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Abstract Bioactive natural products have formed the core of most ancient systems

of healthcare and medicine. Crude natural preparations have been used for relief in

a variety of infections and disease conditions. This review starts with a general

description of the bioactive natural products, followed by the information on natural

products being used for dealing with infectious microorganisms. In the latter

section, much emphasis has been on the natural products capable of disrupting

microbial communication, i.e., quorum sensing. Quorum sensing inhibitors are

being expected to emerge as an important class of novel therapeutic agents in the

future. Few other issues, important while performing lab experiments with natural

products, are also touched upon.
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1 Prelude

Since the start of this century, there has been an increasing interest among

researchers in exploring the variety of biological activities possessed by different

natural products (NPs). Though natural products (largely secondary metabolites)

from both terrestrial and marine origin are being investigated, much of the work has

focused on natural products of plant origin. Plant preparations have formed the core

of most of the ancient systems of medicine. For example, one of the most ancient

systems of medicine/healthcare—Ayurved—has been practiced widely in India and

neighboring countries like Sri Lanka (Chopra and Doiphode 2002). Atharvaved
(around 1200 BC), Charaka Samhita, and Sushruta Samhita (100–500 BC) are the

underlying classics containing detailed descriptions of over 700 herbs (Dash and

Sharma 2001). Descriptions of the use of natural substances for medicinal purposes
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can be located in texts as old as 78 A.D.; for example, De Materia Medica, written
by Dioscorides, mentions thousands of medicinal plants (Tyler et al. 1988). In

ancient times, human lifestyle was such that for every need they had to look into the

nature as a source. Today, even when the mankind has developed the skill for

synthesizing different molecules in the chemistry lab, we look into the nature to find

new classes (i.e., novel structures) of bioactive molecules. Many of the natural

secondary metabolites are large molecules with complex structures, and it is not

always possible to synthesize them chemically. Few others are first extracted from

some natural source, and identified as a lead molecule, following which that

structure can serve as scaffold for synthetic products. In any case, screening natural

products for the desired bioactivity remains an attractive option. In this article, we

start with a short description of the bioactive natural products and then focus

particularly on the natural products capable of interfering with microbial quorum

sensing. Toward the end of the article, we describe some of the issues important for

a natural product researcher.

NPs are the substances found in nature, i.e., synthesized by a living organism.

These NPs can have one or more pharmacological or biological activities (Koehn

and Carter 2005). Among these NPs, primary metabolites usually have some

essential role in a cell/organism that produces them, whereas secondary metabolites

generally are used by the producing organisms to perform accessory (but important)

functions such as controlling natural relationships, particularly those related to

defense against predation, competition for resources, interspecies communication

for mating and hunting, etc. Owing to their interesting and potentially useful

properties, secondary metabolites can prove to be beneficial to humans. NP can

be used as therapeutic agents for managing conditions such as cancer, inflamma-

tion, bacterial infections, etc. (Bhatnagar and Kim 2010; Lv et al. 2011; Gyawali

and Ibrahim 2012). Table 1 lists some of the reported therapeutic uses of certain

NP. NP research holds its value as one of the most thriving sources of drugs, while

offering a wide range of structural diversities and biological activities. Hitherto,

only a fraction of the world’s biodiversity has been investigated for biological

activity, and a larger lot remains to be explored. Additionally NP research can help

building the bridge between traditional wisdom and modern medicine. The active

interest of international research community in NP research is evident from the

search results obtained using “natural product” as a keyword. Such a search, for

example, in “Google Scholar” yields more than 2.8 million results; in DOAJ, this

retrieves 16 journals and more than 2,400 articles. A year-wise search performed in

PubMed, using the same keyword, shows the rise in count from 2 in 1958 to >1300

in 2015. Parallel to the increase in number of participating researchers, quite a few

databases (Table 2) have come into existence providing a lot of useful information

relevant to natural products.
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Table 1 Examples of natural products reported for various biological activities

Compound/

product Source Reported activity Reference

Artemisinin Artemisia annua Antimalarial Tu (2011)

Paclitaxel Taxus brevifolia Anticancer Priyadarshini and

Keerthi (2012)

Axisonitrile Marine sponge Axinella cannabina Antimalarial,

antituberculosis,

antibacterial

Perdicaris et al.

(2013)

Quinine Cinchona pubescens Antimalarial Achan et al. (2011)

Vinblastine,

Vincristine

Catharanthus roseus Anticancer Sain and Sharma

(2013)

Curcumin Curcuma longa Antimicrobial Tyagi et al. (2015)

Quercetin Found in multiple plants, e.g.,

Malus domestica, Syzygium cumini,
etc.

Anti-biofilm Lee et al. (2011)

Kothari et al.

(2011)

Pentaphyte

P-5®
Ficus benghalensis, Ficus
religiosa, Ficus racemosa, Ficus
lacor, Albizia lebbeck

Anti-inflammatory,

antiasthmatic,

antibacterial

http://www.

palepmrf.com/

Pentaphyte_P5.

html

Table 2 Natural product databases

Database Content of database Relevant weblink

Natural Health

Products Ingredi-

ents Database

Medicinal and nonmedicinal

ingredients

http://www.hc-sc.gc.ca

Natural Medicines

Comprehensive

Database

Natural product effectiveness, drug

interaction, clinical information on

complementary, alternative and inte-

grative therapies

http://naturaldatabase.

therapeuticresearch.com

Super Natural II A database of natural products com-

prising >325,000 natural compounds,

including information on the

corresponding 2D structures, physico-

chemical properties, predicted toxicity

class, and vendors

http://bioinf-applied.charite.de/

supernatural_new

Natural Products

Alert

Organism, pharmacology, compound,

and author-based queries

https://www.napralert.org

Universal Natural

Products Database

Chemical name, CAS registry number,

molecular weight and formula, interna-

tional chemical identifier, and molecu-

lar input line entry specification

http://pkuxxj.pku.edu.cn/

UNPD/index.php

Links to the

64 Databases For

Natural Products

Structures, physical characteristics,

formula, author information

http://depth-first.com/articles/

2011/10/12/sixty-four-free-

chemistry-databases/
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2 Natural Products for Dealing with Naughty Microbes

Among the variety of biological activities being looked for in the NP, one of the

most common is the antimicrobial (more recently, antivirulence, too) activity. As

pathogenic microorganisms have been troubling the mankind since the prehistoric

times, there has been a well-practiced tradition of employing antimicrobial NP to

deal with infections. Essential oils and other plant preparations have been reported

to contain a large variety of bioactive secondary metabolites (Tiwari et al. 2009).

Phytochemicals are being extensively studied as promising human disease-

controlling agents and/or as functional food ingredients. A variety of plant metab-

olites with antimicrobial properties have been documented to be effective against

pathogenic and spoilage microbes (Ngwoke et al. 2011). Plants as a source of

natural antimicrobials have been recognized for centuries by ancient civilizations;

however, over the last three decades or so, this is being increasingly confirmed

using the tools of modern science (Aires et al. 2009; Gyawali and Ibrahim 2012).

Animals have also evolved different antimicrobial substances/defense mechanisms

over the long process of evolution. Many of the antimicrobial peptides inherent to

animals help the producing host while dealing with the invasion by pathogenic

microbes (Hoskin and Ramamoorthy 2008).

Animals and plants are the major hosts for the pathogenic microbes, and hence

they can be naturally expected to produce a variety of antimicrobial substances as a

part of their defense strategy. In addition to this, antimicrobial substances are

produced by microorganisms too, for a variety of ecological purposes. In fact,

most of the currently used antibiotics have come from bacteria and fungi. Metab-

olites such as penicillins, cephalosporins, tetracyclines, aminoglycosides, chloram-

phenicol, macrolides, etc. are good examples of effectively used antibiotics derived

from bacteria or fungi (Demain 1999). Food industry has also exploited the ability

of different microbes to produce various antimicrobial metabolites such as different

organic acids, hydrogen peroxide, ethanol, diacetyl, bacteriocins, etc., for preser-

vation and/or flavor purpose (Nes and Johnsborg 2004).

Over the very long period of their existence on earth, microbial populations had

encountered in nature a wide range of naturally occurring antibiotic substances, and

for becoming more fit for survival, they developed multiple resistance mechanisms

(Hancock 2007).This rise of drug resistance limits the effectiveness of any of the

available antimicrobials put into therapeutic use and makes it imperative for us to

keep finding new antimicrobials. Another problematic dimension of this issue is the

ability of pathogenic microbes to form biofilms, which can be much more (up to

few hundred times) antibiotic resistant than their planktonic counterparts. Biofilm

formation is one of the many traits of pathogenic microbes whose regulation is

related to quorum sensing (QS). QS refers to the phenomenon whereby microbes

communicate among themselves, within and across populations. QS-associated

microbial behavior is often of high relevance from a human perspective (Hense

and Schuster 2015). This is executed via small diffusible molecules and directs

most members of the given microbial population to exert a common behavior.
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Gram-negative bacteria employ autoinducers, viz., N-acyl homoserine lactones

(AHLs), to coordinate gene expression in a population density-dependent fashion

(Molina et al. 2003), whereas gram-positive bacteria make use of autoinducer

peptides to achieve the same. When a single bacterium secretes autoinducers

(AI) into the surrounding, their concentration is too less to be detected. However,

when enough bacteria are present, AI concentration reaches a threshold level

allowing the bacteria to sense a critical biomass and, in response, to activate or

repress the target genes associated with functions like sporulation, biolumines-

cence, antibiotic production and resistance, biofilm formation, pathogen/host inter-

action, virulence factor release, etc. (Adonizio et al. 2008; Rutherford and Bassler

2012; Kalia 2014; Hense and Schuster 2015; Lixa et al. 2015).

The fact that biofilm formation and expression of several other virulence factors

is linked to QS (Fig. 1) raises new hopes for the discovery and development of anti-

pathogenic (i.e., antivirulence/anti-infective) drugs capable of interfering with the

bacterial communication system, without necessarily inducing lethal effects (Song

andWen 2013). The anti-infective compounds are expected to exert lesser selection

pressure on the target pathogens (Rasko and Sperandio 2010; Breah and Michael

2013), than that exerted by conventional antimicrobial agents acting either as

microbicidal or microbiostatic agents, i.e., affecting the pathogen growth in a direct

fashion. However, QS inhibitors (QSI) should not be thought as evolution-proof

drugs (Allen et al. 2014). Reports of resistance to QSI have already appeared (Kalia

2013; Grandclément et al. 2015).

QSI may exert their disrupting effect by inhibiting synthesis of the signal

molecule, binding with the signal molecule and thus not allowing it to reach the

compatible receptor, or binding itself with the receptor and not allowing the actual

signal to occupy the binding site on the signal receptor (Kalia et al. 2014; Kalia and

Fig. 1 A multitude of QS-regulated functions among microorganisms
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Kumar 2015a). Natural as well as synthetic preparations with QS inhibitory poten-

tial are being extensively studied. Among natural entities, several plant compounds

have been reported to be capable of acting as QSI (Table 3). Plants, such as carrots,

chili, garlic, tomato, soybean, vanilla, pea, etc., have been shown to possess

compounds having anti-QS activity (Zhu et al. 2011). Various species of marine

algae, fungi, lichens, animals, honeybees, etc., are also reported to produce anti-QS

compounds (Zahin et al. 2010; Lazar et al. 2013; Martı́n-Rodrı́guez et al. 2014).

As QS is put to use by multiple pathogens (e.g., Enterococcus faecalis, Strep-
tococcus pyogenes, Bacillus subtilis, Streptococcus pneumoniae, Staphylococcus
aureus, Escherichia coli and those belonging to the genera Helicobacter, Neisseria,
Porphyromonas, Proteus, Salmonella, etc.) for regulation of virulence expression

(George and Muir 2007; Bhardwaj et al. 2014; Kalia 2014); the QS machinery is

being viewed as a very attractive target for drug design (Kalia et al. 2014). A limited

number of QSI may prove effective against a multitude of pathogens, as there are

many parallels among pathogenic microbes with respect to the components/mech-

anisms of their QS circuit. QS inhibitory compounds are thought to emerge as a new

type of antimicrobial agents with possible applications in different fields, including

human and veterinary medicine, agriculture, and aquaculture. Commercial interests

associated with these fields are massive, as evident from a good number of

biotechnology firms, which emerged on the scene in the near past, aiming specif-

ically at developing anti-QS formulations [for instance, QSI Pharma A/S (Den-

mark); Quorex Pharmaceuticals Inc., Carlsbad (USA); 4SC AG (Germany)]

(Hentzer and Givskov 2003).

2.1 Selection of the Model Bacterium for Screening
of Possible QSI Property

Researchers, while screening their test substances for possible in vitro QS inhibi-

tory property, usually employ one or more bacteria as the model test organism, and

then they investigate the effect of their test substances on one or more QS-regulated

phenotypes in the selected test bacteria. Though there are quite a few QS-associated

traits, pigment production is one, which can be measured relatively easily. Produc-

tion of pigment in many bacteria (e.g., Pseudomonas aeruginosa,
Chromobacterium violaceum, Serratia marcescens, S. aureus, etc.) is known to

be associated with QS (Table 4). However, while working with colored organisms,

experiments may be tricky in some way. Particularly while quantifying the bacterial

growth photometrically, the experimenter must ensure that there is no interference

due to light absorption by the pigment. Most pigments are likely to absorb signif-

icantly at the wavelengths commonly used (e.g., 625 or 660 nm) for measuring OD

of bacterial cultures. To overcome this problem, one must prepare the absorption

spectrum of the pigment produced by the test organism and should avoid quantify-

ing microbial growth at any wavelength where pigment absorbs to any notable
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Table 3 Phytochemicals reported to possess anti-quorum sensing property

Principal

compound

responsible for

anti-QS property Source plant Effective against Reference

Epigallocatechin

gallate

Camellia
sinensis L.

S. aureus Blanco et al. (2005)

Gingerol Zingiber
officinale

P. aeruginosa Kim et al. (2015)

Ellagic acid Terminalia
chebula
Retz.

P. aeruginosa Sarabhai et al. (2013)

Pyrogallol Punica
granatum

Vibrio harveyi Sangeetha and

Vijayalakshmi (2011)

and Brackman et al.

(2008)

Urolithin A and B Punica
granatum

Yersinia enterocolitica Truchado et al. (2012)

Methyl eugenol Cuminum
cyminum

C. violaceum,
P. aeruginosa,
S. marcescens

Packiavathy et al.

(2012)

Gallic acid Found in

many

plants, e.g.,

grapes

Salmonella typhimurium,
Citrobacter freundii, Proteus
mirabilis, S. aureus, Bacillus
cereus, Enterococcus faecalis,
Listeria monocytogenes, E. coli,
P. aeruginosa

Boussoualim et al.

(2014)

Quercetin Guiera
senegalensis

E. coli Djifaby et al. (2012)

Vanillin Vanilla
planifolia

C. violaceum Choo et al. (2006)

Naringenin Citrus
sinensis

P. aeruginosa Vandeputte et al.

(2011)

Taxifolin Combretum
albiflorum

P. aeruginosa Vandeputte et al.

(2011)

Cinnamolide-

valdiviolide

Drimys
winteri

C. violaceum Carcamo et al. (2014)

Iberin Armoracia
rusticana

P. aeruginosa Jakobsen et al.

(2012a)

Erucin Brassica
oleracea

P. aeruginosa Ganin et al. (2013)

Ajoene Allium
sativum

P. aeruginosa Jakobsen et al.

(2012b)

Allicin Allium
sativum

S. aureus Leng et al. (2011)

Caffeine Coffee
arabica

E. coli,
P. aeruginosa

Norizan et al. (2013)
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extent. For example, C. violaceum is among the most widely used bacteria in

QS-related experiments, and it produces the violet pigment violacein. To avoid

any notable interference from violacein, bacterial growth in this case can be

quantified at 764 nm (Gallardo et al. 2014), as violacein does not absorb at this

wavelength. Similarly, appropriate wavelengths need to be selected while working

with other pigmented bacteria.

Though screening for QSI can initially be performed using any of the suitable

test bacterium, any QSI can be of some real value only when it is shown to be

capable of inhibiting QS in multiple bacteria. This is to say that an ideal QSI should

exert a broad spectrum of activity by being capable of interfering with the QS

machinery in gram-positive as well as gram-negative bacteria. The most effective

approach will be to show multiple QS-associated traits (in each of the test organ-

isms) to get affected upon exposure to the test product.

Table 4 QS signaling molecules and QS-associated phenotypes in some pigmented bacteria

Bacterium

QS

system

of the

organism Autoinducer(s)

Phenotype

(s) controlled References

P. aeruginosa LasI/
LasR

N-
(3-Oxododecanoyl)-

homoserine lactone

Biofilm formation,

virulence factors

expression,

pyocyanin produc-

tion, biolumines-

cence, sporulation,

and mating

Zahin et al. (2010),

Jimenez et al.

(2012), Nazzaro

et al. (2013) and

Aswathanarayan

and Rai (2014)

RhlI/
RhlR

N-(Butyryl)-
homoserine lactone

S. aureus LuxS/

AI-2

Autoinducing pep-

tide (AIP1-AIP4)

Cross-signaling

between strains and

species, biofilm for-

mation, virulence

factor expression,

staphyloxanthin

production

Zhao et al. (2010)

and Gordon et al.

(2013)

S. marcescens SpnIR N-3-Oxohexanoyl-
homoserine lactone

(3-oxo-C6-HSL), N-
hexanoyl-

homoserine lactone,

N-heptanoyl-
homoserine lactone,

and N-octanoyl-
homoserine lactone

Flagellum-indepen-

dent population sur-

face migration

(sliding); synthesis

of biosurfactant,

prodigiosin, and

nuclease

Wei et al. (2006)

and Lutfi et al.

(2014)

C. violaceum CviI/R N-hexanoyl
homoserine lactone

(C6-AHL)

Violacein produc-

tion, exoprotease,

aggregation, biofilm

formation,

swarming motility

Vasavi et al. (2013)

and Juarez et al.

(2013)
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2.2 Possible Workflow While Mining NP for Potential QSI

Once a test product has been demonstrated to possess a broad-spectrum in vitro

capacity to inhibit quorum sensing, the next logical step can be to investigate

whether this capacity can be demonstrated in vivo. For achieving the latter,

availability of a suitable model host is essential. Though animal models are in use

since many years, ethical issues are associated with their use. The nematode

Caenorhabditis elegans has emerged in recent years as an attractive model host

for infectious microorganisms (Ewbank and Zugasti 2011), at least for initial

in vivo studies.

Following the confirmation of in vitro and in vivo activity, the next step of

investigation can be to find out the mode of action of the potential QSI. For this one

can take the in silico approach, if the phytochemical profile of the test plant extract

is known, wherein structures of different constituent metabolites of the active

extract can be docked against the possible bacterial target(s), e.g., the QS signal

and/or the signal receptor protein (CviR in C. violaceum, as an example).

Performing the in vitro experiments with and without exogenous supply of QS

signal can provide useful indication on whether the potential QSI is a signal-supply
inhibitor or a signal-response inhibitor. This information is of obvious utility while

selecting target proteins during molecular docking exercise. Performing wet lab
experiments with pure compounds can be of additional value. In silico exercise can

run in parallel with the in vitro or in vivo experiments (Fig. 2).

In vitro

 Screening of the test NP against one or more pathogenic microorgaism(s), 
by observing the effect of the test preparation(S) on QS-regulated traits e.g. 
biofilm formation, pigment production, etc.
 Using the 'AHL augmentation' strategy to find out whether the potential QSI 
targets  signal-supply, or signal response in the test pathogen(s)
 Investigating whether the QSI can alter the susceptibility of the target 
pathogen to conventioanl antibiotic(s)

In vivo

Testing efficacy using a suitable model host, e.g, Caenorhabditis elegans, or 
Drosophila melanogaster
Experiments with animal hosts

In silico

Molecular docking for characterization of ligand - target binding, wherein the 
target can be either bacterial signal or receptor, depending on the results of 
'AHL augmentation' assay

Generating the ADMET (absorption, distribution, metabolism, excretion, 
toxicity)  profile of the potent candidates

Fig. 2 An indicative list of experiments to be performed while mining NP for potential QS

inhibitors
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3 Applied Aspects of the QS Research

QSI seem to have varied applications in different fields including medicine (Joshi

et al. 2010; Kalia and Kumar 2015b). QS research of course adds a lot to our

knowledge about the fundamental aspects of microbial communication and regu-

lation of the population behavior. Magnitude of the applied aspect of QS research is

also evident from a good number of patents being filed in this area (Table 5).

3.1 QSI in Medicine

As an alternative/augmentation to the currently practiced conventional antibiotic

therapy, QSI are being viewed with great hopes. In order to be therapeutically

relevant, a QSI need not be 100% effective, as disturbing the QS machinery of the

given pathogen even partially can reduce its virulence significantly, which in turn

can offer the host immune system a better chance of winning over the pathogen.

Further QSI may enhance antibiotic susceptibility of the given pathogen, making

the conventional antibiotic(s) more effective at lesser concentration. QSI may act in

synergy with the routinely applied antibiotics. The term “synergy” refers to the fact

that the effect of combined treatment is more than the sum of each component’s
individual effects. Certain components in a plant extract can improve the therapeu-

tic effect of the chemotherapeutic agents (Cooney 2011). In certain cases, one herb

can enhance the effect of another, if given simultaneously (Spinella 2002). As an

example, we may consider the Panchvalkal preparations described in Ayurved.
These are mixtures of extracts of bark from different plants. Such preparations have

been prescribed in Ayurvedic texts for relief in microbial infections. One such

commercially available product Pentaphyte P5® is being investigated by us for its

QS inhibitory potential. Our yet unpublished findings suggest that this product

(listed in Table 1) can reduce QS-regulated violacein synthesis in the bacterium

C. violaceum. It could also enhance (~10%) the susceptibility of this bacterium to

the antibiotic streptomycin. It is appealing to consider the combined use of antibi-

otics with anti-QS strategies, since QSI by disrupting bacterial signal production/

reception can reduce antimicrobial resistance (e.g., by reducing drug efflux) or

discourage transition to physiological states that enhance persistence (e.g.,

biofilms). Many such reports describing the benefit of using QSI in combination

with antibiotics have accumulated in literature (Rasmussen et al. 2005; Brackman

et al. 2009, 2011), which show the combination approach to be more effective

against pathogens like P. aeruginosa, Burkholderia spp., S. aureus, etc. QSI

compounds were also shown to improve survival probabilities in invertebrate

infection models and to decrease bacterial load in mouse pulmonary tissues

(Brackman et al. 2009). A rise in the antibiotic susceptibility of the test bacterial

strains was attributed to the synergistic activity of quercetin (Venkadesaperumal
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Table 5 Some examples of the patents related to QS researcha

Sr.

no. Patent title Inventor(s)

Reference no. and date of

publication

1 Development of zinc oxide nanoparticles at

varied incubation periods for regulating anti-

quorum sensing

Khan

Mohd

Farhan,

Ansari

Akhter H

IN2232DE2015 (A),2015-

08-14

2 Small-molecule antagonists of bacterial

quorum sensing receptors

Bassler

Bonnie

L,

Swem Lee

R

US2015306067 (A1),

2015-10-29

3 Bacterial quorum sensing inhibitor and

antibacterial application thereof

Yu

Wengong,

Gong

Qianhong

CN104784160 (A),

2015-07-22

4 Modulation of bacterial quorum sensing with

synthetic ligands

Blackwell

Helen E,

Geske

Grant D

US2015080349 (A1),

2015-03-19

5 Antibody-mediated disruption of quorum

sensing in bacteria

Kim D

Janda,

Gunnar F

Kaufmann

JP2014221774 (A),

2014-11-27

6 Quorum sensing inhibitors Givskov

Michael,

Yang

Liang

WO2014142748 (A1),

2014-09-18

7 Use of ellagitannins as inhibitors of bacterial

quorum sensing

Mathee

Kalai,

Adonizio

Allison L

US2013317094 (A1),

2013-11-28

8 Detecting antigens such as bacterial quorum

sensing proteins

Bell

Charleson

S,

Giorgio

Todd D

WO2013170229 (A1),

2013-11-14

9 Bacterial quorum sensing biosensor Sayre

Richard

T,

Rajamani

Sathish

US2012122115 (A1),

2012-05-17

10 Synthetic analogs of bacterial quorum

sensors

Iyer Rashi,

Ganguly

Kumkum

US2012071430 (A1),2012-

03-22;US8350061 (B2)

2013-01-08
aThis table was generated by performing a search using the keyword “quorum sensing” on the

website of European Patent Office: https://www.epo.org/searching.html. This search yielded>340

results, of which few examples are listed here
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et al. 2015). Such investigations may pave the way for novel treatment options for

dealing with “difficult-to-eradicate” bacterial infections.

3.2 QSI in Aquaculture and Agriculture

In commercial aquaculture, bacterial infections are one of the most critical prob-

lems. Vibriosis is known to cause heavy mortality in almost all types of

aquacultured organisms (Defoirdt et al. 2007). Natural and synthetic brominated

furanones were shown to protect brine shrimps (Artemia franciscana) from patho-

genic isolates of Vibrio (V. harveyi, V. campbellii, and V. parahaemolyticus)
through the disruption of AI-2-based QS (Defoirdt et al. 2006).

In agriculture, nonpathogenic bacteria capable of disrupting QS of the phyto-

pathogenic bacteria can be used as biocontrol agents (Dong et al. 2004; Uroz et al.

2008). QS-regulated virulence in plant pathogens, including the soft rot associated

with Pectobacterium spp., was shown to be disrupted by some QSI (Faure and

Dessaux 2007).

3.3 QSI as Anti-biofouling Agents

Biofouling can be defined as the attachment of one or more organisms to a surface

in contact with water. This phenomenon causes serious technological and economic

problems in various fields or processes such as naval transportation, aquaculture,

petroleum industries, medical devices, bioreactors or water distribution networks,

and wastewater plants (Fitridge et al. 2012; Harding and Reynolds 2014). Marine

organisms constitute a good source of antifouling molecules. Flustra foliacea, a
marine colonial animal of the Bryozoa phylum, produces a set of ten brominated

alkaloids, two of which exhibit QSI activity (Peters et al. 2003). In glass plate

assays, kojic acid, an oxo-pyrone, prevented biofouling (Dobretsov et al. 2011).

Piper betle extracts were indicated as anti-QS agent to mitigate membrane biofoul-

ing (Siddiqui et al. 2012).

4 Issues While Experimenting with NP

Natural products, particularly crude extracts, being undefined preparations pose

certain challenging issues, while investigating them for different biologically

relevant activities. Some of the important aspects of natural product research,

which researchers should be conscious about, include:
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• Batch-to-batch variation

• Selection of the most appropriate extraction method

• Appropriate “controls” in all experimental sets (particularly the “abiotic control”

while dealing with colored extracts in a study involving photometric measure-

ments) (Chaudhary et al. 2014; Wadhwani et al. 2009)

• Low solubility in the assay medium

• Existence of the phenomenon of “synergy,” making it difficult to get a clue about

mode of action

• Lack of globally accepted authentic guidelines regarding protocols for assaying

NP and their therapeutic uses

Few suggestions for troubleshooting with NP issues can be found in

Kothari (2014).

5 Conclusions

Research on bioactive natural products is being intensively practiced across the

globe. NPs with antimicrobial and/or anti-infective potential are getting more and

more attention in the background of the threatening problem of antibiotic resistance

among pathogenic microbes. Particularly the NP with QS inhibitory potential are

being viewed with high optimism, as QS regulates a notable portion of the micro-

bial genome, including that associated with their virulence. QSI are expected not to

persuade bacteria toward rapid development of resistance. They may be used alone

or in combination with conventional microbiostatic/microbicidal agents. It is

believed that QSI can help the host immune system by reducing the expression of

virulence traits, as well as potentiate the effect of antibiotic therapy by making the

target pathogen population more susceptible. Though many reports on QSI poten-

tial of NP are appearing, the real challenge will be to develop these active NP as

usable therapeutic agents. We also need to develop some insight into how the

normal human microbiota may respond to the QS inhibitory natural products, if

employed as therapeutic agents. NP research is an interesting area, but having its

own complications. However, there are enough reasons to believe that the future

will see a good number of NPs entering the list of approved therapeutic formula-

tions. A structured approach of research in this area will help us to explain the

scientific basis of many of the traditional medicinal practices, for example, the use

of pomegranate peel for relief in sore throat, or applying coffee powder on wounds.

Natural product researchers can play a crucial role in bridging the gap between

ancient and modern systems of medicine.
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