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1 Introduction

Consider a market with consumers and retailers. Suppose that the former ones are
distributed on the unit interval and each one of them shops at the closest store
whereas the latter ones decide where to locate in order to attract the largest fraction
of consumers. This model is called the Pure Location Game and was initially
considered by Hotelling [18] for the case of two retailers. This seminal paper has
been extended and applied in different fields such as industrial organization or
spatial competition (as in [8]), giving rise to an immense literature.

Among the different lessons one can draw from this model, the convergence
to the median result is a highly attractive feature. Indeed, with just two players,
a unique equilibrium exists. This equilibrium has two main features: (1) it is
in pure strategies and (2) both parties locate at the location preferred by the
median consumer. Yet, these attractive features are not robust to the introduction
of some slight modifications of the model (see the review of the literature for
a detailed account). For instance, if one assumes that consumers are distributed
on a multidimensional space rather than on the unit interval, a pure equilibrium
ceases to exist. Similarly, adding more retailers to the game might imply that a pure
strategy equilibrium fails to exist. For instance, a pure equilibrium need not exist
with at least four firms [26] when firms can locate over the unit interval. Nuñez
and Scarsini [25] prove that, surprisingly a pure equilibrium must exist when the
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number of retailers is large enough as long as firms are restricted to choose from
a finite set of locations. More specifically, while the consumers are distributed in a
multidimensional space, the retailers can only locate in a finite subset of this space.1

Moreover, in this pure strategy equilibrium, the distribution of retailers converges
towards the distribution of consumers when the number of retailers increases. Note
that [25]’s result allows the consumers to be distributed in any multidimensional
space and holds independently of the finite set of locations the retailers can choose
from.

The current work focuses on a similar framework2 and attempts to characterize
the whole set of symmetric equilibria when the number of retailers becomes large
enough. To do so, we first consider a simple version of the model, where all retailers
are symmetric. We examine the properties of symmetric mixed strategy equilibria
(which must exist since the game is finite and symmetric). We first prove that, as the
number of retailers grows large, every symmetric equilibrium must be completely
mixed. In other words, in these equilibria, every feasible location is occupied with
positive probability. This implies that the expected payoff from choosing each
location must be equal for each retailer. A non-trivial consequence of this is that
the distribution of retailers induced by the symmetric mixed equilibrium converges
to the consumers’ distribution.

Once we have considered the simple model with an exogenous number of
symmetric retailers, we then examine two extensions. The first extension deals with
games with a random number of players and the second one introduces ex-ante
asymmetries between the retailers. As far as the first extension is concerned, it
is well-known that games with a large number of players can easily produce results
that are not robust with respect to the number of players. In order to check this
robustness, we consider also a model where the number of players is random, using
Poisson games à la [23, 24]. We show that in the unique equilibrium of the Poisson
game retailers match consumers when the parameter of the Poisson distribution
is large enough, so retailers do not even need to know the exact number of their
competitors to play their (mixed) equilibrium strategies.

1There are several real-life applications where the strategic behavior of the retailers is subject to
feasibility constraints as, for instance, when zoning regulations are enforced. Land use regulation
has been extensively analyzed in urban economics, mostly from an applied perspective. It is often
argued that zoning can have anti-competitive effects and at the same time be beneficial since it
might solve problems of externalities [see 31, for a recent work on this area].
2Throughout, we assume that competition among retailers is only in terms of location, not price.
We do this for several reasons. First, there exist several markets where price is not decided by
retailers: think, for instance of newsvendors, shops operating under franchising, pharmacies in
many countries, etc. Second, our model without pricing can be used to study other topics, e.g.,
political competition, when candidates have to take position on several, possibly related, issues.
Finally several of the existing models that allow competition on location and pricing are two-stage
models, where competition first happens on location and subsequently on price. Our game could
be seen as a model of the first stage. It is interesting to notice that the recent paper by Heijnen and
Soetevent [16] deals with the second stage in a location model on a graph, assuming that the first
has already been solved.
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Finally, we consider a richer model where the retailers are of two different types,
advantaged and disadvantaged. Consumers prefer advantaged retailers, so they
are ready to travel a bit more to shop at one of them rather than at a disadvantaged
one. Here we model the comparative advantage of the first type of retailers by an
additive constant. This is formally equivalent to the idea of valence in election
models [see 2, 3, among others]. We show that, when the number of advantaged
players increases, they play as if the disadvantaged retailers did not exist, and these
ones get a zero payoff, no matter what they do.

1.1 Review of the Literature

We refer the reader to [13] for a recent survey of the literature on Hotelling games.
Here we just mention the articles that are somehow closer to our contribution.
Eaton and Lipsey [10] consider a Hotelling-type model with an arbitrary number
of players, different possible structures of the space where retailers can locate, and
different distributions of the customers. Lederer and Hurter [20] consider a model
with two retailers where consumers are non-uniformly distributed on the plane.
Aoyagi and Okabe [1] look at a bidimensional market and, through simulation,
relate the existence of equilibria and their properties to the shape of the market.
Tabuchi [32] considers a two-stage Hotelling duopoly model in a bidimensional
market. Hörner and Jamison [17] look at a Hotelling model with a finite number
of customers. Note that, with just two retailers, the literature has underlined the
existence of a “curse of multidimensionality” (see [5] and [33] for a discussion).
This curse implies that there exists no equilibrium in pure strategies for almost
all distributions of consumers whenever the competition takes place in a setting
with more than one dimension (as first identified by Plott [30]).3 When the number
of retailers becomes large, the location of the retailers at the symmetric mixed
equilibrium tends to coincide with the distribution of the consumers on the space.
This phenomenon where “retailers match consumers” was first observed by Osborne
and Pitchik [26].4 A similar result is present in [19] and [27] in the context
of professional forecasting. The previously mentioned results just focus on the
unidimensional space. As far as multidimensional spaces are concerned, [9, 11, 22],
and [15] consider a Hotelling model on graphs where retailers can locate only on
the vertices of the graph. Pálvölgyi [28], Fournier and Scarsini [13], and Fournier

3Two main possibilities have been explored to solve for this lack of equilibrium: either alternative
candidates’ objectives were considered (as in [6]) or the use of mixed strategies (as in [4]).
4Formally, [26] prove that the symmetric equilibrium strategies satisfy the claim assuming that the
consumers are distributed in the interval [0,1] according to any twice continuously differentiable
distribution function.
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[12] consider Hotelling games on graphs with an arbitrary number of players.
Heijnen and Soetevent [16] extend Hotelling’s model of price competition with
quadratic transportation costs from a line to graphs. Another model of location-
price competition on a graph is studied in [29]. Nuñez and Scarsini [25] prove the
existence of pure strategy equilibrium when the number of locations is finite and the
number of players is large enough.

Two papers on the optimization literature are related to ours. Crippa et al. [7]
focuses on an one-shot optimization problem where several agents, distributed
across some space, have access to different services. To use a service, each agent
spends some amount of time which is due both to the travel time to the service and
to the queue time waiting in the service. This article considers this problem globally
and in an equilibrium-like perspective. Mallozzi and Passarelli di Napoli [21] solve a
two-stage optimization problem in which a social planner divides the market region
into a set of service regions, each served by a single facility, in order to minimize the
total cost. More precisely, the social planner decides in the first period the location
of the facilities and seeks in the second period an optimal partition of the customers
in each of the locations.

The paper is organized as follows. Section 2 introduces the model. Section 3
analyzes its equilibria. Section 4 considers the case of a random number of retailers.
Section 5 deals with the case of differentiated retailers. All proofs are in Appendix.

2 The Model

In this section we describe the basic location model, whose different variations will
be studied in the rest of the paper. This model falls in the more general framework
studied by Nuñez and Scarsini [25].

2.1 Consumers

In this model consumers are distributed according to a measure � on a compact
Borel metric space .S; d/. For instance S could be a compact subset of R

2 or a
compact subset of a 2-sphere, but it could also be a (properly metrized) network.

2.2 Retailers

A finite set Nn WD f1; : : : ; ng of retailers have to decide where to set shop, knowing
that consumers choose the closest retailers. Each retailer wants to maximize her
market share. The action set of each retailer is a finite subset of S. This means
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that, unlike what happens in a typical Hotelling-type model, retailers cannot locate
anywhere they want, but can choose only one of finitely many possible locations.
For instance they can set shop only in one of the existing shopping malls in town.

2.3 Tessellation

More formally, define K D f1; : : : ; kg and let XK WD fx1; : : : ; xkg � S be a finite
collection of points in S. These are the points where retailers can open a store. For
every J � K call XJ WD fxj W j 2 Jg and consider the Voronoi tessellation V.XJ/ of S
induced by XJ . That is, for each xj 2 XJ define the Voronoi cell of xj as follows:

vJ.xj/ WD fy 2 S W d.y; xj/ � d.y; x`/ for all x` 2 XJg:
The cell vJ.xj/ contains all points whose distance from xj is not larger than the
distance from the other points in XJ . Call

V.XJ/ WD .vJ.xj//j2J

the set of all Voronoi cells vJ.xj/. See, for instance, Fig. 1. It is clear that for J �
L � K we have vJ.xj/ � vL.xj/ for every j 2 J.

Given that � is the distribution of consumers on the space S, we have that
�.vJ.xj// is the mass of consumers who are weakly closer to xj than to any other
point in XJ . These consumers will weakly prefer to shop at location xj rather than at
other locations in XJ since we assume that all firms offer the same good at the same
price.

To simplify the notation and the results, we assume that S is a compact subset of
some Euclidean space, that � is absolutely continuous with respect to the Lebesgue
measure on this space and

�.vK.xj// > 0 for all xj 2 XK : (1)

This assumption implies that the set of consumers that belong to r different Voronoi
cells vJ.xj1 /; : : : ; vJ.xjr / (i.e. are at the same distance of several points in XK) is
of zero measure. This allows us to simplify the payoff functions. More general
situations can be considered but they would require more care in handling ties.

2.4 The Game

We will build a game where Nn WD f1; : : : ; ng is the set of players. For i 2 Nn

call ai 2 XK the action of player i. Then a WD .ai/i2Nn is the profile of actions and
a�i WD .ah/h2Nnnfig is the profile of actions of all the players different from i. Hence
a D .ai; a�i/.
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Fig. 1 Various Voronoi tessellations with different subsets of locations. (a) XK � Œ0; 1�2; K D
f1; : : : ; 10g. (b) V.XJ/; J D f1; 2g. (c) V.XJ/; J D f3; 4; 5g. (d) V.XJ/; J D f3; 4; 5; 6g. (e)
V.XJ/; J D f1; 2; 7; 8; 9; 10g. (f) V.XJ/; J D K
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We say that a WD .a1; : : : ; an/ � XJ if for all locations xj 2 XJ there exists a
player i 2 Nn such that ai D xj and for all players i 2 Nn there exists a location
xj 2 XJ such that ai D xj. For each a, we let K.a/ denote the subset of K such that
a � XK.a/. Therefore, for i 2 Nn, the payoff of player i is ui W Xn

K ! R, defined as
follows:

ui.a/ D 1

cardfh W ah D aig�.vK.a/.ai//: (2)

The idea behind expression (2) is as follows. Player i’s payoff is the measure
of the consumers that are closer to the location that she chooses than to any other
location chosen by any other player, divided by the number of retailers that choose
the same action as i. As Fig. 1 shows, some locations may not be chosen by any
player, this is why, for every J � K, we have to consider the Voronoi tessellation
V.XJ/ with a � XJ rather than the finer tessellation V.XK/. We examine a simple
example to clarify the idea.

Example 1 Let S D Œ0; 1�, let � be the Lebesgue measure on Œ0; 1�, and let XK D
f0; 1=2; 1g. As mentioned before, for any given XJ , the Voronoi cell of location xj

represents the set of points in Œ0; 1� that are closer to xj than any other point in XJ .

vJ.0/ D

8
ˆ̂
<

ˆ̂
:

Œ0; 1� if XJ D f0g;
Œ0; 1=2� if XJ D f0; 1g;
Œ0; 1=4� if XJ D XK or XJ D f0; 1=2g:

vJ.1=2/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

Œ0; 1� if XJ D f1=2g;
Œ1=4; 1� if XJ D f0; 1=2g
Œ0; 3=4� if XJ D f1=2; 1g;
Œ1=4; 3=4� if XJ D XK :

vJ.1/ D

8
ˆ̂
<

ˆ̂
:

Œ0; 1� if XJ D f1g;
Œ1=2; 1� if XJ D f0; 1g;
Œ3=4; 1� if XJ D XK or XJ D f1=2; 1g:

See Fig. 2.
Hence

�.vJ.0// D

8
ˆ̂
<

ˆ̂
:

1 if XJ D f0g;
1=2 if XJ D f0; 1g;
1=4 if XJ D XK or XJ D f0; 1=2g:

�.vJ.1=2// D

8
ˆ̂
<

ˆ̂
:

1 if XJ D f1=2g;
3=4 if XJ D f0; 1=2g or XJ D f1=2; 1g;
1=2 if XJ D XK :
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0 0.5 1
S= [0,1], XK = {0,0.5,1}

vJ(0), XJ = {0}

vJ(0), XJ = {0,1}

vJ(0), XJ = {0,0.5}

vJ(0), XJ = {0,0.5,1}

vJ(0.5), XJ = {0.5}

vJ(0.5), XJ = {0,0.5}

vJ(0.5), XJ = {0.5,1}

vJ(0.5), XJ = {0,0.5,1}

vJ(1), XJ = {1}

vJ(1), XJ = {0,1}

vJ(1), XJ = {0.5,1}

vJ(1), XJ = {0,0.5,1}

Fig. 2 Voronoi cells with different subsets XJ of locations

�.vJ.1// D

8
ˆ̂
<

ˆ̂
:

1 if XJ D f1g;
1=2 if XJ D f0; 1g;
1=4 if XJ D XK or XJ D f1=2; 1g:

Therefore the payoff for player i, if she chooses location 0 when the rest of the
players’ pure actions are a�i is
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ui.0; a�i/ D 1

cardfh W ah D aig�.a�i/;

where

�.a�i/ D

8
ˆ̂
<

ˆ̂
:

1 if a � f0g;
1
2

if a � f0; 1g;
1
4

if a � XK or a � f0; 1=2g:

The payoffs when she chooses either 1=2 or 1 can be similarly computed.

Remark 1 As mentioned before, the total demand for a location xj (i.e. share of
consumers that purchase the good from a given location) depends on the location
of all the retailers. The minimum value that this demand can assume is equal to
�.vK.xj// > 0, which happens when there is at least one retailer in each location
(i.e. when a � XK). This represents one of the main differences with respect to
the classical model in which retailers can locate everywhere in the set S. In the
classical model the demand for a location could be made arbitrarily small. To see
why, consider the classical Downsian model in the interval Œ0; 1� with three players.
Assume, for instance that player 1 locates in x, player 2 locates in x � " and player
3 locates in x C ". Then the total demand for x can be rendered arbitrary small
as " ! 0.

Consider a game where the consumers are distributed on S according to �, the
set of players is Nn, the set of actions for each player is XK and the payoff of player
i is given by (2). Call this game Gn D hS; �; Nn; XK ; .ui/i. Since the set of actions
coincides with the set of locations, we will use the two terms interchangeably.

With an abuse of notation, we use the same symbol Gn for the mixed extension of
the game, where, for a mixed strategy profile � D .�1; : : : ; �n/, the expected payoff
of player i is

Ui.� / D
X

a12XK

� � �
X

an2XK

ui.a/�1.a1/ : : : �n.an/:

3 Equilibria

In the rest of this section, unless otherwise stated, we consider a sequence fGng of
games, all of which have the same parameters S; �; XK . More precisely, our focus is
on the sequence of games when the number of retailers n grows.

We prove that when the number of retailers is large enough the distribution of
retailers in equilibrium approaches the distribution of consumers.
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3.1 Pure Equilibria

Nuñez and Scarsini [25, Theorem 3.4] prove in a more general setting that, when
the number of players is large, the game Gn admits pure equilibria and the share of
players in the different locations in equilibrium is approximately proportional to the
measure of the corresponding Voronoi cells. They also show that this is not the case
for small n. In our setting their theorem becomes:

Theorem 1 Consider a sequence of games fGngn2N, where Gn D hS; �; Nn; XK ; .ui/i
and all the symbols are defined as in Sect. 2. Then there exists Nn such that for all
n � Nn the game Gn admits a pure equilibrium a�. Moreover, for all n � Nn, any pure
equilibrium is such that

nj.a�/

n`.a�/ C 1
� �.vK.xj//

�.vK.x`//
� nj.a�/ C 1

n`.a�/
: (3)

3.2 Mixed Equilibria

We consider now the mixed equilibria of the game Gn.

Theorem 2 For every n 2 N the game Gn admits a symmetric mixed equilibrium
� .n/ D .�.n/; : : : ; � .n// such that

lim
n!1 �.n/ D �; (4)

with

�.xj/ D �.vK.xj//

�.S/
for all j 2 K: (5)

Theorem 2 says that, as the number of players grows, there is a symmetric
equilibrium where players mix according to the market share of each location.
This result holds only asymptotically. For instance, consider a game Gn with
n D 2, S D Œ0; 1�, � the Lebesgue measure, and XK D f0:45; 0:5; 0:55g. Then
the only symmetric equilibrium is the pure profile where both players choose the
location 0:5.

4 Games with a Random Number of Players

In this section we consider games where the number of players is random and we
show how the results of the previous section extend to this case. In particular we
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focus on Poisson games [see 23, 24, among others]. In these games, the number of
players follows a Poisson distribution. We call Pn D hS; �; N�n ; XK ; .ui/i the game
where the cardinality of the players set N�n is a random variable �n, with

P.�n D k/ D e�n nk

kŠ
;

that is, �n has a Poisson distribution with parameter n.
Just like in game Gn, in game Pn all players have the same utility function. So

the utility function of player i depends only on i’ s action and on the number of
players who have chosen xj for all j 2 K.

Quoting [23], “population uncertainty forces us to treat players symmetrically in
our game-theoretic analysis,” so each player choses action xj with probability �.xj/.
As a consequence, all equilibria are symmetric. Properties of the Poisson distri-
bution imply that the number of players choosing action xj is independent of the
number of players choosing action x` for j ¤ `.

Let Z.XK/ stand for the set of vectors y D .y.xi//xi2XK such that each component
y.xi/ is a nonnegative integer that describes the number of players choosing action xi.
For each mixed strategy � , the probability that that the actual play equals y for any
y 2 Z.XK/ equals:

Y

j2K

�
e�n�.xj/.n�.xj//

y.xj/

y.xj/

�

;

where the product is a consequence of the independence of the different voters
choosing a different action. Therefore, the expected utility of each player, when she
chooses action xj and all the other players act according to the mixed strategy � is

U.xj; �/ D
X

y2Z.XK /

Y

j2K

�
e�n�.xj/.n�.xj//

y.xj/

y.xj/

�

U.xj; y/:

In the rest of this section we consider a sequence fPng of games, all of which
have the same parameters S; �; XK .

Theorem 3 For every n 2 N the game Pn admits a symmetric mixed equilibrium
�.n/ such that

lim
n!1 �.n/.xj/ D �.vK.xj//

�.S/
for all j 2 K: (6)

The next example shows that in general the equilibria of Gn and Pn do not
coincide.

Example 2 Let S D Œ0; 1� with � the Lebesgue measure on Œ0; 1� and XK D
f0:1; 0:5; 0:9g. We consider the equilibria of the games G3 (static) and P3 (Poisson).
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In the game G3, there exists an equilibrium �� in which each retailer locates in
0:5. Under �� the payoff for each retailer equals 1=3 since they uniformly split the
consumers in S. A deviation towards 0:1 or 0:9 would give a payoff of 0:3 < 1=3,
so �� is indeed an equilibrium of G3.

We now prove that �� is not an equilibrium in the game P3. We have

U.��/ D 1 � e�3

3
� 0:316738;

U.0:1; ��/ D U.0:9; ��/ D e�3 C.0:3/.1 � e�3/ � 0:334851:

This shows that a deviation to either 0:1 or 0:9 is profitable, hence �� is not an
equilibrium of the game P3.

5 Competition with Different Classes of Retailers

Up to now, we have considered a model where all retailers are equally able to attract
consumers. In other words, a consumer is indifferent between purchasing the good
at two different shops if they are equally distant from her location.

In many situations some retailers have a comparative advantage due, for instance,
to reputation. Therefore, ceteris paribus, a consumer may prefer one retailer over
another. Similar models have been studied in the political competition literature
with few strategic parties [see 2, among others]. In this literature the term “valence”
is used to indicate the competitive advantage of one candidate over another.

In the model that we analyze below, retailers can be of two types: advantaged
(A) and disadvantaged (D). We choose this dichotomic model out of simplicity.
Results are not qualitatively different when a finite number of types is allowed.
More precisely, we have in mind a model with several types of firms ranked by their
comparative advantage. If we assume that the number of most advantaged firms
goes to infinity (as we do now with just two types), then the most advantaged
firms split the consumers among them and the disadvantaged ones get a zero
payoff (asymptotically) whatever they do and independently of their comparative
advantage.

When choosing between two retailers of the same type, a consumer takes into
account only their distance from her and she prefers the closer of the two. When
choosing between a retailer of type A located in xA and a retailer of type D located
in xD, a consumer located in y will prefer the retailer of type A iff

d.xA; y/ < d.xD; y/ C ˇ; with ˇ > 0:

She will be indifferent between the two retailers iff

d.xA; y/ D d.xD; y/ C ˇ:

Obviously the case ˇ D 0 corresponds to the model examined in Sect. 2.
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Different ways to model advantage of one type of players over another have been
considered in the literature [see 14, for a discussion].

We now formally define a game Dn with differentiated retailers. For j 2 fA; Dg,
call Nj

n the set of retailers of type j and define nj D card.Nj
n/. Therefore

Nn D NA
n [ ND

n ;

n D nA C nD:

For j 2 fA; Dg and i 2 Nj
n call aj

i 2 XK the action of retailer i. Then the profile of
actions is

a WD .aA; aD/ WD f.aA
i /i2NA

n
; .aD

i /i2ND
n
g:

For any profile a 2 Xn
K define

nA
j .a/ WD cardfi 2 NA

n W aA
i D xjg;

nD
j .a/ WD cardfi 2 ND

n W aD
i D xjg:

So nA
j and nD

j are the number of A and D players, respectively, who choose action xj.
We say that .aA; aD/ � XJA;JD if for all locations xj 2 XJA there exists a player

i 2 NA
n such that aA

i D xj and for all players i 2 NA
n there exists a location xj 2 XJA

such that aA
i D xj and for all locations xj 2 XJD there exists a player i 2 ND

n such
that aD

i D xj and for all players i 2 ND
n there exists a location xj 2 XJD such that

aD
i D xj.

Fix ˇ > 0, and, for JA; JD � K, define

vA
JA;JD.xj/ WD fy 2 S W d.y; xj/ � d.y; x`/ for all x` 2 XJA and

d.y; xj/ � d.y; x`/ C ˇ for all x` 2 XJDg
vD

JA;JD.xj/ WD fy 2 S W d.y; xj/ � d.y; x`/ � ˇ for all x` 2 XJA and

d.y; xj/ � d.y; x`/ for all x` 2 XJDg:

For i 2 Nn, the payoff of player i is ui W Xn
K ! R, defined as follows:

ui.aA; aD/ D
8
ˆ̂
<̂

ˆ̂
:̂

1

cardfh W aA
h D aA

i g
X

JA;JD�K

�.vA
JA;JD.aA

i //1..aA; aD/ � XJA;JD/; if i 2 NA
n ;

1

cardfh W aD
h D aD

i g
X

JA;JD�K

�.vD
JA;JD.aD

i //1..aA; aD/ � XJA;JD/; if i 2 ND
n :
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We call Dn WD hS; �; NA
n ; ND

n ; XK ; ˇ; .ui/i a Hotelling game with differentiated
players.

Note that, in any pure strategy profile of the game Dn, a D-player gets a strictly
positive payoff only if she chooses a location that is not chosen by any advantaged
players.

The next example shows how substantially different the equilibria of a game Gn

and of a game Dn can be.

Example 3 Let S D Œ0; 1� with � the Lebesgue measure on Œ0; 1� and XK D f0; 1g.
The game G2 admits pure equilibria. Actually any pure or mixed profile is an
equilibrium and gives the same payoff 1=2 to both players.

Consider now the game D2 with one advantaged and one disadvantaged players.
In the unique equilibrium of D2 both players randomize with probability 1=2 over
the two possible locations.

Indeed, in D2 there cannot be a pure equilibrium in which both players choose the
same location since the disadvantaged player would get 0 and hence would strictly
increase her payoff by deviating. Similarly, there cannot be a pure equilibrium
in which players choose different locations, since the advantaged player would
have an incentive to deviate to the location chosen by the disadvantaged player.
Therefore, any equilibrium must be mixed. A simple computation proves that
uniform randomization is the unique strategy profile that constitutes an equilibrium.

We now examine the equilibria in this model with differentiated candidates.
Given a game Dn, an equilibrium profile .�A;n; �D;n/ is called .A; D/-symmetric if

�A;n D .�A;n; : : : ; �A;n/; (7)

�D;n D .�D;n; : : : ; �D;n/: (8)

Theorem 4 For every n 2 N the game Dn admits an .A; D/-symmetric equilibrium
.�A;n; �D;n/ such that

lim
nA!1

�A;n.xj/ D �.vA
K;JD.xj//

�.S/
D �.vK.xj//

�.S/
(9)

for all xj 2 S, for all JD � K. Moreover, in this equilibrium,

lim
nA!1

X

i2ND

UD
i .�A;n; �D;n/ D 0: (10)

Theorem 4 shows that, as the number nA of advantaged players grows, they
behave as if the disadvantaged players did not exist, so they play the same mixed
strategies as in the game GnA . The disadvantaged players in turn get a zero payoff
whatever they do.
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Appendix: Proofs

Proofs of Sect. 3

The proof of Theorem 2 requires some preliminary results.

Lemma 1 Consider a sequence of games fGngn2N. There exists Nn such that for all
n � Nn, if � .n/ is a symmetric equilibrium of Gn, then � .n/ is completely mixed, i.e.,

�.n/.xj/ > 0 for all xj 2 XK :

Proof Assume by contradiction that for every n 2 N there exists some xj 2 XK and
a symmetric equilibrium � .n/ of Gn such that �.n/.xj/ D 0. Given that �.S/ < 1,
we have that for all i 2 Nn,

Ui.�
.n// D �.S/

n
:

If player i deviates and plays the pure action ai D xj, then she obtains a payoff

Ui.ai; �
.n/
�i / � �.vK.xj// >

�.S/

n
;

where the strict inequality holds for n large enough. This contradicts the assumption
that � .n/ is an equilibrium. ut
Lemma 2 Let .Y1; : : : ; Yk/ be a random vector distributed according to a multino-
mial distribution with parameters .n � 1I �

.n/
1 ; : : : ; �

.n/
k /, with ı < �

.n/
j < 1 � ı, for

some 0 < ı < 1 and for all j 2 K. Then

lim
n!1

E

"
1

Yj C 1

X

J�K

�.vJ.xj//1.Yh D 0 for h 62 J/

#

E

"
1

Y` C 1

X

J�K

�.vJ.x`//1.Yh D 0 for h 62 J/

# D 1; for all j; ` 2 K

(11)
iff

lim
n!1 �

.n/
j D �.xj/ D �.vK.xj//

�.S/
for all j 2 K: (12)

Proof Given j 2 K, consider all J � K such that j 2 J and the family Vj of all
corresponding Voronoi tessellations V.XJ/. Call eVj the finest partition of S generated
by Vj, that is, the set of all possible intersections of cells vJ.xj/ 2 V.XJ/ for V.XJ/ 2
Vj. It is clear that vK.xj/ 2 eVj.
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For A 2 eVj, call eVj.A/ the class of all cells in eVj whose intersection with A is
nonempty.

Then

E

"
1

Yj C 1

X

J�K

�.vJ.xj//1.Yh D 0 for h 62 J/

#

D E

�
�.vK.xj//

Yj C 1

�

C E

2

4
1

Yj C 1

X

A2eVj

�.A/1
�
Yh D 0 if vK.xj/ \ A ¤ ¿

�

3

5

� E

�
�.vK.xj//

Yj C 1

�

C
X

A2eVj

�.A/P
�
Yh D 0 if vK.xj/ \ A ¤ ¿

�

D E

�
�.vK.xj//

Yj C 1

�

C o.1=n/ for n ! 1;

since P.Yi D 0/ D .1 � �
.n/
i /n D o.1=n/ for n ! 1. Therefore

lim
n!1

E

"
1

Yj C 1

X

J�K

�.vJ.xj//1.Yh D 0 for h 62 J/

#

E

"
1

Y` C 1

X

J�K

�.vJ.x`//1.Yh D 0 for h 62 J/

# D lim
n!1

E

�
�.vK.xj//

Yj C 1

�

E

�
�.vK.x`//

Y` C 1

�

D lim
n!1

�.vK.xj//

�.vK.x`//

�
.n/

`

�
.n/
j

(13)

D �.vK.xj//

�.vK.x`//

�.x`/

�.xj/

Given that
Pk

jD1 �.xj/ D 1, (13) holds if and only if (12) does. ut
Proof (Proof of Theorem 2) The game Gn is finite and symmetric, so it admits a
symmetric mixed Nash equilibrium � .n/ D .�.n/; : : : ; � .n//. Then, given Lemma 1,
for all j; ` 2 K,

Ui.xj; �
.n/
�i / D Ui.x`; �

.n/
�i /: (14)
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Using (2) we obtain

Ui.xj; �
.n/
�i / D

X

a12XK

� � �
X

an2XK

ui.a1; : : : ; ai�1; xj; aiC1; : : : ; an/

�.n/.x1/n1.a
�i/ : : : � .n/.xj/

nj.a�i/C1 : : : � .n/.xk/
nk.a

�i/

D E

"
1

Yj C 1

X

J�K

�.vJ.xj//1.Yh D 0 for h 62 J/

#

;

where .Y1; : : : ; Yk/ has a multinomial distribution with parameters .n �
1I �.n/.x1/; : : : ; � .n/.xk//. Notice that a � XJ is equivalent to Yh D 0 for all
h 62 J.

Therefore (14) holds if and only if

E

"
1

Yj C 1

X

J�K

�.vJ.xj//1.Yh D 0 for h 62 J/

#

D E

"
1

Y` C 1

X

J�K

�.vJ.x`//1.Yh D 0 for h 62 J/

#

;

which implies (11). Lemma 2 provides the result. ut

Proofs of Sect. 4

The next two lemmata are similar to Lemmata 1 and 2, respectively.

Lemma 3 Consider a sequence of games fPngn2N. There exists Nn such that for all
n � Nn, if � .n/ is a symmetric equilibrium of Pn, then � .n/ is completely mixed, i.e.,

�.n/.xj/ > 0 for all xj 2 XK :

Proof Assume by contradiction that for every n 2 N there exists some xj 2 XK and
a symmetric equilibrium � .n/ of Pn such that �.n/.xj/ D 0. Given that �.S/ < 1,
we have that for each player i

Ui.�
.n// D E

�
�.S/

�n

�

;

where �n has a Poisson distribution with parameter n. If player i deviates and plays
the pure action ai D xj, then she obtains a payoff
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Ui.ai; �
.n/
�i / � �.vK.xj// > E

�
�.S/

�n

�

;

where the strict inequality holds for n large enough. This contradicts the assumption
that � .n/ is an equilibrium. ut
Lemma 4 Let .�1; : : : ; �k/ be a random vector of independent random variables
where �j has a Poisson distribution with parameter n�

.n/
j , with ı < �

.n/
j < 1 � ı,

for some 0 < ı < 1 and for all j 2 K. Then

lim
n!1

E

"
1

�j C 1

X

J�K

�.vJ.xj//1.�h D 0 for h 62 J/

#

E

"
1

�` C 1

X

J�K

�.vJ.x`//1.�h D 0 for h 62 J/

# D 1; for all j; ` 2 K

(15)
iff

lim
n!1 �

.n/
j D �.xj/ D �.vK.xj//

�.S/
for all j 2 K: (16)

Proof Given j 2 K, consider all J � K such that j 2 J and the family Vj of all
corresponding Voronoi tessellations V.XJ/. Call eVj the finest partition of S generated
by Vj, that is, the set of all possible intersections of cells vJ.xj/ 2 V.XJ/ for V.XJ/ 2
Vj. It is clear that vK.xj/ 2 eVj.

For A 2 eVj, call eVj.A/ the class of all cells in eVj whose intersection with A is
nonempty.

Then

E

"
1

�j C 1

X

J�K

�.vJ.xj//1.�h D 0 for h 62 J/

#

D E

�
�.vK.xj//

�j C 1

�

C E

2

4
1

�j C 1

X

A2eVj

�.A/1
�
�h D 0 if vK.xj/ \ A ¤ ¿

�

3

5

� E

�
�.vK.xj//

�j C 1

�

C
X

A2eVj

�.A/P
�
�h D 0 if vK.xj/ \ A ¤ ¿

�

D E

�
�.vK.xj//

�j C 1

�

C o.1=n/ for n ! 1;
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since P.�i D 0/ D e�n D o.1=n/ for n ! 1. Therefore

lim
n!1

E

"
1

�j C 1

X

J�K

�.vJ.xj//1.�h D 0 for h 62 J/

#

E

"
1

�` C 1

X

J�K

�.vJ.x`//1.�h D 0 for h 62 J/

# D lim
n!1

E

�
�.vK.xj//

�j C 1

�

E

�
�.vK.x`//

�` C 1

�

D lim
n!1

�.vK.xj//

�.vK.x`//

�
.n/

`

�
.n/
j

(17)

D �.vK.xj//

�.vK.x`//

�.x`/

�.xj/

Given that
Pk

jD1 �.xj/ D 1, (17) holds if and only if (16) does. ut
Proof (Proof of Theorem 3) Since the number of types and actions is finite, [23,
Theorem 3] implies that the Poisson game Pn admits a symmetric equilibrium � .n/.
Given Lemma 3, for all j; ` 2 K,

Ui.xj; �
.n/
�i / D Ui.x`; �

.n/
�i /: (18)

For j 2 K call nj.a; �/ the number of players who choose xj under strategy a when
the total number of players in the game is � . Using (2) we obtain

Ui.xj; �
.n/
�i / D

1X

�D1

"
X

a12XK

� � �
X

a� 2XK

ui.a1; : : : ; ai�1; xj; aiC1; : : : ; a� /

�.n/.x1/n1.a
�i;�/ : : : � .n/.xj/

nj.a�i;�/C1 : : : � .n/.xk/
nk.a

�i;�/

#

� e�n n�

�Š

D E

"
1

�j C 1

X

J�K

�.vJ.xj//1.�h D 0 for h 62 J/

#

;

where .�1; : : : ; �k/ are independent random variables such that �j has a Poisson
distribution with parameter n�.n/.xj/. Notice that a � XJ is equivalent to �h D 0

for all h 62 J.
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Therefore (18) holds if and only if

E

"
1

�j C 1

X

J�K

�.vJ.xj//1.�h D 0 for h 62 J/

#

D E

"
1

�` C 1

X

J�K

�.vJ.x`//1.�h D 0 for h 62 J/

#

;

which implies (15). Lemma 4 provides the result. ut

Proofs of Sect. 5

Lemma 5 Consider a sequence of games fDngn2N. There exists NnA such that for
all nA � NnA, if .�A;n; �D;n/ is an .A; D/-symmetric equilibrium of Dn, then �A;n is
completely mixed, i.e.,

�A;n.xj/ > 0 for all xj 2 XK :

Proof Assume by contradiction that for every n 2 N there exists some xj 2 XK and
an .A; D/-symmetric equilibrium .�A;n; �D;n/ of Dn, such that �A;n.xj/ D 0. Given
that �.S/ < 1, we have that for i 2 NA

n

UA
i .�A;n; �D;n/ � �.S/

nA
:

If player i 2 NA
n deviates and plays the pure action ai D xj, then she obtains a payoff

UA
i .ai; �

A;n
�i ; �D;n/ � �.vK.xj// � �.S/

nA
;

for nA large enough. Indeed, note that even if some D-players choose xj in �D;n, the A
player attracts all the consumers from xj. Therefore .�A;n; �D;n/ is not an equilibrium
for nA large enough. ut
Lemma 6 Let .Y1; : : : ; Yk/ be a random vector distributed according to a multino-
mial distribution with parameters .nI �

.n/
1 ; : : : ; �

.n/
k /, with ı < �

.n/
j < 1�ı, for some

0 < ı < 1 and for all j 2 K. Then

lim
n!1P.Yj D 0/ D 0 for all j 2 K:
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Proof The result is obvious, since

P.Yj D 0/ D .1 � �
.n/
j /n � .1 � ı/n ! 0: ut

Proof (Proof of Theorem 4) Whenever a location xj is occupied by an advan-
taged player, any disadvantaged player choosing xj gets a payoff equal to zero.
Therefore (10) is an immediate consequence of Lemmata 5 and 6. Moreover,
asymptotically, the actions of disadvantaged players do not affect the payoff of
advantaged players. Therefore an application of Lemma 2 with nA replacing n
provides (9). ut
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