the planning of actions  
for events that are taking  
place; in its complex form,  
it is planning for unknown 
events (Wing, 2006)

“I am so happy I can see the way the 
animate boat moves immediately after 
running the program. Immediately I saw 
that the motorboat object was too big, I 
immediately started looking for the 
command method for resizing object 
because I remember we used the move 
command for installing motion into boat”

Collaboration Computational thinking as
distributed computing in  
which different pieces of 
information or logic are 
contributed by different  
players during the process  
of debugging, simulation,  
or algorithm building  
(Berland & Lee, 2011)

“I was so confused but after brain 
storming with my friends, we designed a 
plan and we decided we will create a 
timer object and link it to the motorboat 
because when the boat starts moving, the 
timer should start and then when we solve 
that problem we will move to the next”
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The various commands that were added were drawn upon from the textual 
 storyboard the students created. The students then simulated the behavior of the 
objects. The students got immediate feedback regarding the correctness of their 
program by simply looking at the behavior of the objects. After this first simulation 
step, many started facing some challenges as their objects were too big and there-
fore needed to be resized. Several students started playing around with action com-
mands and were able to add the “resize” action command to change the physical 
nature of the motorboat and torus.

“Starting off with Alice has completely eased the way for me to understand Ruby 
programming language…Now I understand the whole idea of objects in program-
ming…the motorboat is the object and the blue color are the attributes…”

Table 3 Summary of findings and their relationship with CT concepts

Game task
Related CT 
concepts

Theoretical justification for 
CT concepts

The students had to brainstorm and 
strategize a solution on how they could 
create a boat where a player could navigate 
through various rings to get scores within a 
period of time. Many of them designed a 
sketch of their world and how they wanted 
the movement of the boat. The students 
implemented this sketch on Alice using the 
various objects available on Alice and 
tested it to check if it helped solved the 
problem of creating the racing scenario

Problem  
solving

Computation thinking has 
been described as a 
problem- solving approach in 
various literatures (Wing, 
2008; Berland & Lee, 2011; 
Kazimoglu et al., 2012)

Students debugged their game scoring 
method to check for errors and then 
simulated their scoring method to see if the 
method was working accurately. The 
students’ continuous debugging and 
simulations of their methods and functions 
helped them in developing their abstraction 
as well as good programming practices

Debugging and 
simulation

Wing (2006, 2008) describe 
debugging and simulation as 
core significant elements of 
programming and 
computation thinking

The students developed a visual storyboard 
to show the various scenes and transitions 
in the game design

Developing 
algorithm

Dierbach et al. (2011) 
identifies computational 
thinking skills constitute 
building an algorithm that 
passes through a series of 
development life cycle

To discuss and interact freely with fellow 
students in order to compare solutions and 
find answers to problems during the design 
and development of the game

Collaboration Berland and Lee (2011) 
discusses about the social 
element of computation 
thinking that involves players 
coming together to contribute 
different logics during the 
process of algorithm 
building, simulation or 
debugging
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“A lot of other students say programming is difficult but when the instructor showed us how 
Alice works, I felt this was fun and pleasurable... It has lots of different characters and 
animations.”

“I am so happy I can see the way the animated boat moves immediately after running the 
program. Immediately I saw that the motorboat object was too big, I immediately started 
looking for the command method for resizing object because I remember we used the move 
command for installing motion into boat.”

Once the scene was ready, the students were tasked to plan and write a program for 
animating interactions between the objects and also between the objects and the virtual 
world in which they reside. Many students were confused on what step to take next.

“I don’t know if I should start creating the timer for the boat racing, the instructor is not 
giving us any tips, he said we are programmers and we should think properly on how these 
objects will work and that’s what we are doing I guess.”

“I was so confused but after brainstorming with my friends, we devised a plan and we decided 
we will create a timer object and link it to the motorboat because when the boat starts moving, 
the timer should start and then when we solve that problem we will move to the next.”

It was unanimously agreed during the lab session that the timer method be cre-
ated first, and the instructor gave the students a hint of how to go about it. All stu-
dents decided to create an object called time, create variable “value” to store the 
time, and then set the time object to the motor boat. Next, the students created the 
method for time countdown. Here, the students were introduced to conditions such 
as the while loop and if-else. After running this task, the students started encounter-
ing various problems.

Some of the students realized that they were using the wrong condition and some 
did not properly link the timer object to the motorboat object. At this stage, there 
was a lot of debugging and brainstorming taking place between students. On many 
occasions, the students laughed at each other when their colleagues’ game was 
encountering execution errors as shown in the quote below:

“My friend’s boat was flying rather than moving on the waters. Apparently he forgot to link 
the move method within the water object to the move method within boat object.”

Students also shared their difficulties with the instructor so that they could observe 
together and at the same time find out what was wrong and then follow the teacher’s 
instructions. In this way, students could correct the code and continue working.

“The instructor was so nice and funny that he made the lab session so enjoyable and he never 
got angry despite all our numerous mistakes and always answered all our silly questions.”

The lab session ended and many were so excited that they did not want to leave 
for their next class.

“I didn’t want to go for my next class because I wanted to find out what was the problem 
and solve it right then and there. But immediately I am done with classes today I am going 
straight away to work on my game design using Alice.”

“My friends and I are going to meet the instructor tomorrow during his office hours in order 
to debug this game..I don’t feel comfortable that my animation is not working. I thought I could 
show my friends what I have developed but it doesn’t seem so.”
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“The instructor was so interesting. He knew the subject so well and motivated us to learn.”

By the time the students resumed their next lab section, many of them had already 
implemented the timing for the game and were ready for their next task which was 
implementing the scoring system for the game. The students further created two 
methods that will increase the score when the player successfully steers the boat 
through the ring. Thus, as students participated in more sessions, they became more 
familiar with programming concepts:

“I thought the course would be very difficult because it is programming but after engaging 
the game tutorial, the class became easier and fun.”

Thus, by the end of the second lab session, students had already implemented an 
instruction method so that players know the rules of the game when they start the 
game. The students concluded the tutorials by taking home an assignment of creat-
ing methods for win and lose when the games ends. After completing the tutorials, 
the students went ahead on their own to make their games harder by reducing the 
amount of time in the game and also modifying the virtual world by adding various 
colors and objects. The instructor also asked the students to present a report on their 
experience with Alice, the problems they encountered, and the algorithms they 
applied to solve the problems. In the following lab sessions, the students and instruc-
tor examined several problems and their solutions presented by the students, expos-
ing both their weaknesses and strengths during the discussion phase. This 
brainstorming phase enabled students to gain a deeper and in-depth understanding 
of the problems and their algorithmic solution.

Furthermore, the instructor challenged students to shed light on their own ideas, 
thus motivating them to discuss the subject matter more and critique their solutions 
and look for alternatives. By doing so, the students were able to organize their own 
thoughts and understand areas they found difficult.

“For my game, I didn’t use a function when ending the game, and I learnt that was an easy 
way out, however other students did use a function and maybe that’s the reason their timing 
worked properly and mine didn’t but I was able to resolve it.”

In summary, the introduction to programming concepts using Alice has taught 
the students the use of sequence and logic skills through game development which 
has really encouraged and helped the students to learn programming concepts such 
as functions, loops, condition, sequence, and methods which they can use in more 
advanced programming languages. However, some of the students who have expe-
rienced some Ruby programming language in the university computer science club 
workshop noted that:

“In Alice too much of the work is done for you with the whole idea of drag and drop unlike 
the traditional languages like Ruby and Java where you need to do a lot of coding with both 
logic and syntax errors.”

Furthermore, students complained of the continuous crashing of Alice and their 
inability to save their codes. According to one student:

“In the middle of your work, Alice just crashes and when it does crash, it requires you to 
recreate your method again because it doesn’t allow us to save our code.”
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 Case Analysis

 Problem Solving

In the game activity, the students were tasked with the activity to create a boat rac-
ing game. Thus, the students had to brainstorm and strategize a solution on how 
they could create a boat where a player could navigate through various rings to get 
scores within a period of time. For example, many of them designed a sketch of 
their world and how they wanted the movement of the boat. The students imple-
mented this sketch on Alice using the various objects available on Alice and tested 
it to check if it helped solved the problem of creating the racing scenario. As 
described in the case narratives, many of them faced difficulties with sizing the 
objects and had to work out a way of resizing them to fit the screen. Some students 
kept trying various ways of mapping out their ideas of boat racing game into Alice 
until they were satisfied with their outputs. Overall, students refused to be discour-
aged with the various problems and were even excited trying to solve more com-
plex problems as they learned this was part of the learning process of 
programming.

Throughout the course of the tutorial, students learned the problem-solving 
approach of mapping out their ideas and trying them out through an iterative cycle 
until they solved the particular problem. With Alice when solving a problem, one 
gets an immediate feedback on how the animated program runs. This highly visual 
feedback of problem solving allowed the students to map their algorithms to the 
animated actions. The immediate feedback to problem solving resulted in an under-
standing of the various concepts of object-oriented programming languages.

 Debugging and Simulation

Many of the students found the testing and debugging mechanism of Alice very 
important. It allowed them to test their ideas to the animated actions. Majority of the 
debugging the students carried out focused mainly on their methods and functions. 
For example, students debugged their scoring method to see if the method was 
working accurately. The students’ continuous debugging of their methods and func-
tions helped them in developing their abstraction as well as good programming 
practices. It also enabled students to critically think about their solutions, i.e., to ask 
themselves if there was a better alternative to the solution they had implemented. 
Furthermore, the case study showed that students used Alice to program simple 
simulations. In this case, the goal of the simulation the students designed is to move 
a motorboat through various rings in order to beat a clock. Thus, the students cre-
ated various scenes and events and further tested them to see how the game 
 simulation works.
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 Developing Algorithm

The students developed a visual storyboard to show the various scenes and transitions 
of the game. They used a blue pencil color to paint and illustrate the water and the 
blue skies. They then drew a boat on top of the water and then added some rings on 
the pathway of the boat. The students used Alice’s scene editor to add objects to the 
virtual world and then meticulously organized the objects into various positions. 
As each successive scene is created, a screen capture is made and copied to a docu-
ment. The students also developed a textual storyboard containing the list of actions 
the boat should perform; thus, the actions in the textual storyboard can also be referred 
to as pseudo code. The textual storyboard allowed the students to prepare a planned 
structure of the programming codes to be implemented for the game animation.

 Collaboration

The findings of the study showed that students continuously interacted with each other 
when attempting to design and implement their game designs. When trying to debug an 
error or making a motion appear more realistic, the students usually shared ideas with 
each other. A lot of the students laughed at each other when their animations looked 
funny; as such, the students found Alice extremely fun to use. Also the game design using 
Alice brought about interactions between members of the class, many of whom usually 
do not talk to each, hence leading to team building skills among the students. Many stu-
dents took pride in their work by playing their games and showing it off to their friends.

 The Proposed Model

After analyzing the qualitative data, a model as shown in Fig. 1 was developed to 
understand the computational approach to learning programming using Alice visual 
game programming. The model suggests that computational thinking influences the 
use of Alice 3D visual programming tool which in turn also influences computational 
thinking. Moreover, Alice 3D visual programming tool motivates students to learning 
programming. The ability to learn and understand programming concepts with the 
help of Alice 3D visual programming also influences computational thinking skills.

 Discussion and Conclusion

The purpose of this research was to examine a computational approach to learning 
introductory programming course using visual game programming in developing 
countries using a case study of the American University of Nigeria. The importance 
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of this study stems from the paucity of research on how the teaching and learning of 
programming could be further enhanced in universities in developing countries. The 
study further contributes to the research on computer education in developing coun-
tries by proposing a model to understand computational thinking process when 
undertaking introductory programming courses using visual game programming.

The findings of the study showed the use of visual game programming as a prom-
ising strategy to introduce computer programming concepts to students. The findings 
show that students demonstrated an understanding of a range of computational think-
ing skills such as problem solving, debugging, simulation, building algorithms, and 
collaboration while using Alice to make games. The use of Alice to program was also 
fun, thus motivating students to learning common programming constructs such as 
method, functions, and events. Our results build on prior studies to show that Alice 
3D does induce computational thinking into students and also motivates them towards 
the learning of programming (Kazimoglu et al., 2012; Kelleher & Pausch, 2007).

The higher levels of motivation reported by the students to learn programming 
should enhance retention, because many students drop out due to the lack of motiva-
tion and the difficulty to understand programming concepts (Moreno, 2012). 
However, Alice does not teach them how to perform advance programming. Armoni 
et  al. (2015) found similar results when they investigated the use of the Scratch 
environment for teaching computational thinking concepts to middle school students. 
They found out that students who had learned programming concepts using Scratch 
struggled with advanced concepts in Java such as typecasting and dynamic pro-
gramming, which are not shared in Scratch. Also our studies found that as a result 
of students’ discussion and participation in the class activities, they were able to 
solve programs they encountered in the design of the game. This is significant 
because it shows that pair programming was an effective method to use for engaging 
students in CT (Berland & Lee, 2011).

The model proposed in this paper is based on data grounded in the experiences 
of IS students in a programming course at a Nigerian university and has not been 

COMPUTATIONAL THINKING
Problem solving

Debugging and simulation
Developing algorithm

Collaboration

VISUAL GAME PROGRAMMING
Alice 3D LEARNING PROGRAMMING

Fig. 1 Proposed Conceptual Model for Understanding the Learning of Programming at the 
Computational Thinking Level using Visual game programming
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tested. It is important to consider the context of the study. First, the course was 
hands-on; as such, the paper is focused on technical IS courses. The model in this 
paper may not be relevant to lecture-based courses such as business information 
systems. This idea and validation of the model could be examined in future research. 
The study was limited in that only a single focused case study was undertaken under 
severe time limitations; however, there is scope for undertaking a longitudinal study 
on the basis of current results to further provide an insight into how computational 
thinking can be taught to students as they continue to enroll in computer degree 
programs in universities across the country. The findings of this study cannot be 
generalized; the students who enroll at the university may be different from other 
students who enrolled at other universities. The results may not hold for students in 
public or bigger universities; however, other concepts can be developed and explored 
further in similar research settings.
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Abstract The purpose of this study was to deduct guidelines from an introductory 
programming course to understand the critical points based on the opinions of the 
students. These critical points could be a guide for future course designs. An intro-
ductory visual programming course was designed for novice learners during 2014, 
fall term at Middle East Technical University, Turkey. Qualitative data were col-
lected with interviews and observations. From the interviews, five themes emerged: 
communication, computational thinking, environment, motivation, and course rec-
ommendations. Results of the study revealed what motivates students, what parts of 
the course students found useful, and what parts should be replaced. An environ-
ment which is easy, visual, and communicative through an informal interface could 
be useful, especially in terms of motivation. Additionally, examples with useful 
products rather than meaningless algorithm examples could motivate students bet-
ter. Interviews also revealed topics students found to be difficult. Results of this 
study could be a guide for future visual programming course designs.

Keywords Novice programmers • Visual programming • App Inventor

 Introduction

Computing technology influences everyone’s life, thinking, and behaviors, and it is 
getting more popular day by day (Kwon, Yoon, & Lee, 2011; Kazimoglu, Kiernan, 
Bacon, & MacKinnon, 2011). From the last years of the twentieth century to recent 
years, computer and mobile software technologies have become more popular. 
Despite its growing popularity, technology is only a product for many people. Many 
who claim to be experienced with technology (and so-called digital natives) are 
more like consumers rather than producers (Smutny, 2011). There is a growing 
interest in helping others to become creators of technology rather than just 
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consumer. This has been promoted through computational thinking and 
 programming. However, programming is a very complex task to teach and learn, 
and it requires special attention (Kwon et al., 2011). When it comes to inexperi-
enced learners, programming language education is one of the most serious issues 
in teaching computational thinking (Saito & Yamauara, 2013).

Since the 1970s, a variety of solutions have been offered to solve this problem 
(Sorva, Karavirta, & Malmi, 2013) such as microworlds, visualization software, and 
visual programming languages (Malliarakis, Satratzemi, & Xinogalos, 2013; 
Rolandsson, 2013). One powerful solution is visual programming languages. Visual 
programming language is described by Smutny (2011) as “a programming language 
that lets users to create programs by manipulating program elements graphically 
rather than specifying them textually” (p. 358). The earliest and best known visual 
programming language is Logo (Papert, 1980 as cited in Sengupta, Kinnebrew, 
Basu, Biswas, & Clark, 2013). Many visual programming languages have since 
been developed to help people learn programming. In recent years, Alice, Scratch, 
BlueJ, and App Inventor (AI) are some of the more popular visual programming 
languages. Especially, AI provides an easy way to create their own mobile software 
programs that could help adult novice programmers, while others are mainly for 
K-12 level and educational purposes only. “MIT App Inventor is a drag-and-drop 
visual programming tool for designing and building fully functional mobile apps for 
Android” (Pokress & Veiga, 2013, p.1). Google App Inventor for Android was cre-
ated for users without coding experience to make simple apps for mobile phone 
released in 2010 (Bertea, 2011).

There are lots of empirical studies about learning programming. However, they 
mostly focus on learning outcomes, during or after the course (Bennedsen & 
Caspersen, 2012). This study sought to design a course by reshaping it based on the 
data collected from students through observation, interviews, and literature. The 
purpose of this study was to provide guidelines for an introductory collegiate-level 
visual programming course design for non-programming majors.

 Method

The overarching research questions for this study was: What are the guidelines for 
an effective, efficient and motivating introductory visual programming course 
regarding higher education level?

To answer this question, interviews were conducted with students, and progress 
of the students was observed throughout the course, following students’ discussions 
from the course Facebook group. Under the main research question, researchers 
also aim to discover: How could a visual programming course improve computa-
tional thinking skills of higher education students?

The study aimed to design an effective course for novice/non-programmers. 
There were two criteria to select participants: (1) they should have basic computer skills; 
(2) they should be a novice or non-programmer. The course started with 12 participants, 

K.Y. Kaya and K. Cagiltay



137

but one student dropped out at the beginning. There were five  participants from the 
Department of Elementary Mathematics, three from Computer Education and 
Instructional Technology, two from Elementary Science Education, and one from 
the Department of Mathematics. Most of the participants came from the faculty of 
education since the course opened in a department under the faculty of education. 
The course was 10 weeks long. Instead of a final exam, all of the participants were 
required to create their own application by using App Inventor and present it at the 
final week.

A course is given at the Department of Computer Education and Instructional 
Technology in a University in Turkey. The AI environment was used in the course. 
A qualitative methodology was used to collect and analyze data. Data were col-
lected through interviews, observations, and documents. The course’s success was 
assessed based on the data collected during and after the course from students. 
Creswell’s (2012) steps were used to analyze qualitative data. Steps include (1) 
reading the data initially, (2) dividing the text into segments of information, (3) 
labeling the segments of information with codes, (4) reducing overlap and redun-
dancy, and (5) collapsing codes into themes.

Results of this study aim to develop effective, efficient, and motivating intro-
ductory programming course guidelines which could lead to an advanced level 
programming education and help novice programmers to grasp computational 
thinking.

�Findings

Five themes emerged from the interviews, namely, computational thinking, environ-
ment, motivation, course recommendations, and communication. Interviews were coded 
as S1 to S11, which stands for student with a random number after it to distinguish par-
ticipants. We discuss each of these themes in greater detail in the following sections.

�Computational�Thinking�and�Programming�Concepts

Computational thinking is defined as an analytic approach to problem solving, 
understanding human behavior by drawing on the concepts fundamental to com-
puter science (Wing 2006). Some of the basic concepts like what is an algorithm and 
converting daily routines into algorithmic expression were taught, in addition to lab 
courses with step-by-step tutorials from the Massachusetts Institute of Technology 
(MIT). After the third week, an algorithmic question was posed to students each 
week. In the first week, students were having a hard time solving the question since 
they were still waiting for a step-by-step tutorial, which revealed that, in a visual 
programming course, a tutorial-only approach could lead students to simply copy 
what they see. The instructor guided them to think like the algorithmic problems 
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that were mentioned at the lecture hours. Students learned to put a complex daily 
life routine (e.g., brewing tea, getting on the bus) into simple steps. It helped  students 
to solve the problem.

Several students commented that after taking this course, they started to break a 
complex problem or a daily routine to basic steps. They started to think differently, 
especially dividing a problem to smaller steps.

After the first week, my perspective changed towards daily life. I began to think that types 
of things like the brewing tea example (implying the algorithm example). Like how can this 
also be like that (implying dividing into steps). (S2)

At least, I can say that it helped us to think differently. The course showed us a way like 
“to reach the end, you have to follow these steps” You have to break it down to pieces and 
then reach to the whole. (S11)

A student with previous programming experience stated that he not only learned 
the concepts better with the help of a visual programming environment, but the 
course also helped to choose the shorter route the solve the problem. Having mul-
tiple solutions to a problem and choosing the appropriate or easier one are also 
related to computational thinking (namely, they are a form of efficiency, which is an 
important aspect of computational thinking):

I understand variables better. And one other thing is, say you will develop a program. There 
are two ways of doing it, one is long one is short. This course taught me to choose the short 
one. (S8)

At the end of the course, some students thought that they understood algorithmic 
thinking or programming logic. One student related the programming logic in the 
course with the logical reasoning in mathematics, which was her major:

You know, there is a thing called logical reasoning. We are using that in this course. And the 
source of it actually is mathematics. (S11)

Since the codes are hidden in the blocks that are ready to use, the environment was more 
appealing for the first time learning. I learned the logic behind the programming now. In my 
opinion, it helps us so much to understand the programming logic. (S2)

We have been doing some stuff related to algorithms without knowing it. We were 
hearing from (students in) computer engineering like “this is my algorithm”, now we also 
know it. (S3)

 Environment

The programming environment was one of the most critical elements of this study. 
While some of App Inventor’s properties directly affected the other findings, in this 
part specifically positive and negative sides of the environment were examined. 
Curiously, few of them were controllable by the researcher. Nevertheless, these 
findings could be helpful for programming environment designers. Additionally, it 
could be helpful for the instructors to see the pros and cons of AI.

Some statements of the students are summarized in the table above about positive 
and negative sides of the AI environment. Regarding the positive sides, one of the most 
popular answers is that AI is easy. Students found the environment easy to learn, easy 
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to understand, and easy to create in comparison to other programming environments. 
First time learners made similar comments. The main reason behind this was the visual 
nature of the environment. Being syntax-free also related to the easiness of the 
environment, which also reduced the mistakes novice programmers might commit.

Students were also in favor of simultaneous testing. With the help of the compan-
ion app or emulator, the programmer could see every change she/he made instantly. 
There were many positives that students mentioned (see Table 1) that can be exam-
ined by future instructors.

There were also numerous negative sides to using the AI environment. The most 
frequent comment was that AI is slow. As the application is getting more complex, 
it is getting harder to work on the environment. In addition to its speed, students with 
previous programming experience complained about the environment’s inflexibility. 
They thought that if the programmer wanted to create a more complex program, 
the environment would limit them. While we agree with this opinion, the purpose of 
AI is not for creating the most complex applications, but rather for helping novice 
programmers to learn programming and rapidly develop a working product. In this 
aspect, AI appeared to be a good choice.

�Motivation

Espinar Redondo and Ortega Martín (2015) defined motivation as “what encourages 
students to freely devote their time to a specific activity” (p. 127). As the activities 
become more difficult and complex like programming, motivation becomes a bigger 
problem. Keller’s (1987) ARCS model, which is a method for improving motivation 
in education, was used as a framework to motivate and evaluate the motivation of 
students based on the interviews and the observations. The nature of AI helped to 
apply some motivation strategies into the course, such as (attention) active partici-
pation, use of humor, and real-world examples, (relevance) link to previous experi-
ence, perceived present worth, and perceived future usefulness (confidence) 
facilitating self-growth, providing feedback, giving learners control (satisfaction) 

Table 1 Positive and negative sides of App Inventor Environment based on the student interviews

Positive Negative

Easier to understand Slow
Easier to use UI arrangement and design issues
Visual, drag and drop, syntax alternative Companion app errors (reset button)
Simultaneous testing/publishing Restrictions/not flexible enough
Do not let syntax mistakes/instant feedback Undo button does not exist
Let you being creative Save issues
Separate design and block interface Do not let offline and group work
Interesting
Colored blocks
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presenting rewards, and immediate application of the knowledge. Since the main 
reason for using ARCS was to evaluate the course itself, the strategies that were 
mentioned above were not evaluated by the students. However, some of the opinions 
about the course overlapped with the strategies.

All of the students (N = 11) stated that they enjoyed the course. All of the stu-
dents except one stated that they will take a follow-up course if it’s offered. The 
exception student was thinking she learned sufficient about AI so she didn’t need 
it. Since motivation is having the desire to keep doing something, even at the end 
of the course, nearly all of the students demonstrated motivation towards learning 
programming. Unrelated with the environment and programming, students also 
found that the instructor’s being communicative, humorous, and sincere was 
another motivator.

According to students, the most important motivator was developing a working 
product, not just meaningless examples but an application that worked on their 
phones. Every week students created a hands-on working product rather than offer-
ing them just theoretical information. All of the students were very happy to create 
a product in lab hours. They found it interesting and enjoyable, as illustrated through 
their comments below:

Developing an application in course hour was very nice, not boring at all. (S1)
If I need any application why won’t I develop. I don’t want to be a leech now. I want to 

try by myself now. (S2)

AI also provided users an easier environment to create a product. Several stu-
dents stated that the easy-to-create nature of AI was another source of motivation 
for them.

I, for example, had no knowledge of programming. This course gave me the knowledge of 
programming. What part is used for what (in traditional programming languages) was very 
complicated for me. I became familiar with it. (S7)

It seems simple. Being simple makes me think like I will drag this and this will happen. 
Actually it motivates people more to create. (S11)

One student who had taken a mandatory C programming course for her major 
stated that AI’s visual environment made it more motivating.

(Implying C language) It was a little theoretic, we couldn’t see what we were doing. We could 
only see it when we printed it (implies compiling). But AI was very enjoyable, we can see 
it directly as an application. We can see it right on the phone. (S10)

Observations of the researcher throughout the course also support this finding. 
Some students tested the applications with enjoyment and curiosity. In week 2, one 
student stated, “I will show this to my roommate and tell him, ‘look I developed an 
application!’” One student said the course was fun because she created applications 
during lab hours.

I mean the course was fun in general, especially compared to the other (courses). Lab 
hours were focused solely on creating something, so it was very nice. We were the ones 
who created them, that was also nice. In the end, developing a product was very good as 
the result. (S6)
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Even the students with programming experience were very satisfied about taking 
the course. One student stated that “every student in our department (computer education 
and instructional technology) should take this course” Another student with previous 
programming knowledge was more confident now than before, expressing:

With AI I know that I can develop applications now, even if they are simple ones… I was 
thinking of learning Java for programming. This (mentioning AI) could be a substructure 
for it. (S5)

In conclusion, according to the interviews, communication with instructor, creating 
useful products, learning a new skill, and the easiness of the environment were the 
main motivators for the students.

�Recommendations�for�the�Course

Students’ opinions and recommendations were taken for the future implementation 
and reshaping the course into a more effective one. The survey asked about what are 
the parts that should be changed, removed from, or added to the course. The parts 
they did not like, parts they found boring, and parts that they were having difficulty 
to learn were also asked to see what parts are not working for them. Variables, the 
clock component, and database blocks were the popular answers regarding the dif-
ficult topics. Students wanted more attention to these topics, especially more hands-
 on simple examples.

The most popular answer when it comes to having difficulty in the course was 
variables. After the week that variables were used, some of the students referred to 
them as “orange things” since the color of the variable blocks was orange.

I didn’t understand the variables at first (S1).
Actually at the very beginning, orange things… Now I know what they are: “variables.” 

It was kind of difficult but I understood the logic behind it now. (S2)
As I have said before, orange things were our scary dream. (S9)
Orange things… Variables. After defining the variables… I mean ok we define it but 

how to use it (was the problem). (S11)

At first, some students tried to solve the problems without the use of variables. 
However, use of variables in some examples was a must. It was obvious that most 
students did not understand variables with the tutorials taken from MIT. Even with 
repeated practice, they had a hard time understanding the concepts. One possible 
reason could be that they confounded variables in programming with the concept of 
variables in mathematics. Some students stated that defining variables was the 
 confusing part, because they do not do such a process in mathematics.

Because in mathematics, we use variables but when we came here, we assigned it a value. 
That’s why it is different. (S3)

I was having difficulty defining variables. But in the last application I have developed, 
I defined 2 and it worked without any problem. (S9)
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Another part that was found difficult by students was the clock component. 
The clock component is a timer, which is widely used in AI examples. T clock is 
like a loop with a changeable interval and can be turned on or off with functions. 
This concept was foreign to the students. They stated they were having difficulty 
understanding it.

For example, I had a hard time understanding the logic of the clock component but I under-
stood after. What is an interval, what is enabled (the properties)? After using it for some 
time, I was like “is that it?” (S2)

Using the double clock was a little confusing. I guess that is also understood now. (S9)

As a solution to this, one student recommended providing a basic example that 
focused solely on the properties of the clock component.

There could be something like a counter example like this increase and that decrease. (S2)

Students wanted to learn some confusing components in detail with basic exam-
ples rather than MIT’s tutorials. Another difficult concept was that of database. The 
database component was used to carry information between multiple screens in one 
example. Some students tried using it for more complex tasks in their own projects. 
They requested more use of databases at the end of the course.

We only had a quick look at database. We could have spent more time on it (S5).
Variables and Database. When I was adding it (database) to the project, I realized that I 

had to look it again. (S9)
Database topic was really confusing. (S4)

One of the unexpected recommendations that some of the students suggested 
was providing more homework for them. This could also be a part of motivation 
because students demanded to have more homework, which means devoting more 
of their free time for the course.

There could be more like homework. We create one in course, we could have make one 
more at home for each week. (S1)

I mean one or two homework assignments would not get us tired. It could have been 
good. (S2)
You could have assigned short homework related with the topic of the week that could have 
helped us. (S11)

One student (S10) wanted the instructor to teach the programming concepts dur-
ing lecture hours theoretically and create the application during lab hours. Another 
student found theoretical instruction helpful because it helped her to understand the 
part she did not.

If it could go together like learning in theoretical course and creating it at the following 
course hour, it could be more effective. (S1)

Lecture hours for this course were used for an introduction to algorithms and let 
the students create algorithms of their own. But according to the students, additional 
theoretical hours should serve as supplementary instruction.
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�Communication

We asked students how they would most prefer to communicate throughout the 
course. Among options like e-mail, LMS messaging of the university, and Facebook, 
Facebook was chosen as the main communication tool. A group was created for the 
course, which was used for communication, resource, and homework sharing. Every 
participant already used Facebook. Furthermore, all participants reported they were 
very happy to use it. According to the expectancy of the instructor, students were to 
post their homework, ask their questions when they had a problem with their home-
work or project. Interviews pointed out three subcategories regarding the use of 
Facebook group: better communication, Facebook group as resource, and using 
direct messaging. While the first two were positive sides of the Facebook group, 
using direct messaging proved negative.

The main positive side effect of Facebook group according to students was pro-
viding a better communication than e-mail and LMS messaging, stating that com-
munication among them was very good because of the Facebook group. This was 
evident in their comments, some of which we outline below:

In my opinion, it was good. We could have had a hard time without it. E-mail is a little more 
formal. (S2)

It was good, I mean better communication… was established. Because we definitely 
were logging in to Facebook. (S6)

We were always in contact since it is the Facebook environment. (S10)

Two of the features that students found useful about Facebook were its wide-
spread use of instant notifications. Students were able to see the posts instantly.

Nearly everyone uses Facebook and uses it a lot. Even if they are not using (at that time), 
their phone sent a notification when something posted. (S1)

Most of us log in to Facebook 5–6 h a day. We know already what is in there and there 
was a warmer environment. (S2)

In my opinion, the Facebook group was good, it was nice. I don’t always log in to 
METU online (university’s LMS) but Facebook is always open, I can see it right away. (S7)

Open communication also helped student to use the Facebook group as a resource 
by learning from each other’s mistakes. Students were encouraged to ask questions 
through the wall, which was open to all members. Sometimes they answered each 
other’s questions by commenting on the post. The Facebook group was not only a 
communication medium for the students but also a resource and guide. 
Communication between instructor-student and student-student could be seen by 
everyone. Students found it very helpful, as evidenced by the following quotes;

Everyone’s asking questions to each other or sharing something in Facebook was nice 
because in a point where my friend knows better than me, it can help me. I mean we are not 
solely dependent on you. We can get new information from the other classmates, I mean 
sharing on Facebook is very nice. (S5)

Using Facebook seriously provides easiness and it was very nice. Because we learned 
from mistakes and questions of our classmates in there. But in the other courses, our friends 
contact for their project via e-mail and learned just for himself. I mean we had a little 
chance to learn it. Or didn’t even hear about it. (S8)
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Some students stated that they prefer Facebook group over e-mail communica-
tion which they found more “formal.” The Facebook environment provided them 
a friendlier medium since all of them use it for fun and communicating with their 
friends.

Another part of the Facebook group was an additional source of knowledge and 
using it as a resource by the students. Other than the instructor’s informative posts, 
students were also encouraged to post into the wall of the Facebook group. Students 
were directed to regularly post their progress and encountered problems about their 
project with screenshots. If possible, other students would help if they could. In 
some cases, the instructor assigned students to solve each other’s problems. Since 
the problems and the solutions were openly exposed, other students also learned the 
problem and its solution.

We can see the posts of others. We can use it also as a resource when we stuck in anywhere. 
When I was doing the project, I looked it like what my friends have done and how did they 
do it. (S1)

I posted (on Facebook) but not much. I mostly answer your questions. But when I saw 
comments of my classmates, I learned the things I need to ask. (S7)

I mean seeing what everyone else is doing was nice of course. So group was good and 
you (instructor) said that do not message your questions, post them on the wall, that was 
really good. Because we could see what our classmates having problem with. (S10)

One common problem among students about the use of the Facebook group was 
direct messaging. Even though the instructor encouraged students to use the page’s 
wall to ask questions, nearly all of them used the direct messaging for some type of 
questions. Messaging’s direction was sometimes student to instructor and some-
times student to student. The main reason behind that was fear of shame because 
they were thinking that their question was too easy to ask. They thought that if they 
asked the question openly to everyone, their classmates would think they were stu-
pid. One student answered the question of if he used the messaging instead of post-
ing the wall as follows:

S5: It happened a couple of times actually, I messaged to my friends directly rather than 
posting on the wall.

Instructor: I mean that’s one of the things I realized, there was always a direct messaging 
going on. Why was that?

S5: I mean… Sometimes I’ve had a very easy question in mind, and I think like ‘is it 
appropriate to ask’ and then asked with direct messaging.

If the thing I did not understand is too simple, it is like fear of being ashamed in front of 
the class. It is a psychological situation actually. (S11)

The main point of using the wall instead of messaging was to provide a bridge 
between students who knew the solution and who were having difficulty. However, 
sometimes students kept their questions private or to themselves. This was the only 
problem that was faced while using Facebook group. Both students and instructor 
found use of Facebook as a communication medium more successful than their 
experiences with other mediums they had used in other courses, such as e-mail 
groups or LMS messaging.
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 Discussion

The main research question of this study was, “What are the guidelines for an effective, 
efficient and motivating introductory visual programming course in higher educa-
tion?” Most of the studies in the area are based on expert opinion about how to 
design a programming course. According to Samurçay (1989), it is important to 
collect information about students’ conceptions and their learning process through 
the course. Their opinions about the course can be a guide for the instructor and the 
future design of such courses.

First of all, there are no ideal programming environments for all levels of learners 
or purposes. Instructors should review all of the relevant environments based on the 
target audience’s needs and characteristics. Participants of this study are  university 
students with low or no programming experience. While visual programming could 
be a good choice for novice learners, not all of the visual programming environments 
are relevant. For example, an environment like Scratch is very similar to AI but may 
be more suitable for younger learners.

Based on the findings, five themes emerged: communication, computational 
thinking, environment, motivation, and recommendations for the course. From these 
themes, important parts that could help to reshape the course into a more efficient, 
effective, and motivating one were extracted.

A visual representation of the themes that emerged is presented in Fig. 1. The model 
does not include all of the findings, but it could act as a guide for future courses that 
promote computational thinking among novice programmers. Each of these is 
discussed in greater detail in the following section.

Fig. 1 Representation of findings based on students’ experiences
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�Computational�Thinking

Because the main purpose of the course was to learn programming, students were 
not previously aware of what computational thinking consisted of. Through course 
exercises, they learned the basics, such as what is algorithm and how to break a 
complex problem into pieces. Even the most basic algorithm examples helped 
students to change their perspectives about their daily routines.

Kafai and Burke (2013) stated that while teaching computational thinking, pro-
gramming language (syntax, properties of the language) should not be the focus of 
teaching. Even three decades ago, it was very similar to today’s thoughts. Soloway 
and Spoher (1989) proposed that learning programming can help students to 
develop “good habits of mind” which will make them more creative and effective 
problem solvers. Computational thinking comes with programming education as a 
good side effect.

Computational thinking can be used while solving a complex task or designing a 
complex system by reformulating it into little pieces that we know how to solve 
(Wing, 2006). For computational thinking, regardless of the environment, real-life 
algorithmic examples should be given to establish the connection between daily 
routines and computational thinking. In addition to tutorials, problems should be 
presented at the lab hours that are solvable with basic steps. Computational thinking 
can be understood better with a combination of non-computer-related problems 
such as daily routines and basic programming problems that can be solved with 
little steps. According to the US National Research Council’s (2010) report “com-
puters can facilitate this process by guiding students as they explore complex 
 problems, use scientific visualization, and collaborate with peers” (p. 62).

An easy-to-learn programming environment could help students to focus on 
 computational thinking and problem solving rather than focusing on syntax (semi-
colons, parentheses, debugging). It is essential for a teacher, especially in an intro-
ductory programming course, to provide students a programming-centered learning 
environment rather than a programming language-centered environment. As a visual 
programming environment, AI proved suitable because of its focus on programming 
rather than syntax.

This course is not a “computational thinking” course. However, basic algorithms 
and the visual nature of the environment helped students to think differently than 
before the course. Some students stated that they see things different now, meaning 
they saw that every problem could be divided into little steps. One of the most 
important outcomes is that one student with previous programming experience said 
that he not only understood some programming concepts better, but he also learned 
to solve a problem with shorter solutions after this course. The reason behind this 
could be reducing the cognitive load of the student by shifting focus from syntax to 
think through the problem. It is also essential to construct a bridge between algo-
rithm and programming. Even with minimum effort and no emphasis on computa-
tional thinking, students started to discover a new way of thinking with the help of 
the visual programming course.
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�Environment

The programming environment was one of the most important parts of this study. 
Opinions of the students about the environment were also taken. Based on the 
answers and characteristics of the students, the most important feature of the envi-
ronment is being visual and easy as expected. Cunniff, Taylor, and Black (1989) 
also state that visual programming languages can help novice programming learners. 
The environment is like the hub of this study. Nearly all of the findings were related 
with the environment. Since those features have investigated at the other parts, posi-
tive and negative sides of the environment were mentioned by the student. It is not 
at the control of the instructor, but findings regarding the positive and negative sides 
could help the design team of AI and future instructors that will think to choose AI 
as their course’s environment. If they are planning to design a course for advance 
programming, it is obvious that AI is not the best environment for them.

�Motivation

Motivation is one of the critical components not only for learning programming but 
also any kind of learning. Lai (2011) defines motivation as “reasons that underlie 
behavior that is characterized by willingness and volition” (p. 2). Some strategies 
adapted to the environment based on Keller’s (1987) ARCS model were used to 
motivate students. According to the Wolber, Abelson, Spertus, and Looney (2011), 
visual programming  environments could be an essential motivator for the program-
ming classes (cited in Mihci & Ozdener, 2014). However, there was a lack of infor-
mation about what parts were more motivating based on the students’ opinions. 
According to the students, they were mostly motivated by (1) creating useful prod-
ucts, (2) the easiness of the programming environment, (3) learning a new skill, and 
(4) good communication with instructor. The first three will be investigated further 
since they are directly related to computer programming.

Creating Useful Products. Based on the findings, one of the most powerful moti-
vators was developing an actual, working product. Most of the examples in introduc-
tory programming courses that teachers want students to produce are pointless and 
boring. They mostly consist of examples like computing the sum of squares of first 
twenty odd numbers (Papert & Solomon 1989). Instructors should use examples that 
are useful rather than examples just focus on teaching the basic concepts.

Ease of Use. The easiness of the environment also motivated and encouraged 
students to learn and keep learning computer programming. Most students stated 
that they might develop their own application even after the course ended, because 
they thought that they could easily create what they needed. Boulay, O’Shea, and 
Monk (1989) stated that it is better to use a simple and visible first language for the 
novice learner. That appears to have been the case in this study, which motivated 
novice learners to extend their knowledge beyond the classroom.
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Learning a New Skill. Some students stated that learning a skill that they had 
never studied before made the course more interesting for them. This finding 
could be seen as inconsistent with the high dropout rate (up to 50%) of computer 
programming courses for the new comers (Ma, Ferguson, Roper, & Wood, 2011; 
Porter, Guzdial, McDowell, & Simon, 2013). It is likely that the formerly men-
tioned finding of programming environment easiness mitigated dropout. Instead, 
students turned their focus away from programming complexity and were able to 
seem to focus on the fundamentals with the help of visual programming 
environment.

�Recommendations�for�the�course

Students suggested some changes for the course, highlighting some topics they 
had some problems understanding or using. The most common topics they strug-
gled to understand were variables, clock, and database. Soloway and Spoher 
(1989) have previously outlined difficult concepts for novice programmers, such 
as variables, loops, and arrays (as cited in Robins, Rountree, & Rountree, 2003). 
Students’ answers regarding the difficult topics were consistent with the litera-
ture. They also offered solutions about how to overcome these difficulties. Variable 
was the most popular answer by far when it comes to having difficulties. Some 
students noted that they did not understand the concept very well. They explained 
that the concept did not fit to their knowledge of variables in mathematics. Samurçay 
(1989) also emphasized that the concept of variable in computer programming is 
different than the concept in mathematics and therefore a new concept for new 
learners. Instructors should be aware of this discrepancy and inform the learners 
about the differences to remove the interference; to overcome this problem, students 
also offered a strategy: teach variables with basic examples separated from the nor-
mal tutorials.

Since the course did not have enough time to go deeper into databases, students 
recommended reserving more time for that specific topic. Clock was another topic 
that some students did not understand easily. Clock is very similar to loops with an 
interval. Students also suggested that clock should be taught with some basic 
examples, removed from the tutorials, and that every property of it should be tested 
by itself.

Finally, 3 weeks of theoretical lectures were also presented to the class to teach 
basic algorithm concepts. However, students recommended that there should be 
more theoretical hours, and those hours should act as recitation for the lab exam-
ples. In addition to this suggestion, some students indicated that they should have 
more homework. In sum, students felt that they could have better understood the 
topics they struggled with if more time were given to those topics individually rather 
than in the midst of more complete projects.
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�Communication

Although the goal of this course was to cultivate computational thinking among 
non-CS majors, one of the most important elements to facilitate successful interac-
tions occurred through our chosen method of communication. A Facebook group 
was created for communication and resource sharing. Mori (2007) reported that 
over 95% of undergraduate students regularly use Facebook (cited in Menzies, 
Petrie, & Zarb, 2015). All of the participants in this study were already using 
Facebook and favored Facebook group use. Based on the findings, students wanted 
to communicate in a more informal and faster way than e-mail or LMS communica-
tion systems. Madge et al. (2009) states that Facebook is already used as a learning 
medium among students for informal learning or academic discussions among 
friends, but not for formal teaching from instructor to students (as cited in Sterling, 
2016). In this study, students showed that their communication with the instructor 
or other students was better than the other courses because of the informal environ-
ment facilitated through Facebook. In this theme, some overlapping answers 
revealed the critical points of communication medium of the course, namely, (1) 
better communication because of always online status, (2) the instant course notifi-
cations, (3) using it as a resource by looking at other students’ projects and mis-
takes, and (4) being ashamed of asking easy question directed some students to 
direct messaging. Only the fourth critical point was negative, because it prevented 
conversion of some knowledge from tacit to explicit. This phenomenon did not 
occur consistently. It occurred only for the so-called “easy” questions for the stu-
dents. However, it leads to asking very similar questions with messages. Verbal 
encouragement could be helpful but it is not enough for some students. As a solution 
to this, in addition to verbal encouragement, the instructor could ask students to post 
their questions to the Facebook wall for each week and give extra credit to the 
 questions, no matter how easy they were.

All in all, the Facebook group was successful based on opinions of the students 
and observations of the instructor. However, creating a Facebook group might not be 
the universal answer for all of the courses or audiences. We recommend picking the 
communication medium by asking the target students and analyzing the course’s 
structure, since the popularity of the different mediums vary among people and some 
topics may not be suitable with specific medium. For example, e-mail could be a 
better choice for older adult learners who do not use social media as regularly.

 Conclusion

Even though computational thinking is not limited to computer programming, this 
introductory programming course demonstrated the potential for teaching computa-
tional thinking to non-CS majors. Results of this study show that choosing a rele-
vant environment to students is important since potential of the course is shaped 
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around the environment. It can be said that an environment that supports learners 
and offers useful products as the end products is essential for novice programmers. 
Even though students had difficulties in understanding some concepts, they under-
stood those concepts with the help of a scaffolded environment and effective com-
munication among students. Students were motivated to complete the course since 
they believe that it is useful and changed their perspectives on things as quotidian as 
their daily routines. This finding also shows the implication for the computational 
thinking potential of a well-designed introductory programming course. More 
research studies that include opinions and student feedback may provide guidance 
for instructors from a different perspective. In short, in our case, the use of visual 
programming language, paired with tasks that sought to demonstrate computational 
concepts in everyday lives and facilitated through a well-used communication 
medium, proved to be an effective method for teaching computational thinking to 
non-CS majors.
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tional thinking by completing team projects. We also illustrate how small universi-
ties and K-12 schools can cost-effectively offer CT education by forming coalitions, 
leveraging emerging cyberlearning technology, and sharing educational resources.

Keywords Computational thinking • Model-based learning • Informal learning • 
Learning-on-demand • Problem-based learning

H.P. Liu (*) • S.M. Perera 
Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
e-mail: hong.liu14@gmail.com; pereras2@erau.edu 

J.W. Klein 
Syracuse University, Syracuse, NY 13244, USA
e-mail: jwklein@syr.edu

mailto:hong.liu14@gmail.com
mailto:pereras2@erau.edu
mailto:jwklein@syr.edu


154

 Introduction

Four years after Wing’s influential short paper about computational thinking (CT), 
Cuny, Snyder, and Wing (2010) offered the following definition of CT:

“Computational thinking is the thought processes involved in formulating problems and 
expressing its solution as transformations to information that an agent can effectively carry out.”

By its definition, computational thinking involves multiple disciplinary fields 
including computer science, mathematics, and various application disciplines. 
Currently, relatively few K-12 teachers have such multidisciplinary knowledge, 
which seriously delays the spread of CT education. However, it is not only second-
ary schools that lack the resources and qualified teachers to provide CT learning 
opportunities, most small teaching universities are also inadequately structured to 
prepare students with the needed computational thinking skills and knowledge. This 
chapter illustrates how small universities and K-12 schools can cost-effectively 
offer CT education by forming coalitions and leveraging emerging cyberlearning 
technology (Borgman et al. 2008). Reforming in-school K-12 CT education takes 
too long to effectuate, and consequently, we argue that first implementing CT in 
out-of-school time education can provide an efficient path for implementing CT 
K-12 education (Liu & Klein, 2013). The K-12 programs we explore in this chapter 
are designed to exploit out-of-school settings. This strategy is similar to corpora-
tions that have research and development organizations creating next-generation 
products; after- school programs can be used to develop and refine CT programs and 
then migrate them into the in-school curriculum as either new courses, or by inte-
grating lessons and learning activities into the existing mathematics and science 
courses such as algebra and chemistry courses.

To promote active learning of CT for students of different age groups and 
diversified academic backgrounds such as different majors and experiences, we 
propose several model-based learning programs that emphasize cultivating stu-
dent problem solving ability through problem-based learning (PBL). 
Mathematical modeling plays the central role in helping students abstract and 
formulate complex real-world problems. In our programs, an R&D process was 
used to provide a coherent framework for designing instruction and assessing 
learning in which the instructional and assessment methods were aligned with a 
common idea: model-based learning and reasoning. To be more specific, we use 
the term model-based learning to refer to learning from models, learning with 
models, and learning by modeling (Spector, 2009). On the other hand, model-
based reasoning is associated with the mental models that constitute the funda-
mental basis for qualitative reasoning (Johnson- Laird, 1983). Seel and 
Blumschein (2009) note that model-based reasoning occurs when an individual 
mentally manipulates an environment in order to simulate (in the sense of a 
thought experiment) specific transformations of the system which may occur in 
real-life situations. In our model-based learning programs, conceptual modeling 
is emphasized to precede mathematical modeling because it provides the 
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 traceability of the underlying assumptions of the mathematics models and hence 
facilitates model validation (Liu & Raghavan, 2009). In addition, conceptual 
 modeling is essential for model-based learning assessment because it helps the 
observer know how learners approach a problem and provides external represen-
tations of their mental models (Seel & Blumschein, 2009).

Besides this introduction, the rest of the chapter is organized as follows: The 
next section discusses what to teach and how to teach in order to facilitate CT 
learning. The section also surveys prior funded CT programs for secondary and 
postsecondary schools. Section “Promoting Computational Thinking at ERAU” 
describes two projects to promote CT for undergraduates. Section “Middle School 
Computational Thinking” discusses methods for developing CT in middle schools 
within the context of programing and creating simulations. Section “Future 
Work” presents future work in providing CT programs in local secondary schools 
as well as colleges. In section “Conclusion,” we conclude the chapter with our 
vision of the next steps for implementing CT education by employing emerging 
educational technologies.

 What to Teach, How to Teach, and Relevant CT Programs

The report by the President’s Council of Advisors on Science and Technology, 
Prepare and Inspire: K-12 Science, Technology, Engineering, and Math (STEM) 
Education for America’s Future (2010, p. 46), proposed a definition of K-12 STEM 
education that includes computer science and states that students need

“a deeper understanding of the essential concepts, methods and wide-ranging applications 
of computer science, students should gain hands-on exposure to the process of algorithmic 
thinking and its realization in the form of a computer program, to the use of computational 
techniques for real-world problem solving, and to such pervasive computational themes as 
modelling and abstraction, modularity and reusability, computational efficiency, testing 
and debugging, and the management of complexity. Where feasible, active learning, 
higher- level thinking, and creative design should be encouraged by situating new concepts 
and techniques within the context of applications of particular interest to a given student or 
project team.”

Critical thinking, analytical thinking, and problem solving are consistently 
ranked in the top list of the twenty-first-century cognitive skills needed to tackle the 
challenges of increasing complex technology and big data (Finegold & Notabartolo, 
2011; Zorn et al. 2014; Liu, Ludu, & Holton, 2015a). As the crucial problem solving 
skills for the next generation of work force, students need to learn how to leverage 
computing resources, how to abstract the relevant problems in mathematics formal-
ism, and how to make sense of data. Wing (2006) summarized that the two corner-
stones of CT abilities are abstraction and automation. Abstraction depends on the 
mathematical modeling ability to conceptualize a problem and reduce its complex-
ity by vetting the nonessential factors and breaking it down into manageable smaller 
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problems. Automation depends on the engineering ability to formulate tasks that the 
computer or smart devices can execute.

It is beyond the scope of this chapter to discuss computational skills for specific 
STEM domains such as computational biology, physics, etc., and we limit our dis-
cussion to generic skills such as mathematical modeling for problem abstraction 
and the engineering principles for task automation. In order to address “how to 
teach,” we focus on out-school-time learning and project-based learning. Our litera-
ture review and survey of prior funded CT projects will be limited to the most rele-
vant programs from a computational mathematics perspective and their 
corresponding learning platforms.

 What Can We Teach to Enhance Computational Thinking 
Abilities of Students?

The Society for Industrial and Applied Mathematics (SIAM) workshop on model-
ing across the curriculum II made the following two recommendations to math 
teachers and STEM education policy makers (Turner, Levy, & Fowler, 2015): build 
a pipeline for K-16 education in mathematical modeling (Andrew, 1998) and con-
nect math to reality (Barr & Stephenson, 2011). Levy (Joint Mathematical Meetings 
2015) summarized one of the three major SIAM educational initiatives as:

“The Modeling Across the Curriculum, was built around the idea that modeling can build 
many job skills students need and can be an important educational tool at not only the 
secondary and undergraduate levels, but throughout the educational experience.”

The Applied Mathematics Education Activity Group of SIAM is the task 
force advocating computational science and engineering (CSE) education 
which is an emerging multidisciplinary field of study that focuses on the inte-
gration of knowledge and methodologies from computer science, applied math-
ematics, engineering, and science to solve real-world problems (Society of 
Industrial and Applied Mathematics 2015). CSE provides the critical mathe-
matical modeling skills and data analytical skills that apply to all STEM fields. 
Therefore, Turner and Petzold (2011) advocate that CSE courses and curricula 
should be a viable option for every undergraduate STEM major. A careful 
inspection of the definitions of CT and CSE shows that CSE contains the essen-
tial knowledge and skills for helping learners develop CT thought process and 
problem solving abilities (e.g., abstraction and automation) and that the essen-
tial difference between CT and CSE is one of perspective: CT looks at the over-
arching thought process and problem solving ability, while CSE focuses on 
computational methods and relevant domain- specific knowledge. Our goal is to 
equip students with the CSE skills that will enable them to solve open-ended 
science, engineering, and technical problems which in turn enhances their CT 
ability.
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 How to Teach Computational Thinking

CT programs have mushroomed since Wing promoted the concept of computational 
thinking in 2006 (NRC, 2010). However, according to a report by the National 
Research Council (NRC, 2011, p. 4), there is a scarcity of research informing how 
to teach computational thinking in the early grades, and computer science is often 
taught without consideration of age-appropriate learning. Consequently, we will 
rely on generalizing from successful instructional programs and learning activities 
from closely related and similar subjects such as Algebra and Calculus. We briefly 
review the history of mathematical education reform which provides insights to 
teaching methods for developing CT (Chai et al. 2014).

Edmund F. Robertson (1968) quoted the following message from the biography 
of Richard Hamming:

“We live in an age of exponential growth in knowledge, and it is increasingly futile to teach 
only polished theorems and proofs. We must abandon the guided tour through the art gal-
lery of mathematics, and instead teach how to create the mathematics we need. In my 
opinion, there is no long-term practical alternative.

The way mathematics is currently taught it is exceedingly dull. In the calculus book we 
are currently using on my campus, I found no single problem whose answer I felt the stu-
dent would care about! The problems in the text have the dignity of solving a crossword 
puzzle – hard to be sure, but the result is of no significance in life.”

The essential problem is that our mathematics curricula condense too many 
assumed indispensable concepts, which were developed over three centuries, into a 
course of three semesters. However, 30 years of college mathematical education 
reform has resulted in new instructional practices such as project-based learning 
(PBL); rule of three which includes graphs, analysis, and numerical representation 
(Schoenfeld, 1995); inquiry-based interactive teaching (Eseryel & Law, 2012); and 
learning management practices such as the flipped class (McGivney-Burelle & Xue, 
2015) which have become popular in research and development grants. In practice, 
however, most mathematics teachers still use the least common denominator 
approach defined by Schoenfeld (1995): lecturing and assigning homework which 
results in dull and meaningless instruction. However, the approach is still popular 
because it is the most efficient way to cover the information and easiest way to man-
age learning (Schoenfeld, 1995). We are not suggesting that this method should be 
replaced. But it needs to and can be improved. For example, we can use query-based 
teaching to enhance interactive learning within the context of the traditional setting 
(Eseryel & Law, 2012, and Kirschner, Sweller, & Clark, 2006). Generally, PBL and 
other instructional schemes are being employed within the context of the traditional 
classroom and are slowly but steadily gaining ground in mathematics education. 
However, given the slow pace of reform, we are convinced that the best way to 
improve K-12 CT instruction is through out-of-school time education (Liu & Klein, 
2013). At the college level, CT can be improved by (a) forming coalitions such as 
networked improvement communities (Carnegie Foundation, 2016) and coalitions 
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for undergraduate CSE education and (b) providing research and development proj-
ects. These two approaches for creating and deploying CT instruction are exempli-
fied in the next two sections.

 Promoting Computational Thinking at ERAU

Embry-Riddle Aeronautical University (ERAU) has been offering a BS in computa-
tional mathematics since 2008, and in order to provide CSE courses and learning 
experiences for students pursuing various majors (e.g., engineering, meteorology), 
the mathematics department initiated two projects: the Coalition for Undergraduate 
CSE Education and the Eco-Dolphin Project.

 Coalition for Undergraduate CSE Education

Because of low enrollment, most small universities cannot cost-justify providing 
undergraduate CSE courses. Consequently, in order to offer CSE courses within the 
justifiable costs, ERAU initiated an NSF-sponsored project in 2013 to create a clus-
ter of collaborating institutions that combined students into common classes and 
used cyberlearning technologies to deliver and manage instruction.

The project resulted in the establishment of a coalition among ERAU’s Daytona 
Beach and Prescott Arizona Campuses and Adams State University (ASU) in 
Colorado. A faculty member from each of the colleges took turns developing, 
reviewing, and teaching courses. Two courses in Mathematical Modeling and 
Simulation and a course in Data Mining and Visualization were developed and 
offered twice. More than a hundred students completed the CSE courses which 
were otherwise unavailable at any of the campuses. The courses were taught by a 
professor in the classroom at one location, and students in the other two universities 
attended class in a classroom using live two-way communications. In addition, the 
professor at the distant campus sat in on the class which greatly reduced student 
anxiety of taking a course from an unknown teacher. The project also conducted 
three summer research workshops for 18 students from 2013 to 2015. The project 
also created massive open online courses (MOOCs) and multimedia course materi-
als for all three courses which are available at www.gps2dreamcollege.com.

The R&D process employed in this project provides a coherent framework for 
designing instruction and assessing learning in which all the processes and methods 
are aligned with a common idea: model-based learning and reasoning. The learning 
goals are aligned with the three CSE learning goals set by the SIAM Working Group 
for CSE Undergraduate Education. These goals essentially advocate reasoning from 
first principles and learning to generate mathematical models. This alignment is 
consistent with recommendations by Sabelli (2008) that STEM education should 
focus on a small set of models and avoid the “inch deep, mile wide” problem in 
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designing instructional programs. For example, in order to help students gain deep 
understanding of the critical concept of eigenvalue and eigenvector, the concept is 
taught in three modules spirally with increasing depths and complex contexts. In the 
first module, the concept occurs in a very intuitive and natural way as the stable 
long-term population of the Leslie population model. In the second module, it is 
defined formally using matrix algebra and the concept is applied in solving the 
Google Page Ranking problem (Bryan & Leise, 2006). In the third module, the 
same concept is taught to solve linear ordinary differential equation systems and to 
visually explain the stability of the system of equations.

In order to further reinforce deep learning and facilitate learning assessment, 
research experiences were integrated within the three courses using a process called 
ACE (analysis, computation, and experimentation). This research and development 
process was used to provide a coherent framework for designing instruction and 
assessing learning. Course design centered on model-based learning which proposes 
that students learn complex content by elaborating on their mental model and class 
projects required students to develop a conceptual model, generate a mathematical 
model, and conduct experiments to validate and revise their conceptual and mathe-
matical models. All courses included a mandatory team research projects and the 
students had the option to participate in a 2-week summer research workshop. 
Student projects in the Mathematical Modeling and Simulation course focused on 
mathematical models and computer-aided simulation. Data Mining and Visualization 
course projects focused on applying data mining to analyze large data sets and render 
prediction models. The summer projects extended the projects conducted during 
courses and produced peer-reviewed publications. For example, five students at ASU 
completed a team project using Stella to model and simulate a landing system of 
small spacecraft when they took the Mathematical Modeling and Simulation course. 
They then constructed a payload gear for a weather balloon and tested it at the Wave 
Motion Lab of Daytona Beach Campus. The team successfully used their experimen-
tal data to validate their computational models. Based on the course projects and the 
summer research project, four articles coauthored by students were published and 
five students coauthored papers were presented at technical conferences.

A software tool called HIMATT was used for deep learning assessment by evalu-
ating how students think through and model complex, ill-defined, and ill-structured 
realistic problems (Pirnay-Dummer, Ifenthaler, & Spector, 2010). Traditional learn-
ing assessments (e.g., rubrics and quizzes) and student feedback demonstrated that all 
three cyberlearning courses achieved the project’s major goal: fostering student com-
putational skills and developing computational thinking ability. In the Mathematical 
Modeling and Simulation I course, students learned how to use the system engineer-
ing modeling methodology and procedures to translate real-world problems into 
mathematical models. Students also gained hands-on experience in using software 
tools such as MATLAB and STELLA to model and simulate real- world projects with 
team members. In the Data Mining and Visualization course, students learned how to 
use data mining techniques and software tools such as R, Weka, and MATLAB to 
conduct research to solve real-world applications. Research projects included using 
data mining to predict student retention based on the records of a cohort of 973 
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 students, classify seagrass and macroalgae based on satellite image data, and adjust 
real-estate book values based on GIS data and official appraisal data. Results of the 
project indicated that the courses were effective and appealed to students majoring in 
math, computer science, physics, engineering, and meteorology.

Built on the success of the prior project, we are scaling up the project by adding two 
more universities to the coalition and adding four new CSE courses. These courses are 
a database course and three domain-specific courses: problems in atmosphere and 
hydrosphere, computational biology, and genomics and bioinformatics. For all courses, 
we will use a similar framework for deriving and organizing content. This framework 
is illustrated in Table 1 for the Mathematical Modeling and Simulation I.

 Eco-Dolphin Project

The mathematics department of ERAU hosts two hands-on research labs, the Wave 
Motion Lab and Leverage Robotics Lab. The Wave Motion Lab has a 32 ft. long, 
four feet wide, and six feet tall wave tanks and computer-controlled wave genera-
tors. These two labs facilitate experimentation component of our ACE Research 
Experiences for Undergraduate (REU) program (Liu & Ludu 2012). Hosted in the 
Leverage lab and supported by the Wave Lab, the Eco-Dolphin project was cospon-
sored by internal REU grants and industry donations during the past 4 years as well 
as a research grant from an Air Force Research Lab (AFRL). The project is building, 
maintaining, and using a fleet of autonomous underwater vehicles (AUV) called 

Table 1 Modular structure of course content for Mathematical Modeling and Simulation

Content
Module 1  
matrix algebra

Module 2 matrix 
calculus

Module 3 
methodology

Module N 
dynamic system

Topic 
objective

Linear  
Transform. 
Eigenvectors, 
Singular Value 
Decomposition

Jacobian and 
Hessian Matrices, 
Multivariate 
Approximation, 
Regression,  
Least Squares

Model  
Classifications,
Modeling Process  
and Methodology,
Conceptual Models

Linear and 
Nonlinear ODE 
Systems, Eigen 
values to Solve 
Linear System 
ODE,
Vector Field 
and Phase

Prototype 
problems

Population 
Geometry,  
GPS Coordinate 
Transform, 
Google Page 
Ranking

Curve Fitting, 
Linear and 
Nonlinear 
Optimization,
Simplex Method,
Kalman Filter for 
GPS Computation

State Diagram of
Traffic Light,
State Model of Cruise 
Control,
Matrix Repres. of 
State Transitions

Dynamic 
System of 
Interactive, 
Population 
Models, 
Disease Spread 
Model, Robotic 
Navigation 
Control 
Dynamics

Tools MATLAB MATLAB OPCAT, STELLA STELLA

H.P. Liu et al.



161

Eco-Dolphins to collect coastal environmental data (Liu & Shi et al. 2015b). This 
project serves as a platform to support hands-on REU for the SIAM Student Chapter. 
The various projects will be used to compete for additional external grants to sup-
port the REU program and environmental research.

Since the Eco-Dolphin started in 2012, graduate assistants and undergraduate stu-
dents from several academic departments (e.g., engineering, physics) have been 
involved in conducting research in the Leverage lab. The graduate students and fac-
ulty from the mathematics department serve as mentors. As a robotics research proj-
ect per se, there are numerous challenging problems across a range of STEM domains 
including mechanical engineering problems; electronic, computer, and software 
engineering problems; and computational mathematics problems. There are no refer-
ence textbooks or courses for students and mentors to use in designing and construct-
ing such a complex system. However, there are open-source tutorials, how-to videos, 
and instructions scattered across the web, and the mentors and students use these 
resources to learn as needed (i.e., learning-on-demand) in conducting their projects. 
We observed that this learning method is most effective and time efficient compared 
to traditional course-based instruction which results in “just-in- case” learning and 
consequently students do not know where and when the knowledge will be used.

Another benefit of the Eco-Dolphin project is that it provides a platform for solv-
ing computational mathematics problems spanning undergraduate research to a 
PhD thesis. For example, since a submerged AUV cannot receive GPS signals, the 
Eco-Dolphin project uses different positioning methods from simple triangulation 
based on acoustic sonars to sophisticated photogrammetric computation based on 
dynamical video images. Other computation-intensive research problems include 
navigation control problems, which can be as simple as 2D linear control using only 
trigonometry to the complex 3D rigid body dynamic control using nonlinear ordi-
nary differential equation systems. In addition, the project involves image process-
ing and data mining problems such as classifying seagrass and macroalgae from 
satellite images and identifying marine animals such as sea turtles, dolphins, and 
manatees. The Eco-Dolphin project is not only a platform to facilitate REU pro-
grams but also the fuel to drive computational mathematics research.

 Middle School Computational Thinking

Middle school students are at the age where they make up their minds on what they 
can or cannot do, and our primary intention in our projects is to develop CT abilities 
and STEM professional identity which can be described as students seeing themselves 
as an engineer, mathematician, or some other STEM professional. As discussed in 
section “Introduction,” CT involves applying computer science and mathematics in 
various application disciplines, and there are multiple application domains that can be 
used to develop CT at the middle school level including robotics and computer games 
which are currently very popular. However, our project has selected modeling and 
simulation as the target application. We will develop CT within the context of 
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modeling and simulating environmental science phenomena because it appeals to 
both male and female students, and environmental science encapsulates most tradi-
tional STEM domains including biology and robotics (students build an underwater 
robot with sensors to collect environmental science research data).

Specifically, the authors proposed to create a community-based CT network 
designed to develop computational thinking skills, STEM professional identity, per-
sistence, and proportional reasoning by adapting existing instructional materials. 
The project will focus on after-school and out-of-school time middle school pro-
grams such as local environmental science centers.

 Introducing Programming

Creating computer programs is one of the most effective ways to develop computa-
tional thinking, and one effective tool for introducing students to programming is Data 
Harvest’s ACE system (ACE, 2016) which develops the notion of algorithms by 
enabling students to create flowcharts to control physical devices and observing pro-
gram execution. An example of a program to control a traffic light is shown in Fig. 1.

The student creates the flowchart by dragging and dropping two predefined ele-
ments in the flowchart: outputs and processes. When students execute the program, 
each step in the process is highlighted. ACE also provides a text view of the program 
and a database view of light changing states. ACE also provides graphical animation 
showing the traffic light switching between red, green, and yellow. The student can 
also attach a small physical traffic light which is controlled by their computer.

In addition to constructing simple flowcharts, students learn programming 
 concepts of encapsulation and decomposition by creating procedures composed of 

Text ViewFlow Chart View

Start: Untitled1

END

Switch Output: Green On
Wait 26 seconds
Switch Output: Amber On
Wait 2 seconds
Switch Output: Green Off
Wait 20 seconds
Switch Output: Red On
Wait 1 seconds
Switch Output: Amber Off
Wait 7 seconds
Stop

Start: Untitled1

Switch Output: Green
On

Output

Wait 26 seconds

Switch Output: Amber
On

Process

Fig. 1 Programming in the ACE system
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multiple flowcharts. This is illustrated in Fig. 2 for another ACE project in which 
students create a simulation of a washing machine. In this project, students create 
procedures which encapsulate multiple sequences of processes and outputs speci-
fied in a flowchart. Students first create a flowchart for each procedure and then 
construct a higher-level flowchart of procedures executed by the computer. In the 
example shown below, students create a procedure for the wash cycle, spin cycle, 
and rinse cycle and then create a flowchart of procedures.

By employing this software, middle school students learn how to construct algo-
rithms in the form of a flowchart and develop the concept of a database, the notion 
of loops, and the concepts of decomposition and encapsulation all of which are core 
concepts in computational thinking.

 Modeling and Simulation

Creating simulations is an effective way to develop mental models and deep learn-
ing across the range of STEM domains (Eseryel & Law, 2012;  Furhmann, Salehi, 
& Blikstein 2013). In addition to developing deep learning of STEM content, mod-
eling is a core practice in science and is included in the Next Generation Science 
Standards (NGSS). The intention of the project is to develop and implement a cur-
riculum that addresses this standard. More specifically, our primary learning objec-
tive is that students will be able to build causal loop diagrams, agent-based 
simulations, and bifocal models of environmental phenomenon.

Levels of Abstraction

Procedures Flowchart of Procedures

Flowcharts for each Procedure

On

Procedure: Wash
cycle

Switch Motor: Drum
Speed Rev(20)

Switch Motor: Drum
Speed Rev(100)

Switch Motor: Drum
Speed Rev(10)

Procedure: Wash cycle
repeat 6

Start: Washing machine

Procedure: Rinse
repeat 4

Switch Motor: Drum
Speed Off

Switch Output: Wash
On

Switch Output: Spin
On

Wait 2 seconds Wait 4 seconds

Wait 1 seconds

Wait 2 seconds

Procedure: Spin Procedure: Rinse

Wash cycle Rinse Spin Off

Fig. 2 Learning encapsulation & decomposition
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 Causal Loop Diagrams

Causal loop diagrams solicit and capture mental models of individuals about a 
 complex system. They can be used as preliminary sketches of causal hypothesis 
during model development of a complex system and provide a simple illustration to 
communicate cause-effect relationships and feedback loops responsible for com-
plex system behavior. A causal loop diagram consists of arrows denoting the causal 
links among system components with each link assigned as having a positive (+) or 
a negative (−) symbol to indicate the type of effect: direct or inverse proportional 
relationship as shown in the Fig. 3.

 Agent-Based Modeling and Simulation

StarLogo is another programming system used in developing computational think-
ing in middle school instructional curriculum, and a complete instructional program 
is available from the Girls Growing Up Scientifically (GUTS) project developed by 
the Santa Fe Institute (GUTS, 2016).

StarLogo is an agent-based modeling approach in which the student identifies 
entities called agents (people, molecules, trees, etc.), defines their behavior (e.g., 
reactions), establishes connections, and runs simulation. Next, the global behavior 
emerges as a result of interactions of many individual behaviors. For instance, to 
study the behavior of a chemical reaction, a student would define the behavior of 
individual molecules, assign rules to agents, and then set them into motion (Blikstein, 

Deforestation

Food Supply

Social Conflict

Climate Change

Glacial Melting

Ecosystem Health

Migration

Stable Loop

Unstable
Loop
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+
+
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–

–

–

Glacial Melting Causal Loop Diagram

Fig. 3 Glacial melting causal loop diagram
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Fuhrmann, Greene, & Salehi, 2012). Wilensky and colleagues associated with the 
ModelSim project have produced a large body of research showing the power of this 
technology for learning and view agent-based modeling as a fundamental new way 
of thinking. The agent-based approach is successful in promoting deep learning 
because it taps into student intuitions in subject areas which are traditionally expe-
rienced as nonintuitive. Once learners can identify and computationally interact 
with entities at the agent level, they can use their intuitions to reason about proper-
ties of the larger system (ModelSim Project, 2016).

Creating agent-based simulations using visual programming languages such as 
StarLogo makes learning programming concepts more intuitive and visual by drag-
ging and dropping graphical objects which reduces programming complexity and 
consequently makes programming accessible to middle school students.

 Bifocal Modeling

While agent-based modeling develops deep learning of science phenomenon, they 
develop an incomplete picture of the phenomenon under study: making the connection 
between the simulation and the physical world. Bifocal modeling addresses this issue 
by having students conduct research and collect data (Blikstein & Wilensky, 2007):

In bifocal modeling, students connect computational behavior in virtual simulations with 
phenomena detected by physical sensors or produced in the physical world by motors or 
other output devices. The similarities and contrasts between virtual and physical systems 
stimulate conceptual reflection and “debugging” processes through which student adjust 
their physical and virtual models simultaneously. Bifocal modeling activities thus provide 
a critical “missing link” between laboratory experiences and the construction of explana-
tory models and theories. (ModelSim Project, 2016)

Students can make the connection between their simulations and the physical 
world by collecting data from research projects. They discover discrepancies between 
their simulation and their research results, explain why a mismatch between their 
model and their data exists, and, if appropriate, revise their simulation accordingly.

 Proportional Reasoning and Multivariate Models of Causality

Proportional reasoning is essential in modeling and simulation tasks and is consid-
ered as one of the most important skills that middle school students develop. In 
addition, it is deemed as the turning point in K-12 mathematics curriculum in which 
students move from elementary mathematics to higher mathematics (Lesh, Post, & 
Behr, 1988). In order to provide the context for developing proportional reasoning, 
schools and out-of-school programs have been using project-based learning. 
Building robotics in particular have become a popular project across the education 
landscape, and a number of educators and researchers have highlighted the potential 
use of robotics project to reinforce students’ mathematical understanding (Alfieri 
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et al. 2015; Benitti, 2012; Vollstedt, Robinson, & Wang, 2007). However, staff at the 
Carnegie Mellon Robotics Academy (2016) have noted while many teachers say 
they were using robotics to teach mathematics, they found that few actually taught 
robot math in ways that were effective and many teachers avoided talking about 
mathematics at all. The Academy also observed that when teachers tried to teach 
robot math and robot programming, at the same time, many students were confused 
and the Academy staff were not able to measure significant learning gains. In addi-
tion, they concluded that teachers should teach math before they begin teaching 
students how to program their robots. Consequently, the Carnegie Mellon Robotics 
Academy developed Expedition Atlantis in order to motivate students to use math 
rather than “guess and check” as their way through robot programming. Expedition 
Atlantis is an underwater robotics game that develops both proportional thinking 
and proportional methods and provides tutorials and contextualized practice. It also 
includes a teacher guide. It currently is in beta testing, but the program is available 
now at http://www.education.rec.ri.cmu.edu/atlantis/why-use-it/.

Scale City is an interactive game-oriented set of instructional materials designed 
to develop proportional reasoning that focuses on scale and scaling. Its development 
was initiated by the Kentucky Educational Television (KET) and developed in col-
laboration with three other state public television networks and a task force of 
teachers, university professors, and Kentucky Department of Education staff. Scale 
City is organized around a road trip in which students explore roadside attractions 
and learn about the mathematics of scale. At each stop, a short video field trip, an 
interactive simulation, and a set of instructional materials are provided to help stu-
dents learn proportional reasoning. For example, students explore what happens to 
the area of a two-dimensional figure like a mural and what happens to the surface 
area and volume of three-dimensional scale models when different scale factors are 
used. All of these are done in a hands-on manner, manipulating concrete objects to 
develop a deeper understanding of these concepts. The materials can be downloaded 
from the Scale City website: https://www.ket.org/scalecity/

An important attribute of the program is that it focuses on using tables and 
graphs rather than the standard “cross-multiplication” method for understanding 
proportional relationships. This teaching philosophy is aligned with the NCTM 
standards:

Instruction in solving proportions should include methods that have a strong intuitive basis. 
The so-called cross-multiplication method can be developed meaningfully if it arises natu-
rally in students’ work, but it can also have unfortunate side effects when students do not 
adequately understand when the method is appropriate to use. Other approaches to solving 
proportions are often more intuitive and also quite powerful (NCTM, 2000, p. 220).

Multivariate Mental Models of Causality: Conducting research projects on com-
plex systems can be very challenging for middle school students due to the multi-
variate causal analysis required in understanding the relationship between several 
factors. Our instructional methods are similar to the Food Chain program which 
effectively develops multivariate mental models (Eseryel & Law, 2012). Food Chain 
is an interactive simulation program which develops deep learning by scaffolding 
each step in the inquiry process by providing relevant information as needed and 
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prompting students. For example, in the develop hypothesis step, it provides relevant 
content, and at the end of the test hypothesis step, it provides charts and graphs 
depicting the states of different variables which are intended to help students dis-
cover the interrelationships among the variables. Our project will use similar instruc-
tional methods except that students select an ecosystem problem of local interest, 
implement scaffolding by providing instruction as needed, and employing college 
students as mentors who provide question prompts to guide reflection. In addition, 
students will (a) collect real data, (b) use InspireData to record the data in tables, (c) 
graph the relationship of each variable to the factor under study, and then (d) graph 
the relationship of pairs of variables. This method is based on instructional strategies 
developed by Ramsey and Kuhn (2012) which are aimed directly at helping students 
progress from univariate to multivariate mental models of causality.

In summary, the project will develop computational thinking within the context 
of modeling and simulating environmental phenomenon which provides students 
the opportunity to engage in meaningful projects. Students will develop causal loop 
diagrams, agent-based simulations, bifocal models, proportional reasoning skills, 
and multivariate causal models. They will also develop professional identity and 
persistence by conducting small team projects and having access to college students 
who will mentor and tutor them. In addition, staff from local corporations and gov-
ernment agencies will meet and discuss their work with students, and students will 
conduct research projects at local environmental centers or preserves.

 Future Work

Section “Promoting Computational Thinking at ERAU” discussed a prior CT project 
as well as ongoing CT education projects for college students. Section “Middle 
School Computational Thinking” presented the ideas on how to use agent-based 
modeling and bifocal modeling to scaffold CT education for middle school stu-
dents. In order to further investigate how to teach CT in age-appropriate pedagogy 
and application contexts, the authors proposed two projects including more diverse 
applications and age groups. One is the SeaEdger project designed to support a 
REU program and a middle school summer camp in computational math with envi-
ronmental science applications. The other is the MAKE-MS-EC program that pro-
vides research experiences in computational mathematics with diverse application 
contexts for local high school students.

 SEAEDGER Project

SEAEGDER stands for Surveillance of an Estuary Area for Environmental Data 
Gathering, Education, and Research. The goals of the SEAEDGER project are to 
use a buoy-based sensor network system to gather data in the Indian River Lagoon 
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and provide data-enabled environmental research experiences for undergraduates as 
well as an environmental education summer workshop for local middle school stu-
dents. There are four project objectives:

 1. Extend and test a smart data acquisition network (SDAN) system including a 
ground station, three Eco-Dolphins, and nine sensor buoys. The major tasks are 
to design, purchase, assemble, and program microcontrollers to control hydro-
phones and GoPro cameras. The SDAN system will have three clusters of buoys, 
each consisting of three sensor buoys. Each cluster will be anchored at three 
vertices of an equilateral triangle in one site. Altogether, nine buoys will make 
three clusters and will be deployed to three sites. The sensor buoy clusters will 
collect images for 1 to 2 weeks each season.

 2. Train ten undergraduates to collect imagery data using the SDAN system in 12 
sites in the Indian River Lagoon and use machine learning algorithms to identify 
seagrass, dolphins, manatee, and sea turtles. After the volume of the image data 
is reduced to a manageable size, we can label the verified data and use them to 
train a machine learning tool, which can then be used to efficiently classify the 
targets.

 3. Once images are processed, we can distinguish (a) manatees, sea turtles, and 
dolphins from other marine animals and (b) seagrasses from macroalgae. We can 
also collect benthic vegetation data.

 4. Conduct a 1-week (6-day) summer workshop on SeaPerch Robots and environ-
mental science education for middle school students. During the workshop, we 
will demonstrate fun and inspiring environmental science projects in the morn-
ing and tutor students in constructing their own SeaPerch robot as a team project 
in the afternoon. Each team will have three to four students. To encourage the 
participation of parents, we will use Saturday to host a SeaPerch Robotic com-
petition and an environmental science poster competition.

 MAKE-MS-EC Program for Local High School Students

Over a 2-year period, the Mathematical Application Knowledge Enhancement of 
Marginal Students to Empower Community (MAKE-MS-EC) is proposed to 
enhance learning of mathematical knowledge using hands-on research, exploratory 
studies, and guided discovery. MAKE-MS-EC includes activities that enrich high 
school students’ learning, especially females who are discouraged by the gender 
bias of our culture for their mathematics ability, through trifocal mathematical mod-
eling (tm2) while ensuring cognitive skills have been internalized. Trifocal mathe-
matical modeling focuses on the derivation of mathematical models using real-world 
experiments, verification, and validation of models with computer tools and peer 
competitions in a virtual environment. MAKE-MS-EC will enhance and foster a 
kinesthetic learning environment by utilizing the Wave Laboratory and Leverage 
Robotics Laboratory at ERAU.
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Through the MAKE-MS-EC program, students will explore real-world research 
problems in mathematics via novel mathematical models: the traffic monitoring 
interpolate model, carry-on Aero capacity model, fashion mannequin model, popula-
tion model for sea turtles, payload carrying capacity of autonomous underwater vehi-
cles, and the water wave model for low and high tide seasons in connection to the 
science, engineering, technology, and arts pipeline. There will be two tiers of student 
involvement within the MAKE-MS-EC program: the first tier consists of students, 
with a focus on females, actively participating within the research of applied mathe-
matics problems based on Wave and Leverage Robotics Labs and other activities 
taking place through a tm2 website. The second tier will consist of students observing 
ongoing research activities conducted at ERAU that are intended to inspire the stu-
dents to enter the STEM pipeline. The goals of MAKE-MS-EC are to:

• Explore mathematical concepts in connections to the real-life problem solving 
via data analysis, experiments, computational tools, and open virtual 
environment.

• Enrich critical, analytical, and logical thinking in mathematics through guided 
mentoring.

• Foster student conceptual mathematical knowledge in a creative and original 
manner.

The overall intention of MAKE-MS-EC program is to develop analytical, criti-
cal, and logical thinking skills and cultivate problem solving capabilities enabling 
the community to:

• Bring novel pedagogy to mathematics education in the science, engineering, 
technology, and arts pipeline.

• Educate, advise, and stimulate high school female students to pursue a STEM 
career.

• Develop mathematical concepts within the context of solving real-world prob-
lems in STEM.

• Build a virtual tm2 learning environment.
• Enhance SIAM, KME (Kappa Mu Epsilon), and ERAU collaborations.

 Conclusion

This chapter presented a brief literature review and case studies of CT education 
programs. We propose that CSE provides the educational content to enhance the CT 
ability of learners. We believe a pragmatic approach to promote and improve K-12 
CT education is through out-of-school time programs and improving college level 
CT education by forming coalitions and providing research projects. Out-of-school 
time, project-based, and inquiry-based programs engage students and promotes 
learning-on-demand as students take responsibility for their own learning. Literature 
consistently shows that innovative education practices such as model-based REU 
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programs and robotics research problems have advantages in motivating student 
learning and facilitating deep learning. However, in its current stage, these methods 
are still perceived as more expensive than the conventional lecturing method. We 
presented a cost-effective CSE program that uses cyberlearning, crowdsourcing, 
and codeveloped courses to reduce costs without compromising quality.

In the 10 years since Wing promoted the notion of computational thinking, CT 
education programs have flourished with support from government and private 
foundations. These projects have often resulted in “best practices.” The task before 
us now is to move these “best practices” to “common practices” in both K-12 
schools and colleges which will require a substantial investment in teacher training 
and the development of instructional resources.

Acknowledgments The cyberlearning project for CSE and summer REU workshops described in 
section “Coalition for Undergraduate CSE Education” was sponsored by the NSF TUES grant 
(1244967), and the Eco-Dolphin project described in “Eco-Dolphin Project” was partially spon-
sored by the Air Force Research Lab under award FA8750-15-1-0143.

References

ACE. (2016). Instructional Software and Materials. Retrieved from: http://www.data-harvest.co.
uk/catalogue/technology/primary/software/primary-software.

Alfieri, L., Higashi, R., Shoop, R., & Schunn, C. D. (2015). Case Study of a robot-based game to 
shape interests and home proportional reasoning skills. International Journal of STEM 
Education, 2(4). doi:10.1186/s40594-015-0017-9.

Andrew, V. (1998). The purpose of mathematical models is insight, not numbers. Decision Line, 
29(1), 20–21.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and 
what is the role of the computer science education community? ACM Inroads, 2(1), 48–54.

Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: a systematic 
review. Computers & Education, 58(3), 978–988.

Blikstein, P., & Wilensky, U. (2007). Bifocal modeling: a framework for combining computer 
modeling, robotics and real-world sensing. In  Paper presented at the annual meeting of the 
American Educational Research Association (AERA 2007), Chicago, USA.

Blikstein, P., Fuhrmann, T., Greene, D., & Salehi, S. (2012). Bifocal modeling: mixing real and 
virtual labs for advanced science learning. In Proceedings of the 11th International Conference 
on Interaction Design and Children (IDC ‘12) (pp. 296–299). ACM: New York.

Borgman, C. L., Abelson, H., Drinks, L., Johnson, R., Koedinger, K. R., Linn, M. C., & Szalay, A. 
(2008). Fostering Learning in the Networked World: The Cyberlearning Opportunity and 
Challenge. Retrieved from: http://www.nsf.gov/pubs/2008/nsf08204/nsf08204.pdf

Bryan, K., & Leise, T. (2006). The $25,000,000,000 eigenvector: the linear algebra behind google. 
SIAM Review, 48(3), 569–581.

Carnegie Foundation. (2016). Using improvement science to accelerate learning and address prob-
lems of practice. Downloaded 04/14/2016 from http://www.carnegiefoundation.org/our- 
ideas/.

Carnegie Mellon Robotics Academy. (2016). http://education.rec.ri.cmu.edu/roboticscurriculum/.
Chai, J., Friedler, L. M., Wolff, E. F., Li, J., & Rhea, K. (2014). A cross-national study of calculus. 

International Journal of Mathematical Education in Science and Technology, 46(4), 481–494. 
doi:10.1080/0020739X.2014.990531.

H.P. Liu et al.

http://www.data-harvest.co.uk/catalogue/technology/primary/software/primary-software
http://www.data-harvest.co.uk/catalogue/technology/primary/software/primary-software
http://dx.doi.org/10.1186/s40594-015-0017-9
http://www.nsf.gov/pubs/2008/nsf08204/nsf08204.pdf
http://www.carnegiefoundation.org/our-ideas/
http://www.carnegiefoundation.org/our-ideas/
http://education.rec.ri.cmu.edu/roboticscurriculum/
http://dx.doi.org/10.1080/0020739X.2014.990531


171

Cuny, J., Snyder, L., & Wing, J.M. (2010). Demystifying Computational Thinking for Noncomputer 
Scientists. Unpublished manuscript in progress. Retrieved from: http://www.cs.cmu.
edu/~CompThink/resources/TheLinkWing.pdf

Eseryel, D., & Law, V. (2012). Effect of cognitive regulation in understanding complex science 
systems during simulation-based inquiry learning. Technology, Instruction, Cognition and 
Learning, 9, 111–132.

Finegold, D., & Notabartolo, A. S. (2011). 21st Competencies and Impact. Retrieved from http://
www.hewlett.org/uploads/21st_Century_Competencies_Impact.pdf.

Fuhrmann, T., Salehi, S., & Blikstein, P. (2013). Meta-modeling knowledge: Comparing model 
construction and model interaction in bifocal modeling. In Proceedings of the 12th International 
Conference on Interaction Design and Children (IDC ’13) (pp. 483–486). New York: ACM. 
doi: 10.1145/2485760.2485810

GUTS. (2016). Computer Science in Science. Retrieved from: http://www.projectguts.org/.
Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language, Inference, 

and Consciousness. Cambridge: Cambridge University Press.
Joint Mathematical Meetings. (2015). Transforming Post-Secondary Education in Mathematics., 

San Antonio, TX.
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does 

not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and 
inquiry-based teaching. Educational Psychologist, 41, 75–86. doi:10.1207/s15326985ep4102_1.

Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In J. Hiebert & M. Behr (Eds.), 
Number Concepts and Operations in the Middle Grades (pp. 93–118). National Council of 
Teachers of Mathematics: Reston, VA.

Liu, L., & Ludu, A. (2012). ACE – a model centered reu program standing on the three legs of cse: 
analysis, computation and experiment. In H. Ali, Y. Shi, D. Khazanchi, M. Lee, G. D. van 
Albada, J.  Dongarra, et  al. (Eds.), Proceeding of the ICCS 2012, Omaha, NE.  Procedia 
Computer Science (Vol. 9, pp. 1773–1782).

Liu, H., & Klein, J. (2013). Using REU project and crowdsourcing to facilitate learning on demand. 
In  Proceedings of the IADIS International Conference on Cognition and Explorative Learning 
at Digit Ages (pp.  251–258). Fort Worth, TX: International Assn for Development of the 
Information Society.

Liu, H., Ludu, M., & Holton, D. (2015a). Can K-12 math teachers train students to make sound 
logic reasoning? – A question affecting 21st century skills. In X. Ge, M. Spector, & D. Ifenthaler 
(Eds.), Emerging Technologies for STEAM Education (pp. 331–353). Switzerland: Springers.

Liu, H., & Raghavan, J.  (2009). A mathematical modeling module with system engineering 
approach for teaching undergraduate students to conquer complexity. In  The Proceedings of 
the Conference ICCS 09, Baton Rouge, LA, USA, Part II, LNCS5545 (pp. 93–102).

Liu, H., Shi, X., Shao, J., Zhou, Q., Joseph-Ellison, S., Jaworski, J., & Wen, C. (2015b). The 
mechatronic system of eco-dolphin – a fleet of autonomous underwater vehicles. In  Proceeding 
of the International Conference of Advanced Mechatronics System 2015 (pp.  108–113). 
Beijing, China: IEEE. doi:10.1109/ICAMechS.2015.7287138.

McGivney-Burelle, J., & Xue, F. (2015). Flipping Calculus. PRIMUS, Problems, Resources, and 
Issues in Mathematics Undergraduate Studies, 23(5), 477–486. doi:10.1080/10511970.2012.7
57571.

ModelSim Project. (2016). Enabling Modeling and Simulation-Based Science in the Classroom. 
Retrieved from: http://modelsim.tech.northwestern.edu/info/

National Council of Teachers of Mathematics (NCTM). (2000). Principles and Standards for  
School Mathematics. Reston, VA: NCTM.

National Research Council. (2010). Report of a Workshop on the Scope and Nature of Computational 
Thinking. Washington, DC: The National Academies Press. doi:10.17226/12840.

National Research Council (NRC). (2011). Report of a Workshop of Pedagogical Aspects of 
Computational Thinking. Washington, DC: National Academy Press. http://www.nap.edu/cata-
log.php?record_id=13170.

Pirnay-Dummer, P., Ifenthaler, D., & Spector, J. M. (2010). Highly integrated model assessment 
technology and tools. Educational Technology Research & Development, 58(1), 3–18.

Using Model-Based Learning to Promote Computational Thinking Education

http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
http://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf
http://www.hewlett.org/uploads/21st_Century_Competencies_Impact.pdf
http://www.hewlett.org/uploads/21st_Century_Competencies_Impact.pdf
http://dx.doi.org/http://dx.doi.org/10.1145/2485760.2485810
http://www.projectguts.org/
http://dx.doi.org/10.1207/s15326985ep4102_1
http://dx.doi.org/10.1109/ICAMechS.2015.7287138
http://dx.doi.org/10.1080/10511970.2012.757571
http://dx.doi.org/10.1080/10511970.2012.757571
http://modelsim.tech.northwestern.edu/info/
http://dx.doi.org/10.17226/12840
http://www.nap.edu/catalog.php?record_id=13170
http://www.nap.edu/catalog.php?record_id=13170


172

Ramsey, S., & Kuhn, D. (2012). Developing multivariable. Cognitive Development, 35, 92–110.
Robertson, E. F. (1968). Short Biograph of Richard W. Hamming, For His Work on Numerical 

Methods, Automatic Coding Systems, and Error-detecting and Error-correcting Codes. 
Retrieved from: http://amturing.acm.org/award_winners/hamming_1000652.cfm

Sabelli, N. (2008). Applying What We Know to Improve Teaching and Learning, the Carnegie/IAS 
Commission on Math Science Education. Menlo Park, CA: SRI International.

Schoenfeld, A. H. S. (1995). A brief biography of calculus reform. UME Trends: News and Reports 
on Undergraduate Mathematics Education, 6(6), 3–5.

Seel, N. M., & Blumschein, P. (2009). Modeling and Simulation in Learning and Instruction: A 
Theoretical Perspective, “Model-based Approaches to Learning: Using Systems Models and 
Simulations to Improve Understanding and Problem Solving in Complex Domains”. In 
P.  Blumschein, W.  Hung, D.  Jonassen, & J.  Strobel (Eds.), Modeling and Simulations for 
Learning and Instruction, 4. Dordrecht, Netherlands: Sense Publishers.

Society for Industrial and Applied Mathematics. (2015). Modeling across the curriculum II. 
Philadelphia, PA: 2nd SIAM-NSF Workshop. Retrieved from: https://www.siam.org/reports/
ModelingAcross%20Curr_2014.pdf.

Spector, M. (2009). Foreword, “Model-based approaches to learning: using systems models and 
simulations to improve understanding and problem solving in complex domains”. In 
P.  Blumschein, W.  Hung, D.  Jonassen, & J.  Strobel (Eds.), Modeling and Simulations for 
Learning and Instruction, 4. Dordrecht, Netherlands: Sense Publishers.

Turner, P., & Petzold, L. (2011). Undergraduate computational science and engineering education. 
SIAM Review, 53(3), 561–574.

Turner, P., Levy, R., & Fowler, K. (2015). Collaboration in the Mathematical Sciences Community 
on Mathematical Modeling Across the Curriculum, Chance, Using Data to Advance Science, 
Education, and Society. Retrieved from: http://chance.amstat.org/2015/11/math-modeling.

Vollstedt, A. M., Robinson, M., & Wang, E. (2007). Using robotics to enhance science, technology, 
engineering, and mathematics curricula. In Proceedings of the American Society for 
Engineering Education Pacific Southwest Annual Conference, Honolulu, HI

Wing, J.  M. (2006). A vision for the 21st century: computational thinking. Communication of 
ACM, 49(3), 33–35.

Zorn, P., Bailer, J., Braddy, L., Carpenter, J., Jaco, W., & Turner, P. (2014). The INGenIOuS proj-
ect-mathematics, statistics, and preparing the 21st century workforce. Washington, DC: 
Mathematical Association of America. Paper presented at the 7th World Conference on 
Educational Sciences, (WCES-2015), 05–07 February 2015, Novotel Athens Convention 
Center, Athens, Greece.

H.P. Liu et al.

http://amturing.acm.org/award_winners/hamming_1000652.cfm
https://www.siam.org/reports/ModelingAcross Curr_2014.pdf
https://www.siam.org/reports/ModelingAcross Curr_2014.pdf
http://chance.amstat.org/2015/11/math-modeling


Part III
Teacher Development



175© Springer International Publishing AG 2017 
P.J. Rich, C.B. Hodges (eds.), Emerging Research, Practice, and Policy on 
Computational Thinking, Educational Communications and Technology: Issues 
and Innovations, DOI 10.1007/978-3-319-52691-1_11

Teaching Computational Thinking Patterns 
in Rural Communities

Carla Hester Croff

C.H. Croff (*) 
Western Wyoming Community College, 2500 College Dr, Rock Springs, WY 82901, USA
e-mail: chester@westernwyoming.edu

Abstract In this chapter you will learn how a community college in rural Wyoming 
is implementing professional development resources in Computer Science and 
computational  thinking skills for middle and high school teachers in their communi-
ties. The objective of the community college was to build relationships with schools 
to teach Computer Science concepts and computational thinking skills in the class-
room. In this day and age, many people young and old are spending time on playing 
games or simulations. Why not teach Computer Science concepts and computa-
tional  thinking skills through gaming and simulations? The project included teach-
ing teachers about computational thinking patterns when teaching their students 
computer gaming and simulation creations. The creation of computer games and 
simulations requires algorithmic, critical thinking, problem-solving, and computa-
tional thinking skills. Teachers were taught what computational thinking patterns 
are, how to teach their students about computational thinking patterns, and how to 
create computer games and simulations stressing computational thinking skills. The 
teacher progress is measured by recorded observations, completed student projects, 
and surveys.

Keywords Teaching computational skills • Computational problem-solving • 
Computer thinking • Professional development

 Community College Initiative

 Teaching Computational Thinking Skills in Rural Communities

Wyoming is vastly open plains with most towns being at least an hour and a half 
from each other. In addition, the weather can be unpredictable, causing travel 
delays. The region that the Western Wyoming Community College (WWCC) 
serves is the southwest region of the state. The counties included in this region are 
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Sublette, Lincoln, Uinta, Sweetwater, and Carbon counties. The college campus is 
located in Rock Springs, Wyoming, which is in Sweetwater County. There are a 
total of seven community colleges in the state of Wyoming that split regions within 
the state. This does not mean a community college cannot reach out to other coun-
ties. Each community college is a 2-year institution that provides vocational and 
educational services to their region. WWCC works closely on initiatives with the 
K-12 district schools including hosting the science fair, Engineering week, spelling 
bee, Computer Science teacher workshops, and college credit courses for high 
school students to name a few. The University of Wyoming is the only state pro-
vider of advanced education, and their outreach locations tend to be located at the 
community colleges.

In order for community colleges to play a role in delivering Computer Science 
and computational thinking skills with teachers in middle and high school, they 
must build relationships through networking. In Western Wyoming, to build these 
types of relationships, it is done more on a one-to-one connection bases. When pro-
moting initiatives, the preferred method of communication is through face-to-face 
interaction and phone conversations. The technology through online environments 
is catching on as well. The main factor with online environments is there has to be 
a skilled instructor as the facilitator. This eliminates any distractions from the online 
meeting or lesson. Many teachers in these rural communities interact with different 
counties by seeing each other at conferences, science fairs, and community events. 
To get teachers involved in implementing computational thinking projects into their 
classrooms, it is important to have workshops at regional conferences and events. 
The preferred conferences and events would be Science, Technology, Engineering, 
and Mathematics (STEM) related. Participants at these events are very eager to 
learn and share information with their classrooms. One of the main reasons of 
attending these types of sessions is the networking opportunities.

 Understanding Computational Thinking Skills

In addition to building relationships, the community college faculty must  completely 
understand computational patterns and the skills required to master these 
 proficiencies. Understanding computational skills before implementing initiatives 
with the middle and high school teachers is imperative. Many individuals relate the 
field of Computer Science to computational thinking. The awareness that computa-
tional thinking patterns can be found in various disciplines other than Computer 
Science (CS) is catching on. The community college is aware that computational 
skills are part of their offered computer programming courses. However, the focus 
has not been on what computational skills are being covered in the assignments for 
college students. The focus in these courses has primarily been on if students know 
how to program in various computer languages. Even though exploring the process 
of algorithms is presented in CS classes, there is no assessment of computational 
thinking skills per se.
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To assist in the implementation of teaching middle and high school teachers and 
students computational thinking patterns, exercises in this subject for college 
 students were initiated. These exercises included the use of computer gaming, simu-
lations, virtual mapping, virtual environments, data compression, pattern recogni-
tion, and algorithms. All these are considered computational thinking skills. In 
order to meet the student needs in WWCC’s region, CS courses are offered online. 
The challenge of teaching these skills over an online environment can be somewhat 
problematic. The resource found to be effective is the use of clear instructions, 
examples, videos on computational concepts being covered, and immediate instruc-
tor feedback. With resources being limited for community college faculty to work 
on a one-to-one basis with each student, pairing students was beneficial. However, 
additional assignments needed to be geared on an individual basis to verify under-
standing of knowledge gained. When creating exercises, technology needs to be 
tested to make sure students were able to complete these exercises virtually. Students 
were given instructions on what software was needed on their computer systems at 
home, and they were required to provide a screenshot of applications working on 
their end. This helped the instructor determine which students were having technology 
trouble, if any. Furthermore, college students were able to evaluate and provide 
feedback on computational thinking skill activities that would be given to middle 
and high school students.

 Teacher Training in Computational Thinking Skills

Community college faculty teamed up with the University of Colorado Boulder on 
the Scalable Game Design (SGD) project and the University of Wyoming on the 
ITEST uGame-iCompute project. Both initiatives included the use of computer 
gaming and simulations to teach Computer Science concepts and computational 
thinking skills. The projects were geared toward middle and high school teachers 
and students. Community college faculty played a supportive role by recruiting and 
providing training, tutorials, and one-on-one support. To start the recruiting process 
as community college faculty, workshops and presentations were presented at con-
ferences where middle and high school teachers participated. The sessions provided 
hands-on exercises that middle and high school instructors could take back to their 
classrooms. In addition, teachers received resources such as support, tutorials, and 
cheat sheets to effectively get started.

Faculty relied on word of mouth through colleagues and community  connections. 
Once the connections were made, faculty contacted teachers at the schools that were 
interested in the Scalable Game Design and ITEST initiatives. The recruited  teachers 
attended a 3–4-day summer training or participated in a 4-week online computer 
gaming course. The community college faculty were part of the training process for 
teachers. Teachers received stipends for attending these trainings. The training pro-
vided exercises to teach Computer Science concepts and computational skills in the 
classroom. The online tutorials provided by the community college included game 
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overview, examples, preparing class, computational thinking lesson plans, rubrics, 
and cheat sheets. Below is an illustration of an online training tutorial:

In addition to the workshops, summer training, and online course for middle and 
high school teachers, the Google Computational Thinking for Educators self-paced 
online course was recommended by the community college faculty. This was a 
method that instructors could use in their own time. The course focused on 
 integrating computational thinking into course curriculum. The course was directed 
toward Humanities, Math, Science, and Computing educators; however, any 
 educator could be part of the course. The Google Computational Thinking for 
Educators course content consisted of the Introduction to Computational Thinking, 
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Exploring Algorithms, Finding Patterns, Developing Algorithms, and Applying 
Computational Thinking. Upon completion, each participant received a certificate 
of completion from Google indicating the understanding of computational thinking. 
The problem with the self-study method was there was no accountability of comple-
tion. Verbal connections were made with teachers, and many indicated that they did 
not have a chance to complete the online course.

 Assistance to Teachers

Due to limited community college faculty resources, Computer Science (CS) interns 
were recruited to schools within the district. These CS interns were trained on the 
implementation of computational skills through computer gaming and simulations. 
These were the same games being created in the middle and high school sessions. 
The computational thinking patterns were implemented in the Computer Science 
intern projects. Each CS intern received credit for successfully completing their 
computer game and simulations. In addition, the students received credit for work-
ing with a middle or high school teacher. The CS interns were provided as a resource 
to the teachers, to help with the delivery of the computational thinking concepts. 
Rubrics were used to determine the completion of each student’s projects and their 
understanding of the computational skills. At the middle and high school level, stu-
dents were given grades and points on their projects. The limitation to using 
Computer Science interns is the availability outside of the campus county.

In addition to the CS interns being trained on computational thinking skills, other 
CS students were introduced during the Introduction to Computer Science course. 
Typically, basic programming is taught, and gaming and simulation projects were 
embedded as midterm and final projects. In the more advanced Computer Science I 
course, college students were introduced to computer simulations. These simula-
tions challenged students to think more critically. Computational thinking directives 
were indicated and graded based on project completion. College-level students felt 
that including these types of projects was an invaluable way to break up the class. 
The college instructor felt that students being part of such a project increased their 
knowledge and collaboration skills.

As faculty that provided support to teachers, email communications and phone 
conversations performed an important role in the dialog. Teachers who worked in 
the community college district felt more comfortable about contacting the 
 community college for assistance. A majority of Wyoming teachers were recruited 
by the community college faculty. In rural communities, previously knowing indi-
viduals and the one-to-one connection are important. The assistance from the 
 community college would include what necessary paperwork needs to be  completed, 
license numbers for software, how to communicate effectively with their Information 
Technology department, tutorials that were available, and any issues they may have 
in implementing computational thinking skills in the classroom to name a few. The 
responses from community college faculty needed to be timely and helpful.
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 Observations

The community college faculty played an active role in conducting observations of 
school sessions. On many occasions, the community college faculty would travel to 
locations to help teachers get their projects started. It was important to have 
 community college administration on board with travel, to approve absences from 
campus. The benefits to the college and college students were enhancing teaching 
skills, building relationships, and learning new skills. These skills were very 
 beneficial to college faculty in teaching college classes. The knowledge gained by 
observations kept faculty up-to-date on the latest technologies to use in teaching 
college students, which in turn engaged student learning.

As the initiative progressed and the community college teamed up with 
 universities, which is covered in more detail later in the chapter, there was more 
travel funding. In order to assess how well teachers were conducting their 
 computational thinking sessions, the community college became certified as a 
Dimensions of Success (DoS) observer, which is an observation tool for STEM 
programming. According to the DoS certification, when certified you are aware of 
the procedures for using DoS appropriately to assess STEM program quality. The 
DoS process verifies that teachers have paid attention to organization, materials, 
space utilization, participation, purposeful activities, engagement with STEM, 
STEM content learning, inquiry, reflection, relationships, relevance, and youth 
voice. Each category is rated with a scale from 1 to 4, and comments are provided 
from the observer on what took place during observations.

In most sessions, sessions were conducted in a classroom setting with students 
working at either desktop or laptop computers. Students tended to work in groups of 
two. Part of the process of observing computational thinking skills was to make sure 
teachers provided relative activities and student self-reflections on activities. It was 
important to have students actively reflecting on the STEM content, as well as com-
putational thinking skills, in meaningful ways. Interactions among students and 
between facilitators and students were consistently positive, creating a warm and 
friendly learning environment.

 Community College Projects

 Scalable Game Design (SGD)

During the early implementation of working with schools in their district, WWCC 
was asked to work on the Scalable Game Design project with East Junior High 
School. In an effort to make the implementation of STEM criteria in the classroom 
easier for teachers, the University of Colorado Boulder has developed two computer 
programs AgentSheets and AgentCubes as part of their Scalable Game Design (SGD) 
research project. This project introduced students to Computer Science concepts and 
computational thinking skills through computer games and simulations.
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During this beginning phase of working with middle and high school teachers 
within WWCC’s region, the faculty worked with only the East Junior High School. 
This was feasible since the school was located in the same district. Students were intro-
duced to simple 2D games using AgentSheets like Frogger and Mazes. AgentSheets 
provided an easy method for adding characters to the game, creating worksheets, and a 
drag and drop method for adding behaviors to characters. The educational goal was to 
learn and apply computational thinking skills in the context of a familiar game or simu-
lation. WWCC Faculty would assist the teacher during the classroom session and pro-
vide training resources at the junior high. The session was conducted during regular 
class time, and many students were interested in taking the course. The feedback from 
students was excitement and motivation for learning more about computational think-
ing patterns. After learning a simple game, students were encouraged to create their 
own games and simulations using computational patterns.

In addition, college faculty attended the summer institute provided by the SGD 
research project. This gave invaluable training on implementing computational 
thinking skills in the classroom, as well as understanding of computational patterns. 
This opportunity provided collaboration with other teachers, resources, and motiva-
tion to begin working with other schools in the college’s region.

 uGame-iCompute Project Using LMS

As a result of working with the University of Colorado Boulder on the SGD project, 
WWCC faculty was asked to work with the University of Wyoming on the uGame- 
iCompute project. This 3-year project included the use of AgentSheets and AgentCubes 
as well. As previously mentioned, AgentSheets and AgentCubes are computer gaming 
and simulation programs, which assist in teaching computational thinking skills. 
During the first year, the community college played an active role in recruiting, train-
ing, and providing resources and one-on-one support to teachers. In this study, middle 
and high school teachers participated in an online course to learn about creating com-
puter games and simulations. The course consisted of an online learning management 
system (LMS) with conference capabilities to demonstrate the games and simulations. 
The training materials used for instruction were online tutorials that provided infor-
mation on how the game is played, lesson plans, step-by step cheat sheets, an example 
of the game, related computational skills, and various other resources. The rationale 
used for most of the instruction was that the teacher needed to create the game or 
simulation themselves before teaching their students. The process of creating their 
projects before teaching their students was vital. In the case of simulations, teachers 
were encouraged to do some research with their students first. For example, before 
doing a forest fire simulation, students would research information about how forest 
fires are started, how they work, who is involved in putting out the fire, and how much 
damage they can cause. This gives the students a “real-world” example. The commu-
nity college faculty provided an online tutorial for the forest fire, to help teachers 
implement this project in their classroom.
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After training, teachers introduced their students to Computer Science and 
Mathematics concepts by creating computer games and simulations. Students learned 
about principles for game design and connections to computer programming. With 
the forest fire pre-exercise of researching forest fires and the creation of the forest fire 
simulation, students learned the concept of probability, the use of graphs to graph 
their understanding, and the use of mean and variance in analyzing the simulation. 
In addition, these playable games and interactive simulations used computational 
thinking patterns, methods, behaviors, and actions. The sessions were interactive, 
completely hands-on and required no prior computer programming experience.

 uGame-iCompute Project Using Adobe Connect

During the second and third year, the Western Wyoming Community College 
(WWCC) continued to work on the uGame-iCompute project, which continued to 
incorporate computer gaming into middle and high school classrooms in their 
region. Again, this project included the NASC 5770-60 Visualization Basics teach-
ers’ course that explored how game programming and robotics can be used effec-
tively in the middle and high school curriculum. The course syllabus included the 
common threads that would be covered: (a) the computational thinking skills that 
are required to build computer games and program robots and (b) how these relate 
to the appropriate teaching standards. The course is split into two 8-week parts. 
During the first part, participants learn about game programming using AgentSheets 
and AgentCubes. The second part consisted of putting together and programming 
EV3 robots. The community college faculty’s primary role in the course was deliv-
ering some of the computer gaming course content and teacher support, which 
included providing assistance, resources, and materials for them to complete their 
game programming projects. In addition, an online learning environment and online 
collaborative meetings were used to work one-on-one with teachers on their proj-
ects. The gaming exercises included computational skills such as algorithmic think-
ing, critical thinking, efficient solutions, innovative thinking, problem-solving 
skills, and scientific thinking. To verify that students understood the computational 
thinking involved in their games, they were instructed on where these skills took 
place in their projects. For example, when creating a virtual bouncing ball, think 
about how to simulate the ball bouncing virtually and implement it.

At this time, the course used Adobe Connect to deliver the online course. Adobe 
Connect is a web conferencing, online training, and desktop sharing environment. 
The method of instruction for the gaming programming piece was a “flipped 
 classroom” arrangement. Teachers were given short videos and game programming 
assignments to complete before and during the online class session. The instructor 
covered game programming concepts and allowed teachers time to complete their 
projects with teacher support being available. In addition, the class gave an oppor-
tunity to discuss the materials that are being covered and to collaborate on ideas 
related to integrating computer gaming in the classroom.
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 Google Initiative (CS4HS)

Recently, WWCC was asked to take part in a project with Google and the University 
of Colorado Boulder entitled Google CS4HS (Computer Science for High School). 
This project aims is to teach principles in Computer Science, again through the use 
of AgentSheets and AgentCubes. The objective of the initiative was to bring middle 
and high school teachers together to learn and teach Computer Science concepts and 
computational thinking skills specifically for high school students. The implementa-
tion for this initiative was to conduct a summer session for teachers. The summer 
session would be specifically for Wyoming teachers. The community college played 
an active role on setting up the Wyoming summer institute with teachers. The 
University of Colorado Boulder provided training materials that were given to each 
teacher, which included explanations of computational thinking exercises and stu-
dent training materials for their classrooms. In addition, the community college pro-
vided additional training materials. There were 15 teachers in the summer session 
that worked on computer games and simulations to learn about computational think-
ing patterns. This event proved to be an effective way of networking teachers. And 
once teachers and students created their games in the 2D AgentSheets format, it was 
easier to move into the 3D AgentCubes version of the games and simulations.

Initially, teachers were given a survey about when and where they would imple-
ment their lessons on computational thinking. Teachers were primarily from the 
Computer Technology, Science, and Math fields. Many instructors indicated having 
their sessions during school hours, and a few decided to have after-school programs. 
Teachers sent flyers home with students, and the students choose whether to be part 
of the sessions. The average size of the computer sessions is 10–15 students, meet-
ing once or twice a week. Many of them will work on creating a simple computer 
game like Frogger. The grade levels for these students can range from 4th to 9th 
grade. Even though the focus is for high school students, there is room for younger 
students to take part in order to increase the knowledge in computational thinking 
skills as students’ progress through school.

 Teacher Feedback

Many teachers were recruited for a combination of initiatives. Consequently, 
some teachers worked on a couple initiatives at a time. Being in rural communi-
ties, the same teachers are interested in computational thinking projects, and it is 
not uncommon to have them working on the same projects. The Google CS4HS 
 teachers were surveyed, after completing one semester of implementing computa-
tional thinking skills in their classroom. Teachers were asked if they created their 
own computer games and simulations before teaching their students. More than 
half indicated that they did create their own before teaching the concepts. We 
found that it was important to have teachers go through the exercises on their own, 
in order to have a successful session with students. Even though cheat sheets were 
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provided to teachers, it was strongly recommended not to use these as a teaching 
method, but more as a resource. The training methods that were used for these 
teachers ranged anywhere from an online course to self-study, face-to-face training 
session, and videos. The instructors indicated that they had taken part in several 
of the training methods. All teachers concluded that the training was beneficial, 
which indicated that it was effective. The majority of teachers felt they were ready 
to teach their students after training.

During their sessions, a lot of the teachers felt they would prefer to work in 
groups with other teachers. This can be difficult in rural communities. One way to 
rectify this is by recruiting a couple of teachers from each county and teaming them 
up in the same districts. There were several teachers that did work together on after- 
school programs, which teachers indicated was a good way to implement these 
programs. When asked about what computational thinking skills their students 
learned, more than half indicated that the students learned algorithmic thinking, 
critical thinking skills, innovative thinking, problem-solving, and scientific think-
ing. Below is a comment from Adrienne Unertl from the Clark Elementary in 
Evanston, Wyoming:

“I have enjoyed implementing game design because it has benefited my students to solve 
their own problems. They have begun talking in conversational programming when describ-
ing what they would like to happen in their game. They have become content creators 
instead of just consumers. They have also learned to debug their program and pinpoint 
which agent has the issue that needs resolved. They collaborate with their peers and chal-
lenge each other to create better games and point out flaws with constructive comments.”

In addition, teachers used other computational thinning activities in their class-
room. These included Math critical thinking problems, getting students to work 
backward from a solution, critical thinking, and investigative research. The chal-
lenges they felt they encountered were having students at different levels of under-
standing, having glitches in the program being used, large class sizes, out-of-date 
computers, not enough storage space, too many students per computer, and time.

WWCC has found that the challenges in teaching computational thinking skills to 
middle and high school teachers can be numerous. Instructional concerns are pacing, 
fitting it in with existing curriculum and support. There may be a learning curve for 
some teachers. One of the implementation concerns is deciding when to implement. 
Working with the Information Technology department at each school is another con-
cern. When working with Information Technology departments, it is imperative to 
provide software requirements, any installation issues that may occur, additional 
plug-ins that may be needed, as well as licensing information. These instructions will 
prevent technology difficulties in implementing projects in the middle and high 
school classroom. Another roadblock to implementing these  initiatives in the class-
room is administrative buy-in. This is where the community college faculty can play 
an important role. In each district, it is encouraged for schools to work with the 
community college on initiatives; therefore, having a community college faculty 
collaboration is imperative. This collaboration should bring about administrative 
support from school administrators.
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 Teaching Computational Thinking Through Gaming

Educators are finding game makers an important asset in creating games and simu-
lations relative to their subject area. There are communities such as teachers that are 
capable of recognizing what sorts of things are worth checking out, discussing 
them, and championing them (Steinkuehler, Squire, & Barab, 2012). These indi-
viduals are forming communities to collaborate on what is the best way to use 
games and simulations in the classroom and which applications to use. Educators 
are provided with various resources, which include gaming groups, tutorials, and 
actual games that are already produced for learning. For example, if a teacher wants 
to cover computational concepts in their classroom, they can have students create a 
simple game that includes programming steps such as how the frog moves in the 
game Frogger or what happens when the frog jumps into traffic. Educators can also 
simulate real-world events like a mud slide, by having their student’s research 
mud slides and then actually having students create a simulation or game. Since 
playing games in our society has increased, this seems to be an effective way to 
teach computational thinking concepts in education.

Another important factor to consider is how to teach skills through gaming. 
Where do you start? The first item is to have the technologies to implement the gam-
ing in the first place, i.e., required hardware and software. Halverson and Smith 
(2010) describe two different use patterns for technologies in learning environ-
ments: technologies for learning and technologies for learners (Steinkuehler et al., 
2012). These technologies are important to effectively teach through gaming. Once 
you have the technologies to support games for learners, the teacher can concentrate 
on the delivery of the teaching in the learning environment. Designing learning 
environments is not merely a matter of getting the curricular material right but is 
crucially also a matter of getting the situated, emergent community structures and 
practices right (Steinkuehler et al., 2012). After an educator has the learner require-
ments to create the game and the structure of how to teach the learner concepts 
through gaming structure, then the teacher can focus on the delivery of the content. 
In the twenty-first century, games play an important social connection among peo-
ple who play them and in the learning process regarding various subjects.

 Community College Perspective

This section is focused on the challenges that community college faculty have in 
implementing such projects in their workload. Typically, community college faculty 
have a class load of 28–32 credit hours an academic year, which averages about five 
classes a semester. The workload includes classroom instruction, face-to-face inter-
action, serving on several college communities, implementing community events 
and showcases, maintaining courses in their subject area, maintaining program 
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 system portfolios, attending subject area conferences, as well as working with 
 community businesses to enhance employee skills. In addition, there are no teaching 
assistants, so grading becomes another time-consuming task. There is little time for 
extra projects or research in a particular area. The focus at the community  college 
is more on teaching then research. There are numerous ways to implement 
research in an area at the community college level. First, alternate classes during 
a semester, and provide 16-, 12-, and 10-week classes. Team teach courses. 
Provide an  internship course in the content area, which allows interns to work on 
research projects. This prevents overloading. Team up with other like-minded col-
leagues to implement a research symposium. Include students in active research 
in partial methods. For example, allow college-level students to evaluate compu-
tational skills exercise that will be used in middle and high schools. Feedback 
from college-level students is beneficial in the successful implementation of proj-
ects. Provide networking opportunities for interns and K-12 teachers. Team up 
with universities that are doing research in the area that is being taught. Currently, 
there are more opportunities for undergraduate research at community college 
than ever. Team up with community college research initiatives and become members 
of their committees.

The process of implementing computational thinking skills in the classroom is 
relatively easy. Teachers should be provided with program installation instructions, 
training, instructional tutorials, and cheat sheets. In addition, educators should be 
provided with continual support in delivering activities in the classroom. Instructors 
can be teamed up with other educators who have already implemented these activi-
ties. Teachers are encouraged to share ideas and gather new ideas for computer 
gaming and simulation activities.

In Western Wyoming, where there are more antelope then people, it is important 
to collaborate with other teachers at the community college level or the K-12 sector. 
Starting out with a few K-12 teachers to work with on research initiatives is recom-
mended. Another effective method of sharing ideas and implementing  computational 
thinking projects in rural communities is to have online meetings. Having  experience 
with web conferencing, designing online training tutorials, and providing work-
shops or classes online are ideal. Documenting the progress of projects through 
school videos and pictures is helpful. Videos and pictures can provide  administrative 
support for projects. There are many online training websites that can enhance skills 
in virtual technologies.

Building relationships is the most effective way to implement projects across the 
board. Another key factor is communication. The initiatives benefited the college by 
enhancing collaboration with schools in the region, along with building  relationships 
with the University of Wyoming and the University of Colorado Boulder. Furthermore, 
the enhanced and updated knowledge in education and computational thinking 
skills were gained.
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 Conclusion

By providing teachers with a real-world example, they can motivate their students 
to engage in the learning process and possibly have a renewed interest in STEM 
occupations. STEM occupations are projected to grow by 17.0 percent from 2008 to 
2018, compared to 9.8 percent growth for non-STEM occupations, and STEM 
workers experience higher wages and less joblessness in today’s economy. Preparing 
US students from diverse backgrounds to fill these jobs is a national priority (NSF, 
2010). The field of Computer Science is a portion of the STEM occupations that is 
rapidly growing. As part of the initiative to recruit the younger generation into 
Computer Science occupations, it is imperative that they are introduced to Computer 
Science and computational thinking patterns at an early age. “Exposing middle 
school students to computer science through game design appears to be a promising 
means to mitigate the computer science pipeline challenge” (Koh, Repenning, 
Nickerson, Endo, & Motter, 2013). The execution of computer gaming and simula-
tions can be integrated into already existing courses, an after-school program, or a 
separate assignment during an academic year. Creating a computer game does not 
have to be conducted in a technology course; it can be included in any course. 
“Research suggests that exposure to short game design activities is effective in 
motivating large percentage of students in a wide variety of demographic groups” 
(Koh et al., 2013).

A successful education programming environment would include accessibility, 
making a working game in a short amount of time, and understanding the concepts 
of computational thinking. According to the National Center for Women and 
Information Technology (NCWIT) (2016), developing relevant and interesting 
assignments that appear to a broader audience is recommended for fostering a cli-
mate where the non-predisposed can belong both academically and socially, recruit-
ing students who are not predisposed to pursuing computing, and exposing 
fundamental computing concepts to inexperienced learners.

Computer games along with simulations can be a good way to learn and teach 
computational thinking, critical thinking, and problem-solving skills. When a 
learner can learn the concepts on how a virus spreads and then create a computer 
simulation on how this happens, the learner can connect the concepts of the subject. 
This enhances the learning experience. In turn, learning these concepts through 
actual hands-on activities does bring it into the real world. In our society, the use of 
games, simulations, and even mobile apps is becoming common place. If there are 
avenues that can be taken to easily present a subject or skill through games and 
simulations, why not go for it.
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Abstract The challenges of addressing increasing calls for the inclusion of 
 computational thinking skills in K-12 education in the midst of crowded school 
 curricula can be mitigated, in part, by promoting STEM learning in after-school 
 settings. The Visualization Basics: Using Gaming to Improve Computational 
Thinking project provided opportunities for middle school students to participate 
in after-school clubs focused on game development and LEGO robotics in an 
effort to increase computational thinking skills. Club leaders and teachers, how-
ever, first needed to develop proficiency with the computational tools and their 
understanding of computational thinking. To achieve these goals, teachers partici-
pated in two online professional development courses. After participating in the 
courses, teachers’ understanding of and attitudes toward computational thinking 
skills were mostly positive. Observations of club sessions revealed that teachers 
provided a mix of structured and open-ended instruction. Guided instruction, such 
as using detailed tutorials for initial exposure to a concept or process, was most 
commonly observed. One area identified for improvement was the duration of the 
courses, which provided limited time for teachers to develop deep and robust com-
putational thinking skills. Despite this limitation, the data collected thus far sug-
gest that teachers’ understanding of and attitudes toward computational thinking 
skills improved.
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 Introduction

The history of US public schools is replete with calls for increased skills for dealing 
with current and future challenges. These calls include improvements in problem- 
solving and critical thinking skills (Educational Policies Commission, 1961), 
twenty-first-century skills (Uchida, Cetron, & McKenzie, 1996), and, more recently, 
computational thinking skills (Barr, Harrison, & Conery, 2011; Wing, 2006). 
Responding to these calls is a significant challenge on multiple fronts, including 
curriculum constraints and professional development. Demands on teachers’ time 
to address existing curriculum requirements are high, leaving little or no room for 
new content, such as with computational thinking (Grover & Pea, 2013; National 
Research Council, 2011). Out-of-school activities, including after-school programs, 
however, provide greater opportunities to address computational thinking (CT) due 
to greater flexibility with curriculum and widely available web-based resources 
(National Research Council, 2011).

In 2013 the University of Wyoming received NSF Innovative Technology 
Experiences for Students and Teachers (ITEST) funding to implement a three-year 
program focused on developing middle school students’ computational and spatial 
visual thinking skills in after-school settings. The resulting program, Visualization 
Basics: Using Gaming to Improve Computational Thinking (UGICT), helped public 
school teachers and community members form after-school game development and 
robotics clubs. As most club teachers did not have experience with programming or 
robotics, professional development (PD) was provided in the form of two synchro-
nous web-based courses. Data were gathered on teachers’ understanding of CT and 
instructional practices through the use of pre-post surveys and club observations. 
This chapter focuses on results from years 1 and 2 of the grant project, in which 28 
teachers in grades 4–8 from 18 schools in Wyoming participated.

 Theoretical Framework

While there is a definite “cool” factor for selecting game development and robotics 
as tools for improving computational thinking skills, the use of such technology 
tools for learning is rooted in the ideas of constructionism. The key to learning is 
activity and experience (Dewey, 1916, 1958), whether through social interaction 
(Lave & Wenger, 1991; Salomon & Perkins, 1998; Vygotskiĭ & Cole, 1978), play 
(Honeyford & Boyd, 2015; Piaget & Inhelder, 1969), experimentation, or creation 
and construction (Burke, O’Byrne, & Kafai, 2016; Kafai, 1995, 2006; Kafai & 
Burke, 2013; Papert & Harel, 1991). Using programming to create new artifacts 
such as games and robotic controls is an effective tool for learning computer science 
concepts, mathematics, and problem-solving (Akcaoglu, 2016; Ardito, Mosley, & 
Scollins, 2014; Denner, Werner, & Ortiz, 2012; Kafai, 1996; Li, 2010; Papert, 
1980). Furthermore, the use of game design and robotics promotes a specific type of 
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thinking skills known as computational thinking (Atmatzidou & Demetriadis, 2016; 
Bers, Flannery, Kazakoff, & Sullivan, 2014; Nickerson, Brand, & Repenning, 2015; 
Repenning et al., 2015).

 Computational Thinking in K-12 Education

Capturing the essence of CT, particularly in the context of K-12 education, in a 
simple definition is a vexing problem (Atmatzidou & Demetriadis, 2016; Barr & 
Stephenson, 2011; Grover & Pea, 2013; NRC, 2011). The definitions of CT that 
have been offered differ in some details, but they are largely consistent with one 
another. One of the earliest and most widely accepted definitions is from Jeannette 
Wing (2006), who emphasized that CT is a general attitude and broad skill set, as 
opposed to an explicit and narrow list of facts.

Wing’s seminal ideas on CT had broad influence, and have been largely incorpo-
rated into the definition of CT from the International Society for Technology and 
Education (ISTE) and the Computer Science Teachers Association (CSTA). These 
groups are two of the main voices in the establishment of K-12 computing educa-
tion, and proposed an authoritative definition of CT comprised of two parts (Barr 
et al., 2011). The first involves characteristics of the CT process, which include the 
ability to:

Formulate problems in a way that enables the use of computers
Logically organize and analyze data
Represent data through abstractions such as models and simulations
Automate solutions through algorithmic thinking
Identify, analyze, and implement different possible solutions with efficiency in mind
Generalize this problem-solving approach to a wide variety of problems

Technical computing skills are not sufficient by themselves to solve problems via 
the use of computing power. Problem-solving with computers is a difficult and often 
lengthy process, so success also requires a set of attitudes that allow students to 
persevere in the face of adversity. These attitudes include:

Confidence in dealing with complexity
Persistence in working with difficult problems
Tolerance for ambiguity
The ability to deal with open-ended problems
The ability to communicate and work with others

There is a rich and growing research base on the use of gaming and robotics to 
address specific CT skills in students (Atmatzidou & Demetriadis, 2016), providing 
evidence of increased communication and collaboration skills (Ardito et al., 2014; 
Khanlari, 2013; Yuen et al., 2014), motivation (Webb, Repenning, & Koh, 2012), 
complex problem-solving skills (Akcaoglu, 2016; Akcaoglu & Koehler, 2014), 
abstraction (Nickerson et  al., 2015), and transfer (Repenning et  al., 2015).  
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Another important issue is how much CT skills the teachers themselves need 
(Repenning et  al., 2015; Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014). 
Additionally, simply having the CT skills may not be enough; self-awareness of 
these skills may be necessary. While it is convenient to believe that teachers with 
general skills and expertise in non-computing subjects can learn just enough com-
puting through professional development to introduce CT in their classrooms, we 
believe that it is crucial that teachers have first-hand experience with the affective 
challenges that face anyone who is learning CT.

 Professional Development of CT

Rather than attempting to address all of the elements of CT in the UGICT project, 
an operational definition was developed based on the following precepts:

• Modeling is at the heart of CT.
• CT is not just about programming skills.
• Solutions can be generalized and transferred to other situations.
• CT is about persistence and dealing with failure.

To help teachers achieve these understandings and skills, the UGICT profes-
sional development focused around a set of modeling challenges involving both 
game programming and robotics, such as writing a simple version of Pac-Man and 
making a robot move in a circle with a 1 m diameter. From the computing perspec-
tive, these challenges may only be moderately difficult, requiring only sequential 
thinking and the basic principles of variables, alternation, and loops. However, for 
teachers who had little or no prior training in computing, these were daunting chal-
lenges. Additionally, teachers of different backgrounds found the challenges to be 
easier or more difficult, depending on those backgrounds. It was also natural for 
participants to find themselves working at different rates. This meant that the PD 
had to be very flexible.

�Class�Descriptions

In the first 2 years of the UGICT project, 28 participating teachers enrolled in short 
courses to prepare them for working with the target gaming and robotics  technologies. 
These courses focused on software functionality and an exploration of how gaming 
and robotics can be used effectively to develop computational thinking skills, both 
in the participating teachers and in their students.

In the first year of the project, a single 8-week course was delivered, with 4 
weeks dedicated to gaming and 4 weeks to robotics. In the second year, additional 
time allowed for the delivery of two 8-week courses, one for each technology. Due 
to the low population density of Wyoming, it was infeasible to have classes meet 
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face-to-face every week. Class sessions were held synchronously online to allow for 
screen and file sharing, chatting, and display of instructor webcam video. Class ses-
sions were held once a week in 2-hour blocks and were recorded.

During the gaming segment participants learned about programming using 
AgentSheets, AgentCubes (Repenning, 2012), Scratch, and Bootstrap authoring 
systems. The second segment introduced participants to building and programming 
with the LEGO EV3 system. Common threads of the courses included (1) modeling 
(meaning, data, and knowledge representation) as the heart of programming, (2) the 
computational thinking skills that are required to build computer games and solu-
tions to robotics challenges, and (3) how these relate to appropriate STEM content 
standards.

AgentSheets is a visual programming environment that can be used to create 2D 
games and simulations. The playing field, called a worksheet, is comprised of a 2D 
array of cells, each of the same size, e.g., 32 × 32 pixels. Each cell can house one or 
more agents, which may be stacked on top of each other. Agents make up all of the 
visual elements in the game, including the background, stationary objects like rocks, 
an avatar for the player to control, the antagonists, and any other game components 
such as robots and chairs. Programming in AgentSheets consists of choosing which 
agents to place in a worksheet and providing behavior via custom rules.

Computational thinking is explicit in the AgentSheets and AgentCubes program-
ming environments through the idea of Scalable Game Design (SGD) (Repenning 
et  al, 2015). An important aspect of SGD is the psychological principle of flow, 
which seeks to strike a middle ground between boredom and anxiety for students at 
different stages in computational thinking. This is accomplished, in part, via a 
sequenced curriculum with a progression of games that are increasingly difficult to 
build and with different computational thinking patterns (see Fig. 1). Consequently, 
as students progress in their technical skills, they are exposed to more challenging 

Fig. 1 Interrelationship of 
design challenges and 
anxiety in determining 
optimal flow (Source: 
http://www.agentsheets.
com/education/scalable- 
game- design/index.html)
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problems. In turn, as they work on more challenging problems, they learn more 
computational thinking patterns, helping their skills develop further. In the end, 
students are working on simulations, as opposed to games, but they learn that con-
cepts such as diffusion or hill climbing that they learned in the context of computer 
games transfer very naturally to the context of simulations in science, public policy, 
or any number of different fields.

The notion of computational thinking patterns is also pedagogically important in 
SGD. The idea is that games and simulations are constructed using a relatively 
small set of patterns, such as diffusion and hill climbing which are central to the 
game of Pac-Man. In fact, programs in AgentSheets and AgentCubes can be 
inspected mechanically for evidence that they use these patterns, which provides an 
easy, automated way of measuring growth in computational thinking patterns, if not 
the totality of computational thinking as defined by ISTE and CSTA.

Our PD program was designed to help teachers understand how to use 
AgentSheets and AgentCubes and how these programs foster computational think-
ing. We proceeded by leading teachers through a sequence of activities that they 
could use directly in their after-school program, and as we did so, we discussed the 
CT skills and attitudes that were involved.

The very first task was to create one or more agents. In AgentSheets, the agents 
are 2D image files, and as mentioned previously, are of a fixed size, e.g., 32 × 32 
pixels. Similarly, agents in AgentCubes are 3D models that live inside a volume of 
fixed size, e.g., 32 × 32 × 32 voxels. This activity was open-ended, and both instruc-
tors and participants had the opportunity to be as creative as they wished. Some 
chose to use minimal artwork, creating nothing more than stick figures, or to find 
suitable images on the Internet. Others, however, seized the opportunity to exercise 
their creative talents and produce, for example, magnificent 3D plants and animals. 
We encouraged this artistic exploration, because it gave teachers and students a 
chance to make their creations uniquely theirs. An important aspect of this explora-
tion is that it gave participants the opportunity to bring in their sense of culture into 
their project. There is great value in having each participant produce a different 
game, one that is uniquely meaningful to him or her, as opposed to having all stu-
dents produce an almost identical version of Pac-Man.

The 2D image or 3D model is only a portion of the agent. Agents can have 
more than one image, or depiction, which they can change programmatically. 
The other portion of the agent is the programmatic part, which is encoded as a 
list of behaviors. An agent’s behavior is grouped into methods, which are acti-
vated upon a trigger. For example, a method may be active when the agent is 
asked to “move left,” or it may simply be active whenever the agent “is running.” 
A method consists of one or more rules of the form IF some-condition-is-true 
THEN do-some-action. The conditions can check the value of program variables 
and agent variables, check which agents are in the agent’s cell or neighboring 
cells, and also check for user actions, such as pressing the space bar or an arrow 
key. The second task, then, was to add behavior to the agents, so that they would 
respond to arrow keys. For instance, when the user pressed the left arrow key, the 
agent moved left.
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These first activities addressed many of the aspects of CT.  In particular, 
 participants could readily appreciate the power of abstraction. For example, agents 
appear to follow a corridor, but the program is simply checking that the image in the 
cell next to the agent is a depiction of a floor which can be transversed. Additionally, 
participants were able to automate solutions through algorithmic thinking, such as 
creating rules for controlling the movement of agents. In this case, the basics may 
seem obvious: If the user presses the left arrow key, then the agent moves to the 
adjacent left cell. However, even this simple rule is riddled with complexities, such 
as “What if the agent is in the leftmost cell?” or “What if the cell to the left is 
already occupied?” As this illustrates, before attempting the task participants needed 
to clearly organize their thoughts, an act which is  the essence of computational 
thinking. Through these activities, participants also learned to appreciate the atti-
tudes necessary for success in these activities, such as the ability to work on open- 
ended problems and persistence.

Persistence is probably the most important quality one needs to have when deal-
ing with computers. Computing professionals spend more time correcting their pro-
grams than writing them. Some errors are caused by nothing more than carelessness. 
For example, once the rule for moving left is complete, it is easy to modify it to 
create a rule for moving right. In doing so, however, it is possible, and even likely, 
that the new rule is slightly wrong, perhaps by still moving the agent left instead of 
right. These errors can be painful, and almost all participants experienced the frus-
tration of not being able to spot these trivialities immediately.

More subtle problems arose because of misunderstandings. The simplicity of 
AgentSheets belies a very complex execution model. For example, consider two 
agents close to each other. The one to the left moves right whenever the cell to the 
right is unoccupied, and the one to the right does the same, but moving left. Is it 
possible for both agents to move to an unoccupied cell at the same time? This 
depends, of course, on the order in which the tests and movement of the agents take 
place. In other words, this depends on the way that AgentSheets implements the 
agent behavior, and these details are deliberately hidden from the programmer. It is, 
after all, what makes AgentSheets simple.

Normally, this does not present a problem, because however AgentSheets chooses 
to implement the agents’ behavior will not materially affect the outcome of the 
game. In those cases where it does make a difference however, it is important to 
determine exactly what will happen, and the only way to know is through experi-
mentation. The designing of good experiments, which is to say small programs, 
requires more aspects of computational thinking. In particular, it requires partici-
pants to formulate problems in ways that enable the use of computers, and logically 
organize and analyze data.

Once the participants understood the basics of AgentSheets, they could begin to 
create playable games. So for the next activity, we asked the participants to consider 
what makes an arcade-style game. The main components were quickly identified, 
such as an avatar, one or more dangers, one or more goals, and one or more antago-
nists. The first project was the game of Frogger, with the frog as the protagonist, 
trucks and water as antagonists, and the grotto across the river as the goal.
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To ease into this complex game, the participants first developed a simple game in 
which a protagonist moved according to user inputs, and one or more antagonists 
moved at random. Participants were given no further instructions, so had to be cre-
ative in choosing the game’s setting, characters and rules.

There was no single right solution to this activity, and many participants found 
this freedom of choice unsettling. They received more detailed instructions for the 
next activity, however, which was to recreate a small version of Frogger. Participants 
were surprised to discover that no new skills were required to build Frogger. The 
only differences were in scale and complexity, in that there were many more agents 
in the game of Frogger.

The final project that participants were asked to build was a small version of Pac- 
Man. The primary difference between Pac-Man and the first activity they engaged 
in is the behavior of the ghosts. Whereas in the first activity the antagonists moved 
at random, in Pac-Man the ghosts appear to follow the avatar. We emphasize the 
word “appear,” because the ghosts are actually following a much simpler rule. 
Again, this was used to build another connection to computational thinking, namely, 
formulating problems in a way that enables the use of computers and representing 
data through abstractions.

The way in which the ghosts appear to chase Pac-Man is quite clever, and we 
openly shared this solution with the participants. The protagonist, Pac-Man, is a 
source of “heat,” so the cell in which Pac-Man resides is very hot. Heat flows from 
hotter cells to the neighboring cells in a process called diffusion, which SGD counts 
as one of the basic computational thinking patterns. The ghosts can sense the tem-
perature of their cell and the surrounding cells, and they move toward the hottest 
neighboring cell, breaking ties at random. This process is called hill climbing, and 
it is another of the basic computational thinking patterns.

The combination of diffusion and hill climbing creates the illusion that the ghosts 
are chasing Pac-Man, but in reality each process is a simple mathematical rule that 
looks only at the value of “temperature” in neighboring cells. This last example 
emphasizes the importance of abstraction in computational thinking. The entire 
concept of “temperature” flowing from Pac-Man to its surroundings is a fable born 
of abstraction. The more mundane reality is strictly about cell values and averages. 
However, it is the essence of computation that seemingly complex behaviors – such 
as ghosts chasing Pac-Man – are the product of simple rules. This is the last lesson 
that participants gained from game programming, and it is an important one.

After learning how to build games with AgentSheets and AgentCubes, participants 
switched to robotics with the LEGO EV3 system. Programming the EV3 is quite dif-
ferent than game programming with the SGD platform. EV3 programs are constructed 
by dragging and connecting LEGO-style bricks on the screen. Each brick corresponds 
to a programming concept, such as an IF-statement or a loop, and the connections 
between the blocks specify the order in which blocks are executed. Blocks can have 
different parameters, such as the amount of power for a specific motor, and parame-
ters may be filled in directly (e.g., 50%) or taken from another block by connecting 
the two with a wire. Despite the LEGO-style interface, programming the EV3 is a lot 
closer to traditional programming than the SGD  platform, because the blocks and 

A. Buss and R. Gamboa



197

wires correspond very naturally to programming language constructs, such as control 
statements and variables. Moreover, the execution of an EV3 program is mostly 
sequential, so that students can think of “which block is currently executing,” much as 
programmers in Python or another traditional language think of “which line is cur-
rently executing.” This stands in contrast to AgentSheets and AgentCubes, where each 
agent is executing its own program at the same time as all other agents, and as men-
tioned previously, this can lead to subtle timing interactions between agents.

There is, of course, another fundamental difference between game programming 
with SGD and robotics programming with the EV3. Robotics programming includes 
a physical component, which is the EV3 robot, its sensors, and the motors that com-
municate with the outside world. This creates an opportunity to emphasize a com-
putational thinking principle, namely, that programs are models of certain aspects of 
a world. The world could be completely virtual, as in a game, where the laws of 
physics may be substantially different than in our own. Or it may be our world, in 
which case the model needs to capture enough of the real world to be useful. For 
instance, in robotics, the model may need to take into account the friction between 
the robot’s wheels and the ground.

The first robotics activity was intended to familiarize the participants with the EV3 
“brick” robot, its motors, and sensors. Participants started with the most common sen-
sors, including the color and ultrasound sensors, which can be used to follow a road 
and stop when approaching an obstacle. They also learned about the touch sensor, 
which is commonly used as a button or to confirm contact with a fixed object. 
Participants also learned about the buttons on the EV3 brick and how it can be con-
nected with a computer running the EV3 software, so they could download simple 
programs to the robot. They were then given a simple task to build a robot with a single 
motor and a rotation indicator. Building the robot was the focus of this task, which was 
intended to help participants become comfortable with the physical materials.

Once this first task was complete, participants were asked to become familiar 
with the EV3 programming environment. In particular, they learned about the dif-
ferent (virtual) blocks in the environment and how they interact with the input (sen-
sors) and output (motors) of the EV3 brick. They also learned the more abstract 
blocks that correspond to programming concepts, such as wait, loops, conditionals, 
and variables. The activities then turned to debugging programs. This process is 
complicated in robotics, because the programming takes place on the EV3 environ-
ment, but the program is run in the actual EV3 brick. So when participants wrote a 
program (by placing and connecting virtual LEGO blocks on the screen), they had 
to imagine what the robot would do. Later, when they ran the program, they observed 
what the robot actually did, and from those observations had to infer what went 
wrong and make adjustments to the program.

Next, we gave the participants a program that drives the robot around a square. 
However, the program intentionally  contained four bugs, which the participants 
were asked to find. Some of these bugs were subtle, and participants were unlikely 
to find them without actually running the program and observing what the robot did. 
For example, one of the bugs was that the robot turned right but said “left” as it did 
so. The purpose of this exercise was twofold. First, it exposed participants to the 
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unique challenges of debugging programs that run on a real-world robot. Second, it 
reinforced the idea that debugging is a natural part of the programming process and 
one that should not make them feel embarrassed or inadequate.

When participants engaged in a brute-force approach to the program/observe/mod-
ify cycle, they learned very little computational thinking. For example, suppose there 
is a goal to move the robot by 20 cm, and the programmer commands the motors to 
turn for 10 seconds. When the program is run the robot moves 21 cm, so the program-
mer changes the time to 9 s, which is not quite enough. By repeating this process, the 
programmer can eventually find the time required to move 20 cm, but with no full 
understanding of how the motor run time is related to the distance the robot travels.

A more nuanced approach is steeped in computational thinking. Instead of run-
ning the program once and seeing how far the robot moves, participants were 
encouraged to run the program multiple times with the same settings and record 
their observations. Surprisingly, the robot did not move the exact same distance 
each time. What participants then recognized is that the real world includes some 
variability; for example, as the robot moved along a carpet, it experienced different 
drag due to loose strands in the material. By taking multiple observations, they 
could find the average distance traveled for a given time, and from this table of facts, 
they could infer the exact time required to move exactly 20 cm. All of this rein-
forced the idea that the program is really modeling an aspect of the real world. 
Moreover, the simplistic model that is suggested by measuring the circumference of 
the wheels ignores the interaction between the wheels and the ground, so only works 
in ideal circumstances – what physicists refer to as “rolling without slipping.”

�Assessment�of�Teacher�CT�Attitudes�and�Practices

A pre-post survey of attitudes toward CT, modified from Yadav, Zhou, Mayfield, 
Hambrusch, and Korb (2011), was administered to each cohort of participating 
teachers. Twenty-one items presented statements about CT and CS in five key areas, 
to which participants responded on a four-point strongly agree/disagree Likert scale 
with no neutral option (see Fig.  2). These areas include understanding CT, self-
efficacy, intrinsic motivation, integration of CT in classroom practice, and career 
relevance of CT.

Statement SA Agree Disagree SD

Computational thinking involves using computers to solve 
problems.

Computational thinking can be incorporated in the 
classroom by allowing students to problem solve.

Fig. 2 Sample CT/CS survey items
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The first year cohort consisted of twelve teachers, so analyses of survey results 
were not conducted for statistical significance. Descriptive data from the first cohort 
of twelve teacher participants revealed that attitudes and dispositions toward CT 
were positive and remained relatively stable in all five areas (see Fig. 3).

While participating in the PD classes, teachers demonstrated evidence of their 
own computational thinking. For instance, one challenge the participants faced was 
that of programming a robot to drive in the shape of an equilateral triangle, stopping 
as close as possible to the start point. The robot construction guide was simplified 
for quick assembly, using as few pieces as possible, including the use of a non- 
turning rear wheel. The participants soon discovered that the robot design was not 
adequate for what they needed to accomplish, both in terms of robot stability and 
maneuverability. One teacher noted, “The drag on the back of the robot would cause 
the robot to go off track and course. The attachments to the wheels are not tight so 
that impacted it as well.” To solve this, some of the participants replaced the wheel 
with a ball bearing. Another suggested, “You could also make a swivel wheel with 
the NXT kit that doesn’t have the ball.”

Site visits were also made to conduct observations of teacher practices during 
club sessions. From these observations, patterns of teacher behaviors emerged that 
appeared to either facilitate or inhibit student success and CT development. Some 
teachers, out of a desire to let students have maximum freedom to create and explore, 
provided little direct instruction and left learning activities unstructured. These 
teachers were mostly confronted with frustrated and unsuccessful students. One 
middle school teacher, for instance, allowed students to work individually or in 
groups on their unique robotics projects. No instruction on the use of programming 
solutions or strategies was provided. As a result, students primarily used trial and 
error to address problems. A student working by himself had built a robot that was 
meant to drive forward and knock objects out of the way with a rotating arm. The 
student repeatedly set the robot on the floor aimed at a specific object and activated 
the program. Most of the tests resulted in the robot missing the object, as the rotat-
ing arm would randomly change the robot’s path. The student’s solution was to 
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Fig. 3 Changes in teacher CT understanding and attitudes
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move the object closer to maximize the likelihood of contact. The student  persevered 
for the entire session, but was frustrated with his lack of success. It was later learned 
that he had not considered the use of sensors to detect the object and had limited 
programming expertise. Thus, his robot was programmed to simply drive forward in 
a straight line.

The most successful teachers provided a mix of direct instruction and  open- ended 
exploration. These successful teachers were observed scaffolding student knowl-
edge of computational thinking through the use of specific tutorial lessons. This 
often took the form of teaching a specific skill or concept at the beginning of a 
 session. All of the teams would then be asked to create a simple program that would 
then incorporate the skill or concept and then create a larger project. Students in one 
club learned how to use a sound block to create a single tone on the music scale and 
then string together four or five tones to play the beginning of a familiar tune. Teams 
were then challenged to program their robots to move rhythmically or “dance” 
while playing a full tune of their choice. One team successfully tackled the  challenge 
of programming the entire melody of “The Star-Spangled Banner.”

For gaming, many successful teachers used Frogger tutorials as a starting point for 
their students. This allowed students to learn the functions of the software and game 
design processes, including debugging, in a structured setting, with increasing level 
of difficulty. Some teachers then asked students to use the Pac-Man tutorials, while 
others asked students to create original maze games based on the same premise.

Regardless of the teaching approach, most of the teachers were observed pro-
viding encouragement and problem-solving hints and tips, while asking probing 
questions to develop and extend computational thinking skills. These typically 
took the form of “what if you were to,” “how would you,” and “have you consid-
ered” probes. To develop problem-solving skills, teachers stated that they also pro-
mote the use of other strategies, including drawing solutions, discussing alternative 
solutions as teams, and relating challenges to more familiar circumstances. One 
teacher said that she tells her students, “Failure is a learning opportunity, not an 
end.” Another told her students to “work backward when you encounter a road-
block – see where the problem is.” Through this, she was trying to teach her stu-
dents the concept of “resilience.”

 Conclusion

We learned much from our observations. Probably the most important and hopeful 
realization we made is that promoting computational thinking requires many skills 
and that teachers already have most of them. Dealing with complexity, having per-
severance, and accepting open-ended problems are important skills in the computa-
tional thinking context, but this is not the only context in which these attitudes are 
useful. Teachers are already consciously helping these students to develop these 
skills, and where they need help is in placing these skills in the context of computa-
tional thinking.
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Another observation we made regards the difference between computational and 
technology skills. As a general rule, both students and teachers tended to be well 
versed in technology. At the risk of overgeneralizing, we can also add that most 
students tend to be more comfortable with technology than most teachers. This can 
create an obstacle, as some teachers question whether they can teach their students 
about computing at all. This fear, however, may stem from confusion between com-
putational thinking and knowing about technology. As we have seen, computational 
thinking is a rich mixture of cognitive skills and attitudes, whereas knowing about 
technology simply entails extensive time with the latest devices. What many stu-
dents and teachers fail to realize is that becoming an expert in playing video games 
does not translate into expertise in programming, whether game programming, 
robotics programming, or any other form. Familiarity with technology is helpful, 
for example, in understanding about files, printers, or creating images, but it does 
not lead directly into computational thinking.

We also found that classrooms that were focused on questions, as opposed to 
answers, were more effective in fostering computational thinking. For instance, 
when a student is failing at solving a problem, such as having a robot move in a 
straight line for a specific distance, the teacher can respond either by suggesting a 
solution or by asking an appropriate question. In this particular case, a teacher may 
respond by showing the student how to change the block that controls the motors, or 
she may ask the student how far he thinks the robot will go if the wheels turn ten 
times. This type of inquiry leads to deeper insights and to the discipline at the heart 
of computational thinking. Providing teachers with good questions to ask will better 
prepare them to help their students to learn computational thinking, not just to solve 
the computing problem at hand.

We also identified some deficiencies of the program, which should lead to changes 
in future iterations. The PD class we offered teachers was only 8 weeks. This was 
barely enough time to familiarize the teachers with the projects and activities that they 
could share with their students in their after-school programs. Teachers were asked to 
perform significant computing tasks, and not all could afford the commitment of time 
required to finish these tasks. Consequently, many teachers were still uncertain about 
their own abilities in computational thinking, and that led to significant stress as they 
engaged with their own students. Moreover, the short time did not allow the teachers 
to delve deeply into the question of methods for imparting computational thinking to 
their own students. Both of these issues can be addressed by lengthening the PD.

Despite these limitations, the data already collected suggests that these after- 
school programs do work in enhancing students’ computational thinking skills. 
Moreover, teachers who are sufficiently confident in their own skills to let students 
work independently – as opposed to blindly following instructions – are the most 
effective. Further support to increase teachers’ comfort with computing and the 
pedagogy of computational thinking will lead to improved success.
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Abstract Computational thinking (CT) has been offered as a cross-disciplinary set 
of mental skills that are drawn from the discipline of computer science. Existing 
literature supports the inclusion of CT within the K-12 curriculum, within multiple 
subjects, and from primary grades upward. The use of computers as a context for 
CT skills is often possible, yet care must be taken to ensure that CT is not conflated 
with programming or instructional technology, in general. Research had suggested 
that instructing preservice teachers in the use of CT can help them develop a more 
accurate and nuanced understandings of how it can be applied to the classroom. 
This chapter reports results from a study about preservice teachers’ conceptions of 
CT and how it can be implemented within their classrooms. Results suggested that 
preservice teachers with no previous exposure to CT have a surface level under-
standing of computational thinking. Participants largely defined CT in terms of 
problem-solving, logical thinking, and other types of thinking and often requiring 
the use of computers. The chapter offers implications for teacher educators to embed 
computational thinking in preservice education courses through educational tech-
nology as well as content specific methods courses.

Keywords Computational thinking • Preservice teachers • Teacher education

 Introduction

Recently, computational thinking (CT) has been advocated as a twenty-first-century 
skill that students should possess in order to develop problem-solving skills using 
principles from computer science (Selby, 2015). Wing (2006) described computa-
tional thinking as “solving problems, designing systems, and understanding human 
behavior, by drawing on the concepts fundamental to computer science” (p. 33). 
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Since then researchers have suggested that computational thinking involves a 
number of subskills, including breaking down complex problems into familiar ones 
(problem decomposition), developing algorithmic solutions to the problems (algo-
rithms), and capturing the fundamental simplicity of a problem to develop quick 
heuristics that might lead to a solution (abstraction) (Barr & Stephenson, 2011; 
Grover & Pea, 2013; Wing, 2008; Yadav et al., 2014). Furthermore, given that com-
putation is a crucial driver of innovation and productivity in today’s technology- rich 
society (Selby, 2015), it is imperative that students engage in computing ideas at the 
K-12 level (CSTA & ISTE, 2011). In order for computational thinking to become 
part of K-12 curriculum, there is a critical need to prepare teachers who are well 
trained to integrate computational thinking in their everyday pedagogical activities 
(Lye & Koh, 2014). This chapter discusses computational thinking, its implementa-
tion in K-12 classrooms, and the role of CT in teacher education. We present results 
from a study that surveyed 134 preservice teachers about their views of computa-
tional thinking and their role in teaching computational thinking in K-12 class-
rooms. The purpose of the survey was to understand preservice teachers’ perceptions 
of computational thinking in their specific subject areas and assess how they would 
implement it in their future classroom. In light of the computational thinking com-
petencies put forth by the Computer Science Teachers Association (CSTA) and the 
International Society for Technology Education (ISTE), we discuss the need for 
training preservice teachers and provide recommendations for integrating computa-
tional thinking into teacher preparation programs.

 Computational Thinking in K-12

Wing (2006) discussed that while computing ideas have traditionally been a subject 
of interest in computer science for decades, advances in computing technology have 
changed the landscape of the skills needed for a twenty-first-century economy. 
Wing (2008) envisioned that computational thinking would play an instrumental 
role in virtually every field and profession in the near future and should therefore 
become an integral part of children’s education. It is important to note that compu-
tational thinking does not exclusively equate with computer science or with 
 programming, but that rather, it represents key computer science practices that can 
be applied to a variety of problem-solving tasks. Denning (2009) argued that 
 computational thinking has a venerable history in not only computer science but all 
sciences. He discussed how computational thinking has been around since the 1950s 
as  algorithmic thinking, which means “a mental orientation to formulating  problems 
as conversions of some input to an output and looking for algorithms to perform the 
conversions” (Denning, p.28). Thus, computational thinking can be considered a 
problem-solving toolset that goes beyond information technology (IT) fluency to 
apply computing principles such as abstraction, decomposition, generalization, 
pattern recognition, and algorithmic and parallel thinking (Astrachan, Hambrusch, 
Peckham, & Settle, 2009; Selby, 2015).
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The Computer Science Teachers Association (CSTA) and the International 
Society for Technology in Education (ISTE) (2011) suggested that computational 
thinking offers students an opportunity to develop problem-solving and critical 
thinking skills by harnessing the power of computing. Developing a computational 
thinking mindset would allow students to create, design, and develop technologies, 
tools, or systems that will be instrumental in advancing any field in the future. While 
computational thinking does not equate to programming, becoming a computational 
thinker does mean understanding today’s digital tools in order to solve challenges 
from sciences to the humanities (Bundy, 2007). Not only can computational think-
ing prepare students for computing jobs, it also prepares them to think outside the 
box and use problem-solving skills with or without the support of computers in 
different areas of their personal, academic, and professional lives (CSTA & ISTE, 
2011; Selby, 2015). Recently, a variety of computational thinking initiatives are 
being implemented in K-12 classrooms to expose students to CT concepts and prac-
tices. These initiatives range from single exposure to CT through hour of code type 
activities to the design of whole curriculum, such as the College Board’s Advanced 
Placement (AP) computer science principles course.

Additionally, current educational reforms and standards reflect the relevance of 
computational thinking for K-12 students (Gretter & Yadav, 2016). For example, the 
Next Generation Science Standards (NGSS) includes using computational thinking 
as one of the key scientific and engineering practices that students should be exposed 
to in K-12 science classrooms. Practices such as the use of computational tools to 
model complex systems through simulations and visualizing data to examine pat-
terns provide an opportunity to introduce K-12 students to computational thinking 
ideas in science classrooms. While these examples showcase how to integrate com-
putational thinking in a content area, the College Board is launching an AP CS 
Principles course in Fall 2016 based on six computational thinking practices (see 
College Board (2014) for a detailed discussion of the practices). Some organiza-
tions have also promoted computational thinking material and curricula for educa-
tional institutions. For example, Google developed a curriculum, CS First, to engage 
students in computer science and computational thinking concepts in after-school 
theme-based clubs across the country. Similarly, Code.org offers a K-12 curriculum 
to expose students to the world of computing and computational thinking. Lastly, 
many organizations have focused on introducing CT to traditionally underrepre-
sented groups in computer science. For example, Girls Who Code, Black Girls 
Code, and La TechLa have created programs to reach girls and minorities and 
encourage them to take part in CT and CS activities.

While computational thinking has been suggested as a problem-solving approach 
using principles from computer science, many of the existing efforts use  programming 
tools and environments to expose students to computational thinking. Fletcher and 
Lu (2009) argued that this approach might continue the misconceptions about 
computer science as being equivalent to “programming.” Instead, they suggested, 
“just as proficiency in basic language arts helps us to effectively communicate and 
proficiency in basic math helps us to successfully quantitate, proficiency in compu-
tational thinking helps us systematically and efficiently process information and tasks” 
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(Fletcher & Lu, p. 23). This effort to lay foundations of CT needs to start early on in 
students’ K-12 experience before they learn programming  languages (Fletcher & 
Lu). Hence, we need to develop ways to embed  computational thinking concepts 
and practices across disciplines both with and without the  programming context to 
benefit students with varied interests.

Barr and Stephenson (2011) proposed nine core computational thinking concepts 
and abilities to integrate CT concepts in K-12 classrooms across core content areas. 
These core computational thinking ideas include data collection, data analysis, data 
representation, problem decomposition, abstraction, algorithms and procedures, 
automation, parallelization, and simulation. These computational thinking concepts 
can be implemented in K-12 classrooms through digital storytelling, data collection 
and analysis, and scientific investigations (Lee, Martin & Apone, 2014), creating 
games (Howland & Good, 2015; Lee et al., 2014; Nickerson, Brand, & Repenning, 
2015), educational robotics (Atmatzidou & Demetriadis, 2014), physics (Dwyer, 
Boe, Hill, Franklin, & Harlow, 2013), visual programming languages like Scratch 
or other interactive media (Brennan & Resnick, 2012; Calao, Moreno-Leon, Correa, 
& Robles, 2015), and even through maker movements (Rode et al., 2015). While 
computational thinking is relatively is a new concept, Mannila et al. (2014) found 
that a majority of K-9 teachers from various disciplines were already practicing and 
implementing CT concepts and practices in their own teaching. These implementa-
tions ranged from using of data collection, analysis, and representation to algorithm 
design and writing (i.e., programming).

Additionally, in a review of 27 empirical studies about programming in K-12 and 
higher education settings, Lye & Koh (2014) reported that visual programming lan-
guages were most often used in K-12 to create digital stories and games. They found 
that constructionism was a common instructional strategy used by teachers, involv-
ing students to create artifacts displaying their understanding of CT concepts. 
Moreover, research has also exhibited that exposing students to computational 
thinking ideas also improves their problem-solving abilities and critical thinking 
skills (Akcaoglu & Koehler, 2014; Calao et al., 2015; Lishinski, Yadav, Enbody, & 
Good, 2016). For example, Akcaoglu & Koehler (2014) used a Scratch-based cur-
riculum to examine the influence of CT on middle school students’ problem-solving 
skills as measured by a PISA problem-solving test. When compared to the control 
group, the results suggested that students who participated in Scratch activities 
 significantly increased their problem-solving skills, including system analysis and 
design, decision-making, and troubleshooting skills. In another study, Calao et al. 
(2015) embedded computational thinking in a sixth grade mathematics classroom. 
Their results suggested that the intervention significantly improved students’ 
 understanding of mathematical processes when compared to a control group that 
did not learn about computational thinking ideas in their math class.

Taken together, these policy-related and practical initiatives strongly highlight 
the significance of introducing students to computational thinking in K-12 class-
rooms. However, preparing teachers to embed these concepts in their teaching or in 
their specific subject areas can be a daunting task. Barr and Stephenson (2011) 
highlighted that a systematic change regarding CT implementation in school could 
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not be accomplished without educational policies that include teacher preparation to 
help educators understand and implement CT in their teaching. Even though most 
of the computational thinking initiatives we describe in this chapter underline the 
necessity to train teachers in all subject areas to embed CT, little has been done to 
examine the instructional, curricular, and pedagogical implications for teacher prep-
aration, particularly for preservice teachers (Lye & Koh, 2014).

 Preparing Teachers for Computational Thinking Instruction

There is an increasing need for teachers to be prepared to integrate CT into their 
classroom practices (Prieto-Rodriguez & Berretta, 2014). Recent efforts to expose 
teachers to computational thinking have focused on both preservice teachers through 
modules in existing teacher education courses (Yadav et al., 2014) as well as in- service 
teachers through professional development (Prieto-Rodriguez & Berretta, 2014). 
At the in-service level, a majority of the work has involved working with teachers 
through short professional development opportunities to embed computational 
thinking. Blum and Cortina (2007) examined how a weekend-long workshop to 
introduce teachers to computational thinking and the role of computer science in 
relation to other disciplines influenced their perceptions of computer science (CS). 
Results from the study suggested that teachers’ perceptions of computer science 
significantly changed from being focused on CS as programming to viewing CS as 
being applicable to other disciplines. Teachers reported that they not only changed 
their ideas about computer science but the workshop also allowed them to present 
CS in a way that would make it relevant to their students’ day-to-day lives. Similarly, 
in another study Prieto-Rodriguez and Berretta (2014) focused on in-service teachers’ 
thinking about the nature of computer science and whether teachers’ perceptions 
about computer science change after a workshop. Findings suggested that con-
necting teachers to the skills and resources needed to teach computer science and 
computational thinking concepts can have a positive impact on their perceptions 
of computer science.

While there has been a considerable focus on professional development for in- 
service teachers, there is limited work on how to prepare preservice teachers to 
embed computational thinking in their future classrooms. In one study, Yadav et al. 
(2014) introduced preservice teachers to computational thinking and how to embed 
computational thinking in the K-12 classroom through a one-week module in an 
introductory educational psychology course. The authors used a quasi-experimental 
design to examine the effectiveness of the module on preservice teacher’s definition 
of  computational thinking and their ability to embed CT in their future classrooms. 
Results from the study suggested that preservice teachers who were exposed to the 
modules were significantly more likely to accurately define computational thinking 
and were also more likely to agree that computational thinking could be  implemented 
in the classroom by allowing students to problem-solve (and not just by using 
 computers). The results from this study are promising; however, while a one- week 
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module might be enough to develop preservice teachers’ understanding of 
 computational thinking, it might not provide them with enough knowledge to embed 
 computational thinking in meaningful ways. We need to consider how to expose 
preservice teachers to computational thinking constructs within the context of the 
subject area they will teach in their future classrooms. Barr & Stephenson (2011) 
recommended that in order for computational thinking to be part of every student’s 
education, all preservice teacher preparation programs need to include a class on 
computational thinking across the disciplines. We would argue that teacher prepara-
tion programs should go beyond one class and teach computational thinking in sub-
ject matter context of methods courses. The majority of teacher education programs 
offer an introductory educational technology course, which could serve as a core 
class to introduce preservice teachers to CT ideas. The teaching methods courses 
could then be used to expand on preservice teachers’ understanding of computa-
tional thinking within the context of their subject area and build upon that knowl-
edge to embed CT in their future classes.

Given the calls to expand the pool of teachers who “teach” computational 
thinking (Cuny, 2012; Yadav et  al., 2014; Yadav, Hong, & Stephenson, 2016; 
Gretter & Yadav, 2016), teacher preparation programs are critical and provide an 
opportune setting to introduce future teachers to CT. However, before being able 
to guide preservice teachers’ implementation of CT in their future classrooms, 
we need to better understand how these student teachers think about 
CT. Specifically, we need to examine how teachers view computational thinking 
and its role in their classrooms given that teachers’ conceptions can significantly 
influence and even stereotype students’ views about what computer scientists 
do. Guzdial (2008) explained how the field of computing education research can 
start looking at what non-computing students—here, the training of future 
teachers—understand about computing in order for formal education to enhance 
their knowledge of computing. This study, therefore, addressed the following 
research questions:

 1. How do preservice teachers define CT?
 2. How do preservice teachers perceive the implementation of CT in their classroom?

 Method

 Participants
One hundred and thirty-four preservice teachers enrolled in a teacher education 
program at a large Midwestern university participated in the study. The majority 
of the participants (N = 95) were female, which is not surprising given the tra-
ditional demographics in teacher preparation programs are overwhelmingly 
female (Ingersoll, Merrill, & Stuckey, 2014). Participants included 41 sopho-
mores, 55 juniors, and 29 seniors (nine participants did not report their year of 
schooling). The average age of participants was 20.70 years old and the average 
GPA was 3.34.
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 Measures

In order to examine preservice teachers’ conceptions of computational thinking and 
how they would embed computational thinking in their future classrooms, we utilized 
an open-ended questionnaire that had previously been used by Yadav et al. (2014). 
The questionnaire also included demographic question that asked participants to 
identify gender, year in school, age, and GPA of the participants. There were two 
open-ended questions that asked preservice teachers to explain computational think-
ing based on their prior knowledge of the concept and to share how they would 
implement computational thinking in the content area that they planned to teach in 
their future classrooms.

 Procedure and Data Analysis

Two hundred and three preservice teachers enrolled in a teacher education course 
were invited to complete the questionnaire through a web-based survey. One hun-
dred and thirty-four preservice teachers completed the survey, resulting in a response 
rate of 66%, which is deemed good (Creswell, 2002). Content analysis processes 
were used to code the open-ended responses. The open-ended responses were 
imported into a qualitative analysis software (NVivo) and jointly coded by two cod-
ers. An emergent coding scheme was used to generate codes and develop an under-
standing of preservice teachers’ conceptions of computational thinking. For 
example, when defining computational thinking, one preservice teacher responded, 
“I would have to guess that you take what you know about computers and thinking 
and use that knowledge on a computer.” This response was coded as “using a com-
puter.” Another preservice teacher replied with “[Computational thinking means] 
you break down a problem and solve it in some logical way,” which was coded as 
“problem decomposition” and “logical thinking.” When a disagreement occurred 
about the appropriate code, the coders discussed until a consensus was reached. The 
initial list of codes were then collapsed into  overarching themes that represented 
their overall understanding of computational thinking and approaches to embedding 
it in their classroom. Frequencies were calculated to reflect the number of partici-
pants whose responses were categorized under a particular code.

 Results

The qualitative analysis of open-ended survey responses initially resulted in 51 codes, 
which were collapsed into two overarching themes with three sub-themes each, 
namely, (i) preservice teachers’ definitions of computational thinking and (ii) how 
they would implement computational thinking in their future classrooms. The following 
sections discuss these broad themes in relation to our research questions.
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 Defining Computational Thinking

When asked to define the concept, preservice teachers in our study discussed 
computational thinking along a number of dimensions, such as defining it as 
problem- solving, logical or mathematical thinking, and using computers. We discuss 
these sub-themes in detail below.

 Computational Thinking Involves Problem-Solving and Logical Thinking

The most prominent theme (N = 61) that emerged from preservice teachers’ defini-
tion of CT was that it was problem-solving approach. For example, one participant 
reported that “computational thinking is a way of thinking to problem-solve.” 
Another preservice teacher elaborated that CT was “how you can solve problems in 
a logical and certain way like in steps to break the problem down.” Preservice teach-
ers also described that computational thinking was problem-solving based on prior 
knowledge, as highlighted by one participant who stated that “computational think-
ing is using what you already know to logically solve problems.”

Closely related to the problem-solving approach was the concept of logical 
thinking. A number of preservice teachers (N = 36) also brought up the idea that 
CT involved using logical thinking to solve problems. For example, one participant 
stated that CT was “thinking logically to solve problems, using step by step 
problem- solving, and applying skills to other situations.” In a similar fashion, 
another participant highlighted that “It is a way of thinking very logically, like a 
computer, in a very systematic way.”

While problem-solving and logical thinking were two types of thinking that 
 preservice teachers most associated with computational thinking, participants also 
connected CT with a variety of other categories of thinking processes.

 Computational Thinking Includes Various Types of Thinking

Participants in the study (N = 49) reported that computational thinking included 
additional ways of thinking, including mathematical thinking (N = 9), algorithmic 
thinking (N = 24), and computer-like thinking (N = 9). The idea of mathematical 
thinking was brought up as preservice teachers described that CT required “thinking 
about numbers and equations,” “doing numerical work,” and “using formulas.” 
Preservice teachers also stated that computational thinking involved using step-by- 
step or systematic (i.e., algorithmic thinking) approach, which was closely related 
to problem-solving and logical thinking approaches discussed above. The idea of 
using algorithms was highlighted by the following quote from one preservice 
teacher: “CT is going through certain steps to arrive at a logical answer.” Within this 
theme, participants also discussed that computational thinking involved “breaking 
down a problem into smaller sections and solving each in succession in a way/order 
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that makes sense to solve the whole problem.” Moreover, participants linked CT 
with the idea of “thinking like a computer.” In some instances, preservice teachers 
said that CT was “a way of thinking that uses your mind like a computer,” “speaking/
thinking in a computer-like way,” or thinking about “how computers think.” 
Interestingly, preservice teachers related CT not only to “thinking like a computer” 
but also to using a computer as a tool.

 Computational Thinking Implies Using a Computer

Emerging from preservice teachers’ definitions of computational thinking was the 
use of computers as a tool to solve problems or complete tasks (N = 24). Along 
these lines, participants considered computers to be an integral part of CT.  For 
instance, they remarked that “CT is thinking in ways that require computing” or 
“using a computer to help you solve a problem you otherwise could not.” Overall, 
these participants expressed that “there are many problems that are easier to solve 
with computers.” In addition, preservice teachers believed that CT involved using 
computers as an instrumental tool. For example, participants agreed that computa-
tional thinking involved “knowing how to use a computer to get a task done.” 
Similarly, one participant stated that she associated CT with “using technology to 
make tasks simpler,” while another described that “CT entails using a computer to 
look up information to help you best complete your task.” In general, preservice 
teachers who integrated computers in their definitions of CT saw computers as a 
resource or “a means of research and data collection, a means of interpretation, a 
means of convenience and ease.”

In the next section, we move from theoretical conceptions of CT to practical 
applications, as we look at how preservice teachers envisioned implementing CT in 
their future classrooms.

 Implementing Computational Thinking in the Classroom

Preservice teachers reported that computational thinking could be implemented in a 
number of ways, such as using technology in the classroom, embedding CT in core 
content areas or implementing CT ideas through problem-solving. The present 
section discusses preservice teachers’ conceptions of how they would incorporate 
CT in their future K-12 classrooms.

 Computational Thinking Can Be Embedded Through Technology

One of the prominent themes that preservice teachers brought up (N = 40) was that 
they would use technology to embed their conception of computational thinking in 
the classroom. These ideas were generic uses of technology to implement CT in the 
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classroom, as highlighted by this comment: “I would use CT to help students have 
more interaction. No longer would students read a book, but they could use comput-
ers to watch video, play games and perform activities,” or, as another preservice 
teacher stated, “I would use computer programs to help kids understand concepts 
better.” Other general uses of technology to embed CT in the classroom included “a 
smartboard in my classroom,” “online games,” “digital media,” “computer pro-
grams,” “calculators,” or “software,” for instance. Participants added that as teach-
ers, they would also use computers to provide students easy access to information. 
For example, one participant stated that “I will start a class website where students 
can review notes/class lectures, take practice test, and have a class message board 
for homework help.” In practical terms, participants saw the use of technology as a 
way for students to practice CT concepts. This could also be achieved, according to 
preservice teachers, through the use of technology in a variety of classroom activi-
ties. For example, participants proposed to embed CT by having students “work on 
computers for some lessons that can go at their speed and hit the area they need”; 
“use keyboards to type words and use online sources to read, online media”; and 
“use the computer for many projects, papers, and assignments.” Although many 
preservice teachers saw CT being integrated in the classroom through technology, 
others viewed problem-solving as a central aspect of such integration.

 Computational Thinking Can Be Taught Through Problem-Solving

A number of preservice teachers (N = 45) in the study discussed that computational 
thinking could be embedded in the classroom by teaching students how to use steps 
to solve problems and that they would use problem-solving approaches to teach CT 
in their future classrooms. One preservice teacher stated that she would embed CT 
by having “students learn to problem-solve in the classroom.” Another participant 
agreed that he would facilitate CT and “present students with problems and use 
them to solve them with CT” in the classroom. Participants envisioned problem- 
solving activities in different ways. One preservice teacher said: “I can implement 
computational thinking by giving students problems to solve that can be solved in 
multiple ways, and asking that they solve the problem is the least complicated man-
ner.” Another explained that he would “show students why working through a prob-
lem a certain way is logical, or try to explain what needs to happen in order to solve 
problems.” Other ideas included “doing real world problems,” “giving students 
problems to solve that can be solved in multiple ways,” “assign things that can be 
solved by thinking in a systematic way,” or “work problems that can be difficult 
overall but can be broken down into easier steps.” Furthermore, the idea of problem- 
solving was also discussed alongside the use of algorithms, or step-by-step instruc-
tions. For example, one of the participants stated that she would implement 
computational thinking by having students “solving problems step by step, solving 
a problem and asking questions in sequential parts.” Other participants reflected 
similar thoughts, describing that CT involved helping students “figure out the steps 
of getting the answer,” teach them “what steps to go through to solve a problem,” 
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or have them “show their work and steps of how they got to the answer.” Although 
problem-solving was perceived by preservice teachers as a general concept through 
which to infuse CT, they also reflected on how CT implementation would look like 
in their core content area.

 Computational Thinking Can Be Applied in Core Content Areas

Another theme that emerged when preservice teachers were asked about computa-
tional thinking was its implementation through core content areas, such as mathe-
matics, language arts, social studies, and science. Embedding CT through 
mathematics was one of the main themes that emerged in this category (N = 24). 
Specifically, preservice teachers explained that computational thinking fits with 
mathematics because of its problem-solving aspect. Along these lines, one partici-
pant stated, “I think CT fits well into math as they are heavily related. I would try 
to show students why working through a problem a certain way is logical, or try to 
explain what needs to happen in order to solve problems (that way they can use 
their own logic to solve it orderly).” Another participant expressed the same senti-
ment stating, “computational thinking can be implemented by having the students 
work together on a math problem. This will allow the students to solve the problem 
in a systematic and logical way.” Beyond mathematics, preservice teachers also 
discussed ways to embed computational thinking in science as well as non-STEM 
disciplines, such as language arts, social studies, or arts. In these subjects, preservice 
teachers’ conceptions of computational thinking centered around using problem 
decomposition, algorithms, or patterns. This view is reflected by one preservice 
teacher who suggested that in an English language arts classroom, students could 
break down stories (i.e., problem decomposition) to identify patterns (i.e., pattern 
recognition), in order to help them “solve crime mysteries.” Similarly, another 
 preservice teacher suggested that identifying patterns and logical thinking were 
very useful “especially in Spanish grammar” to understand the structure of the 
language. Overall, preservice teachers varied in their views of CT implementation 
in their future classrooms. While some saw technology as central to CT implemen-
tation, others believed that problem-solving was a key concept, or that CT was 
subject dependent.

 Discussion

The results from the study suggest that preservice teachers’ views about computa-
tional thinking encompass a broad spectrum of concepts, from simply using 
computers to using computational tools to solve problems. Their views also 
reflected the idea of computational thinking being connected to other types of 
thinking, such as mathematical or logical thinking. Furthermore, preservice teach-
ers also discussed a number of ways they would implement computational 
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thinking in their future classrooms, which aligned closely with their views of what 
computational thinking was. Preservice teachers commented that computational 
thinking could be embedded in a K-12 classroom through technology integration as 
well as through exercises to solve problems. When mentioned in the core content 
areas, mathematics was the most mentioned subject where preservice teachers saw 
computational thinking more easily apply.

In order to integrate computational thinking at the K-12 level, we need a multi-
dimensional approach for a systematic change to prepare teachers to embed compu-
tational thinking. This includes preparing teachers for computational thinking 
competencies. Starting with preservice teachers during their teacher education 
program years provides the right time frame to develop their understanding of com-
putational thinking in the context of the subject matter they will teach (Yadav et al., 
2014). The results from this study suggest that preservice teachers’ views about 
computational thinking cover a wide range of ideas and often do not align with cur-
rent thinking and CT standards being proposed by national organizations such as the 
CSTA and ISTE. Even when preservice teachers might have an understanding about 
what computational thinking involves, it is important that they are provided with 
sufficient opportunities and time to engage in CT constructs within the context of 
their grade level and subject area. As the results from this study suggest, it seems 
that preservice teachers have grasped computational thinking ideas as being related 
to problem-solving and logical thinking. Participants in our study expanded on the 
idea of problem-solving by including sequential, step-by-step, or computer-like 
ways to solve problems (i.e., algorithms). While some of these ideas were consistent 
with computational thinking concepts, they were limited to simplified conceptions 
of the idea and did not showcase an in-depth understanding of what computational 
thinking involves.

Preservice teachers’ views on approaches to embedding computational thinking 
in K-12 further reflected a shallow comprehension of computational thinking. The 
majority of participants mentioned that mathematics was a natural fit to expose 
students to computational thinking. Their oversimplified views of computational 
thinking as a problem-solving approach might have inclined them to see mathemat-
ics as a natural fit to incorporate CT in the classroom.

Preservice teachers also talked about using computers or technology to introduce 
computational thinking to their students. These results are consistent with the litera-
ture on this subject, which suggests that teachers’ conceptions about computational 
thinking are not always accurate and they typically value one CT concept more than 
others (Good, Yadav, & Lishinski, 2016; Yadav et al., 2014). These initial concep-
tions about computational thinking could serve as a starting point upon which we 
could build and connect CT concepts to what teachers do in the classroom. For 
example, Mannila et al. (2014) examined how teachers perceived their own class-
room activities in relation to computational thinking. The results from the survey 
found that teachers reported concepts related to data collection, data analysis, and 
data representation as the most common computational thinking idea. The teachers 
also reported that the use of web resources, social media, and office productivity 
suites as technology tools could be used to promote computational thinking in their 
classrooms. Similarly, preservice teachers in our study focused on problem-solving 
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aspects of computational thinking and reported that they would use computers to 
embed CT in their classrooms. Given the recent conversations around computing, in 
general, and computational thinking as a twenty-first-century problem-solving 
approach (Wing, 2006; Yadav et al., 2014), it is possible that preservice teachers 
have encountered the idea that CT is related to computing; however, they have not 
formed a comprehensive understanding of computational thinking.

 Implications for Educators and Researchers

Our findings that preservice teachers possess oversimplified views of computational 
thinking have important implications for teacher educators and provide directions for 
future research. With the increased focus on computer science education and efforts 
to introduce elementary and secondary students to computing ideas (ISTE, 2011), 
preparing teachers in this area has become vital. The current efforts to train teachers 
in computing education have mainly focused on in-service teacher professional 
development at the national level, such as Exploring Computer Science (ECS), 
Project Lead the Way (PLTW), and Code.org. However, training in-service teachers 
is only a temporary solution to the long-term problem of developing a pipeline of 
future teachers who are prepared to embed computational thinking in their class-
rooms. The teacher training needs to begin early on in the teacher preparation pro-
grams to allow preservice teachers to understand how computational thinking ideas 
are related to their content areas. Preservice teacher education can play a critical role 
in addressing this issue and continuously train new teachers who are ready to teach 
computational thinking to their students. One of the first steps in promoting compu-
tational thinking is to address the underlying misconceptions that teachers have 
about it (Qualls & Sherrell, 2010). Teacher educators and computer science educa-
tors need to collaborate to develop means to introduce computational thinking ideas 
both by establishing new pathways in computer science education and by expanding 
CT within current teacher preparation coursework. Introducing computational think-
ing through existing coursework is a promising approach, as many of the computa-
tional thinking ideas may be naturally fit into what is already covered in the courses. 
For example, many introductory educational psychology courses cover heuristic rea-
soning and algorithms as problem-solving approaches, which might be ideally suited 
as CT topics. Yadav et al. (2011, 2014) did exactly that as they implemented a 
one-week module in their required introductory educational psychology course for 
all preservice teachers. Another opportunity to introduce computational thinking to 
preservice teachers is through educational technology courses, which are offered in 
majority of teacher education programs (Polly, Mims, Shepherd, & Inan, 2010). In 
the early 2000s the US Department of Education funded teacher education programs 
to prepare tomorrow’s teachers to use technology through its PT3 grants program. 
The program funded 441 projects for over 300 million dollars and resulted in many 
teacher education programs restructuring or developing new educational technology 
courses for preservice teachers, along with faculty professional development for 
teaching these courses (http://www2.ed.gov/programs/teachtech/). The focus of 
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educational technology coursework has evolved from using office suites to Web 2.0 
technologies over the last decade (Polly et al., 2010).

It is time for teacher educators to transform educational technology toward com-
puting education and to structure courses to engage preservice teachers in computa-
tional thinking tools and ideas. Beyond these opportunities, teacher education 
faculty involved in teaching content-specific methods courses could also tie compu-
tational thinking constructs and vocabulary to teachers’ day-to-day classroom activ-
ities. For example, preservice teachers could help their students acquire the skills to 
think about abstraction within language arts classes by using similes (i.e., showing 
similarities between two related things) and metaphors (i.e., implicit comparisons 
between unrelated things) (Barr & Stephenson, 2011). Similarly, preservice teach-
ers in science could learn to use pattern recognition and idea formation from com-
putational thinking when discussing data collection, analysis, and representation 
aspects of scientific experiments. Modeling and simulation in science classrooms 
provide other ways to discuss abstraction where students can choose “a way to rep-
resent an artifact, to allow it to be manipulated in useful ways” (Csizmadia et al., 
2015, p. 15). In summary, it is important that teacher educators work to introduce 
preservice teachers to computational thinking skills where appropriate and add its 
vocabulary where they can (ISTE, 2011). Computational thinking concepts and 
capabilities developed by the Computer Science Teachers Association (CSTA) and 
the International Society for Technology in Education (ISTE) in their documenta-
tion provide a starting point for introducing these terms, as their documents include 
definitions, shared vocabulary, and examples of CT applications for each grade level 
(Barr, Conery, & Harrison, 2011).

Our findings have important implications for researchers and for future research. 
The current study used open-ended questions to examine preservice teachers’ con-
ceptions of computational thinking, and the results suggested that their understand-
ing of CT is limited in scope. Future research should conduct an in-depth examination 
of how preservice teachers think of computational thinking through interviews. This 
would allow researchers to further probe what preservice teachers view as CT, or 
explore how problem-solving relates to computational thinking, for instance. 
Research could also examine preservice teachers’ understanding of CT through 
vignettes that provide preservice teachers with hypothetical teaching scenarios of 
computational thinking in a classroom context. Vignettes provide a good context 
validity to measure preservice teachers’ competencies in a given domain (Brovelli, 
Bölsterli, Rehm, & Wilhelm, 2014). In summary, in order for computational think-
ing ideas to be successfully implemented in classrooms across the globe, preser-
vice teacher education has to be the focus of researchers, teacher educators, and 
policy makers.
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Abstract This study examined 12 preservice teachers’ understanding of 
 computational thinking while planning and implementing a computational thinking 
activity for fifth grade students. The preservice teachers were enrolled in an add-on 
computer education license that would certify them to teach computer courses in 
addition to their primary major area (11 elementary education majors, 1 secondary 
social studies education major). The preservice teachers were asked to develop a 2 h 
instructional project for fifth grade students to build on the computational thinking 
concepts learned during the “Hour of Code” activity. Data was collected from pre-
service teachers’ initial proposals, two blog posts, video recordings of in-class dis-
cussions, instructional materials, final papers, and a long-term blog post 3 months 
after the intervention. Results showcased that the process of developing and imple-
menting computational thinking instruction influenced preservice teachers’ under-
standing of computational thinking. The preservice teachers were able to provide 
basic definitions of computational thinking as a problem-solving strategy and 
emphasized that learning computational thinking does not require a computer. On 
the other hand, some preservice teachers had misconceptions about computational 
thinking, such as defining computational thinking as equal to algorithm design and 
suggesting trial and error as an approach to computational problem solving. We 
provide recommendations for teacher educators to use more directed activities to 
counteract potential misconceptions about computational thinking.
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 Introduction

Computers are a ubiquitous part of our society. To further the use and innovation 
surrounding computer science as it is used in our society, we need to prepare more 
computer scientists (Emmott & Rison, 2005). In fact, studies have shown that 50% 
of the jobs needed in the future are computer science related (Code.org, 2016). In 
President Obama’s 2016 State of the Union Address, he placed emphasis on the 
importance of computer science education when he proposed a new initiative, 
“Computer Science for All,” which focuses on providing students of all ages with 
access to quality CS education to improve their computational thinking skills for our 
increasingly computer-focused society (Smith, 2016). Many have acknowledged 
that this initiative is a milestone for computer science education and computational 
thinking movement in US K-12 education (Department of Education, 2016).

The Computer Science for All initiative emphasizes the need for more research 
on defining what computational thinking is, curriculum needs, how it could be 
integrated into the current education system, and how to prepare teachers for these 
major changes at the preservice and in-service levels (Smith, 2016). Our research 
study focuses on the teacher side of those needs and examines how a group of pre-
service teachers’ understanding of computational thinking evolved after develop-
ing and implementing a computational thinking instructional project in an 
elementary school.

 Computational Thinking

Papert and Harel (1991) were the first who coined the term “computational think-
ing” in their 1991 paper on constructionism. They proposed that computational 
thinking was a shift on students’ thinking by contributing to their mental growth and 
become producers of knowledge using computing. Computational thinking received 
broader recognition from Wing (2006) who suggested that computational thinking 
was a critical twenty-first-century skill comparable to reading or math. Wing 
described computational thinking as “the thought processes involved in formulating 
a problem and expressing its solution in a way that a computer—human or 
machine—can effectively carry out” (p. 33). In other words, computational thinking 
can prompt critical thinking and problem-solving skills (DeSchryver & Yadav, 
2015). Computational thinking can be applied to solve problems that extend beyond 
computer science (Li & Wang, 2012). Since 2006, the professional and academic 
computer science communities have attempted to define computational thinking, as 
well as detail where and how it could be applied. Two organizations involved in 
supporting computer science education are the Computer Science Teachers 
Association (CSTA) and International Society for Technology in Education (ISTE). 
In collaboration with educators and scholars, ISTE and CSTA (Computer Science 
Teachers Association CSTA, 2011) together provided an operational definition of 
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computational thinking and emphasized computational thinking as a process of 
 formulating and solving problems. Both organizations highlighted the importance 
of computational thinking as a skill necessary for all students, highlighting that 
computational thinking was “a problem-solving tool for every classroom” (Phillips, 
2009, p. 1). We have summarized computational thinking key tenets as described 
from a wide range of scholars into six categories: problem solving, decomposition, 
pattern recognition, abstraction, algorithms, and evaluation.

In most of these aforementioned studies, the researchers have suggested these as 
potential, but not necessarily required, characteristics to understand and achieve 
computational thinking skills. Voogt, Fisser, Good, Mishra, and Yadav (2015) sug-
gested that although these characteristics are helpful, they are by no means defini-
tive in defining computational thinking:

Understanding a concept does not require developing a series of necessary and sufficient 
conditions that need to be met. In contrast we seek to develop a more graded notion of 
categories with an emphasis on the possible rather than the necessary. (p. 719)

Therefore, in our study, we do not limit our own definition of computational 
thinking to these six characteristics as definitive conditions. However, they helped 
us conceptualize and identify examples of computational thinking in our partici-
pants’ statements and artifacts.

 Computational Thinking in K12

According to Jonassen (2000), problem solving is the most important cognitive activ-
ity that we perform in everyday and professional contexts. He suggested that problem 
solving could be as simple as how to tie a shoelace or as complex as how to extract 
protein without lipid contamination. In both situations, we follow a set of specific 
guidelines, which lead to desirable outcomes. Students in various settings encounter 
experiences that require problem-solving skills (Hmelo-Silver, 2004). One example 
of a more specific approach to problem solving can be computational thinking. Many 
scholars have argued for the inclusion of computational thinking in the K-12 curricu-
lum (Barr & Stephenson, 2011; Lee et al., 2011; Lu & Fletcher, 2009; Sanford & 
Naidu, 2016; Wing, 2006; Yadav et al., 2014;). For example, Lu and Fletcher (2009) 
proposed that “teaching students computational thinking early and often…” (p. 261) 
should be consistently embedded in K-12 teaching activities in order to develop criti-
cal thinking and problem-solving skills. Other researchers and educators (Barr & 
Stephenson, 2011; Lee et al., 2011; Qualls & Sherrell, 2010; Sanford & Naidu, 2016; 
Yadav et al., 2014) have also provided similar recommendations.

There have been numerous studies at the postsecondary level to examine the 
affordances of teaching computational thinking in a variety of contexts (Chao, 
2016; Cortina, 2007; Li & Wang, 2012; Qin, 2009). For example, in an  undergraduate 
information communication program, 158 students from three classes were intro-
duced to computational thinking during a C++ programming course (Chao, 2016). 
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In this study, Chao found out that programming could prompt students’ problem 
solving “by iteratively formulating diverse programming strategies in a visualized 
and constructive way” (p. 212). In a different study, Qin (2009) found that 39 stu-
dents in an undergraduate bioinformatics class were able to use computational 
thinking abstraction and pattern recognition strategies to solve problems and 
improve their conceptual understanding of a biology topic. In both of these studies, 
it is evident that computational thinking could be embedded as part of multiple 
postsecondary education courses to help future professionals advance their problem- 
solving skills.

Scholars have suggested that computational thinking can play an important role 
in the K-12 curriculum (Barr & Stephenson, 2011), suggesting that computational 
thinking be integrated into other core areas like reading, writing, and mathematics 
(Sanford & Naidu, 2016). Studies have shown that when computational thinking is 
integrated into K-12 classrooms, students tend to become motivated from being pas-
sive consumers of technology to active contributors, thereby fostering creativity 
(Voogt et al., 2015). For example, for a high school history class, a student can cre-
ate an infographic timeline to portray the cause and effect of the Civil War utilizing 
decomposition and pattern recognition. The infographic creation process itself is an 
example of an algorithm progression.

Bers, Flannery, Kazakoff, and Sullivan (2014) conducted a study on 53 kinder-
garten students employing the “TangibleK” curriculum. TangibleK is a develop-
mentally appropriate technology education curriculum focusing on early childhood 
robotics and a “learn by doing” approach to programming (Bers et al., 2014). Bers 
and colleagues found that these young children were intrigued by each other’s 
work, negotiated their ideas to work collaboratively, and were engaged in problem-
solving activities. They found that the young children learned computer science, 
robotics, and computational thinking skills from the TangibleK curriculum. In 
another study, Lee et al. (2012) used a game play concept to teach 10–15-year-old 
children computational thinking skills without introducing traditional program-
ming. They designed a system, CTArchade, based on tic-tac-toe and assessed 18 
children’s conceptual understanding of computational thinking as measured by 
decomposition, pattern recognition, abstraction, and problem solving or algorithms. 
The results implied that children were able to articulate more about algorithmic 
thinking and showed interest in game play after being introduced to the CTArchade 
system. Both of these studies suggested that benefits of integrating computational 
thinking into K-12 settings might include dissecting tasks, looking at general pat-
terns, solving problems, and above all fostering critical thinking. However, in an 
analysis of peer- reviewed empirical 27 articles between 2009 and 2013, Lye and 
Koh (2014) found that “these studies might not be representative of typical class-
rooms and these results show that students’ learning from computational thinking 
in naturalistic classroom settings are still not well understood” (p. 57). Currently, 
teaching computational thinking is typically focused on high school computer sci-
ence classrooms and some out-of-school environments (Lee et al., 2011). One rea-
son for this may be due, in part, to a lack of teacher knowledge and experience on 
computational thinking (Kordaki, 2013).
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 Preparing Teachers for Computational Thinking

To integrate computational thinking in the K-12 setting, Stephenson, Gal-Ezer, 
Haberman, and Verno (2005) suggested that teachers need to be included in the process. 
As with any innovation, teachers have been identified as one of the primary factors that 
make significant impacts on the successful implementation of innovations. For exam-
ple, in a study with 25 in-service computer science teachers, Kordaki (2013) found that 
teachers were critical to the successful implementation of high school computing 
courses. Therefore, it seems plausible that teachers would also need to be involved in 
planning for computational thinking in K-12 classrooms. National organizations have 
recognized that teachers have strong potential influence in the implementation of com-
putational thinking in the classroom (CSTA, 2015). In addition, those same national 
organizations have provided guidance and resources to teachers in order to embed com-
putational thinking into their curriculum. For example, CSTA and ISTE provide 
resources on their websites to support the integration of computational thinking into 
their teaching and learning activities. CSTA has also provided computational thinking 
standards for kindergarten to twelfth grade. In another example, Google (2015) devel-
oped a website that includes lesson plans, videos, and other resources on computational 
thinking for teachers and administrators in an effort to encourage the integration of 
computational thinking into all subject areas. Google even started an online certification 
program for teachers that guide them step by step through the application of computa-
tional thinking skills in different subjects, including, but not limited to, math, science, 
and geography. Other organizations such as Code.org and CS Unplugged have created 
curriculum focusing on teaching K-12 computational thinking and computer science.

Because scholars have recognized the importance of preparing future teachers to 
integrate computational thinking into the K-12 classroom, more are conducting 
studies with preservice teachers to examine their current knowledge and how to best 
prepare them. For example, Yadav et al. (2014) incorporated one week of computa-
tional thinking instruction during an educational psychology course. The 200 pre-
service teachers had no prior experience with computer science. The instruction 
focused on how computational thinking ideas could be incorporated into the class-
room. The results revealed that the preservice teachers were able to improve their 
understanding after completing the training module on computational thinking. 
Yadav et al. (2014) suggested the next step would be to study whether preservice 
teachers could learn computational thinking by observing teachers as they model 
related thinking strategies and guide students to use these strategies independently. 
As suggested by Yadav and colleagues, introducing computational thinking to pre-
service teachers in their teacher education program may improve their understand-
ing and allow them to see the possible benefits of computational thinking for K-12 
students. Furthermore, Yadav et al. stated that “there is very little research on how 
teachers could be prepared to incorporate [computational thinking] ideas in their 
own teaching” (p. 13). Therefore, our research question investigated: How do pre-
service teachers’ concepts of computational thinking evolve while planning and 
implementing a computational thinking activity for fifth grade students?
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 Method

This study used a single-case research design to examine preservice teachers’ 
understanding of computational thinking while planning and implementing a com-
putational thinking activity for fifth grade students (Yin, 2013).

 Setting

This case focused on a group of 12 preservice teachers enrolled in an advanced com-
puter education course in a teacher education program at a Midwestern University. All 
preservice teachers had primary majors in education (11 elementary education majors, 
1 secondary social studies education major). The preservice teachers were enrolled in 
the course to pursue an add-on computer education license, which would certify them 
to also teach computer applications and computer science, in addition to their primary 
major area. This course focused on the following concepts: HTML, CSS, algorithms, 
introductory programming with robotics kits (LEGO Mindstorm, DashDot, Littlebit, 
Ozobot, Kibo, Sphero), and K-12 programming environments (Scratch, Scratch jr, 
Code.org). Instruction on computational thinking was embedded within the introduc-
tory programming robotics kits and the K-12 programming environments. Preservice 
teachers were asked to create a video development project to define and describe algo-
rithms. The instruction on computational thinking was covered in the last 6 weeks of 
the course in the fall of 2015. In addition to this instruction, all 12 preservice teachers 
read the definitions on the Google (2015) Computational Thinking Certification pro-
gram online. For the final course project, the preservice teachers developed a 2  h 
instructional project for fifth grade students to build on the computational thinking con-
cepts learned in the “Hour of Code” activity. The preservice teachers titled this instruc-
tional project “Two Hours of Code” and delivered the instruction to a group of 120 
students in a public elementary school. The entire project was worth 20% of their final 
grade in the course. For the “Two Hours of Code” project, the preservice teachers were 
challenged to meet at least one of the Computer Science Teacher Association (CSTA) 
standards on computational thinking for grades 3–6. There were three steps to this proj-
ect: (1) initial proposal development in small group, (2) fifth grade teacher proposal 
feedback and selection, (3) final proposal revised and developed with all the preservice 
teachers’ collaboration in the class, and (4) implementation of the selected proposal.

 Initial Proposal

Preservice teachers were initially grouped into four groups of three people. Each 
group had one week to work on a proposal for teaching computational thinking to 
the fifth grade students. The proposal described an instructional activity that would 
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teach computational thinking. In addition, the proposal needed to explain how the 
activity would address the CSTA computational thinking standard(s). Each group 
recorded a video presenting their proposal to the fifth grade teachers.

 Fifth Grade Teacher Proposal Selection

One of the fifth grade teachers, who had several years of experience with teaching 
the “Hour of Code,” reviewed all four groups’ proposals and selected the best 
option(s). He selected one activity (Teacherbot) from Group 1 and one activity 
(Scratch Maze) from Group 2 and suggested combining these two proposals. He 
provided feedback on instructional ideas and conceptual understanding of computa-
tional thinking.

 Fully Developed Instructional Plan

Next, all the preservice teachers as a class proceeded to develop the computational 
thinking activity, including manipulatives and resources. The preservice teachers 
received 3 weeks (six 90 min class sessions) to complete the fully developed pro-
posal. The fully developed proposal included two activities: TeacherBot and Scratch 
Maze activity. In TeacherBot, students wrote down instructions to navigate their 
teachers from one spot in the room to another, working around obstacles. In the 
Scratch Maze activity, students were tasked with creating their own maze in Scratch. 
After students had created their maze, students created code to navigate their sprite 
through their maze.

 Implementation of Selected Proposal

All preservice teachers were paired up and implemented the two activities into a 
different fifth grade classroom. Each fifth grade classroom had approximately 20 
students. Two preservice teachers taught each group of 20 students.

 Data Collection

Seven data sources were used to document the computational thinking skills of the 
preservice teachers. The data sources are discussed in chronological order.
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 The Initial Group Proposal

There were four groups that submitted initial group proposals. In these proposals, 
groups described their suggested potential activities in great detail. They mentioned 
concepts of computational thinking and pedagogical approaches. They videotaped 
a presentation of their proposal and sent it to a fifth grade teacher:

• Group 1 (Preservice Teacher A, B, C)
• Group 2 (Preservice Teacher D, E, F)
• Group 3 (Preservice Teacher G, H, I)
• Group 4 (Preservice Teacher J, K, L)

 Pre-blog Reflection Post

Preservice teachers created a pre-blog reflection post on their proposals. The blog posts 
ranged from 200 to 500 words. They were asked to reflect on “where is computational 
thinking in this proposal?,” “how would you consider the needs of the teacher and the 
students in your proposal?,” and “how do you find resources and start planning?”

 Video Feedback

One of the fifth grade teachers provided feedback on the video proposals. The 
teacher briefly talked about each proposal (strengths and weaknesses). He described 
the rationale behind the two activities he selected.

 Video Discussion

After the two activities were selected, the preservice teachers worked together to 
develop instruction. This collaborative worktime was done during class. This dis-
cussion and worktime was videotaped. The worktime lasted 60 min and 75 min in 
two sessions.

 Post-blog Reflection Post

Preservice teachers were asked to reflect on their proposal. They were charged with 
answering questions on their understanding of computational thinking such as 
“where is computational thinking in the selected proposal?”
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 Final Paper

Preservice teachers were required to complete a final paper. The final paper asked 
preservice teachers to reflect on their and students’ experience on implementing the 
computational thinking project and answer questions such as “how was the stu-
dents’ experience with computational thinking based on your observations?”

 Long-Term Reflection

Three months after the class ended, preservice teachers enrolled in a follow-up 
course (n = 10) were asked to complete a follow-up blog post reflecting on their 
long-term working memory of computational thinking. Preservice teachers were 
asked to answer questions about computational thinking such as “how would you 
explain the concept of computational thinking?”

 Data Analysis

To analyze the data, we utilized the six characteristics of the framework described in 
Table 1. After reviewing all the data, two of the researchers went through the first 
chronological data source (initial group proposal) together. While reviewing this 
data source, the researchers discussed all codes and found that two additional catego-
ries emerged during analysis (definition, misunderstanding): every proposal showed 
evidence of these additional categories. After the researchers had established a gen-
eral agreement on the additional categories and practiced coding the first data source 
together, they divided and coded the remaining data sources separately. Finally, they 
came together to discuss each coded data. When the researchers’ codes disagreed, 
researchers discussed those instances until agreement was reached (Carey, Morgan, 
& Oxtoby, 1996). Based on the coded data, the research team reviewed the coded 
data to establish themes within each code. These are described in the results.

 Results

 Computational Thinking

In this study, preservice teachers conveyed accurate knowledge of computational 
thinking: computational thinking does not require a computer, and computational 
thinking includes elements of problem solving and scaffolding. Although computa-
tional thinking emerged from the computer science field, it does not necessarily need 
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to be learned and practiced using a computer (Barr et al., 2011). Preservice teachers 
were able to represent this knowledge claim. They expressed that computational think-
ing could exist outside computers and computer science in their initial proposals and 
maintained this idea through their final papers and 3 months after the course. In all the 
initial group proposals (which were completed at the beginning of the instructional 
project), the preservice teachers included instructional activities that did not require a 
computer to develop fifth grade students’ computational thinking skills. One of the 
groups suggested using pieces of paper to simulate algorithms: “The intro activity [is] 
an algorithm using computer free-exercises because it only requires the students to 
move the pieces of paper around to understand the concept” (Group 3, proposal). 
Another group shared a similar idea where a computer was not necessary: “The snow-
man activity is computer-free but still shows how algorithms work” (Group 4, pro-
posal). Preservice teachers also expressed the idea of not using computers to teach 
computational thinking in their pre-blog reflections: “In the warm up, the students 
have to think about exactly how the teacher can get to the door” (Preservice Teacher 
B). After the implementation with fifth grade students, the preservice teachers’ obser-
vations were also aligned with what they planned and then expressed in the final paper:

During the teacherbot activity, most students physically got up and tried their algorithms 
out instead of just guessing from their seats. This shows how the students knew how they 
learned and that acting it out would be more beneficial for them. (Preservice Teacher D)

When asked to define computational thinking in a blog post 3 months after the 
class, some of the preservice teachers sustained that learning computational think-
ing can be learned without a computer. For example, one preservice teacher 
explained how she conducted a computational thinking activity without using 
 computers in a different school environment with third grade students:

Table 1 Six categories of computational thinking tenets

Characteristic Definitions (Google, 2015) Studies that emphasized this characteristic

Problem  
solving

Formulating a problem and 
designing a solution based on 
the principles of computing

Lu and Fletcher (2009), Wing (2008), 
Yadav, Mayfield, Zhou, Hambrusch, and 
Korb (2014)

Decomposition Breaking down data,  
processes, or problems into 
smaller, manageable parts

Atmatzidou and Demetriadis (2016), Barr, 
Harrison, and Conery (2011), Mannila et al. 
(2014), Qin (2009), Weintrop et al. (2016)

Pattern 
recognition

Observing patterns, trends,  
and regularities in data

Deschryver and Yadav (2015), Grover and 
Pea (2013), Peters-Burton, Cleary, and 
Kitsantas (2015)

Abstraction Identifying the general 
principles that generate these 
patterns

Deschryver and Yadav (2015), Grover and 
Pea (2013), Kramer (2007), Qin (2009), 
Sanford and Naidu 2016, Wing (2008)

Algorithms Developing the step-by-step 
instructions for solving this and 
similar problems

Mannila et al. (2014), Peters-Burton et al. 
(2015), Wing (2008), Yadav et al. (2014)

Evaluation Testing and verifying the 
solution

Atmatzidou and Demetriadis, (2016), 
Grover and Pea (2013), Peters-Burton et al. 
(2015), Weintrop et al. (2016)
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The stop motion dry erase board project I worked on with my 3rd grade class is a really 
good example. Students look at the problem, think about how they would solve it on paper, 
write out a plan with a max of 6 slides they draw out to help explain it, think about the way 
they will word it, and then explain it in a simple yet efficient way to someone who's thinking 
may not be the same as their [thinking]. (Preservice Teacher G)

 Computational Thinking and Problem Solving

When asked to define computational thinking, all preservice teachers associated the 
term with problem solving. For example, in the initial group proposals, one group 
suggested that students could build a Scratch Maze. When describing their rationale 
for including this activity, the group stated that “[the students] will also be able to 
demonstrate their understanding of how the maze and coding can be used to solve a 
problem” (Group 1), illustrating that they viewed the maze activity as a problem 
that could be solved using computational thinking skills. Re-blog reflections, which 
were written after the initial group proposals, also showed the alignment of problem 
solving and computational thinking: “the concept of computationally thinking has 
to do with the idea of finding solutions to general, open-ended problems” (Preservice 
Teacher A). The same theme was observed in the post-blog reflections (e.g., “CT is 
thinking about how to solve a problem that does not exactly have one answer,” 
Preservice Teacher B) and the final papers (e.g., “Without telling [the 5th graders] 
how, I guided them in the right direction, and when I came back later they had fig-
ured it out and expended upon what I showed them,” Preservice Teacher E). These 
examples highlight the preservice teachers’ conceptual understanding of how com-
putational thinking encompasses problem-solving skills. In fact, when asked to 
define computational thinking 3  months after, all the preservice teachers still 
expressed problem solving as the purpose of computational thinking. Preservice 
Teacher I defined it as formulating a problem and solving it: “Computational think-
ing is the process of thinking and finding solutions to problems.” Preservice Teacher 
G also emphasized problem-solving characteristics of computational thinking: 
“Computational thinking is the process of thinking and finding solutions to prob-
lems.” Both these examples show that the preservice teachers sustained the idea that 
the purpose of computational thinking is problem solving.

 Efficiency in Computational Thinking

Efficiency also emerged from preservice teachers’ descriptions. The preservice 
teachers emphasized that one problem may have multiple solutions and computa-
tional thinking could encourage people to find the most efficient solution. This theme 
was expressed primarily in the initial proposals and post reflections. In the proposals, 
one group explicitly described efficiency as a requirement in computational thinking: 
“Each group will be asked to write an algorithm for the teacherbot to use to move 
through the classroom; however, they are asked to create this using the ‘least amount 
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of commands’” (Initial Group Proposal 2). In one preservice teacher’s pre-blog 
reflections, she explicitly shared the requirement for the most efficient solution:

On a simpler level, when the students create and direct the teacherbot, they have to consider 
how many times they need the teacherbot to follow the [instructions]. If there is a way to 
simplify it (loop), they need to solve it by fixing the [instructions]. (Preservice Teacher G)

Although efficiency was only mentioned by seven preservice teachers in the first 
six data sources, nine preservice teachers mentioned this concept after three months, 
emphasizing the possibility of multiple solutions and the importance of finding the 
most efficient one. For example, Preservice Teacher A expressed the possibility of 
finding multiple solutions in computational thinking: “Sometimes we can have sim-
ilar but different step by steps to get the same outcome.”

 Characteristics of Computational Thinking

 Preservice Teachers’ Conceptions of Algorithms

The preservice teachers seemed to present a valid understanding of an algorithm as 
a set of instructions to complete a task and shared relevant definitions and examples 
of algorithms throughout the process. For example, groups defined algorithms in 
their initial proposal as a “set of specific instructions that explains how to complete 
a task” (Group 4) and provided algorithm examples such as “making a peanut butter 
and jelly sandwich” (Group 2). In the Initial Group Proposal 4, preservice teachers 
created an activity that required writing instructions to draw a snowman: “The 
snowman activity is an algorithm design. Students have to see that they are follow-
ing a specific set of instructions that gets them to an end of activity.” In the Initial 
Group Proposal 3, preservice teachers designed a robotics activity to teach students 
algorithms: “Students will be practicing algorithms as well as basic robotics through 
the cup stacking warm-up activity.” These are both relevant examples of algorithms 
because they focus on step-by-step instructions to complete activities. In the post- 
blog reflections, preservice teachers placed similar focus on step-by-step instruc-
tions in both their definitions and examples. One of the preservice teachers explained 
how the Teacherbot activity should allow the fifth grade students to create and test 
their algorithm: “Students have to give the teacher explicit instructions and the 
teacher has to follow those exact instructions even if they are not correct” (Preservice 
Teacher D, post-blog reflection).

Even though the preservice teachers had a good understanding of algorithms, they 
demonstrated a misconception that algorithm design was equivalent to computational 
thinking. For example, in the initial proposals, Group 2 stated “students will have to 
use computational thinking to write an algorithm to move their teacherbot around the 
room.” This example shows a misunderstanding that computational thinking is a 
method for creating an algorithm. Another preservice teacher expressed a similar mis-
conception, equating computational thinking with an algorithm: “Both activities use 
the idea of creating an algorithm which reflects the idea of  computational thinking” 
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(Preservice Teacher F, pre-blog reflection). The algorithm misconception was still 
prevalent 3 months after the class. Preservice Teacher H related computational think-
ing to algorithms in his description of computational thinking: “Computational think-
ing is thinking and working using the same methods that a computer would. For 
example, solving problems using algorithms, step by step mathematical tools that can 
lead a computer or an individual to a solution.” Although this is not necessarily a 
comprehensive example, it shows that the preservice teacher may be starting to con-
ceptualize computational thinking as a new type of thinking strategy that could guide 
them and their students to problem solution and product development.

 Preservice Teachers’ Understanding of Pattern Recognition 
and Abstraction

After discussing computational thinking with their classmates and implementing the 
activity in the elementary school, several of the preservice teachers started using other 
key components of computational thinking, although they did not use the correct 
vocabulary and explicitly identify those key components (e.g., observing patterns, 
trends, and regularities and identifying the general principles that generate these pat-
terns). When the preservice teachers were asked to define and connect pattern recog-
nition and abstraction concepts to activities in their assignments, they were not able to 
identify those and define them explicitly. However, they included examples in the 
activities. For example, later on in one of the video recordings, they provided an 
example of abstraction: “We are not going to show them how to make the maze but 
give them the main components they are going to need to make a maze” (Video 
Recording 1). Since abstraction is reducing complexity and creating a model of a 
product, this example shows the preservice teachers’ understanding of abstraction 
because they were recognizing the different components necessary to build the maze. 
In another preservice teacher’s post-blog reflections, she described pattern recognition 
in the Teacherbot activity: “The robot is recognizing a pattern laid out for them and 
reads the design code sheet to know what movements to make” (Preservice Teacher 
D). Although some additional characteristics of computational thinking were briefly 
described by some later in the process, these characteristics were weakly defined.

 Evolution of Trial and Error Approach to Evaluation

At the beginning strategies of proposal development and the first reflections, the 
preservice teachers defined a trial and error approach as a strategy to design and test 
solutions using computational thinking. For example, in the initial proposals, one 
group suggested using a trial and error approach to test their activities: “trial and 
error [can] identify what works and does not work in both the Scratch and intro 
activities” (Group 1). Another group stated using trial and error as a strategy to be 
used in their activity and real life: “Not only in reference to a corn maze, but stu-
dents can use this concept to apply the strategy of trial and error in real life 

Computational Thinking Conceptions and Misconceptions…



234

situations” (Group 2). These examples show that preservice teachers’ focused on 
using a trial and error approach, which is inconsistent with computational thinking 
because it suggested formulation of a problem and a solution. However, as they 
progressed in the activity design and after implementing it, they had a clearer pur-
pose focusing on an evaluative approach instead, testing the accuracy of their solu-
tions. For example, in the final papers, preservice teachers shared that the students 
observed each other’s mazes to evaluate their own designs: “[The students] also got 
to play each other’s mazes and see what different techniques they used” (Preservice 
Teacher G). After the implementation of the activity, the preservice teachers con-
firmed that working in groups and evaluating each other’s mazes were important 
parts of the activity. One preservice teacher elaborated on the importance of evalu-
ation and how the benefits transferred to product design:

Another thing that went well was that not all of the teacherbots were perfect algorithms, 
which allowed for the students to discuss why their algorithms might be off a little. This 
helped students see how sometimes an algorithm may not work and therefore must be 
manipulated to work. This was a great way to lead in to Scratch because we let the students 
know that sometimes their algorithm may not work for scratch and therefore they must 
change their codes to fix this problem. (Preservice Teacher D, Final Paper)

This example shows that preservice teacher viewed evaluation as an important 
characteristic of computational thinking process for validating and increasing the 
efficiency of the students’ solutions.

 Discussion

We conducted a case study in order to understand how preservice teachers’ concept 
of computational thinking evolved while designing and implementing a computa-
tional thinking instructional project. Twelve preservice teachers developed and 
implemented a 2 h computational thinking instructional project for fifth grade stu-
dents (n ≈ 125). Results showed that the process of developing and implementing 
computational thinking instruction seemed to improve preservice teachers’ under-
standing of computational thinking. However, there were still misconceptions of 
preservice teachers’ expressions of computational thinking at the end of the course.

Wing (2006) stated that computational thinking was a necessary skill for K-12 
students, similar to reading, writing, and algebra. Computational thinking has been 
described in a myriad of ways ranging from “an approach to problem solving” (Barr 
et al., 2011, p. 115) to “an expertise that children are expected to develop” (Grover 
& Pea, 2013, p. 40). There is not one commonly agreed definition and structure in 
the literature (Barr & Stephenson, 2011). Our results reaffirm the need for a clearer 
and consistent definition of computational thinking (Voogt et al., 2015). This lack of 
consistent definition and understanding creates difficulty when measuring computa-
tional thinking (Rich & Langton, 2016). Furthermore, teachers will likely not be 
able to embed computational thinking in their instruction due to their lack of 
 understanding of the concept (Bower & Falkner, 2015).

O. Sadik et al.



235

In this study, the preservice teachers were able to provide basic definitions of 
computational thinking as a problem-solving strategy. Efficiency, which was 
mentioned by some preservice teachers, is commonly presented as one of the 
criteria for better solutions in problem solving using computational thinking 
(Weintrop et  al., 2016). The preservice teachers also emphasized that learning 
computational thinking does not require a computer (CSTA, 2011). Computers 
and programming can make computational thinking stronger conceptually; how-
ever, computational thinking without computers is an important unplugged under-
standing to have as a basic concept before introducing the computer (Lu & 
Fletcher, 2009). Although the preservice teachers were not able to clearly define 
or exemplify pattern recognition, decomposition, and abstraction components in 
their instructional project designs, they were able to successfully define and/or 
exemplify algorithms and evaluation in the computational thinking process. This 
understanding of algorithms might be due to their instructor’s emphasis on algo-
rithm design in the course and assigning the preservice teachers to create an 
instructional video about what an algorithm is as a requirement before this proj-
ect. However, too much emphasis on algorithms seemed to have caused a miscon-
ception, causing them to think that algorithms and computational thinking were 
equivalent. Similar misconceptions about computational thinking have occurred 
in other studies. In one study, 32 preservice teachers had a misconception that 
computational thinking was using technology to solve problems (Bower & 
Falkner, 2015) such as using an office application to complete a task. In another 
survey study of 200 preservice teachers, Yadav et  al. (2014) found that they 
equated computational thinking with programming. In our study, the preservice 
teachers interchangeably used algorithms to refer to computational thinking. Even 
though algorithms are an inevitable part of computational thinking, they are not 
equivalent to computational thinking (Guzdial, 2010). Algorithms are step-by-
step instructions that can help guide us while solving problems; however, compu-
tational thinking is more than just algorithm design.

Even though evaluation in computational thinking was not explicitly covered in 
the course content, the preservice teacher’s emphasis on the importance of evalua-
tion in the computational thinking process emerged in their discussions and obser-
vations of the fifth grade students’ interactions (testing and validating their 
solutions with other students in the Teacherbot and Scratch Maze activity). The 
preservice teachers mentioned trial and error in their initial proposals. However, as 
they progressed in the process and implemented their instructional project with the 
fifth grade students, the term trial and error evolved to a planned evaluation strat-
egy as part of the computational thinking learning goal (Yadav et al., 2014). In real 
life, people in science fields do not make decision based on a trial and error 
approach, instead most “analyze a design by creating a model or prototype and 
collect extensive data on how it performs, including under extreme conditions” 
(“NSTA,” 2013, p. 9). Hence, we can conclude that developing and implementing 
an instructional project may have prompted preservice teachers to think more 
about the process and helped them understand evaluation as a critical characteristic 
of computational thinking.
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 Limitations

The sample size was one limitation of this study as we only focused on 12  preservice 
teachers from one university. The results would likely change by increasing the 
sample size or conducting the same research at a different university or classroom 
context. Furthermore, we did not account for the preservice teachers’ background 
with computers and assumed all to be similar. Their backgrounds may have made a 
difference on their conceptions of computational thinking.

The preservice teachers were asked to complete the Google Education’s 
Computational Thinking Certification (2015) before starting the design and imple-
mentation of the instructional project. However, the training website was unavailable 
for some of the course, and none of the students were able to complete the training. 
We believe that if they had enrolled and completed the certification, their understand-
ing of computational thinking may have been more defined and comprehensive.

 Conclusion

With its growing importance in K-12 education, it becomes crucial to prepare both 
preservice and in-service teachers for embedding and implementing computational 
thinking in their curriculum (Schweingruber, Keller, & Quinn, 2012). This study 
provided one instance of how computational thinking can progress with preservice 
teachers as they design computational thinking instruction. In addition, it also 
helped illuminate where possible misconceptions could exist and what preservice 
teachers might struggle with in terms of computational thinking. In summary, future 
work in this area is needed and should include more directed activities to counteract 
potential misconceptions about computational thinking. Specifically, we suggest 
that teacher educators work with preservice teachers to help identify the key char-
acteristics such as pattern recognition and abstraction. In our future classes, we 
intend to use Code.org and CS Unplugged to help further these ideas for our own 
preservice teachers. Furthermore, we suggest to include computational thinking 
activities in the current K-12 curricula and prepare preservice teachers from all core 
subject areas to plan and implement computational thinking as a problem-solving 
skill in their own classroom (Sengupta, Kinnebrew, Basu, Biswas, & Clark, 2013).
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The Code ABC MOOC: Experiences 
from a Coding and Computational Thinking 
MOOC for Finnish Primary School Teachers

Tarmo Toikkanen and Teemu Leinonen

Abstract The Finnish primary school curriculum will feature programming and 
computational thinking as mandatory cross-curricular elements in all teaching start-
ing from the first grade. Many teachers are quite concerned about this and feel ill- 
prepared. A group of volunteers created a MOOC for teachers and, with no budget, 
trained over 500 primary school teachers to be competent teachers of programming 
(38% of the participants). The results from a study conducted within the course 
indicate that Finnish teachers seem to think that coding is an important addition to 
the school curriculum and they exhibit low levels of anxiety over it. The MOOC 
design focused on connectivist design principles (cMOOC) and was considered 
extremely successful by the participants. The MOOC participants seemed confident 
that the MOOC would equip them to face the new challenge, and indeed, the feed-
back from the MOOC and its results support this.

Keywords MOOC • Core curriculum • cMOOC • Scratch • ScratchJr • Racket

 Introduction

This chapter describes a massive open online course (MOOC) that was developed 
and implemented by a group of volunteer teachers and academics during the autumn 
of 2015 in Finland. The MOOC was called “Koodiaapinen MOOC,” which can be 
translated loosely to “Code ABC MOOC.” Programming in schools is a timely topic 
in Finland, since the upcoming core curriculum for the autumn of 2016 includes 
programming and computational thinking as new cross-curricular elements starting 
in the first grade of primary education. The issue has been broadly discussed in the 
media, and many teachers are understandably concerned as they feel ill-prepared.
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This chapter begins by explaining the curricular reform going on in Finland. 
We continue by describing the design principles of the MOOC, followed by the 
impact and results of the MOOC. We will finish by outlining some of the ideas and 
 creations shared by the teachers who participated in the MOOC and their views on 
how computational thinking and various tools might find a role in Finnish schools.

 Coding in the Finnish curriculum

We will begin by describing the Finnish primary school system and how its curriculum 
works. We will then discuss how coding and computational thinking are presented 
in the new core curriculum and what their goals are. Finally we will compare the 
Finnish approach to other European approaches.

�The�Finnish�Curriculum

The highly trained, trusted, and autonomous teachers are a distinguishing feature of 
Finnish primary education. To be a proficient teacher in Finland, one needs a mas-
ter’s degree in education, with extensive minor studies in the subjects one expects to 
teach. As a result of the high level of professionalism, teachers are given significant 
freedom in how they practically execute their teaching.

Teachers’ autonomy also shows in the Finnish national curriculum, which is a 
core curriculum that describes in general the skills and knowledge that pupils in 
various subject areas and grade levels are expected to attain. The national frame-
work is renewed about every 10 years. The 313 municipalities of the country are 
responsible for running the schools. Each municipality works through the frame-
work and produces its own refined version. After this, each school, led by its rector, 
will produce their own curriculum based on the municipal frame. And finally, each 
teacher is free to organize their teaching in whatever way they chose within the 
school’s curriculum framework. There is no top-down control on the implementa-
tion of the national framework as the rectors and heads of education in the munici-
palities lead the process.

From the governance point of view, teachers’ autonomy is sometimes seen as a 
double-edged sword. On the one hand, it allows individual teachers to engage in 
experiments and the piloting of new methods of teaching quite freely—producing 
outstanding individual teachers who often make headlines in national and even 
international media. On the other hand, it may make centrally governed reforms 
difficult to achieve. It can be hard to get any new views on pedagogical approaches 
or didactic practices widely adopted in schools as individual teachers are accus-
tomed to their autonomy and some of them may not be willing to change their 
ingrained ways of working.
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�Coding�and�computational�thinking�in�Finland

The national core curriculum (http://www.oph.fi/english/curricula_and_qualifications/
basic_education)—which was completed in 2014 and comes into force in the autumn 
of 2016—has several new features compared to the previous one, including seven wide 
areas of competence: (1) thinking and learning to learn; (2) cultural competence, inter-
action, and self-expression; (3) self-efficacy and everyday skills; (4) polyliteracy; (5) 
information and communications technology (ICT); (6) working life and entrepreneur-
ship; and (7) participating in society and building a sustainable future. These compe-
tences should be fostered in all educational activities. Programming and computational 
thinking are part of competence 5, ICT competences.

While almost everyone in school talks about coding, the terms used in the core 
curriculum are computational thinking and programming. Computational thinking 
is seen as a goal and programming or coding as a means to reach that goal. Here are 
some relevant passages from the national core curriculum, freely translated from the 
National Board of Education (2014):

• Grades 1–2: “Pupils receive and share experiences of working with digital media 
and age-appropriate programming” (p. 101).

• Grades 3–6: “While programming, pupils experience how technology is depen-
dent on decisions made by humans” (p. 157). “Motivate pupils to create functional 
instructions as computer programs in a visual programming environment” (p. 235).

• A requirement for a good grade in maths at grade 6: “The pupil can program a 
functional application in a visual programming environment” (p. 239).

• Grades 7–9: “Programming is practiced as part of different subject areas” 
(p. 284).

• A requirement for a good grade in maths at grade 9: “The pupil can apply the 
principles of computational thinking and program simple applications” (p. 379).

�Coding�in�Finnish�Schools�and�Elsewhere�in�Europe

Our summary of how computational thinking or programming is incorporated in 
other European countries’ primary education curricula is based on the report 
“Computing our Future” by European Schoolnet (Balanskat & Engelhardt, 2014). 
This report was published while the Finnish curriculum was still being developed, 
so it only mentions Finland as “having plans.”

Of the 20 countries surveyed, seven include coding at the primary school level, 
another five in the lower secondary school level, and another four in the upper sec-
ondary school level. In many European schools, coding only seems to appear in the 
secondary level of education. Most European countries either have coding as a spe-
cific subject or part of ICT courses. Only Italy has positioned coding as a 
 cross- curricular element in primary education, like Finland. However, in Italy, 
regional and school decisions can affect whether coding is a mandatory part of 
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 education. In Finland, the municipalities and schools may only decide how they will 
teach or organize their education so that the pupils will reach the competencies 
mentioned in the national curriculum framework.

In summary, only Finland has positioned coding as a mandatory, cross-curricular 
element in education, starting from the first grade of primary school. Although it is 
mandatory to make sure that all the students will achieve the defined competences, 
there are very few guidelines on how the actual teaching should be conducted. 
Therefore, the MOOC described in this chapter was not only a training program but 
also a development effort to activate teachers to plan their teaching so that their 
students will meet the requirements of the national curriculum and for teachers to 
use programming in a meaningful way—to increase motivation, creativity, and self- 
expression—and not just use it as a technological way of doing math exercises.

 The Design Principles of the MOOC

The Code ABC MOOC for Finnish school teachers was in all measures a success, 
as detailed in the next section. In this section, we will discuss the background work 
and design principles that we consider to have contributed to the success.

The objectives for the MOOC participants were:

• To learn computational thinking and basic programming concepts (such as com-
mands, loops, and conditional statements)

• To get hands-on experience of the programming tools that are considered to be 
suitable for pupils

• To study how computational thinking could be brought to students in a meaning-
ful way so that the learning objectives of the curriculum are met

• To study how the teacher’s role and classroom practices are changing
• To study how coding could be used in all school activities, from sports to music 

and art and from cooking and crafts to academic subjects and STEM (science, 
technology, engineering, and mathematics)

These objectives reflect the Finnish way of organizing teachers’ professional 
development. When there is a new concept in the curriculum, such as computational 
thinking, teachers are expected to define it and to find out how it could be brought 
to their classroom practice and their students. The idea is to involve teachers in the 
development rather than tell them what to do. Teachers’ participation in the plan-
ning and ownership of their work is an important cornerstone of the system.

The MOOC consisted of three tracks, each targeted at teachers of different grade 
levels and using different programming environments. For grades K–2 we used 
ScratchJr, for grades 3–6 we used Scratch, and for grades 7–9 we used Racket.

Each track was headed by one teacher who currently teaches the same grade 
levels. They built the course materials themselves, produced introductory and 
 feedback videos, and helped the participants during the MOOC. We consider these 
peer teachers as a crucial feature of the MOOC as they ensured the materials and 
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support really took into account the context of the participants. Our track leaders 
also recorded feedback videos after each week, where they reflected on the work the 
participants had undertaken the previous week. This created authentic feedback 
from participants, even though we did not have the resources to give individual 
feedback to everyone.

In general, our MOOC is closer to a connectivist style cMOOC than an automati-
cally graded, professor-centric xMOOC, which are common in computer science. 
We felt it is important to respect our participants and their time. Our MOOC did not 
have any multiple-choice quizzes, and we tried to remove any artificial hoops the 
participants would have to jump through. We provided them with succinct textual 
instructions and background information, as well as a short introductory video, 
during each segment of the MOOC. Each exercise was designed and chosen because 
it helped participants to understand some concept of computational thinking.

Another key feature was the combination of practical experience and pedagogical 
thinking. We knew from experience that the reservations of many teachers toward 
coding stem from fear of the unknown, and this would be dispelled simply by allow-
ing them to try out age-appropriate programming tools and realize how simple and 
engaging they are. The idea was that teachers will try out the programming tools but 
are not in any way forced to bring them into their classrooms. Another prong of the 
MOOC was to engage teachers in thinking about pedagogy and how they could 
incorporate programming activities into their teaching and lesson plans.

Achieving trust between us and our participants played a big role. By design we 
did not follow how studiously participants followed our instructions. We trusted 
them to know what they were doing. The only activity we actually assessed was the 
final exercise, which consisted of a programming exercise and a pedagogical out-
come (such as a lesson plan).

To enhance the feeling of working with other people, we emphasized sharing 
during the MOOC. During each segment, participants shared short pedagogical 
ideas, which everyone had access to. Having hundreds of shared ideas just two days 
after each segment began had an awe-inspiring effect on everyone.

Technically speaking, we used a weblike approach in building the platform: 
“small parts loosely joined.” Our learning management system (LMS) was a Finnish 
course platform Eliademy (based on Moodle), but we used Google Forms for feed-
back, Padlet for sharing, and YouTube for videos. While this required our participants 
to understand that they were jumping from one service to another (and we were a bit 
wary of this), this setup seemed to be easy enough for teachers to understand.

 The Impact on and Experiences of Teachers

Based on the feedback we received from the MOOC participants, here we outline 
the impact that the MOOC had on them and describe the experiences teachers had 
during and after the MOOC. There are a number of master’s theses in the works that 
will analyze the collected data in more detail, but here we provide an overview.
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The total number of teaching staff in Finnish primary and lower secondary 
schools is about 40,000. The Code ABC MOOC was developed by four people in 
their own time, without funding. There was no marketing budget. Simply through 
social media channels and using free traditional media visibility, over 2700 people 
enrolled to the course. As the course content was not visible without registering, 
many of them were only visiting to see what the course looked like and did not start 
the course by engaging with the exercises.

During the initial days of the course, 1301 people started actually going through 
the weekly exercises. Of these, 501 completed the course, resulting in a completion 
rate of 38.5% of the people who started the course, which for a MOOC can be con-
sidered quite high, as the average completion rate of MOOCs in recent years has 
been 6.5% (Hattie, 2013).

Of the feedback we gathered, about 5–10% contained criticism or development 
suggestions, while 70–90% contained positive praise, and the rest contained a mix 
of both or were neutral in tone. Most criticism concerned the technical operation of 
the MOOC platform. On answering the question “Would you recommend this 
course to a colleague?,” on a scale of 1–10, the average response was 9.1 and the Net 
Promoter Score was 88, which is exceedingly high.

The three tracks of the MOOC employed different pedagogical approaches, and 
we could see that no single solution would suit everyone. Teachers, like any learn-
ers, are individuals. A particular issue was that in the Scratch and ScratchJr tracks, 
no model answers were provided. Each programming exercise had a clear descrip-
tion of the final outcome, but no concrete model solution code was given. Some 
teachers (a minority but still worth noting) had issues with this and wished for exact 
model answers so they could see whether they understood the assignment or not. 
This is a marked difference from pupils in primary school, who are quite happy to 
attempt to explore and solve the assignments, and when they feel they have accom-
plished the task, they move on to the next assignment.

A subset of participants responded to voluntary questionnaires before and 
after the course. When asked about when they could imagine being ready to 
teach programming, the median answer was “three months from now” as the 
course was starting and “one month from now” after the course. As the course 
lasted about two months, the teachers seemed optimistic that the MOOC would 
prepare them adequately, and indeed, after the course, this was reflected in their 
answers.

The preconceptions of participants before the course started were collected using 
a localized version of UTAUT (the unified theory of acceptance and use of technol-
ogy) (Venkatesh, Morris, Davis, & Davis, 2003). The answers were analyzed in a 
master’s thesis by student teachers who concluded that “the general attitude and 
lack of anxiety among the respondents denotes that Finnish teachers are open- 
mindedly welcoming programming into primary school’s curriculum” (Karvonen & 
Laukka, 2016). Indeed, 74.1% partially agreed or strongly agreed with the state-
ment that “the teaching of programming is needed in primary school” (Karvonen & 
Laukka, 2016).

T. Toikkanen and T. Leinonen



245

 Pedagogical Ideas Shared by Participants

During the MOOC, thousands of pedagogical ideas were shared by teachers. Here 
we present the main categories of ideas and a few representative examples.

We used Padlet, an online tool for collaborative note-taking, as the platform for 
collecting pedagogical ideas. The ideas presented in Padlet were produced collabora-
tively by the participants and categorized by track leaders. Therefore, they do not 
represent the researchers’ interpretation but a consensus gained by the participants 
and track leaders. They are published as open data and can be used in further studies. 
As an example, during week 2 in the Scratch track, when the concept of a “loop” was 
being discussed, the prompt for Padlet sharing came through devising an assign-
ment for pupils where loops are used, both with Scratch and without technology. 
The participants came up with 382 ideas, including these detailed below:

• Physical education: aerobic exercises or dance movements and sequences of 
moves and loops over them

• Maths: turning a sequence of additions into a loop and hence multiplication
• Arts: using paper to draw, rotate, and repeat and following up by doing the same 

in Scratch
• Music: rhythms built into loops and into a composition

In the ScratchJr track, during week 5 participants were asked to share ideas on 
how programming can support pupils’ learning and ownership of the learning 
process (as required by the new core curriculum) and what connections can be 
found to link programming to other wide competence areas. The participants came 
up with 228 ideas, including these detailed below:

• When coding, goals can be reached through multiple ways, which increases 
pupils’ ownership and understanding of their own learning process.

• When coding, pupils are creating something of their own, which challenges them 
in a different way than when completing predetermined exercises; there are no 
correct answers, and both pupils and teachers are in a new situation.

• Spontaneous discussions among pupils naturally lead to improved discussion 
and collaboration skills.

• At its best, coding leads to a flow state and amply rewards the efforts put into it.
• Coding develops polyliteracy as pupils work with many formats and forms of media.
• Coding is an exciting way of working that also motivates the “back row pupils” 

who are usually not interested in anything at school.
• Coding is actually a familiar way of working for many teachers; they have not 

used programming, but the similar affordances that programming brings have 
been utilized by many classroom teachers for years, and this revelation also 
shows that coding is something that fits into a pedagogically sound classroom 
without problems.

• Coding teaches persistence, exploration, trying out various solutions, and 
 learning from mistakes.
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Many teachers expressed their awe at all the brilliant ideas others had shared. 
The sharing of ideas was possibly the most valuable aspect of the whole MOOC, at 
least based on participant feedback. Sharing created a sense of working together and 
was also immensely useful for participants when they start planning their upcoming 
teaching activities.

The pedagogical ideas are published as an open resource bank for all teachers on 
the Finnish Wikiversity. The questionnaire data is published as open data on Github 
for anyone to use.

 Teachers’ Views on Programming Tools

The MOOC introduced teachers to ScratchJr, Scratch, or Racket. We describe how 
teachers see these and other programming tools as part of their future teaching 
activities.

As expected, many preconceptions and reservations disappeared completely 
once the teachers tried out a programming tool in practice. The ease of use was a 
surprise to those who had perhaps studied a bit of computer science during their 
university studies.

Another key insight many had was what these tools allowed; they meshed really 
well with an ideal pedagogical approach. Some special education teachers noted 
that they had been doing “coding” for years, but just using colored paper and other 
craft materials, and had not realized they could call it programming. While of course 
some teachers struggled to learn computational concepts, the vast majority had no 
trouble with the tools and seeing their immediate benefits in their classrooms.

The three tools used in the MOOC were not portrayed as the only choices, but 
simply as selected tools that are commonly used with good results. Several partici-
pants already had experiences of various robotics kits and other programming envi-
ronments. But one of the goals of the MOOC was to ensure all participants get 
practical hands-on experiences with at least one age-appropriate programming tool.

Looking at the various programming tools out there, it seems that the ideas 
behind the programming environment LOGO (Papert, 1973) still hold true. LOGO 
was the tool that allowed users to draw line graphics by controlling a turtle with 
simple commands. What makes Racket immediately useful and usable by students 
is the LOGO-like turtle function for drawing graphics. Even in Scratch, which facil-
itates the creation of games and animations, when kids realize there’s a “pen.down” 
function, they start drawing these LOGO-like figures. There is something mesmer-
izing about turning abstract movements and geometry into beautiful images that 
captures the imagination and motivates children to no end.

In Fig. 1 there are some drawings that the MOOC participants made at the begin-
ning of the course. The assignment was to draw a national flag using Racket code, 
but after someone drew a Moominhouse, the bar was raised and everything from 
molecules, logos, faces, and animals were created. And yes, both Angry Birds and a 
Minecraft Creeper face were produced by these teachers.
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 Discussion and Conclusions

Based on the participant completion rate and the feedback they provided, the Code 
ABC MOOC has been a resounding success and will be reimplemented during the 
spring of 2016 and twice during the academic year 2016–2017. How Finnish teachers 

Fig. 1 A sampling of the LOGO-like drawings teachers made with Racket during the first segment 
of the MOOC
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eventually adopt programming into their teaching activities will become apparent 
during that academic year. We hope that our MOOC equips teachers to meet the 
objectives set in the national curriculum by using programming as a creative learning 
tool in all their teaching activities. We also sincerely hope that Finnish textbook 
publishers take heed and aim for an equally valuable presentation of programming 
and computational thinking in their upcoming textbooks.

This experimental MOOC and the studies of it have limitations too. To truly 
understand the real impact, we should conduct a longitudinal study that examines 
how the participants eventually implemented computational thinking and coding in 
their classroom practices. The MOOC project, however, was able to provide one 
possible design to advance the idea of computational thinking in schools.
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Abstract Computational thinking (CT) refers to a set of processes through which 
people arrive at solutions to problems using principles based in computer science. 
A CT approach to problem-solving is increasingly valuable in education and work-
place settings as the economy grows more dependent on digital literacy. Given the 
importance of CT, it is essential to assess these skills. However, a reliable assess-
ment tool is absent from the current literature. This chapter, therefore, defines CT 
across the Ontario (Canada) Elementary School curriculum in elementary class-
rooms and addresses the need for effective instructional strategies and assessment 
of CT-related problem-solving abilities. Finally, we establish where CT concepts 
and skills already exist or are missing from the curriculum and suggest a workable 
tool to assess CT based on existing literature.

Keywords Assessment of problem-solving • Computational thinking (CT) • 
Curriculum expectations • Elementary education

 Introduction

A growing digital economy and the need for an ever increasing percentage of the 
population to work with twenty-first century skills (e.g., problem-solving, creating, 
collaborating, communicating, critical thinking) demand that these skills be 
addressed and supported starting from an early age and that they remain a focus as 
students develop (Dede, 2010). Learning theory for a digital age emphasizes authen-
ticity, audience, and authorship—children are creating, sharing, and learning with 
purpose (Bellanca & Brandt, 2010). The Computer Science Teachers Association 
(CSTA) and the International Society for Technology in Education (ISTE) (2011) 
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suggest that the following dispositions or attitudes accompany these skills: 
 “confidence in dealing with complexity, persistence in working with difficult 
 problems, tolerance for ambiguity, the ability to deal with open-ended problems, 
and the ability to communicate and work with others to achieve a common goal or 
solution” (p. 7). Although these skills and dispositions do not require technology, 
they are supported by and encouraged in a digital environment. Computational 
thinking and problem-solving are related to higher-order thinking skills that are 
recognized as fundamental to success in a digital age.

Computational thinking can be considered a specific type of problem-solving 
(i.e., approaching a problem with a particular mind-set utilizing computer technol-
ogy). Computer programming involves the identification of a problem and the cre-
ation of a solution using a language and logic that directs a computer to perform 
actions leading to that solution. Computational thinking (CT) takes computer sci-
ence outside of the computer lab and makes it accessible to everyone, rather than 
computer programming, often seen as a narrow and “tedious, specialized activity, 
accessible only to those with advanced technical training” (http://scratch.edu, 2016).

Considering and using computational thinking across disciplines to solve prob-
lems places computer programming within the reach of students at any age. A 
change in emphasis in learning, from knowledge acquisition to higher-order knowl-
edge construction, makes it important for teachers to transform practice to approach 
computational thinking for students in all disciplines and not solely in computer 
science. Introducing creative and critical thinking is not a brand new endeavor for 
teachers (Griffin, 2014), but it can be more deliberate, specifically recognizing 
when a computer can help us to gather, analyze and manipulate data, create simula-
tions, and persist with complex and difficult problems (Barr & Stephenson, 2011; 
CSTA & ISTE, 2011; Voskoglou & Buckley, 2012; Wing, 2006).

What is missing from the literature, and most learning frameworks, however, is 
a valid and reliable assessment of computational thinking skills. Some research 
recommends using multiple assessments in a “systems of assessments” approach to 
assessing computational thinking (Grover, 2015). However, employing many 
assessment tools can be costly and onerous. We, therefore, propose a more compre-
hensive assessment of computational thinking skills to provide an understanding of 
how such skills may be applied across disciplines.

Computational thinking is not, and should not be, an additional area of curricu-
lum content, but rather an integrated component of already existing curricula. 
Teachers may not be prepared to include more content in what many describe as an 
“overcrowded” curriculum. One school principal, Brian Nichols, summarized an 
online “#edchat” (i.e., a weekly Twitter discussion of educators; 2010) on “how to 
manage standards and an overloaded curriculum,” using three key themes: pre-
paredness, essentiality, and integration. He suggests that in “covering the curricu-
lum,” teachers need to choose content and skills that prepare students for a workforce 
dependent on “the ability to create new ideas, synthesize information, and problem 
solve with people all over the globe.” Further, teachers must identify what is 
 “essential” and integrate such skill sets across disciplines rather than addressing 
problem- solving strategies in isolation.
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This chapter identifies a working definition of computational thinking across the 
curriculum in Ontario’s elementary classrooms and addresses the need for effective 
instructional strategies and assessment of problem-solving abilities. Further, we ana-
lyze where CT concepts and skills already exist or are missing from the Ontario 
Elementary School curriculum (Ministry of Education, Ontario, Canada). Finally, we 
suggest a workable CT assessment tool based on existing literature and current find-
ings (Brennan & Resnick, 2012; Hesse, Care, Buder, Sassenberg, & Griffin, 2015; 
Voogt, Fisser, Good, Mishra, & Yadav, 2015; Wilson, Scalise, & Gochyyev, 2015).

 What and Where Is Computational Thinking?

 A Working Definition

Before a construct can be discussed, debated, and analyzed, an agreed-upon defini-
tion is generally a starting point. Wing’s (2006) definition of computational thinking 
is considered to be that starting point although many researchers and educators have 
reviewed the definition, massaged its components, and set it in context since (e.g., 
Barr & Stephenson, 2011; National Research Council, 2010; Shelby & Woollard, 
2013). In a recently published examination of computational thinking in compul-
sory education, Voogt, Fisser, Good, Mishra, and Yadav (2016) spoke to the need for 
a definition of computational thinking that includes “peripheral skills” important to 
CT but not “necessary and sufficient” if CT is to be implemented in the practice of 
teachers across disciplines.

Researchers have identified seven core concepts that are useful in programming, 
including sequences, loops, parallelism, events, conditionals, operators, and data. 
Computational practices consist of eight terms and refer to how one is learning: 
experimenting and iterating, testing and debugging, reusing and remixing, and 
abstracting and modularizing. Computational perspectives capture how program-
mers’ perspectives are impacted during CT in three ways: expressing, connecting, 
and questioning.

The purpose of this chapter is not to review the historical development of the 
definition of the term, but rather to set a working definition in context for assessing 
CT across the curriculum in an elementary school setting using coding as a tool to 
teach this approach to problem-solving. The challenge is to identify where and 
when the concepts, practices, and perspectives that define computational thinking 
are, can, and should be introduced to learners.

Given the importance of computational thinking in the future, it is of related 
interest where and how much the present elementary curriculum addresses CT and 
associated processes. Indeed, an understanding of how the existing curriculum 
already addresses CT can (1) establish a starting place for educators who wish to 
expand the curriculum to incorporate or expand CT resources and (2) provide edu-
cators with evidence of where they already address CT. In effect, we suggest that 
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adapting current teaching materials should not be intimidating. This could increase 
openness to dialogue around where CT may be “hiding in plain sight” within the 
current elementary school curriculum.

As an example, we conducted a systematic content analysis of the Ontario 
Elementary School curriculum (grades 1 through 8) for 38 terms (see Table 1) asso-
ciated with computational thinking (Brennan & Resnick, 2012; Grover & Pea, 
2013; Scratch Ed, 2016; Yadav et al., 2011). Content analysis refers to a research 
technique for making inferences from data to their context (Krippendorff, 2012). 
The goal of a content analysis is to systematically review and extract text into mean-
ingful categories, which can then be used to draw conclusions.

Our primary research questions in this content analysis included:

 1. Frequenciesacross subject areas: How often do the specific phrases “computa-
tional thinking” and “problem-solving” appear in the Ontario Elementary School 
curricula and across which subject areas? How often do CT-related terms (and 
their iterations) appear in the Ontario Elementary School curricula and across 
which subject areas?

 2. Grade level: In which grade levels are students introduced to CT-related terms 
(and their iterations) across the Ontario Elementary School curricula?

 3. Context/location: In which sections of the Ontario Elementary School curricula 
do CT-related terms (and their iterations) appear?

 Method

Ontario curriculum documents are accessible to the public in multiple formats. We 
specifically analyzed the text files versus the print or PDF files given the large vol-
ume of data. In total, the Ontario curriculum documents total 1496 pages. Subject 
areas include kindergarten, mathematics, arts, sciences, language, health and physi-
cal education, social studies, French as a second language, and Native language 
studies (average page count was 187 pages). The Ministry of Education mandates 
that each year a number of subject areas enter the review process, so they remain 
relevant and age appropriate. Thus, educators, parents, and students at least once 
between 2005 and 2015 have reviewed subjects comprehensively.

In the current study in particular, we reviewed kindergarten, mathematics, arts, 
science and technology, health and physical education, social studies, French as a 
second language, and Native language studies for frequencies of terms. Then, we 
narrowed our search to a subset of terms and disciplines (i.e., mathematics, science 
and technology, language, and arts), focusing on areas relevant to our future applied 
research in classrooms. We reviewed each subject area for frequency of terms as 
well as context and location (i.e., curriculum expectations, front matter). Two 
trained researchers (i.e., graduate students in social psychology and business/com-
puter science) conducted analyses, and any discrepancies were resolved through 
discussion. As well, we conducted an in-depth content analysis of the context, 
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Table 1 Computational thinking key terms searched in content analysis

Key term Derivatives

 1. Abstract Abstractinga; abstraction
 2. Algorithm Algorithmic
 3. Analyse Analysis; analyze; analyzes; analyzed
 4. Apply Application; applied; applying
 5. Automate Automated; automatically; automation
 6. Code Coder; coding; coded; codes
 7. Collection
 8. Computational thinking Computational
 9. Compute Computed; computes; computer; computing
10. Conditionalsa

11. Connecting
12. Data Data analysis; data collection; data representation
13. Debugginga

14. Decompose Decomposed; decomposing; decomposition
15. Eventsa

16. Experimentinga

17. Expressinga

18. Generalize Generalization; generalized; generalizing
19. Identification
20. Iteratinga

21. Logic Logical
22. Loopsa

23. Management
24. Model Modeling; modeling
25. Modularizinga

26. Operators
27. Parallel Parallelization
28. Problem
29. Problem-solve Problem-solves; problem-solvers; problem-solving
30. Questioninga

31. Recursive
32. Remixinga

33. Representation
34. Reusinga

35. Sequencea

36. Simulate Simulated; simulation
37. Technology Technological
38. Testinga

aTerms from Brennan and Resnick (2012) used in specific search.
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grade, and location of the terms within the curriculum document (i.e., curriculum 
expectations or front matter) using only the concepts, processes, and perspectives 
identified by Brennan and Resnick (2012). Preliminary results of the more specific 
content analysis of the disciplines are presented here (See Table 2). A more detailed 
examination of the results within context will be included in a forthcoming article 
by Hennessey, Mueller, Beckett, and Fisher (Unpublished manuscript).

To first determine frequencies of our terms across the various curricula, we wrote 
a script using Python (the programming language) to search for each word using 
regular expression pattern matching (see Goyvaerts, 2016). The script was designed 
to find all terms associated with CT processes. Included in this larger search were 
the focal CT definition terms delineated in Brennan and Resnick (2012). The script 
was designed to match all variations of each word stem in our search list [e.g., we 
searched for all variations of “code” such as “coding,” “coded,” “coder,” and “codes” 
with the pattern cod(e|ing|ed|er|es)] while excluding words that were nested within 
other words which were not of interest (e.g., variations of “sequence” were found; 
however, variations of “consequence” were excluded). The most up-to-date version 
of each curriculum was searched with the script. Wherever possible, the plaintext 
version of the curriculum was searched. However, not all of the most up-to-date 
curricula have a plaintext version made publicly available. In these cases, the PDF 
version was first converted to a text file in order to be searched. This conversion 
process is inherently imperfect, and as such, the final frequency count for these cur-
ricula is expected to be a slight underestimation, as the converted text may have 
been broken up in the conversion process such that the regular expression would no 
longer match.

 Results and Discussion

Frequencies of CT-related terms appear in Table 1. Our analyses showed that while 
the exact phrase “computational thinking” does not appear in the Ontario Elementary 
School curricula, the term “computational” alone appears sparsely and only in the 
mathematics curriculum (15 instances), mostly in a title describing “computational 
strategies.” Iterations of the term “compute” appear more frequently in the mathe-
matics curriculum (30 instances), but are less frequently cited in arts (10 instances), 
language (11 instances), or the science and technology (3 instances) curricula. The 
phrase “problem-solve” and its iterations appear with more frequency than “compu-
tational thinking” in the mathematics (459 instances) and science and technology 
(134 instances) curricula; however, “problem-solving” is sparsely mentioned in the 
arts (76 instances) and language (38 instances) curricula.

Although CT itself is not found explicitly in the current elementary curriculum, 
there are related terms present across disciplines. Initial frequency analyses indi-
cated that terms associated with CT mostly appeared in the mathematics (1,259 
instances) and arts (935 instances) curricula. These terms were also fairly com-
monly used in science and technology (886 instances). Terms associated with CT 
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appeared somewhat often in the language (522 instances), kindergarten (447 
instances), and health and physical education (276 instances) curricula and less fre-
quently in the Native languages (53 instances) document.

A more specific analysis of the mathematics, science and technology, arts, and 
language documents using the computational concepts, practices, and perspectives 
from Brennan and Resnick’s (2012) definition suggests that the frequencies of terms 
differ across disciplines and grades and that concepts are addressed more often than 
practices or perspectives. See Table 2 for frequencies of each term across different 
subject areas.

All four of the disciplines we examined include the terms “data” and “events.” 
The mathematics curriculum, not surprisingly, uses the term “data” much more fre-
quently than the other three disciplines. Both arts and language, however, also 
include the term “sequences,” while mathematics and science, interestingly, do not. 
The only other specific CT concept that was found in the documents was “opera-
tors” (3 instances) in the science and technology curriculum. Any specific CT prac-
tices were referred to only in the science and technology curriculum—“testing” (19 
instances) and “reusing” (3 instances). Only 1 instance of “abstracting” was found 
in the arts. Frequencies of terms defined as CT perspectives (i.e., “expressing,” 
“connecting,” and “questioning”) were spread more evenly across the documents—

Table 2 Frequency of CT concepts, practices, and perspectives in mathematics, science and 
technology, language, and arts curricula

Subject area Mathematics Science and technology Language Arts

Key term concepts

Data 253 28 5 3
Events 21 12 33 36
Operators 0 3 0 0
Sequences 0 0 3 8
Loops 0 0 0 0
Parallelism 0 0 0 0
Conditionals 0 0 0 0
Practices

Testing 0 19 0 0
Reusing 0 3 0 0
Abstracting 0 0 0 1
Incremental 0 0 0 0
Iterative 0 0 0 0
Debugging 0 0 0 0
Remixing 0 0 0 0
Modularizing 0 0 0 0
Perspectives

Connecting 23 2 17 7
Expressing 2 1 4 2
Questioning 1 1 9 4
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all had at least 1 instance of each term, but not in large numbers. The perspective of 
“connecting” was used most frequently in mathematics, followed by language, 
while language and arts included “questioning” more often than mathematics or 
science, each with just a single instance.

This initial analysis of instances of computational thinking terminology within 
the curriculum across disciplines suggests that terms related to the concepts of com-
putational thinking can be found within the current curriculum, but specific terms 
unique to computer programming are not. It appears that a questioning and connect-
ing perspective is a part of the current content in the elementary curriculum in the 
language and arts disciplines, suggesting that students may be learning the concepts 
and perspectives that form a foundation for computational thinking. What may be 
missing are the actual practices involved in computational thinking.

Examining “where” instances of CT-related terms are found within the curricu-
lum may shed additional light on the meaning of the analysis. See Fig. 1 for a break-
down of percentages in location within the curriculum document.

The largest percentage of CT-related terms in the language and mathematics cur-
ricula is found in specific expectations—the “what” or content that is to be taught—
while analysis of both the science and arts curricula indicates that CT-related terms 
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are most frequently found in the front matter of those documents, the “how” the 
subject is to be taught, the program planning, assessment and evaluation, and 
 general overview of the discipline.

Aside from the frequency of computational thinking-related terms across disci-
plines, the developmental sequence across grades is also of interest. “Computational 
thinking” specifically is not a term used in any of the curriculum documents at any 
grade, but “solving problems” and “problem-solving” are terms used in increasing 
quantity within the documents. See Fig. 2 for the progression across grades in each 
of the four discipline areas examined in more detail.

Politicians, industry leaders (e.g., Google; Wing, 2014; Code.org), parents, and 
the computer science community are encouraging educators, beginning at the ele-
mentary level, to “transform” their teaching practices so that CT is added to current 
curriculum (Barr & Stephenson, 2011; Repenning, Webb, & Ioannidou, 2010). 
These types of sweeping changes and calls for transformation in educational prac-
tice and content rarely see immediate or substantial change. Identifying what cur-
rently “works” and sharing with educators where this way of thinking can be found 
in their curriculum and what these concepts, practices, and perspectives look like 
across grades and disciplines serves as a first step in making the necessary adjust-
ments to twenty-first century education. Jun, Han, Kim, and Lee (2014) examined 
the computational literacy of Korean elementary students using information and 
communications technology (ICT) literacy as a broader issue, suggesting that the 
curriculum needs to be revised to include computational problem-solving skills and 
that teaching methods need to be more accessible and effective for teachers. 
Preliminary review of the Ontario Ministry of Education Curriculum for elementary 
students indicates that specific skills and practices used in computer programming 

0

10

20

30

40

50

60

Mathematics Science and
Technology

Arts Language

Fr
eq

ue
nc

y 
of

 P
ro

bl
em

-S
ol

vi
ng

Subject Area

Grade 1 Grade 2

Grade 3 Grade 4

Grade 5 Grade 6

Grade 7 Grade 8

Fig. 2 Frequency of problem-solving in subject areas across grade levels

Assessing Computational Thinking Across the Curriculum

http://code.org


260

may need to be included in revised and updated curriculum, but CT perspectives and 
ways of questioning may already be present in the curriculum—hiding in plain 
sight. A key question then is how educators teach these skills, practices, and per-
spectives to develop computational thinking across the disciplines and grades and 
how those concepts and skills are measured and assessed.

 Teaching Computational Thinking and Problem-Solving 
Through Coding Across Disciplines

Developments and advancement in programming languages and digital technology 
have made coding and computer programming more accessible and user friendly, 
and Dr. Wing’s (2006) vision possible. More recently, a debate (see Charlton & 
Luckin, 2012; Barr & Stephenson, 2011; Naughton, 2012) has emerged suggesting 
that not everyone can, or should, be a computer scientist, with arguments analogous 
to those suggesting that you do not need to be a mechanic to drive a car. However, 
twenty-first century global problems—social, economic, and environmental—
demand that our educational institutions develop citizens who are able to approach 
these problems in creative and innovative ways, refining problems, developing solu-
tions, and evaluating outcomes virtually and in real life (Barr & Stephenson, 2011). 
The sheer volume of information available and the data involved in solving these 
problems require computer-supported approaches .

Computational thinking enables the scaling of problem-solving. According to 
Constable (2005),

“…Computers change the scale at which resources can be examined, and they already pro-
vide sufficient discriminatory powers that scale and speed compensate for their currently 
limited intelligence as they draw conclusions, make predictions, and participate in discover-
ies…The challenge for society is to assimilate digital knowledge and to improve the human 
condition by its application.” (p. 1)

Coding has been introduced and perhaps even “hailed” as a panacea to ensure 
that learners are indeed introduced to, and develop, the ability to solve complex 
twenty-first century problems using computer programming. US President Obama’s 
2017 budget, in fact, includes four billion dollars to support computer science in 
schools, identifying computer science as a “basic skill” in his Computer Science for 
All initiative (Shear, 2016).

Computational thinking can be made accessible to students and teachers through 
concrete approaches to computer coding. Utilizing the potential and benefits of 
computer coding to develop skills and strategies across disciplines and across devel-
opmental levels will begin to provide a foundation for the development of computa-
tional thinking for everyone. Activities to learn and improve specific skills can be 
used across grade levels from kindergarten to grade 12, e.g., abstraction, algorithms 
and procedures, automation, simulation, and parallelization (CSTA & ISTE, 2011). 
In order to measure the effectiveness of the activities and the impact on problem- 
solving beyond those activities, tools measuring these twenty-first century skills 
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must be developed, validated, and utilized. Problem-solving can be measured using 
complex, authentic examples in context or using a confined approach with one or 
two solution problems within limitations (Voskoglou & Buckley, 2012; Voskoglou 
& Perdikaris, 1993). Further evidence can then be collected through the use of ver-
bal protocol, interviews, and naturalistic observation, and one can use computers to 
track strategies and approaches to problems within Web or applications.

Resources have been developed and utilized to support teachers in the kindergar-
ten to grade 12 environment using computer coding to represent problems and col-
lect data (e.g., CSTA & ISTE, 2011). Advances in computer technology have created 
applications and programs that allow the user to build and create without knowing a 
complex computer language. One such application was developed at MIT and is 
available to users online: Scratch (http://scratch.mit.edu). The platform was designed 
for students from ages 8 to 16 but is used by people of all ages across learning con-
texts and disciplines. Using “drag, drop, and click” blocks of code, users can build 
projects to animate, simulate, tell stories, and make music. Utilizing a software 
application such as Scratch, measuring problem-solving ability before and after its 
use across curriculum areas (disciplines) and age levels, will allow us to assess the 
impact of instruction related to computational thinking on problem-solving ability 
and introduce CT to teachers and students (see Koehler & Ackaolgu, 2014).

The key question is whether learning to code is an effective method for  developing 
problem-solving that transfers across disciplines and contexts. An examination of 
the curriculum and how CT is addressed, or not, at the elementary level serves as a 
starting point for measuring computational thinking using a systematic approach.

 Measuring Computational Thinking and Problem-Solving

Even when using the most effective teaching methods, teachers cannot assume that 
learning occurs. It is well documented that students develop and learn at different 
rates (Angelo & Cross, 1993; Cashin, 1990; Drake, Reid, & Kolohan, 2014; Sternberg, 
1986, 2009) and teaching quality varies from classroom to classroom; therefore, 
teachers should not assume all students have grasped what has been taught (Western 
and Northern Protocol for Collaboration in Education, [WNPC], 2006). As a result, 
classroom assessment and evaluation are essential to measure what students have 
learned. To date, extensive research exists on traditional classroom assessment strat-
egies that promote effective instruction and student learning (Andrade, 2009; 
Brookhart, 2009; Black, Harrison, Lee, Marshall, & Wiliam, 2003; Black & Wiliam, 
2009; Dann, 2014; Earl, 2003; Hattie, 2012).

What’s lacking presently in classroom assessment research is the twenty-first cen-
tury context of classroom assessment. Specifically, with the influx of new skills 
deemed necessary for the twenty-first century (e.g., computational thinking skills), 
teachers are at a loss of how to teach and assess such skills (Griffin & Care, 2015; 
DiCerbo, 2014). In fact, the Association for Computing Machinery (ACM) and the 
Computer Science Teacher Association (CSTA) stress the major factor that limits 
computational thinking into schools is the lack of assessments available to teachers.

Assessing Computational Thinking Across the Curriculum
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Computational thinking has a wide application beyond computing itself. It is 
the process of recognizing aspects of computation in the world and applying tools 
and techniques from computing to understand and reason about natural, social, and 
 artificial systems and processes (Csizmadia et  al., 2015). It allows students to 
tackle problems, to break them down into solvable chunks, and to devise algo-
rithms to solve them. Therefore, computational thinking concentrates on students 
performing a thought process, not on the production of artifacts or evidence. This 
in itself can be problematic for assessment because it is difficult to measure actual 
thought processes.

Although we advocate for a systems of assessment approach whereby  “assessment 
as, of, and for learning” are used purposely, we recognize that “assessment as 
 learning” plays a large role in effective “assessment of” students’ computational 
thinking. That is, in order for teachers to truly know what and how students are 
thinking, students are required to demonstrate their thought processes in some way. 
One of most effective methods for assessing student thinking is the think-aloud 
method (Ahonen & KanKaanranta, 2015). Two methods are available for collecting 
student think-aloud data: concurrent and retrospective think-alouds (Ericsson & 
Simon, 1993). During a concurrent think-aloud, students think aloud as they com-
plete a task with the intent of unveiling the cognitive processes they engage in and 
the information they attend to while they are solving a problem (Leighton & Gierl, 
2007). In contrast, retrospective think-alouds are conducted after students have 
solved the problem, providing students an opportunity to describe any metacogni-
tive processes in which they engaged while solving the problem (Ericsson & Simon, 
1993). Although both methods can provide rich accounts of students’ computational 
thinking, concurrent think-alouds collect data from short-term memory which is 
preferable when assessing computational thinking skills because they are not tainted 
by perception, providing the most accurate representation of knowledge and ability. 
And yet, this method can be costly in terms of time and scale. It is unreasonable to 
expect teachers to be able to use it writ large. Recently, however, easier accessibility 
to new and older technologies in schools, such as audio and video recordings and 
screencasting with student narration, mitigates some of the caveats of the think- 
aloud method.

Metacognition is often tied with think-alouds as it requires students to think 
about their own thinking (Flavell, 1979). Think-alouds and metacognitive processes 
are at the crux of deep, purposefully “assessment as learning.” Computational 
thinking is a systematic thinking process, and for this reason the think-aloud is a 
valuable method for properly understanding how computational thinking happens 
at the cognitive level. That is, this method provides teachers with rich student data 
about how the student is thinking through a problem, consequently allowing the 
teacher to provide deliberate, personalized instruction to further student learning.  
However, one of the drawbacks of this method is that younger children are not 
always aware of their own cognition, and therefore thinking aloud could distract 
them from the task. This brings to light that metacognition is not an innate ability; 
it must be taught. Volante and Beckett (2011) suggested a “lockstep process” to 
teaching AaL; that is, teachers provide guidance to students when cultivating evalu-
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ative  knowledge and expertise and reflecting on what they have learned. It is benefi-
cial for teachers to provide students with a pool of appropriate strategies to bring 
their own  performance closer to the desired goal (Sadler, 1989). This argument is 
strongly aligned with Earl’s (2003) conceptual framework of the three purposes of 
assessment in that she believes teachers should establish an environment in which 
AaL is central to student learning and that all other assessments are rooted in such 
practices.

The bidirectional transmission between teacher assessment (i.e., AaL and AfL) 
and student self-assessment (i.e., AaL) is a vital factor for optimal assessment of 
computational thinking. What remains to be created in the area of computational 
thinking though is an assessment tool that will allow teachers to evaluate CT and 
scaffold additional teaching and learning. Before an assessment tool can be devel-
oped, a clear description of what is being assessed is required.

We provide a set of teacher verbal protocols to aid in the evaluation of students’ 
computational thinking processes. By asking these types of questions, teachers will 
be able to gain a deep understanding of students’ computational thinking ability and 
how it relates to problem-solving outside of coding. Specifically, the questions are 
broken down by processes so that teachers can pinpoint which are areas of strength 
and areas of needed improvement.

The questions are categorized based on skills and processes that are inherent to 
computational thinking and as such would be useful skills to transfer across disci-
plines to solve problems. For instance, in order to evaluate students’ algorithmic 
thinking across disciplines, teachers can ask “Can the student create a set of steps to 
solve a problem” and “Can the student solve similar problems with the same set of 
steps or principles?” See Table 3 for a possible list of questions. By using this set of 
questions, teachers may gain a more comprehensive understanding of students’ 
ability to transfer computational skills and processes into other disciplines  and 
guide further instruction.

This set of questions can also be used as a communication tool between teachers 
and students. Evaluation as communication can promote student learning and devel-
opment of computational thinking and problem-solving skills. Specifically, a dis-
cussion (with these questions as a guide) can confirm with students the quality of 
their performance and provide insight on how they can improve and further develop 
their computational thinking skills. The questioning in and of itself encourages and 
scaffolds metacognition and computational thinking. With that said, our intention is 
not to reduce or oversimply the evaluation of computational thinking only to these 
sets of skills. We recognize this as a starting place and a means to support discussion 
and provoke thought around how to assess computational thinking skills. Ultimately, 
computational thinking is a process and therefore should not be evaluated as an end 
product. It is an ongoing learning progression through grade levels and across sub-
ject areas to eventually produce effective and productive twenty-first century think-
ers. Future research will examine the “think-alouds” of children as they participate 
in tasks intended to develop computational thinking to further inform the types of 
questions to be used in assessment of CT and provide criteria and examples of 
development across grades and disciplines.

Assessing Computational Thinking Across the Curriculum
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 Conclusion

The demand for CT to be integrated into elementary education is clear. What that 
looks like in terms of curriculum, practice, and assessment is not well defined. The 
data analysis process itself that was used in this research was an example of utilizing 
computational thinking and coding processes to analyze an expansive set of 
 information such as the Ontario Curriculum documents. This chapter provides a 

Table 3 Assessment tool for concepts, processes, and perspectives in problem-solving and 
computational thinking

Skill (source) Questions

Algorithmic thinking Can the student create a set of steps to solve a problem?
Can the student solve similar problems with the same set of 
steps or principles?

Decomposition Can the student break down the problem into smaller, more 
manageable parts?

Generalization/inferencing Can the student transfer prior knowledge and skills? Can the 
student identify patterns, similarities, and connections 
between prior and current problems?
Can the student make inferences?

Abstraction Can the student evaluate what is valuable information and 
what is not? Can the student remove unnecessary 
information?
Can the student add or remove details to clarify a problem?

Evaluation Can the student evaluate if the solution is a good one?
Incremental/iterative thinking Can the student identify a concept for the project?

Can the student develop a design plan?
Can the student implement the design plan?
Is the student comfortable adapting the plan in response to 
new or different information?

Testing and debugging Can the student develop strategies for dealing with 
problems?
Can the student anticipate and plan for problems?
Is the student comfortable using a trial and error method?

Reusing and remixing Is the student efficient in researching relevant information?
Can they use research to their advantage while maintaining 
authenticity?
Can the student embed others’ work into their own in a 
meaningful way?
Does the student have critical code reading ability?

Modularizing Can the student put together smaller parts to make something 
larger?
Can the student piece together parts of a solution to solve a 
problem?

Note: Categories of skills were informed by Brennan and Resnick (2012) and Csizmadia et al. 
(2015)
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 preliminary analysis of one provincial-level elementary curriculum and recognizes 
the existence of computational thinking and related terms across disciplines.  
For  example, there is an emphasis on CT-related concepts and perspectives in 
 seemingly unrelated disciplines of language and the arts, with fewer instances of 
specific practices necessary for computer programming as evidenced by the low 
prevalence of key terms. Computational thinking is present in a variety of forms and 
contexts in the existing curriculum as both content (i.e., curriculum expectations) and 
pedagogical approaches (in planning, teaching strategies, and assessment). Educators 
therefore need to build on current expectations in each discipline to further develop 
CT as a way of thinking from elementary education onward. This chapter acknowl-
edges the importance of identifying and defining CT as a metacognitive thinking 
process that teachers assess in collaboration with students. A set of questions is pro-
posed to allow teachers and students to communicate the development of problem- 
solving skills across disciplines and developmental stages, serving as a foundational 
assessment tool for measuring CT in instruction and research.
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 Making the Case for Assessments of Computational Thinking

With the bold call for “Computer Science For All” in January 2016, the President of 
the United States echoed the beliefs of many—that all children from “kindergarten 
through high school need to learn computer science and be equipped with the com-
putational thinking skills they need to be creators in the digital economy, not just 
consumers, and to be active citizens in our technology-driven world” (Whitehouse.
gov, 2016). This announcement came on the heels of a decade of efforts among 
researchers, educators, and advocacy groups nationwide working in concert with 
organizations such as the NSF, ACM CSTA, and Code.org that involved building a 
shared understanding around what it means for children to learn computational 
thinking (CT) and computer science (CS) in formal K-12  educational settings 
(Grover & Pea, 2013; Wing, 2006). There is now consensus in the national educa-
tion discourse that computational problem-solving, logical and algorithmic think-
ing, abstraction, and modeling of real-world phenomena—all undisputed aspects of 
CT—should be taught not only in CS classrooms but also in the context of STEM 
and other subjects.

Many of the introductory CT experiences for K-12 settings are being designed 
around programming using block-based programming environments such as 
Scratch, Alice, Blockly, MIT App Inventor, and Snap!, among others. These have 
focused on providing kids with an engaging exposure to the creation of computa-
tional artifacts and largely ignored issues of assessment. Consequently, assessments 
of CT remain underdeveloped and under-researched (Yadav et al., 2015) and this 
issue has been called out as a key future CS education research imperative (Cooper, 
Grover, Guzdial, & Simon, 2014). They are conspicuously missing from the 
early  introductory programming curricular offerings rolled out online by entities 
such as Code.org and Khan Academy. Without sufficient attention to thoughtful 
assessment, CT can have little hope of scaling in K-12 education (Grover & Pea, 
2013). While the goal of assessments is mostly to measure student learning, it need 
not necessarily result in awarding student grades, but rather, in providing a useful 
means to highlight gaps in student understanding that can in turn inform refine-
ments in curriculum and/or pedagogy. Measures that enable educators to assess 
student learning, both formatively and summatively, need to be created, tested, and 
validated in various settings with diverse learners.

Furthermore, few efforts, if any, have looked at the issue of transfer of CT skills 
beyond the immediate curriculum. Transfer of learning is an aspect of assessment 
that deserves attention since computational experiences at various levels of K-12 
aim to serve as bridges to future computational work. New approaches to transfer 
such as Preparation for Future Learning (PFL; Bransford & Schwartz,  
1999; Schwartz, Bransford, & Sears, 2005) have shown promise in the context of 
science and mathematics learning at the secondary level (Chin et al., 2010; Dede, 
2009; Schwartz & Martin, 2004). Interventions in CS education could similarly 
benefit from these emergent ideas in the learning sciences.

This chapter describes the design, use, and study of a comprehensive suite of 
assessments created for an introductory CS and programming curriculum for  middle 
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school, Foundations for Advancing Computational Thinking, or FACT. The goals of 
the assessments were to assess student learning of algorithmic thinking (mainly) in 
introductory programming and to evaluate the curriculum that was also designed as 
part of this research effort. The assessment design and use were influenced and 
informed by prior research on assessments described in the literature review below.

 (Lack of) Assessments of CT in K-12: A Literature Review

Some progress has been made in creating assessments for established high school 
curricula  such as Exploring Computer Science (ECS; Goode, Chapman, & 
Margolis, 2012) and AP CS Principles (Astrachan et al., 2011) being used nation-
ally. SRI International (2013)’s Principled Assessments of Computational Thinking 
use evidence-centered design (ECD; Mislevy, Steinberg, & Almond, 2003) to create 
assessments that support valid inferences about CT practices (Bienkowski, Snow, 
Rutstein, & Grover, 2015) for the ECS curriculum. Learning in the AP CS Principles 
course is assessed using through-course assessments involving “performance tasks” 
in addition to the end-of-course AP Exam comprising multiple-choice questions 
(College Board, 2014).

The few research efforts that have specifically targeted tackling the issue of CT 
assessment especially in the context of activities involving programming (e.g., 
Fields, Searle, Kafai, & Min, 2012; Koh, Nickerson, Basawapatna, & Repenning, 
2014; Meerbaum-Salant, Armoni, & Ben-Ari, 2010; Werner, Denner, Campe, & 
Kawamoto, 2012; Werner, Denner, & Campe, 2015) suggest that assessing the 
learning of computational concepts and constructs in popular programming envi-
ronments is a challenge.

Manually checking students’ completed projects is a customary form of assess-
ment. However, it is subjective and time-consuming, especially with large student 
populations, an issue that is being addressed to some extent through tools such as Dr. 
Scratch, a Scratch-specific tool for assessing the complexity of a program (Moreno-
León, Robles, & Román-González, 2015). However the existence of computational 
constructs in the code may not always provide an accurate sense of students’ compu-
tational competencies (Brennan & Resnick, 2012). Kurland and Pea (1985) reported 
that students aged 11 and 12 years who had logged more than 50 h of LOGO pro-
gramming experienced under “discovery learning” conditions were able to write and 
interpret short, simple programs but had much difficulty on programs involving fun-
damental programming concepts. In interviews, students revealed many incorrect 
conceptions about how programs work. These findings clearly point to problems 
inherent in completed student programs alone as a measure of their understanding of 
CT concepts. Artifact-based interviews can help provide a more accurate picture of 
student understanding of their programming projects as shown by Barron, Martin, 
Roberts, Osipovich, and Ross (2002). Such procedures, while valuable for research 
and for providing a holistic view of student learning, may not be practical to scale, 
especially in curricula used in regular school classrooms.
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Werner et al. (2012) assessed student learning through a specially designed Fairy 
Assessment created in Alice that required middle school students to code parts of a 
predesigned program to accomplish specific tasks to demonstrate understanding of 
algorithmic thinking, abstraction, and code. They found student performance to be 
the highest on the simplest task which measured comprehension and lowest on the 
task which measured complex problem-solving skills using debugging. The task, 
however, was specific to Alice, and rubric-based scoring of student projects was 
reported to be cumbersome.1

There is thus a need for assessment instruments that will illuminate student 
understanding of specific computing concepts and other CT skills such as debug-
ging, code tracing, problem decomposition, and pattern generalization. Black & 
Wiliam (1998), Glass & Sinha (2013) contend that well-designed multiple-choice 
assessments can be used to further learners’ understanding and provide learners 
with feedback and explanations in addition to simply testing student understanding. 
Cooper created a multiple-choice instrument for measuring learning of Alice pro-
gramming concepts (Moskal, Lurie, & Cooper, 2004), but it has not been used to 
measure student learning in K-12 education. Lewis et al. (2013) used simple quizzes 
that get at students’ understanding of Scratch blocks. Meerbaum-Salant et al. (2010) 
used assessments designed to measure understanding of programming concepts in 
Scratch before, during, and after the intervention.

Other innovative forms of assessment involve the design of gaming environ-
ments that teach and assess aspects of CT (e.g., Lee, Ko, & Kwan, 2013) or the 
design of simulations that assess CT in the context of Science classrooms (e.g., 
Weintrop et al., 2014). Some limited progress has been made in the development 
and use of automated tools to assess evidence of CT in programs created in block- 
based languages such as Scratch, Blockly, and Alice (e.g., Fields, Quirke, Amely, & 
Maughan, 2016; Grover, et al., 2016; Werner, McDowell, & Denner, 2013). Many 
of these “learning analytics” efforts are still nascent. Other efforts to assess CT have 
included studying growth and use of the CS vocabulary and “CT language” (Fletcher 
& Lu, 2009) to measure CT as children engage in computationally rich activities 
(Grover, 2011).

Large-scale efforts to roll out introductory computing curricula at the middle 
school level such as the UK national effort and the Israel Ministry of Education’s 
Science and Technology Excellence Program that includes a national CS  curriculum 
and exam (Zur Bargury, 2012) provide ideas for how CT is being assessed in intro-
ductory CS settings internationally. The UK curriculum includes formative assess-
ments, Scratch programming assignments, and a final project of the student’s 
choosing (Scott, 2013). The use of multiple-choice assessments and attendant 
rubrics to measure learning at scale in the Israeli effort (Zur Bargury, Pârv, & 

1 In an ongoing NSF-funded collaborative research effort, SRI International and Carnegie Mellon 
University are examining ways of automating assessment using log data from the Fairy Assessment 
in Alice captured by Denner and Werner. We are employing a combination of computational learn-
ing analytics/educational data mining techniques and the ECD framework to study students’ pro-
gramming process and automate the assessment of programming tasks such as the Fairy 
Assessment. Grover, Basu, & Bienkowski (2017) & Grover et  al. (2017) provide a glimpse of 
our work in progress using this computational psychometrics approach.
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Lanzberg, 2013) is particularly pertinent to the work described in this chapter. Their 
nationwide exam in 2012 comprised nine questions (with roughly 30 sub- questions). 
Arguably such multiple-choice measures are easier to implement on a large scale 
than open-ended student projects. They use Bloom’s taxonomy to classify the ques-
tions and inferences that can be drawn about the appropriate learning level of the 
associated computing concepts. The research and design on CT assessments in 
FACT described in this chapter builds on many of these prior efforts.

 Research Framework and Methodology

 Foundations for Advancing Computational Thinking: 
Curriculum and Assessment Design

The introductory programming units of FACT, the middle school curriculum at the 
center of this research, were designed as a structured in-classroom learning experi-
ence that leveraged pedagogical ideas for deeper understanding and transfer, and 
also  included various forms of formative and summative assessments. FACT 
included elements designed to build awareness of computing as a discipline while 
promoting engagement with foundational computing concepts in introductory pro-
gramming, mainly, elements of algorithmic flow of control, and CT practices such 
as code reading, writing pseudo-code, and debugging. The various units in FACT 
focused on computing in our world, the basics of computational problem-solving, 
algorithmic thinking, and programming in Scratch (Table 1). The curricular units 
were deployed as a course on Stanford University’s OpenEdX platform to facilitate 
a 7-week blended in-class learning experience. The online materials  comprised 
short Khan Academy-style videos ranging between 1 and 5 min in length that led 
learners through the thinking involved in the construction of computational solu-
tions using the Scratch programming environment. This was inspired by the use of 
worked examples that have been found to reduce cognitive load initially for novices 
encountering conceptually challenging tasks in programming (Morrison, 
Margulieux, & Guzdial, 2015). The videos were interspersed with directed as well 
as open-ended programming activities to be completed individually or in pairs, peer 

Table 1 FACT curriculum unit-level breakdown

Unit 1 Computing is everywhere!/What is CS?
Unit 2 What are algorithms and programs? Precise sequence of instructions in 

programming
Unit 3 Iterative/repetitive flow of control in a program: loops and iteration
Unit 4 Representation of information (data and variables)
Unit 5 Boolean logic and advanced loops
Unit 6 Selective flow of control in a program: conditional thinking

Final project (student’s own choice; could be done individually or in pairs)
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discussions, and online “quizzes” that used automated grading with feedback, and 
explanations of solutions. The course ended with an open-ended game design proj-
ect of choice.

Transfer and  PFL for text-based computing contexts (from the block-based 
Scratch environment) was mediated through expansive framing (Engle et al., (2012) 
and providing learners opportunities to work with analogous representations 
(Gentner et al., 2003) of the computational solutions—plain English, pseudo-code, 
in addition to programs coded in Scratch. Details of the curriculum design and ped-
agogical underpinnings of FACT are described in Grover, Pea, and Cooper (2015). 
The curriculum and assessments were refined over two iterations of design-based 
research (DBR) with students in middle school classrooms (N = 26 in Study#1; N = 
28 in Study#2). Student’s learning outcomes, classroom experiences, and feedback 
on the curriculum and assessments were used to inform revisions. Grover and Pea 
(2016) detail the DBR process that influenced design decisions. This chapter focuses 
specifically on the refined assessments used in the second iteration (Study#2) of 
teaching FACT in a middle school classroom setting.

 The “Deeper Learning” Lens

“Deeper learning” (Pellegrino & Hilton, 2013) is increasingly seen as an imperative 
for helping students develop robust, transferable knowledge and skills for the 
twenty-first century. The phrase acknowledges the cognitive, intrapersonal, and 
interpersonal dimensions of learning while also underscoring the need for learners 
to be able to transfer learning to future contexts. Ideas of deeper learning find reso-
nance in How People Learn (Bransford, Brown, & Cocking, 2000)—the seminal 
treatise that explicated the need for learning environments to be assessment- centered 
in addition to learner-, knowledge-, and community-centered.

Assessments are designed artifacts of the learning environment aimed at providing 
feedback to the learner and to the teacher about student understanding. FACT’s assess-
ment design was guided by Barron and Daring-Hammond’s (2008) assertion that 
robust assessments for meaningful learning must include (1) intellectually ambitious 
performance assessments that require application of desired concepts and skills in dis-
ciplined ways, (2) rubrics that define what constitutes good work, and (3) frequent 
formative assessments to guide feedback to students and teachers’ instructional deci-
sions. Furthermore, Conley and Darling-Hammond (2013) assert that in addition to 
assessments that measure key subject matter concepts, assessments for deeper learning 
must measure (1) higher-order cognitive skills as well as skills that support transferable 
learning and (2) abilities such as collaboration, complex problem-solving, planning, 
reflection, and communication of these ideas through the use of appropriate vocabulary 
of the domain in addition to presentation of artifacts to a broader audience.

These assertions point to the need for different measures of learning or “systems 
of assessments” that are complementary, encourage and reflect deeper learning, and 
contribute to a comprehensive picture of student learning. In light of these recom-
mendations for assessments of deeper learning, multiple and innovative measures 
of assessment were used in FACT to help create a multifaceted picture of student 
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learning as described in the sections below. The following research questions were 
probed through empirical inquiry: (1) What is the variation across learners in learn-
ing of algorithmic flow of control (serial execution, looping constructs, and condi-
tional logic) through the FACT curriculum? (2) Does FACT promote an 
understanding of algorithmic concepts that goes deeper than tool-related syntax 
details as measured by “preparation for future learning” (PFL) transfer assess-
ments? (3) What is the change in the perception of the discipline of CS among learn-
ers as a result of the FACT curriculum? This chapter describes FACT’s “systems of 
assessments” that measured growth of algorithmic thinking skills, transfer of these 
skills, as well as noncognitive aspects such as beliefs and perceptions of computing. 
It also briefly describes the results of empirical research involving their use.

 FACT’s Systems of Assessments

FACT’s multifaceted assessments included the following types of measures. They 
are described in more detail below:

 1. Open-ended and directed programming assignments with attendant rubrics that 
built on the concepts taught

 2. Innovative programming exercises inspired by Parson’s puzzles (Parsons and 
Haden, 2006)

 3. Low-stakes high-frequency quizzes2 with open-ended, multiple-choice items 
that were interspersed throughout the course for formative feedback to the 
learner though feedback and explanations, and to the teacher. These were aimed 
at assessing understanding of individual concepts and constructs just taught.

 4. A summative assessment with multiple-choice items (most of which were 
reused from the 2012 Israel National Exam)

 5. Final project of students’ choosing (to be done in pairs)
 6. Final project presentation to the whole class along with individual written stu-

dent reflections and a “studio” of students’ final projects on Scratch website
 7. Student artifact-based interviews around their final projects
 8. Block-to-text-based programming PFL assessment
 9. Open-ended responses to questions such as “What do computer scientists do?” 

and “Computing is __________________________.”
 10. Pre-post surveys on student interest and attitudes toward CS and programming
 11. A pretest to allow for assessing pre-to-post-FACT learning gains on questions 

based on Scratch code (inspired by Ericson & McKlin, 2012)

In keeping with its learner-centered philosophy, FACT placed a heavy emphasis 
on “learning by doing” in the Scratch programming environment. In addition to 
open-ended time to dabble with programming following example videos (that mod-
eled algorithmic thinking and computational problem-solving in Scratch through 
worked examples), there were specific assignments with attendant rubrics that built 

2 FACT’s quizzes and summative assessment have been shared on the assessment platform, 
Edfinity.  http://edfinity.com/join/9EQE9DT8.
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on the concepts taught in the videos (Table 2). Rubrics included items for creativity 
to encourage student self-expression through programming.

Some programming exercises inspired by Parson’s puzzles (Denny, Luxton- 
Reilly, & Simon, 2008; Parsons & Haden, 2006) involved presenting all the Scratch 
blocks (in jumbled sequence) required for a program that students needed to snap in 
correct order.

Low-stakes, high-frequency auto-graded quizzes throughout FACT tested stu-
dents’ understanding of specific CS concepts and constructs, and included explana-
tions, to give learners immediate feedback on their response (examples shown in 
Figs. 1 and 2). Following these quizzes, some learners would re-watch the video 
lecture, or try things out in Scratch, thus taking more control of their learning. Many 
quiz questions were based on small snippets of Scratch or pseudo-code; these were 
designed to help learners develop familiarity with code tracing—the ability to  read/
understand code has been found to be positively correlated with code writing 
(Bornat, 1987; Lopez et al., 2008).

Summative assessments included a posttest conducted online that included 
multiple- choice and open-ended response items. These items were aimed at assess-
ing learners’ CT ability through questions that required code tracing and/or debug-
ging (Figs.  3 and 4). It included six out of nine questions from the 2012 Israel 
National Exam that are described in Zur Bargury et al. (2013). A final project of 
learners’ choosing to be done with a partner or individually was also part of the 
summative assessments. Aligning with the social and participatory aspects of 
learner-centered environments, each student pair also presented the final projects to 
the whole class on a special “Expo” day and showcased their projects in an online 
Scratch studio of games, so peers could play (and test) the games and provide peer 
feedback. Students also individually wrote reflections on their final projects using a 

Table 2 FACT’s structured and open-ended Scratch programming assignments

Programming assignments (Scratch/
pseudocode) Algorithmic/CT concepts/constructs

Share a recipe Serial execution; repetition; selection
(Scratch) Make a life cycle of choice Serial execution
(Scratch) Draw a spirograph with any 
polygon

Simple nested loop + creative computing

(Scratch) Create a simple animation Forever loop

(Scratch) Generic polygon maker Variables; user input
Look inside Scratch code and explain the 
text version of code

Algorithms in different forms (analogous 
representations for deeper learning)

(Scratch) Draw a “Squiral” Loops, variables, creative computing
Open-ended project (in pairs): Create a 
game using “repeat until”

Loops ending with Boolean condition

(Scratch) Maze game Conditionals; event handlers
(Scratch) Guess my number game Loops, variables, conditionals, Boolean logic
(Scratch) Final, open-ended project of 
choice

All CT topics taught in FACT
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document adapted from Scott (2013). The final project thus afforded learners the 
opportunity to  problem-solve, code, debug, collaborate, plan, communicate, pres-
ent, and reflect on their work. Inspired by past research (Barron et  al., 2002), 
“artifact- based interviews” around the final Scratch projects were also conducted 
individually with each student.

Fig. 1 Sample quiz questions used in formative assessments

Fig. 2 Auto-graded quiz question with explanation on OpenEdX
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FACT’s unique PFL test was designed and administered after the end of the 
course to specifically assess how well students were able to transfer their computa-
tional understanding built in FACT in the context of the block-based Scratch pro-
gramming environment (and through extensive use of pseudo-code throughout 
FACT) to the context of a text-based (Java-like) programming language. PFL assess-
ments evaluate how well students learn with new resources or scaffolding that are 
included as part of the assessment (Schwartz & Martin, 2004; Schwartz et al., 2005). 
The PFL assessment items were preceded by “new learning” in the form of syntax 
in a text-based language for constructs that students had encountered in the context 
of Scratch in FACT. To help learners make connections back to the past learning 
context (Pea, 1987) and see “the old in new” (Schwartz, Chase, & Bransford, 2012), 
references are made to the equivalent constructs in Scratch, for example, PRINT 
displays things specified in parenthesis to the computer screen one line at a time 
(like SAY in Scratch) (Fig. 5). Two different types of syntax were explained, one of 
a Pascal-like, and the other of a Java-like, language. These were followed by 

Fig. 3 Sample questions in the CT summative test

Fig. 4 Sample question from the 2012 Israel National Exam in the CT summative test
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 questions involving simple code snippets that used the text-based syntax in order to 
measure students’ ability to read and understand the text-based code snippets.

Lastly, since perspectives and practices of the discipline are key ingredients of 
modern STEM learning, affective aspects such as students’ growth in their beliefs 
and understanding of computing as a discipline and changes in their attendant atti-
tudes toward CS were also assessed through pre-post attitude surveys and responses 
to the free-response question—“What, in your view, do computer scientists do?”

 Participants, Procedures, and Data Measures

In its second iteration, FACT was taught over a seven week period in a public mid-
dle school classroom in Northern California. The student sample comprised 28 chil-
dren from 7th and 8th grade (20 boys and 8 girls; mean age, ~12.3 years) enrolled 
in a semester-long “Computers” elective class. The class met for 55 min, four times 
per week. The classroom teacher and researcher were present in the classroom at all 
times. IRB permission was sought from parents and students prior to the start of the 
study. An independent researcher assisted with grading. The following data mea-
sures were used in the research:

• Prior experience survey: This gathered information about students’ prior experi-
ences in computational activities (adapted from Barron, 2004).

• Pre-post CS perceptions survey: This included the free-response question “What 
do computer scientists do?”

• Pre-post CT assessments: This measured pre- and post-FACT CT skills.

'<–' (left arrow) is used to assign values to variables. For example: n <–5 assigns the value 5 to the variable n
If there are blocks of compound statements (or steps), then the BEGIN..END construct is used to delimit (or hold 
together) those statement blocks (like the yellow blocks for REPEAT and IF blocks in Scratch).
FOR and WHILE are loop constructs like REPEAT & REPEAT UNTIL in Scratch
WHILE (some condition is true)
BEGIN
... (Execute some commands) .....
END
PRINT displays things specified in parenthesis to the computer screen one line at a time (like SAY in Scratch). 
Commas are used inside the PRINT command like JOIN in Scratch to combine a text message with a variable
====================================================================================
=======
Question #1: When the code below is executed, what is displayed on the computer screen?
PRINT("before loop starts");
num <–0; 
WHILE (num < 6) DO
BEGIN 
               num <–num + 1; 
                PRINT("Loop counter number ", num);
END
PRINT("after loop ends");

Fig. 5 Sample PFL question following new syntax specification
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• Formative quizzes: These captured student progress and targets of difficulty 
 throughout the course.

• Scratch projects: About ten directed and open-ended programming projects 
through the course (along with rubrics).

• Final Scratch projects, presentations, and artifact-based student interviews on 
the final project.

• “Preparation of future learning” (PFL) assessment designed to assess transfer of 
learning from block-based to a text-based programming language.

Since the current focus is on assessments rather than a description of the curricu-
lum and study procedures (described in detail in Grover et al., 2015), the remainder 
of the chapter includes results and a brief discussion.

 Results

Due to space constraints, qualitative grading of Scratch projects is not discussed 
here. This section chapter focuses on quantitative scoring of students’ performance 
on the designed summative and PFL tests, and touches briefly on qualitative analy-
sis of artifact-based interviews after the final project.

The pretest-to-summative test effect size (Cohen’s d) was ~2.4, and all learners 
showed statistically significant learning gains (Tables 3 and 4). Students found 
‘serial execution’ or the concept of sequence to be the easiest, followed by condi-
tionals; and loops were the hardest for students to grasp. This was perhaps because 
most of the questions on loops also involved variable manipulation—a concept that 
novice learners often struggle with.

Details in Zur Bargury et al. (2013) on scoring and student performance in the 
student sample of ~4000 middle school students in Israel allowed us to conduct a 
comparative analysis between our results and those reported in Israel. This analysis 
revealed comparable performances by our students on the six questions we used 

Table 3 Within-student comparison of pretest and summative test scores (Cohen’s d = 2.4)

Pretest score Summative score
N Mean SD Mean SD t-stat p-value

28 28.1 21.2 81.6 21.0 -15.5 <0.001

The t-stat and its following p-value come from a t-test to test whether the pre- and post-means are 
the same

Table 4 Summative test 
scores breakdown by CS 
topics

Mean Std. dev.

Overall score 81.6 21.2
By CS topic
Serial execution 91.1 20.7
Conditionals 84.9 20.5
Loops 77.2 26.3
Vocabulary 77.4 22.2
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from the Israel exam (Fig. 6). Interviews around a difficult summative test question 
(from the Israel National Exam) suggested that those items needed to be refined to 
improve their validity.

On the PFL test, there was evidence of understanding of algorithmic flow of 
control in code written in a text-based programming language. Grover, Pea, and 
Cooper (2014a) provide more details on the PFL questions and their scoring. 
Regression analyses revealed that ELL students had trouble with the text-heavy 
PFL test (Grover, Pea, & Cooper, 2016a, b), which may explain the mean score of 
65%.

Students’ pre-post responses to the question “What do computer scientists do?” 
revealed a significant shift from naïve “computer-centric” beliefs of computer sci-
entists as people who engage mostly in fixing, making, studying, or “experiment-
ing” with computers to embrace a view of CS as a creative problem-solving 
discipline with diverse real-world applications (Fig. 7). More details on this aspect 
of the research are detailed in Grover, Pea, & Cooper, 2014b.

Final projects were graded based on a rubric inspired by Martin, Walter, and 
Barron (2009) who used it for grading game projects in AgentSheets. The difference 
in programming contexts necessitated modifications to make it work for Scratch 
projects. As in the original rubric, grading criteria were separated into “game 
design” and “programming” items. It should be noted that the rubric was designed 
less as a tool for giving the student a grade than to understand students’ application 
of CT concepts learned. Additionally, individual “artifact-based interviews” were 
conducted around students’ final projects and guided by questions such as:

Fig. 6 Student performance post-FACT vs. 2012 Israel National Exam results (N = 4082). 
Note:Error bars represent the margin of error (half-width of a 95% confidence interval)
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• How did you decide on your project?
• What does it do? How did you do it? (Student controls the mouse to points things 

on the screen while talking)
• What was it like working on this project?  [Fun/challenging/difficult/creative/

boring?]

The qualitative rubric-based grading of the final projects (Fig.   8) and student 
interviews both revealed that even the students who had low English proficiency 
and had performed poorly in the summative CT and PFL tests were able to demon-
strate high levels of engagement in the final project as well as a reasonable under-
standing of algorithmic constructs. Two such students were Kevin and Isaac 
(pseudonyms) who worked together to build a Halloween-themed three-level Scary 
Maze game. The game was not complex, although three levels of increasing diffi-
culty were cleverly incorporated with increasingly narrow passageways. The chal-
lenge was to navigate the maze without touching the walls (that narrowed in width 
from level 1 to level 3). The game elements and visual execution were bare bones, 
but the students had added interesting effects such as background music during 
navigation, and a scary scream accompanying a scary face to end the game. Though 
simple, the game implemented a coherent theme and had an  intuitive game play 
which was very engaging. The programming was not very complex; no variables 
were used (although they mentioned in the interview that they wanted to add a 
timer). They implemented different levels by having the scene change when the 
sprite touched a red door. The game had a bug related to where to position the sprite 

Fig. 7 Pre-post FACT responses to “What do computer scientists do?”
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at the start of each level. The artifact-based interview with Kevin (excerpts in 
Table 5) revealed that he was aware of the bug. In the process of talking through the 
problem during the interview, he was also able to figure how to fix the bug (with the 
use of a ‘level’ variable and a conditional to test which level the user was on).

Table 5 Highlights of “artifact-based” interview with Kevin (pseudonym)

Observation/interpretation Student quote(s) or exchanges with interviewer

Connected “scary” final project idea 
with event in personal life

“we watched Insidious the day before… and then we 
got this project assigned and we just decided to do 
something scary. coz we were traumatized coz of the 
movie”

Decision to do Maze game, (but with 
conscious effort to make 
enhancements)

“We decided to do a maze because, uhm, well, we had 
an assignment where we were supposed to do a 
maze… before… We also added like uhm, like levels 
and stuff like that”

Able to describe what the code did, 
referred to specific code elements 
while talking

e.g. “we have in forever our up and arrow keys...”
“And each level has a different color red; so when you 
touch it it’ll take you to the next level”

Was aware of a bug in the code and 
showed it

Here you see when you touch the black, it’ll start you 
down here, instead of up there… and w-we don’t know 
why. We tried to fix it but… we couldn’t fix it, I don’t 
know what was going on…

In talking through problem causing the bug, he managed to figure that an IF-ELSE would be 
needed to know which level they were on and reset the position accordingly

Fig. 8 Studio of students’ final projects on Scratch website
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 Discussion & Implications for Future Work

The various types of measurement designed and used in FACT addressed different 
facets of understanding of student learning and provided students with opportunities 
to demonstrate their learning in multiple ways. The formative quizzes were a unique 
feature of FACT not routinely seen in middle school curricula. They provided useful 
feedback to students on their learning and understanding as well as to the researchers 
on aspects of curriculum design based on student performance. Given their formative 
nature, they were used to inform midcourse curriculum adjustments. For example, 
students’ performance on the ‘loops and variables’ quiz prompted more time to be 
dedicated to that topic. In post-course student surveys, while some students indicated 
that there were “too many” online quizzes, other students found them to be useful for 
their learning. Some students specifically acknowledged the usefulness of the feed-
back and explanations they received in response to incorrect answers in quizzes.

The summative assessment test with multiple-choice and open-ended Scratch- 
based questions as well as the PFL assessment pointed to difficulties that students 
had with loops with changing variable values. While those topics are traditionally 
difficult for novices to grasp (Cooper, 2010; du Boulay, 1986; Ebrahimi, 1994); 
Robins, Rountree, & Rountree, 2003; Spohrer & Soloway, 1986), the results also 
suggested that other pedagogies may be more productive in introducing children to 
those CT concepts.3 Results on the PFL test also suggest that they would benefit 
from redesign. For a balanced set of questions with robust construct validity, the 
PFL test should assess learners on transfer of individual concepts taught—serial 
execution, variables, conditionals, and loops—in addition to some questions that 
involve multiple concepts. Additionally, assessments need to be designed such that 
they do not disadvantage learners who have difficulty with the English language. 
The multiple-choice questions in the formative quizzes demonstrated face validity 
but would benefit from additional reliability studies.

It was apparent that learners benefited from being given opportunities to demon-
strate their understanding in multiple ways. This was true for all students regardless 
of their performance on the formative quizzes and  summative CT test. In their 
artifact- based interviews, each student expressed how much they enjoyed the final 
project and indicated a personal connection to the final project. In contrast to the 
decontextualized summative test with questions that involved making sense of 
Scratch code and answering questions based on them, the final project was a more 
meaningful form of performance assessment for which Barron and Darring- 
Hammond (2008) argue. It embodied learner agency and instilled a sense of per-
sonal  accomplishment in every student as they presented their projects to their 
peers. Most importantly, it worked well for all students, even those who performed 
poorly on the summative test. That said, the value of tests that can be graded easily 
and objectively to assess understanding of specific CT constructs, however, should 
not be underemphasized. This is especially pertinent considering the challenges of 
grading open-ended projects.

3 This question is at the heart of my ongoing NSF-funded research project  (#1543062)  at SRI 
International being conducted in partnership with San Francisco Unified School District (https://
www.sri.com/work/projects/middle-school-computer-science).
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No single type of assessment alone would have captured the cognitive, affective, 
and transfer aspects of deeper learning described earlier in this chapter. Each type 
of assessment served a purpose, and together, they provided a comprehensive view 
of student learning. Additionally, as this research experience has shown, not all 
assessments work equally well for all students to demonstrate their learning. This 
appears to be especially true for those students who are otherwise disadvantaged 
and/or have poor academic preparation and/or out-of-school experiences that are 
not intellectually enriching. It is important to keep this in mind as "CS For All" aims 
to broaden participation and level the playing field in CS for all, with special atten-
tion to those groups that have historically been marginalized. This research there-
fore argues for “systems of assessments” for algorithmic thinking aspects of CT and 
also presents empirically tested examples for an introductory computing course.

This article addresses a critical gap in the prevalent thinking about the design of 
introductory computing experiences in formal K-12 CS education. It presents results 
from the second iteration of a DBR effort. Follow-up work currently underway 
includes validating an assessment of introductory programming and algorithmic 
concepts informed by this research.  Results from its pilot use  in diverse middle 
school CS classrooms in Northern California have revealed new insights into stu-
dent misconceptions about loops, variables and expressions (Grover & Basu, 
2017). It is hoped that educators and curriculum designers will also be able use the 
ideas presented in this chapter to inform the design of introductory CS learning 
experiences at various levels of K-12 education, especially aspects related to assess-
ment of deeper CS learning.

Acknowledgments The research described in this chapter was part of my Ph.D. dissertation at 
Stanford University. This effort benefited immensely from the support and guidance from my advi-
sors and members of my doctoral committee. I am very grateful for the intellectual contributions 
of Dr. Roy Pea, Dr. Daniel Schwartz, and Dr. Brigid Barron at the Stanford Graduate School of 
Education, and Dr. Stephen Cooper at the Department of Computer Science, Stanford University. I 
would also like to acknowledge the support of the school district, principal, classroom teacher, and 
students who participated in this research. This project was funded by a grant from the National 
Science Foundation (#1343227).

References

Astrachan, O., Barnes, T., Garcia, D. D., Paul, J., Simon, B., & Snyder, L. (2011). CS principles: 
piloting a new course at national scale. In Proceedings of the 42nd ACM technical symposium 
on computer science education (pp. 397–398). ACM.

Barron, B. (2004). Learning ecologies for technological fluency: Gender and experience differ-
ences. Journal of Educational Computing Research, 31(1), 1–36.

Barron, B., & Daring-Hammond, L. (2008). How can we teach for meaningful learning? In 
L.  Daring-Hammond, B.  Barron, P.  D. Pearson, A.  H. Schoenfeld, E.  K. Stage, T.  D. 
Zimmerman, G. N. Cervetti, & J. L. Tilson (Eds.), Powerful learning: What we know about 
teaching for understanding. San Francisco, CA: Jossey-Bass.

Barron, B., Martin, C., Roberts, E., Osipovich, A., & Ross, M. (2002). Assisting and assessing the 
development of technological fluencies: Insights from a project-based approach to teaching 
computer science. In Proceedings of the conference on computer support for collaborative 
learning: Foundations for a CSCL community (pp.  668–669). International Society of the 
Learning Sciences.

Assessing Algorithmic and Computational Thinking in K-12…



286

Bienkowski, M., Snow, E., Rutstein, D. W., & Grover, S. (2015). Assessment design patterns for 
computational thinking practices in secondary computer science: A First Look (SRI Technical 
Report) Menlo Park, CA: SRI International. Retrieved from http://pact.sri.com/resources.html

Black, P., & Wiliam, D. (1998). Inside the black box: Raising standards through classroom assess-
ment. Granada Learning.

Bornat, R. (1987). Programming from first principles. Englewood Cliffs, NJ: Prentice Hall 
International.

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple 
implications. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of research in education (Vol. 24, 
pp. 61–101). Washington, DC: American Educational Research Association.

Bransford, J. D., Brown, A., & Cocking, R. (2000). How people learn: Mind, brain, experience 
and school (Expanded ed.). Washington, DC: National Academy.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development 
of computational thinking. In Proceedings of the 2012 annual meeting of the American 
Educational Research Association. Vancouver, Canada.

Chin, D. B., Dohmen, I. M., Cheng, B. H., Oppezzo, M. A., Chase, C. C., & Schwartz, D. L. 
(2010). Preparing students for future learning with Teachable Agents. Educational Technology 
Research and Development, 58(6), 649–669.

College Board. (2014). AP computer science principles: Performance assessment. Retrieved from 
https://advancesinap.collegeboard.org/stem/computer-science-principles/course-details.

Conley, D. T., & Darling-Hammond, L. (2013). Creating systems of assessment for deeper learn-
ing. Stanford, CA: Stanford Center for Opportunity Policy in Education.

Cooper, S. (2010). The design of Alice. ACM Transactions on Computing Education (TOCE), 
10(4), 15.

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). A future for computing education 
research. Communications of the ACM, 57(11), 34–36.

Dede, C. (2009). Immersive interfaces for engagement and learning. Science, 323(5910), 66–69.
Denny, P., Luxton-Reilly, A., & Simon, B. (2008). Evaluating a new exam question: Parsons prob-

lems. In Proceedings of the fourth international workshop on computing education research 
(pp. 113–124). ACM.

du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing 
Research, 2(1), 57–73.

Engle, R. A., Lam, D. P., Meyer, X. S., & Nix, S. E. (2012). How does expansive framing promote 
transfer? Several proposed explanations and a research agenda for investigating them. 
Educational Psychologist, 47(3), 215–231.

Ebrahimi, A. (1994). Novice programmer errors: Language constructs and plan composition. 
International Journal of Human- Computer Studies, 41(4), 457–480.

Ericson, B., & McKlin, T. (2012). Effective and sustainable computing summer camps. In 
Proceedings of the 43rd ACM technical symposium on computer science education (pp. 289–
294). ACM.

Fields, D. A., Quirke, L., Amely, J., & Maughan, J. (2016). Combining big data and thick data 
analyses for understanding youth learning trajectories in a summer coding camp. In Proceedings 
of the 47th ACM technical symposium on computing science education (pp. 150–155). ACM.

Fields, D. A., Searle, K. A., Kafai, Y. B., & Min, H. S. (2012). Debuggems to assess student learn-
ing in e-textiles. In Proceedings of the 43rd SIGCSE technical symposium on computer science 
education. New York, NY: ACM.

Fletcher, G. H., & Lu, J.  J. (2009). Human computing skills: Rethinking the K-12 experience. 
Communications of the ACM, 52(2), 23–25.

Gentner, D., Loewenstein, J., & Thompson, L. (2003). Learning and transfer: A general role for 
analogical encoding. Journal of Educational Psychology, 95(2), 393–408. 

Glass, A. L., & Sinha, N. (2013). Providing the answers does not improve performance on a col-
lege final exam. Educational Psychology, 33(1), 87–118.

Goode, J., Chapman, G., & Margolis, J. (2012). Beyond curriculum: The exploring computer sci-
ence program. ACM Inroads, 3(2), 47–53.

S. Grover

http://pact.sri.com/resources.html
https://advancesinap.collegeboard.org/stem/computer-science-principles/course-details


287

Grover, S. (2011). Robotics and engineering for Middle and High School students to develop com-
putational thinking. Paper presented at the annual meeting of the American Educational 
Research Association. New Orleans, LA.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. 
Educational Researcher, 42(1), 38–43.

Grover, S. & Pea, R. (2016). Designing for deeper learning in a blended computer science course 
for Middle School: A design-based research approach. In Proceedings of the 12th international 
conference of the learning sciences, Singapore.

Grover, S. & Basu, S. (2017). Measuring student learning in introductory block-based program-
ming: Examining misconceptions of loops, variables, and boolean logic. In: Proceedings of the 
48th ACM Technical Symposium on Computer Science Education (SIGCSE ’17). Seattle, WA. 
ACM. 

Grover, S., Bienkowski, M., Basu, S., Eagle, M., Diana, N. & Stamper, J. (2017). A framework for 
hypothesis-driven approaches to support data-driven learning analytics In measuring computa-
tional thinking in block-based programming. In: Proceedings of the 7th International Learning 
Analytics & Knowledge Conference (2017). Vancouver, CA. ACM.

Grover, S. Basu, S., & Bienkowski, M. (2017). Designing programming tasks for measuring com-
putational thinking. In: Proceedings of the Annual Meeting of the American Educational 
Research Association. San Antonio, TX.

Grover, S., Pea, R., & Cooper, S. (2014b). Remedying misperceptions of computer science among 
Middle School students. In Proceedings of the 45th ACM technical symposium on computer 
science education (pp. 343–348). ACM.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer 
science course for Middle School students. Computer Science Education, 25(2), 199–237.

Grover, S., Pea, R., & Cooper, S. (2016a). Factors influencing computer science learning in Middle 
School. In Proceedings of the 47th ACM technical symposium on computing science education 
(pp. 552–557). ACM.

Koh, K. H., Nickerson, H., Basawapatna, A., & Repenning, A. (2014). Early validation of compu-
tational thinking pattern analysis. In Proceedings of the 2014 conference on innovation and 
technology in computer science education (pp. 213–218). ACM.

Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recursive LOGO programs. 
Journal of Educational Computing Research, 1(2), 235–243.

Lee, M.  J., Ko, A.  J., & Kwan, I. (2013). In-game assessments increase novice programmers’ 
engagement and level completion speed. In Proceedings of the ninth annual international ACM 
conference on international computing education research (pp. 153–160). ACM.

Lewis, C. M., et al. (2013). Online curriculum. Retrieved from http://colleenmlewis.com/scratch.
Lopez, M., Whalley, J., Robbins, P., & Lister, R. (2008). Relationships between reading, tracing 

and writing skills in introductory programming. In: Proceedings of the Fourth international 
Workshop on Computing Education Research (pp. 101–112). ACM.

Martin, C. K., Walter, S., & Barron, B. (2009). Looking at learning through student designed com-
puter games: A rubric approach with novice programming projects. Unpublished paper, 
Stanford University. 

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2010). Learning computer science concepts 
with scratch. In Proceedings of the sixth international workshop on computing education 
research (ICER ‘10) (pp. 69–76). New York, NY: ACM.

Mislevy, R. J., Steinberg, L. S., & Almond, R. G. (2003). Focus article: On the structure of educa-
tional assessments. Measurement: Interdisciplinary research and perspectives, 1(1), 3–62.

Moreno-León, J., Robles, G., & Román-González, M. (2015). Dr. Scratch: Automatic analysis of 
scratch projects to assess and foster computational thinking. Revista de Educación a Distancia, 
46. doi:10.6018/red/4.

Morrison, B. B., Margulieux, L. E., & Guzdial, M. (2015). Subgoals, context, and worked exam-
ples in learning computing problem solving. In Proceedings of the eleventh annual interna-
tional conference on international computing education research (pp. 21–29). ACM.

Assessing Algorithmic and Computational Thinking in K-12…

http://dx.doi.org/10.6018/red/4


288

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new instructional 
approach. ACM SIGCSE Bulletin, 36(1), 75–79.

Parsons, D., & Haden, P. (2006). Parson’s programming puzzles: A fun and effective learning tool 
for first programming courses. In Proceedings of the 8th Australasian conference on computing 
education (Vol. 52, pp. 157–163). Australian Computer Society.

Pea, R.  D. (1987). Socializing the knowledge transfer problem.  International Journal of 
Educational Research, 11(6), 639–663. 

Pellegrino, J. W., & Hilton, M. L. (Eds.). (2013). Education for life and work: Developing transfer-
able knowledge and skills in the 21st century. Washington, DC: National Academies. 

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review 
and discussion. Computer Science Education, 13(2), 137–172. 

Schwartz, D. L., & Arena, D. (2013). Measuring what matters most: Choice-based assessments for 
the digital age. Cambridge, MA: MIT.

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden effi-
ciency of encouraging original student production in statistics instruction. Cognition and 
Instruction, 22(2), 129–184.

Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In 
J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 1–51). 
Greenwich, CT: Information Age.

Schwartz, D.  L., Chase, C.  C., & Bransford, J.  D. (2012). Resisting overzealous transfer: 
Coordinating previously successful routines with needs for new learning. Educational 
Psychologist, 47(3), 204–214.

Scott, J. (2013). The royal society of Edinburgh/British computer society computer science exem-
plification project. In Proceedings of ITiCSE’13 (pp. 313–315).

Spohrer, J.  C., & Soloway, E. (1986). Novice mistakes: Are the folk wisdoms correct? 
Communications of the ACM, 29(7), 624–632.

SRI International (2013). Exploring CS curricular mapping. Retrieved from http://pact.sri.com.
Weintrop, D., Beheshti, E., Horn, M. S., Orton, K., Trouille, L., Jona, K., & Wilensky, U. (2014). 

Interactive assessment tools for computational thinking in High School STEM classrooms. In 
Intelligent Technologies for Interactive Entertainment (pp.  22–25). Springer International 
Publishing.

Werner, L., Denner, J., & Campe, S. (2015). Children programming games: a strategy for measur-
ing computational learning. ACM Transactions on Computing Education (TOCE), 14(4), 24.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment: 
Measuring computational thinking in Middle School. In Proceedings of the 43rd ACM techni-
cal symposium on computer science education (SIGCSE ‘12) (pp. 215–220). New York, NY: 
ACM.

Werner, L., McDowell, C., & Denner, J. (2013). A first step in learning analytics: Pre-processing 
low-level Alice logging data of Middle School students. JEDM-Journal of Educational Data 
Mining, 5(2), 11–37.

Whitehouse.gov (2016). Computer science for all. Retrieved from https://www.whitehouse.gov/
the-press-office/2016/01/30/weekly-address-giving-every-student-opportunity- 
learn-through-computer.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–36.
Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., & Clayborn, L. (2015). Sowing the 

seeds: A landscape study on assessment in secondary computer science education. New York, 
NY: Computer Science Teacher Association.

Zur Bargury, I. (2012). A new curriculum for junior-high in computer science. In Proceedings of 
the 17th ACM annual conference on innovation and technology in computer science education 
(pp. 204–208). ACM.

Zur Bargury, I., Pârv, B. & Lanzberg, D. (2013). A nationwide exam as a tool for improving a new 
curriculum. In Proceedings of ITiCSE’13 (pp. 267–272). Canterbury, England, UK.

S. Grover

https://www.whitehouse.gov/the-press-office/2016/01/30/weekly-address-giving-every-student-opportunity-learn-through-computer
https://www.whitehouse.gov/the-press-office/2016/01/30/weekly-address-giving-every-student-opportunity-learn-through-computer
https://www.whitehouse.gov/the-press-office/2016/01/30/weekly-address-giving-every-student-opportunity-learn-through-computer


Part V
Computational Thinking Tools



291© Springer International Publishing AG 2017 
P.J. Rich, C.B. Hodges (eds.), Emerging Research, Practice, and Policy on 
Computational Thinking, Educational Communications and Technology: Issues 
and Innovations, DOI 10.1007/978-3-319-52691-1_18
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Abstract Computational Thinking is a fundamental skill for the twenty-first 
century workforce. This broad target audience, including teachers and students with 
no programming experience, necessitates a shift in perspective toward Computational 
Thinking Tools that not only provide highly accessible programming environments 
but explicitly support the Computational Thinking Process. This evolution is crucial 
if Computational Thinking Tools are to be relevant to a wide range of school disci-
plines including STEM, art, music, and language learning. Computational Thinking 
Tools must help users through three fundamental stages of Computational Thinking: 
problem formulation, solution expression, and execution/evaluation. This chapter 
outlines three principles, and employs AgentCubes online as an example, on how a 
Computational Thinking Tool provides support for these stages by unifying human 
abilities with computer affordances.

Keywords Computational Thinking Process • Three stages of the Computational 
Thinking Process • Computational Thinking Tools • Principles of Computational 
Thinking Tools

 Introduction

The term Computational Thinking (CT), popularized by Jeannette M. Wing (2006), 
had previously been employed by Papert (1996) in the inaugural issue of Mathematics 
Education. Papert considered the goal of CT to forge explicative ideas through the 
use of computers. Employing computing, he argued, could result in ideas that are 

A. Repenning (*) • N.A. Escherle 
School of Education, University of Applied Sciences and Arts Northwestern  
Switzerland FHNW, Windisch 5210, Switzerland
e-mail: alexander.repenning@fhnw.ch; nora.escherle@fhnw.ch 

A.R. Basawapatna 
Department of Mathematics and Computer Information Systems, SUNY Old Westbury,  
Old Westbury, NY 11568, USA
e-mail: basawapatnaa@oldwestbury.edu

mailto:alexander.repenning@fhnw.ch
mailto:nora.escherle@fhnw.ch
mailto:basawapatnaa@oldwestbury.edu


292

more accessible and powerful. Meanwhile, numerous papers, e.g., Grover and Pea 
(2013), and reports, e.g., National Research Council (2010), have created many dif-
ferent definitions of CT. Recently, Wing (2014) followed up her seminal call for 
action paper with a concise operational definition of CT: “Computational thinking 
is the thought processes involved in formulating a problem and expressing its 
solution(s) in such a way that a computer—human or machine—can effectively 
carry out.”

While the term Computational Thinking is relatively new, the process implied by 
Wing can be recognized as a computationally enhanced version of the well- 
established scientific method. Based on Wing’s definition, the Computational 
Thinking Process (Fig. 1) can be segmented into three stages. The example in Fig. 1 
of a mudslide simulation is used to illustrate the three Computational Thinking 
Process stages:

 (1) Problem formulation (abstraction): Problem formulation attempts to conceptu-
alize a problem verbally, e.g., by trying to formulate a question such as “How 
does a mudslide work?” or through visual (Arnheim, 1969) thinking, e.g., by 
drawing a diagram identifying objects and relationships.

 (2) Solution expression (automation): The solution needs to be expressed in a non-
ambiguous way so that the computer can carry it out. Computer programming 
enables this expression. The rule in Fig. 1 expresses a simple model of gravity: 
if there is nothing below a mud particle, it will drop down.

Fig. 1 Three stages of the Computational Thinking Process
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 (3) Execution and evaluation (analysis): The computer executes the solution in 
ways that show the direct consequences of one’s own thinking. Visualizations—
for instance, the representation of pressure values in the mudslide as  
colors—support the evaluation of solutions.

As shown in Fig. 1, Computational Thinking is an iterative process describing 
thinking with computers by synthesizing human abilities with computer affordances. 
The three stages describe different degrees of human and computer responsibilities. 
The solution execution appears to be largely the responsibility of the computer and 
the problem expression largely the responsibility of the human. Although problem 
formulation is typically considered the responsibility of the human, computers can 
help support the conceptualization process as well, for instance, through facilitating 
visual thinking.

 Principles of Computational Thinking Tools

The fundamental goal of a Computational Thinking Tool is to support all stages of 
the Computational Thinking Process outlined above. Programming should be, and 
can be, an exciting new literacy in the sense described by diSessa (2000) enabling 
constructivist learning for all (see Yager, 1995). Using traditional programming lan-
guages severely limits this practice outside of computer science class contexts. For 
example, a student in a STEM class attempting to make a basic predator prey simu-
lation with traditional programming languages may have to write hundreds of lines 
of code. Conversely, the goal of Computational Thinking Tools leads to three core 
principles corresponding to the three stages of the CT process. Computational 
Thinking Tools should support:

 (1) Problem formulation: Similar to playing with numbers in a spreadsheet, 
using a mind map tool, or just doodling on a whiteboard, Computational 
Thinking Tools should empower users to explore representations without the 
need to code.

 (2) Solution expression: Computational Thinking Tools should employ end-user 
programming approaches (see Lieberman, Paternò, & Wulf, 2006; 
Repenning, 2001), to allow computer users who may not have or may not 
want to gain professional programming experience and to create relevant 
computational artifacts such as games (Repenning et al., 2015) and simula-
tions (Repenning, 2001).

 (3) Solution execution and evaluation: Computational Thinking Tools should 
include accessible execution visualization mechanisms helping users to com-
prehend and validate computational artifacts such as simulations.

The AgentCubes online end-user programming environment (Ioannidou, 
Repenning, & Webb, 2009; Repenning, 2013b; Repenning & Ioannidou, 2006; 
Repenning et al., 2014) will be employed as an example to illustrate these principles, 
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but these principles can be applied to any CT Tool. The AgentCubes user interface 
is relatively simple. The toolbar at the top of Fig. 3 provides a number of controls to 
start/stop a simulation, to manage worlds, and to operate the 3D camera. The panel 
to the left contains all the user-defined agents. The top panel is the current world. 
The three bottom panels contain the drag and drop programming environment with 
the condition palette to the left, the agent behavior in the middle, and the palette of 
actions to the right. The following sections discuss the three Computational Thinking 
Tool principles and provide concrete examples through AgentCubes.

 Supporting Problem Formulation

Problem formulation is a conceptualization process (Repenning et al., 2015) dealing 
with abstractions often based on verbal or visual thinking, which can be supported 
by tools. Computational Thinking Tools can support visual thinking by offering 
various evocative spatial metaphors. Mind map tools capture concepts as nodes and 
links (Willis & Miertschin, 2005). Spreadsheets (B. A. Nardi & Miller, 1990) are 
two-dimensional grids containing numbers and strings. The versatile nature of grids 
has helped spreadsheets to become the world’s most used programming tools. Tools 
such as Boxer (diSessa, 1991) and ToonTalk (Kahn, 1996) employ the notion of 
microworlds based on containers to represent relationships. In logo, Papert (1993) 
argues the notion of a turtle helps users comprehend difficult geometric 
transformations through body syntonicity, that is, the ability for people to project 
themselves, as turtle, into geometric microworlds. Papert (1993) and Turkle (2007) 
consider the use of evocative objects to think with as a powerful conceptualization 
approach. All these tools help the forging of abstractions serving as the beginning of 
a path from problem formulation to solution expression. Wing (2008) suggests that 
finding these kinds of abstractions is an essential part of Computational Thinking: 
“In working with rich abstractions, defining the ‘right’ abstraction is critical. The 
abstraction process—deciding what details we need to highlight and what details 
we can ignore—underlies computational thinking” (p. 3718).

Abstractions need to be made explicit to enable transfer. Ideally, Computational 
Thinking Tools should not only support users to find rich, evocative abstractions but 
also make these abstractions explicit in order to facilitate their transfer and applica-
tion within other problem-solving contexts. For instance, the use of phenomenalis-
tic (Michotte, 1963) abstractions describing object interactions such as collision and 
diffusion was found to support student formulation of STEM simulations in middle 
school curricula (Koh, Basawapatna, Bennett, & Repenning, 2010; Repenning 
et al., 2015). In our research, the patterns found to be especially helpful in allowing 
students to create elements of games and simulations we termed Computational 
Thinking Patterns (CTPs). Figure  2 lists examples of Computational Thinking 
Patterns. For example, the collision CTP describes both the interaction of a truck 
hitting a frog in a Frogger-like game and the interaction of molecules colliding in a 
STEM simulation. Similarly the generate CTP could describe a ship shooting lasers 
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in a Space Invaders-type game but also two foxes mating and creating offspring in 
a predator prey simulation. Learning these CTPs provides students with a useful 
high-level language to begin thinking about a problem before coding begins, and 
previous research has shown that novice users can recognize these patterns across 
contexts and implement them in their project creations (Basawapatna, Koh, 
Repenning, Webb, & Marshall, 2011).

 How AgentCubes Supports Problem Formulation

AgentCubes online supports the problem formulation stage similarly to a mind map 
tool by enabling users to organize information visually setting the stage for coding. 
At the problem formulation stage, AgentCubes online can be used much like a 
whiteboard is used for drawing. The 2D or 3D objects, called agents, created by 
users are similar to Papert’s objects to think with (Papert, 1993). In AgentCubes, 
information can be organized in 3D space to create 3D worlds. Similar to Minecraft, 
users create one-, two-, or three-dimensional grids and stacks by placing agents 
using the pen tool (Repenning et al., 2014). At this stage no coding is necessary. 
Users can explore their worlds by employing 3D camera tools to navigate or manip-
ulate their worlds by adding, removing, and rearranging agents. AgentCubes allows 
users to select any agent and assume its perspective by switching to first-person 
camera mode. This ability, we speculate, may help to achieve the body syntonicity 
(Repenning & Ioannidou, 2006) that Papert is referring to.

Visual thinking is supported by AgentCubes online through a four-dimensional 
grid structure called the agent matrix (Fig. 3). The grid is based on cells organized 
as rows, columns, and layers. Each cell, in turn, contains a stack of agents. Agents 
can be simple textured shapes such as cubes, spheres, or cylinders but can also be 
quite sophisticated user-created 3D shapes implemented as inflatable icons 
(Repenning et al., 2014). Users’ ability to produce their own 3D shapes has been 
identified as an important creativity tool to overcome affective challenges of pro-
gramming, but it can also be useful to quickly sketch out 3D worlds similar to the 
use of a cocktail napkin in the formulation stage depicted in Fig. 1.

Change: One agent changes into another 
 agent.
Absorb: One agent makes another agent 
 disappear.
Transport: One agent transports another 
 agent.
Push: One agent pushes another agent.
Random Movement: An agent moves 
 randomly.
Tracking: One agent chases another 
 agent.
Keyboard Movement: keyboard button 
 presses control an agent’s movement.

Fig. 2 Examples of 
Computational Thinking 
Patterns
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As an example, an interesting problem could be how to generalize a 2D 
 side- scrolling game into a 3D scrolling game. In Fig. 3, the grid has been enabled to 
show the AgentCubes cell structure of a game called “Flabby Bird 3D,” which is a 
generalization of the popular 2D scrolling phone game “Flappy Bird.” In Flabby 
Bird 3D, the objective is to navigate a bird called Flabby past oncoming cubes. 
Usually, a player would see this game from the first-person camera viewpoint of 
Flabby (Fig. 4). The enabled grid helps to reveal the 3D scrolling approach of the 
game. To the right there is a solid wall of cube maker agents creating cubes (an 
example of the generate CTP) with an increasing probability depending on the level 
of the game. These cubes are flying toward Flabby as depicted in Fig. 4. Playing the 
game, by seeing it from Flabby’s point of view, the player gets the illusion of flying 
through a never-ending labyrinth of walls. To make the game more challenging, the 
approaching walls reconfigure occasionally.

Breaking down game descriptions into explicit abstractions enables students to 
transition from problem formulation to solution expression (Repenning et al., 2015). 
Computational Thinking Patterns serve as framework of useful abstractions describ-
ing the interactions between objects and the interaction of users with objects. For 
instance, the creation of Flabby Bird involves the implementation of various 
Computational Thinking Patterns such as collision, generation, absorption, and 
keyboard control. Part of the support structure for this activity is external. For 
instance, some teachers hang up posters describing the Computational Thinking 

Fig. 3 AgentCubes online environment depicting a side view of an example “Flabby Bird 3D” game
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Patterns and make students refer to these posters when working on problem 
formulation tasks. However, it is essential that the Computational Thinking Tool 
provides for a solution expression that is an intuitive implementation of the problem 
formulation. It should be noted that this step can be fully integrated into the tool 
itself. For example, tools that allow users to program agents directly, through 
Computational Thinking Patterns, have successfully been piloted in the past, further 
bridging the act of problem formulation with solution expression (Basawapatna, 
Repenning, & Lewis, 2013).

 Supporting Solution Expression

The goal of Computational Thinking is to be an instrument for problem solving that 
is not limited to computer scientists or professional programmers. For example, 
assuming an educational context, such as STEM classes, Computational Thinking 
Tools need to be viable in noncomputer science classes by avoiding the need for 
difficult and excessive coding. CT employing traditional programming tools is 
likely to introduce a significant amount of accidental complexity, as opposed to 
dealing with the intrinsic complexity (Dijkstra, 2001) of the problem-solving pro-
cess. If the intended outcome is to become a professional programmer, then this 
approach may be highly effective or indeed entirely necessary.

If instead the goal is to become a Computational Thinker, then the resulting over-
head and lack of support may turn into an insurmountable educational obstacle. 
Focusing less on the notion of essence but on understandable mappings, natural 

Fig. 4 First-person view perspective of the “Flabby Bird 3D” game
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programming (Myers, Pane, & Ko, 2004) attempts to better align the expression of 
a solution with the problem formulation based on peoples’ intuitive comprehension 
of semantics such as the use of Boolean operators. Rittel differentiated the notion of 
human computer interaction from human problem-domain interaction (Rittel & 
Webber, 1984) to clarify this important philosophical dichotomy. Guzdial (2015) 
reached a similar conclusion in the context of computing education by suggesting 
that “If you want students to use programming to learn something else [e.g., how to 
author a simulation] then limit how much programming you use” (p. 48). The limi-
tation of accidental complexity can be supported at three different levels:

 (1) Syntax: Visual programing approaches such as drag and drop programming 
(Conway et  al., 2000; Repenning & Ambach, 1996; Resnick et  al., 2009a; 
2009b) can avoid frustrating syntactic challenges such as missing semicolons.

 (2) Semantics: Live programming (Burckhardt et  al., 2013; McDirmid, 2013; 
McDirmid, 2007) and similar approaches help users to understand the meaning 
of programs by illustrating the consequences of changes to programs.

 (3) Pragmatics: Domain-oriented (Fischer, 1994) or task-specific (B. Nardi, 1993) 
programming languages support users in employing programming languages to 
achieve their goals.

 How AgentCubes Supports Solution Expression

At the syntactic level, AgentCubes offers drag and drop programming, which its pre-
decessor, AgentSheets, pioneered over 20 years ago (Repenning & Ambach, 1996). A 
first version of AgentSheets initially introduced the idea of agent-based graphical 
rewrite rules (Repenning, 1994, 1995), a programming by example (Repenning & 
Perrone, 2000; Repenning & Perrone-Smith, 2001) approach to define the behavior 
of agents by demonstrating it. However, the graphical rewrite rules were ultimately 
considered to be too constraining (Schneider & Repenning, 1995). Meanwhile, the 
benefits of drag and drop programming have become quite clear, and consequently 
drag and drop programming has proliferated to a very large number of programming 
environments for kids (Conway et al., 2000; Resnick et al., 2009a; 2009b).

Semantic support is considerably harder than syntactic support (Repenning, 
2013a). At the level of semantics, AgentCubes offers not only live programming 
(McDirmid, 2013; McDirmid, 2007) but also a technique called Conversational 
Programming (Repenning, 2013a). Conversational Programming will observe the 
agent a user is interested in and then annotate the program behaviors of that particu-
lar agent in its particular situation by running the program one step into the future 
to illustrate which agent behavior rules will evaluate to true, which will evaluate to 
false, and which rules will not be tested. For instance, in a Frogger-like game, a user 
can click the frog agent and look at its behavior rules to see what will happen to the 
frog after it has just jumped in front of a car moving toward it. In this case, if the 
frog-car collision pattern is programmed correctly, the behavior rule wherein the 
frog dies and the game restarts will be annotated by Conversational Programming to 
appear as true.
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Of the three levels, pragmatics is the most challenging one to support. One might 
naturally want to have a simple mapping between the problem domain and the solu-
tion domain. However, the least amount of code cannot be the only objective. For 
example, languages such as APL are well known for their parsimonious nature but 
not for their general readability. Instead, programs should be short and intuitive 
expressions of a given idea. An example may help to illustrate this.

The 15-square puzzle, shown in Fig. 5, is a classic children’s toy. The game con-
sists of sliding 15 numbered squares into a sorted arrangement, 1–15, in a 4 × 4 grid. 
Many computer program implementations of the game exist. From a CT point of 
view, the core idea is simple: click the square you want to slide into the empty space. 
From a coding point of view, however, efforts can vary widely. A Python program 
to implement the “click to slide” functionality (see Sweigart, 2010) quickly runs 
into hundreds of lines of code not including the functionality to solve the puzzle. 
The view here is not to be negative regarding coding. If a CS class codes the 
15-square puzzle to learn about arrays, loops, animations, or Python syntax, then 
writing the 300 lines of code could be extremely beneficial.

An AgentCubes implementation, in contrast, will include very little coding over-
head. The “click to slide” functionality requires only four rules, checking if there is 
an empty spot adjacent to the clicked square and then moving into that spot. This is 
depicted in Fig. 6. Trading in clarity for brevity, one could even employ the more 
arcane MoveRandomOn (background) AgentCubes action to solve the 15-square 
puzzle benchmark in a single line of code. Comparing Python to AgentCubes seems 
hardly fair. In AgentCubes the notion of a grid, animations, and even numbered 
squares already exists. This is what domain orientation (Fischer, 1994) can do. It 
reduces coding overhead by providing and implementing abstractions to help users 
express a solution succinctly.

Of course, domain orientation introduces trade-offs. For instance, it would not be 
advisable to write a compiler in AgentCubes. Similar to spreadsheets—which have 
been used creatively to create amazing projects such as flight simulators and 

Fig. 5 15-square puzzle
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Fig. 6 AgentCubes online 
implementation of the 
15-square puzzle with four 
rules

planetary models—AgentCubes’ grid structure maps well onto a wide variety of 
projects such as 2D/3D games, simulations, and cellular automata. For instance, a 
simple version of the Pac-Man game can be implemented in just ten rules (if/then 
statements) including collaborative AI (Repenning, 2006) and win/lose detection.

Studies show that students can use such system affordances of AgentSheets and 
AgentCubes to successfully implement the Computational Thinking Patterns 
planned in the formulation step in game and simulation development (Repenning 
et al., 2015). Studies also show that users are highly motivated to create these arti-
facts, speaking to the power of reducing coding overhead (Repenning, Basawapatna, 
Assaf, Maiello, & Escherle, 2016). Guzdial (2008) points out the importance of 
avoiding coding overhead in education and refers to a number of languages explored 
in computer science education to establish essence by employing implicit loops and 
other task-specific (B.  Nardi, 1993) constructs. An example of this approach in 
AgentCubes is the built-in management of parallelism. For instance, even a very 
large number of agents, looking like boxes, moving around randomly in a three- 
dimensional world, will automatically reshuffle and stack up correctly in parallel 
with very little code. Computing trajectories that can be executed in parallel, 
determining the order of boxes stacked up, would be complex code to write.
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 Supporting Execution and Evaluation

The execution and evaluation stage can be supported by helping users debug their 
programs as well as reveal their misconceptions. Pea (1983) describes debugging as 
“systematic efforts to eliminate discrepancies between the intended outcomes of a 
program and those brought about through the current version of the program” (p. 3). 
Given that the computer does not currently “understand” the problem, it will not be 
able to automatically compute these discrepancies, but there are still strategies for 
Computational Thinking Tools to aid the debugging process. One strategy is to sim-
ply reduce the gap between solution expression and solution execution and evalua-
tion. Punch cards are the classical negative example resulting in an extremely large 
gap. As this gap increases, users quickly lose sight of the causal relation between 
changes made to a program and manifestations of different behaviors exhibited by 
running the modified program (Repenning, 2013a).

Live programming (McDirmid, 2013) can help by enabling users to instantly see 
the consequences of any change to a program. Unfortunately, there are issues such as 
the halting problem in computer science theory with practical consequences, suggest-
ing that it is not actually possible to determine all consequences of arbitrary program 
changes. However, for a more constrained class of programs, including spreadsheets, 
this is not a problem. Very much in the spirit of live programming, spreadsheets will 
instantly update results when formulae or cell values are changed by a user.

A Computational Thinking Tool would support visualization through the inclu-
sion of easy-to-use visualization affordances. Additionally, a Computational 
Thinking Tool may apply the idea of visualization to itself by annotating programs 
in ways to make discrepancies between the programs users have and the ones they 
want more understandable (Repenning, 2013a).

 How AgentCubes Supports Execution and Evaluation

To support the goal of visualizing the consequences of one’s own thinking, a num-
ber of visualization techniques are included in AgentCubes. In the mudslide exam-
ple (Fig. 1 solution execution and evaluation), it helps considerably to understand 
the pressure distribution among the thousands of agents employed in the model. The 
simple visualization scheme mapping each pressure value into a single color helps 
the forging of explicative ideas by depicting pressure buildup.

Particularly useful when making simulations, AgentCubes supports the plotting 
of simulation properties. An example would be to plot the number of predators and 
prey in an ecological simulation. One can also use 3D plotting to visualize value 
fields in real time. For instance, in a city traffic simulation, 3D plots (Fig. 7) show 
the spatial distribution of wait times in the city over the world grid itself. Finally, 
AgentCubes online narrows the gap between solution expression and execution 
through Conversational Programming (introduced above in Supporting Solution 
Expression) (Repenning, 2013a), extending the notion of live programming 
(McDirmid, 2013).
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Even when a game is not running, by selecting an agent in the world, AgentCubes 
will execute relevant code fragments one step into the future and annotate the code, 
specifying which rule will execute, in order to visualize potential discrepancies 
between the programs users have and the programs users want (Pea, 1983). This 
indicator can guide users into another iteration cycle depicted in Fig. 1 yielding 
more useful representations.

 Conclusions

Computational Thinking Tools should support Papert’s vision of enabling users to 
forge explicative ideas through the use computers. By minimizing coding overhead, 
Computational Thinking Tools can allow all users to focus on the essence of abstrac-
tion, automation, and analysis. In contrast to traditional programming environ-
ments, Computational Thinking Tools support all three stages, problem formulation, 
solution expression, and execution and evaluation, of the Computational Thinking 
Process. This support will make Computational Thinking feasible to a wide range of 
applications including STEM, art, music, and language.
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Fig. 7 Bird’s eye view of a city traffic simulation in AgentCubes with an overlaid 3D plot of traffic 
wait times with the higher red peaks indicating a longer wait
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Exploring Strengths and Weaknesses 
in Middle School Students’ Computational 
Thinking in Scratch

Kevin Lawanto, Kevin Close, Clarence Ames, and Sarah Brasiel

Abstract We live in a century where technology has become part of our lives, and 
it is crucial that we become active creators of technology, not just passive users. 
Learning to program computers enables a person to create twenty-first-century solu-
tions. Computer programming is more than just learning how to code; it also exposes 
students to the opportunity to develop computational thinking (CT), which involves 
problem-solving using computer science concepts. In this chapter, we explore 
strengths and weaknesses of students’ CT skills and compare a group of seventh- 
and eighth-grade students who engaged in a Scratch programming environment. 
Scratch is a popular visual programming language that introduces computer pro-
gramming to youth. We use Dr. Scratch, a CT assessment tool, to analyze students’ 
Scratch projects for evidence of CT. The results of this study can show researchers 
and educators how they might use Dr. Scratch to analyze students’ Scratch data to 
help improve their CT.

Keywords Computer programming • Visual data analytics • Problem-solving

 Introduction

One common strategy to develop computational thinking (CT) skills is computer 
programing, which may be among the most important skills of the twenty-first cen-
tury (Wing, 2011). While an increasing number of high school students are being 
exposed to computer science courses and principles, there is a growing belief that 
experiences with computer programming must start at an earlier age. Research has 
shown that when students are introduced to this kind of STEM curricula early, it can 
positively impact their perceptions, encouraging them to continue developing 
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important STEM skills (DeJarnette, 2012). For computer science, middle school is 
a particularly important time in which quality curricula can support the develop-
ment of CT skills and ultimately influence career choices (Repenning, Webb, & 
Ioannidou, 2010; Settle et al., 2012). Despite this, computer programing curricula 
are not widely implemented in the US K-12 education system, with the greatest 
inconsistency occurring in grades K-8 (CSTA, 2012).

Although the idea of CT is not new, until recently finding a definition of CT that 
everyone agrees upon had proven difficult for the CS education community (Mannila 
et  al., 2014). There was little agreement on what CT encompasses (Allan, Barr, 
Brylow, & Hambrusch, 2010; Barr & Stephenson, 2011) and even less agreement 
around strategies to be used for assessing the development of CT in youth (Brennan 
& Resnick, 2012). In one of the first countrywide efforts to integrate computing into 
public education, England did a complete overhaul of the national curriculum which 
launched in September of 2014 (Department for Education, 2014). Right now, five 
organizations and over 100 researchers, educators, and advisors in the computer 
science community are working to develop one cohesive set of standards and guide-
lines for K-12 computer science education (K12CS.org, 2016). Though this idea is 
only recently gaining traction, forces are beginning to coalesce around what CT 
means. According to Wing (2006), CT basically means thinking like a computer 
scientist, using principles and concepts learned in computer science as part of our 
daily lives. A of couple examples of CT key concepts applicable to day-to-day life 
include problem decomposition, which means breaking down problems into smaller, 
manageable parts and algorithmic design, where one develops step-by-step instruc-
tions for solving problems.

The National Council for Research (2010) and Steve Furber (2012) from the 
Royal Society defined CT as using the methods of computer science to understand 
a wide variety of topics. They also suggest that CT is the process of recognizing 
aspects of computation and applying tools and techniques from computer science, 
representing data through abstraction, such as models and simulations, automating 
solutions through algorithmic thinking, and identifying, analyzing, and implement-
ing possible solutions with the goal of achieving the most efficient and effective 
combination of steps and resources (Barr, Harrison, & Conery, 2011; Furber, 2012; 
National Council for Research, 2010). This can range from creating computational 
models of scientific phenomena to creating algorithms to plan one’s day more effi-
ciently. Even with these the advances being made around CT, more research is 
needed to understand key components of CT that can be effectively implemented 
and assessed in K-12 schools.

In 2006, Wing introduced five core aspects of CT, including conditional logic, 
distributed processing, debugging, simulation, and algorithm building. Brennan and 
Resnick (2012) proposed seven key concepts of CT through the programming lan-
guage (Scratch) they developed, which include sequences, loops, parallelism, events, 
conditionals, operators, and data. In 2013, Grover and Pea further examined essential 
concepts of CT suitable for use in K-12 education and developed a list that is now used 
by the Computer Science Teacher Association (CSTA). The key  components Grover 
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and Pea (2013) suggested include abstractions and pattern generalizations; systematic 
processing of information; symbol systems and representations; algorithmic notions 
of flow of control; structured problem decompositions; iterative, recursive, and paral-
lel thinking; conditional logic; efficiency and performance constraints; and debugging 
and systematic error detection.

Recently, Moreno-León and Robles (2015) created a slightly more concise list 
highlighting seven components of CT that included abstraction and problem decom-
position, parallelism, logical thinking, synchronization, flow control, user interac-
tivity, and data representation. This list is specifically designed to facilitate the 
assessment of CT. Even though CT components keep shifting as the definition of 
CT keeps progressing, these new components are consistent with the nine key com-
ponents from Grover and Pea (2013). Since the components suggested by Moreno- 
León and Robles (2015) align with the components used by the CSTA and are 
designed to facilitate assessment of CT, they are felicitous for promoting and assess-
ing the development of CT in K-12 environments.

 Background

Despite the growing need to integrate computer science (CS) into K-12 education, 
many people, including teachers and their students, have inaccurate perceptions of 
CS, which influence their attitudes toward CS learning and careers (Israel et  al., 
2015). Research suggests some of the reasons for the declining enrollment in CS 
relate to teachers’ beliefs that the only computing experiences available to students 
occur through learning programming languages such as Java or C++ (Goode, 2007). 
Many teachers find mastering these kinds of programming languages and teaching 
related CS concepts to be difficult, which is why they tend to select students they 
believe are inherently skilled at this type of thinking to participate in CS curriculum 
(Burke & Kafai, 2010). Because complex programming languages are chosen to 
provide computing experiences, students often think that CS is boring, confusing, 
and too difficult to master (Wilson & Moffat, 2010).

Resnick et al. (2009) mentioned the term “low floor, high ceiling,” as one of 
the guiding principles to foster the use of CT in K-12 education. It essentially 
means that though it should be easy for a beginner to cross the threshold to create 
a working program (low floor), the tool should also be complex enough to fulfill 
the needs of advanced programmers (high ceiling). Visual programming lan-
guages such as Scratch, Tynker, Storytelling Alice, and Greenfoot have generated 
renewed interest in developing the CT skills of K-12 students through programing 
(Grover, Pea, & Cooper, 2014; Kafai & Burke, 2013). At least in part, this is 
because they are better able to adequately scaffold student learning, enable knowl-
edge transfer, support equity, and be systemic and sustainable (Repenning, Webb, 
& Ioannidou, 2010).
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Scratch programming has risen in prominence as one of the potential program-
ming languages for fostering CT in K-12 computer science curricula (Resnick et al., 
2009). The Scratch programming language uses a syntax-free drag and drop 
 interface with a visual element showing the result of the student code. As a result, 
Scratch provides a programming experience less cognitively taxing for users with a 
timely and visual feedback system. We used Scratch for our study because Scratch 
has a large youth user community with publicly available data. Furthermore, 
Scratch’s interface allows an easier interpretation of core CT constructs. We are not 
interested in simply measuring knowledge of a programming language; we are 
interested in strategies of thinking. These strategies of thinking computationally are 
less likely to be conflated with knowledge of programming language in a simple 
programming language like Scratch where syntax is removed from the equation and 
the programmer’s focus rests rather on the logic of how to arrange the code to 
achieve a specific outcome.

 Assessing CT

Despite the many efforts aimed at assessment of CT (Basawapatna, Koh, Repenning, 
Webb, & Marshall, 2011; Fields, Searle, Kafai, & Min, 2012; Grover, Pea, & 
Cooper, 2014; Meerbaum-Salant, Armoni, & Ben-Ari, 2013), assessing the learning 
of CT concepts and constructs in a programming environment such as Scratch 
remains a challenge. The use of surveys had been one of the main methods used to 
assess CT for the past few years (e.g., Clark, Rogers, Spardling, & Pais, 2013; 
Mishra, Balan, Iyer & Murthy, 2014). Though the results from surveys can be use-
ful, they are unable to accurately assess the majority of CT components (Grover, 
Pea, & Cooper, 2014).

Though tools that can assess CT do exist, there is still a lack of tools that support 
educators in the assessment of the development of CT and the evaluation of projects 
programmed by students. Several researchers (e.g., Boe et al., 2013; Close, Janisiewicz, 
Brasiel, & Martin, 2015) have proposed different approaches for evaluating the devel-
opment of CT by analyzing students’ projects. Unfortunately, most tools require inter-
mediate-level knowledge of complex programming languages, which make them less 
suitable for educators who are not confident with such environments.

The Scratch community includes not only users but also developers and acade-
micians. A group of these developers created Dr. Scratch, a digital instrument 
which is easy to use without needing background knowledge or knowledge in pro-
gramming. Dr. Scratch can automatically measure the degree of CT evidenced in a 
certain Scratch project (Moreno-León & Robles, 2015). Though CT has been dif-
ficult to define, much less measure, Dr. Scratch approaches the problem by focus-
ing on the elements of CT most easily interpretable, such as logic, data 
representation, parallelism, synchronization, user interactivity, flow control, and 
abstraction (see http://drscratch.programamos.es/ for more information). For each 
of these measures, users can earn 0–3 points. For example, a user will get 0 points 
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for synchronization if they only use “wait commands” to synch up two or more 
scripts, earn 1 point for broadcasting messages to other scripts, earn 2 points if 
these broadcasted messages have complex wait commands that ensure scripts run 
in a certain order, or earn 3 points if users fulfilled all of the criteria described by 
Dr. Scratch (for another example, see Table 1).

This information is then organized into user-friendly dashboards that show student 
progress, allowing teachers to personalize instruction and cater to individual student 
needs. Dr. Scratch provides scores related to each of these seven CT components 
(flow control, data representation, abstraction, user interactivity, synchronization, 
parallelism, and logic). A score of three showed proficiency in an area, and zero 
means that the skill was not evident. These scores are then totaled to show overall 
competence in CT. Depending on the overall CT score (which can range from 0 to 
21), distinct data will be displayed on the dashboard page and provide users with sug-
gestions and links to information on how to improve their programming habits.

Table 1 Scoring system measuring user interactivity

Points Evidence Example code

0 Uses only the most basic interactive block  
“when green flag is pressed” block

1 Uses other types of interactive blocks  
utilizing mouse clicking, mouse positioning,  
question asking blocks, and sprite clicking

2 Uses complex interactive blocks utilizing  
webcam and microphone input

3 If all of the requirements for user interactivity  
according to Dr. Scratch are met, Scratch blocks  
are in chronological working order
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 Publicly Available Scratch Data

Teaching computational thinking (CT) has been a focus of recent efforts to broaden 
the reach of computer science education. Barr and Stephenson (2011) argued that 
today’s students would live and work in a world that is heavily influenced by com-
puting principles. A report by the National Council for Research (2010) also intro-
duced a similar idea that CT is a cognitive skill that an average person needs. The 
report highlighted

“(1) that students can learn thinking strategies such as CT as they study a discipline, (2) that 
teachers and curricula can model these strategies for students, and (3) that appropriate guid-
ance can enable students to learn to use these strategies independently.” (p. 62)

Thus, the term CT has quickly become a prerequisite skill for many endeavors of 
the twenty-first century (Wing, 2011).

In our current study, we examined the elements of CT found in the projects of sev-
enth- and eighth-grade students. Specifically, we used Dr. Scratch to examine whether 
there were patterns in the students’ computational thinking skills. Based on our litera-
ture review, it is clear that CT, as a construct, still needs exploration. We were primar-
ily interested in finding clues about how CT develops. Are there similarities between 
CT profiles for middle school students? Are these CT profiles affected by the type of 
projects attempted such as coding a game versus coding a story? Is there a difference 
between CT components scores for seventh-grade and eighth-grade students?

In order to explore the elements of CT found in seventh- and eighth-grade stu-
dents’ Scratch projects, we analyzed a dataset of 183 student projects from a pub-
licly available repository of projects online at scratch.mit.edu. Using the Dr. Scratch 
tool, we analyzed seventh-grade projects (n = 93) and eighth-grade projects (n = 90) 
produced by middle school students located in the East Coast with the same teacher 
who taught a computer education course. In this exploratory study, we looked for 
evidence of particular CT behavior. There were three specific questions that we 
explored in this study:

1. What are common computational thinking strengths and weaknesses?
2. What are the differences between seventh- and eighth-grade student genre of 

programming (e.g., stories, games, arts, music, animations)?
3. How similar or different are the CT scores for grades 7 and 8 students?

Based on prior research on Scratch programming among youth and our previous 
experience working with Scratch, we hypothesized that student CT profiles would 
have common strengths and weakness. We expected students to show higher scores 
in skills such as flow control and parallelism and lower scores in skills such as 
abstraction and data representation. This progression seems common based on the 
progression of help manuals on the Scratch website (see scratch.mit.edu/help) in 
these areas. As for differences in seventh- and eighth-grade students, our hypothesis 
was less clear. We expected to see higher scores in CT skills for eighth-grade stu-
dents, but were not sure which skills would differentiate between the two grade 
levels the most. In the development of CT skills, the actual pathway of learning is 
understudied and therefore difficult to hypothesize.
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 Methods

 Participants

We collected 183 middle school student projects from a publicly available and de- 
identified dataset available on the Scratch website. The teacher updated these projects 
regularly and identified the students as either seventh- or eighth-grade students from 
2014 to 2015 school year. Accordingly, we analyzed 93 seventh-grade projects and 90 
eighth-grade projects. Though we do not know the specific classroom practices or 
demographics of the participants, we controlled for some potential differences by tak-
ing projects produced for students of the same teacher. Importantly, this work can be 
reproduced by other researchers by taking other publicly available projects on the 
Scratch website, which increases the external validity of our study (see https://scratch.
mit.edu/users/avstoloff/ to access the publically available projects that we analyzed).

 Procedure and Design

We searched the Scratch website to find publicly available Scratch project libraries 
made by seventh- and eighth-grade students with the same school and the same 
class, as described earlier. Using Dr. Scratch, we analyzed each of these projects to 
see if there was any sort of a trend in students’ CT scores. The total score classified 
student projects as basic, developing, or master. In order to analyze the data, we 
grouped the data by grade levels and examined descriptive statistics to look for 
potential strengths and weaknesses. We used line graphs to examine patterns visu-
ally as well as the Mann-Whitney U test to understand significant similarities or 
differences between seventh- and eighth-grade students’ Scratch projects. The 
Mann-Whitney U test is a nonparametric method designed to detect whether two or 
more samples come from the same distribution or to test whether medians between 
underlying distributions are the same. However, if the two distributions have a dif-
ferent shape, we can also use this test to compare mean ranks. This study uses the 
Mann-Whitney U test to compare the mean rank of each of the seven CT compo-
nents between the seventh- and eighth-grade students’ project.

 Measures

Using Dr. Scratch, we analyzed projects for evidence of seven CT components 
(abstraction, parallelism, logic, synchronization, flow control, user interactivity, and 
data representation) on a scale from 0 to 3 points. For example, in the abstraction 
and problem decomposition category, students who use more than one scripts or 
sprites earn 1 point, students who define their own blocks earn 2 points, students 
who use clones earn 3 points, and students without any of these coding sequences 
or blocks earn 0 points. Likewise, for each category, Dr. Scratch searches for par-
ticular pieces of code or certain blocks (see Table 2).
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 Results

Research question #1: What are common computational thinking strengths and 
weaknesses?

Looking at the means of all student scores (n = 183) for each CT measurement, 
based on the scale developed by Moreno-Leon and Robles to measure CT with Dr. 
Scratch, the results show that our participants are, on average, best at  synchronization, 
parallelism, and flow control. These strengths are followed by user interactivity and 
logic, with relative weaknesses in data representation and abstraction (see Table 3 
for means and standard deviations for each CT measure). These scores match our 
hypothesis for this research question. As stated earlier, some of this can be attributed 
to features of Scratch, such as the help pages, which, for example, encourage users 
to learn to synchronize scripts before using more advanced data code blocks.

Table 2 Rubric for scoring CT components

CT component
Score
1 point 2 points 3 points

Flow control Uses sequence of 
blocks

Uses repeat and forever 
blocks

Uses repeat until block

Data 
representation

Uses modifiers for 
sprite properties

Uses operations on 
variables

Uses operations on lists

Abstraction Uses more than one 
scripts and more 
than one sprites

Defines own block Uses clones

User interactivity Uses green Flag 
block

Uses key pressed, sprite 
clicked, ask and wait, 
mouse blocks

Uses video and audio 
features

Synchronization Uses wait block Uses broadcast, when I 
receive message, stop 
all, stop program, stop 
program sprite

Uses wait until, when 
backdrop change to, 
broadcast, and wait blocks

Parallelism Uses two scripts on 
green flag

Uses two scripts on key 
pressed, two scripts on 
sprite clicked on the 
same sprite

Uses two scripts on when 
I receive message block, 
create clone, two scripts on 
backdrop change to block

Logic Uses if block Uses if else block Uses logic operations

Table 3 Summary of computational thinking average scores for each component

CT components
Computational thinking average scores (standard deviation)
Grade 7 (n = 93) Grade 8 (n = 90) All students (n = 183)

Flow control 2.19 (0.39) 2.51 (0.52) 2.35 (0.49)
Data representation 1.27 (0.44) 1.78 (0.44) 1.52 (0.51)
Abstraction 1.02 (0.21) 1.08 (0.37) 1.05 (0.30)
User interactivity 2.00 (0) 2.00 (0.15) 2.00 (0.11)
Synchronization 2.40 (1.17) 2.93 (0.25) 2.66 (0.89)
Parallelism 2.57 (0.73) 2.82 (0.53) 2.69 (0.65)
Logic 1.67 (0.93) 2.38 (0.97) 2.01 (1.01)
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Of note, user interactivity has a very small standard deviation of 0.11 revealing 
very little variance in user scores, whereas logic scores, with a standard deviation of 
1.01, varied greatly. Synchronization was also highly variable with a standard devia-
tion of 0.89, suggesting that students show strong differentiation in synchronization 
skills and logic skills, but very little in user interactivity skills. These numbers show 
that CT skills do not develop uniformly. Students who share similar user interactiv-
ity skills may vary significantly in their use of logic or synchronization, meaning 
researchers, teachers, and learners should not think about CT as a monolithic skill, 
but, rather, a family of related skills.

Further analysis revealed common computational thinking strengths and weak-
nesses. If such a common pattern exists, we would expect the strengths and weak-
nesses of seventh- and eighth-grade students to be similar, since they are, typically, 
only separated in age by 1 year. Figures 1 and 2 show the mean score for each of the 

Fig. 1 CT skill development with all dataset

Fig. 2 CT skill development for seventh- and eighth-grade students
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CT components within the whole dataset (see Fig. 1) and with the mean scores of 
seventh- and eighth-grade CT components separate (see Fig. 2). On these weblike 
figures, CT components mean scores near the edge indicate higher levels of mas-
tery, and mean scores near the middle of the web indicate a lower level of mastery, 
so, if there were a common pattern of strengths and weaknesses to detect, we would 
expect the webs of seventh graders and eighth graders to have a similar shape. As 
can be seen in Fig. 2, the shapes are similar, indicating a common pattern of strengths 
and weaknesses. Also, eighth-grade students show slightly higher scores in every 
category on average (except user interactivity).

The data seems to indicate that there are indeed common strengths and weak-
nesses among middle school students and, in particular, that middle school students 
excel at synchronization, parallelism, and flow control (i.e., using advanced wait 
commands, using multiple sprites and scripts, and using repeat blocks), but struggle 
with abstraction and data representation (i.e., using clones, defining blocks, using 
operations on variables and lists). For example, Fig. 3 shows code from a seventh- 
grade project showing advanced synchronization (using backdrop changes and 
broadcast blocks), parallelism (several scripts), and flow control (uses repeat until 
and forever blocks). However, the same project scored poorly on abstraction (no 
clones used or new blocks defined) and data representation (no operations on vari-
able or lists).

Research question #2: What are the differences between seventh- and eighth- grade 
student genres of programming (e.g., stories, games, arts, music, animations)?

After examining the descriptive statistics of CT component scores, we looked at 
each specific Scratch project and coded the project for genre type. Perhaps different 
genres of Scratch projects account for the slight variability in CT component scores. 
Specifically, our exploratory analysis revealed that the seventh-grade students made 
a game project in class, more specifically a maze game, which means that our CT 

Fig. 3 Sample code from a seventh-grade project with high scores for synchronization, parallel-
ism, and flow control, but poor scores for abstraction and data representation
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component scores for the seventh-grade were controlled by genre (see Fig. 4). The 
eighth-grade students, on the other hand, produced more project genre variations, 
which may be due to the teacher expectation or assignment constraints, though the 
majority (92%) still created a game-based project (see Table 4).

These findings do not reveal the answer to our question about how programming 
genres vary across grade level, but they do reveal that the CT scores that Dr. Scratch 
computed for each project were primarily computed for game projects. Further 
research, in which users have more variation by project genre and, perhaps, even 
differentiate types of game projects, is needed to determine the answer to our 
research question.

Research question #3: How similar or different are the CT scores for seventh- and 
eighth-grade students?

Though descriptive statistics revealed a slight difference in CT component scores 
from seventh- to eighth-grade students’ projects, we are interested in determining 
the significance of that similarity or difference. We used a Mann-Whitney U test to 
understand significant similarities or differences between seventh- and eighth-grade 
students’ Scratch projects. As mentioned previously, the Mann-Whitney U test is a 
nonparametric method designed to detect whether two or more samples come from 
the same distribution or to test whether medians between comparison groups are 
different. In Fig. 5, we provide histograms to show the distribution of CT compo-
nent scores for seventh- and eighth-grade students for purpose of comparison.

Fig. 4 One example from a seventh-grade maze project

Table 4 Eighth-grade 
student project genre

Eighth-grade project genre (n = 90)
Game Story Unknown

Number of projects 83 4 3

Exploring Computational Thinking in Scratch
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Table 5 Mann-Whitney U score across CT components

CT components
Flow 
control Abstraction

User 
interactivity Synchronization Parallelism Logic

Data 
representation

μ 2.35 1.05 2.00 2.66 2.69 2.01 1.52
SD 0.49 0.30 0.11 0.89 0.65 1.01 0.51
U 2780.5 4001.5 4140 3375 3401 2635 2034
p 0.000 0.169 1.000 0.001 0.003 0.000 0.000

A Mann-Whitney test indicated that five of the seven CT components (flow con-
trol, synchronization, parallelism, logic, and data representation) were greater for 
eighth-grade students than for seventh-grade students (p  <  0.05; see Table  5 for 
results). Data representation, logic, and flow control components exhibited the low-
est U scores, indicating the greatest level of variability between seventh- and eighth- 
grade students. In other words, eighth-grade student projects exhibit significantly 
better CT scores for flow control, synchronization, parallelism, logic, and data rep-
resentation; the greatest difference occurred in flow control, logic, and data repre-
sentation. User interactivity and abstraction mean differences were not significant.

These findings are significant because they begin to illustrate potential strengths 
and weaknesses in computational thinking for students in grades 7 and 8. Our find-
ings also suggest that CT does not develop evenly, as a unified construct, but rather, 
certain elements of CT (e.g., data representation, logic) likely develop more quickly 
for some than others. The suggestion of such a finding has implications, not only for 
the way CT is taught but also for the direction of research regarding CT.

 Examples of Students’ Projects and Recommendations 
for Students’ CT Improvement

Next, we present two examples from seventh- and eighth-grade students’ projects in 
the developing category and seventh- and eighth-grade students’ projects in the 
master category. The developing group consists of students who scored 8–14, and 
the master group is for those students who scored 15–21. No students in the sev-
enth- or eighth-grade class scored 7 or below, which is considered the basic cate-
gory. At the end we also provide limitations of our study and view suggestions that 
instructors can implement in their classrooms to improve students’ computer pro-
gramming skill.

 Developing

When comparing seventh- and eighth-grade students’ projects in the developing 
category, we noticed that there were more students in the seventh-grade group 
(n = 71) who are in this category, compared to students in the eighth-grade group 
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(n = 25) who are in the same category. The majority of the seventh-grade students 
in this category received a score of 13 (n = 39), while the majority of the eighth- 
grade students in this category received a score of 14 (n = 10). From our data analy-
sis, we then looked at the average CT scores across seven CT components, and we 
noticed a similar trend where both seventh- and eighth-grade students are low in 
three different CT areas: data representation (μ  =  1.14, μ  =  1.4, respectively), 
abstraction (μ = 1.0 for both grades), and logic (μ = 1.25, μ = 1.0, respectively). In 
Fig. 6, we provide an example of one of the seventh-grade students’ projects in the 
developing category and what they see on their dashboard once their project has 
been assessed by Dr. Scratch.

When a student receives a score that puts them in the developing stage, Dr. 
Scratch will only give two types of information that students can use to improve 
their Scratch project: sprite naming and sprite attributes. Dr. Scratch developers, 
Moreno-León and Robles (2015), considered these two types of information as bad 
programming habits. When a student starts to program with Scratch, it is very typi-
cal for them to leave the naming of their sprite with the default name. When one has 
a few sprites, it is very easy to know the name of each of the characters. However, 
when the number of characters increases, it is more complicated. So, it is a good 
practice to name each individual sprite in students’ projects differently, because 
then their programs can be read more efficiently.

Fig. 6 Example of one seventh-grade student who is in the developing category
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Fig. 7 Example of incorrect attribute initialization (left) and correct attribute initialization (right)

The second bad programming habit, according to Moreno-León and Robles 
(2015), that students tend to do is attribute initialization. One of the mistakes that 
many programmers repeat when they learn to program is to not initialize correctly the 
objects’ attributes. Sprite attributes are the characters’ features that can be modified 
in the execution of a project, like their position, their size, their color, and their orien-
tation. When students have blocks that modify characters’ features, they should 
always assign the value of their starting point. For example, students should have the 
block “go to” under the block “when green flag clicked,” in order to place the char-
acter in its initial position (see Fig. 7).

 Master

Unlike the results in the developing category, when comparing seventh- and eighth- 
grade students’ projects in the master category, we noticed that there were more stu-
dents in the eighth-grade group (n = 65) who are in this category, compared to students 
in the seventh-grade group (n = 22) who are in the same category. The majority of the 
eighth-grade students in this category received a score of 17 (n = 32), while the major-
ity of the seventh-grade students in this category received a score of 16 and 17 (both 
n = 9). From our data analysis, we then looked at the average CT scores across seven 
CT components, and we noticed that seventh-grade students are low in data represen-
tation (μ = 1.68) and abstraction (μ = 1.09) and eighth-grade students are low in only 
abstraction (μ = 1.11). In Fig. 8, we provide an example of one of the eighth-grade 
students’ projects scored by Dr. Scratch as being in the master category.
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In addition to changing the sprite names and sprite attributes, Dr. Scratch also adds 
two more bad programming habits for students who are placed in the master category: 
duplicated scripts and dead code. As a novice programmer, it is very typical for stu-
dents to duplicate their Scratch scripts to do the same tasks over and over again. In this 
scenario, it is recommended for the students to make his/her own block that defines 
this behavior and use this new block in all programs where needed. Thus, if students 
want to change the outcome, they just have to go to the block they defined (see Fig. 9).

The fourth bad programming habit, according to Moreno-León and Robles 
(2015), that students tend to do is putting dead code in their Scratch scripts. Dead 
codes are parts of programs that are never executed. Typically, dead codes are 
formed when students forget to put an event block (e.g., “when green flag clicked” 
or “when this sprite clicked”) or when there is a program that is waiting for a mes-
sage that never is sent (see Fig. 10). The presence of dead code could cause the 
Scratch project to not work as expected or not run efficiently.

 Recommendations and Study Limitations

Helping students reduce their bad programming habits can be the first step in help-
ing them to become great computer programmers. With the availability of CT 
assessment tools such as Dr. Scratch, teachers are now able to look at their students’ 

Fig. 8 Example of one eighth-grade student who is in the master category
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Fig. 9 Example of efficient script duplication

Fig. 10 Example of “dead code” (left), example of correct code initialization (right)

progress in each of the designated CT skills and also tailor instructions or activities 
based on individual students’ scores to help them improve their computer program-
ming skills. Based on the results of our study, we see that both seventh- and eighth- 
grade students generally have the most difficulty with abstraction and data 
representation. With Dr. Scratch, teachers are able to click on the link provided to 
see how they can help their students to understand more about the components with 
which they struggle and how they can increase the effectiveness of their instruction 
on these components.

This study has several limitations. All of our participants in seventh- and most of 
the eighth-grade level made a game for their project (i.e., maze); thus, we were not 
able to look at their genre differences. Moreno-Leon and Robles (2015) mentioned 
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that the tool that they created is still in Beta; thus, they are still not sure whether the 
use of a particular Scratch blocks or a group of blocks is enough to confirm student 
fluency on certain CT concepts. Lastly, Dr. Scratch could not measure some of the 
key CT components that Grover and Pea (2013) described, such as debugging, effi-
ciency and recursive thinking, and pattern generalization. We hope that with addi-
tional tools like Dr. Scratch being developed and existing tools being enhanced, 
such innovations will facilitate improvements in CT education and future research.

 Conclusions

Scratch is a free web tool that allows teachers to introduce computer programming 
to K-12 students, and Dr. Scratch provides a way to analyze Scratch projects. This 
allows educators and researchers to automatically assign a CT score to student proj-
ects as well as detect potential bad programming habits. The aim is to help learners 
to develop CT skills and interest in computer science and to support educators in 
evaluating outcomes from their instruction.

Our findings suggest that there were some common strengths and weaknesses in 
the CT skills of seventh- and eighth-grade students demonstrated by their publicly 
available Scratch projects. Analysis of student Scratch projects showed that they are 
strong in three different CT skills (synchronization, parallelism, and flow control) 
and relatively weak in data representation and abstraction. Translated into a day-to- 
day context, this means these students are likely to be able to understand and reason 
through complex information they are presented with (synchronization), focus their 
thinking process in more than one direction (parallelism), and create plans that 
allow them to succeed in the face of both known and unknown events (flow control). 
These results also indicate that these students are not likely to be as proficient at 
filtering out what information is necessary to solve problem (abstraction) and are 
also less likely to demonstrate the ability to prioritize in a way that allows them to 
solve their problems efficiently (data representation).

The development of CT skills has the potential to develop students’ self-efficacy 
in relation to the field of computer science and prepare them for greater success in 
the twenty-first-century workplace. We hope this research provides educators, stu-
dents, and researchers with a better understanding of why CT skills are so important 
and specific things they can do to help improve computational thinking among K-12 
students. We also hope that our findings can support other researchers interested in 
improving strategies for assessing CT in K-12 schools through the use of learning 
analytic tools, such as Dr. Scratch.
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 Introduction

In recent years, researchers have given computational thinking (CT) considerable 
attention suggesting that CT be taught to all ages influencing nearly all disciplines 
(Wing, 2006, 2011). Though research suggests computer programming is an effec-
tive way to teach CT (Rich, Leatham, & Wright, 2013), computer programming is 
still not widely implemented in the United States K-12 curricula (Watters, 2011). 
Recently, the Computer Science Teacher Association (CSTA) created computer sci-
ence standards for K-12 education, and so far only a handful of states have adopted 
these standards into their school systems (e.g., Massachusetts and Washington; 
Close, Janisiewicz, Brasiel, & Martin, 2015). However, researchers have developed 
very few assessments of computational thinking or computer programming that can 
easily be applied to large data sets such as a district or state data set.

Though it is clear that computer programming needs to be more widely inte-
grated into K-12 student learning experiences, there is still much that we do not 
know about how to assess learning in this area. Therefore, we developed an analysis 
tool to efficiently capture student learning progressions and problem-solving activi-
ties while coding. The Functional Understanding Navigator! or FUN! tool addresses 
the need to automate processes to help researchers and instructors efficiently clean, 
analyze, and present data (Close et al., 2015). For illustrative purposes, we applied 
an initial version of our tool to a data set from Scratch (developed by MIT Media 
Lab), a popular visual programming language among novice programmers, to mea-
sure their computational thinking skills.

 Background

Scratch programming has risen in prominence as one of the potential programming 
languages for K-12 computer science programs (Boe et  al., 2013). Visual-based 
programming languages like Scratch are able to better facilitate K-12 students’ 
computational thinking, because traditional programming syntax is reduced (Lye & 
Koh, 2014). Using Scratch, students are able to create their own interactive stories, 
games, and simulations and then eventually share their creations with their peers in 
an online community from around the world using an intuitive drag-and-drop code 
mechanism that helps reduce their cognitive load, making the testing and debugging 
process less demanding (Resnick et al., 2009). This allows students to develop com-
putational problem-solving practices more easily and eventually allows them to 
focus on the logic and structures involved in programming rather than worrying 
about the mechanics of writing programs (Kelleher & Pausch, 2005).

Through funding from a National Science Foundation Cyberlearning grant, we 
have been working primarily on educational data mining as described by Bienkowski, 
Feng, and Means (2012) in their report Enhancing Teaching and Learning Through 
Educational Data Mining and Learning Analytics: An Issue Brief, as the focus was 
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on the development of tools, algorithms, and/or models to detect patterns in stu-
dents’ Scratch data. Our preliminary work focused on measures of micro-concepts 
in Scratch at primarily the code block level, such as whether students use the “green 
flag” block to initialize a sprite or other feature of their program. This is an impor-
tant initial step to set up the building blocks of the tool for the creation of more 
complex measures of computational thinking or other type of concept related to 
learning in Scratch. This tool then can be applied by learning analytics researchers 
to large Scratch data sets to understand learning of computational thinking and 
influence practice at scale across a school, district, or state.

Though automated analysis tools are already being used in the corporate sector, 
the FUN! tool is a tool that can be a solution for larger and more complex data sets 
in education (Close et al., 2015). We have been conducting machine learning and 
data mining techniques to take the rather unstructured data and find patterns in the 
data to extract meaning through the development of measures related to computa-
tional thinking using the large set of data collected from several Scratch workshops 
held with students in grades 5 to 7.

However, to develop measures of computational thinking, we had to reference 
domain knowledge in this area from prior research. Prior research has established 
some common components used to measure CT. We reviewed these measures and 
have developed measures related to some of these CT components so far in our 
work developing the FUN! tool. In Table  1, we show our understanding of the 
 components discussed by three seminal papers on this topic and also note the areas 
where we have been developing related measures.

Table 1 Components of computational thinking referenced in prior research and this study

Components of CT

Moreno-León 
and Robles 
(2015)

Grover 
and Pea 
(2013)

Brennan and 
Resnick 
(2012)

Present 
study

Abstraction ✓ ✓ ✓
Parallelism ✓ ✓ ✓ ✓
Logical thinking (e.g., conditional 
logic, operators, events)

✓ ✓ ✓ ✓

Synchronization ✓ ✓ ✓
Algorithmic notions of flow of 
control

✓ ✓

User interactivity ✓ ✓
Data representation ✓ ✓
Iterative and recursive thinking 
(e.g., loops)

✓ ✓ ✓

Efficiency and performance 
constraints

✓

Debugging and systematic error 
detection

✓

Pattern generalization ✓ ✓
Systematic processing of 
information

✓

Measuring Computational Thinking Development with the FUN! Tool
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 Methods

 Summer Scratch Workshops

Our study takes place within the context of a larger exploratory research project 
funded by the National Science Foundation to develop the automated assessment, 
the FUN! Tool, and then to apply learning analytics and ethnographic methods to 
examine thousands of program snapshots from 64 students (novice level in pro-
gramming), ages 10–13, who participated in summer workshops (“Scratch Camps”) 
where they engaged in Scratch programming for approximately 30 h across 5 days.

The Scratch workshops were designed by Dr. Deborah Fields from Utah State 
University and graduate students who worked on the project. The first week of 
workshops was led by Dr. Fields. Subsequent workshops were co-facilitated by Dr. 
Fields and graduate students working on the project. The workshops included the 
tasks shown in Table 2 that students were challenged to complete within Scratch 
 following a basic introduction to Scratch. For more information about the Scratch 
workshop instruction, see Fields et al. (2016a, 2016b).

There were three sets of workshops conducted over the following three weeks 
during summer 2014: June 2–6, June 16–20, and July 14–19.

Table 2 Overview of Scratch activities for each day of Scratch Camp

Day of 
Scratch 
Camp

Activity 
title Description

Examples of code blocks or 
programming used

Day 1 Scribble 
time

Students learn Scratch basics and 
explore and create a project of 
their own design

Move, turn, next costume, if on 
edge bounce

Name 
project

Students animate the letters of 
their name or Scratch username

Multiple sprites, hide/show, 
initialization, position

Day 2 Story 
project

Students develop their own 
animated story using multiple 
characters and a special effect

Position, repeat/forever loops, 
graphical effects, broadcast/receive, 
green flag, synchronization, 
background changes

Day 3 Music 
video 
project

Students create a music video 
synced to provided music using a 
timer

Synchronization, when key is 
pressed, conditionals, variables, 
background changes, sounds

Day 4 Video 
game 
project

Students created a video game 
with an instruction screen on how 
to play the game, fully developed 
user controls, two or more levels, 
variables to track game-related 
outcomes (e.g., health)

User interaction, health meter or 
other outcome, variables, data

Day 5 Free 
choice

Students complete previous days’ 
work or start a new project

Blocks of student choosing learned 
previously or selected based on 
personal choice
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Across the 5 days of Scratch Camp, there were six main activities. Therefore, we 
would expect at least 390 projects (65 students with six projects each). However, we 
have close to four times as many projects (1,538). We believe this is mostly due to a 
behavior observed frequently where students would start a project and then decide they 
wanted to go in a different direction. Instead of modifying their existing project, they 
would create a new project. For this reason, we provide the range of number of projects 
per student in Table 3. This is important to understand the amount of data we had to 
include in our analyses, which ranges between six and 42 projects per student.

 Scratch Data

Scratch, developed by the MIT Media Lab, allows users to drag and drop blocks 
(Boolean commands, loops, variables, etc.) into a script (see Fig. 1). Each program-
mer can run the script on a sprite (or object) to see a visual representation (such as 
an animation) in a window (see Fig. 2). The program is syntax-free and, therefore, 
more accessible and enjoyable for novice programmers. Although the environment 
itself is simple, the scripts can be very complex requiring advanced planning and 
well-developed computational thinking to design.

Scratch 2.0 makes collecting data for researchers simple. Every Scratch program 
saves a user’s state (data about their current project code) in the form of a JSON file, or 
JavaScript Object Notation file, every 2 min or anytime a user causes a triggering event 
(such as a manual save). State data are defined as a collection of metadata (e.g., time 
stamp and user ID) about the targeted state, measures on that state, and data of that 
state. For example, with Scratch, a state is a Scratch save, which includes information 
such as the current background, the sprite costume, and other features such as sounds.

This finely grained data allows researchers to analyze user actions over time. 
While Scratch 2.0 is based online, we were able to collect data from MIT’s servers, 
through a data-sharing agreement, by simply gaining permission from the partici-
pants then sending the participant’s user ID and the research start and end date to the 
MIT Media Lab. The quality of data and ease of collection make Scratch 2.0 an 
ideal program with which to test the FUN! tool. In Table 4, we provide an overview 
of the range of data saves of the project states per student across the 32,465 state 
saves in our data set.

Table 3 Overview of data collected summer 2014

Scratch Camp Summer 
2014

Number of 
students

Number of 
projects

Range of projects per 
student

June 2–6 24 499 6–33
June 16–20 19 508 17–42
July 14–19 22 531 16–39
Total 65 1,538 6–42

Note: The number of students with data includes students with parent consent and student assent 
for use of data in our research analyses
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The range in saved states across projects and across students shown in Table 4 is 
important when it comes to considering types of analyses where we might want to 
look at changes over time. If a project has only one saved state, we would not be 
able to look at changes over time within that particular project. However, students 
had 99–993 saved states across projects, so we would be able to look at changes 
over time across all projects for a student for measures of interest.

Fig. 1 Sample Scratch 
script using code blocks

Fig. 2 Sample Scratch visual representation of code commanding a sprite
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 FUN! Tool for Automated Data Analysis

As researchers we have experienced the challenge of conducting complex analyses 
for multiple projects in an inefficient manner repeating similar processes with each 
new data set for different projects. We have also suffered from the consequences of 
either lack of documentation or incomplete documentation of research analysis pro-
cesses. The FUN! tool allows us to (1) organize our workflow process, (2) record 
log data from our analyses, and (3) share our work with others through GitHub, an 
online code-sharing repository. We have found this type of research behavior is 
more common among data scientists and less common among education research-
ers. Therefore, the FUN! tool can be helpful in requiring research team members to 
follow more appropriate data management and analysis processes.

The FUN! tool moves data through a workflow process that includes four parts: 
adaptors, selectors, measures, and reporters (as shown in Fig. 3). Data are adapted 
from a raw form (JSON in the case of our Scratch data) into something usable by 
adaptors. This data includes state data, which is a collection of metadata about the 
targeted state, measures on that state, and data of that state. The metadata would be 
the information about that save, such as the user ID and time when saved. There is 
also group data, which is a collection of states, such as all state data for a particular 
user. The researcher can program the FUN! tool to select from the data based on 
various measures that exist within the FUN! tool or that are created.

Table 4 Overview of project state saves for summer 2014

Scratch Camp 
Summer 2014

Number of 
students

Range of 
projects per 
student

Range of 
project state 
saves per 
student

Number of 
projects

Range of project 
state saves per 
project

June 2–6 24 6–33 99–618 499 1–179
June 16–20 19 17–42 322–905 508 1–269
July 14–19 22 16–39 295–993 531 1–428
Total 65 6–42 99–993 1,538 1–428

Note: The number of students with data includes students with parent consent and student assent 
for use of data in our research analyses

Fig. 3 Diagram showing how data ideally flows through the FUN! tool
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The analysis part of the FUN! tool involves selecting states (or group of states) 
and applying measures to those states or groups of states. For example, to analyze 
how many code blocks are in a single student’s Scratch project, first the tool selects 
the state (in this case the code snapshot of a student’s Scratch code), and then the 
tool applies a measure (in this case the measure would be the block count). The 
same process can be applied to increasingly complex measurements and include 
analysis over time. Instead of selecting a single state and running a single measure, 
the tool selects a group of states and runs a measure on that group. For example, to 
measure a student’s average use of code blocks over the course of a Scratch summer 
camp, the tool selects all of the states with that particular student ID (using a group-
ing selector) and then measures the block count for each state and averages those 
counts (using a group measure).

The FUN! tool reporter essentially outputs the result of each analysis. Currently, 
the reporter simply outputs spreadsheet file formats such as csv and tsv, which 
researchers can use in conjunction with other software to produce tables and graphs. 
The reporter also selects and shows a randomly selected sample state in text (.txt) 
file format. Researchers can use this randomly selected sample state text file to 
double-check the result of their analysis or to debug their analysis, if necessary.

Depending on the complexity of the measure, programming the initial measures 
may be difficult. Though powerful and adaptable, rewriting or repurposing the 
adaptor and measure elements of the FUN! tool requires at least an intermediate 
knowledge of the Python programming language. The majority of the analysis was 
conducted using nothing beyond Python core libraries. The NumPy and SciPy 
libraries were used with pandas for cluster analysis. While it may sound as if the 
data move in a single path through the FUN! tool, the processes can interact with 
each other in a nonlinear approach depending on the complexity and stage of analysis. 
For example, researchers dealing with new data may begin by adapting, selecting, 
measuring, reselecting, and then remeasuring prior to conducting their analysis and 
reporting out their findings.

 Additional Data Mining Approaches

Once the data is reported into a format, such as csv, additional analytic tools may be 
used following other educational data mining approaches. According to Baker 
(2011), there are five educational data mining technical methods:

• Prediction where the goal is to understand why a particular behavior or data ele-
ment predicts another data element or outcome of interest. For example, does use 
of initialization blocks in Scratch predict use of more advanced programming 
components (e.g., loops)?

• Clustering where data points can be divided into categories and grouped based 
on patterns. For example, Scratch users or Scratch projects could be grouped 
based on use of particular code blocks or based on measures of computational 
thinking developed based on combinations of code blocks.
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• Relationship mining where relationships between variables in a data set are 
encoded as a variable or rule to be used later. For example, there may be a rela-
tionship between Scratch users who do not initialize their sprites and challenges 
with their project design. Using association rule mining, one could create a vari-
able to flag students with this difficulty to be used to inform future instruction for 
these students or inform design of a feature of the Scratch program that could 
provide a student with a reminder to initialize their sprite. Using sequence pat-
tern mining is also possible with data on project saves over time as we were able 
to obtain from MIT.

• Distillation for human judgment is related to visual data analytics where data are 
depicted so that people can easily classify features of the data.

• Discovery with models is appropriate once there is knowledge in the domain in 
addition to relationships from other data mining techniques to establish a model 
of a concept that can be used to find other relationships. For example, in Scratch 
the concept of abstraction might be important when trying to understand the 
development of computational thinking. Once this measure of abstraction is cre-
ated as a model, a research could consider whether projects of particular genres 
of programming in Scratch (animation, art, game, music, or stories) are related 
to use of greater levels of abstraction in student projects.

We started with a visual analysis of data across the three Scratch Camps. Then 
we did some exploration to determine common code blocks used versus code blocks 
with the most missing data. Then we applied clustering techniques to our initial set 
of measures, which were primarily counts of different code blocks used. Specifically, 
k-means was used to understand whether there were clusters of programming pro-
files across the student projects. The type of clustering approach selected is informed 
by the data variable scales, units of measure, and other factors. k-means is used to 
segment or cluster the data based on similar types of users and grouping them 
together (Schutt & O’Neil, 2013). K is the number of bins or buckets you want to 
put the data attributes in. One challenge of the k-means approach is that the 
researcher has to select the value of k, which is between one and the number of data 
points. The researcher has to adjust k until there are natural groupings. Another 
weakness of k-means is that the answer may not be useful or there may be chal-
lenges with interpretation. However, for exploratory data mining, it can be an easy 
first step to begin to look for patterns and groupings in the data. Next, we provide 
the results from our initial set of analyses.

 Visual Analysis

To begin we considered how appropriate it would be to combine the data from all 
3 weeks of Scratch Camps when they were each conducted with a different group of 
students. We started with a simple visual analysis of the number of code blocks and 
sprites in student projects over time across the 5-day period for each of the three 
Scratch Camps. In Fig. 4, the top line is the number of code blocks used, and the 
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bottom line is the number of sprites used. There is a definite spike in code blocks and 
sprites around Day 4 when students remixed one of the five programs provided.

We decided to remove the data for Day 4 from our next exploration of the data, 
since the students were given one of the four starter games to remix by looking at 
the existing code and modifying the code to create their video game. In many cases, 
these games included a much larger number of code blocks than the students’ total 
Scratch Camp code blocks independently created, so it might skew our findings. For 
example, if we see a “broadcast” code block within a student’s set of data, we might 
assume they know how to use “broadcast”; however, that block may have only been 
within the Day 4 starter game that they modified. It may not necessarily mean they 
know how to use this block appropriately. Therefore, we used a grouping selector to 
group projects from Days 1 to 3 and 5 for analysis.

 Exploratory Analysis

We started with approximately 129 measures developed in the FUN! tool based on 
available code blocks within Scratch user data from students in the Scratch Camp. 
These measures are provided in Table 5. Some of these measures are counts of a 
particular script (code block) used by the student in their project. Other measures 
are used to test whether a block is present or not. Within the FUN! tool, the mea-
sures used to count particular blocks have the word “count” at the end of the mea-
sure name. For example, the “Broadcast” measure would measure whether the 
“Broadcast” block was ever used by a student, while the “Broadcast_Count” mea-
sure would count how many times a block was used by a student. These measures 
can then be used to create additional measures using mathematical functions, such 
as the ratio of “Broadcast_Count” scripts to “Total scripts.”

Fig. 4 Time series plot of code block and sprite use over time
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Table 5 Alphabetical list of initial measures developed within the FUN! tool

Answer
Glide seconds to XY elapsed 
from Set pen hue to

Append to list Go back by layers Set pen shade to
Background index Go to sprite or mouse Set rotation style
Bounce off edge Go to the top Set size to
Bounce up Go to XY Set tempo to
Broadcast Green flag scripts Set variable to
Call Green flag sprites Set video state
Change graphic effect Hide Set volume to
Change pen hue by Hide list Show
Change pen shade by Hide variable Show variable
Change pen size by Instrument Stamp costume
Change size by Key pressed Start scene
Change tempo by Letter of Start scene and wait
Change variable by Line count of list Stop all sounds
Change volume by List contains Stop scripts
Change X position by Look like String length
Change Y position by Mouse pressed count Think
Clear pen trails Mouse X Think duration elapsed from
Come to front Mouse Y Time and date
Computer function of Next costume Timer
Concatenate with Next score Timer reset
Control blocks Not Timestamp
Costume index Note on duration elapsed from Total scripts
Count 1–9 Number of scripts Total sprites with scripts
Create clone of Pen color Total sprites
Delete clone Pen size Touching
Delete line of list Play drum Touching color
Distance to Play sound Turn left
Do ask Point toward Turn right
Do broadcast and wait Procedure defined Volume
Do forever Put pen down Wait elapsed from
Do if Put pen up When
Do if else Random from to When blocks
Do play sound and wait Read variable When clicked
Do repeat Rest elapsed from When cloned
Do until Rounded When green flag
Do wait until Say When I receive
Filter reset Say duration elapsed from When key pressed
Forward Scale When scene starts
Get attribute of Scene name When sensor greater than
Get line of list Sense video motion X position
Get parameter Set graphic effect to Y position
Get user name Set line of list to
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After running our analysis of basic measures within the FUN! tool to count types 
of code blocks for projects used Days 1–3 and 5, we first looked at the measures 
with the least missing data (most commonly used code blocks) and the measures 
with the most missing data (least used blocks or blocks not used by any students), 
which we show in Table 6.

The measures that appear in the list of the least missing data were not a surprise, 
since these measures relate to blocks introduced on the first day of the camp. We 
were somewhat surprised to see “broadcast” in the list of measures with the most 
missing data, since this was covered during the camp, while “create clone” was not 
covered in the camp during instruction or review of student projects, so it was 
expected to appear in the list of measures with the most missing data. Therefore, the 
measures in the list with the most missing data do not necessarily relate to the com-
plexity of programming, but rather an area that was not introduced during the camp 
either by the instructor or a student sharing their project with the class.

 K-means Cluster Analysis

Next we used k-means cluster analysis to look at different “k” cluster solutions to 
group the student projects for Days 1–3 and 5. We clustered on attribute counts of 
blocks and counts of sprites. We started with a 15-cluster solution (k = 15), but did 
not feel that the solution was easily interpretable, because it was difficult to point to 
sharply different characteristics in terms of measures from one cluster to another. 
We reduced the amount of clusters to ten and found the maximum affinity between 
Clusters 2 and 3 shown in Fig. 5. Analysis using a 5-cluster solution (k = 5) was not 
accepted as it reduced the count of clusters to too low of a number and led to over-
lapping of characteristics in term of measures.

It is difficult to point too sharply to different characteristics in terms of measures 
from one cluster to another.

The output from the k-means cluster analysis provides the characteristics for 
each cluster based on the measures available within the FUN! tool, the values for the 
characteristics and the probability. Below is a comparison of the first five characteristics 
for each cluster as an example (Fig. 6).

Table 6 Measures with the least and most missing data from Scratch Camps

Measures with the least missing data Measures with the most missing data

Green flag
Number of scripts
Total scripts
Total sprites
Total sprites with scripts

Broadcast
Change size
Change tempo
Change volume
Clear pen trails
Come to front
Costume index
Create clone
Broadcast and wait

S. Brasiel et al.



339

Fig. 5 Affinity diagram for 10-cluster solution

Fig. 6 Comparison of characteristics for Clusters 2 and 3
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There are several characteristics where Clusters 2 and 3 have the same values: 
Do If Count (0.0–4.2), Green Flag Sprites (0.0–4.4), When Green Flag Count 
(0.0–4.8), Bounce Off Edge to Count (0.0–0.4), and Next Costume Count (0.0–0.2). 
While these have the exact values, the values are low. Some of the characteristics 
not in common between Clusters 2 and 3 had high values (e.g., “read variable count” 
for Cluster 3); these characteristics may be important to consider when thinking 
about developing measures of computational thinking.

Next, we looked at the Cluster profiles, which show the attributes and the values 
across the clusters as well as for the population. This seemed a little more interest-
ing than comparing the two clusters (2 and 3) that had the greatest affinity. In 
Table 7, we provide a sample of these attributes with the number of projects within 
each cluster. Note how Cluster 5, while it only included 44 projects, had higher 
values than other clusters (shown by shading in Table 7) for Do Forever, Play Sound 
and Wait, Scripts with Green Flags, Sprites with Green Flags, and Total Scripts. The 
value of the cluster profiles provided by this analysis was to show which attributes 
might be ones that differentiate some students from others whether it be in 
 computational thinking or other factors, such as students who spend more time on 
the visual or audio features of their project.

From the k-means cluster analysis, we learned that clustering on this many mea-
sures can be much more difficult to interpret than clustering we have done for other 
projects with fewer measures.

 Development of Complex Measures of Computational Thinking

One unique feature of this research project was the addition of an ethnographic 
component of data collection and analysis conducted by Dr. Deborah Fields and her 
graduate research assistants. By looking at student projects, field notes collected 
during Scratch Camps, and the JSON data from the projects, Dr. Fields and her team 
(Fields et al., 2016a, 2016b) have created a set of more complex measures related to 
computational thinking shown in Table 8.

For additional information about Dr. Field’s research on these measures, please 
visit http://www.workingexamples.org/uploads/File/1035. She also provides 
 definitions of the measures and a description of why the measures are important in 
a document available at http://www.workingexamples.org/uploads/File/1035.

After Fields et al. (2016a, 2016b) created these labels and descriptions for mea-
sures of computational thinking that they found important from their ethnographic 
and data mining analyses, our next step was to create these complex measures 
within the FUN! tool. This task was a challenge for some measures and required a 
strong understanding of Python to write the code for the new measures within the 
FUN! tool. However, once written these measures are available to the public through 
GitHub to inform the work of other researchers studying the development of pro-
gramming and computational thinking using Scratch.

S. Brasiel et al.

http://www.workingexamples.org/uploads/File/1035
http://www.workingexamples.org/uploads/File/1035


341

Ta
bl

e 
7 

A
 s

el
ec

tio
n 

of
 a

ttr
ib

ut
es

 f
ro

m
 th

e 
cl

us
te

r 
pr

ofi
le

s

M
ea

su
re

V
al

ue
s

Po
pu

la
tio

n 
(n

 =
 8

46
)

C
lu

st
er 1 

(n
 =

 3
98

)
2 

(n
 =

 1
44

)
3 

(n
 =

 1
13

)
4 

(n
 =

 6
5)

5 
(n

 =
 4

4)
6 

(n
 =

 3
4)

7 
(n

 =
 3

1)
8 

(n
 =

 1
2)

9 
(n

 =
 3

)
10

 
(n

 =
 2

)

D
o 

fo
re

ve
r

D
o 

if

Pl
ay

 
so

un
d 

an
d 

w
ai

t
W

ai
t 

un
til

Sc
ri

pt
s 

w
ith

 
gr

ee
n 

fla
g

Sp
ri

te
s 

w
ith

 
gr

ee
n 

fla
g

Se
t 

gr
ap

hi
c 

ef
fe

ct
 to

To
ta

l 
sc

ri
pt

s

Measuring Computational Thinking Development with the FUN! Tool



Table 8 Measures of computational thinking within Scratch data

Loops Initialization
Event-driven 
parallelism Conditionals

Boolean 
measures

Sensing 
measures

Total 
forever 
loops

Initialized variables Proportion 
of total 
sprites with 
a green flag

Complete 
conditionals

Conditionals 
with 
Booleans

User control 
block count

Empty 
forever 
loops

Ratio of initialized 
variables to total 
variables used

Sprites with 
multiple 
green flags

Incomplete 
conditionals

Conditionals 
with/without 
complete 
Booleans

Touching 
edge

Nonempty 
forever 
loops

Initialized graphic 
effects

Broadcasts 
paired with 
a receive

Conditionals 
using 
preexisting 
Scratch 
variables

Complete 
Booleans

Touching 
mouse

Total 
repeat 
loops

Sprites with/without 
initialized positions

Broadcasts 
with 
multiple 
receives

User-defined 
variables used 
in “if” or 
“until” blocks

User control 
block count

Touching 
missing 
argument

Repeat 
loops with 
repeat of 
0 or 1

Sprites with/without 
an initialized 
direction

Sprites with 
multiple 
receives

Conditionals 
using sensing

Touching 
sprite

Empty 
repeat 
loops

Sprites with/without 
initialized size

Sprites with 
multiple 
identical 
receives

Nested 
conditional in 
conditional

Touching 
color

Nonempty 
repeat 
loops

Sprites with/without 
a tempo

Nested 
conditional in 
a loop

Max 
nested 
loop depth

Sprites with/without 
a volume

Conditionals 
with 
Booleans

Forever if Sprites with an 
initialized state of 
“show”

Conditionals 
in green flag 
(not in a 
loop)Repeat 

until
Sprites with an 
initialized state of 
“hide”
Sprites with/without 
initialized layer
Sprites with/without 
an initialized pen
Program with/without 
an initialized 
background
Sprites with/without 
initialized costumes
Sprites with multiple 
costumes
Sprites with 
multiple costumes 
that are initialized

Note: There is one additional measure developed by Fields et al. (2016a, 2016b) not shown in the 
table, which is a randomization measure used to count when the pick random number operator 
code block is used
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 Findings

While many data mining approaches could be used to analyze the state data, we 
began with traditional statistics conducting a one-way ANOVA to determine if there 
was a significant difference between the means for each measure for each week of 
Scratch Camp. We used Scheffe’s post hoc to determine whether there were signifi-
cant differences in pairwise comparisons of Scratch Camps. While this may not tell 
us much about the development of computational thinking, it is important to con-
sider whether state data should be mined across all three Scratch Camps or whether 
state data should be mined separately by week of Scratch Camp. The first Scratch 
Camp (June 2–6) was for students in grades 5 and 6. The second Scratch Camp 
(June 16–20) was for students in grades 7 and 8. The final Scratch Camp (July 
14–19) was a camp for girls only.

For measures of loops, all three pairwise comparisons were statistically signifi-
cant (p < .05) for do forever empty (and not empty), do repeat, and loops with “if.” 
When looking at measures of conditionals, the differences between camps were 
significant for conditionals with Scratch variables and conditionals with sensing for 
all three comparisons; the pairwise comparison of conditionals with user-defined 
variables was only significant for Camps 1–2 and 1–3 comparisons. For all Boolean 
measures, there were significant differences found between at least two pairs of 
Scratch Camps. There were three measures of sensing where there were significant 
differences found between all three pairwise comparisons: touching color, touching 
edge, and touching sprite. There were only two pairwise comparisons with signifi-
cant differences for touching missing argument (Camps 1–2 and 2–3), touching 
mouse (Camps 1–2 and 1–3), and user control blocks (Camps 1–2 and 1–3). Finally, 
there were significant differences for pairwise comparisons between all three camps 
for total sprites, total sprites with scripts, and green flag sprites.

There are significant differences between the average scores for students in dif-
ferent Scratch Camps for many of the measures. For the measures of loops, the third 
Scratch Camp (girls only) was significantly lower than the first or second camp stu-
dents on five of the seven measures (for all measures except “Do Repeat Empty” and 
“Do Repeat Not Empty”). While the students in the third camp were higher than the 
other camps in general on “Do Repeat Empty,” this finding is not positive, since it is 
important to have the “Do Repeat” block not empty. However, the third camp also 
had the highest average for “Do Repeat Not Empty,” which is an evidence that on 
average the students knew how to use that block. Students may momentarily add a 
“Do Repeat” block to their program and then decide not to use it, which is one rea-
son it might be empty. However, if a student has measures where the “Do Repeat” 
block is not empty, then it at least shows they have attempted to use this type of loop.

When understanding the data that is possible using the FUN! tool, it is similar to 
thinking about writing an essay using a computer. There may be sections of a paper 
that are in one draft that are later removed from the paper. The code snapshot is one 
point in time where the blocks in the program are measured. Where a student had 
selected a “Do Repeat” block that currently is empty in the code snapshot, after 

Measuring Computational Thinking Development with the FUN! Tool



344

time, they may either use it or remove it from their program. Our data set included 
2-min snapshots over time; it is expected that at some time points there would be 
empty loops, where the student had used the loop code block but had not yet filled 
it with another block.

For the measures related to conditionals, the third Scratch Camp was signifi-
cantly lower than the first or second camp students on two of the three measures 
(for all except “Conditional with Scratch Variables”). When it came to the 
Boolean measures, the third Scratch Camp was significantly lower than the first 
camp group on three of the four measures. For the sensing measure, the third 
Scratch Camp was significantly lower than both the first and second camp stu-
dents on three of the six measures and significantly lower than one of the other 
camps on the other three measures. For the final set of other measures, the stu-
dents in the third camp were significantly higher than students in the other two 
camps for all three areas (total sprites, total sprites with scripts, and green flag 
sprites). Since this area focuses on sprites, it may be that students in the third 
camp had more characters in their projects than the students in the first or second 
camp had in their projects.

What the data does not tell us is why students in the third camp performed 
significantly lower than students in either the first or second camp for many of the 
measures. We caution the reader from concluding that it had something to do with 
gender, when there are other factors to consider. For example, Dr. Fields was the 
primary facilitator of the first Scratch Camp. The second and third camp had more 
facilitation by Dr. Field’s graduate students. While all three camps covered the 
same content and activities, it may be that there are some factors related to having 
an expert in Scratch and someone with prior experience in leading Scratch work-
shops facilitate the instruction. Future research could collect data on different 
instructional variables that may be related to improved outcomes for students. 
Another factor could be prior knowledge of programming skills. A short assess-
ment could have been given at the start of the camp to collect this type of data to 
provide context for these differences we see between students in the three Scratch 
Camps. What is clear from our findings is that any additional data mining might 
be better conducted by Scratch Camp since we did find these significant differences 
between camps.

 Next Steps

Our work has focused heavily on the development of the FUN! tool and prelimi-
nary measure development. However, what is needed is for the community of 
Scratch researchers to access the FUN! tool to develop additional measures and to 
provide reliable and valid interpretations of such measures. Learning analytics 
researchers could begin to use measures in addition to domain knowledge to begin 
to represent relationships and patterns using visual data analytics. For example, 
development of a data dashboard of computational thinking components could 
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provide classroom teachers with data on their students that can inform their instruc-
tion. Data visualizations are also helpful at an individual student level to provide 
students and their parents the opportunity to monitor their learning. Having agreed 
on CT, component measures can provide school districts and states the opportunity 
to understand the impact of computer science programs introduced in K-12 to 
develop computational thinking.

To access the open source FUN! tool, researchers should follow these steps:
1. Download Python 3 from https://www.python.org/downloads/.

Windows: If you have an earlier version of Python, skip this step. However, for 
the new Python 3.5, there is a problem that you will need to fix before download-
ing the FUN! tool.

2. After downloading Python 3.5, download pyyaml source from
http://pyyaml.org/download/pyyaml/PyYAML-3.11.zip. Run py −3 
setup.py --without-libyaml install. Then follow the directions 
below for #3.
Mac: Go to step 3.

3. Download the FUN! tool.
Windows: Open the command prompt; run py −3 –m pip install 
funtool
Mac: Open the terminal; run pip3 install funtool

4. Download the FUN! tool Scratch Processes.
Windows: Run py −3 –m pip install funtool_scratch_processes
Mac: Run pip3 install funtool_scratch_processes

5. Download this example analysis template by navigating to https://github.com/active-
learninglab/funtool-analysis and cloning the funtool-analysis to your desktop. 
Directions for using the FUN! tool are also available on this Github page.

 Conclusions

With open education resources for teaching coding, such as resources from Code.
org, coding programs are becoming part of most children’s school experience, 
whether it be through structures like “Hour of Code,” afterschool programs, or more 
structured school or district programs. As states add standards for computer science 
to their K-12 curriculum, it is important to have reliable, valid measures to under-
stand student progress and evaluate effectiveness of education programs. In this 
paper, we describe an automated method of collecting and analyzing data from 
Scratch using the FUN! tool. Although this paper does not strictly contribute to 
learning theory, we hope that it will stimulate ongoing conversations about the value 
as well as changes of automated methods to collect and analyze data in different 
kinds of digital learning environments.

We were transparent about the challenges we faced with the large amount of 
initial measures developed based on code blocks within Scratch to inform the 
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work of other researchers, pointing to the value gained from looking at more 
complex measures. The Day 4 lesson where students remixed an existing Scratch 
program added complexity to our exploratory analyses. All of these factors are 
important considerations when determining how to group data for analysis. 
These are also factors to consider when designing instructional programs for 
students where computational thinking development will be measured. Use of a 
pre-project and post-project design to measure changes in computational think-
ing may be better than the  analysis of projects completed as part of an instruc-
tional program, since instructional expectations may limit or confound the data 
available for analysis.

Our project was limited in what we were able to learn from our use of the 
FUN! tool due to resource limitations for the project given the extensive costs of 
the development, refinement, and testing of the tool to prepare it for use by a 
wider audience. However, through several conference presentations and work-
shops on the tool, we have received positive feedback about the potential for other 
researchers to use the tool with their own Scratch data in addition to interest in 
understanding the structure of the tool to develop similar automated tools for 
other educational game data.

We hope this paper supports existing work in educational data mining and that 
the processes and measures we developed for analyses can support other researchers 
interested in learning analytics. We encourage researchers to download the FUN! 
tool and related processes and analyses from GitHub. We also recommend that 
researchers use GitHub to share new measures and analyses they create.
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Reenergizing CS0 in China

Tien-Yo (Tim) Pan

Abstract As early as 1997, the Ministry of Education (MOE) of China published 
Document Number 155, which emphasized the importance of computing in college 
education regardless of discipline. As a required course for all majors, CS0 “College 
Computers” has been taken by around six million students each year since then. 
However, due to the lack of appropriate materials for the course, some professors taught 
students how to use computer tools, and others taught students programming skills.

This article discusses a recent CS0 reform happening in China that shifts the 
focus of the course from computer tools and skills to computational thinking. An 
MOE teaching steering committee has published The Basic Requirements for 
Teaching College Computer Courses, where 42 core concepts on computational 
thinking are identified as guidelines for teaching College Computers and associated 
entry-level computer courses. Four college-level curricula recently developed are 
presented in this article as case studies. They are interesting and unique in different 
ways: one is a CS0 course for the deaf, another is a MOOC on C Programming, the 
third case is a MOOC on College Computers, and the fourth is a CS0 course 
designed for health majors. These curricular innovations around computational 
thinking are reenergizing CS0 in China. In this chapter, we discuss these innova-
tions and their implications for college study in China.

Keywords College Computers • Computational thinking • MOOC

 Introduction

This chapter discusses the first (CS0) or first few college computer courses offered 
to non-CS-major students in China. We first describe the environment of the courses 
before computational thinking was adopted, point out the problems, and explain 
how computational thinking is reenergizing college computer education in China. 
Case studies will be given as examples.
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 CS0 in China Before Computational Thinking

China is one of a few countries that encourage all college students to learn computing. 
As early as 1997, the Ministry of Education (MOE) of China published Document 
Number 155, which emphasized the importance of computing in college education 
regardless of discipline. Most universities responded to the document by offering a 
course called “Computer Literacy,” which was later renamed “College Computers.” 
The course has been taken by around six million students each year since then. 
However, the visionary policy by the MOE soon faced difficulties. First, to most 
college students, College Computers was literally their first computer course. Some 
students, as expected, knew little about computers, but many others were proficient 
in using computers through self-learning or extracurricular activities. Professors felt 
challenged to satisfy both groups of students in the same class. Second, most exist-
ing computer curricula were designed for Computer Science students. Professors 
could not find appropriate materials for College Computers, a two-to-three credit 
introductory course. Some taught students how to use computer tools such as Excel 
and PowerPoint. Some taught students programming skills. Third, computer tech-
nologies change so rapidly that related tools and skills became obsolete before stu-
dents left campus. Hence, to many students, College Computers was not only 
perceived as boring but also useless.

The MOE teaching steering committee for college computer courses (the “teach-
ing committee”) supervises computer courses for non-CS-major students, which 
include the main CS0 and optional courses such as programming language and data 
structures. The teaching committee realized the necessity of reenergizing the 
courses, especially CS0. The new approach proposed to give students a holistic 
view of computing, a view which is more fundamental, structural, and stable. 
Members of the teaching committee visited and learned from several renowned uni-
versities in the world and concluded that College Computers should focus more on 
thinking and innovation, not tools and programming. Hence, a reform began, which 
would benefit six million college students each year.

 Reenergizing CS0 with Computational Thinking

When Professor Jeannette Wing wrote “Computational Thinking” on Communi-
cations of the ACM (Wing, 2006), she might not have expected that the teaching 
committee in China would deeply probe into the article. In 2007, Professor Fei-Yue 
Wang of the Chinese Academy of Sciences translated Professor Wing’s article and 
published it on Communications of the CCF (a Chinese equivalence of CACM). It 
perfectly met the needs of CS0 reform in China. The teaching committee carefully 
studied the article and spent huge amounts of time facilitating various computa-
tional thinking curricula that suit Chinese non-CS college students. Several MOOCs 
on the subject have attracted hundreds of thousands of students, and the momentum 
continues.
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 Impacts and Changes Brought by Computational Thinking

Professor Yizhi Wang from Beijing Jiaotong University has been teaching CS0 
since 1997 when the MOE published Document Number 155. She and most other 
professors assigned to the task were enthusiastic at the beginning, but for the afore-
mentioned reasons, they gradually felt the same frustration as students taking the 
course. “I believe computational thinking benefits China more than any other coun-
try,” says Professor Wang. “It is a paradigm shift on how to teach College Computers. 
It shifts our focus from tools to thinking” (Wang 2015, personal communication). 
She summarizes this reform in two points:

• College Computers is not about teaching tools or skills. Instead, it teaches stu-
dents a way of thinking, i.e., how to abstract a problem and solve it automatically 
by a system.

• College Computers is about how to think like computer scientists. However, the 
ideal setting to observe how computer scientists think is in the tools and skills 
they create.

The two seemingly paradoxical points shed light on curricular reform. We need 
not throw away tools and skills but use them as examples and labs for students to 
learn computational thinking. With a title—National Teaching Master, Professor 
Wang led the way to redesign the curriculum and asked professors in her team (i.e., 
12 faculty members teaching CS0 to 3,000 students per year) to do the same. “It was 
magical,” she says. “I haven’t seen that kind of enthusiasm in years, not only for 
learning but for teaching!” (Wang 2015, personal communication)

Professor Lian Li—director of the teaching committee—depicts three missions 
to reform the CS0 collegiate course. First, investigate practices and computer knowl-
edge relevant to the target disciplines. For example, a professor teaching College 
Computers in medical school needs to study how computers are used in medical 
environments and what kind of computer knowledge is required in the medical dis-
cipline. Second, create curricula that integrate computing and the target disciplines. 
This can be realized in labs and projects. Third, equip students with computational 
thinking for their future work and life. The third mission shifts CS0 from a technical 
course to a general course that introduces students to a systematic way of thinking.

CS0 reform has been ongoing for few years. More than a hundred Chinese text-
books on the subject are available, and most universities are rethinking the course. 
Professor Li observes the status at the beginning of 2016 in China as follows:

• The majority of the CS0 books and curricula have added a thinking segment to 
the original contents.

• Some pioneers have created entirely new CS0 curricula based on computational 
thinking.

• A few special CS0 curricula have been developed for specific disciplines (e.g., 
social computing and health computing).

“It has just started,” says Professor Li. “In ten years, all CS0 in China will be based on 
computational thinking. There is no turning back” (Li 2016, personal communication).
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 Basic Requirements for Teaching College Computer Courses

Professor Qinming He from Zhejiang University, a member of the teaching 
committee, hopes that similar to College Physics or Mathematics, College 
Computers and associated college computer courses should have a common frame-
work for professors to follow. After countless meetings and workshops and many 
experimental courses offered and reviewed, he helped the teaching committee to 
draft Basic Requirements for Teaching College Computer Courses (the “Basic 
Requirements”). The 157-page document published in late 2015 roughly defines the 
scope of college- level computing courses for non-CS majors. The core of the 
courses requires computational thinking instead of tools and skills.

Why computational thinking? Professor He answered: “Knowledge around com-
puters has been growing exponentially, but course hours are limited. We need to lay 
out a foundation that does not change easily. Computational thinking serves the 
purpose well” (He 2015, personal communication). Similar to physics and mathe-
matics, CS0 and its associated courses are to deliver a set of core concepts shown in 
Table 1. There are 42 core concepts grouped in eight major categories based on 
Professor Peter Denning’s six categories of computing principles (Denning & 
Martell, 2015) and Professor Jeannette Wing’s observation that computing is the 
automation of abstractions (Wing 2012, keynote speech at Microsoft Research Asia 
Faculty Summit).

The core concepts summarize the way computer scientists think and computers 
work. However, it remains the individual professor’s responsibility to convey the 
concepts to students in interesting ways. The teaching committee encourages CS0 
professors to innovate all curricula such as programming, project-based, or explor-
ative courses in CS-oriented or cross-disciplinary scope. There are 14 teaching tem-
plates in the Basic Requirements for various disciplines including bioinformatics, 

Table 1 Core concepts in college computer courses

Categories Core concepts in teaching

Computation (3) Computational models—computability—complexity
Abstraction (4) Abstraction—layers of abstraction—conceptual model—

implementation model
Automation (7) Algorithm—procedure—iteration—recursion—heuristic method—

random method—intelligence
Design (6) Decomposition—synthesis—trade-offs—reliability—reusability—

security
Evaluation (5) Evaluation criterion and benchmark—bottleneck—redundancy—fault 

tolerance—simulation
Communication (7) Information and its presentation—entropy—coding and decoding—

compression—cryptography—error check and correction—protocols
Coordination (5) Synchronization—concurrence—parallelism—events—services
Recollection (5) Data types—data structure—data organization—retrieval and 

indexing—locality and caching
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agriculture, e-commerce, multimedia, data science, and social computing. Those 
templates are contributed by professors who have taught college computer courses 
based on core concepts to students of specific majors. Some of the courses will be 
introduced in the next section.

Noted in the Basic Requirements, there are three types of scientific thinking: 
positivism thinking that finds rules by observation and experiments, logical thinking 
that describes and deduces matters in a logical way, and computational thinking that 
designs algorithms to solve specific problems. The three are not contradictory but 
complementary. Students learn positivism in physics and logical thinking in math-
ematics at a very early stage. China is now seriously implementing the third type—
computational thinking.

 Role of Microsoft Research

In the summer of 2013, Professor Guoliang Chen, the director of the teaching com-
mittee, met Dr. Jeannette Wing at the Microsoft Faculty Summit. That was the first 
time Dr. Wing, who already joined Microsoft Research as a Corporate Vice 
President, learned about computational thinking activities in China. Invited by 
Professor Chen, Dr. Wing gave a keynote speech at the 2013 CS0 Conference and 
met the teaching committee in Chongqing, China—where she committed that 
Microsoft would join hand in hand with the Ministry of Education of China to 
reform CS0. Professor Lian Li who succeeded directorship of the teaching commit-
tee in late 2013 recalled, “Microsoft and Jeannette’s endorsement cheered up every-
one in the committee, because it greatly expanded our public appeal” (Li 2016, 
personal communication).

Academic collaboration is not new to Microsoft. Since a Beijing lab was set up 
in 1998, Microsoft Research has been working closely with the MOE and universi-
ties to improve computer science education and research in China. For example, 
Microsoft Research has trained more than 5,000 students through internships, 
offered courses at universities, and released a popular big data MOOC in China. 
CS0 reform that may influence several million students each year certainly interests 
Microsoft.

Microsoft has contributed to CS0 reform in two ways. First, Microsoft technolo-
gies help professors in teaching. For example, Office Mix, a PowerPoint plug-in, 
enables the making of a very low-cost MOOC. Kodu, a visual programming lan-
guage, and Minecraft are easy and fun to students in schools. Videos of Microsoft 
projects such as Kinect for Sign Language Translation and Skype Translator have 
been used as examples to explain why computing is important to all disciplines, not 
just computer science. Second, China’s Ministry of Education and Microsoft jointly 
announced requests for proposals (RFP) on computational thinking for College 
Computers (CT for CS0). Through the 2014 RFP, Microsoft funded 21 out of 99 
submitted proposals. Their task was creating MOOCs as part of, or as a whole, CS0 
course based on computational thinking. The first MOOC was completed in April 
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2015, and 11 more went online by the end of 2015. Through the 2015 RFP, Microsoft 
funded 26 more proposals, among which ten were MOOCs and others were plans to 
disseminate the computational thinking concept nationwide or to help CS0 reform 
in less-developed provinces.

“CT for CS0” has taken off rapidly in China. However, in a country of incredible 
size and diversity, change—especially in education—requires unusual patience and 
persistence. Microsoft will continue what has been started. In the meantime, we 
hope to help CS0 reform in China with expanded and additional international col-
laboration so that creative ideas may be exchanged worldwide.

 Case Studies of CT for CS0 in China

We selected four college-level CS0 curricula that were recently developed with the 
concept of computational thinking. They are interesting and unique in different 
ways. The first case is a CS0 course for the deaf. Since sign language logic is very 
different from that of a spoken language, how to teach CS0 to deaf students remains 
a challenge. The second case is a popular MOOC on C Programming. It teaches not 
only programming but computational thinking behind programming. The third case 
is also a popular MOOC on College Computers, which can be easily converted to fit 
students of various disciplines and levels. Tens of thousands of students benefit from 
its MOOC + SPOC model. The fourth is a CS0 designed for students majoring in 
health and medicine.

 CS0 for the Deaf

Professor Hanjing Li of Beijing Union University specializes in natural language 
processing (NLP). She dedicates herself to helping the deaf to communicate with 
others. In 2012, she collaborated with Microsoft Research on the Kinect for Sign 
Language Translation project where signs were captured by Kinect and translated 
by computers into speech. An informative video about the technology is available 
on the web (http://www.youtube.com/watch?v=HnkQyUo3134). Professor Li 
started to work on a new project at the School of Special Education in 2014. She 
designed a new course called “The Art of Computational Thinking” that teaches 
deaf students about computing and programming.

“Deaf students in China may be different from those in more developed coun-
tries, (Li 2015, personal communication)” says Professor Li. Once a child is diag-
nosed of a hearing impairment in an affluent and technologically advanced country, 
parents may work with the community to help the child develop both speaking and 
signing capabilities so that the child may be better integrated into society. Adversely, 
not all deaf children in China, especially those from rural areas, receive such help. 
Many deaf students in Chinese universities do not speak and perform only signs, as 
they may feel isolated by mainstream society.
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The logic of image-based sign language is quite different from that of a spoken 
language. Deaf students who use sign language only may not understand a simple 
statement, such as “if-then-else.” Hence, teaching deaf students computing is difficult, 
especially where most programming languages are based on a spoken language (i.e., 
English). Dr. Wing touches on another problem, computing is the automation of 
abstractions. Unfortunately, deaf students are prone to be weak in abstractions, 
because sign languages are based on what they “see.” For example, if you ask a deaf 
student who packs his school bag every morning how he packs the bag, you may find 
him unable to describe it orderly, because he does not see the bag. Deaf students cer-
tainly own the ability of abstractions, but this ability has been limited by the language 
and their prior learning experiences. Professor Li taught hearing students College 
Computers before. She even taught literature-major students. Unfortunately, heavy 
frustration exists for computer science professors when teaching the deaf.

For the new course offered to deaf students, The Art of Computational Thinking, 
Professor Li set up a SETT (school-centered, environmentally useful, and tasks- focused 
tool system) framework that suits computational thinking training to the deaf. Firstly, 
she gathered information on the students, their studying environments, and their tasks. 
Secondly, she identified the problems and found traits and needs of the deaf students 
based on information gathered. Thirdly, she suited the traits and needs with the poten-
tial technologies. She then decided to use Scratch by MIT (http://scratch.mit.edu) as a 
main tool for deaf students to build computational logic, in turn bypassing their lan-
guage disadvantage. With Scratch, most deaf students can comprehend core computing 
concepts such as iteration and procedures, which appeared more difficult to them when 
taught in the C language. Students learned by doing. Ninety-five percent of the deaf 
students never having taken any computer courses built an arithmetic calculator within 
ten learning hours, plus ten working hours. The calculator was the most complicated 
system they had ever built. Professor Li remarked, “After a few projects completed, 
students started to complain that Scratch is ‘childish’ and wanted to try C program-
ming. I was amazed. I had never heard of my students so eager to learn C” (Li 2015, 
personal communication).

Professor Li also observes that although Internet and mobile technologies help 
the deaf to receive more information than ever before, information appears more 
fragmented to the deaf than to the hearing. “Computational thinking may assist the 
deaf to connect the fragments. That’s why I started this course and feel good about 
it. (Li 2015, personal communication)” What we learn from this uncommon case 
might be picking the right scenario for your students. While it is important that all 
students learn to think computationally, CS0 is never a one-size-fits-all solution.

 Computational Thinking in Programming

When the teaching committee started to study computational thinking years ago, 
there was a doubt: Does computational thinking really exist? If it does, how do we 
teach thinking? Some professors believe that teaching someone to think like a 
computer scientist should be similar to teaching a computer scientist, only that we 
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follow what Confucius said in the Analects, “Teaching students in accordance with 
their aptitude.” Traditional computer courses are designed for CS students who 
may have sufficient mathematical background and interests in technical details. 
Teaching non-CS or even non-STEM students, we need not dramatically change 
the course but change the way we teach.

Along that line of thought, some professors embed computational thinking in 
existing computer courses instead of creating a new course called computational 
thinking. A MOOC in C Programming offered by Professor Kai Weng of Zhejiang 
University attracts tens of thousands of students. The majority is college students of 
a non-CS major. Professor Weng believes that computational thinking is not just 
about programming, but programming remains an effective way to learn computa-
tional thinking. Weng asks, “Do we teach programming as a tool to build things or 
a way of thinking” (Weng 2015, personal communication)? Professor Weng recalled 
when he learned coding decades ago in a DOS or UNIX environment, students built 
working software such as a tic-tac-toe right away. Now few people do that with pure 
C anymore. Why do we still teach C then? There are two major reasons. For CS and 
some engineering students, programming lays the foundation for the next comput-
ing courses. For others, programming sharpens their thinking. Most people inter-
ested in the Hour of Code are probably doing so for the latter reason.

Thus the question remains of how to teach computational thinking in a program-
ming course? Professor Weng gives the following code as an example:

Y = X × 3;  //A student defines an equation, Y equals X times 3.
X = 5;  //He assigns X as 5.
Print Y; //Then he believes Y must be 15.
It seems natural that we first define an equation, give the input, and then get a 

correct output. However, a computer does not think that way. If X is not assigned a 
value before the “Y = X × 3” statement, Y is undefined. With this common mistake, 
Professor Weng may explain to students how a computer and its registers and arith-
metic logic unit (ALU) work and why computer scientists must communicate with 
computers with strict procedural consistency.

Another example is that many students could not understand “Y = Y + 3,” which 
is obviously incorrect algebraically. Students learn mathematical or logical thinking 
before computational thinking. Hence, concepts like assignment, recursion, and 
procedures are all new to most students who learn programming for the first time. If 
an instructor is good at giving examples and analogies, a programming course may 
cover most core concepts in the Basic Requirements.

Professor Weng launched his most popular programming MOOC in China in 
early 2015. “MOOC fits the nature of Chinese students who are often shy to ask 
questions in class, (Weng 2015, personal communication)” he says. Weng thus finds 
students posing tons of interesting questions in the discussion forums. For example, 
experienced programmers may use ‘ø’ to distinguish zero from the letter ‘o’. Some 
professors are so used to such notation that they forget it is a CS0 class. Professor 
Weng did not pay attention to that for years until a student asked the question online, 
“What does that ‘theta’ mean?” Students taking the MOOC are more diversified 
than those in a classroom. Through thousands of discussions online, professors get 
feedback from students of various disciplines and backgrounds.
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Learning programming itself is a journey of abstraction and automation. We 
abstract a real-world problem into a set of symbols and descriptions. We design 
algorithms so that they can be computed automatically. Programming is a straight-
forward way to introduce computational thinking, but how to keep the course inter-
esting is a real challenge.

 Most Popular CT for CS0

Possibly, the most popular computational thinking course in China is a MOOC by 
Professor Dechen Zhan of the Harbin Institute of Technology called “College 
Computers—An Introduction to Computational Thinking.” Based on a summary at 
the beginning of 2016, around 180,000 students registered and 20% of them com-
pleted the course with all tests and requirements since the course was put on iCourse 
(i.e., the largest MOOC platform in China) 20 months ago. In the most recent term 
alone, it attracted 63,000 students and accumulated 610,000 entries of online dis-
cussions. Success of the course is due in part to the “MOOC + SPOC (small, private 
online courses)” model. Twenty-eight universities have created their SPOCs based 
on Professor Zhan’s MOOC.

Scope of College Computers is depicted by Professor Zhan as a “tree of comput-
ing” shown in Fig. 1. His MOOC course covers the whole space in detail. Roots of 
the tree contain fundamental operations such as 0/1, procedures, and recursions. The 
trunk depicts different levels of architectures from the basic von Neumann machine 
to personal, distributed, and cloud computers. Branches with two colors stand for 
two sides of computing—algorithms and systems. Leaves represent various disci-

Fig. 1 Tree of computing
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plines connected to computing. Problems absorbed from the leaves are “abstracted” 
into algorithms and “automated” by systems before results are returned. For exam-
ple, we model a problem (air pollution) and then build a system (air pollution pre-
dictor) for the problem. Modeling is abstraction, and the system is automation. 
Layers of arcs position a topic closer to roots (more computer science) or leaves 
(more application). Taking the network as an example, machine network is a typical 
CS topic, but networked society is closer to applications. With a MOOC + SPOC 
model, Professor Zhan builds the MOOC as a superset of College Computers where 
his SPOC partners may draw materials from. Tree of computing is that superset.

“Introduction to Computational Thinking” includes four parts that coincide with 
the tree of computing. The first part, computing and procedures, consists of sym-
bols, computations, structures, procedures, recursions, and systems. They are the 
fundamental concepts in abstraction and automation. The second part, computer 
systems, introduces how a computer works and how to program it. The third part, 
algorithmic thinking, covers the areas of modeling, algorithms, and data structure 
and controls. The fourth part is thinking by data and by network; by data means 
thinking from data acquisition and data management to data analysis and applica-
tions. “By network” means thinking from a physical network, information network, 
and an interactive network to a societal network. The four parts are divided into 13 
chapters. More than 150 videos, around 10 minutes each, are included in the MOOC.

The course is lively with a plentitude of examples and analogies. When Professor 
Zhan talks about symbolization and abstraction, he uses Yin and Yang found in an 
ancient Chinese book, Yi-Jing (a.k.a., Book of Change), to depict 0 and 1. It is well 
known to Chinese students that Yin and Yang deduces Eight Diagrams (two to the 
third power) and further deduces 64 diagrams (two to the sixth power). 0 and 1 do 
the same. With binary numbers in mind, students learn Boolean algebra where sym-
bols (Yin and Yang) are computed. Boolean can be implemented by electronic gates, 
from the simplest AND/OR logic to very complex integrated circuits. The lecture 
goes smoothly from something observable in nature like Yin and Yang, all the way 
to the most complicated circuitry. The digital world becomes an abstraction of the 
world they are familiar with.

“College Computers can be interesting to all students regardless of disciplines.” 
As an evangelist, Professor Zhan convinces universities and professors to build 
SPOCs on his MOOCs. He also encourages them to share contents with more teach-
ers. Professor Zhan says, “Six million students in China take College Computers 
each year. Our MOOC covers only 1%. There is a lot more to be done” (Zhan 2016, 
personal communication)!

 COOC for Health Computing

Professor Ning An of Hefei University of Technology teaches COOCs—
Collaborative Open Online Courses. He has adopted the concept to develop an 
online course called “Health Computing,” which is a CS0 for health-related majors 
including the medical school.
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“Health Computing” is special in many ways. First, Professor An and his 
collaborators study health-related cases and find out the roles computers play. He 
believes the purpose of College Computers is motivating students to explore the 
relevance between computing and their own disciplines. For example, not many 
people know that Florence Nightingale was not only “The Lady with the Lamp” but 
also a statistician. As a pioneer in the visual presentation of statistics, Nightingale is 
credited with developing a form of the pie chart now known as the polar area dia-
gram, or the Nightingale rose diagram. After telling the story with a documentary 
video, Professor An teaches students how Nightingale turned a real-world problem 
into a set of numbers and symbols (abstraction) and how she presented complex 
statistics with pie charts (visualization). He asks, should there be a computer, what 
could she have done better (automation)?

Secondly, Professor An builds the MOOC collaboratively. He not only collabo-
rates with professors of the medical school and of other universities but also col-
laborates with students. Those who take the class this year are asked to study more 
health-computing cases and hand in videos as term projects. Best videos are awarded 
with prizes and included in the MOOC for next terms. One of the included videos 
made by students this year is a study of flu trends by Internet search, a good example 
how computing changed healthcare. Thirdly, although case studies often interest 
students, it may overlook the need of some students who want to know more about 
computers. Hence, the MOOC provides links for those students to find more knowl-
edge and information on the Internet.

Finally, Professor An hopes his students could soon work on medical projects 
collaboratively with Microsoft HoloLens. That will greatly advance the spirit of the 
COOC and help to show health-major students the importance of using computers.

 Conclusions and Future Work

When the Ministry of Education of China was reforming collegiate computer edu-
cation, the timing of computational thinking concepts was optimal. College 
Computers, a course taken by six million students a year, went through a paradigm 
shift from tool-focus to thinking-focus. In the past two years, the MOE teaching 
steering committee for College Computer Courses and Microsoft Research jointly 
funded professors who pioneered computational thinking curriculum and shared 
them online. A few hundred thousand students took the MOOC voluntarily in less 
than a year.

We hope to equip the whole young generation of Chinese with computational 
thinking. How do we move forward from here? First, pioneering college-level cur-
riculum on computational thinking has succeeded in China for many reasons, 
including charismatic instructors, additional resources from the MOE and Microsoft, 
and the advantage of the MOOC platform. Our next step and challenge is to popu-
larize the work. The teaching committee is holding workshops in various provinces 
and cities, especially in less-developed areas to promote the Basic Requirements 
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and share best practices. Professors are encouraged to build SPOCs around MOOCs 
and share their materials online. It is also important in China to get support from 
university executives (e.g., president and provost). Such sustenance helps the morale 
of CS0 instructors.

Second, there are various ways to teach computational thinking in college. The 
existing college computer courses, including those shown in previous sections, are 
not as mature as General Physics or Advanced Mathematics that has undergone 
through decades of practices and improvements. The CACM article by Dr. Wing 
and the Basic Requirements by the MOE outline the core concepts of a fundamental 
computer course, but how to convey the concepts remains an open question. Our 
next step is to encourage more professors to innovate computational thinking cur-
riculum and to share their curriculum with detailed feedback from students. It takes 
time to stabilize the contents of a course.

Third, learning computational thinking in college is probably too late. Just as 
with math and physics, computer education should start early. Although some urban 
K-12 schools in China offer computer courses, most teach basic computer tools such 
as e-mail, browser, PowerPoint, and Word. Our next step is to call the MOE’s atten-
tion to computational thinking for K-12 and support teachers developing curriculum 
for various grades of students. Computational thinking for all is a very long journey. 
It will require patience and persistence. But China is invested in computational 
thinking, as demonstrated by the progress made in the past few years with CS0.
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Abstract The computer age is changing the face of education. To realize the full 
potential of such change, we need to move beyond a simple adoption of IT in the 
classroom. Students will benefit most when they learn to use computational think-
ing (CT) while applying the principles and best practices of computing to solve all 
sorts of real-world problems. This message (Wing, Communications of the ACM 
49(3):33–35, 2006) was pioneered by Jeannette Wing, Corporate Vice President at 
Microsoft Research, which is also the main theme of the Computational Thinking 
Forum held in Seoul, South Korea.

There has been a big step forward through the collaborative efforts of many, 
including the Korean Information Science Education Federation, governors, policy 
makers, faculty members, teachers, and industry leaders such as Microsoft. The 
Korean government and its Ministry of Education (MoE) decided to include soft-
ware education to be compulsory at K-12 schools by 2018, with the Korean MoE 
also having operated pilot programs at 72 schools nationwide in 2015.

This article reports the showcase projects for K-12 and higher education pre-
sented at the aforementioned forum.

Keywords Computational thinking • Computer science education • Software 
education

 Forum Overview

It is incontrovertible that technology is reshaping the face of education. Students 
throughout the world today conduct research online and complete their school 
assignments digitally. Many students have access to laptops or tablets provided by 
their school. However, to truly realize the full educational power of the computer 
age, we need to move beyond teaching component information technologies, such 
as using or writing software tools, toward problem- or project-based computational 
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thinking (CT), of applying the principles and best practices of computing to solve a 
vast array of problems. This has been the message that Jeannette Wing, Corporate 
Vice President at Microsoft Research has pioneered (Wing, 2006).

This was also the message that Jeannette Wing brought to the Computational 
Thinking Forum held in Seoul, South Korea. A pioneer and tireless advocate of 
computational thinking, Wing maintains that CT should be taught for everyone, and 
not just computer scientists. CT is a concept universally applicable in designing 
ways to approach problems and a fundamental, basic ability that all people will be 
using, just as everyone learns to read, write, and multiply.

Recently, there has been remarkable progress through the collaborative efforts of 
many, including the Korean Information Science Education Federation, governors, 
policy makers, faculty members, teachers, and industry leaders such as Microsoft. 
The Korean government and its Ministry of Education (MoE) decided to include 
software education to be compulsory at K-12 schools by 20181. The Korean MoE 
also successfully executed pilot programs at 72 schools nationwide in 2015. At the 
forum, showcase projects for K-12 and higher education were presented: including 
Yonsei University on CT curriculum development and teaching for higher educa-
tion, UN’s sustainable development goal with KODU—Girl’s Coding for K-6, Best 
Middle School on CT for K-9, etc.

The article reports and showcases the projects presented at the forum.

 Sessions

The first session discussed a drive from the government’s viewpoint, which requires 
computer education in K-12 curriculum. Table 1 presents their guideline of new 
computing curriculum: Compared to the past curriculum, focused on computer lit-
eracy, such as teaching how to use software tools or programming languages, this 
table emphasizes on new areas of culture, data and problem modeling, and system 
designs. This was presented in the talk of Computer Science Education in Korea. 
Table 2 summarizes the detailed requirement of K-12 curriculum effective 2018.

The second session discussed the showcase of university-level curriculum being 
designed at Yonsei University. A critical distinction of this development is that 
freshmen of all majors are educated together under the universal residential college 
(RC) program, which is aligned with the philosophy of computational thinking for 
everyone. This new platform is unlike the past curriculum which was restricted to 
computer or related majors. This presentation discusses the first pilot offering in the 
fall semester of 2015 taken by nonmajor students with nine different majors. The 
semester consists of 16 weeks of teaching, covering ten topic areas such as compu-
tational thinking in daily life, problem solving, algorithmic thinking, modeling 
solution, and concurrent activity. These topics invite students to observe daily activ-
ities, such as using the ATM or using the gasoline pump, to abstract observations, 

1 http://www.koreatimes.co.kr/www/news/tech/2015/10/133_188285.html
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and find repetitive or control structure. Term projects include building conversa-
tional AI using open-source APIs. Further details can be found at http://www4.yon-
sei.ac.kr/fresh/ct/. Advanced courses designed for computer and related majors are 
under preparation.

The third session showcases the elementary school curriculum using Microsoft 
Kodu. Kodu is one of the educational programming languages, from which students 
can express and explore fundamental computer science concepts (Stolee et  al., 
2011). In this curriculum, student attentions are drawn into worldwide challenges, 
and they build Kodu games for attracting others’ attention to the problem.

For example, this curriculum inspires students with a UN sustainable develop-
ment goal, such as eliminating hunger or gender inequality. This provides a very 
general platform for elementary school students to come up with real-life solutions 
for the problems that are seemingly unrelated to computers. Once problems and 
solutions are identified, such as bringing awareness to widely adopted prejudices 
leading to gender inequalities, they are abstracted into a computer program. In this 
process, a complex real-life problem, such as gender inequality, is abstracted into 
Kodu characters and for designing the movement of characters and designing the 
game algorithms to decide the winner, automation approach has been used. A class-
room project of an Xbox game based on Kodu (MacLaurin, 2011) was presented in 
this talk, where players can shoot down prejudices in the game. More examples can 
be found at http://elena.kr.

The fourth session shares the proposed structure of K-12 curriculum for middle 
and high schools, as summarized in Table 1. The emphasis again is not computer 
literacy but starting from real-life problems such as finding a desirable route from 

Table 1 Detailed structure of K-12 curriculum

Area Topics Middle school High school

Information culture Information society, 
ethics

Privacy, copyright Cyberethics

Information and 
data

Digitalization, data 
management

Digital representation Data structure

Problem-solving 
and programming

Abstraction, 
algorithm, 
programming

Problem 
understanding, 
algorithm 
understanding

Problem decomposition 
and modeling, problem 
analysis

Computing 
systems

Operating system, 
physical computing

Computing devices, 
sensor-based 
programming

Networking, physical 
computing

Table 2 Summary of K-12 
curriculum requirement 
effective 2018

Year Hours

K5–6 Elective (17 credit hours/year)
K7–9 Required (34 credit hours/year)
K10–
12

Elective

Computational Thinking: Efforts in Korea
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home to school, from which students identify the types of information needed and 
discuss how such information can be collected and digitized using computing tools. 
This problem is then abstracted and built into an efficient algorithm, by finding 
repetitive structures desirable for computers.

The last session was a panel discussion on the theme of Development and 
Improvement of Computational Thinking for Education. The questions raised in this 
session were the following:

• How is CT taught now? What are the road blocks?
• How should it change in the next 5 years? What are the steps we should take?

Regarding the first question, panelists mentioned an initial divide of interests and 
backgrounds. This suggests that some students are highly motivated, while some are 
not. Curriculum design should consider promoting the interest of all participants, 
especially those initially lacking the interest or backgrounds in computing. An edu-
cator from a middle school reported the increased motivation over the years of CT 
education, as well as the positive effect of increased parental participation in the 
student project showcase.

Regarding the second question and the future, educators shared the need of a 
sharing platform for exchanging the best practices. This article or the forum dis-
cussed can be one such venue. Our community’s next steps should be to consider 
other forms for releasing and sharing of learning experiences. Another aspect 
regarding the direction of the future was the emerging interest and importance of 
machine learning in the area of computing and beyond. It has become (and is 
becoming more so) a common abstraction for solving both computing and noncom-
puting problems. The needs to raise the importance of abstracting problems with 
machine learning computing in mind were also discussed.

 Conclusions

This article discusses the Korean government’s academic efforts to teach CT for 
both computer and general education. We then presented the showcase projects 
ranging from K-12 education to university teaching, which were discussed at the 
Computational Thinking Forum held in Seoul, South Korea.
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Abstract The authors of this case study examined the transformation of a suburban 
Pittsburgh school district curriculum from traditional to one that includes 
computational thinking (CT) concepts and practices for all students. They describe 
the district model that guided the curricular transformation, implementation of CT 
lessons and processes at all grade levels, and metrics used to evaluate student per-
formance in CT activities. Four themes emerged as critical factors for successful 
application of the district’s STEAM Studio district-wide integration of CT:

• First, school district reform was aligned with regional efforts to improve K-12 
learning through CT initiatives.

• Second, integration of CT built upon effective teaching and learning practices 
across all core content areas.

• Third, research partnerships helped to identify continuous improvements in CT 
implementation.

• Fourth, changes to existing faculty positions, student schedules, learning proj-
ects, and school spaces were necessary and were customized for this district CT 
implementation plan.
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 Introduction

This case study examines the transformation of a suburban Pittsburgh school district 
curriculum from traditional to one that includes computational thinking (CT) 
concepts and practices for all students. While integrating CT concepts and pro-
cesses across all grades and disciplines, the district that is the focus of this study has 
experienced a steady and positive increase in student achievement. Beginning in 
2015 and continuing in 2016, this district’s student reading and mathematics annual 
state test scores were the highest in Southwestern Pennsylvania. This interpretive 
study describes the district model that guided the curricular transformation, explains 
how this model was used to guide implementation of CT lessons and processes at 
various grade levels, and identifies the metrics and measures used to evaluate stu-
dent performance in CT activities.

 Coding as a Pathway for Building a Human-Centered Design 
Curriculum

Public schools around the world are adding coding to their list of primary literacies 
(Pretz, 2014). Students preparing for twenty-first-century high school graduation in 
countries like England, Estonia, Finland, Italy, and Singapore must know reading, writ-
ing, arithmetic, and coding to earn their high school graduation degree. In the USA, 
President Obama (The White House, Office of the Press Secretary, 2016) announced 
his plan for integrating computer science into K-12 school curriculum, recognizing that 
computer science is a basic skill students need to grasp economic opportunities and 
social mobility. In fact, computer science is the primary driver for job growth through-
out all STEM fields (CSTA, 2013) and also an area where job openings take the longest 
time to fill (Kohli, 2015). A report by the Computer Science Teachers Association 
(CSTA & ISTE, 2011) identifies many of the reasons why most of the public schools 
in the USA have not previously included coding in their core curriculum. Traditionally, 
computer science was not identified as one of the core disciplines, which resulted in 
most schools marginalizing computer science curriculum.

Since computer science and systematic coding are not part of the traditional US 
core curriculum, on a national and local level, there is often confusion about teacher 
certification and licensure requirements for computer science teachers (CSTA, 
2013; Guzdial, 2016). Other challenges that schools must address in order to incor-
porate a rigorous computer science curriculum are enlisting qualified teachers, find-
ing room in the curriculum, funding for the technology required (Internet access, 
personal computer hardware and software), and recruiting students since computer 
science classes are often listed as electives. Another challenge that schools face is 
finding ways to overcome student (and to some extent parent and teacher) stereo-
types about who goes into computer science fields. Women and nondominant or 
underrepresented youth do not often see their counterparts succeeding in computer 
science (Kohli, 2015).

L.F. Ruberg and A. Owens
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The district investigated in this case took on the challenge of preparing all 
students for an innovation-driven economy by building robust career pathways 
and ecologies, which involve computational thinking and coding abilities across 
all disciplines. This study describes the district’s approach to integrating K-12 CT 
curriculum by focusing on kindergarten through senior high’s use of science, tech-
nology, engineering, art, and mathematics (STEAM) problem-solving studios and 
maker spaces. In this chapter, we specifically report research on the following 
questions:

 1. What are the key features of the district model for integrating CT?
 2. How are CT strategies integrated throughout the K-12 curriculum?
 3. How does the district measure student achievement in CT activities?

 Coding as a Pathway for Building a Human-Centered Design 
Curriculum

The human-centered design and problem-solving processes taught to all students 
in the district are an adapted version of the CT model practiced by computer sci-
entists and engineers, which focuses on “creative solutions to problems that some-
one in the world has articulated” (NASEM, 2016, p. 19). In fact, one of the high 
school STEAM design courses emerged from a unique partnership between this 
district, a neighboring district, LUMA [a human-centered design training] 
Institute, EAFab Corporation, and All-Clad Metalcrafters. The CT processes 
embedded into the district curriculum are adapted from the International Society 
for Technology in Education (ISTE) and the Computer Science Teachers 
Association (CSTA) operational definition of CT. The final version of the ISTE/
CSTA definition for CT listed below is the result of survey-based feedback pro-
vided by computer science teachers.

CT refers to problem-solving processes that include (but are not limited to) the 
following characteristics:

• Formulating problems in a way that enables us to use a computer and other tools 
to help solve them

• Logically organizing and analyzing data
• Representing data through abstractions such as models and simulations
• Automating solutions through algorithmic thinking (a series of ordered steps)
• Identifying, analyzing, and implementing possible solutions with the goal of 

achieving the most efficient and effective combination of steps and resources
• Generalizing and transferring this problem-solving process to a wide variety of 

problems (CSTA, 2011)

Computer science is a rigorous discipline that “teaches students to break problem- 
solving into small chunks” (Kohli, 2015, p. 3). Programming, according to Resnick 
et al. (2009) and diSessa (2000), involves the creation of external representations of 
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problem-solving processes, and programming provides opportunities to reflect on 
your own thinking, even to think about thinking itself. From the MIT Media Lab 
perspective, digital fluency requires not just the ability to chat, browse, and interact 
but also the ability to design, create, and invent with new media. To do so, you need 
to learn some type of programming.

How are these interpretations of CT integrated into the district curriculum plan? 
The district curriculum incorporates the CT emphasis on problem-solving as it 
reflects the ability to think logically, algorithmically, abstractly, and recursively 
(ISTE & CSTA, 2011; NAS, 2010). CT represents the ability to take large abstract 
ideas and break them into smaller, easier to solve, problem sets. Jeannette Wing 
(2011), Corporate Vice President of Microsoft Research, suggests that CT is a 
problem- solving approach that works across many disciplines, noting that computer 
modeling, big data, and simulations are used in everything from textual analysis to 
medical research and environmental protection. The next section describes the 
shared vision guiding the district integration of CT concepts and processes.

 The District STEAM Studio Model

The foundation of the district vision is based upon the integration of a science, tech-
nology, engineering, art, and mathematics (STEAM) curriculum. Since 2010, the 
district has executed this vision by systematically incorporating engineering and 
design problem-solving as an application of CT into K-12 education. The district 
definition of CT includes three overlapping components: (1) a specific problem- 
solving process, (2) characteristics of successful problem solvers or habits of mind, 
and (3) career vision.

 Problem-Solving Process

The design problem-solving process used in this model is the process practiced by 
computer scientists and engineers, which is “the ability to think logically, algorith-
mically, abstractly, and recursively” (Gusky, 2014, p. 1) and is the foundation for 
the problem-solving process component of the STEAM Studio model. This process 
is practiced by computer scientists and engineers and is reflected in the ability to 
take a large abstract idea and break it into smaller, easier to solve problem sets. “We 
want to create students who will be successful in the world,” Superintendent Dr. 
Bille Rondinelli explains. “It’s not that we have veered away from traditional edu-
cation, but we have built in a research and development space with these labs and 
STEAM coordinators that allows us to change and adapt as the world changes” 
(Berdik, 2015, p. 4).

The design problem-solving process approach is multifaceted and encompasses 
many different tools, such as Hummingbird Robotics, VEX IQ, 3D printing, LEGO 
Robotics, Raspberry Pi, Scratch, and other emerging programmable technologies. 
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The district model posits that the ability to program provides important benefits that 
greatly expand the range of what students can create and ways they can express 
themselves with the computer. Being able to program also expands the range of 
what students can learn. In particular, coding enhances CT by helping students learn 
important problem-solving and design strategies (such as modularization and itera-
tive design) that carry over to nonprogramming domains.

 Habits of Mind

The second aspect of CT in the STEAM Studio model includes the integration of 
habits of mind training as defined by Costa (2008) for both teachers and students. 
Key characteristics of habits of mind problem-solving include confidence dealing 
with complexity, persistence, a tolerance for ambiguity, and the ability to communi-
cate and work well with others. Promoting a culture that considers habits of mind—
being reflective about one’s thinking and ways of approaching problem-solving—is 
an integral part of the district approach to teacher training and student learning of 
CT processes. Administrators, teachers, and students learn about and learn to be 
aware of and discuss which of the habits of mind characteristics are most critical to 
their problem-solving in different situations.

The Scratch block-based programming language was the initial coding 
application that kicked off the integration of CT at the K-8 level. The research 
and educational guidelines bundled with Scratch provided a foundation for inte-
grating CT practices with clear educational alignments to standards and curricu-
lar goals. Guidelines for educators created by Brennan (2011) and Resnick 
(2007) gave a definition of CT that includes these three dimensions: computa-
tional concepts, the concept designers employ as they program; computational 
practices, the practice designers develop as they program; and computational 
perspectives, the perspective designers form about the world around them and 
about themselves. These three dimensions are useful in helping to describe how 
coding helps to actualize the STEAM Studio model with its focus on CT prob-
lem-solving processes and habits of mind ways of thinking. The dispositions, 
practices, and perspectives outlined in Scratch (Brennan, Balch, & Chung, 
2014) and ScratchJr (Bers & Resnick, 2016) support materials that helped teach-
ers promote strategies for students to think about their thinking and metacogni-
tive processes.

 Career Vision

The third component of the district STEAM Studio model is career vision, which is 
embedded in all STEAM initiatives to give students a sense of awareness of career 
contexts and understanding of how careers reflect their learning. The career vision 
component focuses on giving students an awareness of career contexts where 
problem- solving processes, dispositions, and attitudes apply. This helps students 
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understand and envision how different careers and career pathways are related to 
their learning through problem-solving activities. The district integrates career 
vision connections for students through project-based learning as well as through 
simulations within the curriculum. Support for the district career contexts is provided 
through a partnership with the LUMA Institute whose human-centered design think-
ing practices promote a discipline of developing solutions in the service of people 
(Luma Institute, 2012).

Innovation is another feature of the district integration of a career vision as a key 
component of their CT alignment. The STEAM Studio model of implementing CT 
applies a view of innovation that goes beyond the process of just creating a creative 
solution to a problem. In the district model of CT, students are challenged to trans-
late their idea or invention into a good or service that addresses a social need or 
proposes a marketable product. Students are then guided to make their innovation 
replicable, to show what specific need their solution satisfies, and to project an esti-
mated economical cost. More information about how the district is expanding entre-
preneurship education as part of its integration of CT in a later section describes 
how the STEAM Studio model is implemented.

Thus, the vision for the youngest to graduating senior student includes a blend-
ing of CT, the process of working effectively with others, and the ability to be inno-
vative with computer-based technology. Achieving these three abilities is considered 
in the district academic plan to be as important to children’s future as the more 
familiar basic literacies of reading, writing, and mathematics. The district method 
for integrating new coding-focused curriculum follows the existing interdisciplin-
ary STEAM approach. The first step is to develop and test incubator projects and 
prototypes. Next, projects that are viewed successful and relevant are integrated into 
the curriculum alongside professional development experiences. The STEAM 
Studio model provides students with experiential learning activities that promote 
CT both within the curriculum and in after-school experiences to transform teaching 
and learning.

 Method

This case study examines how one school district integrated CT across 
kindergarten through 12th grade. Analysis of this case will provide a description 
of the overarching model that guided this CT district-wide alignment as well as 
specific curriculum strategies. The results will suggest strategies that can be 
applied to other districts. This case analysis provides a means for understanding 
issues involved in implementing such a wide-ranging curriculum transformation 
and will suggest implications for teacher training and areas for further educational 
research.

The school district featured in this case study illustrates how a K-12 curriculum 
can successfully meet core content requirements while also integrating computer 
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science as a rigorous discipline for the youngest through oldest students. The setting 
for this case-based research is a suburban, public school district located 14 miles 
(23 km) southwest of Pittsburgh. As of 2016, the district enrollment was 3044 stu-
dents. Every student is listed as having access to high-speed broadband. This school 
reports a 1:1 student to device ratio (Digital Promise, n.d., b), with 66% of K-12 
students having access to a personal school-provided device.

The district operates four schools: the high school (9–12th), middle school 
(6–8th), intermediate school (3rd–5th), and elementary school (K-2nd). All four 
schools sit on a single campus that was farmland in the 1970s. The intermediate 
school was put to use in time for the 2013–2014 school year. This is a relatively 
affluent district compared to others in Pennsylvania. About 12.7% of its students 
are eligible for free or reduced-price lunch (PSPP, 2016) compared with the state 
average of 40%. The median household income for families living in this district is 
85% higher than the average for Pennsylvania districts statewide (U.S.  Census 
Bureau, 2013).

Understanding the case study sample group also requires understanding the infra-
structure required to support the STEAM Studio curriculum framework as of 2015. 
The district invested in computing devices and broadband Internet both inside of 
school to support its integration of CT activities and practices. In 2010–2011, a new 
technology infrastructure was put into place. The six campus buildings (high school, 
middle school, intermediate, elementary, administration, and pupil services) are each 
connected to the high school main data closet through a 10-gigabyte fiber connec-
tion. The broadband Internet speed for the district is 500  megabytes per second 
download and 500  megabytes per second upload. Each individual building has a 
10-gigabyte fiber connection running to each remote data closet. All desktop com-
puters are connected to the network with a 1-gigabyte connection. Every network 
port within the district is a 1-gigabyte connection. All buildings have Wireless N 
access with data rates as high as 600 mbps. The district is in its first year of a 4-year 
one-to-one laptop implementation. Every student in first and second grade receives 
an iPad, while students in grades 3–8 receive HP Revolve laptop tablets. High School 
students will start using Revolve laptops in the fall of 2016. During the past 5 years, 
the district has leveraged grant funding, new school construction, and creative sched-
uling to give nearly 3,000 students, from kindergarten through 12th grade, dedicated 
spaces for hands-on projects to support coding, 3D printing, computer- aided design, 
and robotic activities as part of the school curriculum.

Table 1 explains what data were used to address each of the three research 
questions. The survey and interview data about specific coding projects include 
student and teacher reflections. As this case study will show, many factors are 
involved in integration of CT. A mixed method research design was applied to study 
this case. Research questions guiding this case study were:

 1. What are the key features of the district model for integrating CT?
 2. How are CT concepts and practices integrated across the curriculum?
 3. How does the district measure student achievement in CT activities?

A Future-Focused Education: Designed to Create the Innovators of Tomorrow
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 Analysis and Discussion

This section applies data collected from teacher and student focus group interviews, 
student surveys, student assessments, and observations of implementation of CT 
activities in traditional classes and STEAM Studio labs to address each of the three 
research questions. The research questions guided our investigation of how the 
STEAM Studio model has been implemented and how this model has impacted K-12 
curriculum and ways of documenting student achievement.

Table 1 Alignment of research questions with data and data analysis

Research questions Data sources Data analysis

1. What are the key 
features of the 
district model for 
integrating CT?

• CSTA (2011) CT guidelines
• ISTE (2011) CSE standards
• Costa (2008) Habits of Mind
• Brennan and Resnick (2012) 

Frameworks for Studying and 
Assessing CT

• Wagner (2012) Creating 
Innovators

• District website
• District profile on Digital 

Promise

Identifies:
• Guidelines for district-level 

decisions
• Processes used to engage 

faculty, students, parents, and 
community partners

• Plan that emerged for 
curriculum transformation

2. How are CT 
strategies 
integrated 
throughout the 
K-12 curriculum?

Description of CT implementation 
steps and processes w/ 
examples of:

• Classroom-based CT activities
• Tools, resources, and external 

partners
• Resulting institutional and 

organizational changes

• Interpretive analysis yields a 
historical timeline of the 
sequence of curricular events 
at the classroom, grade, 
school, and district level

3. How does the 
district measure 
student 
achievement in 
CT activities?

Descriptions of:
• Learning artifacts that 

represent CT process and 
project outcomes

• Student accomplishments by 
students, teachers, and others

• Results from instruments 
designed to assess student 
proficiencies with CT practices

• New metrics created through 
partnerships and grant 
initiatives—i.e., to measure 
student design and leadership 
abilities

• Results from student and 
teacher interviews and surveys 
about CT processes. Results 
from standardized tests during 
time of CT implementation

• Identifies what CT metrics and 
artifacts of learning look like 
across disciplines, activities, 
grade levels, and formal as 
well as informal learning 
contexts

• Describes how metrics can be 
used in individual and group 
learning environments
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 What Are the Key Features of the District Model 
for Integrating CT?

By following the existing interdisciplinary STEAM approach, developing and 
testing incubator projects or prototypes, and then integrating into the curriculum 
alongside professional development experiences, the STEAM Studio model is 
providing students with experiential learning activities that promote CT both within 
the curriculum and in after-school experiences to transform teaching and learning. 
This model is being developed to address the district STEAM Studio vision to:

 1. Facilitate learning in innovative “studio” contexts to foster creativity and innova-
tion and student development that prepares students for emerging STEM/STEAM 
and information and communication technology careers.

 2. Promote an engaging and capacity building learning culture where teachers are 
prepared to utilize and integrate new technologies in ways that support their 
STEM/STEAM curriculum content goals and understanding of STEM/ICT 
careers.

 3. Address the need to expand and update the K-12 curriculum to include cross cur-
ricular CT experiences and rigorous computer science course offerings within an 
administrative environment that includes funding shortfalls and limited teacher 
preparation for the workplace STEM/STEAM computational skills and 
abilities.

 4. Support the existing school goals for academic, artistic, and individual student 
development.

Using tools like Scratch with students in elementary through high school gives 
young learners the ability to design their own interactive media. Brennan and 
Resnick (2012) also propose that teaching computer science processes and practices 
with tools like Scratch fulfills the constructivist approach to learning that calls for 
engaging students in learning through design activities (Kafai & Resnick, 1996).

The online community includes numerous social networking components support-
ing these opportunities:

• Interacting with and providing feedback to others.
• Members can examine a project’s source code to study how it was created.
• Looking at how the sprites and blocks have been connected.

This case study examines the STEAM Studio model implementation of CT as it 
applies essential components of the constructivist view of learning to district-wide 
integration of a CT approach to teaching and learning. In this context, students are 
given tasks as problem solvers to apply their coding skills as authors, designers, and 
constructors of knowledge. As explained by Jonassen and Reeves (1996), “Learners 
must function as designers using technologies as tools for analyzing the world, 
accessing information, interpreting and organizing their personal knowledge, and 
representing what they know to others” (p. 694).
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The process of embedding CT in the curriculum has evolved to encompass:

 1. The teacher vision of meaningful integration of learners as problem solvers and 
knowledge creators

 2. Strategically planned incubator projects
 3. Project-based educational research studies funded by collaborative grant 

initiatives that measure how STEAM Studio projects and classroom-based CT 
lessons impact student learning

 4. Curriculum mapping processes that ensure vertical and horizontal alignment of 
the K-12 curriculum

 Moving from Practice to Policy

CT started as an organic grassroots program and then became a full-scale move-
ment. As this happened, the district moved from practice to policy and created an 
environment to accelerate and sustain innovation. To do this, they made the follow-
ing organizational changes by hiring a director of technology and innovation as well 
as STEAM teachers to support interdisciplinary, hands-on activities for grades K-2, 
3–5, and 6–8. At the same time, traditional teaching positions were modified or new 
positions added to create more depth and vertical alignment so that every student 
received CT learning experiences and learned about engineering and human- 
centered design.

For the last 6  years, the district has been implementing a K-12 vertically 
aligned CT initiative. As the program matures, the process of vertical alignment 
creates considerable movement and requires the STEAM team to stay connected 
and communicating, because lessons formerly taught in grades 3–5 are now being 
introduced in grades K-2, creating an opportunity to develop deeper critical think-
ing experiences for grades 3–6 and beyond. Below are a few examples to show 
how incubator and pilot activities have moved from practice contexts to fully inte-
grated curriculum and policies. Figure 1 shown below provides a visualization of 
the flexible tension and ongoing movement that is needed to match STEAM 
Studio activities with student CT abilities and ever-changing programmable tech-
nology tools.

 The Role of Partnerships in Supporting the STEAM Studio Model

The district has engaged many partners to expand and support CT. The success of 
this initiative can be credited in a large part to the generous support from local foun-
dations and the network of innovators and organizations, which have come together 
to accelerate and sustain innovation in the Pittsburgh region. This unique and innova-
tive approach to education, leveraging the expertise and resources from one district 
to help another, enhances learning for all students.
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The district has been an active member of the Remake Learning Network and has 
benefitted by the many opportunities it provides. The Pittsburgh Remake Learning 
Network is a consortium of innovators and organizations that includes more than 
200 organizations, empowering children and youth by creating relevant learning 
opportunities through the compelling use of technology, media, and the arts. One 
key feature of the network is that it brings thought leaders together in affinity groups 
and in think tanks, which meet monthly to help brainstorm new directions for 
Pittsburgh and to generate and launch new ideas which keep the district future 
focused. A summary of the city’s innovation and performance committees is made 
public for stakeholder participation (Peduto & Lam, 2014).

The district STEAM Studio model has gained support and advice from key leaders 
in CT curriculum initiative inspired by the International Society for Technology in 
Education (ISTE), the Computer Science Teachers Association (CSTA), and sup-
ported by the National Science Foundation (NSF, 2011). This unique and innovative 
approach to education, leveraging the expertise and resources from one district to help 
another, enhances learning for all students and has the potential to transform public 
education in the media used to teach concepts and in the way students demonstrate 
their understanding of key processing and skill development.

Text-based Programming
Block-based Programming

K      1      2      3      4      5      6      7      8      9      10      11      12

Scratch 
Clubs

AP Computer 
Science

Java & Python

Software 
Development Team

Scratch

App 
Inventor 

Club

Family Nights

Robotics

3D Printing

Computer 
Science 

Programming 
Clubs

Key
CT activity integrated into core curriculum

CT activity conducted as an after school 
connected learning experience

Fig. 1 A graphical depiction of the district coding progression from early learner exposure to 
Scratch to high school student college-equivalent CS courses
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 How Are CT Concepts and Practices Implemented 
Across the Curriculum?

The district transformed a traditional education model to one that nurtures and 
develops students to be creative innovative thought leaders capable of leading 
an innovation-driven society (Wagner, 2012). To do this, the district created a 
system or ongoing process, which has become a mechanism for delivering and 
sustaining innovation called the STEAM Studio Model for Innovation. This sys-
tem evolved over a 6-year period and consists of strategic policies and practices 
that, when implemented successfully, changed the district culture in terms of 
faculty assignments, teacher professional development processes, and adminis-
trative services.

 Identifying Lead Teachers

In 2010, the superintendent created a new position, the director of technology and 
innovation, to develop a plan to accelerate and sustain innovation. With support 
from the board of education, the superintendent, school principals, and administra-
tive staff, the director developed a K-12 vertically aligned articulated vision for 
building CT as a new literacy, and the team began to enact the vision incrementally. 
The movement to embed CT into the curriculum started as an organic grassroots 
program, involving a pilot program in specific classes and after-school programs. 
After 6 years, CT has become a school-wide practice and is a key driver of sustained 
innovations in teaching and learning practices at every grade level.

Initially, the district embedded CT in the elementary and middle school cur-
riculum by identifying lead teachers with an interest in exploring the use of 
Scratch block-based programming language in their lessons. The director of 
technology and innovation and her technology assistant worked alongside teach-
ers, employing different instructional strategies based on the teacher’s vision, 
such as designing and co-teaching lessons, modeling classroom management, 
and providing training and support in the classroom. Through this method, CT 
using Scratch block-based code spread from middle school to elementary school 
in art, English, and math classrooms where its use is still growing (Owens, 
Unger, & Wachter, 2014).

It soon became apparent that the amount of professional development required to 
train teachers on CT practices to a level of confidence and mastery on an individual 
basis was unrealistic. Especially since the most important aspect of developing a 
new model of education was to create a mechanism to connect education to the 
rapidly changing innovation-driven economy and allow these changes to be reflected 
directly in a dynamic curriculum model. The curriculum model had to reflect a 
learning environment that nurtured innovation which was flexible, organic, nimble, 
and resourceful. Expecting teachers to learn and experiment with new curriculum 
while trying to fulfill teaching obligations, with limited access to professional 
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development time, became a barrier to scalability. The static traditional education 
model needed to be displaced. The STEAM Studio model offered a dynamic 
approach to school-based learning where innovation could thrive.

To further support implementation and sustainability of the STEAM Studio 
innovative learning experiences, the district hired STEAM teachers for three of the 
four schools, K-2, 3–5, and 6–8, and created or changed existing positions such as 
creating the STEAM literacy teacher in grades 3–5. The grades 6–8 technology 
education curriculum and teacher position were redefined to reflect the updated ver-
tical alignment of CT. Now every student in grades K-8 is engaged in CT, engineer-
ing and human-centered design instruction and problem-solving practices. STEAM 
Studio labs are installed in each building to support CT instruction and related 
hands-on lab activities. The district has applied the STEAM Studio model to guide 
the development of interdisciplinary learning labs for all students. In the STEAM 
Studio labs, authentic problem-solving activities are presented in a constructivist 
pedagogical context to engage students in using what they have learned about CT 
and habits of mind to work in collaborative teams to solve problems including cod-
ing activities.

Tables 2 and 3 provide a timeline and detailed summary of the K-12 curriculum 
transformation described in this section.

 STEAM Teacher/Class Grades K-2

A K-2 STEAM teacher works with teachers in these three grades to develop curricu-
lum activities that support and enhance traditional learning with CT, problem- 
solving activities, and reflection on relevant habits of mind that students will apply 
in their STEAM Studio tasks. These activities take place in a makerspace, a physical 
location where people gather to share resources and knowledge, work on projects, 
network, and build (DeLuca, Owens, & Unger, 2016). Every K-2 student has 
STEAM class on a rotating schedule: 3 days on for 45 min, then 6 days off. Students 
meet 46 days annually.

There are three STEAM Studios in the intermediate school, one of each floor 
for third, fourth, and fifth graders. The studios are in the center of each floor, 
with core classrooms on either side, a layout that reflects a philosophy trans-
forming the entire district. In the past 5 years, the district has leveraged grant 
funding, new school construction, and creative scheduling to give nearly 3000 
students, from kindergarten through 12th grade, dedicated spaces for hands-on 
projects like coding, 3-D printing, computer-aided design, and robotics, as part 
of their learning experiences. The STEAM labs, STEAM coordinators, and tech-
nology education teachers are part of a district-wide embrace of CT. The STEAM 
classes are scheduled on an 80-day rotation: 4 days on and 4 days off. Students 
meet 90 times during the year, combining two classes at a time. Two core 
curriculum teachers join the STEAM teacher for each session with over 60 
participating in each STEAM session.
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 Organizational Changes

The STEAM literacy teacher position was created to further support CT integration 
into the curriculum. This position is responsible for teaching computer program-
ming, design, and other tech literacy skills such as keyboarding. The instructor sees 
every class two times consecutively in an 8-day rotation and sees the same students 
45 times during the year. The STEAM literacy class is designed to run as an addi-
tional “specials” class, which is integrated into these existing special classes: art, 
arts alive, orchestra, band, gym, and now also, technology literacy.

For sixth to eighth grades, the STEAM teacher coordinates with all core teachers 
to weave the technologies into their lesson plans. Sixth grade STEAM classes meet 
during a 30-day trimester on alternating (A/B) days.

Table 2 Timeline of block-based CT/programming integration into classes

2011–2012 2012–2013 2013–2014 2014–2015 2015–2016

(K-2nd): Scratch 
& Kodable 
[STEAM]

(K-2nd): Scratch, 
Makey Makey, 
littleBits, Kodable, 
Squishy Circuits, 
LEGO Robotics 
[STEAM]

(K-2nd): Scratch, Makey 
Makey, littleBits, 
Kodable, Squishy 
Circuits, LEGO Robotics, 
Kano [STEAM]

(3rd–4th): Pilot: 
Scratch 
[Language Arts]

(3–5th): Scratch 
[STEAM]

(3rd–5th): Scratch 
and LEGO 
Robotics [STEAM 
and Tech Lit Class]

(4th): eTextile 
Design 
[STEAM]

(4–6th): VEX IQ 
Robotics [STEAM, 
Tech Lit, and Tech 
Ed]

(4–6th): VEX IQ 
Robotics, Hummingbird 
Robotics, Arduino 
[STEAM, Tech Lit, and 
Tech Ed]

(5–7th): 
Scratch 
[Art]

(5–7th): Scratch 
[Art]

(5): BlocksCAD, 3D 
Printing, and CAD [Tech 
Lit]

(6–7th): Scratch 
[Art]

(6–7): Scratch [Art]

(7th): App 
Inventor [Tech 
Ed]

(7th): App Inventor 
[Tech Ed]

(7th): App Inventor [Tech 
Ed]

(8th): 
Hummingbird 
Robotics [Art]

(8th): 
Hummingbird 
Robotics [Art]

(6–8): 3D Printing 
[Tech Ed]

(6–8th): 3D Printing and 
CAD [Tech Ed]
(6–8th): Scratch & 
Hummingbird Robotics 
[Art]
(8th): Creative 
entrepreneurship, 3D 
printing, prototype design 
[Tech Ed]

[ ] = Class context for CT/programming problem-solving activities
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Table 3 Timeline of block-based CT/programming extracurricular activities

Learning 
context 2010–2011 2012–2013 2013–2014 2014–2015 2015–2016

After-school 
connected 
learning 
experiences

(7–8th): 
Girls 
STEAM 
Team: 
Scratch

(3rd–4th): 
Scratch Clubs: 
cartooning, 
video, games, 
music

(K-2nd): 
MakeShop 
Mondays
(3rd–5th): 
Scratch Clubs
(6–8th): Girls 
STEAM Team
(7–8th) App 
Inventor Club

(K-2nd): 
MakeShop 
Mondays
(2nd–5th): 
STEAM 
Ambassadors
(3rd–5th): Scratch 
Clubs
(6–8th): Girls 
STEAM Team
(7–8th) Invention 
Time w/ 3D 
printing

(2–5th): 
STEAM 
Ambassadors
(3rd–5th): 
Scratch Clubs
(6–8th): Girls 
STEAM Team
(6–8th): 
Python Course
(7–8th) 
Invention Time 
w/ 3D printing

Teachers (6–8th): 
Teachers 
view 
Scratch at 
open house

(K-12): STEAM 
Innovation 
Summer Institute

(K-12): 
STEAM 
Innovation 
Summer 
Institute

Family (6–8th): 
Girls 
STEAM 
Team 
Community 
Night with 
Scratch

(K-12): Family 
Inspire Series
(3rd–5th): 
Family 
Programming 
Night

(K-12): Family 
Inspire Series
(3rd–5th): Family 
Programming 
Night

(K-12): Family 
Inspire Series
(3–5th): 
Family 
Programming 
Night

Extracurricular 
Partnerships 
and Emerging 
Innovation 
Leaders 
Program

(7–8th): 
Girls 
STEAM 
Team: 
Teaches 
Scratch 
{TRETC 
Conf}

(3rd–4th): 
Scratch: Video 
Game Design 
{Mexican 
Schools}
(7–8th): Girls 
STEAM 
Team: Teaches 
Scratch 
{TRETC 
Conf}

(3rd–4th): 
Scratch: Video 
Game Design 
{Mexican 
Schools}
(5–6th): Scratch 
and eTextiles 
{MACS & Fort 
Cherry}

(3): Kodu 
Research Pilot 
{CMU}

{ } = Community partner for CT/programming problem-solving activities

Every sixth and seventh grader has an A/B day for 30 days in a trimester. Eighth 
grade meets 45  days in a semester in an optional course. Students now learn 
problem- solving through computer programming, 3D design, and VEX IQ robotics. 
The rotation for STEAM in sixth grade allows every student to take technology 
education and art once each trimester. The rotation for seventh grade is technology 
education, family consumer science, and public speaking. The rotation for eighth 
grade students allows each student to choose their track rotation.
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The STEAM teachers and restructured support positions act as the mechanism 
for embedding innovation into education. These teachers serve every student in their 
building. Core classroom teachers are required to come with the students to STEAM 
class and gain embedded professional development as they learn the activities along-
side their students. In time, teachers assist their students and take STEAM lessons 
back to their classrooms in new ways to enhance their core curriculum. Incubator 
projects have become standard practice. Before going full-scale, pilot projects for 
innovative lessons are designed to measure student achievement and engagement at 
the younger grade levels before offering a full-scale rollout in the future.

 Curriculum Mapping

To be certain that CT concepts including coding are vertically and horizontally 
aligned in core content areas, the district leadership uses Atlas Rubicon as a curricu-
lum mapping online tool. The teaching pedagogy, academic standards, and unique 
curricular needs are documented through the mapping process, which helps track 
gaps and repetition in instruction. Each curriculum unit is mapped according to the 
following criteria:

Stage 1. Identifies the desired results through academic standards including 
Habits of Mind and MIT Media Lab’s CT concepts, practices, and perspectives. The 
curriculum map for each grade level includes essential questions, content, major 
concepts, essential skills, learning objectives, and essential vocabulary.

Stage 2. Specifies what assessment will be used to provide evidence of learning.
Stage 3. Presents a learning plan including learning activities, guidelines for dif-

ferentiated instruction, and resources available.
Along with following the CSTA (2013) CT guidelines, the district has incorporated 

the computational concepts, practices, and perspectives outlined in the Scratch Creative 
Computing Curriculum Guide created by the MIT Media Lab (Brennan et al., 2014) into 
its STEAM Studio model. The Scratch curriculum guide includes an outline for (1) 
computational practices, concepts, and perspectives, (2) an instrument for assessing stu-
dent proficiency with computational practices, and (3) a self- reflection instrument to 
help teachers assess how they support CT practices in the classroom. Scratch block-
based code is the foundation of the course, and the curriculum guide has been adopted 
and is mapped and aligned to the following standards: Pennsylvania STEM, English 
language arts and literacy, and computer science. The Scratch programming activities 
also connect to the habits of mind cognitive processes through guided activities that 
teachers initiate before, during, and following the Scratch programming events. Through 
the mapping process, the district identifies how many core concepts and standards over-
lap with CT and coding. Some standards are being touched on while others mastered. 
The standards are all intertwined, and CT is now included throughout the curriculum.

In the process of building CT as the new literacy, the district focused on 
redesigning the curriculum but also on connected learning activities. After-school 
connected learning activities serve as effective feeder programs for courses in the 
curriculum or vice versa. If a student discovers a passion for coding through a school 
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course, then it becomes easier to pursue that passion through well-aligned connected 
learning activities. Connected learning activities become carefully orchestrated 
incubator projects that enable the district to implement, evaluate, and refine a pilot 
before placing it directly into the curriculum. These abilities are demonstrated 
through student-design applications, which emerge from within the curriculum. 
These programs become the catalysts for innovation. The district provides examples 
of the different types of CT learning experiences offered by the STEAM Studio 
model below to expand on the outline of activities provided in Tables 2 and 3.

 Breakdown of CT Activities by Grade Band

Learning to code begins in kindergarten, when students learn to program robotic 
devices called Bee-Bots. Students use a keypad to move their Bot and to learn skills 
in directional language and programming through sequences of forwards, back-
wards, and left and right 90° turns. Students also use code to program other students 
through a physical maze and then move from the physical world to the virtual world 
using the app Kodable. First and second graders are introduced to concepts and 
vocabulary of CT such as sequence, loops, parallelism, and events as well as com-
putational practices such as testing and debugging, reusing, and remixing. Concepts 
are introduced by making video games and interactive stories using ScratchJr and 
by using sensors and motors to program LEGO robots to move.

In elementary school, students learn the foundations of CT practices, such as 
collaborative problem-solving and trial and error. For example, second grade teach-
ers ensure their students have tested every circuit they make for their math game 
before moving on to the next one. If one circuit does not work, students need to stop, 
figure out what the problem is, and fix it. This requires and reinforces persistence 
and good communication with fellow students, two of the “habits of mind” promi-
nently displayed and reinforced in all classrooms as critical supports for successful 
computational problem-solving.

Language arts is integrated in STEAM learning. After listening to The Hungry 
Caterpillar (Carle, 1969) story, students use squishy circuits with conductible and 
insulated Play-Doh® to create a colorful lighted caterpillar and then design their 
own unique lighted animal after listening to The Mixed Up Chameleon (Carle, 
1988). Students in K-2 also explore electrical circuitry as they build unique designs 
using littleBits electronics to make flashlights, buzzers, and other devices.

Students in K-2 have learned two block-based codes in depth, ScratchJr and 
WeDo Lego Robotics. Elementary students transfer their knowledge from one block- 
based code to another by comparing and contrasting how codes are alike and differ-
ent and then building a sequence of block-based code, while others take turns 
interpreting and writing the code. Students make a cardboard piano keyboard and 
combine their knowledge of electrical circuitry and computer programming using 
Makey Makey circuitry and Scratch block-based code to program their keyboard to 
play music. In a second grade pilot, students built their first computer using Kano 
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Raspberry Pi kits, and next year all second to eighth graders will experience 
 text- based code alongside block-based experiences.

In grades 3–5, students delve deeper into coding with Scratch. In Technology 
Literacy class, students design interactive games and stories using Scratch, based on 
the Creative Computing Curriculum Guide. For the last 4 years, students in fifth grade 
have been collaborating with four schools in Mexico to make games on being good 
global citizens, Internet safety, and making tutorials in Scratch for the first grade stu-
dents. In grades 3–5 STEAM classes, students apply their knowledge of Scratch 
block-based programming to program LEGO Robotics, inventing machines that pro-
duce useful functions such as spin art machines, clocks, and robotic creatures. Students 
also expand on their knowledge of electrical circuits and computer programming as 
they use Hummingbird Robotic kits to program Arduino boards to automate three-
dimensional product designs. Fourth and fifth grade students hone their problem-solv-
ing skills as they program VEX IQ robotics to run obstacle course challenges.

 Scratch Clubs Third Through Fifth Grades

During 2011–2012, after-school Scratch Clubs were introduced to students in 
grades 3–5. The district set its sights for 15–20 students but was overwhelmed when 
64 students registered, so they had to limit the number of activities each student 
could participate in. Since that time Scratch Clubs have been offered each year. This 
year, running on its third year, there are 115 students enrolled in the clubs. In addi-
tion, the district has added more after-school computer programming courses such 
as BlocksCAD, an incubator program that allows us to test student ability to build 
3D printed prototypes using an interface similar to Scratch.

By middle school, all sixth graders program VEX IQ robotics to complete chal-
lenges, and all seventh graders use App Inventor to make an app for their mobile 
device. In addition, middle school students in technology education class begin 
using Autodesk Inventor to create product prototypes and move into CAD drawing 
as they gain skills. In eighth grade technology education, through a grant funded by 
Digital Promise and the Gates Foundation (Product Efficacy Loop, 2015), students 
use INVENTORcloud to create a product prototype and print the prototype using a 
3D printer. Students learn as young entrepreneurs how to create a business plan, 
product brand, and a marketing campaign to pitch their product.

Ninth through twelfth grade students may select from an array of electives 
courses that embed CT, such as Java I, Java II, AP Computer Science, AP Physics 
C, and engineering. In addition, the high school recently created two new courses 
that embed human-centered design problem-solving and CT: Innovation Studio and 
Game Design. Local industries provide real-world problems to student teams. 
Students research the issues, create a solution, and then present their solution to the 
directors of the company. An example can be seen through the project with All-Clad 
Metalcrafters, a manufacturer of cookware that markets its cookware to department 
stores and specialty stores in the USA and overseas. All-Clad project leaders asked 
students to design a pot that an elderly person suffering from arthritis could handle 
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comfortably. The students designed and beta tested 3D printed prototype designs for 
new pot handles based on anthropometric techniques. These design projects have 
been moved into a course called Innovation Studio where a variety of companies 
pose problems for students to solve. A Game Design course, written by Zulama, is 
a blended learning platform created by educators at the Entertainment Technology 
Center at Carnegie Mellon University. The course is taught through the high school 
English teacher and helps students apply the fundamental skills and techniques of 
game design. The course merges CT into the English classroom as students learn to 
develop and refine a game prototype using an iterative process.

 How Does the District Measure Student Achievement in CT 
Activities?

As Repenning et al. (2015) explain, the integration of a systemic CT curriculum can 
be a good approach for many schools because it aligns well with existing standards. 
The CT framework supports the use and creation of models and simulations while 
strengthening math and literacy skills. The goal of introducing CT to schools, there-
fore, is not to replace existing subjects but to think of CT as a new literacy that is 
useful for a wide array of subjects. Our experience to date suggests that, with appro-
priate scaffolding, diverse groups of students not only become interested in computer 
science but also can transfer CT strategies to a wide variety of disciplines including 
STEAM. Students who use programming to create a scientific model transform their 
computers into highly creative instruments that support scientific processes compa-
rable to the way actual scientists engage in research. For example, high school stu-
dents can take one semester of Game Design as part of their English language arts 
program. “Gaming” does not only mean video games. This course breaks down the 
game design process step by step. Students learn the fundamentals through hands-on 
modding, prototyping, and iteration of a variety of games. Students’ final project will 
include building, playtesting, and revising their own original game that can be played 
with family and friends and added to their game portfolio.

 Standard Measures of Student Achievement

An analysis of student achievement in the South Fayette Township School District 
reveals a steady and positive trend of increased achievement over the last 5 years. 
The metrics that have been utilized to determine this trend include the annual state 
assessment (PSSA, 2016), which is administered to students annually in grades 3–9. 
This assessment is designed to measure student academic growth based on the 
Pennsylvania academic standards. The PSSA specifically measures student prog-
ress in mathematics, English language arts, and science. Historical data from this 
assessment indicates increased levels of proficiency on an annual basis over a 5-year 
period. In addition, on the new version of the PSSA that is aligned to the rigorous 
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PA Core Standards, students performed well above the state and regional average. 
This distinction is based on an analysis by this independent organization of multiple 
years of PSSA achievement data. At the high school level, performance on the 
required state Keystone Exams continues to indicate academic growth well above 
the state and regional average. These exams are administered in the areas of biology, 
literacy, and algebra.

The district student achievement scores have increased over the past 10-year 
period, achieving the distinction that both in math and reading more than 90% of the 
district all 11th graders are in the proficient or advanced categories. It is also worth 
noting that the historically underperforming category of 11th graders shows nearly 
double the state average percentile in proficient to advanced scores in math (79%) 
and science (66%) in 2015 Pennsylvania state assessments (PIMS, 2015).

One possible explanation of the district’s 95.5% student achievement of proficient or 
advanced level in the PSSA (2015) mathematics assessment involves looking more 
deeply at the district’s use of robotics programming and problem-solving with all mid-
dle school students (Tekkumru-Kisa, Stein, & Schunn, 2015). The robotics program-
ming included an embedded intelligent tutoring system that gave student programmers 
adaptive hints to guide learners without directing them toward specific solutions. 
Students were able to use guessing and checking strategies and eventually realize plau-
sible solutions. This whole learning environment was created to support young learners’ 
development of proportional reasoning: how to recognize it, how to build upon it, and 
eventually to make intelligent reasoning and be able to detect possible mistakes. In the 
context of this robotics programming, being able to reason mathematically was closely 
connected to being able to reason mechanistically (C. Schunn, personal communica-
tions, February 21, 2016). Programming the robots movements facilitated proportional 
thinking. Learning of proportional reasoning skills, the foundation of algebraic think-
ing, was greatly enhanced or speeded up through the online robotics programming and 
simulation tools (Alfieri1, Higashi1, Shoop, & Schunn, 2015; Liu, Schunn, Flot, & 
Shoop, 2013). Mathematical gains for all the district’s middle school students who used 
this program were very high (C. Schunn, personal communications, February 21, 2016).

Thus, although math achievement in the district was already high, the most recent 
math scores show a 14% increase in overall average student scores in the last 10 
years, whereas reading scores in the district improved by 2% in that same time period.

 Applying CT Processes and Practices as Additional Metrics of Student 
Achievement

Student capabilities for leadership and innovation are not measured on standardized 
tests. These abilities are demonstrated through student-design applications, which 
emerge from new learning opportunities built into the STEAM Studio curriculum 
model. An important measure of district’s success is the pathway that has emerged for 
developing innovative leadership capabilities in students. A focus on innovative path-
ways has led students to shift from the role of student to teaching assistant, to curricu-
lum developer, and to teacher. As a result of the integration of CT processes and 
practices, new pathways for recognizing student achievement have emerged. One of 
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these pathways is called the Emerging Innovation Leaders Program. As students 
discover their passion for computer programming, engineering, human- centered 
design, and innovation, their interests are leading to higher-level thinking and the 
desire to explore and invent beyond the curriculum. Students reach out to find new 
ways to explore their interests, while students with similar interests are put together 
in teams to begin product design and development. Table  4 provides a summary 
showing how advanced student programming activities are enabled through formal 
and informal school-initiated activities, like the Innovation Leaders Program. Below 
are examples of catalysts and resulting Emerging Innovation Leaders Programs.

Table 4 Timeline of text-based CT/programming integration

Learning context 2010–2011 2012–2013 2013–2014 2014–2015 2015–2016

After-school 
connected 
learning 
experiences

(7–8th): Girls 
STEAM 
Team: 
Scratch

(3rd–4th): 
Scratch 
Clubs: 
cartooning, 
video, games, 
music

(K-2nd): 
MakeShop 
Mondays

(K-2nd): 
MakeShop 
Mondays

(2nd–5th): 
STEAM 
Ambassadors

(3rd–5th): 
Scratch Clubs

(2nd–5th): 
STEAM 
Ambassadors

(3nd–5th): 
Scratch Clubs

(6–8th): Girls 
STEAM Team

(3rd–5th): 
Scratch Clubs

(6–8th): Girls 
STEAM Team

(7–8th) App 
Inventor Club

(6–8th): Girls 
STEAM Team

(6–8th): 
Python Course

(7–8th) 
Invention Time 
w/ 3D printing

(7–8th) 
Invention Time 
w/3D printing

Teachers (6–8th): 
Teachers 
view Scratch 
at Open 
House

(K-12): 
STEAM 
Innovation 
Summer 
Institute

(K-12): 
STEAM 
Innovation 
Summer 
Institute

Family (6–8th): Girls 
STEAM 
Team 
Community 
Night with 
Scratch

(K-12): Family 
Inspire Series

(K-12): Family 
Inspire Series

(K-12): Family 
Inspire Series

(3rd–5th): 
Family 
Programming 
Night

(3rd–5th): 
Family 
Programming 
Night

(3rd–5th): 
Family 
Programming 
Night

Extracurricular 
Partnerships and 
Emerging 
Innovation 
Leaders 
Program

(7–8th): Girls 
STEAM 
Team: 
Teaches 
Scratch 
{TRETC 
Conf}

(3rd–4th): 
Scratch: 
Video Game 
Design 
{Mexican 
Schools}

(3rd–4th): 
Scratch: Video 
Game Design 
{Mexican 
Schools}

(3): Kodu 
Research Pilot 
{CMU}

(7–8th): Girls 
STEAM 
Team: 
Teaches 
Scratch 
{TRETC 
Conf}

(5–6th): Scratch 
& eTextiles 
{MACS & Fort 
Cherry}

{} = Community partner for CT/programming problem-solving activities
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The BusBudE app team has created and beta tested an app to help keep young 
students safe while traveling to and from school on the bus. Children scan their tag 
when entering the bus and an alert is sent to their parents letting them know the time 
and place their children enter and leave the bus. The BusBudE student design team 
traveled to Boston to present their app and discuss their work as guest bloggers for 
the MIT Media Lab App Inventor group. This student design team, which consists 
of students from multiple grade levels and backgrounds, recently won the National 
InfyMakers Award for their design and received a $10,000 grant to create a maker-
space for their high school.

The MyEduDecks Team is in their fourth year of designing and beta testing a 
pen-based software flashcard application to be used for personalized learning and 
assessments. Students, from multiple grade levels and backgrounds, are conducting 
educational research and taking their product to maturity. Their work has been pub-
lished in the book The Impact of Pen and Touch Technology on Education (Kothuri 
et al., 2015), and they have presented their work at several national conferences with 
assistance of their computer science department mentors at Carnegie Mellon 
University at the annual WIPTTE conference (Kothuri, Varun, & Kenawell, 2013).

The integration of CT processes and practices has resulted in changes to the 
school culture on several levels. Increased female involvement in CT activities in 
and outside the classroom is helping young women and girls become actively 
involved in computer science activities. Here is an example of how gender issues in 
this area are being resolved. For 3 years, teams of students have been designing and 
teaching after-school Python programming courses to students in the district and to 
neighboring districts. This year a young woman in 11th grade led the course; two of 
her teaching assistants were women as well. The first cohort of 25 middle school 
students included 11 girls.

Based on its goal of creating leaders for a technology-rich future that relies on 
CT and innovative problem-solving skills, the district looks for ways to measure 
student growth and awareness of their ability to apply the dispositions and practices 
of CT as well as the habits of mind skills. Our analysis of student self-report survey 
data shows that students increased their selection of the following skills during their 
App Inventor programming activities: reading, decision-making, planning tasks and 
schedules, organizing, and always learning. Student identification of skills that were 
important in their App Inventor programming activities helps us measure how stu-
dents applying their CT and habits of mind training as metacognitive processes. 
This is an area that will be further explored as part of the district’s plan for expand-
ing and refining CT integration.

 The District Takes on a Regional Leadership Role Mentoring Other 
Schools

The district shares their practices regionally and nationally. The district is a member 
of the League of Innovative Schools, a network of superintendents and district 
leaders designed to be a test-bed for new approaches to teaching and learning to 
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accelerate innovation in education. League members represent more than 3.2 million 
students in 73 districts and 33 states. Their experiences reflect the diversity and 
shared challenges of public education in the USA. The district shares practices with 
League members and gains insight into new practices during League meetings by 
being actively engaged in affinity groups. In October 2015, approximately 170 
superintendents and administrators visited the district for a 2-day briefing. Since that 
time, school districts from South Carolina, Alabama, and Vancouver have returned 
with their staff to go more in depth as they begin to implement similar initiatives. At 
the end of the 2016 school year, the district had hosted over 500 visitors seeking to 
vertically align CT initiatives in their districts. The district continues to be open to 
school partnerships and sharing what it has learned. Districts interested in more 
information are encouraged to contact Aileen Owens for further information.

 Conclusions

This case study explored implementation of the STEAM Studio model as a district- 
wide constructivist approach to transform the curriculum to incorporate hands-on 
activities and coding projects that required students and teachers to engage in CT 
practices. The case study described the school district vision, strategies for integrat-
ing new CT resources, and provided evidence of success as demonstrated by a vari-
ety of standard and new student achievement measures.

Several themes emerged as important factors for successful application of the 
STEAM Studio district-wide integration of CT. First, the district was both a contribu-
tor to and recipient of regional efforts to improve K-12 learning environments through 
CT initiatives. Through regional collaborations with other districts, higher education 
teams, and local corporations, the district established learning opportunities for early 
exposure to CT as well as advanced, elective computer programming classes. Second, 
we note that the district was already academically strong in core content areas so that 
the integration of CT was built upon well-established teaching and learning practices. 
Third, as the district responded to requests to share its CT practices with other school 
districts, the STEAM Studio model benefitted from extended research regarding 
ways to improve and innovate teacher, community, and student involvement in CT 
implementation. Finally, the new positions created changes to existing faculty posi-
tions, modifications to student schedules, development of incubator projects, organi-
zation of after-school connected learning experiences, embedded opportunities for 
teacher professional development, and construction of new learning spaces occurred 
gradually over a 6-year period. District transformations will continue to explore how 
CT can improve student learning opportunities.
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Abstract We are proposing to reframe computational thinking as computational 
participation by moving from a predominantly individualistic view of programming 
to one that includes a greater focus on the underlying social and creative dimensions 
in learning to code. This reframing as computational participation consists of three 
dimensions: functional, political, and personal. Functional pertains to the basic pro-
gramming skills and concepts that someone needs to learn in order to participate in 
society. Political purposes capture why understanding programming skills and con-
cepts is relevant in society. Last, personal purposes describe the role that these skills 
and concepts play in personal expression for building and maintaining relationships. 
We discuss three focal dimensions—creating applications, facilitating communi-
ties, and composing by remixing the work of others—in support of this move to 
computational participation by drawing from examples of past and current research, 
both inside and outside of school with children programming applications such as 
games, stories, or animations to design artifacts of genuine significance for others. 
Programming in a community suggests that such significance ultimately lies in the 
fact that we design to share with others. Programming as remixing code makes clear 
that we build on the work of others and need to better understand the ramifications 
of this approach. We situate these developments in the context of current discus-
sions regarding broadening access, content, and activities and deepening participa-
tion in computing, which have become a driving force in revitalizing the introduction 
of computing in K-12 schools.
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 Introduction

In the last few years, we have witnessed a renewed interest in learning programming 
in K-12, propelled by several developments, including the educational initiative to 
promote computational thinking (Wing, 2006; Grover & Pea, 2013), a need to 
broaden participation in the technology culture at large (Margolis, Estrella, Goode, 
Holme, & Nao, 2008; McGrath-Cohoon & Asprey, 2006), and, perhaps most sig-
nificantly, the wider “do-it-yourself” (DIY) ethos characteristic of digitally based 
youth cultures (Kanter & Kanter, 2013; Peppler, Halverson, & Kafai, 2016). 
Computers indeed now seem to be accessible everywhere, particularly outside of 
school. But with few students digitally fluent and persistent disparities in participa-
tion, it is crucial that efforts in providing computer science for all recognize the 
importance of what students are interested in programming, the contexts in which 
they do it, and how they do it. Broadly speaking, we view attention to the what, who, 
and how of programming as key in moving from a predominantly individualistic 
view of programming to one that includes a greater focus on its underlying social 
and creative dimensions, reframing computational thinking as computational 
participation.

To realize computational participation, we need to focus on the emergence of 
programming shareable artifacts (e.g., digital stories, games, art) as the focal point 
of learning, moving from code to applications (Kafai & Burke, 2013). Learning 
programming was once a practice that largely prized coding accuracy and efficiency 
as the signifiers of success. Today, however, rather than programming for the sake 
of programming, students can create authentic applications such as games and sto-
ries as part of a larger learning community. It is the quality of these shareable 
artifacts—a highly playable game, a sophisticated animation, or a particularly 
nuanced digital story—that offers entry to such coding communities and fosters 
camaraderie. Second, we need to see coding as no longer performed as an isolated 
endeavor but within a shared social context, utilizing open software environments 
and mutual enthusiasm to spur participation, moving our attention from program-
ming tools to communities of learners. Finally, we need to adopt new cultural prac-
tices such as remixing, the hallmark activity of new networked communities, 
moving programming from scratch to remixing projects that already exist. Whereas 
programs once had to be created “from scratch” to demonstrate competency, today, 
seamless integration via remixing is the new social norm for writing programs. 
While this certainly presents particularly ethical challenges, remixing also offers 
newfound networks for participation.

The goal of this chapter is to outline how we can support this move toward com-
putational participation based on outcomes from the research literature of educa-
tional programming. We argue that understanding applications, contexts, and 
practices in learning and teaching programming can help us to generate better ways 
of how to think differently about K-12 computing and support the pivotal roles of 
context and community in learning (Cole, 2005). While much attention has focused 
on different concepts, practices, and perspectives of computational thinking (Brennan 

Y.B. Kafai and Q. Burke



395

& Resnick, 2012; Wing, 2006), our goal is to connect to a broader conceptualization 
of computational participation that encompasses its functional, political, and personal 
purposes (Kafai & Burke, 2014). In the context of computational participation, func-
tional purposes describe the basic skills and concepts that someone needs to learn in 
order to participate in society, whereas political purposes capture why understanding 
these skills and concepts is relevant in society. Last, personal purposes describe the 
role that these skills and concepts play in personal expression for building and main-
taining relationships. These purposes describe the fundamental aspects of any liter-
acy, whether it is reading and writing printed texts, engaging in mathematical or 
science inquiry, or using and programming digital media. The learning and teaching 
of concepts and skills of any literacy need to be situated within their larger social, 
personal, and cultural contexts. Computing is no exception. We contend that those 
who participate computationally not only better understand the digital publics they 
live in but also are able to better navigate them, critically examining their underpin-
nings and ultimately even contributing to their ever-shifting designs.

 Framing Computational Participation for K-12 Education

The following three dimensions highlight how learning programming has shifted 
with the wider cultural perceptions and practices of what it is to socialize and pro-
duce in the twenty-first century and how this relates to computational thinking, 
resulting as we argue in better learning opportunities and, by extension, better 
teaching opportunities.

 Designing Applications for Learning Coding

By designing a program or any application (or, on a more granular level, its proce-
dures, algorithms, and data structures), ideas about computing become public and 
can then be shared with others (Harel & Papert, 1990). Learning to program is about 
writing code and developing algorithms, data, and control structures that result in 
functional—and ideally efficient—software applications. We have numerous studies 
of what students learn about syntax, control structures, conditionals, and recursion 
as well as data structures and variables while writing code, just as we have documen-
tation on the connected challenges of learning to do so (Soloway & Spohrer, 1990). 
While much planning and problem-solving went into these programs, there was also 
prompt criticism (Noss & Hoyles, 1996) that the empirical evidence was slim in 
demonstrating exactly what students were learning and how such learning trans-
ferred to other subjects. Others also noticed a lack of integration with the rest of the 
school curriculum (Palumbo, 1990). In its initial foray into K-12 schools, program-
ming largely existed as a stand-alone activity in which students would participate in 
once or twice a week for an hour at a time. Typically, these isolated moments of 
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coding existed apart from classrooms within the computer lab after which the 
students were return to their “normal” classes back down the hallway.

On the tail end of this development, a new pedagogical approach to programming 
emerged, called instructional software design (Harel, 1991). Rather than simply 
composing code, students designed full-fledged software applications. This 
approach was inspired by writings that portrayed design practices as contexts that 
could promote open-ended forms of problem-solving and situated learners in the 
application of academic content in the design of meaningful, authentic applications. 
Harel’s seminal study not only illustrated that treating students as designers of 
instructional mathematic software could make them manifestly more invested in 
their learning but also helped the students learn programming and mathematics sig-
nificantly better than students in control classes. The instructional software design 
approach has since then successfully applied to other contexts such as game design 
(Kafai, 1995) and integrated with other school subjects such as language arts (Burke 
& Kafai, 2012), science (Ching & Kafai, 2008), as well as music and art (Gargarian, 
1996). By leading with a project within a particular subject matter, be it digital sto-
ries in an English class or fraction games in a math course, programming pedagogy 
engages children with the potential to create “real-world” applications. It also builds 
on successful instructional practices in which educators can leverage content-based 
subject matter to informally design software that is meaningful and authentic 
beyond the classroom (Bransford, Brown, & Cocking, 2000).

Today, the surge of “app” design courses (Wolber, Abelson, Spertus, & Looney, 
2011) is a testament to the recruiting pull of such applied programs and ought to be 
leveraged more intently for broadening participation. It widens the walls (Resnick 
& Silverman, 2005) in suggesting applicability of programming to a range of activi-
ties rather than just narrowing technical ones. More broadly speaking, designing 
applications can also be considered a direct and, more importantly, an accessible 
application of Wing’s computational thinking (2006). It captures key aspects of 
designing systems, solving problems, and understanding human behaviors because 
designing an application like a game or simulation involves the creation of a system, 
albeit on a smaller scale, that requires the designers to think carefully about how 
users will interface with the applications they design as well as solve problems of 
how to implement features according to their intentions. On a personal level, the 
idea of designing applications has most likely generated the broadest interest and 
success rate in getting youth actually involved in computer programming.

Perhaps this is why making games for learning has received such widespread 
attention with so many programs, for profit and nonprofit alike, vying for children’s 
attention (Kafai & Burke, 2016). Nowhere is this more evident than in the prolifera-
tion of video game-making competitions such as the National STEM Video Game 
Design Challenge sponsored by the White House itself and others such as 
Globaloria’s “Globey Awards,” Advanced Micro Devices’ (AMD) “Changing the 
Game” contest, and the “Games for Change” awards. All of these competitions 
instill a sense of empowerment, both personal and political, that one can make what 
one uses. It is characteristic of the self-reliance and drive of the wider DIY movement 
that has grown since the advent of Web. 2.0.
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 Learning Programming with and from Others

Many efforts have focused on helping novice programmers to become more fluent 
and expressive by developing programming tools that simplify syntax by reducing 
the amount of typing or arranging control structures (Kelleher & Pausch, 2005). 
Particularly popular have been programming tools such as Scratch (Resnick et al., 
2009) that facilitates the programming of different multimedia applications or Alice 
(Kelleher & Pausch, 2007) that engages in storytelling or AgentSheets (Repenning 
& Ioannidou, 2008) that facilitates the creation of simulations. Both inside and out-
side of schools, tools like these have been successful in lowering the floors of enter-
ing into programming. The design of computational construction kits has generated 
rich insights into how to make programming accessible for beginners and simulta-
neously support many styles and interests.

One of the primary attractions for youth in creating applications rather than sim-
ply generating code is the capacity to share such applications with others and gain 
status by these shared creations. For instance, early use of the Scratch tool in a 
Computer Clubhouse illustrated how a vibrant game design community emerged 
over the course of two years with hundreds of different games developed (Kafai, 
Peppler, & Chapman, 2009). The recent creation of Internet-based sharing sites has 
expanded the tool users into communities of designers (Benkler, 2006). The most 
prominent example is the Scratch site, one of the largest youth programming com-
munities that was inspired in part by Seymour Papert’s samba schools (Papert, 1980). 
It is an online community for youth to create and share stories, games, and animation 
with over one million registered users, primarily between the ages of 8 and 16. 
Scratch collaborative activities typically revolve around the production of particular 
types of projects in which dozens of members can participate bringing different 
skills such as music, graphics, or editing to the group (Aragon, Poon, & Monroy-
Hernandez, 2009). More importantly, it builds on essential insights from educational 
research that fruitful learning is not done in isolation but in conjunction with others. 
While some early work by Webb et al. (1986) examined some of the challenges, as 
well as opportunities, in having students program in small teams, programming in 
K-12 contexts is still mostly an individual activity. One of the perhaps most success-
ful collaborative designs has been the introduction of pair programming that is now 
widely practiced on grade levels K-16 because it has shown to be effective in helping 
and motivating beginning programmers (Denner & Werner, 2007).

Today, programming and design tools such as Scratch, Alice, Gamestar Mechanic, 
Kodu, and many others all include communities, creating open-source sites in the 
style of communities like Linux for youth to share, comment on, and contribute to 
their coded creations. While such communities have always existed—the  pre- Internet 
Logo community is testament to that—with access to sharing programs online and 
finding like-minded peers and others, even novice programmers now have an audi-
ence that values their artifacts and thus provides a community or affinity group. 
However, designing tools that facilitate particular mechanics of programming is not 
enough. Rather, providing a social context in which these programming tools are 
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used and where programming artifacts are shared is equally important. It suggests 
that how we engage beginners in programming can be a collaborative activity. 
Learning how to program collaboratively brings other elements of computational 
thinking into the foreground, such as decomposing a complex task and coordinating 
control flow between different components. In addition, we can also use computa-
tional thinking as a way for participants to parse the networked commons itself. 
Many data mining tools rely on algorithms to search for and extract patterns from 
interactions and behaviors in massive communities. Likewise, tools like crowd-
sourcing not only leverage feedback from others but also need to be understood in 
terms of how others’ direct feedback can be utilized to make one’s code (and the 
project itself) more efficient.

 Learning Programming by Remixing Code

In the past, not only did most programs have to be created on a blank page—“from 
scratch”—to illustrate programming competencies, but the expectation was that 
code was very much a proprietary commodity, to be built and ever refined but cer-
tainly not freely shared. This mind-set very much sets the tone for early computing 
coursework as students were introduced to the potential of programming in terms of 
text-based functionality, yet this is not the most effective approach. To a certain 
degree, it is akin to learning about fiction in a language arts course by being taught 
the meaning of nouns, verbs, and modifiers. The idea, however, to design programs 
on existing building blocks is by no means a new concept. Traditionally, as part of 
instruction, beginning programmers are given pieces of code to modify for their 
own programs, and this allows novices to build far more complex designs than they 
could do their own. But the concept of repurposing code has taken on a new life 
through the Internet, mirroring prominent remix practices in digital media culture.

Today, the repurposing and remixing of code have become standard practice. It 
has been argued that remixing is a key practice in today’s networked culture in sup-
port of our knowledge production (Jenkins, Clinton, Purushotma, Robison, & 
Weigel, 2006). Crediting ownership consists of referencing the intellectual origins 
of “text” used in media productions, be it graphics, animations, or music. Remixing 
is also a particular form of participation within the Scratch community, taking exist-
ing Scratch projects and changing them before uploading them back to the website. 
With nearly 25% of the 3 million project posted at the Scratch site as remixes, mem-
bers use this practice as means to familiarize oneself with the software as well as to 
socialize and collaborate with others via their creations (Monroy-Hernández & 
Resnick, 2008). This number has been steadily increasing since its launch in 2002. 
In some instances, authors design programs and explicitly invite others to remix 
their code, thus using programs as design starters. In other cases, remixes can range 
from direct copying to small tweaks of code or simply serve as inspiration for new, 
very different programs.
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Indeed, the culture of remixing in Scratch itself is not without friction as positive 
and negative comments are prevalent as evident in previous attempts to introduce 
the practice within school-based environments. In an after-school club, Scratch pro-
grammers ages 10–12 years were adamant that their fellow programmers credited 
the origins of programs that they had remixed and posted online. Scratch program-
mers initially were concerned about others taking their programs, but they soon 
came to understand the remixes as a form of recognition that represented attention 
they received from others (Kafai, Fields, & Burke, 2010). The issue of intellectual 
ownership looms largely in discussions, even among youth Scratch members, from 
feeling complimented for the attention to feeling distraught at the lack of full 
acknowledgment.

It is perhaps the aspect of computational thinking that raises the most interesting 
intersection of technical and social issues. This could be because what’s prevalent in 
amateur creator cultures such as Scratch might not be considered appropriate in 
school contexts that value individual authorship and would explicitly consider 
remixing as a violation of their policies. A growing number of media theorists and 
educators posit remixing as very much a new literacy that schools need to address 
(Perkel, 2008). In fact, school’s traditional conception of “copying” sits directly at 
odds with the wider culture of remix that prevails in children’s interactions outside 
of school.

While remixing on the most basic level requires just a few mouse clicks to copy 
programs, making it a hard sell for any consideration of computational thinking, we 
do know that selective remixing can actually require a far greater degree of sophis-
tication. Considering what to modify in selected code segments versus what to keep 
and where to add or delete procedures or variables within a program are examples 
of remixing activity that very much requires a deeper, functional understanding of 
the code. In some instances, remixing may very well be more complex than starting 
with a blank slate. On a political level, the issues of copyright in the digital domain 
(which extends to code and interfaces) present a highly complicated matter that is 
only in the process of being defined in light of new cultural practices (Lessig, 2008). 
Personally, for many youth, this is a complex issue to deal with. The remixing 
dilemma—the difficulty to promote both originality and generativity in projects—
suggests that remixing can serve as an opportune case for critically understanding 
copyright issues and thus address the wider social implications of computational 
thinking, which too often get neglected in the overt focus on technical prowess.

 Discussion

We outlined several directions that the K-12 educational community should empha-
size in learning and teaching programming. Our key contention is that engaging 
with computational thinking at large, and with programming in particular, should be 
thought of as a social practice, hence the focus on computational participation. 
Programming applications are increasingly being developed in order to design 
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artifacts of genuine significance for others. Programming in a community suggests 
that such significance ultimately lies in the fact that we design to share with others. 
Programming as remixing code makes clear that we build on the work of others and 
need to better understand the ramifications of this approach. Most importantly, in 
the context of computational thinking, this means that we need to move beyond see-
ing programming as an individualistic act, but rather begin to understand it as a 
communal practice that is steeply grounded in how we think about what students 
today should learn in order to become full participants in networked communities.

Computational thinking should really be thought of as computational participa-
tion to emphasize that “objects to think with”—to use one of Papert’s core ideas 
(Papert, 1980)—are indeed “objects to share with” others (Kafai & Burke, 2014). 
To expand on Wing’s definition of computational thinking (Wing, 2006), computa-
tional participation is then defined as the ability to solve problems, design systems, 
and understand human behavior in the context of computing not as an individualis-
tic act but as a communal practice that allows for participation in networked com-
munities. Of course, just by having kids program applications, placing them in 
groups, and encouraging them to remix code hardly address all of the problems 
associated with broadening and deepening participation in computing. In fact, a 
renewed focus on computational participation likely will present a whole new set of 
challenges when it comes to bringing programming activities back into schools. The 
ideas outlined in this chapter represent a modest start in beginning to address some 
of the challenges around facilitating such broader and deeper participation in the 
very design of the programming activities, tools, and practices.

 Broadening Computational Participation

If computational thinking is indeed a social practice, then broadening access to 
participation and collaboration in communities of programming becomes a focal 
issue. We know from preliminary research in the Scratch community that this move 
toward membership in a large-scale community is a complex interplay between how 
young software designers develop personal agency through programming and how 
they gain status as “experts” among their peers (Kafai et al., 2010). Despite the myth 
that children are “digital natives” who naturally migrate online, observations indi-
cated that some students initially resisted going online and uploading their program 
to the Scratch website, uncomfortable with sharing their own work with more expe-
rienced members online. This suggests that establishing membership in a larger 
programming community is not as easily achieved as one may think. Rather, navi-
gating online communities requires an array of participation strategies that directly 
address this sense of vulnerability associated with sharing one’s work for others to 
comment on and even remix for their own purposes.

Beyond broadening access to participation, we also need to broaden content of 
computing activities. A recent study (Lachney, Babbitt, & Ron Eglash, 2016) looked 
at the content of the Scratch programming site and found it heavily leaning toward 
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commercial content from popular video games, television series, and toys but less 
so in terms of culturally relevant content that would appeal to other constituents. For 
instance, a simple search of the Scratch archive for the popular video game “Doom” 
will find hundreds, if not thousands, of different programs created and posted by 
Scratch members. Any search for other content, for example, on American Indians, 
will find only a handful of projects at most. The predominance of Doom and other 
first person shooter games does tacitly establish the boundaries of what qualifies as 
a game and what is valued as an upload in the Scratch community. Affinity groups 
that coalesce around like-minded interests are powerful learning cultures, but this 
also makes them exclusive cultures, perhaps not intentionally so. Here the content, 
and by extension the designers, signals to others joining the community what should 
be of interest. It is here where we see the intricate intersections of interests and val-
ues in gaming and computing and how they can invite or exclude participation in 
these communities in much less obvious ways (Richard & Kafai, 2016).

Beyond broadening access and content, we also need to widen our type of com-
puting activities, moving beyond the screen. While the shift toward designing 
authentic applications is an important step in the right direction, we also need to 
realize that designing games is not the only acceptable method to achieve this goal. 
Game design definitely leverages the interest and informal experience of many chil-
dren and youth, but it also happens to cater to a community that is still predomi-
nantly male. There are many other types of software applications that can be 
designed to fulfill the premise of an authentic context. For this reason, we have 
argued that joining the “existing” clubhouse like you would find in the Scratch com-
munity still leaves many on the outside. Rather than just focusing primarily on 
games and animations, we also need to further encourage story design and perhaps 
even introduce different materials and contexts. For instance, the design of tangibles 
like the electronic textile construction kits LilyPad Arduino suggests, new club-
houses can be built that serve other members rather than simply joining existing 
ones such as electronic textiles (Buechley, Peppler, Eisenberg, & Kafai, 2013).

 Deepening Computational Participation

If broadening activities, content, and tools gets beginning programmers into the 
clubhouses of computing, the next challenge is about deepening their computational 
participation and helping them to develop fluency with various activities. This is 
where the real challenge lies. Getting more kids into the clubhouses of computing 
and opening them up to more diverse groups of players and makers is important. But 
once they are there, we also need to be concerned about how we can engage them 
more deeply so that their participation can become the meaningful and enriching 
learning experience it is meant to be. A series of recent data mining studies from a 
random sample of 5,000 users out of 20,000 who logged into Scratch from January 
to March 2012 examined to what extent these features promote “computing for all” 
(Fields, Giang, & Kafai, 2014). They found that while 45% of Scratch members 
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posted content on the site, few leveled up to the most extensive forms of social 
networking and complex programming concepts in their projects. Girls who were 
equally active in the community were significantly underrepresented among the 
more advanced and experienced coding groups. Particularly relevant to deepening 
computational participation is the observation that posting content was a baseline 
for all visible participation, followed by downloading and only then by comment-
ing. The fuller forms of computational participation only emerge once projects are 
also discussed, critiqued, and exchanged. Learning to code involves not just learn-
ing the technicalities of programming language and common algorithms, but also 
draws learning the social practices within programming communities. In other 
words, coding not only encompasses acquisition of technical skills but also includes 
engagement with social practices.

Likewise, seeing programming as a collaborative, distributed effort requires new 
types of agency that are usually found in assigned group work in many classrooms. 
For instance, in the Scratch online community, collaborative activities typically 
revolve around the production of particular types of Scratch projects by a small 
group of individuals that have commonly met one another in the online environment 
(Kafai & Burke, 2014). In our recent research to engineer such forms of collabora-
tive efforts with online and offline groups, we found that many students had difficul-
ties in participating in this type of self-organized collaborative activities (Kafai 
et al., 2012). Educators and researchers who design and study K-12 programming 
communities need to focus not only on the technical skills but also on the social 
skills—on how novice programmers get to participate. This issue of equity in par-
ticipation is, of course, not a new one. On a basic level, the classrooms that build 
around design activities always formed communities where students engaged in 
forms of peer pedagogy (Ching & Kafai, 2008) often observed in large online net-
works (Benkler, 2006). But what’s different now are the large-scale communities 
that connect hundreds, if not thousands, of young programmers and provide differ-
ent contexts and opportunities for exchange. How we design communities around 
tools such as Scratch, Alice, or Kodu can and needs to be done both online and 
offline, in the local classrooms and clubs in which youth participate, as well as the 
online spaces that youth populate to share their designs and comment on others.

 Conclusions

From our vantage point, reframing computational thinking into computational par-
ticipation provides new and important directions for the design of programming 
activities, communities, and practices in K-12 educational computing efforts. We 
argue here that such reframing is an imperative if we expect to broaden and deepen 
participation in and perceptions of computing on a considerably larger scale than 
previous attempts of integration. We are not arguing that all the standard staples of 
previous computing courses and designs should be dismissed. The merits of writing 
code to learn about the nature of algorithms and developing data structures, 
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compilers, and general architecture remain crucially important. But we want to 
make the case that educational computing can take the road that mathematics and 
science education efforts have taken long ago, leveraging the insights gained from 
youth digital media and networked culture in conjunction with the learning scien-
tists’ initial conception that children can, in fact, learn to program at a young age.
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