
Huff-Like Stackelberg Location Problems
on the Plane

José Fernández, Juana L. Redondo, Pilar M. Ortigosa, and Boglárka G.-Tóth

1 Introduction

Locating a new facility usually requires a massive investment. In order to guarantee
the survival of the facility, especially in a competitive environment (where other
facilities offering the same product or service exist), the locating firm tries to
take all the factors which may affect the market share captured by the facility
(or its profit) into account. A well-known aphorism states that ‘the most important
attributes of stores are location, location and location’. The literature about facility
location corroborates that point as the number of papers devoted to that topic is
huge. Mathematical location models try to combine all the factors of interest for the
facility into neat equations which try to faithfully represent (a simplified version of)
reality. The location decisions provided by the location models can be of invaluable
help to the decision-maker, as the location of a facility cannot be easily altered.

Depending on the location space, competitive facility location models can be
subdivided, as any other type of location problems, into three main categories: (1)
continuous problems, where the set of feasible locations for the new facility (or

J. Fernández (�)
Department of Statistics and Operations Research, University of Murcia, Campus de Espinardo,
30100 Espinardo, Murcia, Spain
e-mail: josefdez@um.es

J.L. Redondo • P.M. Ortigosa
Department of Informatics, University of Almería, ceiA3, Ctra. Sacramento s/n,
La Cañada de San Urbano, 04120 Almería, Spain
e-mail: jlredondo@ual.es; ortigosa@ual.es

B.G.-Tóth
Department of Computational Optimization, University of Szeged, H-6720 Szeged,
Arpád tér 2, Hungary
e-mail: boglarka@inf.u-szeged.hu

© Springer International Publishing AG 2017
L. Mallozzi et al. (eds.), Spatial Interaction Models, Springer Optimization
and Its Applications 118, DOI 10.1007/978-3-319-52654-6_7

129

mailto:josefdez@um.es
mailto:jlredondo@ual.es
mailto:ortigosa@ual.es
mailto:boglarka@inf.u-szeged.hu

130 J. Fernández et al.

facilities) is (a subset of) the plane; (2) network problems, where any point in a
network (on an edge or a vertex) is a possible location, and (3) discrete problems,
when the set of potential locations is reduced to a finite set of points. In this chapter
we restrict ourselves to continuous models, as this is the main research field of the
authors, but the interested reader can find many references on network and discrete
competitive location models in literature, see for instance [3, 4, 16, 29, 30, 45] and
references therein.

In competitive models there is a demand which has to be, or may be, served
by the facilities. This demand is commonly assumed to be concentrated at a finite
set of points, called demand points (also referred to as customers). In most of the
research works it is assumed that the demand is fixed, regardless the conditions
of the market (price, distance to the facilities,. . .). This implicitly assumes that
goods are ‘essential’ to the customers. It is only recent that the case of ‘inessential’
goods has been addressed [28, 41]. In those models it is assumed that the demand
varies depending on the location of the facilities.

The attraction of a customer towards a facility depends on both the location and
the characteristics of the facility. Usually the characteristics are combined into a
single figure which represents the quality of the facility. The closer the facility to the
customer and the higher its quality, the higher the attraction of the customer towards
the facility. Although there are many ways to model the attraction (see [34]), the
formula quality divided by a function of the distance (already proposed in [22]) is
the most popular in literature, and the one followed in this chapter.

The patronizing behavior of customers, which establishes how customers split
their demand among the available facilities, is another key factor of the model.
Two rules dominate literature. In the deterministic rule it is assumed that customers
only buy at a single facility, the one to which they are attracted most [8, 33].
However, this hypothesis has not found much empirical support, except in areas
where shopping opportunities are limited and transportation is difficult. On the
contrary, in the probabilistic rule customers patronize all the facilities. However, the
demand served at each facility is not the same: it is proportional to the attraction.
Hence, more attractive facilities capture more demand than less attractive facilities.
The probabilistic rule was already suggested in [22] to estimate the market share
captured by competing facilities, and first used in a location model in [9]. In that
paper, as in most of the ones using the probabilistic rule, the quality of the facility
to be located was fixed, given beforehand. It was in [18] when quality was first
considered an additional variable to the problem to be determined. In fact, it was
empirically proved that both the location and the quality of the facility to be located
have to be found simultaneously, as the location influences the quality, and vice-
versa. In general, the probabilistic rule has proved to approximate the market share
captured by the facilities more accurately than other alternatives, and it will be the
one used in the models in this chapter.

Another point to be taken into account is the possible reaction of the competitors.
In most competitive location models it is assumed that the competition is static.
This means that competitors are already present in the market, the locating chain
knows their characteristics and no reaction to the location of the new facility

Huff-Like Stackelberg Location Problems on the Plane 131

(or facilities) is expected from them. However, there are situations where the
competitors do react to the location of the new facilities. In those cases, it is very
important to foresee those reactions, as the market share and profit obtained by the
locating chain may vary substantially. Although there are dynamic location models,
where competitors can change their decisions indefinitely, and then the existence
of equilibrium situations is of major concern (see for instance [6, 19, 27]), in this
chapter the focus is on the so-called ‘leader-follower’ (or Stackelberg) problems.
The scenario considered in that type of problems is that of a duopoly. A chain,
the leader, makes the first movement, and locates p new facilities in the market,
where similar facilities of a competitor (the follower), and possibly of its own chain,
already exist. Then, the follower, as a reaction, decides to locate r new facilities.
Hakimi [20] seems to be the first considering this type of two-level optimization
problems. He introduced the term .rjXp/ medianoid to refer to the follower’s
problem of locating r facilities in the presence of the p new leader’s facilities located
at the set of points Xp. And the term .rjp/ centroid problem to refer to the leader’s
problem of locating p new facilities, knowing that the follower, as a reaction, will
locate r new facilities by solving the corresponding .rjXp/ medianoid problem. In
this chapter only the .1j1/ centroid problem will be considered, i.e., it is assumed
that the leader will locate only one new facility, and the follower’s reaction consists
of the location of a new single facility too.

Even in this simple case the leader-follower problem is very hard to solve. In fact,
the follower’s problem is already a highly nonlinear global optimization problem
(see [9, 18]). The literature on leader-follower location problems is scarce (see [15]
for a review on the topic until 1996). And this shortage is even more pronounced
in the case of continuous problems, largely due to the complexity of this type of
bilevel programming problems. Drezner [7] solved the .1j1/ centroid problem for
the Hotelling model and Euclidean distances exactly, through a geometric-based
approach. Bhadury et al. [2] considered the .rjp/ centroid problem also for the
Hotelling model with Euclidean distances, and gave an alternating heuristic to cope
with it. In [11] Drezner and Drezner considered the Huff model, and proposed
three heuristic approaches for handling the .1j1/ centroid problem (see also [12]).

More recently, the authors of this chapter have worked and extended the Huff-
like Stackelberg problems. In [44] an exact branch-and-bound method is proposed
for a model closely related to that in [11]. This model was later extended in [39] to
consider the quality of the new facilities as additional variables of the model, and
also changing the objective from market share maximization to profit maximization;
both sequential and parallel heuristics were proposed to cope with it (see [39, 40]).
Finally, in [42], the model was extended to take into account the possibility of the
variability of the demand (see also [1]); again, sequential and parallel heuristic
procedures were proposed. The goal of this chapter is to make a critical review
of those papers and to point lines for future research. First, in the next section,
the basic notation is introduced, and then, in the three following sections, the three
aforementioned models are reviewed. Finally, in the last section we point out an idea
which may be used to develop exact methods for the last two models.

132 J. Fernández et al.

Although here we only consider that, as a reaction, the follower will locate an
additional facility too, other alternatives have been recently proposed in literature.
They all consider that the follower can change the quality of its existing facilities. In
particular, in [43], the leader locates one single facility in a region of the plane, and
then the follower may increase the quality of some of its facilities. The follower does
not locate any new facility. In [25] the leader enters the market by locating several
facilities at some of the points of a finite set of feasible locations (discrete problem),
and then, the reaction of the competitor is to adjust (i.e., increase or decrease) the
attractiveness of its existing facilities so as to maximize its own profit. However, it
cannot open new facilities and/or close existing ones, either. The model is extended
in [26], where the follower can also open new facilities or close some existing
ones. The probabilistic rule is used in the three aforementioned papers. A different
approach is followed in [14] (see also [13]) where a discrete location model based
on the concept of coverage is presented. Each facility attracts consumers within a
sphere of influence defined by a radius. The leader and the follower, each has a
budget to be spent on the expansion of their chains either by improving their existing
facilities or constructing new ones.

2 Notation

A chain, the leader, wants to locate a new single facility in a given area of the
plane, where m facilities offering the same goods or product already exist. The first
k (� 0) of those m facilities belong to the chain, and the other m � k (> 0) to a
competitor chain, the follower. The leader knows that the follower, as a reaction,
will subsequently position a new facility too.

The following notation will be used throughout this chapter:

Indices
i Index of demand points, i D 1; : : : ; n:

j Index of existing facilities, j D 1; : : : ; m: The first k of those m facilities
belong to the leader’s chain, and the rest to the follower’s.

l Index for the new facilities, l D 1 for the leader, l D 2 for the follower.

Variables
zl D .xl; yl/ Location of the new leader’s (l D 1) or follower’s (l D 2/

facility.
˛l Quality of the new leader’s (l D 1) or follower’s (l D 2/

facility (in case the quality is to be determined by the model).
nfl D .zl; ˛l/ Variables of the new leader’s (l D 1) or follower’s (l D 2/

facility.

Huff-Like Stackelberg Location Problems on the Plane 133

Input data
pi Location of the ith demand point.
bwi Fixed demand (or purchasing power) at pi,bwi > 0 (when the demand is

assumed to be fixed).
wmin

i Minimum possible demand at pi, wmin
i > 0 (when the demand is

assumed to be variable).
wmax

i Maximum possible demand at pi, wmax
i � wmin

i (when the demand is
assumed to be variable).

fj Location of the jth existing facility.
dij Distance between pi and fj, dij > 0.
ˇj Quality of fj, ˇj > 0.
dmin

i Minimum distance from pi at which the new facilities can be located,
dmin

i > 0:

Sl Location space where the leader (l D 1) or the follower (l D 2/ will
locate its new facility.

˛min
l Minimum level of quality for the new leader’s (l D 1) or follower’s

(l D 2/ facility, ˛min
l > 0 (when the quality is a variable of the model).

˛max
l Maximum level of quality for the new leader’s (l D 1) or follower’s

(l D 2/ facility, ˛max
l � ˛min

l , (when the quality is a variable of
the model).

Miscellaneous
gi.�/ A non-negative, non-decreasing function, which modulates

the decrease in attractiveness as a function of distance.
di.zl/ Distance between pi and zl; l D 1; 2.
ui;nfl Attraction that pi feels for nfl; l D 1; 2,

ui;nfl D ˛l=gi.di.zl//

Ui.nf1; nf2/ Total utility perceived by a customer at pi provided by all the
facilities.

wi.Ui.nf1; nf2// Actual demand at pi (when the demand is assumed to be
variable).

Computed parameters
uij Attraction that pi feels for fj (or utility of fj perceived by the people at pi),

uij D ˇj=gi.dij/.
Market share and profit functions
Ml.nf1; nf2/ Market share obtained by the leader (l D 1) or the follower

(l D 2) after the location of the new facilities.
˘l.nf1; nf2/ Profit obtained by the leader (l D 1) or the follower (l D 2) after

the location of the new facilities.

The profit functions ˘1 and ˘2 vary in each of the problems analyzed, and are
detailed in the corresponding sections.

134 J. Fernández et al.

In all the models in this chapter it is assumed that the patronizing behavior of
customers is probabilistic, that is, demand points split their buying power among
all the facilities proportionally to the attraction they feel for them. Using these
assumptions, the market share attracted by the leader’s chain after the location of
the leader and the follower’s new facilities is

M1.nf1; nf2/ D
n
X

iD1

wi

ui;nf1 CPk
jD1 ui;j

ui;nf1 C ui;nf2 CPm
jD1 ui;j

; (1)

where wi stands for bwi when the demand is fixed, and for wi.Ui.nf1; nf2// when
the demand is variable. Analogously, the market share attracted by the follower’s
chain is

M2.nf1; nf2/ D
n
X

iD1

wi

ui;nf2 CPn
jDkC1 ui;j

ui;nf1 C ui;nf2 CPm
jD1 ui;j

: (2)

Given nf1, the problem for the follower is the .1jnf1/ medianoid problem:

.FP.nf1//

8

ˆ

ˆ

<

ˆ

ˆ

:

max ˘2.nf1; nf2/

s.t. z2 2 S2

di.z2/ � dmin
i ; i D 1; : : : ; n

˛2 2 Œ˛min
2 ; ˛max

2 �

(3)

whose objective is the maximization of the profit obtained by the follower (once the
leader has set up its new facility at nf1). In case the problem .FP.nf1// has multiple
optimal solutions, then it is assumed that the follower selects an optimal solution
which provides the worst possible objective function value for the leader (the so-
called pessimistic approach in bilevel programming [5]).

Let us denote with nf �
2 .nf1/ an optimal solution of .FP.nf1// for which the

objective value of the leader is minimum. The problem for the leader is the .1j1/

centroid problem:

.LP/

8

ˆ

ˆ

<

ˆ

ˆ

:

max ˘1.nf1; nf �
2 .nf1//

s.t. z1 2 S1

di.z1/ � dmin
i ; i D 1; : : : ; n

˛1 2 Œ˛min
1 ; ˛max

1 �

(4)

As we can see, the leader problem .LP/ is much more difficult to solve than
the follower problem .FP.nf1//. Notice, for instance, that to evaluate its objective
function ˘1 at a given point nf1, we have to first solve the corresponding medianoid
problem .FP.nf1// to obtain nf �

2 .nf1/.

Huff-Like Stackelberg Location Problems on the Plane 135

3 A Model Without Costs

3.1 The Model

The first model we will describe is that in [44]. Essential goods are considered.
Therefore, the demand has to be served by the facilities. The demand quantities
are assumed to be known and fixed. Also the quality values of the new facilities
to be located, ˛1 and ˛2, are assumed to be given, i.e., they are not variables of
the model. As the qualities are fixed, no cost related to the achievement of a given
level of quality is considered. No cost related to the setting-up of the facilities at a
given location is considered either. Then, taking into account that the profit obtained
by a player is an increasing function of the market share it captures, the objective
functions considered in [44] were

˘l.nf1; nf2/ D Ml.nf1; nf2/; l D 1; 2:

In addition to this, the location space is the same for the leader and the follower,
i.e., S1 D S2. No other constraints are considered in the model. The corrected
Euclidean distance [10] was used as distance function.

Since the demand is fixed and has to be served, then

M1.nf1; nf2/ C M2.nf1; nf2/ D
n
X

iD1

bwi: (5)

In particular, what is a gain for one chain is a loss for the other. This zero-sum
concept is the key used in [44] to develop a Branch-and-Bound (B&B) procedure to
solve the leader problem rigorously, to have a guarantee on the reached accuracy.

3.2 A B&B Algorithm for the Follower Problem

Branch-and-bound (B&B) algorithms recursively decompose the original problem
into smaller disjoint subproblems until the solution is found. The method avoids
visiting those subproblems which are known not to contain a solution. The initial
set C1 D S1.D S2/ is subsequently partitioned in more and more refined subsets
(branching). At every iteration, the method has a list � of subsets Ck of C1. The
method stops when the list is empty. For every subset Ck in �, upper bounds UBk of
the objective function on Ck are determined. Moreover, a global lower bound GLB
is updated. If UBk < GLB for a given subset Ck, it can be removed from the list,
since it cannot contain a maximum.

136 J. Fernández et al.

Algorithm 1: B&B algorithm for the (reverse) follower problem: function
FunctB&B.M; nf ; C; �f /

1: � WD ;.
2: C1 WD C.
3: Determine an upper bound UB1 on C1.
4: Compute nfa1 WDmidpoint(C1), BestPoint WD nfa1.
5: Determine lower bound: LB1 WD M.nfa1/, GLB WD LB1.
6: Put C1 on list �, r WD 1.
7: while � ¤ ; do
8: Take subset C from list � and bisect into CrC1 and CrC2.
9: for t WD r C 1 to r C 2 do

10: Determine upper bound UBt.
11: if UBt > GLB C �f then
12: Compute nfat WDmidpoint(Ct) and LBt WD M.nfat/.
13: if LBt > GLB then
14: GLB WD LBt, BestPoint WD nfat and remove all Ci from � with UBi < GLB:

15: if UBt > GLB C �f then
16: save Ct in �.
17: r WD r C 2:

18: OUTPUT: fBestPoint; GLBg.

The steps of the method can be seen in Algorithm 1. In the solution procedure
for the leader problem, a similar problem to that of the follower, in which the leader
wants to locate a new facility at nf1, given the location and the quality of all the
facilities of the competitor (the follower), has to be solved. In this case, the leader
has to solve a medianoid problem in which the roles of leader and follower are
interchanged. We will call this problem a reverse medianoid problem. To take both
the medianoid and the reverse medianoid problems into account, in Algorithm 1 the
new facility of the competitor is denoted by nf , the objective function by M.nfa/

(where M.nfa/ D M2.nf ; nfa/ when solving a medianoid problem and M.nfa/ D
M1.nfa; nf / when solving a reverse medianoid problem), and the feasible set by C.

The B&B method introduced in [44] uses boxes (2-dimensional intervals) as
subsets of the initial region and the subdivision rule bisects a box C over its longest
edge. Several selection rules of the next box to be selected (Step 8 of Algorithm 1)
were tested in [44], see Sect. 3.4.

Concerning the computation of bounds, the global lower bound is updated by
evaluating the objective function at some points (the centers of the boxes). As for
the upper bounds, four variants were proposed in [44]. The simplest one (which
turned out to be competitive with the other three more elaborated bounds based on
D.C. decompositions of the objective function) is based on the underestimation of
the distance from demand point pi to facilities in a box C. Since the new facility is
only located at one point within the box, we obtain an overestimation (upper bound)
of the market captured by the new facility. The idea developed in [44] is similar to
that in [32].

The demand points pi within box C have a distance �i.C/ D 0 from C. For
demand points out of box C, pi … C, the shortest distance �i.C/ of pi to the box

Huff-Like Stackelberg Location Problems on the Plane 137

is calculated, �i.C/ D minx2C d.x; pi/. The distance �i.C/ can be determined as
follows. Box C is defined by two points: lower-left point LL D .ll1; ll2/ and upper-
right point UR D .ur1; ur2/. The shortest distance from demand point pi to the box
C can be computed by

�i.C/ D
(

0 if pi 2 C
q

�2
i1 C �2

i2 if pi … C

where

�i1 D maxfll1 � pi1; pi1 � ur1; 0g
�i2 D maxfll2 � pi2; pi2 � ur2; 0g

Notice that this distance calculation can be extended to higher dimensions.
The output of Algorithm 1 is the best point found during the process and its

corresponding function value. The best point is guaranteed to differ less than �f in
function value from the optimal solution of the problem.

Another B&B algorithm which can be used to solve the follower problem is
described in [18]. It uses interval analysis tools (see [47]) and can also handle the
follower problems in the next two sections.

3.3 A B&B Algorithm for the Leader Problem

The corresponding B&B method for the leader problem is given in pseudocode
form in Algorithm 2. The branching and selection rules used were the same as in
Algorithm 1, as well as the computation of the global lower bound.

The key point in the algorithm is computation of the upper bounds. Let C � R
2

denote a subset of the search region of the leader problem .LP/. An upper bound of
the objective function M1.nf1; nf �

2 .nf1// over C can be obtained by having the leader
solve the reverse medianoid problem, as the following lemma proves.

Lemma 1 Let nf2 be a given solution for the new follower’s facility. Then

UB.C; nf2/ D max
nf12C

M1.nf1; nf2/

is an upper bound of M1.nf1; nf �
2 .nf1// over C:

Proof According to (5), maximizing the market share captured by the follower
given nf1 is equivalent to finding the facility nf2 that minimizes the market share
captured by the leader. Hence, M1.nf1; nf �

2 .nf1// � M1.nf1; nf2/ such that

max
nf12C

M1.nf1; nf �
2 .nf1// � max

nf12C
M1.nf1; nf2/ D UB.C; nf2/:

138 J. Fernández et al.

Algorithm 2: B&B algorithm for the leader problem
1: � WD ;.
2: C1 WD S.
3: Compute nf 1

1 WDmidpoint(C1), BestPoint WD nf 1
1 .

4: Solve the problem for the follower: fnf 1
2 ; lbobjg WD FunctB&B.M2; nf 1

1 ; C1; �f /:

5: Determine an upper bound UB1 on C1 solving a reverse medianoid problem:
fnfa; UB1g WD FunctB&B.M1; nf 1

2 ; C1; �l/:

6: Determine lower bound: LB1 WD M1.nf 1
1 ; nf 1

2 /, GLB WD LB1.
7: Put C1 on list �, r WD 1.
8: while � ¤ ; do
9: Take subset C from list � and bisect into CrC1 and CrC2.

10: for t WD r C 1 to r C 2 do
11: Compute nf t

1 Dmidpoint(Ct).
12: Solve the problem for the follower: fnf t

2; lbobjg WD FunctB&B.M2; nf t
1; C1; �f /:

13: Determine upper bound UBt solving a reverse medianoid problem:
fnfa; UBtg WD FunctB&B.M1; nf t

2; Ct; �l/

14: if UBt > GLB C �l then
15: Determine LBt WD M1.nf t

1; nf t
2/:

16: if LBt > GLB then
17: GLB WD LBt, BestPoint WD nf t

1, and remove all Ci from � with UBi < GLB:

18: if UBt > GLB C �l then
19: save Ct in �.
20: r WD r C 2.
21: OUTPUT: fBestPoint; GLBg:

ut
For a given box Ct, the choice of nf t

2 for the upper bound calculation is done
as follows. First, the midpoint of Ct is computed, and considering it as the new
leader’s facility, nf t

1, the corresponding follower’s problem is solved, .FP.nf t
1//,

obtaining nf t
2. Then, the upper bound is obtained by solving the reverse medianoid

problem up to an accuracy �l

UBt D UB.Ct; nf t
2/ D max

nf12Ct

fM1.nf1; nf t
2/g D FunctB&B.M1; nf t

2; Ct; �l/:

Again, the output of the B&B method (see Algorithm 2) is the best point found
during the process and its corresponding function value, which differs less than �l

from the optimum value of the problem.

3.4 Computational Studies

A random problem with n D 10 demand points and m D 4 existing facilities was
first solved to illustrate the algorithm. The number k of facilities belonging to the
leader’s chain was varied from k D 0 to 4. The other parameters of the problem were
chosen from uniform distributions (see [44]). Table 1 shows the resulting optimal

Huff-Like Stackelberg Location Problems on the Plane 139

Table 1 Optimal locations and market capture for different number of leader facilities,
k D 0; : : : ; 4; locations and market captures are rounded to two decimals

k D 0 k D 1 k D 2 k D 3 k D 4

Optima location Leader

2:44

3:97

!

5:03

0:69

!

5:33

4:34

!

5:33

4:34

!

5:03

0:69

!

Follower

2:44

3:97

!

5:03

0:69

!

1:41

4:65

!

1:75

3:79

!

1:75

3:79

!

Market Capture Leader 186:29 367:87 497:70 611:07 773:44

Follower 813:71 632:13 502:30 388:93 226:56

Gain or loss for the leader 186:29 100:67 14:17 �72:46 �226:56

locations and market capture of both chains. In the last line, the gain or loss for the
leader, to be understood as the difference between the market captured by the leader
after and before the location of the facilities, is given. The accuracy for Algorithms 1
and 2 were set both to �l D �f D 10�2.

One can observe a characteristic of the problem, where leader and follower tend
to co-locate when the number of existing facilities of the leader is low. Notice also
that when the leader is dominant in the market then the leader suffers a decrease
in market share after the location of the two new facilities (see the negative values
in the last line of Table 1). This is because in those cases the follower increases its
market share more than the leader.

Concerning the efficiency of the selection rule of the next box to be processed,
breadth-first and best-bound strategies were researched. The results in [44]
concluded that best-bound strategy is the one providing the best results, as
in average, the number of iterations employed by Algorithm 1 was reduced
significantly. The influence in the number of iterations of Algorithm 2 was not so
clear when using the upper bound described in Sect. 3.2, but when additional bounds
are employed the best-bound selection rule was also clearly the best for Algorithm 2.

As for the memory requirement, it is known that branch-and-bound algorithms
are usually hindered by huge search trees that need to be stored in memory.
This complexity usually increases rapidly with dimension and with accuracy.
Interestingly, this does not seem to be the case for this problem. There are never
more than 30 boxes in the storage tree. And the same remains valid when the
accuracy is increased up to 0.0001 for both Algorithms 1 and 2.

The last set of experiments done in [44] studied whether larger problems could
be solved in reasonable time. To this aim, random problems were generated varying
the number of demand points (n D 20; 30; : : : ; 110), number of existing facilities
(m D 5; 10; 15) and number of those facilities belonging to the leader’s chain (k D
Œm=2�). For each .n; m/ setting, ten problems were generated by randomly selecting
the parameters of the problem from uniform distributions. The results can be seen
in Fig. 1. It can be seen that increasing the number of demand points does not make
the problem more complex in terms of the memory requirement. The leader problem
neither needs more iterations, although the follower problem needs more iterations

140 J. Fernández et al.

Fig. 1 Average number of iterations and memory requirement (rectangles) over ten random cases
varying number of demand points n D 20; : : : ; 110, existing facilities m D 5; 10; 15 and k D
Œm=2�. �l D �f D 0:01

on average. Hence, the results suggest that no exponential effort is required to solve
the problems with increasing number of demand points, confirming the viability of
the approach.

4 A Model with Costs Assuming Fixed Demand

4.1 The Model

The scenario considered in this section (see [39]) is similar to the one previously
described. The demand is again supposed to be fixed and known. But now, both the
location and the quality (design) of the new facilities have to be found and several
types of costs are considered.

The objective function ˘2 for the follower problem [see Eq. (3)], is now
formulated as the difference between the revenues obtained from the captured
market share minus the operating costs of the new facility:

˘2.nf1; nf2/ D F2.M2.nf1; nf2// � G2.nf2/: (6)

Similarly, the profit obtained by the leader [see Eq. (4)] is given by:

˘1.nf1; nf �
2 .nf1// D F1.M1.nf1; nf �

2 .nf1/// � G1.nf1/: (7)

Functions Fl; l D 1; 2; are strictly increasing differentiable functions that transform
the market share into expected sales. In the computational studies in [39], they are
linear, Fl.Ml/ D cl � Ml, where cl is the income per unit of goods sold.

Functions Gl; l D 1; 2; are the operating costs functions. Gl should increase as zl

gets closer to any demand point, since it is rather likely the operating costs of the
facility will be higher as the facility approaches the demand points. Furthermore, Gl

should be a nondecreasing and convex function in the variable ˛l, since the more

Huff-Like Stackelberg Location Problems on the Plane 141

quality the facility requires, the higher the costs will be, at an increasing rate. In [39]
it is assumed that functions Gl consist of the sum of the location costs and the
costs needed to achieve a given level of quality, i.e. Gl.nfl/ D Ga

l .zl/ C Gb
l .˛l/.

In the computational experiments the following choices were made: Ga
l .zl/ D

Pn
iD1 ˚ i

l .di.zl//, with ˚ i
l .di.zl// D bwi=..di.zl//

�i0
l C� i1

l /; � i0
l ; � i1

l > 0 and Gb
l .˛l/ D

exp.˛l=�0
l C �1

l / � exp.�1
l /, with �0

l > 0 and �1
l 2 R given values. See [18] for a

detailed explanation of these functions, as well as other possible expressions for Fl

and Gl.nfl/.
Notice that the key to solving the problem of the previous section with precision

was that what is a gain for one chain is a loss for the other, see (5). This
is no longer true for this model: notice that now ˘1.nf1; nf2/ C ˘2.nf1; nf2/ is
not necessarily constant due to the cost functions. This fact impedes using the
methodology employed in the previous section to develop a B&B method for the
new leader’s problem (Lemma 1 does not hold any more). That is why heuristic
procedures are proposed in [39] to cope with the new problem. However, other
strategies are possible, as described in Sect. 6.

4.2 Solving the Medianoid Problem

The algorithm UEGO is used here to deal with the medianoid problem. UEGO,
which stands for Universal Evolutionary Global Optimizer, is a memetic multi-
modal global optimization method especially suitable to be parallelized and highly
adaptable to different problems [24, 31, 35–38].

The key concept of UEGO is that of species, which is defined by a center and
a radius. The center is a solution, and the radius is a positive number that defines
an attraction area and hence, multiple solutions. In particular, for the medianoid
problem, a species is an array of the form .nf2; ˘2.nf1; nf2/; R/ (we also store
information about the objective value at the center of the species). During the
optimization procedure, UEGO works with a set of species stored in the species_list.

The adaptability of UEGO mainly relies on being defined in two levels, global
an local. In the global level, UEGO defines an iterative and progressively cooled
management process over a set of available species, and this process is the same
for all the problems to which UEGO is applied. In the local one, a particular local
optimizer is selected for the studied problem at the context defined by every species.
For the current problem, a Weiszfeld-like method (WLM) has been considered as a
local optimizer. The UEGO algorithm executed with WLM to solve the medianoid
problem will be called UEGO_med throughout.

A global description of UEGO_med is given in Algorithm 3. The input given
parameter nf1 indicates the additional leader facility, which has to be taken into
account apart from the m pre-existing facilities. Additionally, UEGO_med has four
more user given parameters: (1) N, the maximum number of function evaluations
(f.e.) allowed for the entire optimization process; (2) L, the maximum number of

142 J. Fernández et al.

Algorithm 3: Algorithm UEGO_med.nf1; N; L; M; RL/

1: Init_species_list
2: Optimize_species(n1)
3: for i = 2 to L do
4: Determine Ri, newi, ni

5: Create_species(newi) {# budget_per_species D newi/length.species_listi)}
6: Fuse_species(Ri)
7: Shorten_species_list(M)
8: Optimize_species(ni) { # budget_per_species D ni=M}
9: Fuse_species(Ri)

levels (iterations) of the algorithm; (3) M, which refers to the maximum length of the
species_list, and (4) RL, which indicates the minimum radius that a species can have.
Furthermore, from these four input parameters, three important values are computed
at each level i: the maximum number of f.e. for the creation of new species (newi),
the maximum number of f.e. for the optimization of species (ni), and the radius
assigned to the new species (Ri). The equations linking all these parameters are
detailed in [23, 31].

In the following, the different key stages of UEGO_med are described:

• Init_species_list: The initial species_list is composed of a single species. The
value of nf2 is randomly computed and the corresponding radius is set to R1.

• Create_species(create_evals): In terms of evolutionary computation, this proce-
dure can be interpreted as an algorithm to create offspring. The input parameter
create_evals indicates the number of function evaluations allowed for the
creation procedure at the current level. The most remarkable aspect of this
mechanism is that every species in the species_list is able to generate a
new progeny without participation from the remaining ones. The parameter
create_evals is internally divided by the current number of existing species
(length.species_listi/), which means that the budget available per species for the
creation of new points is equal to:

budget_per_species D newi=length.species_listi/:

For each single species, the creation method proceeds as follows: New random
exploratory points are created within the area defined by its radius, and for every
pair of those points, a new candidate solution is created at the middle of the
segment connecting the pair. Then, all the candidate points are evaluated, and
the one with the best objective function value replaces the center of the original
species in the case that it improves the objective function of the center. Later,
the merit of the extreme points to become a new species, is analyzed. Both
extreme points are inserted into the species_list if their objective function values
are better than the one at the corresponding midpoint. Every new inserted species
is assigned the current radius value (Ri).

Huff-Like Stackelberg Location Problems on the Plane 143

• Fuse_species(radius): This procedure unites species from the species_list that
are closer than the distance defined by the parameter radius. Then, for every pair
of species in the list, the Euclidean distance is computed. If such a distance is
smaller than the given radius, the species with the lowest fitness are removed.
The radius of the species that remains is set equal to the maximum of the radii of
the original two species.

• Shorten_species_list (max_list_length): It deletes species to reduce the list length
to max_list_length value. The species with the smaller radius are deleted first.

• Optimize_species(opt_evals): In this procedure, every species calls a local
optimizer once, using the nf2 value of the caller species as initial point. If
after the execution of the local method a new point with a better objective
function is found, then the original nf2 is updated. The budget per species for
the optimization process, in terms of number of function evaluations, is ni=M.
For the problem at hand, a Weiszfeld-like algorithm has been considered as local
optimizer.

4.2.1 Weiszfeld-Like Algorithm WLM

This algorithm is a steepest descent method. The derivatives of the objective
function are equated to zero and the next iterate is obtained by implicitly solving
these equations. Notice that, here, the derivatives are computed taking the Fl and Gl

functions described in Sect. 4.1 into account. Of course, they should be recomputed
if any other expression is considered.

If we denote

ri D
m
X

jD1

uij; ti D bwi

m
X

jDkC1

uij;

Hi.nf2/ D @˘2

@di.z2/
D � dF2

dM2

� ˛2�itig0
i.di.z2//

.�i˛2 C rigi.di.z2///2
� d˚ i

ddi.z2/
;

and di.z2/ is a distance function such that

@di.z2/

@x2

D x2Ai1.z2/ � Bi1.z2/;
@di.z2/

@y2

D y2Ai2.z2/ � Bi2.z2/; (8)

then the Weiszfeld-like algorithm for solving the corresponding problem is
described by Algorithm 4 (for more details see [18]).

144 J. Fernández et al.

Algorithm 4: WLM (Weiszfeld-like algorithm)
1: Set iteration counter ic D 0

2: Initialize nf .0/
2 D .x.0/

2 ; y.0/
2 ; ˛

.0/
2 /

3: while stopping criteria are not met do
4: Update nf .icC1/

2 D .x.icC1/
2 ; y.icC1/

2 ; ˛
.icC1/
2 /

5: if nf .icC1/
2 is unfeasible then

6: nf .icC1/
2 2 Œnf .ic/

2 ; nf .icC1/
2 � \ @S2

7: ic D ic C 1

Values of x.icC1/
2 and y.icC1/

2 in Algorithm 4 are obtained as:

x.icC1/
2 D

n
X

iD1

Hi.nf .ic/
2 /Bi1.z.ic/

2 /

n
X

iD1

Hi.nf .ic/
2 /Ai1.z.ic/

2 /

; y.icC1/
2 D

n
X

iD1

Hi.nf .ic/
2 /Bi2.z.ic/

2 /

n
X

iD1

Hi.nf .ic/
2 /Ai2.z.ic/

2 /

and ˛
.icC1/
2 as a solution of the equation:

dF2

dM2

�
n
X

iD1

�itigi.di.z
.icC1/
2 ///

.�i˛2 C rigi.di.z
.icC1/
2 //2

� dG2

d˛2

D 0:

Two stopping rules are applied in WLM: (1) the algorithm stops if

k.x.ic�1/
2 ; y.ic�1/

2 / � .x.ic/
2 ; y.ic/

2 /k2 < �1 and j˛.ic�1/
2 � ˛

.ic/
2 j < �2;

for given tolerances �1; �2 > 0; and (2) the procedure finishes if a maximum number
of iterations icmax is achieved or the number of function evaluations exceeds the
budget assigned.

In Step 6 of Algorithm 4, nf .icC1/
2 is set to a point in the segment Œnf .ic/

2 ; nf .icC1/
2 �

which is also on the border @S2 of the feasible region S2.
The l2b distance, given by

di.zl/ D
p

b1.xl � pi1/2 C b2.yl � pi2/2;

satisfies the conditions in (8). Furthermore, it has proved to be a good distance
predicting function (see [17]), and it is therefore a good distance function to be used
in competitive location models, as it measures distances (or travel time) as they are
perceived by customers on their ways to and from facilities.

Huff-Like Stackelberg Location Problems on the Plane 145

4.3 Solving the Centroid Problem

Four heuristics are introduced in [39] for handling the centroid problem, namely, a
grid search procedure (GS), an alternating method called AlternatMed and two evo-
lutionary algorithms based on the UEGO_med structure. These two variants, which
differ basically in the considered local optimizer, are named UEGO_cent.WLM and
UEGO_cent.SASS.

A comprehensive computational study in [39] shows that UEGO_cent.SASS is the
algorithm which provides the best results. In fact, in all the considered problems, it
is the algorithm giving the best solutions. In view of those results, only the algorithm
UEGO_cent.SASS is explained below. For the sake of brevity, only the fundamental
differences concerning UEGO_med are mentioned. The interested reader can always
consult [39] for a detailed account of the remaining methods.

Species definition: A species is now defined by the vector .nf1; nf2; R/, where nf1
refers to the leader point, nf2 is the solution obtained by UEGO_med when taking
the original m existing facilities and nf1 into account, and R is the radius of the
species.

Create_species procedure: This procedure is, in essence, the same as the creation
process described in Sect. 4.2. However, some amendments have been made to
comply with certain computational requirements.

In this procedure, random trial points for nf1 are also created within the area
defined by the radius of the species. Additionally, similar to what is done in
UEGO_med, the midpoint of each pair of solutions is also computed. However,
not all candidate solutions are evaluated, but only the most promising ones, i.e.,
we do not solve the corresponding medianoid problem associated to each new
point to obtain the follower’s facility. This is done in this way because this
procedure is too costly and the number of points to be evaluated is very high. On
the contrary, we first analyze the merit of the candidate solutions by computing
an approximate objective value. More precisely, the follower’s facility associated
to the species from which they were generated is used to obtain an approximate
fitness for the leader’s candidate solutions.

After this process, for every species in the species_list we have a sublist
of ‘candidate’ points to generate new species. Notice that in this creation
process, the candidate solutions never replace the original species, as happens
in UEGO_med. This is because the comparison in terms of fitness may be
misleading, since the objective value at the midpoints or at the endpoints of the
segments is only an approximation.

Furthermore, in order to reduce the large number of candidate points,
those ‘candidate’ points are merged as described in Sect. 4.2 (using the pro-
cedure Fuse_species). Finally, for each candidate point in this reduced list,
its corresponding follower’s facility is computed applying UEGO_med, and the
objective value for the leader’s facility is evaluated. The new species (with the
corresponding radius according to the iteration) are inserted in the species_list.

146 J. Fernández et al.

Algorithm 5: Algorithm LeaderOpt
1: Let .nf1; nf2; R/ be the species to be optimized.
2: opt_nf1 = SASSCWLM(nf1; nf2; R)
3: opt_nf2 = UEGO_med(opt_nf1)
4: if opt_nf1 D nf1 then
5: if ˘2.nf1; nf2/ > ˘2.nf1; opt_nf2/ then
6: opt_nf2 D nf2
7: Update the original species to .nf1; opt_nf2; R/.
8: else if ˘1.opt_nf1; opt_nf2/ > ˘1.nf1; nf2/ then
9: Update the original species to .opt_nf1; opt_nf2; R/

Optimize_species procedure: For every species in the list, the local optimization
process described in Algorithm 5 is applied. In Step 2, the SASSCWLM local
search is applied (see [39]). This method tries to obtain a better solution for
the leader (nf1) based on the current choice of the follower (nf2). To do so,
this algorithm uses the stochastic hill climber SASS (see [46]) for updating
the leader’s facility and WLM for updating the follower’s. Notice that the
algorithm WLM is used because obtaining the exact new follower’s facility
every time the leader’s facility changes, using UEGO_med, makes the process
very time-consuming. Nevertheless, to prevent that the objective value for the
leader becomes misleading (overestimated), UEGO_med is used in Step 3 of
Algorithm 5. Finally, the species is replaced only in case a better objective
function value is obtained (see steps 5–9 of Algorithm 5).

4.4 The Cost of a Myopic Decision

A study is carried out to know how important it is to consider the follower’s
reaction. To this aim, for fourteen problems, we have calculated the leader’s profit
by solving the medianoid problem but interchanging the roles of the leader and
the follower and only taking the original m facilities into account, i.e., the reverse
medianoid problem. The corresponding optimal solution will be denoted by nf .myop/

1 .
Then, we have solved the corresponding medianoid problem, taking the existing m
facilities and nf .myop/

1 into account, using UEGO_med. And finally, we have evaluated

˘
.myop/
1 D ˘1.nf .myop/

1 ; UEGO_med.nf .myop/
1 //.

Table 2 shows the obtained results. The first column refers to the setting of the
problems solved (for three settings, more than one problem was generated, and
the letters a, b, and c at the end of the setting has been added to highlight it).
Columns two and three show the values of nf .myop/

1 and ˘
.myop/
1 . The following

two columns provide the values of the facility (nf �
1) and the profit (˘�

1) obtained
with UEGO_cent.SASS. Finally, the loss in profit caused by the myopic decision as
compared to the long term decision, in percentage, is shown.

Huff-Like Stackelberg Location Problems on the Plane 147

Table 2 Comparison between the myopic and the long term view

nf .myop/
1

˘
.myop/
1

nf �
1

.n; n; k/ x1 x2 ˛1 x1 x2 ˛1 ˘�
1 % loss

(21,5,2) 2.234 3.352 1.524 226.645 2.981 4.482 2.218 228.394 0.76

(21,5,3) 3.024 6.576 0.536 363.451 2.234 3.352 1.162 379.943 4.34

(50,5,0)a 6.082 2.378 2.230 9.156 6.082 2.378 2.230 9.156 0.00

(50,5,0)b 5.419 6.411 5.000 67.569 5.417 6.906 4.851 94.044 28.15

(50,5,1) 4.452 5.920 3.839 116.424 4.917 5.150 3.418 143.498 18.87

(50,5,2)a 2.264 2.096 2.421 189.113 2.228 2.138 2.122 189.653 0.28

(50,5,2)b 3.573 4.044 2.554 109.514 3.572 4.044 2.549 111.246 1.56

(50,6,3)a 1.122 3.362 3.224 291.052 1.161 4.222 3.663 292.554 0.51

(50,6,3)b 1.733 5.848 3.991 194.486 7.151 3.487 3.123 212.358 8.42

(50,6,3)c 6.851 3.459 4.486 218.890 4.103 3.055 4.255 230.329 4.97

(50,8,4) 5.677 2.830 2.973 198.546 5.893 2.629 2.864 223.983 11.36

(100,2,0) 4.471 4.704 5.000 168.430 4.724 4.591 5.000 169.717 0.76

(100,2,1) 3.379 6.298 5.000 271.951 3.255 6.366 5.000 272.027 0.03

(100,10,0) 2.758 5.119 5.000 40.944 2.758 5.119 5.000 40.944 0.00

As can be seen, the loss is less than 1% for half of the problems, it is over
4% for 6 out of 14 problems, and it exceeds 11% in three of them. This clearly
indicates how important anticipating the competitor’s reaction is, since the loss that
can be produced may be substantial. Furthermore, note that the obtained results
are independent of the setting .n; m; k/ of the problem. Notice, for example, that
the two extreme cases, with 0% loss and 28:15% loss, have the same configuration
.50; 5; 0/. What is important is the actual distribution of the demand points and the
actual locations and qualities of the existing facilities. Notice also that even though
nf .myop/

1 may be close to nf �
1 , the value of ˘

.myop/
1 may be very different from ˘�

1 ,
see problem (50,5,0)b.

4.5 High Performance Computing for the Leader-Follower
Problem

UEGO_cent.SASS is a costly algorithm, since the evaluation of the objective func-
tion value implies the resolution of a global optimization problem. Its parallelization
may allow to reduce the execution time and to increase the size of the problems that
can be solved. In [40], a master-slave algorithm and four coarse-grain methods are
presented to parallelize UEGO_cent.SASS. The efficiency of the parallel algorithms
is tested through an extensive computational testbed. Results showed that the
master-slave method outperforms all the coarse-grain proposals, i.e. it is able to
solve more instances using fewer processing elements and to obtain efficiencies
close to or even greater than the ideal one.

148 J. Fernández et al.

Algorithm 6: Algorithm MS
1: Init_species_list
2: Optimize_species(n1)
3: for i = 2 to L do
4: Determine Ri, newi, ni

5: Create_species_paral(newi)
6: Fuse_species(Ri)
7: Shorten_species_list(M)
8: Optimize_species_paral(ni)
9: Fuse_species(Ri)

In the following, the main features of the master-slave strategy are detailed.
Readers interested in delving into the coarse-grain methods as well as into the
performance comparison among parallel algorithms are referred to [40].

4.5.1 A Master-Slave Strategy (MS)

Broadly speaking, in this parallel strategy, two types of processing elements are
considered: the master processor, which makes global decisions and delivers data
among the slaves, and the slaves, which execute different tasks simultaneously.

In our particular master-slave (MS) model (see Algorithm 6), the master proces-
sor executes UEGO_ cent.SASS sequentially. The parallelism has been included in
new creation and optimization procedures (see Steps 5 and 8 in Algorithm 6). Next,
they are briefly described.

• Create_species_paral: In this procedure, the master obtains a new offspring
of candidate solutions for the leader sequentially. The parallelism comes from
the simultaneous resolution of the medianoid problems to evaluate the new
leader’s trial points. To do so, the master divides the list of candidate solutions
by the number of processors P and delivers the resulting sublists among all
the processing elements (including itself). Each processing element applies
UEGO_med to every received leader’s facility to obtain the associated follower’s
location.

The master processor does not receive information from the slaves until it has
finished its work (first synchronization point). When it does so, it picks up all the
follower sublists sent by the slaves, updates the candidate solutions list with such
information and includes it in the species_listi, with the radius value associated
to the current level i.

• Optimize_species_paral: In this procedure, the master divides the species_listi
among all the processing elements (again including itself). Once the sublist has
been received, each slave applies the local optimization process SASSCWLM
to every leader’s facility and executes UEGO_med to obtain the corresponding
follower (see [40]). Finally, once the master finishes its work, it starts to receive
the new species sublists from the slaves (second synchronization point).

Huff-Like Stackelberg Location Problems on the Plane 149

Note that the synchronization points are imposed because the master is working
with the whole species_listi, or because it is needed to know the fitness value at the
points of the leader before executing the next stage of the optimization procedure.

4.5.2 Improving the Quality of the Solution: A New Creation Procedure

Parallel algorithms can use more computational resources. Then, they can incor-
porate computationally intensive techniques that help at intensifying the search
for more effective solutions. In [40], new alternative procedures to be included in
UEGO_cent.SASS are studied. In particular, new creation methods that explore the
search space deeper are analysed. After an exhaustive computational study, where
several options are examined, it is found that the procedure named Create_species21

is the best choice, since it maintains a good balance between the quality of
the final solution and the execution time and memory resources required by
UEGO_cent.SASS.

The idea behind this method is to take advantage of the non-consumed evalua-
tions of the previous level. The budget per species in the Optimize_species procedure
is boi D ni=M. This means that there is a remainder of ni �boi � length.species_listi/
function evaluations in the optimization process, when the length of the species_listi
is not equal to the maximum allowed. Then, these function evaluations can be used
to force the creation of more candidate solutions at the next level. Therefore, the
budget per species in the level i C 1 is:

bciC1 D newiC1 C ni � boi � length.species_listi/

length.species_listiC1/
:

As a consequence of the previous generation procedure, a huge list of candidate
solutions is obtained. To reduce the list length while keeping the most promising
solutions, a fusion procedure with the radius set to 2Ri is applied.

This new creation procedure makes the sequential UEGO_cent.SASS run out of
memory most of the times. Then, to be able to use it, high performance computers
are required. In [40], this new proposal is checked with the master-slave parallel
model, since this algorithm does not modify the behavior of the sequential version,
i.e., it considers the same number of function evaluations and acts over the species in
the same way as the sequential algorithm. For the studies, the use of two processing
elements has been enough to solve all the problems. An exhaustive analysis has
proved that the Creation_species21 method can improve the objective value more
than 1% in some instances, which is not a negligible value.

4.5.3 Efficiency Results of MS

In this subsection the behavior of MS is analyzed by solving a representative set
of location problems. The settings .n; m; k/ employed in this experiment can be

150 J. Fernández et al.

Table 3 Settings of the larger test problems

n 100 150 200

m 1 2 5 1 3 7 2 5 10

k 0 0, 1 0, 2 0 0, 1 0, 3 0, 1 0, 2 0, 5

Table 4 Efficiency results

n P Av.Obj/ Av.T/ Eff .P; Q/

100 2 472.66 2512.24 –

4 472.66 1218.48 1.03

8 472.67 580.96 1.08

16 472.66 271.28 1.06

32 472.66 152.44 1.03

150 4 646.90 2271.08 –

8 646.90 1161.28 0.99

16 646.90 582.28 0.98

32 646.90 295.71 0.96

200 8 850.70 964.53 –

16 850.70 474.53 1.02

32 850.70 238.74 1.01

seen in Table 3. For every setting, five problems are generated. Furthermore, all the
instances are solved five times and average values are considered.

Table 4 shows average results (for all the values of m and k) for each value of
n and P. In the column labelled Av.Obj/, the average objective function value is
given, in Av.T/ the average computational time and in the last column Eff .P; Q/,
efficiency values are given.

Results reveal how costly solving the centroid problem is. As can be seen in
Table 4, the higher the number of demand points of the problem at hand, the larger
the minimum number of processing elements required to solve it. Nevertheless, the
performance of the parallel algorithm is good, i.e. its efficiency is larger than the
ideal one for problems with 100 and 200 demand points, and very close to ideal for
problems with n D 150.

5 A Model with Costs and Variable Demand

5.1 The Model

The model considered in this section, introduced in [42], extends the previous model
by relaxing the assumption that the demand is fixed. On the contrary, an endogenous
(variable) demand is contemplated so that it varies depending on several factors.
In real problems, for example, consumer expenditures on services or products that

Huff-Like Stackelberg Location Problems on the Plane 151

are offered by the facilities may increase depending on different reasons related to
the location of the new facility. So, opening new outlets may increase the overall
utility of the product. Also, the ‘marketing presence’ of a product may be increased
with the marketing expenditures resulting from the new facilities. Another thing that
can happen is that some consumers who did not patronize any of the facilities may
now be induced to do so. The quality of the facilities may also modify consumer
expenditures because a better service usually leads to more sales. The fact that the
demand is endogenous is commonly disregarded in literature, usually due to the
difficulty of the problems to be solved (see [41]).

The demand at a demand point pi is now assumed to be a function of
Ui.nf1; nf2/ D ui;nf1 C ui;nf2 CPm

jD1 ui;j, in the form

wi.Ui.nf1; nf2// D wmin
i C incri � ei.Ui.nf1; nf2//;

where incri D wmax
i � wmin

i , and wmax
i (resp. wmin

i) denotes the maximum (resp.
minimum) possible demand at pi. Function ei.Ui.nf1; nf2// can be interpreted as the
share of the maximum possible increment that a customer decides to spend given a
location scenario.

The objective functions ˘2 for the follower problem and ˘1 for the leader
one, are formulated as in Sect. 4.1 (see (6) and (7), respectively), although the
market share function expressions (Ml) contain the variable demand function
wi.Ui.nf1; nf2// instead of the constantbwi:

M2.nf1; nf2/ D
n
X

iD1

wi.Ui.nf1; nf2//
ui;nf2 CPm

jDkC1 ui;j

ui;nf1 C ui;nf2 CPm
jD1 ui;j

;

M1.nf1; nf2/ D
n
X

iD1

wi.Ui.nf1; nf2//
ui;nf1 CPk

jD1 ui;j

ui;nf1 C ui;nf2 CPm
jD1 ui;j

:

The operating costs also are modified to include the variable demand in the
˚ i

l .di.zl// functions, so that now

˚ i
l .di.zl// D AverAi.wi.Ui.nf1; nf2///=..di.zl//

�i0
l C � i1

l /:

AverAi.wi.Ui.nf1; nf2/// stands for the average value of wi.Ui.nf1; nf2// over the
feasible set and can be thought of as an estimation of the demand at pi by a fixed
number (see [41] for more details about how to compute this average). In [42] linear
expenditures is considered, i.e., wmin

i D 0, wi.Ui.nf1; nf2// D wmax
i �ei1 .Ui.nf1; nf2//;

where ei1 .Ui.nf1; nf2// D qiUi.nf1; nf2/, with qi a given constant such that qi �
1=Umax

i , where Umax
i is the maximum utility that could be observed by a customer

at i.
Certainly, other functions could be defined depending on the real problem

considered, and for each real application the most appropriate Fl and Gl functions

152 J. Fernández et al.

should be discovered. In [49] a pseudo-real application to the case of the location
of supermarkets in the Autonomous Region of Murcia, in Southern Spain, can be
found. Although in that paper the demand was assumed to be exogenous (fixed) and
no reaction from the competitor was expected, the parameters and functions have
the same meaning as those in this section.

It must be emphasized that although the objective function of the follower’s
problem with exogenous demand is multimodal, it tends to be smoother than the
one of the follower’s problem with endogenous demand, which has much more local
optima and whose landscape is much steeper. Consequently, the complexity of the
centroid problem is greatly increased due to the endogenous demand assumption.

5.1.1 A Real Example

In order to show the difficulty of the problem at hand, and its differences with the
exogenous demand case, in [42] the quasi-real example introduced in [49] dealing
with the location of supermarkets in an area around the city of Murcia was solved.
There are five supermarkets in the area: three from a first chain, ‘E’, and two from
another chain, ‘C’. Two problems have been considered: the first one assumes that
the leader belongs to chain ‘E’ and the second one assumes that it belongs to chain
‘C’. Each problem was solved both considering fixed and variable demand. The
numerical results are shown in Table 5. The interested reader can find a detailed
description of the example with some illustrative figures in [42].

As can be seen, when the leader belongs to chain ‘E’, in the exogenous demand
case, the optimal location for the leader is near the city of Alcantarilla (x1 D
3:303; y1 D 6; 433), with a quality of 0:5. At that location, the market share captured
by the new leader’s facility is m1 D 2:112, which coincides with the 5:94% of
the total market share. Taking into consideration all its facilities, chain ‘E’ obtains
53:22% of the market, and a profit ˘1 D 593:352: The location for the follower’s
facility is near the city of Molina (x1 D 3:259; y1 D 4:285), with a quality of
3:696, where it captures 20:04% of the total market share. However, the results are
rather different for the endogenous case, where the leader’s optimal location is in the
suburb of Puente Tocinos (x1 D 5:407; y1 D 5:798), in Murcia city, with a quality
of 0:961. The market share captured by the facility is 0:419, which is only 5:94%
of the total one. The whole chain obtains 43:68% of the market and a smaller profit
˘1 D 73:454: The location for the follower’s facility is near the suburb of San
Benito (x1 D 5:190; y1 D 6:276), in Murcia city, with a quality of 0:571, where it
only captures 3:875% of the total market share.

For the second problem, where it is assumed that chain ‘C’ is the leader, then, in
the exogenous demand case, the optimal location for the leader is near the city of
Orihuela, with a quality of 3:277, where the facility gets 17:57% of the total market
share. The location for the follower’s facility is near the city of Alcantarilla, with
a quality of 0:5, where it captures 6:15% of the total market share. However, the
leader’s optimal location in the endogenous demand case is near the suburb of San
Benito, in Murcia city, with a quality of 1:042 and only captures 6:52% of the total

Huff-Like Stackelberg Location Problems on the Plane 153

Ta
bl

e
5

E
xa

m
pl

es

D
em

an
d

nf
1

M
1

m
1

˘
1

nf
2

M
2

m
2

˘
2

L
ea

de
r:

ch
ai

n
E

E
xo

ge
no

us
(3

.3
03

,6
.4

33
,0

.5
00

)
18

.9
15

2.
11

2
59

3.
35

2
(3

.2
59

,4
.2

85
,3

.6
96

)
16

.6
25

7.
12

3
46

1.
77

6

E
nd

og
en

ou
s

(5
.4

07
,5

.7
98

,0
.9

61
)

2.
80

7
0.

41
9

73
.4

54
(5

.1
90

,6
.2

76
,0

.5
71

)
3.

61
8

0.
24

9
10

1.
56

3

L
ea

de
r:

ch
ai

n
C

E
xo

ge
no

us
(8

.4
87

,3
.0

26
,3

.2
77

)
15

.9
61

6.
24

7
44

2.
12

2
(3

.2
74

,6
.4

41
,0

.5
00

)
19

.5
79

2.
18

7
61

4.
65

2

E
nd

og
en

ou
s

(5
.3

68
,6

.1
66

,1
.0

42
)

3.
82

2
0.

45
3

10
6.

32
0

(5
.2

98
,6

.2
28

,0
.5

71
)

2.
63

78
0.

24
89

70
.2

27

154 J. Fernández et al.

market share. The location for the follower’s facility is near the suburb of San Benito
too, with a quality of 0:571, where it captures 3:88% of the total market share.

These two examples indicate how important it is to consider endogenous demand.
As can be seen, depending on whether endogenous or exogenous demand is
considered, the maximum profit for a chain is obtained at different locations and
with different qualities. Additionally, it is interesting to remark that even the
percentage of market share captured by the chains may change to the point that
the chain obtaining more profit may be the competitor’s one.

5.2 Solving the Centroid Problem

Considering the algorithms proposed for solving the centroid problem with exoge-
nous demand (see Sect. 4.3), the following three algorithms are implemented to
solve the centroid problem with endogenous demand [42]: a grid search procedure,
a multistart method named MSH, and an evolutionary algorithm named TLUEGO.
MSH and TLUEGO require the use of a local optimizer. In particular, a local
optimizer based on SASS and WLM has been designed. In fact, two variants of
the local optimizer have been implemented, leading to two versions of MSH and
TLUEGO. Next we describe the corresponding algorithms.

5.2.1 The Local Optimizer SASS+WLMv

In [39], after studying several strategies, a local procedure SASS+WLMv, similar
to SASS+WLM in Sect. 4.3 is proposed. The main differences between this local
algorithm and SASS+WLM are:

• The Weiszfeld-like algorithm used now for updating the follower’s facility is
WLMv, a variant of WLM to take the variability of the demand into account (see
[41]). Similar to what was considered for WLM (see Sect. 4.2.1), WLMv stops
when either two consecutive iterations are closer than the tolerance �1 D �2 D
0:0001, or when a maximum number of icmax D 400 iterations is reached.

• Due to the high increment in the complexity of the problem when using
endogenous demand, the WLMv algorithm is not as reliable as the corresponding
method WLM for the fixed demand case. Consequently, due to the cumulative
error, a large number of consecutive iterations in SASS could give rise to the
leader achieving overestimated solutions. To deal with this drawback, the number
of consecutive iterations in SASS+WLMv has been reduced to only 15. In
addition, in order to compensate the possible error obtained using WLMv, after
every 15 iterations, the medianoid problem is solved accurately using a reliable
global optimizer. Two global optimizers have been considered: iB&B [18] or
UEGO_med (see Sect. 4.2), resulting in two versions of the local optimizer.

Huff-Like Stackelberg Location Problems on the Plane 155

5.2.2 TLUEGO: A Two-Level Evolutionary Global Optimization
Algorithm

The evolutionary algorithm TLUEGO is rather similar to the UEGO_cent.SASS
algorithm introduced in Sect. 4.3 for the fixed demand case. The main differences
are the following:

• Create_species procedure: In the same way that for UEGO_cent.SASS, after the
creation procedure it is very important to precisely evaluate the fitness of the new
species. In this problem, two alternative algorithms to compute a reliable follower
solution have been implemented: iB&B or UEGO_med.

• Optimize_species procedure: The local optimizer algorithm used in TLUEGO
is SASS+WLMv. There is another difference: this local optimizer is executed
twice in order to have more chances of obtaining a better point. The input
parameter value of 	ub passed to SASS+WLMv is always (the two times it
is called) the radius associated to the calling species. Therefore, the scope
of the local optimizer coincides with the region covered by the species. As
it has been mentioned in 5.2.1, the execution of SASS+WLMv implies that
a reliable optimization algorithm, iB&B or UEGO_med, is run at the end of
the algorithm (Step 9 in Algorithm 7). As a result, the inclusion of iB&B
or UEGO_med in TLUEGO derives two algorithms for solving the centroid
problem, TLUEGO_BB and TLUEGO_UE, respectively. The reader is referred
to [42] for a more detailed description of these procedures.

Algorithm 7: Algorithm SASS+WLMv.nf1; nf2; itermax.D 15/; 	ub/

1: Initialize SASS parameters. Set iter D 1; nf opt
1 D nf1; ˘

opt
1 D ˘1.nf1; nf2/:

2: while iter � itermax do
3: Update SASS parameters considering the previous successes at improving

the objective function value of the leader.
4: Generate a location for the leader nf .iter/

1 within the updated radius.

5: Solve the corresponding medianoid problem using WLMv and let nf .iter/
2

denote the solution obtained.
6: if ˘1.nf .iter/

1 ; nf .iter/
2 / > ˘

opt
1 then

7: set nf opt
1 D nf .iter/

1 and ˘
opt
1 D ˘1.nf .iter/

1 ; nf .iter/
2 /.

8: iter D iter C 1:

9: Compute the corresponding follower nf opt
2 for nf opt

1 using either iB&B or
UEGO_med.

10: if ˘1.nf opt
1 ; nf opt

2 / > ˘1.nf1; nf2/ then
11: return .nf opt

1 ; nf opt
2 /

12: else
13: Return .nf1; nf2/:

156 J. Fernández et al.

5.2.3 MSH: A Multistart Heuristic Algorithm

The MSH algorithm consists of randomly generating MaxStartPoints feasible
candidate solutions for the leader and then applying a local optimizer to each one in
order to improve it to an optimized leader solution. The final solution provided by
the algorithm will be obtained by selecting the solution with best objective function
value.

For this problem with exogenous demand, the considered local optimizer has
been SASS+WLMv (see Algorithm 7). In order to provide a better balance between
exploitation and exploration of the search space, this method has also been executed
twice as in TLUEGO, but with different values for 	ub because the multistart
heuristic does not have a cooling process for the radius. In the first call, a value of
	ub D 2:083895 (the one corresponding to level 10 in TLUEGO) was considered.
This value was chosen because then the initial random candidate solutions in the
multistart strategy can cover the whole searching space, and at the same time, they
can search on an area small enough so that the local procedure can find a good local
optimum. In the second call, a value of 	ub D 0:162375 (level 23 in TLUEGO) was
used to improve the quality of the local optima obtained with the first call. These 	ub

values were selected after doing some preliminary studies, in which eight problems
of different sizes were solved trying different strategies for the heuristic algorithm.

As in TLUEGO, two versions of the MSH method have been implemented:
MSH_BB and MSH_UE. They differ in whether iB&B or UEGO_med is used as
a method of computing the follower nf opt

2 in Step 9 of Algorithm 7.

5.2.4 Computational Studies

To study the performance of the algorithms, a set of 24 problems has been generated
varying the number n of demand points, the number m of existing facilities and
the number k of those facilities belonging to the leader’s chain. The actual settings
.n; m; k/ employed are detailed in Table 6. For each setting, the problem has been
generated by randomly choosing its parameters within given intervals. In all the
problems, S1 D S2 D .Œ0; 10�; Œ0; 10�/ and ˛1; ˛2 2 Œ0:5; 5�.

For every heuristic algorithm, each problem has been solved ten times and
average values have been computed. However, the heuristic GS has only been run
once and the results obtained in that run (no average results) are given. All results
for all the problems are shown in [42]. In this section only some average results for
n D 15 and n D 50 are shown in Table 7. In the column labeled ‘Time’, the average

Table 6 Settings of the test problems

n 15 25 50

m 2 5 10 2 5 10 2 5 10

k 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4

Huff-Like Stackelberg Location Problems on the Plane 157

Table 7 Results for the problems with n D 15 and n D 50

Objective function

(n) Algorithm Time Max dist Min Av Max Dev

15 TLUEGO_BB 226 0.015 15.478 15.478 15.479 0.000

TLUEGO_UE 891 0.009 15.478 15.478 15.479 0.001

MSH_BB 258 1.164 15.350 15.413 15.453 0.038

MSH_UE 1091 0.516 15.290 15.409 15.469 0.067

GS 490;338 – – 15.445 – –

50 TLUEGO_BB 9470 0.186 39.866 39.960 40.065 0.081

TLUEGO_UE 8259 0.185 39.912 40.072 40.174 0.102

MSH_BB 11;090 2.855 25.597 31.329 37.722 4.508

MSH_UE 9911 2.769 23.769 33.088 38.084 5.346

GS 3;003;794 – – 37.280 – –

TLUEGO_BB (�1 D �2 D 0:0001), TLUEGO_UE, MSH_BB and MSH_UE and GS

time in the ten runs (in seconds) of each problem is shown; the ‘MaxDist’ column
indicates the maximum Euclidean distance (for the three variables .x1; y1; ˛1/)
between every pair of solutions provided by the algorithm in different runs, which
gives an idea of how far these solutions can be; in the following three columns, the
minimum, the average and the maximum objective value are computed. Finally, in
the ‘Dev’ column, the standard deviation is shown. As can be seen in these tables,
two versions of TLUEGO and MSH algorithms have been executed. It is worth
mentioning that the number of times that MSH_BB (resp. MSH_UE) was allowed
to repeat its basic local optimizer was chosen so that the CPU time employed by
MSH_BB (resp. MSH_UE) was, on average (when considering all the problems
with the same value of n), similar to the CPU time employed by TLUEGO_BB
(resp. TLUEGO_UE) or a bit higher. In particular, for the problems with 15 and 50
demand points, the number of starting points were 150 and 250, respectively.

Analyzing the results, it can be seen that the method used to reliably solve the
medianoid problem does not seem to have an influence on the quality of the final
solution, i.e., TLUEGO and MSH behave similarly, regardless whether iB&B or
UEGO_med is employed. This is due to the reliability of UEGO (in spite of its
metaheuristic nature). The iB&B technique is faster than UEGO_med for small size
problems (n D 15), which directly reduces the execution time of both TLUEGO and
MSH. Specifically, the use of iB&B reduces the computing time of TLUEGO_BB
by 74:6% as compared to TLUEGO_UE. A similar behavior in computing time
can be seen in MSH when iB&B is used instead of UEGO_med. Nevertheless, for
medium size problems (with n D 50 demand points), TLUEGO_UE and MSH_UE
reduce the computing time as compared to TLUEGO_BB and MSH_BB, by 12.79%
and 10.63%, respectively. These results are also consistent with the ones showed in
[37], where it was observed that the increase of requirements for iB&B with the size
of the problem was greater than for UEGO_med.

158 J. Fernández et al.

Focusing now on the strategies proposed to solve the current centroid problem,
it can be stated that TLUEGO (in both versions) is the algorithm achieving the
best results. Their average objective function values are always higher than the ones
provided by both MSH and GS. It is also remarkable that the minimum objective
function value found by TLUEGO in the ten runs is always better than the average
values obtained by both MSH and GS (see columns ‘Min’ and ‘Av’). Additionally,
TLUEGO is the most robust algorithm in the sense that it usually attains the same
solution in all the runs, whereas MSH is more erratic, and can provide different
solutions in each run (see the values of ‘MaxDist’ and ‘Dev’).

5.3 Influence of the Fuse Process in the Creation Procedure

Taking into account the main structure of TLUEGO, based on UEGO_cent.SASS
algorithm, it can be seen that in the creation procedure, for every species in the
list, a set of possible new solutions is computed, fused and evaluated with the
objective of finding new promising species, and therefore increasing the species-
list. This creation process is applied independently to each species as no relation
among species exists.

Taking into consideration that the evaluation of a single species in TLUEGO
requires intensive computational effort, since it implies the execution of another
expensive optimization algorithm (UEGO_med or iB&B) to obtain the optimal loca-
tion of the follower (by solving the corresponding medianoid problem), TLUEGO
had to be designed to maintain a small-size species-list. This was done by including
a ‘fuse’ process just after the creation of candidate solutions and before the
evaluation of the resulting ones.

However, it is known that working with larger species-list sizes helps to explore
the search space deeply and consequently to obtain better solutions. With this aim, in
this section, new creation procedures are proposed, where the fuse process is relaxed
in part by modifying the threshold distance to apply the fusion of two species. Now
two species will be fused if the distance between their centers is smaller than the new
thresholds Rt, Rt=2 or 0 instead of 2Rt. In what follows, only TLUEGO_UE will be
used, since it can solve larger instances. It will simply be denoted by TLUEGO.
For the analysis at hand, only medium size problems have been considered, i.e.
n D 50; 100 (the actual settings can be seen in Table 8).

Considering that each run of TLUEGO may provide a different solution, each
problem has been solved ten times and average values have been computed.
Table 9 shows the average results obtained by the algorithms considering all the

Table 8 Settings of the test problems

n 50 100

m 2 5 10 2 5 10

k 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4

Huff-Like Stackelberg Location Problems on the Plane 159

Table 9 Effectiveness evaluation of the fuse process in TLUEGO (sequential
algorithm) for problems with n D 100 and n D 50 demand points

n Threshold Time MaxDist ˘1 Dev Dif ˘1 DifSol

50 2Rt 10,993 0.520 148.316 0.578 – –

Rt 17,689 0.307 149.616 0.177 0.782 1.812

Rt=2 18,686 0.129 150.296 0.113 1.235 2.364

0 22,898 0.135 151.002 0.064 1.794 2.940

100 2Rt 32,029 0.755 177.364 1.992 – –

Rt 52,125 0.146 183.341 0.490 3.260 4.221

Rt=2 56,932 0.133 185.710 0.272 4.562 5.998

0 65,470 0.056 186.551 0.058 5.033 7.027

configurations for the problems with n D 50 and n D 100, respectively. In [42] a
complete set of tables with detailed results for each configuration can be found. The
first column gives the size of the problem. The second one indicates the threshold
value used in the fuse process. In the third column, the average time in the ten runs
(in seconds) is computed. The MaxDist column provides the maximum Euclidean
distance [for the three variables .x1; y1; ˛1/] between any pair of solutions provided
by the algorithm in the ten runs, which gives an idea of how far the solutions
computed by the algorithm in different runs can be. The average objective function
value (column ˘1) in the ten runs and the corresponding standard deviation (column
Dev) are given next. Column Dif ˘1 shows the relative improvement in the objective
function value between the solution obtained by the algorithms when a threshold
different from 2Rt is used as compared to the result obtained when using 2Rt. The
final column shows the relative difference between the solutions.

As can be seen, the CPU time increases as the threshold decreases, and when this
is set to 0, the time is more than double as compared to the 2Rt case. The algorithm
also becomes more robust (see the decrease in columns Dev), in the sense that the
objective function value at different runs are more similar. In addition, analysing
column ˘1 it can be deduced that the quality of the solution also becomes better.
Regarding the relative improvement in the objective function value, it can be seen
that for the problems with n D 50 demand points is moderate, with an average of
1.794%. However when the threshold is set to 0, for the problems with n D 100 it
attains a significant 5.033%. This clearly shows that the smaller the threshold, the
better the solutions are. Unfortunately this is at the cost of increasing the CPU time
and the memory requirements.

5.4 High Performance Computing

Due to the high computational cost of TLUEGO, which is even higher than that of
UEGO_cent.SASS, a parallelization of the algorithm is required, especially if real
problems, with more demand points than the studied in the previous section must

160 J. Fernández et al.

be solved. In [1], three programming paradigms for the parallelization of TLUEGO
are designed. More specifically, a pure message passing paradigm, a pure shared
memory programming model and a hybrid one which combines message passing
with shared memory are implemented and their efficiency and effectiveness are
analyzed and compared. Results showed that both pure message passing and pure
shared memory paradigms have almost the same performance, while the hybrid one
shows less efficiency though it can exploit all computational resources of the parallel
architecture.

Considering that TLUEGO structure is similar to UEGO_cent.SASS, the mes-
sage passing algorithm is based on a master-slave strategy like the one described in
Sect. 4.5. For this reason only the main features of pure shared memory strategy are
detailed here. Readers interested in a deep description of the three strategies as well
as in the performance comparison among them are referred to [1].

5.4.1 Shared Memory Programming for TLUEGO: SMP_TLUEGO

For the implementation of this parallel strategy, OpenMP has been selected, since
it is a portable and scalable model, and gives programmers a simple and flexible
interface for developing parallel applications.

Concerning the parallel model, it can be considered a pseudo master-slave
technique, similar to the MS described in Sect. 4.5. OpenMP includes mechanisms
to distribute the species list among the different processors without the existence of
a master processor. Therefore there does not exist a master processor which globally
controls the algorithm and manages the species list. This task can be done in parallel
by all the processors. However, the existence of a kind of pseudomaster processor
to be in charge of applying the Selection procedure and updating the species list that
will be accessible to all processors, is still necessary. Accordingly, the parallelism
is applied to the evaluation of the new candidate solutions in the Creation and
Optimization procedures. Consequently, new creation and optimization procedures
have also been designed. They are briefly described next.

The parallel algorithm developed considers that the species-list is stored in shared
memory. When the Create_species_paral is executed, each processor picks up a
new single species and evaluates it. Once a processor has finished this task, it
collects another species. This cyclical process finished when all the new offspring
are evaluated. Notice that mutual exclusion is not needed because each processor
accesses different memory areas.

The Optimize_species_paral procedure maintains a similar structure to the
previous method Create_species_paral. But instead of only evaluating the species,
it applies the local search procedure. Considering that the number of function
evaluations required to optimize a single species, and therefore, the computational
load assumed by each processor, may be quite different, this strategy of selecting
the species one by one helps to balance the computational burden and to reduce the
waiting time of the processors.

Huff-Like Stackelberg Location Problems on the Plane 161

Table 10 Settings of the test problems

n 50 100

m 2 15 25 2 15 25

k 0,1 0,5,10 0,7,15 0,1 0,5,10 0,7,15

Table 11 Efficiency results for SMP_TLUEGO

P n Time Eff .P/ n Time Eff .P/

1 100 65;470 – 500 565;358 –

2 32;878 1.00 283;707 1.00

4 16;928 0.97 143;416 0.99

8 8703 0.94 73;065 0.97

5.4.2 Efficiency Results of SMP_TLUEGO

In this subsection the behavior of SMP_TLUEGO is analyzed by solving a set of 24
problems whose settings can be found in Table 10. For every setting one problem
was generated. Additionally, all the instances are solved ten times and average
values are considered.

Table 11 shows, for the problems with n D 100 and n D 500 demand points,
the average computing time (in secs.) and the mean efficiency Eff .P/ obtained. As
can be seen, SMP_TLUEGO has either optimal or near-optimal efficiency for up to
P D 8 processors. For a given n the efficiency values slightly decrease as the number
of processors P increases. Notice, however, that the algorithm is scalable, as it shows
a better performance (see Eff .P/ columns) when the problem size increases, i.e. the
efficiency improves with higher n values.

6 Solving the Models with Costs Exactly

In this section we propose an exact solution method for the problems described
in sections 4 and 5, i.e. when operational costs are taken into account. As already
mentioned, the B&B method described in Sect. 3 works only when no costs are
present, that is, the zero-sum property holds for the objective functions of the leader
and follower. The method we propose to solve these harder problems exactly is a
generalization of the algorithm presented in [48]. In that paper almost the same
problem is solved exactly on networks, although with fixed qualities. Here, we
propose a modification of this method to be able to solve the problem on the plane
having the quality as additional variables for the new facilities.

In [48] a B&B method is used to solve the leader problem, while in an embedded
way another B&B was used to refine the follower. The main difference between
this method and Algorithms 2 and 1 is that the follower problem has to be solved
for a set of leader placements instead of for a leader point. This is much more

162 J. Fernández et al.

challenging, and it may even be impossible if the aim is to solve the problem with
a small accuracy. Therefore, instead of solving the follower problem in the inner
B&B to optimality, its searching set is only refined, and the solution (set of sets)
is stored together with the leader set. The method proposed next differs from that
in [48] mainly in the searching space and the solution sets, that instead of being
segments of edges of the network, they are now 3-dimensional boxes (vector of
intervals) in R

3.

6.1 Overcoming the Difficulty of the Lack of the Zero-Sum
Property

In Sect. 3 we have already seen that when the objective function is the market
share (no costs are present), and the qualities of the facilities are given parameters,
the problem can be solved efficiently by a B&B method. The key point there is
the zero-sum property of the objective functions: minimizing the objective of the
leader, one directly maximizes the objective of the follower and vice-versa. What
makes the method very efficient is that although (reverse) medianoid problems have
to be solved to obtain bounds, the other new facility is always fixed to a point.
This is no longer the case when costs are taken into account. It may even happen
that changing the location of the follower increase both the leader and the follower
objective. Therefore the result of Lemma 1 cannot be used directly, and so a new
trick is needed to overcome this difficulty.

When operational costs are present, for the bound calculations of the leader, all
possible locations (and qualities) of the follower have to be considered. On the one
hand, until the follower is not enclosed tightly in a set of boxes, it might mean that
the obtained bounds are very loose. On the other hand, until the leader box is not
small enough, it is not possible to enclose the follower tightly. Thus, what is needed
is a good and possibly cheap bound calculation procedure in order to overcome the
above problem. One promising approach is to use interval bounds, as done in [48].

6.2 Interval Arithmetic Bounds

We propose to use Interval Arithmetic to obtain lower and upper bounds of the
objective functions automatically when one or both facilities are in boxes. The main
idea of Interval Analysis is to change all real arithmetic operators and elementary
real functions to their interval versions. As a result, an interval containing all
possible results from points from the input intervals is obtained, maybe with some
overestimation. See [21] for details of interval analysis in global optimization.

Let us denote intervals with capital letters, e.g. X D Œx; x�, where x � x are the
lower and upper bounds of X, respectively.

Huff-Like Stackelberg Location Problems on the Plane 163

For a given box NFl containing a new facility nfl, an interval Ui;nfl containing the
utility of any point within NFl can be computed as

Ui;nfl D Œui;nfl ; ui;nfl � D Œ˛l=gi.di.Zl//; ˛l=gi.di.Zl//�

where

di.Zl/ D
q

.maxfxl � pi1; pi1 � xl; 0g/2 C .maxfyl � pi2; pi2 � yl; 0g/2;

di.Zl/ D
q

maxf.xl � pi1/2; .pi1 � xl/2g C maxf.yl � pi2/2; .pi2 � yl/2g:

Given a fixed box (or a point) fNF2 for the follower, an upper bound of ˘1 at the
box NF1 can be calculated with interval arithmetic as

UB.˘1.NF1; fNF2// D c � UB.M1.NF1; fNF2// � LB.G1.NF1//;

where the upper bound of the market share is given by the formula

UB.M1.NF1; fNF2// D
n
X

iD1

bwi

ui;nfl CPk
jD1 uij

ui;nf1 C ui;nf2 CPm
jD1 uij

;

when the demand is fixed, and

UB.M1.NF1; fNF2// D
n
X

iD1

wmax
i qi.ui;nfl C

k
X

jD1

uij/;

when the demand is endogenous but linear as introduced in Sect. 5.
The lower bound LB.G1.NF1// of the operational cost function G1, when it has

the form

G1.nf1/ D
n
X

iD1

wi=..di.z1//�i0
1 C � i1

1 / C exp.˛1=�0
1 C �1

1 / � exp.�1
1 /

(where wi stands forbwi when the demand is fixed, and for wi.Ui.nf1; nf2// when the
demand varies) can be computed as

LB.G1.NF1// D
n
X

iD1

bwi

di.Z1/
�i0

1 C � i1
1

C exp.˛1=�0
1 C �1

1 / � exp.�1
1 /

164 J. Fernández et al.

when the demand is fixed, and as

LB.G1.NF1// D
n
X

iD1

wmin
i

di.Z1/
�i0

1 C � i1
1

C exp.˛1=�0
1 C �1

1 / � exp.�1
1 /

when it varies.
Of course, if an upper bound for the leader’s profit is required when the follower

is in a set of boxes NF2, it can be obtained as

UB.˘1.NF1;NF2// D c � max
NF22NF2

UB.M1.NF1; NF2// � LB.G1.NF1//:

The interval arithmetic lower bound of the profit can be obtained by interchang-
ing upper bounds and lower bounds in the above formulae. The bounds for the
follower are straightforward by the rules above.

One can see that even those computations might be time-consuming for obtaining
an upper or a lower bound. However, notice that in the fixed demand case, we can
still use the zero-sum property of the market share for its bound calculations, so that
if bounds for the follower’s market share are known, they can be used directly for
the leader’s bounds on the market share and vice-versa.

6.3 Solution Method

A B&B method is designed to solve the leader’s problem, and consequently the
follower’s problem as well. The main goal of the method is for every subproblem to
simultaneously tighten the set containing the global optimizer of the leader and the
set that contains all the global optimizers for the follower problem.

Without loss of generality, it is assumed that the feasible set of both the leader
and the follower is a box. We define subproblems of the leader as boxes. For a
given box of the leader, the follower’s possible position can be in many places, and
until the leader is not enclosed tightly, the follower can only be bounded to a set
of boxes. Therefore, for every box of the leader we need to store the subboxes that
may contain the global optimal solutions of the follower. Hence, a partial solution
or subproblem of the leader refers to a box containing the leader and the set of boxes
that contain the corresponding solution of the follower problem.

An inner B&B method tightens the boxes of the follower, and a main (outer)
B&B method tightens the boxes of the leader. Thus, lower and upper bounds for the
leader’s (follower’s) profit are needed when the follower (leader) is enclosed in a
box. For the calculation of the lower and upper bounds of the follower in a given box
NF2, its corresponding single leader’s box NF1 is taken into account. These lower
and upper bounds are LB.˘2.NF1; bnf 2// and UB.˘2.NF1; NF2//, respectively,
where bnf 2 2 NF2 is a feasible solution within the follower’s box. For the calculation
of the bounds for a leader’s box NF1, every box of the follower corresponding to it

Huff-Like Stackelberg Location Problems on the Plane 165

has to be considered, i.e. LB.˘1.bnf 1;NF2// and UB.˘1.NF1;NF2//, where bnf 1 is
a feasible solution in the leader’s box and NF2 3 NF2 the set of the corresponding
boxes of the follower.

6.3.1 Inner B&B

Both the leader’s and their corresponding follower’s boxes need to be refined for the
algorithm to converge. The inner B&B takes care of the refinement of the follower’s
boxes.

The termination criterion of the inner B&B is to have the size of each follower’s
box at least as small as the corresponding leader’s box. The algorithm returns the
modified list of the boxes of the follower. The selection rule chooses the largest box,
while the branching rule bisects the box perpendicularly to the coordinate direction
of maximum width.

Given a leader box, this method is applied to the set of follower boxes associated
to it, until the corresponding follower’s sub-boxes have a size smaller than or equal
to that of the leader’s box. Each time a new leader box is created, the inner B&B is
run until its follower’s boxes are refined.

6.3.2 Outer B&B

The outer B&B refines the leader’s boxes and calls the inner B&B method for each
new box of the leader. Recall that a subproblem of the leader is a box with the
corresponding set of boxes for the follower. Thus, the initial subproblem is the
starting box of the leader, and the starting box of the follower. However it might
be more efficient to make a pre-division at the very beginning, as the first lower and
upper bounds obtained by the algorithm are usually useless, but computing them
needs time.

The output is a set of boxes containing any global optimizer, and the interval
containing their objective values contains the global optimum of the problem. The
selection rule selects the leader box with the highest upper bound of the leader’s
profit, while the branching rule bisects the leader’s box perpendicularly to the
coordinate direction of maximum width and leaves the follower’s boxes unchanged
but duplicated for the new boxes of the leader. The algorithm stops when the
interval containing the objective values of all leader’s boxes gets smaller than a
prescribed tolerance or the size of all the boxes becomes smaller than another
tolerance parameter.

6.4 Algorithm

The pseudocode of the inner and outer B&B algorithms are given in Algorithm 8.
For the sake of simplicity let us denote the objective function as ˘ (˘1 for the outer
and ˘2 for the inner B&B).

166 J. Fernández et al.

Algorithm 8: The inner and outer B&B methods
1: Input: �; GLB for the inner B&B
2: � D fSg; GLB D �1 for the outer B&B
3: Remove all NFi from � with UBi < GLB
4: while � ¤ ; do
5: Select NF from �

6: Bisect NF into NF1 and NF2

7: for i WD 1 to 2 do
8: Determine an upper bound UBi on NFi

9: if not UBi < GLB then
10: Compute a lower bound LBi of ˘ at midpoint.NFi/

11: if LBi > GLB then
12: GLB WD LBi; BestPoint WD midpoint.NFi/

13: Remove all NFj from � with UBj < GLB
14: if not TerminationCriterion.NFi/ then
15: if outer then
16: Call the inner B&B on the set of follower boxes of NFi

17: � WD � [fNFig
18: else
19:
 WD
 [fNFig
20: Output:
; BestPoint

In line 3 we remove each box known not to contain any global optimizer from
list �. The main cycle of the general B&B method is listed from line 4 to line 19.
The main difference of the outer B&B from the inner B&B is the call of the inner
method added in lines 15 and 16. In fact, the additional differences between the
inner and outer procedures are hidden in the bound calculations, as well as in the
selection and termination rules.

The output of Algorithm 8 is the set of boxes which could not be eliminated and
thus contain any global optimizer, and the point at which the best lower bound was
achieved.

The proposed method should be tested on a set of test problems to know the
size of the problems that it can solve, for both exogenous and endogenous demand.
However, this is not the aim of this section, but to show that an exact algorithm can
be designed even if operational costs are considered, the qualities are variables of
the model and the demand is endogenous.

7 Conclusions and Future Research

Despite its inherent difficulty, facility location leader-follower (or Stackelberg)
problems can be addressed when the location space considered is the plane, at least
in its simple case, when only one new facility is going to be located by the leader
and the follower. Exact (interval) branch-and-bound methods can be put to work for
solving small instances, whereas evolutionary algorithms can handle large instances.
If so required, parallel implementations of the algorithms can help to solve larger
instances and with more accuracy.

Huff-Like Stackelberg Location Problems on the Plane 167

Dealing with problems where more than one facility is to be located by the leader
and/or the follower seems to still be a challenge when the location space is the
plane. An extension which deserves to be explored is to allow the existing facilities
to modify their quality, or even close some of them. Studying the problems with
other patronizing behavior of customers is another line of future research. From the
computational point of view, the design of high performance computing approaches
for the exact branch-and-bound algorithms is also worth exploring.

Acknowledgements This research has been supported by grants from the Spanish Ministry of
Economy and Competitiveness (MTM2015-70260-P, and TIN2015-66680-C2-1-R), the Hungarian
National Research, Development and Innovation Office—NKFIH (OTKA grant PD115554),
Fundación Séneca (The Agency of Science and Technology of the Region of Murcia, 19241/PI/14),
Junta de Andalucía (P12-TIC301), in part financed by the European Regional Development Fund
(ERDF). Juana López Redondo is a fellow of the Spanish ‘Ramón y Cajal’ contract program.

References

1. Arrondo, A.G., Redondo, J.L., Fernández, J., Ortigosa, P.M.: Solving a leader-follower facility
problem via parallel evolutionary approaches. J. Supercomput. 70(2), 600–611 (2014)

2. Bhadury, J., Eiselt, H.A., Jaramillo, J.H.: An alternating heuristic for medianoid and centroid
problems in the plane. Comput. Oper. Res. 30(4), 553–565 (2003)

3. Biesinger, B., Hu, B., Raidl, G.: Models and algorithms for competitive facility location
problems with different customer behavior. Ann. Math. Artif. Intell. 76(1), 93–119 (2016)

4. Daskin, M.S.: Network and Discrete Location: Models, Algorithms and Applications. Wiley,
New York (1995)

5. Dempe, S.: Foundations of Bilevel Programming. Springer, New York (2002)
6. Dorta-González, P., Santos-Peñate, D.R., Suárez-Vega, R.: Spatial competition in networks

under delivered pricing. Pap. Reg. Sci. 84, 271–280 (2005)
7. Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12(4),

485–493 (1982)
8. Drezner, T.: Locating a single new facility among existing unequally attractive facilities. J.

Reg. Sci. 34(2), 237–252 (1994)
9. Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness, and market

share: an interactive model. J. Retail. 70(1), 49–64 (1994)
10. Drezner, T., Drezner, Z.: Replacing continuous demand with discrete demand in a competitive

location model. Nav. Res. Logist. 44, 81–95 (1997)
11. Drezner, T., Drezner, Z.: Facility location in anticipation of future competition. Locat. Sci.

6(1), 155–173 (1998)
12. Drezner, T., Drezner, Z.: Retail facility location under changing market conditions. IMA J.

Manag. Math. 13(4), 283–302 (2002)
13. Drezner, T., Drezner, Z., Kalczynski, P.: Strategic competitive location: improving existing and

establishing new facilities. J. Oper. Res. Soc. 63(12), 1720–1730 (2012)
14. Drezner, T., Drezner, Z., Kalczynski, P.: A leader–follower model for discrete competitive

facility location. Comput. Oper. Res. 64, 51–59 (2015)
15. Eiselt, H.A., Laporte, G.: Sequential location problems. Eur. J. Oper. Res. 96(2), 217–231

(1996)
16. Eiselt, H.A., Laporte, G.,Thisse, J.F.: Competitive location models: a framework and

bibliography. Transp. Sci. 27(1), 44–54 (1993)

168 J. Fernández et al.

17. Fernández, J., Fernández, P., Pelegrín, B.: Estimating actual distances by norm functions: a
comparison between the lk;p;� -norm and the lb1;b2;� -norm and a study about the selection of the
data set. Comput. Oper. Res. 29(6), 609–623 (2002)

18. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and
design model for profit maximization in the plane. Eur. J. Oper. Res. 179(3), 1274–1287 (2007)

19. Fernández, J., Salhi, S., Tóth, B.G.: Location equilibria for a continuous competitive facility
location problem under delivered pricing. Comput. Oper. Res. 41(1), 185–195 (2014)

20. Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12(1),
29–35 (1983)

21. Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis. Marcel Dekker, New
York (2004). Second revised and expanded edition

22. Huff, D.L.: A programmed solution for approximating an optimum retail location. Land Econ.
42(3), 293–303 (1966)

23. Jelásity, M.: The shape of evolutionary search: discovering and representing search space
structure. Ph.D. thesis, Leiden University (2001)

24. Jelásity, M., Ortigosa, P.M., García, I.: UEGO, an abstract clustering technique for multimodal
global optimization. J. Heuristics 7(3), 215–233 (2001)

25. Küçükaydin, H., Aras, N., Altinel, I.K.: Competitive facility location problem with attractive-
ness adjustment of the follower: a bilevel programming model and its solution. Eur. J. Oper.
Res. 208(3), 206–220 (2011)

26. Küçükaydin, H., Aras, N., Altinel, I.K.: A leader-follower game in competitive facility
location. Comput. Oper. Res. 39(2), 437–448 (2012)

27. Lederer, P.J., Hurter, A.P.: Competition of firms: discriminatory pricing and location.
Econometrica 54(3), 623–640 (1986)

28. McGarvey, R.G., Cavalier, T.M.: Constrained location of competitive facilities in the plane.
Comput. Oper. Res. 32, 359–378 (2005)

29. Miller, T.C., Friez, T.L., Tobin, R.L.: Equilibrium Facility Location on Networks. Springer,
New York (1996)

30. Mirchandani, P.B., Francis, R.L. (eds.): Discrete Location Theory. Wiley, New York (1990)
31. Ortigosa, P.M., García, I., Jelásity, M.: Reliability and performance of UEGO, a clustering-

based global optimizer. J. Glob. Optim. 19(3), 265–289 (2001)
32. Plastria, F.: GBSSS, the generalized big square small square method for planar single facility

location. Eur. J. Oper. Res. 62, 163–174 (1992)
33. Plastria, F.: Avoiding cannibalization and/or competitor reaction in planar single facility

location. J. Oper. Res. Soc. Jpn. 48, 148–157 (2005)
34. Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program.

100(2), 247–265 (2004)
35. Redondo, J.L., Ortigosa, P.M., García, I., Fernández, J.J.: Image registration in electron

microscopy. A stochastic optimization approach. In: Proceedings of the International Confer-
ence on Image Analysis and Recognition, ICIAR 2004. Lecture Notes in Computer Science,
vol. 3212(II), pp. 141–149. Springer, Berlin/Heidelberg (2004)

36. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: Parallel algorithms for continuous
competitive location problems. Optim. Methods Softw. 23(5), 779–791 (2008)

37. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: A robust and efficient global
optimization algorithm for planar competitive location problems. Ann. Oper. Res. 167(1),
87–106 (2009)

38. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: Solving the multiple competitive
facilities location and design problem on the plane. Evol. Comput. 17(1), 21–53 (2009)

39. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: Heuristics for the facility location and
design (1j1)-centroid problem on the plane. Comput. Optim. Appl. 45(1), 111–141 (2010)

40. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: Solving the facility location and design
.1j1/-centroid problem via parallel algorithms. J. Supercomput. 58(3), 420–428 (2011)

41. Redondo, J.L., Fernández, J., Arrondo, A.G., García, I., Ortigosa, P.M.: Fixed or variable
demand? Does it matter when locating a facility? Omega 40(1), 9–20 (2012)

Huff-Like Stackelberg Location Problems on the Plane 169

42. Redondo, J.L., Fernández, J., Arrondo, A.G., García, I., Ortigosa, P.M.: A two-level
evolutionary algorithm for solving the facility location and design (1j1)-centroid problem on
the plane with variable demand. J. Glob. Optim. 56(3), 983–1005 (2013)

43. Saidani, N., Chu, F., Chen, H.: Competitive facility location and design with reactions of
competitors already in the market. Eur. J. Oper. Res. 219(1), 9–17 (2012)

44. Sáiz, M.E., Hendrix, E.M.T., Fernández, J., Pelegrín, B.: On a branch-and-bound approach for
a Huff-like Stackelberg location problem. OR Spectrum 31, 679–705 (2009)

45. Serra, D., ReVelle, C.: Competitive location in discrete space. In: Facility Location: A Survey
of Applications and Methods, pp. 367–386. Springer, New York (1995)

46. Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Math. Oper. Res. 6(1),
19–30 (1981)

47. Tóth, B., Fernández, J.: Interval Methods for Single and Bi-objective Optimization Problems -
Applied to Competitive Facility Location Problems. Lambert Academic, Saarbrücken (2010)

48. Tóth, B.G., Kovács, K.: Solving a Huff-like Stackelberg location problem on networks. J.
Glob. Optim. 64(2), 233–257 (2016)

49. Tóth, B., Plastria, F., Fernández, J., Pelegrín, B.: On the impact of spatial pattern, aggregation,
and model parameters in planar Huff-like competitive location and design problems. OR
Spectrum 31(1), 601–627 (2009)

	Huff-Like Stackelberg Location Problems on the Plane
	1 Introduction
	2 Notation
	3 A Model Without Costs
	3.1 The Model
	3.2 A B&B Algorithm for the Follower Problem
	3.3 A B&B Algorithm for the Leader Problem
	3.4 Computational Studies

	4 A Model with Costs Assuming Fixed Demand
	4.1 The Model
	4.2 Solving the Medianoid Problem
	4.2.1 Weiszfeld-Like Algorithm WLM

	4.3 Solving the Centroid Problem
	4.4 The Cost of a Myopic Decision
	4.5 High Performance Computing for the Leader-Follower Problem
	4.5.1 A Master-Slave Strategy (MS)
	4.5.2 Improving the Quality of the Solution: A New Creation Procedure
	4.5.3 Efficiency Results of MS

	5 A Model with Costs and Variable Demand
	5.1 The Model
	5.1.1 A Real Example

	5.2 Solving the Centroid Problem
	5.2.1 The Local Optimizer SASS+WLMv
	5.2.2 TLUEGO: A Two-Level Evolutionary Global Optimization Algorithm
	5.2.3 MSH: A Multistart Heuristic Algorithm
	5.2.4 Computational Studies

	5.3 Influence of the Fuse Process in the Creation Procedure
	5.4 High Performance Computing
	5.4.1 Shared Memory Programming for TLUEGO: SMP_TLUEGO
	5.4.2 Efficiency Results of SMP_TLUEGO

	6 Solving the Models with Costs Exactly
	6.1 Overcoming the Difficulty of the Lack of the Zero-Sum Property
	6.2 Interval Arithmetic Bounds
	6.3 Solution Method
	6.3.1 Inner B&B
	6.3.2 Outer B&B

	6.4 Algorithm

	7 Conclusions and Future Research
	References

