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1 Introduction

Facility location situations are a promising topic in the field of Operations Research
(OR), which has many applications to real life. In this type of problems, there exist
a given cost for constructing a facility. Further, connecting a player to this facility
by minimizing the total cost is necessary.

In cooperative game theory allocating the costs in a fair way is very important,
which is known as the cost allocation problem. In facility location situations, two
cases can occur. One of them is the case of public facilities (such as libraries,
municipal swimming pools, fire stations, etc.) and the other one is the case of private
facilities (such as distribution centers, switching stations, etc.).

In a facility location situation, each facility is constructed to please the players.
Here, the problem is to minimize the total cost. This cost is composed of both the
player distance and the construction of each facility. A facility location game is
constructed from a facility location situation [8].

In classical cooperative game theory payoffs to coalitions of players are known
with certainty. On the other hand, there are many real-life situations in which people
or businesses are uncertain about their coalition payoffs. Situations with uncertain
payoffs in which the agents cannot await the realizations of their coalition payoffs
cannot be modelled according to classical game theory. Several models that are
useful to handle uncertain payoffs exist in the game theory literature [5, 14, 16].

The paper is organized as follows. In Sect. 2, we give some preliminaries about
the study. We mention facility location games and PMAS in Sect. 3. Section 4
introduces facility location interval games and their Shapley value.
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2 Preliminaries

In this section, some terminology on the theory of cooperative games and some
useful results from the theory of cooperative interval games are given [3, 4, 8, 15].

A cooperative (cost) game in coalitional form is an ordered pair < N; c >, where
N D f1; 2; : : : ; ng is the set of players, and c W 2N ! R is a map, assigning to each
coalition S 2 2N a real number c .S/, such that c .;/ D 0:

We identify a cooperative cost game < N; c > with its characteristic function c:

The family of all games with player set N is denoted by GN : We recall that GN is a�
2jNj � 1

�
-dimensional linear space for which unanimity games form an interesting

basis. The unanimity game based on S; uS W 2N ! R is defined by

uS .T/ D
�

1 S � T;

0 otherwise,

where S 2 2Nn f;g :

Every coalitional game < N; c > can be written as a linear combination of
unanimity games in a unique way such that c D P

S22N nf;g �S .c/ uS [11]. The
coefficients �S .c/ ; S 2 2Nn f;g are called the unanimity coefficients of the game
< N; c >, where c 2 GN and satisfy

�S .c/ D
X

T22Snf;g
.�1/jSj�jTj c .T/ for all S 2 2Nn f;g :

Let c 2 GN . The potential game < N; PHM
.N;c/ > associated with c 2 GN is the

coalitional game as follows,

PHM
.N;c/ .S/ D P

�
S; cjS

�

8S � N: Hart and Mas-Colell [7] shows that the characteristic function of the
potential game can be expressed in terms of the unanimity coefficients �S .c/ of
the game < N; c > which is given by,

PHM
.N;c/ D

X

S22Nnf;g

�S .c/

jSj uS:

Let � .N/ be the set of all permutations � W N ! N of N and c 2 GN . The
marginal contribution vector m� .c/ 2 R

N with respect to � and c has the ith
coordinate the value

m�
i .c/ WD c .P� .i/ [ fig/ � c .P� .i// for each S 2 2N :
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One of the most important solution concepts in cooperative game theory is the
Shapley value [10]. The Shapley value associates to each game c 2 GN one payoff
vector in R

N : The Shapley value ˚ .c/ of a game c 2 GN is the average of the
marginal vectors of the game, i.e.

˚ .c/ WD 1

nŠ

X

�2�.N/

m� .c/ :

We call a game < N; c > as concave iff

c .S/ C c .T/ � c .S [ T/ C c .S \ T/ 8S; T 2 2N :

We denote by CGN the class of concave games with player set N: It is well known
that a concave game has a non-empty core.

In this paper, we consider a (point-valued) solution f on GN assigns that a payoff
vector f .c/ 2 R

N to every TU-game c 2 GN : Examples of such solutions are
the Centre-of-gravity of the Imputation-Set value, shortly denoted by CIS-value,
Egalitarian Non-Separable Contribution value, shortly denoted by ENSC-value and
the equal division solution (see [6, 17]).

The CIS-value assigns to every player its individual worth, and distributes the
remainder of the worth of the grand coalition N equally among all players, i.e.

CISi .c/ D c.fig/ C 1

jNj .c .N/ �
X

j2N

c.fjg// for all i 2 N:

The ENSC-value assigns to every player in a game its marginal contribution to
the ‘grand coalition’ and distributes the (positive or negative) remainder equally
among the players, i.e.

ENSCi .c/ D �c.Nn fig/ C 1

jNj .c .N/ C
X

j2N

c.Nn fjg// for all i 2 N:

The equal division solution (ED-value) just distributes c.N/ equally among all
players, i.e.

EDi .c/ D 1

jNjc .N/ for all i 2 N:

A cooperative interval (cost) game is an ordered pair < N; c0 >; where N D
f1; : : : ; ng is the set of players, and c0 W 2N ! I.R/ is the characteristic function
such that c0.;/ D Œ0; 0�. Here, I.R/ is the set of all nonempty, compact intervals
in R. For each S 2 2N , the cost set (or: the cost interval) c0.S/ of the coalition S in
the interval game < N; c0 > is of the form Œc0.S/; c0.S/�, where c0.S/ is the minimal
cost which coalition S could receive on its own and c0.S/ is the maximal cost which
coalition S could get. The family of all interval games with player set N is denoted
by IGN .
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Let I; J 2 I.R/ with I D �
I; I

�
, J D �

J; J
�
, jIj D I � I and ˛ 2 RC. Then,

(i) I C J D �
I; I

� C �
J; J

� D �
I C J; I C J

�
;

(ii) ˛I D ˛
�
I; I

� D �
˛I; ˛I

�
.

By (i) and (ii) we see that I.R/ has a cone structure.
Here, we need a partial substraction operator. We define I � J, only if jIj � jJj,

by I � J WD �
I; I

� � �
J; J

� D �
I � J; I � J

�
. Let us note that I � J � I � J. We recall

that I is weakly better than J, which we denote by I < J, if and only if I � J and
I � J. Furthermore, we use the reverse notation I 4 J, if and only if I � J and
I � J. We say that I is better than J, which we denote by I � J, if and only if I < J
and I ¤ J.

Finally, let I; J 2 I.R/ with I D �
I; I

�
, J D �

J; J
�
. We define the minimum of the

two intervals, I ^ J; by I ^ J D I if I 4 J; and their maximum, I _ J; by I _ J D J
if I 4 J:

In general, let I1; : : : ; Ik 2 I .R/ : Suppose that Ij < Ir for each r 2 f1; : : : ; kg :

Then, we say that Ij WD max fI1; : : : ; Ikg : If Is 4 Ir for each r 2 f1; : : : ; kg ; then
Is WD min fI1; : : : ; Ikg : For example, let I1 D Œ0; 1� ; I2 D Œ�1; 2� and I3 D Œ3; 5� :

Then, I3 D max fI1; I2; I3g ; whereas maxfI1; I2g does not exist. Similarly, I2 D
min fI2; I3g ; but min fI1; I2; I3g does not exist. For details see [1].

3 Facility Location Games and PMAS

In a facility location game a set A of agents (also known as cities, clients, or demand
points), a set F of facilities, a facility opening cost fi for every facility i 2 F , and
a distance dij between every pair .i; j/ of points in A [ F indicating the cost of
connecting j to i are given. We assume that the distances come from a metric space;
i.e., they are symmetric and obey the triangle inequality. For a set S � A of agents,
the cost of this set is defined as the minimum cost of opening a set of facilities and
connecting every agent in S to an open facility. More precisely, the cost function c
is defined by [8].

c .S/ D min
F��F

f
X

i2F�

fi C
X

j2S

min
i2F�

dijg (1)

Now, we give an example of facility location game.

Example 3.1 Figure 1 shows a facility location game with three cities {Burdur
(Player 1), Antalya (Player 2), Isparta (Player 3)} in Turkey and two hospitals f1; 2g.
The cost function is calculated by using .1/ the following:

c .1/ D 5; c .2/ D 4; c .3/ D 4;

c .12/ D 7; c .23/ D 5; c .13/ D 9;

c .123/ D 10:
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Burdur

f1 = 3

2

Antalya

2

f2 = 3

1

Isparta

1

(Player 1) (Player 2) (Player 3)

Fig. 1 An example of the facility location game

Table 1 Marginal vectors

� m�
1 .c/ m�

2 .c/ m�
3 .c/

�1 D .1; 2; 3/ 5 2 3

�2 D .1; 3; 2/ 5 1 4

�3 D .2; 1; 3/ 3 4 3

�4 D .2; 3; 1/ 5 4 1

�5 D .3; 1; 2/ 5 1 4

�6 D .3; 2; 1/ 5 1 4

Now, we recall the allocation schemes [8, 12]. An allocation scheme is a scheme
which provides payoff vectors for a game and all its subgames. Formally, an
allocation scheme for a game < N; c > is a vector .ai;S/i2S;S�N . The allocation
scheme based on the Shapley value is called the Shapley allocation scheme.

Example 3.2 We reconsider the facility location game in Example 3.1. The
marginal vectors are given in Table 1.

Table 1 illustrates the marginal vectors of the facility location game in
Example 3.2. The average of the six marginal vectors is the Shapley value of
this game, which can be written as:

˚.c/ D .4 2
3
; 2 1

6
; 3 1

6
/:

The Shapley allocation scheme of < N; c > is represented in Table 2.

PMAS are introduced by Sprumont [13]. Sprumont [13] argues that this requires
that the payoff of any player does not decrease as the coalition he belongs to
grows larger. An allocation scheme that satisfies this property and that also satisfies
efficiency for each subgame is called PMAS [12]. In formula, a vector a D
.ai;S/i2S;S22N nf;g is a population monotonic allocation scheme for a coalitional game
< N; c > if it satisfies the following two conditions.
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1.
P

i2S
ai;S D c .S/ for all S 2 2Nn f;g ;

2. ai;S � ai;T for all S; T 2 2Nn f;g with S � T and i 2 S:

Now, we give a relation between the Shapley allocation scheme being a PMAS
and concavity of the associated potential game [8].

Remark 3.1 The Shapley allocation scheme of coalitional game < N; c > is PMAS
if and only if the associated potential game < N; PHM

.N;c/ > is concave.

An illustration of this remark can be found in the following facility location
game.

Example 3.3 We continue studying the facility location game in Example 3.1. The
unanimity game of this facility location game is < N; c > with N D f1; 2; 3g and

c D 5u1 C 4u2 C 4u3 � 2u1;2 � 3u2;3 C 2u1;2;3:

The Shapley allocation scheme of this game is represented in Table 2. Using the
payoffs in this table we find

a1;f1;2;3g > a1;f1;2g

Hence, the Shapley allocation scheme is not a population monotonic allocation
scheme.

The potential game associated with < N; PHM
.N;c/ > is described by

PHM
.N;c/ D 5u1 C 4u2 C 4u3 � 1u1;2 � 3

2
u2;3 C 2

3
u1;2;3

Consequently, we conclude that < N; PHM
.N;c/ > is not concave because of the

following result.

c .12/ C c .23/ D 8 C 13

2
< 4 C 67

6
D c .2/ C c .123/ :

Table 2 The Shapley allocation scheme

Coalition Player 1 Player 2 Player 3

f1g 5 � �
f2g � 4 �
f3g � � 4

f1; 2g 4 3 �
f1; 3g 5 � 4

f2; 3g � 2 1
2

2 1
2

f1; 2; 3g 4 2
3

2 1
6

3 1
6
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Remark 3.2 The facility location game is not concave. Then, the Shapley allocation
scheme of the facility location game is not PMAS.

Now, we study the other allocation schemes on the facility location game. The
allocation scheme based on CIS-value, ENSC-value and ED-value is called the CIS,
ENSC and ED allocation scheme respectively.

Example 3.4 We use the facility location game in Example 3.1 again. The CIS-
value is defined by

CISi .c/ D c.fig/ C 1

jNj .c .N/ �
X

j2N

c.fjg// for all i 2 N:

Then,

CIS1 .c/ D c .f1g/ C 1

3
.c .f123g/ � .c .f1g/ C c .f2g/ C c .f3g///

D 4;

CIS2 .c/ D c .f2g/ C 1

3
.c .f123g/ � .c .f1g/ C c .f2g/ C c .f3g///

D 3;

CIS3 .c/ D c .f3g/ C 1

3
.c .f123g/ � .c .f1g/ C c .f2g/ C c .f3g///

D 3

So, the CIS-value of this game is obtained by

CIS .c/ D .4; 3; 3/ :

The CIS-values of the subgames of < N; c > are easily computed. The CIS
allocation scheme of < N; c > is represented in Table 3.

Using the payoffs in this table we find

a2;f1;2;3g > a2;f2;3g

Table 3 The CIS allocation scheme

Coalition Player 1 Player 2 Player 3

f1g 5 � �
f2g � 4 �
f3g � � 4

f1; 2g 4 3 �
f1; 3g 5 � 4

f2; 3g � 2 1
2

2 1
2

f1; 2; 3g 4 3 3
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Hence, the CIS allocation scheme is not a population monotonic allocation scheme.
Let us compute the ENSC-value of this game. The ENSC-value is defined by

ENSCi .c/ D �c.Nn fig/ C 1

jNj .c .N/ C
X

j2N

c.Nn fjg// for all i 2 N:

Then,

ENSC1 .c/ D �c .f2; 3g/ C 1

3
.c .f123g/ C c .f1; 2g/ C c .f1; 3g/ C c .f2; 3g//

D 16

3
;

ENSC2 .c/ D �c .f1; 3g/ C 1

3
.c .f123g/ C c .f1; 2g/ C c .f1; 3g/ C c .f2; 3g//

D 4

3
;

ENSC3 .c/ D �c .f1; 2g/ C 1

3
.c .f123g/ C c .f1; 2g/ C c .f1; 3g/ C c .f2; 3g//

D 10

3

So, the ENSC-value of this game is obtained by

ENSC .c/ D .5 1
3
; 1 1

3
; 3 1

3
/:

The ENSC-values of the subgames of < N; c > are easily computed. The ENSC
allocation scheme of < N; c > is represented in Table 4.

Hence, the ENSC allocation scheme is not a population monotonic allocation
scheme. Finally we compute the ED-value of this game. The ED-value is defined by

EDi .c/ D 1

jNjc .N/ for all i 2 N:

Table 4 The ENSC allocation scheme

Coalition Player 1 Player 2 Player 3

f1g 5 � �
f2g � 4 �
f3g � � 4

f1; 2g 4 3 �
f1; 3g 5 � 4

f2; 3g � 2 1
2

2 1
2

f1; 2; 3g 5 1
3

1 1
3

3 1
3
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Then,

ED1 .c/ D c .f1; 2; 3g/
3

D 10

3

ED2 .c/ D c .f1; 2; 3g/
3

D 10

3

ED3 .c/ D c .f1; 2; 3g/
3

D 10

3

So, the ED-value of this game is obtained by

ED .c/ D .3 1
3
; 3 1

3
; 3 1

3
/:

The ED-values of the subgames of < N; c > are easily computed. The ED allocation
scheme of < N; c > is represented in Table 5.

Using the payoffs in this table we find

a2;f1;2;3g > a2;f2;3g

Hence, the ED allocation scheme is not a population monotonic allocation scheme.

As you can see that in facility location games the CIS, ENSC and ED allocation
scheme does not form population monotonic allocation scheme. Now, we give main
result of this paper.

Remark 3.3 The three allocation schemes CIS, ENSC and ED used in Example 3.4
do not generate PMAS.

Table 5 The ED allocation scheme

Coalition Player 1 Player 2 Player 3

f1g 5 � �
f2g � 4 �
f3g � � 4

f1; 2g 3 1
2

3 1
2

�
f1; 3g 4 1

2
� 4 1

2

f2; 3g � 2 1
2

2 1
2

f1; 2; 3g 3 1
3

3 1
3

3 1
3
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Remark 3.4 When we check the results in Table 2 (Shapley allocation scheme),
only the player 2 is satisfied from cooperation. On the other hand we consider the
results in Table 3 (CIS allocation scheme), the player 2 and player 3 are satisfied
from cooperation. Additionally, we can see that the results in Table 4 (ENSC
allocation scheme), only the player 3 is satisfied from cooperation. Finally, we take
the results in Table 5 (ED allocation scheme), only the player 1 is satisfied from
cooperation.

4 Facility Location Interval Games and Their Interval
Shapley Value

In this section, we introduce the facility location interval games inspired by Nisan
[8]. In a facility location interval game, a set A of agents (also known as cities,
clients, or demand points), a set F of facilities, a facility opening interval cost f 0

i for
every facility i 2 F , and a distance d0

ij between every pair .i; j/ of points in A [F

indicating the interval cost of connecting j to i are given. Here, f 0
i WD

h
fi; fi

i
; d0

ij WD
h
dij; dij

i
2 I .R/ : The distances are supposed to come from a metric space. So,

these distances are symmetric and satisfy the triangle inequality. For a set S � A
of agents, the interval cost of this set is defined as the minimum interval cost of
opening a set of facilities and connecting every agent in S to an open facility. More
precisely, the interval cost function c0 is defined by

c0 .S/ D
2

4 min
F��F

f
X

i2F�

fi C
X

j2S

min
i2F�

dijg; min
F��F

f
X

i2F�

fi C
X

j2S

min
i2F�

dijg
3

5 2 I .R/

(2)
Now, we give the example of facility location interval game.

Example 4.1 Figure 2 shows a facility location interval game with three cities
{Burdur (Player 1), Antalya (Player 2), Isparta (Player 3)} in Turkey and two
hospitals f1; 2g. The interval cost function is calculated by using .2/ the following:

c0 .1/ D Œ5; 5:5� ; c0 .2/ D Œ4; 4:4� ; c0 .3/ D Œ4; 4:4� ;

c0 .12/ D Œ7; 7:7� ; c0 .23/ D Œ5; 5:5� ; c0 .13/ D Œ9; 9:9� ;

c0 .123/ D Œ10; 11� :

Now, we calculate the interval Shapley value of the facility location interval
game. Firstly, we recall the definition of the interval Shapley value. For this, we
need to recall some notions from the theory of cooperative interval games [2].

Interval solutions are useful to solve reward/cost sharing problems with interval
data using cooperative interval games as a tool. The interval payoff vectors, which
are the building blocks for interval solutions, are the vectors whose components
belong to I.R/. We denote by I.R/N the set of all such interval payoff vectors.
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Burdur

f1 = [3,3.3]

[2,2.2]

Antalya

[2,2.2]

f2 = [3,3.3]

[1,1.1]

Isparta

[1,1.1]

(Player 1) (Player 2) (Player 3)

Fig. 2 An example of the facility location interval game

We call a game < N; c0 > size monotonic if < N; jc0j > is monotonic, i.e.,
jc0j .S/ � jc0j .T/ for all S; T 2 2N with S � T . For further use we denote by SMIGN

the class of size monotonic interval games with player set N.
The following theorem shows that the facility location interval games are size

monotonic.

Theorem 4.1 The facility location interval game < N; c0 > belongs the class of
SMIGN :

Proof We show that the facility location interval game c0 belongs to the class of
SMIGN : For this,

ˇ̌
c0 ˇ̌ .S/ � ˇ̌

c0 ˇ̌ .T/ for all S; T 2 2N with S � T:

It can be seen that < N; c0 > belongs to the class of SMIGN : For details see [9].

We know that if an interval game is belonging to SMIGN ; then the interval
Shapley value is always given [2].

Remark 4.1 The interval Shapley value of the facility location interval games
always exists.

The interval marginal operators and the interval Shapley value were defined on
SMIGN in [2] as follows.

Denote by ˘.N/ the set of permutations � W N ! N of N D f1; 2; : : : ; ng. The
interval marginal operator m� W SMIGN ! I.R/N corresponding to � , associates
with each c0 2 SMIGN the interval marginal vector m� .c0/ of c0 with respect to �;

defined by m�
i .c0/ D c0.P� .i/ [ fig/ � c0.P� .i// for each i 2 N, where P� .i/ WD˚

r 2 Nj��1.r/ < ��1.i/
�
. Here, ��1.i/ denotes the entrance number of player i.

For size monotonic games < N; c0 >, c0.T/ � c0.S/ is defined for all S; T 2 2N

with S � T; since jc0.T/j D jc0j .T/ � jc0j .S/ D jc0.S/j. Now, we notice that
for each c0 2 SMIGN the interval marginal vectors m� .c0/ are defined for each � 2
˘.N/, because the monotonicity of jc0j implies c0.S[fig/�c0.S[fig/ � c0.S/�c0.S/,
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which can be rewritten as c0.S[fig/�c0.S/ � c0.S[fig/�c0.S/. So, c0.S[fig/�c0.S/

is defined for each S � N and i … S.
The interval Shapley value assigns to each cooperative interval game a payoff

vector whose components are compact intervals of real numbers. Cooperative games
in the additive cone on which we use the interval Shapley value arise from several
OR and economic situations with interval data.

The interval Shapley value ˚ W SMIGN ! I.R/N is defined by

˚.c0/ WD 1

nŠ

X

�2˘.N/

m� .c0/; for each c0 2 SMIGN :

The following example shows the calculation of the interval Shapley value in the
facility location interval game.

Example 4.2 Consider < N; c0 > as the facility location interval game in
Example 4.2. Here, N D f1; 2; 3g and the characteristic function c0 is given as

c0 .1/ D Œ5; 5:5� ; c0 .2/ D Œ4; 4:4� ; c0 .3/ D Œ4; 4:4� ;

c0 .12/ D Œ7; 7:7� ; c0 .23/ D Œ5; 5:5� ; c0 .13/ D Œ9; 9:9� ;

c0 .123/ D Œ10; 11� :

Then, the interval marginal vectors are given in the Table 6. The set of permutations
of N is

� .N/ D
�

�1 D .1; 2; 3/ ; �2 D .1; 3; 2/ ; �3 D .2; 1; 3/ ;

�4 D .2; 3; 1/ ; �5 D .3; 1; 2/ ; �6 D .3; 2; 1/

�
:

Firstly, for �2 D .1; 3; 2/ ; we calculate the interval marginal vectors. Then,

m�2

1

�
c0� D c0 .1/ D Œ5; 5:5� ;

m�2

2

�
c0� D c0 .123/ � c0 .13/ D Œ10; 11� � Œ9; 9:9� D Œ1; 1:1� ;

m�2

3

�
c0� D c0 .13/ � c0 .1/ D Œ9; 9:9� � Œ5; 5:5� :

The others can be calculated similarly, which is shown in Table 1.

Table 6 Interval marginal vectors

� m�
1 .c0/ m�

2 .c0/ m�
3 .c0/

�1 D .1; 2; 3/
�
5; 5 1

2

� �
2; 2 1

5

� �
3; 3 3

10

�

�2 D .1; 3; 2/
�
5; 5 1

2

� �
1; 1 1

10

�
Œ4; 4:4�

�3 D .2; 1; 3/
�
3; 3 3

10

� �
4; 4 2

5

� �
3; 3 3

10

�

�4 D .2; 3; 1/
�
5; 5 1

2

� �
4; 4 2

5

� �
1; 1 1

10

�

�5 D .3; 1; 2/
�
5; 5 1

2

� �
1; 1 1

10

� �
4; 4 2

5

�

�6 D .3; 2; 1/
�
5; 5 1

2

� �
1; 1 1

10

� �
4; 4 2

5

�
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Table 6 illustrates the interval marginal vectors of the facility location interval
game in Example 4.2. The average of the six interval marginal vectors is the interval
Shapley value of this game, which can be written as:

˚.c0/ D .Œ4 2
3
; 5 2

15
�; Œ2 1

6
; 2 23

60
�; Œ3 1

6
; 3 29

60
�/:

5 Conclusion and Outlook

The objective of cooperative game theory is to study ways to enforce and sustain
cooperation among agents willing to cooperate. A central question in this field is
how the benefits (or costs) of a joint effort can be divided among participants, taking
into account individual and group incentives, as well as various fairness properties.

In this paper, we study some results related with facility location situations and
games. After that, we introduce facility location interval games. Further, we show
that some allocation schemes of facility games do not have PMAS.

For future studies, allocation schemes of other solutions can be studied and
interpreted. In this study, we introduce facility location interval games. Similarly,
potential interval games can be studied.
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