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1 Introduction

Some competitive location models attempt to find the locations of facilities at which
profit is maximized. Profit is strongly affected by both the locations of facilities
of the competing firms and the price set by firms in each customer area. If the
firms enter simultaneously in the market, the maximization of their profit can be
seen as a two-stage game. In the first stage, the firms simultaneously choose their
facility locations. In the second stage, the firms will compete on price. The division
into two stages is motivated by the fact that the choice of location is usually prior
to the decision on price. Observe that location decision is relatively permanent
whereas price decision can be easily changed. The two stage game can be reduced
to a location game if there exists a price equilibrium in the second stage which is
determined by the locations chosen by the firms in the first stage. Once the facility
locations are chosen, the firms would set the equilibrium prices, and then their profit
would be determined. Thus, the location-price problem could be considered as a
game in which firms decide only on facility location. Other similar location games
where the payoffs are given by market share or profit can be seen in [1, 7, 17, 20, 27].

The existence of a price equilibrium in the second stage of the game depends on
the price policy to be considered, among other factors. Most of the papers dealing
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with the location-price problem consider two competing firms under any of the two
following policies: mill pricing and delivered pricing. With mill pricing, a price
equilibrium rarely exists (see for instance [4, 13, 14, 24]). Then the location-price
problem has been studied as a location game by taking prices as parameters. For two
competing firms on a tree network, it has been proved that a Nash equilibrium (NE)
exists with locations at the median nodes if both firms set equal prices (see [9, 10]).
For more than two firms, a location NE on a tree may not exist for equal prices as it
has been proved in [11]. The profit maximization problem for an entering firm has
been studied on a general network (see [26, 28]), but existence of a Nash equilibrium
on a general network has not been proved when firms compete simultaneously
on location. With delivered pricing, a price equilibrium always exists under quite
general conditions. The existence of a price equilibrium was shown for the first time
by Hoover [19], who analyzed spatial discriminatory pricing for firms with fixed
locations and concluded that the local price set by a firm serving a particular market
will be constrained by the delivery cost of the other firms serving that market. In
situations where demand elasticity is ‘not too high’, the equilibrium price at a given
market is equal to the delivery cost of the firm with the second lowest delivery
cost. This result was extended later to spatial duopoly (see [21, 22]) and to spatial
oligopoly for different types of location spaces (see [9, 14]).

Under delivered pricing, the equilibrium prices are usually determined by the
locations of the facilities, then the location-price problem can be reduced to a
location game. This location game has been scarcely studied in the location litera-
ture. For completely inelastic demand, the existence of a location Nash equilibrium
has been proved. In a duopoly with constant marginal production costs, Lederer
and Thisse [22] showed that a location Nash equilibrium exists which is a global
minimizer of the social cost. The social cost is defined as the total delivered cost
if each customer were served with the lowest marginal delivered cost. In oligopoly,
the same result is obtained in [6], where the authors present a model in which firms
compete with delivery pricing and locate single facilities on a network of connected
but spatially separated markets. If demand is price sensitive or marginal production
costs are not constant, the minimizers of social cost may not be a location NE (see
[16, 18]). The profit maximization problem for an entering firm has been studied
with price sensitive demand (see [15]), but existence of a location Nash equilibrium
has not been proved when firms compete simultaneously on location.

The problem of minimizing the social cost on a network has been studied for
two competing firms when marginal delivered costs are concave. This problem is
equivalent to the r-median problem if the marginal delivered cost from each site
location to each demand point is the same for all competing firms (see [25]). There
is an extensive literature on algorithms to solve the r-median problem on networks
which can be used to find a location NE (see for instance [2]). If marginal delivery
cost from each site location to each demand point is different for each competitor
the problem has been solved by using a Mixed Integer Linear Programming (MILP)
formulation (see [25]). The problem of minimizing the social cost on a plane has
been solved for two competing firms which locate single facilities (see [5, 12]).

The aim of this chapter is to extend the main results on the above mentioned
location-price problem with delivered pricing to a general framework where there
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are more than two competing firms, each of them locating multiple facilities. The
problem is studied for constant and variable demand which is located at the nodes of
a transportation network. The chapter is organized as follows: In Sect. 2, it is shown
how the location-price problem is reduced to a game with decisions on location.
In Sect. 3, the existence and determination of location NE is studied for constant
demand. In Sect. 4, the existence and determination of location NE is studied for
variable demand. Finally, the selection of a location NE when there are multiple
location NE is discussed in Sect. 5.

2 The Location-Price Problem

Let us consider N firms that sell an homogeneous product and compete for demand
in a certain region. The firms manufacture and deliver the product to the customers,
which buy from the firm that offers the lowest price. The firms have to choose their
facility locations in some predetermined location space. Once their facility locations
are fixed, the firms will set delivered prices at each customer area. Thus, each firm
has to make decisions on location and price in order to maximize its profit.

As location space we will take a transportation network G D .V; E; l/, where V
is the set of nodes, E is the set of edges, and l W E ! R with l.e/ being the length
of edge e. Distance between two points a and b in the network is measured as the
length of the shortest path linking the two points and it is denoted by d.a; b/. It is
assumed that customers are grouped at the nodes, then the set of customer areas
is given by V D f1; 2; : : : ; mg. The firms are supposed to locate their facilities at
points on the network, then the set of location candidates for each firm is L D V [E.

The following notation will be used:

Indices

n index of the firms, n D 1; : : : ; N
k index of the nodes, k D 1; : : : ; m:

Data

qk.p/ demand function at node k
cn

x marginal production cost of firm n at location x
tn
xk marginal transportation cost of firm n from locationx

to node k
Cn

xk D cn
x C tn

xk marginal delivered cost (or minimum delivered price)
of firm n
from location x to node k

Decision variables

Xn set of facility locations for firm n
pn

k price the firm n sets at node k
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Miscellaneous

Cn
k .Xn/ D min

˚
Cn

xk W x 2 Xn
�

minimum price the firm n can set at node k
Ck.X/ D minfCxk W x 2 Xg minimum price the facilities in the set X

can set at node k

Let qk.p/ be continuous and strictly decreasing at all p in Œ0; pmax
k �, where pmax

k is
the maximum price that customers in market k are willing to pay for the product.
We consider that the demand function qk.p/ in market k may be different from the
demand function in other markets. In order to make competition effective in each
market k, we assume that the competing firms are able to price below the maximum
price , i.e. Cn

k.Xn/ < pmax
k for all Xn, n D 1; 2; : : : ; N.

Marginal delivered costs are supposed to be independent of the amounts deliv-
ered and firms use linear prices. Thus, the profit any firm gets from market k, serving
the full market at price p, is ˘k.p/ D qk.p/.p�c/, where c is the marginal delivered
cost of the firm. Then the monopoly price in market k is the optimal solution to the
problem:

max f˘k.p/ W c � p � pmax
k g

and it will be denoted by pmon
k .c/.

The following assumptions concerning the previous maximization problem are
considered:

Assumption 1 ˘k.p/ is a unimodal quasi-concave function in Œ0; pmax
k �.

Assumption 2 c < pmon
k .c/ , for each c � 0.

Assumption 3 pmon
k .c/ is a continuous increasing function at all c in Œ0; pmax

k �.

The first assumption guarantees the existence of a unique maximizer of the profit
function, and therefore a unique monopoly price for each c value. The second
assumption avoids trivial cases in which the optimal price is the marginal delivered
cost, and consequently the profit is zero. The third assumption will be used to prove
a convexity property of the maximum profit. There exists a variety of demand
functions for which the previous assumptions are verified. Some examples are
shown in Table 1.

The previous location-price problem can be seen as a two-stage game. In the first
stage the firms compete on location. In the second stage, once the facility locations
are fixed, the firms will compete on price.

2.1 The Second Stage of the Game

First, we will show the existence of a unique price equilibrium for any set of facility
locations. Let us consider that customers do not have any preference concerning the
supplier and they buy from the firm that offers the lowest price. It is assumed that
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Table 1 Some demand functions and their monopoly prices

Demand qk.p/ pmon
k .c/

Linear ˛k � ˇkp 1
2
.c C ˛k

ˇk
/

0 � p � ˛k
ˇk

Quadratic ˛k � ˇkp2 1
3
.c C

q
c2 C 3

˛k
ˇk

/

0 � p �
q

˛k
ˇk

Exponential ˛ke�ˇkp c C 1
ˇk

0 � p < 1
Hyperbolic ˛kp�ˇk c ˇk

ˇk�1

0 � p < 1, ˇk > 1

each firm cannot offer a price below its marginal delivered cost and each facility can
supply all demand placed on it. Thus, each firm n will set a price at node k which is
greater than, or equal to, Cn

k.Xn/ for any set of facility locations Xn, n D 1; 2 : : : ; N.
If two firms offer a minimum price at node k, the one with the minimum marginal

delivered cost can lower its price and it obtains all the demand in node k. Then we
consider that ties in price are broken in favour of the firm with the lowest marginal
delivered cost. If the tied firms have the same marginal delivered cost in node k, no
tie breaking rule is needed to share demand at node k because they will obtain zero
profit from node k as a result of price competition.

In the long-term competition, customers at node k will not buy from firm
n if Cn

k.Xn/ > minfCu
k .Xu/ W u D 1; 2; : : : ; Ng. Therefore, each node will

be served by the firm with the minimum marginal delivered cost and such a
firm will set a price which maximizes its profit. Let X D .X1; X2; : : : ; XN/

denote the set of fixed facility locations. For n D 1; 2; : : : ; N, let Ccom
k .Xn/ D

min
˚
Cu

xk W x 2 Xu; u D 1; : : : ; N; u ¤ n
�

denote the minimum delivered cost of the
competitors of firm n.

The price competition is as follows:

1. If Cn
k .Xn/ < Ccom

k .Xn/, then firm n obtains a maximum profit from node k by
offering a price equal to the optimal solution of the following problem:

Max f˘ n
k .p/ D qk.p/.p � Cn

k .Xn// W Cn
k .Xn/ � p � Ccom

k .Xn/g

The optimal solution to this problem is unique and it depends on the set of
facility locations X. The solution is given by:

Opn
k.X/ D

8
<

:

pmon
k .Cn

k.Xn// if pmon
k .Cn

k.Xn// < Ccom
k .Xn/

Ccom
k .Xn/ if pmon

k .Cn
k.Xn// � Ccom

k .Xn/
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2. If Cn
k.Xn/ � Ccom

k .Xn/, then firm n obtains zero profit from node k. In this case,
firm n sets a price Opn

k.X/ D Cn
k.Xn/ to make its competitors obtain a minimum

profit from node k.

It is clear that no firm n can get a greater profit from node k by changing the price
Opn

k.X/ while the other firms keep such prices. Then Opn
k.X/, n D 1; 2; : : : ; N, are the

unique equilibrium prices in market k.

2.2 The First Stage of the Game

Let us assume that for any fixed set X D .X1; X2; : : : ; XN/, the firms will set the
equilibrium prices Opn

k.X/, n D 1; 2; : : : ; N. Observe that price competition lead to
each firm n will monopolize a group of nodes from which the firm gets a positive
profit. This group of nodes not only depends on the locations of the facilities of firm
n, but it also depends on the locations of the facilities of its competitors. Such group
of nodes is denoted by Mn.X/ and it is given by:

Mn.X/ D fk W Cn
k.Xn/ < Ccom

k .Xn/g

Then, the profit obtained by firm n is:

˘ n.X/ D
mP

kD1

qk.Opn
k.X//.Opn

k.X/ � Cn
k .X// D

P

k2Mn.X/

qk.Opn
k.X//.Opn

k.X/ � Cn
k.X//

If the competing firms set the equilibrium prices, the location-price problem can
be seen as a location game LG D fN; Xn; ˘ n W n D 1; : : : ; Ng, where N is the
number of firms (players), Xn represents the set of facility locations chosen by firm
n, and ˘ n is the payoff firm n obtains. This game captures the idea that, when firms
select their locations, they all anticipate the consequences of their choice on price.

For simplicity, given X D .X1; X2; : : : ; XN/, we will use the notation
X D .Xn; X�n/, where X�n is the set of locations of the competing firms
but n. Then a location Nash equilibrium (NE) is defined as a set of locations
OX D . OX1; OX2; : : : ; OXN/ such that for any n it is verified that:

˘ n. OXn; OX�n/ � ˘ n.Xn; OX�n/; 8Xn

In the following we will study the problem of existence of location NE, and
the problem of finding such equilibria if they exist. We will distinguish between
essential and non essential products.
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3 Location Nash Equilibria with Essential Products

Let us assume that firms sell essential products. This means that demand does not
change when price changes. Then the amount of demand at each node k is given by
a constant function, qk.p/ D Qk, k D 1; : : : ; m.

3.1 Existence of NE

For constant demand functions, the existence of a location NE can be proved by
using the concept of social cost. The social cost is defined as the total cost incurred
to supply demand to customers if each customer would pay for the product the
minimum delivered cost. Then, for any fixed set of locations X D .X1; X2; : : : ; Xn/,
the social cost is given by:

S.X/ D
mX

kD1

Qk min
˚
C1

k.X1/; C2
k .X2/; : : : ; CN

k .XN/
�

Firstly, it is shown that the profit obtained by any firm is the total cost that would
be experienced by its competitors serving the entire market with the minimum
delivered cost minus the social cost. Secondly, a characterization of location NE
is obtained. Finally, the existence of a location NE is proved.

Property 1 If the firms set the equilibrium prices in each market, then for
n D 1; : : : ; N, it is verified that:

˘ n.X/ D
mX

kD1

Ccom
k .Xn/Qk � S.X/

Proof Since qk.p/ D Qk, the equilibrium prices are given by:

Opn
k.X/ D

�
Ccom

k .Xn/ if Cn
k.Xn/ < Ccom

k .Xn/

Cn
k.Xn/ otherwise:

Then the profit obtained by firm n can be expressed as follows:

˘ n.X/ D
X

k2Mn.X/

Qk
�
Ccom

k .Xn/ � Cn
k .Xn/

�

D
X

k2Mn.X/

Qk
�
Ccom

k .Xn/ � Cn
k .Xn/

�
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C
X

k…Mn.X/

QkCcom
k .Xn/ �

X

k…Mn.X/

QkCcom
k .Xn/

D
mX

kD1

QkCcom
k .Xn/ �

mX

kD1

Qk min
˚
Cn

k.Xn/; Ccom
k .Xn/

�

D
mX

kD1

QkCcom
k .Xn/ � S.X/:

ut
Property 2 OX is a location NE if and only if for n D 1; : : : ; N, it is verified that:

S. OXn; OX�n/ � S.Xn; OX�n/ 8Xn:

Proof Note that OX is a location NE if and only if for n D 1; 2; : : : ; N, it is verified
that:

˘ n. OXn; OX�n/ � ˘ n.Xn; OX�n/ 8Xn:

From Property 1, these inequalities are equivalent to the following ones:

S. OXn; OX�n/ � S.Xn; OX�n/ 8Xn:

ut
Property 3 Any global minimizer of S.X/ is a location NE.

Proof It follows from Property 2. ut
The existence of a global minimizer of social cost is proved by considering the

following assumptions:

Assumption 4 For n D 1; 2; : : : ; N the marginal production cost, cn
x , is a positive

concave function when x varies along any edge in the network, and it is independent
of the quantity produced.

Assumption 5 For n D 1; 2; : : : ; N the marginal transportation cost, tn
xk , is a

positive, concave and increasing function with respect to the distance from x to
each node k.

Concavity of marginal production cost and marginal transportation cost is
realistic in certain situations as it has been remarkable by many authors (see for
instance [20, 22, 27]). Under such assumptions, as dxk is a concave function at x,
for any node k and x varying along any fixed edge, it is verified that the marginal
delivered cost, Cn

xk D Cn
x C tn

xk, is also a concave function for any node k and x
varying along any fixed edge.



Nash Equilibria in Network Facility Location Under Delivered Prices 281

Property 4 Under Assumptions 4 and 5, there exists a set of nodes which is a global
minimizer of the social cost.

Proof Let X D .X1; X2; : : : ; XN/ be an arbitrary set of facility locations on the
network. If x 2 Xn is not a node, then x is in the interior of some edge e D .a; b/ 2 E.
Assume that all points in X are fixed, but the point x, which varies on the edge e.
Under Assumptions 1 and 2, it results that the minimum price to serve market k,
min

˚
C1

k .X1/; C2
k .X2/; : : : ; CN

k .XN/
�
, is a concave function when x varies on the edge

e and the other locations are fixed. Since the sum of weighted concave functions,
with non-negative weights, is also concave, it follows that the social cost, S.X/, is
concave when x varies on the edge e and the other locations are fixed. Therefore, the
social cost reaches its minimum value on edge e for x D a or x D b.

Therefore, if we replace each non-node point in X by the corresponding
minimizer node of the social cost when the other locations of the facilities are
fixed, we will obtain sets of nodes V1; V2; : : : ; VN for which S.V1; V2; : : : ; VN/ �
S.X1; X2; ; : : : ; XN/. Consequently, there exists a set of nodes OV D .V1; V2; : : : ; VN/

which minimizes the social cost. ut

3.2 Finding a Location NE

From Property 4, it follows that a location NE can be found by minimizing the social
cost on the set of nodes. For any set of nodes X D .X1; X2; : : : ; XN/ every set Xn can
be represented by a vector xn D .xn

1; xn
2; : : : ; xn

m/ with components:

xn
i D

�
1 if node i 2 Xn

0 otherwise:

Let x D .x1; x2; : : : ; xN/. With this representation of X, the social cost S.x/ is
given by the optimal value of the following optimization problem:

SC.x/ D Min
mX

kD1

Qk

 
mX

iD1

C1
ikz1

ik C
mX

iD1

C2
ikz2

ik C : : : C
mX

iD1

CN
ikzN

ik

!

s.t.
mX

iD1

z1
ik C

mX

iD1

z2
ik C : : : C

mX

iD1

zN
ik D 1I k D 1; : : : ; m (1)

zn
ik � xn

i I n D 1; 2; : : : ; NI i; k D 1; 2; : : : ; m (2)

zn
ik 2 f0; 1g I n D 1; 2; : : : ; NI i; k D 1; 2; : : : ; m

Constraints (1) mean that for any k, only one variable zn
ik will be equals to 1, the

one corresponding to the minimum delivered cost from the locations of the facilities
to node k. Constraints (2) mean that variable zn

ik may take the value 1 if xn
i D 1.
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For each k, note that the optimal solution to the previous problem is obtained by
assigning the value 1 to one variable zn

ik for which the following two conditions are
verified: Cn

ik D minfCn
jk W j D 1; 2; : : : ; m and xn

j D 1g and Cn
ik � Ccom

k .Xn/. The
value 0 is assigned to the other variables.

Therefore, the problem of minimizing the social cost when locations are nodes
becomes into the problem:

.SCM/ W Min
mX

kD1

QkŒ

NX

nD1

mX

iD1

Cn
ikzn

ik�

s.t.
NX

nD1

mX

iD1

zn
ik D 1I k D 1; : : : ; m (3)

zn
ik � xn

i I n D 1; : : : ; NI i; k D 1; : : : ; m (4)
mX

iD1

xn
i D rnI n D 1; : : : ; N (5)

zn
ik; xn

i 2 f0; 1g I n D 1; : : : ; NI i; k D 1; : : : ; m

Constraints (5) show that each firm n selects rn facility locations, where rn is the
number of facilities to be located by firm n. Let Oxn

i be the optimal values of variables
xn

i , then a location NE is given by OX D . OX1; OX2; : : : ; OXN/ where OXn D fi W Oxn
i D 1g,

n D 1; 2; : : : ; N.
Problem .SCM/ can be solved by any standard ILP-optimizer (Xpress, Cplex,

: : :). However, computational difficulties may occur when the number of binary
variables, which is Nm.m C 1/, is large. To solve more efficiently problem .SCM/,
the constraints zn

ik 2 f0; 1g can be replaced by zn
ik � 0. Note that for both sets of

constraints the same value of SC.x/ is obtained. Therefore, an optimal solution of
.SCM/ can be obtained by talking either the sets of constraints zn

ik 2 f0; 1g, or the
set of constraints zn

ik � 0.

3.3 Firms with Equal Marginal Delivered Costs

If the marginal delivered costs are equal for all the firms, Cn
ik D Cik for

n D 1; 2; : : : ; N, the previous formulation of the social cost minimization problem
can be simplified. In fact, once the facility locations are fixed, note that any node
k is served from the facility with the minimum delivered cost. Since the marginal
delivered cost from each node is the same for all the firms, the minimum delivered
cost to node k only depends on the nodes where the facilities are located, no matter
which of the firms is the owner of the facility. Thus, if we consider the following
variables:
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xi D
�

1 if a facility is located at node i
0 otherwise

zik D
�

1 if node k is served from node i
0 otherwise

then the social cost minimization problem becomes into the following problem:

.SCM1/ W Min
mX

kD1

QkŒ

mX

iD1

Cikzik�

s.t.
mX

iD1

zik D 1I k D 1; : : : ; m (6)

zik � xiI i; k D 1; : : : ; m (7)
mX

iD1

xi D r (8)

zik � 0; xi 2 f0; 1g I i; k D 1; : : : ; m

Constraints (6) mean that each node will be served by one facility, the one with
the minimum delivered cost. Constraints (7) show that node k can be served from
node i if xi D 1. Constraint (8), where r D r1 C : : :CrN , represents the total number
of facilities to be located. The constraints zik 2 f0; 1g have been replaced by the
constraints zik � 0. The number of variables is now equal to m.m C 1/, where m
of them are binary and the other are non negative. Then large size problems can be
solved by using standard optimizers. Observe that .SCM1/ is a formulation of the
well known r�median problem (see [2, 23]).

If OX is the set of nodes corresponding to the optimal solution Ox D . Ox1; : : : ; Oxm/

of problem (SCM1), i.e., OX D fi W Oxi D 1g, then any partition . OX1; OX2; : : : ; OXN/ of
OX verifying j OXnj D rn, n D 1; 2; : : : ; N, is a location NE. This is true due to OX is a

global minimizer of social cost. Consequently, there exist a large number of location
NE. The problem of selecting one of such equilibria is considered in Sect. 5.

4 Location Nash Equilibria with Non Essential Products

Let us now consider that demand is sensible to price. This happens for products
considered as not necessary to the customer. The demand at each node k is given by
a function qk.p/. We first prove a convexity property of the maximum profit that is
obtained by any firm at each node. This property will be used to show that for any
firm n, there is a set of optimal locations at the nodes for any fixed locations of its
competitors.
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4.1 Convexity of the Maximum Profit at a Node

Let us consider that the locations of the facilities of firm n, Xn, may change, but the
locations of the facilities of its competitors are fixed. Given a node k, for simplicity
let c D Cn

k.Xn/ and ccom
k D Ccom

k .Xn/. The maximum profit of firm n at node k, as a
function of the marginal delivered cost, is given by:

˘ n
k .c/ D

�
maxfqk.p/.p � c/ W c � p � ccom

k g if c < ccom
k

0 if c � ccom
k

Since pmon
k .c/ is a continuous increasing function (Assumption 3), it follows that

pmon
k .c/ < ccom

k if and only if c < ck for someone threshold value ck. Then the
maximum profit in market k is given by the following function (see Fig. 1):

˘ n
k .c/ D

8
<

:

qk.pmon
k .c//.pmon

k .c/ � c/ if c < ck

qk.ccom
k /.ccom

k � c/ if ck � c < ccom
k

0 if ccom
k � c

Observe that ˘ n
k .c/ depends on the demand function qk.p/ and it can be nonlinear

in the interval Œ0; ck�, but it is always linear in Œck; ccom
k �.

Property 5 ˘ n
k .c/ is a decreasing convex function in Œ0; pmax

k �.

Proof It is clear that function ˘ n
k .c/ is decreasing at c, so we will show that it is

convex. Let c1 and c2 be in Œ0; pmax
k �, and c� D �c1 C .1 � �/c2, 0 < � < 1. For

simplicity, let p1 D pmon
k .c1/, p2 D pmon

k .c2/, p� D pmon
k .c�/. From Assumption 3,

as c1 < c� < c2, it follows that p1 < p� < p2.

Fig. 1 Maximum profit function
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We have to prove that ˘ n
k .c�/ � �˘ n

k .c1/+.1��/˘ n
k .c2/, for which we consider

the three following possible cases:

i) If c� < ck, then:

˘ n
k .c�/ D qk.p�/.p� � c�/ D qk.p�/.p� � �c1 � .1 � �/c2/

D �qk.p�/.p� � c1/ C .1 � �/qk.p�/.p� � c2/

Since c� < ck and c1 < pmon
k .c1/ D p1 < p�, it follows that c1 < p� < ccom

k ,
and therefore qk.p�/.p� � c1/ � ˘ n

k .c1/. Since p� < ccom
k , it is verified that

qk.p�/.p� � c2/ � ˘ n
k .c2/. Then we obtain:

˘ n
k .c�/ � �˘ n

k .c1/ C .1 � �/˘ n
k .c2/

ii) If ck � c� < ccom
k , then:

˘ n
k .c�/ D qk.c

com
k /.ccom

k � c�/ D qk.c
com
k /.ccom

k � �c1 � .1 � �/c2/

D �qk.c
com
k /.ccom

k � c1/ C .1 � �/qk.c
com
k /.ccom

k � c2/:

Since c1 < c� and c� < ccom
k , then c1 < ccom

k . Therefore, qk.ccom
k /.ccom

k �
c1/ � ˘ n

k .c1/. On the other hand, we have that qk.ccom
k /.ccom

k � c2/ � ˘ n
k .c2/

if c2 < ccom
k and qk.ccom

k /.ccom
k � c2/ � 0 � ˘ n

k .c2/ if c2 � ccom
k . Then we

obtain:

˘ n
k .c�/ � �˘ n

k .c1/ C .1 � �/˘ n
k .c2/

iii) If ccom
k � c�, then: ˘ n

k .c�/ D 0 � �˘ n
k .c1/ C .1 � �/˘ n

k .c2/. ut

4.2 Existence of Location NE

For variable demand functions qk.p/, k D 1; : : : ; m, the social cost is given by:

S.X/ D
mX

kD1

qk.Ck.X// Ck.X/

where Ck.X/ D minfC1
k .X1/; C2

k .X2/; : : : ; CN
k .XN/g. Contrary to what happens for

constant demand functions, a minimizer of the social cost may not be a location NE,
as it is shown by the following example.

Consider two competing firms on the network shown in Fig. 2, each firm locating
one facility. The number in each edge .i; k/ is the marginal delivered cost, Cn

ik,
between i and k, being C1

ik D C2
ik. Demand in each node k is linear and given by

qk.p/ D 4 � p, 0 � p � 4.
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Fig. 2 Transportation network

Table 2 Social cost and profits

X S.X/ ˘1.X/ ˘2.X/

1,2 7.5 7.125 4

1,3 6.75 7.25 4

1,4 6.75 7.25 4

2,3 7 5 4.75

2,4 7 5 4.75

3,4 5.5 3 3

Let X D .i; j/ be facility locations, where node i is the facility location for firm
1, and node j is the facility location for firm 2. Since C1

ik D C2
ik, it is verified

that S.i; j/ D S.j; i/ and ˘1.i; j/ D ˘2.j; i/ for all .i; j/. In Table 2, the values
S.X/; ˘1.X/ and ˘2.X/ are shown for the different combinations .i; j/, i < j. Note
that pairs .2; 3/ and .2; 4/ are location NE while the minimizer of social cost, the
pair .3; 4/, it is not a location NE.

The previous example shows that social cost cannot be used to obtain a location
NE if demand is sensible to price. In this case, to our knowledge, no proof has been
given to guarantee the existence of a location NE.

4.3 Finding a Location NE

We propose to use the best response procedure to find a location NE. This procedure
has extensively been used in Game Theory to find NE when they exist (see [8]).

In our location game, the best response function is obtained as follows:

• Given a set X D .X1; X2; : : : ; XN/ of facility locations, for each firm n the
following optimization problem is solved:

Pn.X�n/ W Maxf˘ n.Yn; X�n/ W jYnj D rn; Yn � Lg

• Let OXn be an optimal solution of problem Pn.X�n/, then the best response of firm
n to the locations of the facilities of its competitors X�n is defined as follows:
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Rn.X/ D
� OYn if ˘ n. OYn; X�n/ > ˘ n.Xn; X�n/

Xn otherwise

• The best response function is R.X/ D .R1.X/; R2.X/; : : : ; RN.X//.

It is clear that X is a Nash equilibrium if and only if R.X/ D X. Therefore, the
following algorithm can be used to obtain a location NE.

Algorithm BR

Step 1: Start with any feasible set of facility locations,
X D .X1; X2; : : : ; XN/.

Step 2: For each n:
i) Find an optimal solution OYn to problem Pn.X�n/.
ii) Determine Rn.X/.

Set R.X/ D .R1.X/; R2.X/; : : : ; RN.X//.

Step 3: If X D R.X/, X is a location NE, STOP.
Otherwise, set X D R.X/ and go to Step 2.

Algorithm BR requires to solve problem Pn.X�n/ for each firm n. The following
property will be used to solve such a problem.

Property 6 Under Assumptions 4 and 5, there exists a set of nodes which is an
optimal solution to problem Pn.X�n/ for each n.

Proof Let OXn be an optimal solution to Pn.X�n/. Assume that there is a location
xi 2 OXn which is an interior point on some edge .a; b/. Let us consider all locations
in OXn are fixed but xi which is assumed to vary in .a; b/.

Since the minimum of concave functions is also concave and Cxik is a concave
function at xi in .a; b/, then Cn

k . OXn/ D minfCxik; Cn
k . OXn n xi/g is also concave at

xi in .a; b/. From Property 5 we have that ˘ n
k .Cn

k. OXn//, as function of Cn
k. OXn/, is

decreasing and convex. From the theorem of composition of convex functions (see
[3]) we obtain that ˘ n

k .Cn
k . OXn// is convex at xi in .a; b/ if OXn n xi is fixed.

The sum of convex functions is also convex, therefore the profit function defined
as ˘. OXn/ D Pm

kD1 ˘ n
k .Cn

k. OXn// is convex at xi in .a; b/ if OXn n xi is fixed. This
function reaches a maximum value in an extreme point of the edge .a; b/ when xi

varies in .a; b/. Then the location set OXn can be improved by replacing point xi by
one of the nodes a or b (the one for which a maximum profit is obtained).

Therefore, if the set of optimal locations OXn contains non nodes points, each non
node point can be replaced by one node so that a new set of locations Vn is obtained
whose points are nodes and ˘. OXn/ D ˘.Vn/. Consequently, there exists a set of
nodes which is an optimal solution to Pn.X�n/. ut

If Assumptions 4 and 5 hold, from Property 6 an optimal solution to problem
Pn.X�n/ can be found as follows:
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Let us define the following sets and variables:

Ln
k D fi W Cn

ik < Ck.X
�n/g

Mn D fk W Ln
k ¤ ;g

xn
i D

�
1 if a facility is located at node i
0 otherwise

zn
ik D

�
1 if node k is served by firm n from node i
0 otherwise

Note that Ln
k is the set of locations at which firm n can price below its competitors

at node k. Mn is the set of nodes where firm n can get a positive profit. xn
i and zn

ik are
location and allocation variables, respectively.

If node k is served from node i 2 Ln
k , the equilibrium price is:

Opn
k.i/ D

8
<

:

pmon
k .Cn

ik/ if pmon
k .Cn

ik/ < Ck.X�n/

Ck.X�n/ if pmon
k .Cn

ik/ � Ck.X�n/

Then the problem Pn.X�n/ can be formulated as follows:

Pn.X�n/ W max
X

k2Mn

X

i2Ln
k

qk.Opn
k.i//.Opn

k.i/ � Cn
ik/z

n
ik

s.t.
X

i2Ln
k

zn
ik � 1; k 2 Mn (9)

zn
ik � xn

i ; k 2 Mn; i 2 Ln
k (10)

X

i2Ln
k

xn
i D rn; k 2 Mn (11)

xn
i ; zn

ik 2 f0; 1g; k 2 Mn; i 2 Ln
k

The objective function of problem Pn.X�n/ represents the profit of firm n.
Observe that the prices Opn

k.i/ depend on the set X�n. Constraints (9) mean that
each node k 2 Mn can be served from at most one of the facilities of firm n
(the facility with the minimum marginal delivered cost in the optimal solution).
Constraints (10) imply that variable zn

ik may be positive only if firm n locates a
facility at i. Constraint (11) represents the number of facilities to be located by
firm n.

The above problem is a Binary Integer Linear Programming (BILP) problem
which contains a lot of binary variables. However, the number of binary variables
can be notably reduced as follows. Let Oxn

i denote an optimal solution for variables
xn

i , then an optimal solution for variables zn
ik is given by:

Ozn
ik D

�
1 if cik D minfchk W h 2 Ln

k ; xn
h D 1g

0 otherwise
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As the allocation variables are determined by the decision variables in the optimal
solution, zn

ik can be taken as non negative variable instead of a binary variable. Then,
replacing constraints zn

ik 2 f0; 1g by zn
ik � 0 in the above formulation, we obtain an

equivalent problem which is a Mixed Integer Linear Programming (MILP) problem.
It may occur that Algorithm BR does not stop, and therefore it does not find a

NE. It may also occur that a location NE does not exist but if it exists Algorithm BR
could find it.

5 Existence of Multiple Location Nash Equilibria

In the case of an essential product, social cost minimization at the nodes of the
network is a combinatorial optimization problem that may have multiple global
optima. Then more than one location NE could exist. Furthermore, if X is a global
minimizer of social cost and Cn

ik D Cik for all n, then any partition of the set of
optimal locations X into sets X1; : : : ; XN such that jXnj D rn, n D 1; : : : ; N, is a
location NE. Thus, the number of location NE corresponding to such partitions is

rŠ
r1Šr2Š���rN Š

.
In the case of a non essential product, minimizers of social cost may not be

location NE and the previous result does not hold, but it is possible the existence of
more than one location NE as it was shown in the example of Sect. 4.

When more than one location NE are found, the competing firms could agree
to select a Pareto optimum equilibrium. Thus, if OX and QX are location NE and it is
verified that ˘ n. OX/ � ˘ n. QX/, n D 1; : : : ; N, with at least one strict inequality, then
the firms could agree to select OX better than QX.

5.1 Aggregated Profit Maximization

Let X be a set of nodes corresponding to an optimal solution to problem (SCM1).
We want to determine a partition of the set X into N subsets X1; : : : ; XN such that
the aggregated profit obtained by the firms is maximized.

Then we have to solve the following problem:

P.X/ W Maximize
NP

nD1

˘ n.Xn/

s:t: Xn � X and jXnj D rn; n D 1; : : : ; N:
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The aggregated profit associated to X is given by:

NP

nD1

˘ n.X/ D
NP

nD1

.
mP

kD1

QkCcom
k .Xn/ � S.X// D

D
mP

kD1

Qk.Ccom
k .X1/ C Ccom

k .X2/ C : : : C Ccom
k .XN// � NS.X/

We consider the following variables:

yjn D
�

1 if j 2 Xn

0 otherwise

Cn
k D minfCjk W j 2 X; yjn D 0g

Note that variables yjn define a partition .X1; : : : ; XN/ of set X, and each variable
Cn

k takes the value Ccom
k .Xn/ associated to the partition .X1; : : : ; XN/.

Then the problem of determining the partition of X with the maximum aggregated
profit can be formulated as follows:

P.X/ W Maximize
mX

kD1

Qk.C
1
k C C2

k C : : : C CN
k / � NS.X/

s:t:
X

j2X

yjn D rnI n D 1; : : : ; N (12)

Cn
k � Cjk.1 � yjn/ C DyjnI n D 1; : : : ; N; k D 1; : : : ; m; j 2 X (13)

yjn 2 f0; 1g; Cn
k � 0I n D 1; : : : ; N; k D 1; : : : ; m; j 2 X

Constraints (12) mean that each firm n locates rn facilities which are selected
from the set X. Constraints (13) guarantee that each variable Cn

k will take the value
Ccom

k .Xn/ corresponding to the optimal partition .X1; : : : ; XN/ of X. D is a fixed
positive value greater than any cost Cjk.

Let Oyjn be the values of variables yjn corresponding to an optimal solution to
problem P.X/. Then the location NE which maximize the aggregated profit is
OXn D fj 2 X W Oyjn D 1g, n D 1; : : : ; N.

5.2 Equity Constraints

Any firm n could disagree with the partition . OX1; : : : ; OXN/ of X which maximizes
the aggregated profit if ˘ n. OXn/ is not high enough. An alternative way of selecting
a partition of X is by including equity constraints. The aim of such constraints is
to determine a location equilibrium, so that the firms get similar profits per facility.
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Let Ŏ denote the maximum aggregated profit, which can be obtained by solving
problem P.X/. For a fixed value �, 0 � � � 1, any firm n could agree on selecting
a partition of X (location NE) if the average profit per facility the firm obtains
is greater than, or equal to, � Ŏ =r, where r is the total number of facilities. A
location equilibrium verifying the equity constraints, for which the aggregated profit
is maximum, could be obtained by solving the following MILP problem:

P�.X/ W Maximize
mP

kD1

Qk.C1
k C C2

k C : : : C CN
k /

s:t: Cn
k � Cjk.1 � yjn/ C DyjnI n D 1; : : : ; N; k D 1; : : : ; m; j 2 X

P

j2X
yjn D rnI n D 1; : : : ; N

1
rn

�
mP

kD1

QkCn
k � S.X/

�
� �

Ŏ
r I n D 1; : : : ; N

yjn 2 f0; 1g; Cn
k � 0I n D 1; : : : ; N; k D 1; : : : ; m; j 2 X

Observe that P�.X/ reduces to P.X/ for � D 0. For small values of � problem
P�.X/ is feasible, but it could be unfeasible for values of � close to 1. In order
to select a location equilibrium, a sequence of problems P�.X/ can be solved for
fixed increasing � values until one not feasible problem is found. Let � be the
greater value of � for which P�.X/ is feasible, then firms could select the location
equilibrium given by the following partition:

OXn D fj 2 X W Oyjn D 1g
where Oyjn are the optimal values for variables yjn in problem P�.X/.
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