Lina Mallozzi - Egidio D’Amato
Panos M. Pardalos Editors

Spatial
Interaction
Models

Facility Location Using Game Theory

@ Springer



Springer Optimization and Its Applications

VOLUME 118

Managing Editor
Panos M. Pardalos (University of Florida)

Editor—Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board

J. Birge (University of Chicago)

C.A. Floudas (Texas A & M University)

F. Giannessi (University of Pisa)

H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (Lehigh University)

Y. Ye (Stanford University)

Aims and Scope

Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques
have been developed, the diffusion into other disciplines has proceeded at a
rapid pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization
is the constantly increasing emphasis on the interdisciplinary nature of the
field. Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes under-
graduate and graduate textbooks, monographs and state-of-the-art exposi-
tory work that focus on algorithms for solving optimization problems and
also study applications involving such problems. Some of the topics covered
include nonlinear optimization (convex and nonconvex), network flow
problems, stochastic optimization, optimal control, discrete optimization,
multi-objective programming, description of software packages, approxima-
tion techniques and heuristic approaches.

More information about this series at http://www.springer.com/series/7393


http://www.springer.com/series/7393

Lina Mallozzi » Egidio D’ Amato
Panos M. Pardalos

Editors

Spatial Interaction Models

Facility Location Using Game Theory

@ Springer



Editors

Lina Mallozzi Egidio D’ Amato

Department of Mathematics Department of Industrial and Information
and Applications Engineering

University of Naples Federico 11 Second University of Naples

Napoli, Italy Aversa, Italy

Panos M. Pardalos

Department of Industrial and Systems
Engineering

University of Florida

Gainesville, FL, USA

ISSN 1931-6828 ISSN 1931-6836  (electronic)
Springer Optimization and Its Applications
ISBN 978-3-319-52653-9 ISBN 978-3-319-52654-6  (eBook)

DOI 10.1007/978-3-319-52654-6
Library of Congress Control Number: 2017934484
Mathematics Subject Classification (2010): 90B80, 90B85, 91A10, 91A12

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This book aims to provide a comprehensive overview of facility location models
that can be investigated in a game theoretical environment. Facility location theory
develops the idea of locating one or more facilities optimizing suitable criteria such
as minimizing transportation cost or capturing the largest market share, and a huge
number of papers have been devoted to this research.

In this volume, we focus on situations where the location decision is faced by
several decision makers, leading to a game theoretical framework in a noncooper-
ative way, as well as in a cooperative one. Some chapters are surveys of models
and methods regarding this part of the facility location using game theory; other
chapters illustrate applications in different contexts such as economics, engineering,
and physics. This makes the book useful for a broad audience of researchers working
on theory, applications, and computational aspects of location problems.

We would like to express our thanks to all the contributors of chapters and also
the valuable assistance of Springer for the publication of this book.

Napoli, Italy Lina Mallozzi
Aversa, Italy Egidio D’ Amato
Gainesville, FL, USA Panos M. Pardalos
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Bilevel Models on the Competitive Facility
Location Problem

Necati Aras and Hande Kiiciikaydin

1 Introduction

Facility location problems (FLPs) that arise as real-life applications in both public
and private sector try to determine the optimal location for facilities such as
warehouses, plants, distribution centers, shopping malls, hospitals, and post offices.
They can have different objectives such as maximization of the profit obtained from
customers and minimization of the costs incurred by locating facilities and serving
customers. The basic FLPs are given in Daskin [14] as p-median, set covering,
maximal covering, fixed-charge, and hub location problems. A p-median model tries
to minimize the demand weighted total or average distance between the customers
and their nearest facility by locating p facilities. A set covering model, on the other
hand, attempts to minimize the number of facilities to be opened necessary to cover
all demand points. In contrast to a set covering model, a maximal covering model
assumes that it may not be possible to cover all the demand points by facilities.
Hence, it locates a fixed number of facilities to cover most of the demand. All
the models mentioned so far are uncapacitated facility location models and neglect
the transportation costs between the customers and facilities as well as fixed costs
of opening facilities. In contrast to these models, fixed-charge models take into
account a limited capacity for facilities and transportation costs to serve customers
using functions of distances and also fixed costs for locating new facilities. Hence,
the total cost which is comprised of fixed cost and transportation cost needs to be
minimized in order to determine the optimal number and locations of facilities, and
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the allocation of demand points to the opened facilities. Unlike the other models, a
hub location model includes both the location of facilities referred to as hubs, and
the design of the network by determining the hub node that is going to be assigned
to every non-hub node.

Many factors influence the location decision for a new facility in a market,
but one of the most important factors is related to the existing facilities which
belong to competitors offering the same or similar commodities or services. When
there is no competitor in the market, the new facility will be the only supplier
of the commodity or the service leading to a monopoly in the market. However,
if there are already existing facilities in the market, then the new facility will
have to compete for customers with the aim of maximizing the market share or
the profit (see Drezner [17]). Even the new facilities that are a monopoly at the
market entry may face competition later when other competitors enter the market. In
this chapter, we consider FLPs in a competitive environment, namely Competitive
Facility Location (CFL) problems. These problems are spatial interaction models
where a firm or franchise wishes to locate new facilities in a market with already
existing or prospective competitors. In some problems, the firm or franchise may
have existing facilities with known locations and attractiveness levels in the market,
while in others the firm may be a new entrant with no existing facility.

Several CFL models are proposed in the literature so far, see for instance the
survey papers by Eiselt et al.[22], Eiselt and Laporte[21], Plastria[38], Drezner[18],
Eiselt et al.[23], and the references therein. These survey papers group the studies
existing in the literature according to different model components. In fact, the most
important factors that can be used to differentiate studies on the CFL problem are
twofold: existence of the follower’s reaction as well as the timing of action and
reaction of the players in the game. CFL models with static competition ignore the
reaction of a firm to the opening new facilities or redesigning existing facilities
by other competitors. CFL models with foresight, on the other hand, take this
reaction into account, and hence are more difficult in general compared to static
models. The timing of reaction divides the CFL problems with foresight into two
major classes, namely simultaneous-entry CFL problems and sequential-entry CFL
models. In simultaneous-entry CFL problems, where a Nash game is involved, firms
or franchises simultaneously make their decisions on the facility locations and other
design components, if any. In contrast, there exists a precedence of decision making
among the competing firms in sequential-entry CFL problems. These problems
are generally recognized as a Stackelberg type of game between two firms (see
von Stackelberg [49]). These games consist of a new entrant firm or a firm with
existing facilities that establishes new facilities in the market, where an existing or
a future competitor is present to react to the action of the first firm. This action-
reaction situation brings us to the so-called two-level or bilevel programming (BP)
problems, which constitutes the backbone of the chapter. BP problems include
two independent players, namely the leader and the follower, who act sequentially
with the objective of optimizing their own objective functions. The leader selects a
strategy to optimize its objective function with the foresight or anticipation that the
follower reacts to the chosen strategy with the aim of optimizing its own objective
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Fig. 1 An example of a CFL problem in discrete space

function. Furthermore, these objective functions are usually in conflict with each
other as indicated by Moore and Bard [36]. The purpose of the chapter is to provide
areview on the recent studies that include bilevel models within the context of CFL
problems.

An example of a general BP problem is depicted in Fig. 1. In this example,
both the leader and the follower own existing facilities in the market with known
locations and attractiveness levels, and customers are aggregated at demand points
as shown by small circles. First the leader, then the follower can install new facilities
at candidate facility sites.

Since papers including BP models are reviewed in this chapter, the reader may
benefit from visualizing the overall structure of a BP model. By letting u and v
denote the decision variables of the leader and the follower, respectively, we can
define a BP model as follows:

max F(u,v)
u

st. G(u,v) <0

max f(u,v)
v
sit. g, v) <0.

Here, G(u, v) and g(u, v) are the constraints of the leader and follower, respectively,
while F(u, v) and f(u, v) are their objective functions. Integrality restrictions may
exist on the decision variables u and v. We have to emphasize that such a BP model
is formulated from the viewpoint of the leader. It can be easily seen that the so-
called upper-level problem (ULP) of the leader incorporates the optimization of the
lower-level problem (LLP) of the follower as constraints.

All CFL models attempt to infer the market share captured by each facility.
Nevertheless, the captured market share can only be computed when we know
the patronizing behavior of customers, i.e. the rules to allocate the customers to
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facilities. In most of the CFL models, the customers choose the facilities solely
based on their proximity to the facility locations or on their preferences towards
the facilities. On the other hand, there also exist CFL models that account for the
attractiveness level, i.e. the design or the quality of facilities. The first CFL problem
presented by Hotelling [27] considers a model involving two identical ice-cream
vendors along a beach strip, namely in a linear market, where the customers are
attracted to the closest vendor. This kind of facility location games is then developed
by Hakimi [25] who also established the first fundamental complexity results. He
further introduced two terms into the location science terminology, namely the (r|p)-
centroid problem and the (r|X,,)-medianoid problem for the leader’s and follower’s
problem, respectively. The (r|X,)-medianoid, or the medianoid problem in short,
refers to the follower’s problem which tries to optimally locate r new facilities when
the locations X, of leader’s p facilities are known. On the other hand, the (r|p)-
centroid problem solves the leader’s problem by opening p new facilities with the
anticipation that the follower will locate r facilities in return by solving the (r|X),)-
medianoid problem. The CFL literature actually started with identical facilities, but
expanded later with models that consider unequally attractive facilities.

Hence, the CFL models can be further divided into two classes by the customer
choice rule: deterministic utility models and random utility models. In both classes,
customers visit the facilities according to a utility function which is composed of
the facility characteristics and the distance between the customers and the facility
sites. In other words, if a facility has n — 1 attributes such as ay, as, ..., a,—1, then
the utility 7 of this facility is defined as T = T(ay, a, . . . , a,), where a, represents
the distance between the customer and the facility as the facility’s nth attribute. The
major distinction between the deterministic and random utility models is that in
deterministic utility models customers choose the facility that provides the highest
utility to them, which implies the all-or-nothing property. In other words, a customer
visits a facility with a probability of either zero or one. Drezner [17] points out that
the utility function T is usually an additive function such that 7 = > "_, Bizi(a;)
where f; is the weight of the ith attribute and z; is a function of g;. If the utility
function in a deterministic model is additive, then most of the time the notion
of break-even distance is used. This is the distance at which utilities of new and
existing facilities are equal. In such a case, customers patronize a facility if and
only if the facility is opened within the break-even distance. On the contrary, the
utility function in a random utility model varies among customers and each customer
draws his/her utility from a random distribution of this utility function. Hence, the
probability that a customer visits a facility varies between zero and one. Random
utility models are basically discrete choice models for short-term travel decisions.
A discrete choice model can be employed when an individual decision maker faces
a finite number of alternatives, where each alternative is characterized by a set
of attributes. In case of a CFL problem, the decision makers are the customers
aggregated at demand points, alternatives are the facilities, and attributes are various
facility characteristics. The last component that describes a discrete choice model
consists of the decision rules according to which the decision makers make a choice
among the alternatives (see Ben-Akiva and Bierlaire [4]). The most widely used
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random utility model in CFL literature is the gravity-based model which was first
proposed by Reilly [44] and then employed by Huff [28, 29]. It assumes that the
probability that a customer visits a facility is proportional to the attractiveness level
of the facility and inversely proportional to a function of the distance between the
customer and the facility. The attractiveness level, which can also be named as the
design or the quality of the facility, is composed of various facility attributes such
as the size or the floor area of the facility, the variety of the products sold, the prices
offered by the facility, the existence of a parking lot, and the proximity to public
transportation.

We first provide a classification of the studies that are relevant within the scope
of this chapter, namely works that develop a BP model for the CFL problem. The
second and third columns of Table 1 categorize the studies according to leader’s
action and follower’s reaction. The main objective of any FLP is to find the optimal
location for new facilities. Thus, in every CFL study except Kiiciikaydin et al. [32],
both players wish to determine the optimal location (“L”) of their new facilities.
However, a relatively few number of papers also consider the design (“D”) of new
or existing facilities as a decision variable. Thus, it is possible that the ULPs and
LLPs include only the location decisions (“L”) or only the design decisions (“D”)
or both (“L+D”). In Kiiciikaydin et al. [32] the follower’s reaction only consists of
design decisions of the existing facilities. Furthermore, Fischer [24] determines the
optimal facility location as well as product prices offered by the facilities for both
players which can be recognized as a (“L+D”) decision.

It is possible to categorize the CFL problems (as is the case with all FLPs) with
regard to the set of candidate sites for opening facilities, which can be a discrete set,
a continuous set, or a network. Thus, the next column of Table 1 differentiates the
studies according to this criterion. Discrete CFL problems consider predetermined
facility sites as candidate locations for the new facilities, whereas in continuous
CFL problems it is possible to locate a facility anywhere in the plane. Finally, in
network-based problems, the candidate sites are the nodes and edges of the network.
All but one study existing in the table are identified as either a discrete (“Disc”) or a
continuous problem (“Cont”). The only study that involves a CFL problem defined
on a network is due to Téth and Kovacs [48]. Thus, it is classified as a network
problem (“Netw”).

The customer choice rules that are found in the papers reviewed are as follows:
“Distance (Dist)”, “Preference (Pref)”, “Price (Price)”, “Gravity-based (Gravity)”,
and “Proportional (Prop)” in the fifth and sixth columns of Table 1. The first three
of these rules can be thought of as a deterministic customer allocation, whereas
the last two can be seen as a probabilistic allocation. The papers classified in the
deterministic choice rule group allocate the customers either to the closest facility,
or to the most preferred facility, or to the facility offering the lowest price. In the
case preference is used, each customer ranks the facilities according to a “linear”
order. The papers in this group clearly applies a deterministic utility model and
preserve the all-or-nothing property assuming that the facilities are either identical
or different in terms of their attributes. The papers employing the probabilistic
customer allocation employ random utility models, where each customer splits
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his/her demand into multiple facilities. All papers with probabilistic allocation
utilize the gravity-based model with the following exceptions. The paper by Drezner
et al. [20] is classified as “Proportional” since in that work customers may be
attracted to multiple facilities if they remain within the region of influence of
a facility and their purchasing power is distributed equally among all capturing
facilities. Furthermore, the market share captured by a firm from a customer is
proportional to the number of its facilities attracting that customer and inversely
proportional to the total number of attracting facilities belonging to both the firm
and its competitors. Besides Drezner et al. [20], Biesinger et al. [12] also employ
a proportional allocation rule in addition to deterministic as well as gravity-based
rules. In this work, each customer is attracted to the nearest facility of the leader
and follower at the same time and his/her demand is proportionally split between
the two facilities according to their attractiveness levels, which only depend on the
distance from the customer.

The seventh and eighth columns of Table 1 give information on the number of
facilities opened by the leader and the follower: they either open a single facility
(“S”), or multiple facilities (“M”), or do not locate any new facility (“N”) because
their decisions are only related to the redesign of existing facilities. The last column
labels the reviewed papers with respect to the solution approach adopted. Two
classes of studies are identified: those that are solved by a heuristic method (“H”)
to find a good feasible solution for the leader, and those that are solved by exact
methods (“E”) to determine an optimal solution of the leader.

Most of the survey papers on CFL problem group the reviewed works according
to various components such as candidate locations, the number of facilities to be
opened, the existence of reaction, and the objective function. In this chapter, we
select two major ingredients of the CFL problems that include a BP model: leader’s
decision(s) and the allocation of customers to the facilities. In our opinion, these two
issues are important because of two reasons. First, they have a hinge on how realistic
the models are. Second, they specify the difficulty level of the developed BP model.
Therefore, we partition the papers given in Table 1 into four sections. Sections 2 and
3 include the papers where the leader decides only on the location of new facilities.
The difference among the papers in these two sections is that Sect. 2 contains papers
with deterministic customer allocation, whereas Sect. 3 consists of the studies with
probabilistic allocation. The papers with location and design decisions of the leader
are discussed in detail in Sects.4 and 5. These two sections are differentiated from
each other again by the type of the allocation of customers to facilities.

2 Leader’s Decision: Location, Allocation: Deterministic

Alekseeva et al. [1] consider an (r|p)-centroid problem in the discrete space. Since
the facilities in the market are assumed to be identical, the customers visit only
the closest open facility, where ties are broken in favor of the leader. The authors
propose an iterative exact method which makes use of a single-level reformulation
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including polynomial number of variables and exponentially many constraints.
At each iteration of the method, a family of the constraints representing the follower
strategies are extracted and the best strategy of the leader against this family is found
by a local search heuristic, which provides an upper bound on the objective function
value of the leader. The algorithm stops when the upper bound is equal to a lower
bound. To this end, the family of constraints is enlarged at each iteration.

Two different settings are developed in Beresnev [5] for a CFL problem in
discrete space with a deterministic customer choice rule. The two settings differ
from each other in terms of the LLP. In the first setting, both players try to maximize
their profit gained from customers, whereas in the second setting fixed cost of
opening facilities is subtracted from the income captured by follower’s facilities
which represents the number of customers. Moreover, the facilities opened by
the follower are not allowed to be detrimental, i.e., the obtained income should
exceed the sum of the fixed costs. The leader and the follower share the same
set of candidate facility sites, but the follower cannot open its new facility at a
site occupied by the leader. Each customer shows his/her preferences towards the
new facilities by considering a linear order. Then they select the first open facility
according to this order. The author proposes an algorithm which constructs an
auxiliary pseudo-Boolean function, called estimation function, whose minimum
value is sought to obtain an upper bound on the objective function value of the
bilevel models.

Beresnev [6] considers a sequential game between two competing firms that
share the same set of candidate facility sites. Each customer is served by a single
open facility and is captured by a leader’s facility if it is the most desirable one
among all open facilities of the leader. However, it is assumed that the customers
who do not patronize any of the leader’s facilities can be captured by any of
the follower’s facilities as long as it is more desirable than all of the leader’s
facilities. A bilevel integer linear programming model is introduced to represent the
problem. Since the presence of multiple optima in the LLP poses uncertainty, the
author introduces two rules, namely the rule of cooperative behavior and the rule
of non-cooperative behavior. When the rule of cooperative behavior is imposed,
the follower chooses the optimal solution to its problem which provides the best
outcome for the leader. On the contrary, when the rule of non-cooperative behavior
is assumed, then the follower selects the optimal solution which decreases the
objective function value of the leader the most. In order to obtain approximate
cooperative and non-cooperative solutions, an algorithm that consists of two stages
is proposed. At the first stage, a solution of the leader is fixed and the optimal
objective function value of the follower is estimated. Then at the second stage,
an auxiliary problem is solved, which provides the desired feasible solution of
the bilevel problem. In order to obtain these feasible solutions, an algorithm for
estimating an upper bound on the objective function value of the bilevel model at
any feasible solution is developed. The author represents the problem to find the
optimal cooperative and non-cooperative solutions as the maximization of pseudo-
Boolean function which is solved by a local search algorithm.
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Beresnev [7] is concerned with the same bilevel integer linear programming
problem given by Beresnev [6]. In contrast to the study of Beresnev [6], the author
suggests a branch-and-bound (B&B) method to find the optimal non-cooperative
solution. The problem at hand is first converted into a problem of maximizing a
pseudo-Boolean function, where the number of variables coincides with the number
of candidate facility sites of the leader. Since this function is implicitly defined, first
the LLP and then the auxiliary problem should be solved to optimality. The author
adopts the same method used in [6] for estimating an upper bound. In [6], the upper
bound is generated for the case where the profits obtained from customers are the
same for all facilities. However, in this study the algorithm produces an upper bound
in the general form and provides at the same time a feasible solution which yields
a lower bound. In order to obtain a good incumbent solution at the root node of the
B&B tree, a standard local search algorithm is used which is devised in [8] dealing
with a similar problem in [5] and [6].

A centroid problem in the plane is dealt with in Bhadury et al. [9], where the
follower locates additional facilities as a reaction. Both players wish to capture most
of the demand that is represented by varying the weights at discrete points. The
customers choose the closest facility and in case of a tie, leader’s facility is preferred.
The authors present two heuristic methods to solve the medianoid problem, namely
a greedy heuristic and a minimum differentiation heuristic which turns out to be
more robust. The latter algorithm is based on an observation of Hotelling: when
the prices are fixed and equal, the facilities tend to be located at a central point in
the market under duopoly. The idea behind this is basically to locate a new facility
at an arbitrarily small distance away from an existing facility. After the medianoid
problem is solved with these two heuristics, they make use of them again to solve
the ULP. When a solution of the leader is fixed, the follower’s problem is solved.
Given this solution of the follower, the leader acts like the follower and its problem is
solved using the same two heuristic methods. This alternating procedure is repeated
until a stopping criterion is met.

Biesinger et al. [11] formulate a bilevel mixed-integer linear model for a discrete
(r|p)-centroid problem on a weighted complete bipartite graph. Only one facility
can be opened at a predetermined candidate site, where each customer is assigned
to the closest facility. If there are two closest facilities to a customer, he/she chooses
the one which belongs to the leader. A hybrid genetic algorithm is proposed to
solve the problem. In order to evaluate a solution of the leader, three methods are
considered, which leads to a multi-level evaluation scheme. The first one includes
an exact evaluation by solving the follower’s problem by means of a commercial
solver. The second method solves the LP relaxation of the follower’s problem which
provides a lower bound on the objective function value of the leader. Finally, the
last method employs a greedy algorithm on the follower’s problem to get an upper
bound on the objective function value of the leader. The best result is obtained by
the second method. The proposed genetic algorithm builds up a solution archive for
identifying solutions that have been already generated. The generated solutions are
stored in a special data structure and the duplicates are converted into new solutions.
The algorithm is then locally improved using a tabu search procedure. The best
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computational results are obtained by the algorithm using the tabu search with a
reduced neighborhood. Davydov et al. [16] are concerned with the same discrete
(r|p)-centroid problem considered in [11]. This time the problem is solved by two
heuristic methods, namely a local search with variable neighborhood search and a
stochastic tabu search method. Both procedures employ a neighborhood swap over
leader’s variables. To accelerate the local search, the neighborhood is partitioned
into three parts and the two most promising parts are searched thoroughly by finding
the ascent direction quickly.

An (r|p)-centroid problem in the continuous plane is addressed in Davydov
et al. [15] for identical facilities, where the customers select the closest facility.
The follower’s problem is reformulated as an integer linear programming problem
that describes a maximal covering problem introduced by Church and ReVelle [13]
and solved exactly by a B&B method. In order to solve the centroid problem, the
authors develop a local search heuristic based on variable neighborhood search. In
order to find the best neighboring solution according to the swap neighborhood, the
(r|X,—1 + 1)-centroid problem is considered as a subproblem in which it is assumed
that the leader has already opened p — 1 facilities and wishes to locate one more
additional facility. Moreover, it is shown that the (r|X,—; + 1)-centroid problem is
polynomially solvable for fixed r.

In the CFL problem analyzed in Kononov et al. [31] customers choose a facility
to visit on the basis of their preference over a facility. By assuming that the
preference h;; of customer j is different for each facility site 7, the authors avoid ties
between two or more facilities, which eliminates the need to consider optimistic
and pessimistic strategies. As a matter of fact, it is not the absolute preference
values but their relative values or ranking, which determines the assignment of
each customer to a facility. Hence, a deterministic allocation model is developed.
Both the leader and the follower open multiple facilities among a set of candidate
sites to maximize the profit giving rise to a discrete CFL model. The problem is
solved approximately by successively generating upper bounds on the optimal value
of the leader’s objective function and lower bounds on the optimal value of the
follower’s objective function. Mel’nikov [34] tackles essentially the same problem
considered in [31] except a customer may have the same preference for two different
facility sites. A randomized local search algorithm is proposed in the paper for the
solution of the problem. The same problem is also studied in MirHassani et al. [35]
where customers patronize the facility closest to them. In other words, instead
of the preference matrix h;, distance matrix dj; is prepared among the customer
locations and candidate facility sites. As the solution approach, the authors utilize
a modified quantum binary particle swarm optimization (QBPSO) method that uses
an improvement procedure within the QBPSO. The benefit of the improvement
is increasing the speed of convergence and preventing the algorithm from being
trapped in local optimal solutions. The CFL problem analyzed in Panin et al. [37]
differs from the others in this group in one aspect: the allocation of customers
to facilities. Rather than taking into account the distance between the customer
location and facility site or a predetermined preference parameter as is the case
in [31, 34, 35], customers choose the facility to be visited on the basis of the selling
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price of the product set by the players differently for each customer. Associated with
customer j, there exists a maximal price w; that this customer is willing to pay for
the product. Hence, the firms cannot set a price larger than w;. Furthermore, there is
a cost ¢;; which represents the cost of serving customer j from an open facility at site
i, which constitutes a lower bound on the price. Finally, the number of facilities to
be opened by the leader and follower firms is fixed as in the well-known p-median
problem as opposed to the other aforementioned papers which treat the number of
facilities opened an endogenous variable, i.e., determined by the solution of the
model.

The CFL problem analyzed in Plastria and Vanhaverbeke [39] is based on the
maximal covering model. The aim of the leader is to maximize the demand covered
by its newly opened facilities by taking into account the market entry of a competitor
with a single facility. The allocation of customers is modeled using the so-called
patronizing sets associated with customer j, namely customer at location j can
be served by a facility that is opened within a certain distance away from the
customer. Candidate facility sites within this region belong to the patronizing set
S; of customer j. An important assumption regarding the allocation is that if both
the leader and follower open a facility in the patronizing set of a customer, then
this customer is served from a leader’s facility. Although this is a Stackelberg game
that can be formulated as a bilevel model, the authors propose a single-level mixed-
integer programming model, which is solved using ILOG CPLEX 9.0.

In Rahmani and Yousefikhoshbakht [40] the authors consider a closed-loop
supply chain network where customers not only have demand for new products,
they also want to return used products. Both players can open one of three kinds
of facility at a candidate site: forward, backward, and hybrid processing facility.
Moreover, multiple facilities of a given type can be established by both parties.
A bilevel mixed-integer nonlinear programming model is developed, which is then
transformed into bilevel mixed-integer linear model. No attempt has been made to
solve the resulting model.

Shiode et al. [46] deal with the following variant of the CFL problem. Each
firm opens a single facility in the continuous plane. Customers choose the nearest
facility to them. The feature differentiating the problem from those studied in other
papers is that customer demand is dependent on whether the facility belongs to the
leader or follower firm. Furthermore, the distance between customers and facilities
is measured by the rectilinear or rectangular distance. It is shown that in the case
of linear market, where all customers are located on a line, the optimal location for
leader’s facility coincides with a demand point. In the case of planar market, where
customer locations are scattered in the plane, leader’s facility is optimally located
on one of the grid points that are obtained by drawing horizontal and vertical lines
through the customer locations.

Shiode et al. [47] develop a trilevel model rather than a bilevel one because there
are three competitors which try to find the best locations for their single facilities.
The demand of customers are assumed to be continuously distributed along the line
segment and each customer visits the nearest facility. In fact, it turns out that there
are infinitely many customers existing along the line segment, but the continuously
distributed demand in an interval has a finite value.
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3 Leader’s Decision: Location, Allocation: Probabilistic

Ashtiani et al. [3] suggest a discrete CFL problem, where the leader wishes to
determine the optimal location for p new facilities to maximize its market share.
The follower, on the other hand, wants to maximize its market share by locating r
new facilities after leader’s action, but r is uncertain to the leader. It is assumed that
the follower can locate either 1, 2, ..., r new facilities at candidate sites where each
number corresponds to a different scenario. The only information that the leader
obtains is the probability of occurrence for each scenario. Since Huff’s gravity-
based rule is employed, the existing and new facilities have various attractiveness
levels. However, the attractiveness level of a new facility is not considered as a
decision variable in the model; they are rather predetermined for each candidate
facility site. Since the exact number of new facilities of the follower is not known to
the leader, robust optimization is employed for the solution of the problem, where
the objective function of the leader maximizes the expected value of the market
share under various scenarios and minimizes the difference between the optimal
solution of a scenario and the expected value. Although the authors claim that the
leader’s problem is solved to optimality, no solution methodology is given.

Six different bilevel models in discrete space including only location decisions
are considered by Biesinger et al. [12]. The various models are based on three
customer choice rules: binary, proportional, and partially binary. In a binary model,
customers visit only the closest facility, whereas the proportional model considers
Huff’s gravity-based rule. In partially binary case, the demand is distributed among
the closest facilities of the leader and the follower, where the attractiveness depends
on the distance between the customer and the facility. Although the attractiveness
levels of the facilities are taken into account for the proportional and partially binary
cases, they are set equal to one so that the utility of a facility for a customer relies
solely on the distance. Each of these customer choice rules is combined with both
essential and unessential demand which gives rise to six different bilevel models.
In case of essential demand, the entire demand of customers is satisfied, whereas
a certain proportion of customers’ demand is fulfilled based on the distance to the
serving facility for the unessential demand case, i.e., the demand decreases with
the increased distance. The bilevel model applying the binary customer choice rule
with essential demand coincides with the model by Biesinger et al. [11] given in
Sect. 2. The LLP is formulated as a linear mixed-integer programming problem in all
scenarios which can be solved by the same three methods suggested by Biesinger et
al. [11]. Again an evolutionary algorithm is further improved by a complete solution
archive and is turned into a hybrid procedure by employing a tabu search variant
which uses the solution archive as the tabu list.

Biesinger et al. [10] suggest the same bilevel model using the proportional rule
with essential demand considered in [12], where the attractiveness levels of the
facilities are equal to one. The follower’s problem is first converted into a mixed-
integer problem following a linear transformation. An evolutionary algorithm with a
complete solution archive and an embedded tabu search method to optimize leader’s
locations is employed.
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Drezner and Drezner [19] propose three models which take changing market
conditions over a planning horizon into consideration. Only the second proposed
model, namely the Stackelberg equilibrium model, is discussed here. Both players
want to maximize the market share by locating a single facility in the continuous
plane. Huff’s gravity-based rule is employed to estimate the market share. However,
only the location of the facilities is sought. It is assumed that the follower opens its
single facility at some time point #; over the planning horizon ¢. It is further assumed
that the buying power of customers can change in time, but the facility attractiveness
not. In order to solve the problem, the authors suggest three heuristic procedures,
namely a brute force approach, a pseudo-mathematical programming approach, and
a gradient search approach, but no computational results are reported.

Ramezanian and Ashtiani [41] deal with the version of the CFL problem in which
the leader wants to open p new facilities among predefined candidate locations by
anticipating that the follower will react by installing r new facilities. Both players
are assumed to have already existing facilities. By making use of the Huff’s gravity-
based model, the authors try to find the optimal facility locations of both parties
by an exhaustive enumeration method, where the objective function of the leader
and follower is to maximize their own market share. As a consequence, only a
small problem instance is solved consisting of 16 demand points and 5 existing
facilities three of which belong to the leader while the remaining two are owned by
the follower. Parameters p = r = 2 implying that two new facilities are opened by
the competitors.

Virtually the same problem described above is investigated in Sdiz et al. [45]
with p = r = 1. The distinctive feature of this paper is the solution approach,
which is a branch-and-bound algorithm. Two B&B algorithms are developed: one
for the follower’s lower-level problem and one for the leader’s upper-level problem.
The main idea in this algorithm is recursive partitioning of the original problem
into smaller disjoint subproblems until the solution is found. It is guaranteed that a
global optimum is found by successively generating new lower and upper bounds
that ultimately lie within a given interval.

Té6th and Kovécs [48] examine also a similar CFL problem with two differences.
First, the problem is formulated on a network where customers represent nodes
and facilities can be located along the edges of the network in contrast to the two
papers cited above that allow facilities to be opened at candidate sites. Second,
operational costs are taken into account for the single facility opened by the leader
and the follower. Due to this cost component, the zero-sum property in the objective
function, which is used in the B&B algorithm in [45], is violated and hence a more
difficult problem is obtained. The authors devise a B&B method to solve the leader’s
problem that includes another B&B embedded within the former. The calculation of
lower and upper bounds involve interval arithmetic and DC (Difference of Convex
functions) decomposition.
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4 Leader’s Decision: Location and Design, Allocation:
Deterministic

The only study that belongs to this category is due to Fischer [24]. This study
focuses on a discrete Stackelberg-type CFL problem with two competitors. The
customers are aggregated at discrete points which make up the markets and each
competitor supplies the same product to these markets. Both the leader and the
follower want to decide on the locations of a fixed number of new facilities and
the price of the product at each market. Since the price at a market is defined by
the distance between the facility and the market, the price of the product can differ
from market to market (i.e., discriminatory pricing). It is assumed that customers
buy the product from the competitor giving the lowest price. Two bilevel models
are formulated: a mixed-integer nonlinear bilevel model in which both players fix
their locations and prices in the end, and a linear bilevel model with binary variables
where price adjustment is possible. A heuristic solution procedure is developed to
solve the linear bilevel model, but no computational result is given.

S Leader’s Decision: Location and Design, Allocation:
Probabilistic

Hendrix [26] considers a problem where both the leader firm and the follower firm
want to open a single facility in the continuous plane. In addition to the location of
their facilities, the players also aim to determine the facilities’ quality level. The
objective functions are represented by the respective profits of the firms, where
opening a facility with quality x incurs a linear cost cx. The choice of each customer
is modeled using Huff’s gravity-based rule based on the ratio of the quality to the
Euclidean distance between the location of the customer and facility site. One of
the important results is that co-location of the leader’s and follower’s facilities is not
possible. The authors also give conditions under which one of the firms can force
the other not to enter the market due to the negative profit.

In Kiiciikaydin et al. [32], the authors deal with a variant of the CFL problem
where multiple facilities are opened by the leader firm among a predetermined set
of candidate sites to maximize its profit. The quality levels of these facilities are
also decision variables. The reaction of the competitor firm, which is the follower,
consists of adjusting the quality of its existing facilities. Employing Huff’s gravity-
based rule, the authors develop a bilevel mixed-integer nonlinear programming
(MINLP) model and solve it using a global optimization method called GMIN-
«oBB after converting the bilevel model into an equivalent one-level MINLP model.
This conversion is possible thanks to the concavity of the objective function of the
follower’s lower level problem in terms of the quality variables when the leader’s
decision variables are fixed.
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Kiictikaydin et al. [33] extend the work in [32] by adding the capability of
opening new facilities and/or closing existing ones to the competitor’s reaction set.
Clearly, the new problem is a more challenging one. First, an exact solution pro-
cedure is developed that integrates complete enumeration in terms of competitor’s
location variables for opening new facilities and keeping/closing existing facilities
with GMIN-aBB. Since the exact method can only provide solutions for small
problem instances in a reasonable CPU time, three heuristics based on tabu search
are proposed. These heuristics perform a search over the location variables of the
leader in the upper level problem. Upon fixing these variables, the follower’s lower
level problem is solved to optimality using a branch-and-bound algorithm with NLP
relaxation because it is shown to be a concave optimization problem.

In the CFL problem examined in Redondo et al. [42] the leader firm wants to
open a single facility in the continuous plane in addition to its existing facilities
in the market. The quality of the new facility is also a decision variable to be
set by the firm. The reaction of the follower firm consists of exactly the same
decisions as the leader in the sense that the location of a new facility and its
quality level has to be determined. This problem is also referred to in the literature
as the (1]1)-centroid problem. Four heuristics are developed for the solution of
the problem. These are a grid search procedure, an alternating procedure and two
evolutionary algorithms. The only difference between the problem investigated in
Redondo et al. [43] from the one in [42] is that the demand of customer j is not
fixed, but varies according to the utility the facility provides to the customer, which
is computed according to Huff’s gravity-based model. The variable demand also
referred to as elastic demand of a customer is assumed to vary between the minimum
possible demand and maximum possible demand. Note that most of the literature
on CFL uses the assumption of inelastic or fixed demand. In order to solve the
medianoid problem, the authors apply an exact interval branch-and-bound method
and an evolutionary algorithm called UEGO that uses a Weiszfeld-like procedure
and can find the global optimum with a certain reliability. Then, they develop
three heuristic methods to solve the centroid problem, i.e. leader’s problem: a grid
search procedure, a multi-start algorithm, and a subpopulation-based evolutionary
algorithm, called TLUEGO. The same problem is then considered by Arrondo
et al. [2] to improve the computational performance of TLUEGO. To this end,
they suggest three parallelizations of the algorithm, namely a distributed memory
programming algorithm, a shared memory algorithm, and a hybrid of these two
algorithms.

Drezner et al. [20] introduce a BP model for a discrete CFL problem taking into
account the concept of cover. Each existing and new facility possesses a radius of
influence which defines a threshold distance to the customers, i.e. a customer visits a
facility if and only if his/her distance to that facility is less than or equal to the radius
of facility. Hence, a facility can capture only the customers who are within its sphere
of influence. Thus, the radius of each facility determines its attractiveness level. The
demand of a customer who is not covered by the sphere of influence of any facility
is considered lost. The leader and follower aim to maximize the market share under
a certain budget by expanding their own chains conceiving three strategies. The first
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strategy takes into account only enlarging the sphere of influence of the existing
facilities, whereas the second one solely opens new facilities whose location and
radii need to be determined. The final strategy combines the first two strategies. The
authors define the radius of the facilities as a continuous decision variable. However,
they employ discrete design (radius) scenarios in the solution of the model and one
of a finite number of available radii is determined for each open facility. First, the
follower’s problem is solved to optimality using a B&B method. Then a tabu search
algorithm is implemented for the solution of leader’s problem which uses a greedy-
type heuristic to find a starting solution. The computational results indicate that both
the leader and follower can extend their market share by acquiring the lost demand.
Kochetov et al. [30] propose a discrete CFL bilevel problem making use of the
Huff’s gravity-based rule. Both the leader and follower want to maximize their
market share by deciding on the location and attractiveness for their new facilities
under a budget limitation. As in the study of Drezner et al. [20], a discrete design
scenario set is adopted for the attractiveness levels of the facilities. They apply a
linear transformation on the follower’s problem to turn it into a linear mixed-integer
programming problem. Then an alternating matheuristic, derived from Bhadury
et al. [9], is employed for the solution of the bilevel model which terminates when
either a Nash equilibrium is reached or an already visited solution is obtained.

6 Concluding Remarks

In this chapter, we review and categorize studies on CFL problems formulated as BP
models which are published between 2002 and 2016. We first categorize each study
according to various features of the CFL problem investigated. After collecting
each work in one of the four groups depending on two distinguishing factors of
CFL problems, namely the leader’s decision(s) and the allocation of customers to
facilities, we give detailed information on each work. It must be noticed that the
studies in which decisions are made not only about the locations of the facilities
but also about their design is outnumbered by the papers containing only location
decisions. Thus, future studies can give more emphasis to this issue. Another
observation is related to the fact that relocation, redesign, and/or closing of existing
facilities concurrently with opening new facilities can be studied more thoroughly
with the inclusion of additional features incorporated into the CFL problem. Another
fruitful research direction can be the extension of bilevel models in a setting where
multiple firms acting simultaneously among themselves react to the leader. Such
a setting introduces the requirement of considering Nash games in the lower-level
problem of a bilevel programming model.
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Partial Cooperation in Location Choice: Salop’s
Model with Three Firms

Subhadip Chakrabarti and Robert P. Gilles

1 Introduction

The theory of economic competition has been at the centre of economic reasoning
since the seminal contributions of Cournot [5], Walras [26]! and Edgeworth [11].
The notion of imperfect competition was furthered by contributions of Edgeworth
[12] on monopoly and Bertrand [1], who founded his approach to price competition
as a critique of the work of Cournot [5] and Walras [27]. Later contributions by
Chamberlin [4] and Robinson [22] have had less impact through the later rise of
game theoretic approaches founded on the ideas put forward in the seminal work by
Cournot [5].

Hotelling [13] is considered the main seminal contribution to a game theoretic
approach to imperfect competition based on a spatial approach to product differ-
entiation. Hotelling introduced a fictional space in which competing firms choose
a location. Thus, assuming that the goods sold by these firms are actually homo-
geneous, the differentiation is represented purely by the firm’s relative location.
Consumers in this location model now select one firm from which to obtain one
unit of the homogeneous good. A cost related to the distance between the location

'We refer to Walras [28] for a translation of this seminal work.
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of the consumer and the selected firm in the space now represents the disutility that
this consumer incurs from purchasing a product that imperfectly fits with her own
location.”

Subsequent game theoretic contributions focussed on the exact formulation of
the transportation cost function in the Hotelling framework. Hotelling [13] used
linear costs and argued that minimal product differentiation would result in such
circumstances. d’ Aspremont et al. [6] demonstrated, however, that the equilibrium
in Hotelling’s linear cost model does not in fact exist due to discontinuous reaction
functions and advocated the use of quadratic cost functions instead. They showed
that such quadratic costs result in maximal product differentiation. Economides [8]
subsequently analysed a wider class of transportation cost functions and showed
that one can have both maximal and non-maximal product differentiation but never
minimal product differentiation.

Salop [24] solved the existence problem by introducing a different topology of
the fictional space, realising that the existence problems are related to the existence
of a boundary in the product space. Thus, instead of using a bounded space, Salop
employed a circular space without a boundary. Firms now select a location on
the circle and the disutilities to consumers are a function of the shortest distance
between the consumer’s location and the firm’s location.

Salop [24] did not introduce this spatial device to analyse location choice but
rather to analyse equidistant entry of firms into the market. Location choice in the
Salop city has been analysed by Economides [10] for quadratic costs and by Kats
[14] for linear costs. Economides finds that in equilibrium firms locate equidistantly
from each other and charge uniform prices, while Kats identifies a continuum of
equilibria.

1.1 Partial Cooperation in Competitive Situations

In a recent study, Mallozzi and Tijs [16] introduced the concept of partial cooper-
ation in a non-cooperative, normal form game. It is assumed that there is a single
coalition of “cooperators” that collectively determines the strategies of its members.
This coalition of cooperators acts as a single, large player in the game and its
decisions are guided by the aggregated payoffs of the coalition as a whole.

There emerge two equilibrium concepts that properly capture the effects of
partial cooperation on the outcome in the game. The first notion is that of partial
cooperative equilibrium in which the coalition of cooperators acts as a single player
in the game and seeks to play a collective best response to the non-cooperators in the

2Hotelling [13] himself used the metaphor of consumers located along a “high street”, who incur
costs to travel to the location of the store of each producer. These travel or transportation costs now
represent the disutility from consuming a product that is imperfectly fitting with the exact location
of the consumer on this high street.
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game. As such, the partial cooperative equilibrium is a Nash equilibrium in which
the coalition of cooperators acts as a single player.

The second equilibrium concept is that of leadership equilibrium in which the
coalition of cooperators is assumed to attain a Stackelberg-like leadership position
[25] and selects its strategy tuple prior to the non-cooperators in the game. This
imposes a two-stage structure on the normal form game in which the coalition
cooperators selects its strategy prior to the group of non-cooperators.

Mallozzi and Tijs [16] introduced the leadership equilibrium concept on the
restricted class of symmetric potential games [19]. They show that, under well-
chosen restrictions on the strategy set and the payoff functions, the non-cooperators
select equilibrium strategies which are both symmetric and unique for every strategy
tuple that is selected by the coalition of cooperators. This implies that the coalition
of cooperators can perfectly anticipate the resulting equilibrium for any of their
available strategic choices. This allows the coalition of cooperators to assume a
Stackelberg leadership position and to maximise its aggregated payoff function
based on both their strategy and the unique Nash equilibrium strategies of the non-
cooperators. A maximiser of this function—provided it exists—now determines the
corresponding leadership equilibrium strategy tuple of the coalition of cooperators.
Mallozzi and Tijs [16] provide conditions for which such an equilibrium exists.

Following this initial contribution, subsequent work in Mallozzi and Tijs [17, 18]
extended the partial cooperative framework to games in which the non-cooperating
players select from multiple best responses. Mallozzi and Tijs [18] consider
symmetric aggregative games [7] and assume that the non-cooperative players
coordinate on the symmetric Nash equilibrium that yields the highest payoff to
them, and, thus, do not consider any non-symmetric Nash equilibrium that, possibly,
might result in higher payoff for all. Mallozzi and Tijs [17], on the other hand,
assume that the non-cooperating players coordinate on the Nash equilibrium with
the numerically greatest or lowest strategy vector, irrespective of the payoff attained
by the non-cooperators in this equilibrium.

The assumptions of Mallozzi and Tijs are rather restrictive and seem inapplicable
to most strategic situations. However, at the same time they are hard to do away
with. Subsequent work by Chakrabarti et al.[2] suggests a solution by simply letting
the coalition of cooperators choose a strategy that maximises its joint, utilitarian
payoffs. Chakrabarti et al. [2] assume that the coalition of cooperators is risk-averse
and chooses a maximin strategy. Hence, if there are multiple best responses given a
strategic agreement of the coalition of cooperators, then the coalition of cooperators
takes into account only the worst possible outcome.

Chakrabarti et al. [3] generalise this approach further to situations in which
certain strategic elements are subject to partial cooperation, while other strategic
elements are considered to be selected in a non-cooperative, competitive fashion. In
this general structure, Chakrabarti et al. [3] extend both the partial cooperative as
well as the leadership equilibrium concepts to their most general implementations.
We utilise these general formulations in our analysis of Salop’s location model.
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1.2 Partial Cooperation in a Two-Stage Salop Model
of Product Differentiation

Chakrabarti et al. [2] were the first to apply the partial cooperative framework to
analyse competition between firms in a Salop model of product differentiation using
a circular location approach. Their model only addressed the pricing of products
in the case that firms are dispersed at equal distances on the Salop circle and
that some of these firms cooperate in their pricing strategies. They arrived at two
main insights. First, in the partial cooperative equilibrium there is a clear advantage
for non-cooperators, as free rider benefits exceed the benefits from cooperation.
This corresponds to the so-called “merger paradox”, which states that there are no
benefits to cartel formation in an imperfectly competitive market [23].

Second, Chakrabarti et al.[2] showed that in the leadership equilibrium the
merger paradox vanishes and there are significant benefits from cooperation to
the members of the coalition of cooperators. Chakrabarti et al. [3] further corrobo-
rate that the benefits from cooperation exceed the free-rider effect for multi-market
oligopolies and related competitive environments.

In the present contribution we consider partial cooperation in the first stage of
the two-stage Salop model, which concerns the selection of locations by the firms,
rather than the pricing strategies. We limit our analysis to the case of three identical
firms in which partial cooperation is simplified to the cooperation of two of these
three firms. We use the linear cost model as seminally introduced in Hotelling [13]
and restrict the choice of locations with the introduction of a minimum distance
between the firms.?

We analyse three different equilibrium concepts in this context. First, we look at
the standard Nash equilibrium concept and show that there emerges a continuum of
equilibria, extending the insight of Kats [14] from two firms to three firms. Second,
we introduce partial cooperation between two of the three firms in their location
choices discussed above. We investigate the partial cooperative equilibrium concept
as well as the leadership equilibrium concept.

We show that there do not exist any partial cooperative equilibria in the location
stage of the two-stage Salop model with linear costs. This contravenes the existence
of standard Nash equilibria for two firms established by Kats [14]. The main
difference is that one decision maker selects two locations from which to supply
products rather than a single location as is the case in the Kats model. This shows
the fragility of the model with regard to the exact assumptions made.

On the other hand, the introduction of leadership under partial cooperation
shrinks the set of equilibrium outcomes considerably. We show that if the coalition
of cooperators assumes a Stackelberg-like leadership position, there only exist two
different equilibrium configurations of locations. Again, this shows that partial

3The introduction of this minimal distance guarantees the existence of an equilibrium in this model.
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cooperation and leadership resolve competitively complex situations into simple,
predictable configurations.

Furthermore, we investigate two extensions of the standard model. First, we look
at the introduction of an investment opportunity to lower the marginal production
costs of the firm. This extends the model to three stages: After the selection of a
location, firms invest in their production technology and only then set the price of
the good. We show that in this extended three-stage Salop model with linear costs
there are no significant changes to any of the established results for the standard two-
stage model. Hence, there are no partial cooperative equilibria, but there emerge two
leadership equilibrium configurations.

Finally, we consider the two-stage Salop model with quadratic costs. Here,
consumers face quadratic transportation costs, which modifies the size of the market
captured by the three firms for different price-location configurations. For quadratic
costs, we confirm numerically the existence of partial cooperative equilibrium
configurations in the location stage of the model. This is rather different from the
linear cost case in which such equilibria do not exist.

1.3 Relationship to Some Other Literature

We briefly discuss some other related papers. We point out that if prices are
given, the principle of minimal product differentiation holds. However, this is no
longer the case with three firms [15]. One situation of interest is what happens
in equilibrium when firms locate sequentially rather than simultaneously. Prescott
and Visscher [21] discuss sequential location choice where prices are given. Neven
[20] extends this to situations where prices are chosen subsequent to entry. Others
have discussed multiple dimensions of strategic choice. Economides [9] for instance
introduces quality choice in the model of Hotelling [13] and shows that there exists
an equilibrium with minimal differentiation with regard to price and quality and
maximum differentiation with regard to location.

2 The Two-Stage Salop Model with Linear Costs

We consider a spatial model of imperfect competition with differentiated goods in
the sense of Salop [24]. As in Salop’s original setup, we consider three firms—
denoted by 1, 2 and 3, respectively—that compete in a two-stage process. In the
first stage, the three firms select a location on a perfect circle of unit length. In the
second stage, the three firms simultaneously select a price of their good. Throughout
we assume that the three firms compete perfectly in the price setting stage 2 of the
game, using best response rationality, resulting in a Nash equilibrium in that stage
of the game.



26 S. Chakrabarti and R.P. Gilles

The modelling environment of the unit circle allows the use of distances between
the three firms to represent the location choice in the first stage of the game. Indeed,
let 0 < x;; < 1 denote the distance between the locations of firms 7 and j such that the
third firm 4 is not located between them. Hence, x1, 4+ x;3 4 xp3 = 1. In particular,
Xj = % if the firms i and j are located on opposite locations on the unit circle. Note
that the distance between firms is maximal at x; = 1 — § if firms i and j are located
at a distance of § > 0 with the third firm % located between them.

For reasons of tractability, we assume that two firms cannot locate at the same
point but must maintain a distance of at least ¢ > 0 from each other. This assumption
can be justified by minimum space required to set up the physical location. This
makes the model in question an abstract economy rather than a game.

Assumption 1 There exists a parameter 0 < ¢ < % such that x; = ¢ for any
i,je{1,2,3} withi # j.

We show below that for e as introduced in the assumption, there exists an
equilibrium in the two-stage model.

For notational completeness, we use p; > 0 as the price set by firm i € {1, 2, 3}
in the second stage of the two-stage model.

2.1 Consumers

At every location on the unit circle we assume that there resides a consumer. Each
consumer purchases one unit of the good produced by one of the three firms on
the circle. If consumer x € [0, 1) purchases one unit from firm i € {1,2, 3}, then
the consumer attains a gross utility level V, > 0 from consuming the good and has
disutility from paying the price p; and from the transportation cost to bridge the
distance to collect the good from firm i. The transportation cost is assumed to be
linear with a cost t > 0 per unit of distance. Hence, the utility of consumer x can
be determined as

Ux(i):Vx_pi_l'd(iv-x) (1)

where d(i, x) = 0 is the distance from location x to the location of firm i on the unit
circle. This linear cost model is the same as seminally studied by Hotelling [13].

Throughout we apply the standard assumption that all consumers x € [0, 1)
optimise the net utility formulated above. Hence, the consumer x’s problem is to
solve max;e(; 2 33 U(i).
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2.2 Formalisation of the Two-Stage Salop Model

Using the descriptors of the decision variables of the three firms and the defined
behaviour of the consumers, we can now state the model formally. The two-stage
Salop model with linear costs for three firms consists of two decision stages:

Stage 1:  The three firms select locations on the unit circle represented by the
distances x|, x13 and x,3 satisfying x;; > e forall i,j € {1, 2,3} withi # j.

Stage 2:  Given the locations selected in Stage 1, all three firms simultaneously
select prices p; = 0, i € {1,2,3}, for their respective products and sell their
products to the consumers on the unit circle according to the linear cost model
formulated in (1).

The objective of the firms in this model is to maximise their net profits, defined
as their revenues minus their total production costs. The profit function will be
determined by the assumptions made about the cost structure in this model.

The two-stage Salop model is now solved through the application of backward
induction in which we first determine an equilibrium in the second stage of the
model for every set of firm locations and, subsequently, solve the location problem
in the first stage of the model, given the solution of the second stage.

2.3 The Existence of a Solution in the Linear Cost Model

Consider a consumer located between firms i and j on the unit circle. Assume further
that each firm k € {1, 2, 3} sets a price p; = 0 and that this consumer is located at a
distance d € [0, x;] from firm i and a distance x;;—d from firm j. Then this consumer
is indifferent between purchasing the product from firm i and firm j, if

pi +td = p; + t(x; — d).

This is equivalent to

2td = (pj—pi) + tx; implying d = (sz;tl’> n % ‘
Thus, the demand of firm i can be determined as

Pj —Pi Prn — Di Xij | Xin
b= (M) (M) 4 z
2t * 2t +2+2 @

If we assume an uniform marginal production cost of ¢ = 0 across all firms, the
profit of firm i is given by

m; = (pi—¢)D;

“no[P5)r (50) <32 o
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Using this formulation we can now show the following solution to the second stage
problem and determine the equilibrium prices for all firms, given their locations.

Proposition 1 Let the three firms be located on the unit circle represented by the
distances x13, x13 and x»3 satisfying x; > ¢ for all i,j € {1,2,3} with i # j. Then
the Nash equilibrium in the second stage pricing game of the two-stage Salop model
with linear costs is given by

pL=c+ g(z—xzs); @)
pr=c+ g(z—xls); 5)
pr=c+ g(z—xu). ©)

resulting in equilibrium profit levels given by

7= %(2—)623)2; %)
my = 2—;(2—)613)2; (8)
P z—ts(z—xu)z. )

Proof Leti € {1, 2, 3}. Differentiating the computed profit function 7; with respect
to p;, the first order conditions are given by

om; Pj— Di Ph —pi) Xjj xih] pi— C)
O _ R = 0.
= L5 (P57 5+ 5] (5

Hence, we get a linear simultaneous equation system of three equations in three
unknowns given by

Pz—P1> <p3—p1) xX12 @]_Cm—C)
[( w )T )T T 1

[(Pl—P2)+(P3—P2>+)2+ 1—x12—x13}_<1’2_0) =0 (1)

0, (10)

2t 2t 2 2 t
pl_P3) (Pz-Ps) xi3 =X —xi3 _<P3—C) 0 (12
[( w )T U )ttt 2 t - 12

Solving the system of equations (10)—(12), we get the expressions asserted in the
proposition. This completes the proof of Proposition 1. O

Note that from Proposition 1, if all firms are equidistantly located with x; = % for

all i # j, we arrive at p; = ¢ + é, which is the result obtained by Salop [24].
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Fig. 1 The competitive relocation among three firms

Given the solution of the pricing stage of the two-stage Salop model with linear
costs, we now turn to the solution of the location problem that forms the first stage
of this model.

Proposition 2 Given the equilibrium prices stated in Proposition 1, every location
configuration of the three firms on the unit circle represented by the distances x13, X13
and x»3 satisfying & < x; < %for alli,j € {1,2,3} withi # jand x1,+x13+x3 = 1
is an equilibrium in the first stage of the two-stage Salop model with linear costs.

Proof The assertion follows from the fact that, if the pricing rules stated in Proposi-
tion 1, the firm’s profit is independent of its location from (7)—(9). Furthermore, the
condition that x; < § implies that firm & will not switch its location as illustrated in

Fig. 1. On the other hand, such a switch is beneficial if x;; > % m|

From Proposition 2 it is clear that the two-stage Salop model with linear costs is
largely undetermined due to the large class of equilibria in the first stage. This is
reduced significantly reduced by the introduction of different forms of competitive
behaviour. See also Kats [14].

2.4 Introducing Partial Cooperation in the Linear Cost Model

In the two-stage Salop model with linear costs we now introduce the idea of
cooperation by a subgroup of firms in their location decisions. Here we consider
that firms 1 and 2 cooperate in the first stage of location selection, while firm 3
acts purely competitively. In the second stage all three firms are assumed to be fully
competitive.

Using the concepts of partial cooperative equilibrium and leadership equilibrium
developed in Chakrabarti et al.[2], we assume that the coalition C = {1,2}
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seeks to maximise their total profit by selecting their locations collectively. Hence,
the objective function of the coalition C in the location stage of the model is
formulated as

t t
. = =—Q 24— 2=-xp) 13
c=m+m 25( + x12 + x13) +25( X13) (13)

Therefore, under the partial cooperative equilibrium concept in the location selec-
tion stage, firms 1 and 2 collectively select locations to maximise I1¢, while firm 3
selects a location to maximise its profit function 3. Thus, the coalition C = {1, 2}
acts as a single decision maker with objective function [1¢ in a two-player normal
form game with firm 3.

Proposition 3 Given the second-stage equilibrium prices stated in Proposition 1,
there does not exist a partial cooperative equilibrium for the location stage of the
two-stage Salop model with linear costs.

Proof Consider the collective payoff function Il in (13). Then one can easily check
that for all location configurations

e

2t
= —(1 0. 14
or1s 25( + x12 + x13) > (14)

This implies that the coalition of cooperators C = {1,2} aims to maximise their
internal distance x;,. Therefore, x;, = 1 — 2&. Therefore,

oIl

2t 4t
[ 2x3— 1) = — —2¢), 15
s 25 (X2 +2x;3—1) 3 (x13 — 2¢) (15)

implying that selecting a minimal value for x;3 indeed maximises I1c. Hence, xj, =
1 —2¢ and x;3 = ¢ represent a best response to the location of firm 3.

Therefore, the cooperators try to locate on either side of firm 3, to which firm 3
responds by switching location to the opposite side of the unit circle—as illustrated
in Fig. 1. This implies there emerges a process of perpetual relocation. This excludes
the existence of a stable tuple of locations in this game, thereby, establishing the
assertion that there is no partial cooperative equilibrium in this situation. O

On the other hand, if the coalition of cooperators C = {1, 2} is given a Stackelberg-
like leadership position, our analysis leads to the conclusion that there exist two
leadership equilibrium configurations.

Proposition 4 Given the second-stage equilibrium prices stated in Proposition 1,
there exist two leadership equilibrium configurations in the location stage of the
two-stage Salop model given by

1 _ a __ 1
Xp=3x3=¢ X3 =3¢
_ 1 b _ 1 b _

x1f2—2x13_2 X3 =€
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Proof The way we have set up the model, it seems that initially player 3’s profit
depends entirely on the distance between 1 and 2 which 3 does not control under
the leadership assumption. So, 3 is a passive best responder to the location decision
of the coalition of cooperators C = {1, 2}. But this is slightly misleading, since 3
can switch location as shown in Fig. 1.

So, as illustrated in Fig. 1, given the locations of 1 and 2, 3 selects either to locate
in the opposite side of the circle or to locate in the dotted zone. Given that 3 is
strictly decreasing in x5, firm 3 will not switch locations if and only if x;, < 1—x)5.
Hence, x5, < %

Hence, the above and (14) imply that x;, is selected to be maximal given the
best response of firm 3, i.e., x;p = % Furthermore from (15), we can compute for

X2 = % that

ollc t
— = — (4x3— 1
0x13 25 (4¥13 )

and, therefore, I is minimised at x;3 = i and maximised at the minimal value of
X13, 1.€., X;3 = € or at its maximal value, i.e., x|;3 = % —¢. Finally, we note that firm 3
is indifferent between locating anywhere between the dispersed locations of firms 1
and 2. Hence, we conclude that there are two leadership equilibrium configurations
as asserted in Proposition 4. O

It is clear that if the identity of the cooperating firms in C is removed, there emerges
only a single configuration, where both cooperators locate on opposite sides of the
unit circle and the competitive firm locates between them.

In fact, independently of where firm 3 locates, its profit is computed as 73 =
0.09¢ at an equilibrium price p3 = ¢ + 0.3¢. Therefore, firm 3 is completely
indifferent where to locate between the cooperating firms 1 and 2, although only
the location at minimal distance from either of them is an equilibrium.

3 Extensions of the Two-Stage Salop Model

We consider some extensions of the two-stage Salop model with linear costs that has
been discussed in the previous section. We look at two modifications, namely (1) the
introduction of the endogenous, strategic determination of the marginal production
costs through costly investment in production technology and (2) the case of a
quadratic cost structure as considered in the related literature such as Economides
[10]. In both extensions we limit our investigations to the consideration of partial
cooperation in location choice in a three firm environment.
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3.1 Introducing Endogenous Marginal Production Costs

Thus far, we have assumed that there are uniform marginal costs fixed at some ¢ = 0
across the three firms. However, the marginal costs may be made a function of
a costly, strategically selected reduction ¥; = 0 for each firm i. We introduce a
marginal cost function for every firm i € {1, 2, 3} with

a¥) =y -Y; (16)

where y > 0 is a given upper bound on the firm’s marginal cost.

We assume that marginal cost reduction can be accomplished through additional
investment in the firm’s production technology. In particular, we consider the case
that a marginal cost reduction of ¥; = 0 is given by an investment of the size Y? in
the firm’s production technology.

We let these marginal cost reductions be chosen competitively by the firms
after the location has been selected and before prices are determined. Hence, we
restructure the two-stage Salop model as a three stage model, where first the firms
choose location, followed by investment and then prices.

This extends the model as follows. The three-stage Salop model with linear
costs for three firms consists of three decision stages given by

Stage 1: The three firms select locations on the unit circle represented by the
distances x12, x13 and x»3 satisfying x; = e for all i,j € {1,2,3} with i # j.
We assume here that there is partial cooperation with C = {1, 2} the coalition of
cooperators.

Stage 2:  The three firms i = 1, 2, 3 simultaneously determine the investment in
production technology to reduce its marginal costs with ¥; = 0.

Stage 3:  Given the locations selected in Stage 1 and the marginal cost reductions
established in Stage 2, all three firms simultaneously select prices p; = 0, i €
{1, 2, 3}, for their respective products.

We emphasise that we assume that firms are fully competitive in stages 2 and 3 of
this process, while partial cooperation only occurs in the selection of locations of
firms 1 and 2 in the first stage.

With reference to the original profit function in (3), we determine that in this
modified three-stage model the objective of firm i € {1, 2,3} is to maximise their
net profits now determined as

= (p: — : Pj — Di (ph—p,-) Xij @]_?
;= (pi V+Yz)[< 2 )+ ey +2+2 Y;. 17)

Using the revised formulation of the net profit function (17) we can now state a
modification of Proposition 1 for this three-stage Salop model with endogenous
marginal cost. A proof is directly derived from the first order conditions from (17)
and, therefore, omitted.
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Proposition 5 In the third price-setting stage of the three-stage Salop model for
given locations of the firms and given marginal cost reductions Y1, Y, and Y3, the
firms set prices given by

1

2 =y+§[t(2—x23)—(3Y1+Y2+Y3)]; (18)
1

P;=V+§[f(2—x13)—(Y1+3Y2+Y3)]: (19)
1

Py =7+ 3 12 —=x12) = (Y1 + Y2 + 3Y3)]. (20)

Now, using the results in Proposition 5, we can solve the second stage of the game.
We substitute (18)—(20) in (17) and differentiate it with respect to ¥;, i = 1,2,3
to arrive at the first order conditions for the second stage of the three-stage Salop
model with endogenous marginal costs. Solving the resulting system of equations,
we get the following:

Proposition 6 Given the solution of the third stage stated in Proposition 5, the
solution of the second investment stage of the three-stage Salop model with
endogenous marginal costs is given by

2[5t(2 — X23) — 2] .

"= 50— @D
% 2[52‘(2—)613)—2]'

h = 525t—6) 22)
* 2[5t(2 — x12) — 2]

Y5 = 5025t—6) 23)

Using the values of investments in (21) to (23) of Proposition 6 into (17) to get the
following reduced form profit functions:

(25t — 4 (512 —x23) — 2

25(25¢ — 6)2 ’
@5t — (512 — x13) — 2
:T 25(25¢ — 6)2 ’
(251 — 4)(51(2 — x13) — 2)?
= 25(251 — 6)?

Using these reduced form net profit functions, we can finally determine the first
location stage of the three-stage Salop model with endogenous marginal costs under
partial cooperation. Indeed,

OMc 2625t — 4)(5t(1 + x12 + x13) — 2) -

0 24
0x1o 525t — 6)2 24
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for a sufficiently large 7. Hence, in equilibrium x, is again chosen to be maximal,
ie., xpp = % Therefore,

8HC _ 2[2(2St — 4)(2)(13 + X1 — 1) . [2(25t — 4) (4X13 — 1)
oxi3 5(25t — 6)2 N 5(25t — 6)2

As in the proof of Proposition 4 we conclude that x;3 = € or x|3 = % — &. Hence,
the set of leadership equilibria do not change from the established insights for the

two-stage Salop model with linear costs.

Proposition 7 Given the third-stage equilibrium prices and second-stage equi-
librium investments stated in Propositions 5 and 6, respectively, there exist two
leadership equilibrium configurations in the location stage of the three-stage Salop
model with endogenous marginal costs given by

-1 — a _ 1 _
Xh=3x;=¢ X3 =3¢
R R b _

x’fz—ixn—i € Xy =¢&

3.2 Quadratic Cost Structure

Finally we turn to the study of a quadratic cost structure that has been employed in
the literature on Hotelling’s model to guarantee the existence of a solution. We now
impose a cost structure where for every consumer x € [0, 1) the utility of consuming
one unit of the good from firm i € {1,2, 3} is given by

Uc(i) = Ve — pi — t - d(i, x)* (25)

where p; is the price charged by firm i and r > 0 is the given transportation cost
parameter. This situation has both an advantage and a disadvantage when compared
to linear costs. On one hand, it is computationally complex, but on the other hand it
guarantees an interior solution to the utility maximisation problem. This implies that
we can dispense with the use of the assumption that firms locate at least a distance
& > 0 from each other. This changes the set of solutions to the two-stage Salop
model fundamentally.

We denote the two-stage model that emerges under this cost structure as the two-
stage Salop model with quadratic costs to distinguish from the case of linear costs
discussed in the previous section.

As before, we determine the consumer who is indifferent between adjacent firms
i and j with i # j. If a consumer is located at a distance d from firm i, then this
consumer is indifferent between purchasing from either i or j if

pi + td* = pj + t(x; — d)*. (26)
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This is equivalent to

Di —Ppj = tx; (x,] 2d) .
Hence, we derive that for the indifferent consumer it holds that

dg=P"P N

. 27
2txij 2 @7

Thus, the demand of firm i is given by

Pj — Di Ph — Di Xij Xih
D; = + + 24+ = 28
' ( 21x;; ) ( 21x; ) 2 2 (28)

Therefore, the resulting profit of firm i is derived as
T = (Pi - C)Di

Pi Ph— Pi Xij Xin
= SN 29
i = c)[(er)Jr(zmh)Jerrz} 29

Using these findings, we can now formulate the solution for the special case of
equidistant location of the three firms on the unit circle that emerges in the second,
price setting stage of the two-stage Salop model with quadratic costs:

Proposition 8 Let the three firms be located equidistantly on the unit circle
represented by distances x;, = Xj3 = Xp3 = % Then the Nash equilibrium in
the second price setting stage of the two-stage Salop model with quadratic costs is
given by

!

pr=pr=p3=c+gy. (30)

Proof Differentiating profits with respect to p;, the first order conditions are
given by

or; pPi—Pi  Ph—DPi | Xj | Xin (Pi —c 1 1
— = SRy (Y (— 4+ — ) =o.
api [ 21)(,] + 2txi, + 2 + 2 t ) 2)(,']' + 2xip

Hence, we have a system of three simultaneous equations in three unknowns:
P2—pP1 P3P X2 | X3 p1—c 1 1
+ + =+ —( ) s—+5—)=0 (Gl
[ 2tx15 2tx13 2 2 :| t (2)(?12 2x13) 31

PL—Pp2  P3—p2 X2 | X3 p2—c¢ 1 1
+ + 2+ 2 (B (5= ) =0 32
[ 21x12 21x23 2 2 ] t (2x12 2x23) (32)
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poppp ] (e (L )
[ 2tx13 + 2tx73 + 2 + 2 ] t (2)613 +2)C23 - 33

For the case of equidistantly located firms Eqgs. (31)—(33) solve to the price levels as
asserted in the proposition. O

3.2.1 Nash Equilibrium

As abenchmark in the analysis of partial cooperation in location choice, we replicate
the result of Economides [10] that firms in equilibrium are equidistant from each
other. If p; = ¢ + g for all i, then

I (X2 X3 t
= — | — — ) = — (1 — ;
T 9 ( > + > ) 13 (1 —x23)
I (X2 X3 t
= — | — =)= — (1 — .
%) 9(2 + 2) 18( X13)
T /X3 X3 t
= \—=—+—=)=—=U- .
3 9( > + > ) 18( X12)

Clearly, starting from a situation of equidistant locations, no movement can make

the players better off as Y7L = gAﬂ = gﬂ = 0. Hence, we conclude that this indeed
23 X13

0x12
forms a Nash equilibrium.

Property 1 Equidistant locations determined by x;"j = % for all i,j € {1,2,3} with
i # j form a Nash equilibrium in the first, location stage of the two-stage Salop
model with quadratic costs.

3.2.2 Partial Cooperative Equilibrium*

The equation system that describes decisions under the hypothesis of partial
cooperation between firms 1 and 2, while firm 3 remains competitive, in the first
location stage of the two-stage Salop model with quadratic costs is so complex that
an exact solution could not be obtained straightforwardly using calculus. However,
we can solve numerically for an approximate solution.

First, solving (31)—(33) to get equilibrium prices, which are subsequently
substituted in (29), we can now numerically solve the system of two simultaneous
equations given by

arl, 9
o ad T_o (34)
0x12 0x23

“Calculations regarding the reported outcomes here are available upon request.
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to arrive at an approximation of a partial cooperative equilibrium in this two-stage
Salop model with quadratic costs.

Numerically approximating a solution of the two resulting equations for x;, and
X3, we arrive at x;, = 0.375 and x,3 = 0.322. This shows that there is a non-trivial
solution and, therefore, we can conclude the following:

Property 2 The location stage of the two-stage Salop model with quadratic costs
admits at least one partial cooperative equilibrium.
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A Class of Location Games with Type
Dependent Facilities

Imma Curiel

1 Introduction

In a location problem one has to find an optimal way of locating a given number of
facilities in a given space. Optimality refers here to some preference relation that is
attached to the set of feasible ways to locate the facilities. Usually this preference
relation is given as a profit or cost function that depends on the distance between
the locations of the facilities and the locations of the points of some given, finite set.
This is a very general description and any particular location problem studied in the
literature has specifications attached to it to define it more precisely. The location
problem can be continuous or discrete. In the continuous case the set of feasible
locations for the facilities is a metric space (usually R” or a subset of R" withn = 2
or 3). In the discrete case the set of feasible locations for the facilities is a finite set.
In the discrete case the points can be considered to belong to a metric space and the
distance between two points is then given by the metric; or they can be the nodes
of a graph and the distance between two points is measured using the length of
the edges of the graph. Overview of location problems, solving methodologies and
applications can be found in [4, 7].

Cooperative game theory is concerned with the analysis of situations in which
a group of actors (most commonly called players) can combine forces to achieve
a goal. Usually this goal will be to maximize profit or to minimize costs. The idea
here is that “the whole is more than the sum of the parts” implying that the profit
generated by everybody involved working together will be more than the sum of
the profits if everybody works apart or, when the goal is to minimize costs, the total
costs if everybody works together is less than the sum of the costs if everybody
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works apart. The question that arises is how the profit or costs generated should be
distributed among the players. What are the properties that we want a profit or cost
allocation to have? In [9, 10] one can find overviews of cooperative games with their
properties and allocation rules with their properties.

The analysis of the properties of cooperative games and their solution concepts
in general without referring to the situations that give rise to a particular game
constituted the main focus of the research in cooperative game theory after the initial
introduction of cooperative games in [12]. However, the last 40 years there has been
increasing attention for analysis that takes into account the underlying situation
that gives rise to a particular type of cooperative game. Linear production games
introduced in [8] and combinatorial optimization games as discussed in [2, 3] are
but two examples of such classes of games. Cooperative location games in which a
location problem determines the game form another class. Since location problems
can vary greatly depending on the specifics of the problem cooperative location
games also can vary greatly. An overview of location games can be found in [5].

Non-cooperative game theory studies situations in which the players cannot make
binding agreements. Therefore, they cannot coordinate their actions. The players
have strategies and the outcome of the game depends on which strategy each player
chooses. In a Nash equilibrium of a non-cooperative game each player chooses a
strategy and no player has an incentive to unilaterally deviate from his strategy
because this will not lead to an improvement of the outcome of the game for him.
In [6] a detailed overview of non-cooperative games and Nash equilibria and their
refinements is given.

In this paper we consider a new class of location games. The games we introduce
arise from location problems on a graph in which more than one facility needs to be
located. Differently from the p-facilities games discussed in [1, 2] the facilities in the
games we consider here differ with respect to the type of service that they provide.
The communities that need the services provided by the facilities can decide to
cooperate. We will discuss a cooperative game model and a non-cooperative game
model. The remainder of the paper is organized as follows. In Sect.2 the location
problem is introduced and its characteristics are discussed. It is shown that, in
general, a cooperative game arising from this location problem can have an empty
core. In Sect. 3 properties that are sufficient to guarantee the non-emptiness of the
core of these cooperative games are introduced and the proof of the non-emptiness
of the core for games that satisfy these properties is given. In Sect.4 the non-
cooperative model is discussed and we consider the nature of the Nash equilibria
of the game. We conclude with some ideas for further research in Sect. 5.

2 The Model

We consider a set of communities which are geographically separated and need
services that can be provided by facilities that have to be built. The communi-
ties belong to a greater administrative entity (county, state, province) which is
responsible for building the facility and provides the funding for doing this. This
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entity has the power to set restrictions with respect to the number of facilities that
may be built and the locations where they may be built. It wants to find a balance
between providing as much services as possible to the citizens in the communities
and preventing waste of resources by having facilities being built that are not
fully utilized. Another example of such a governmental structure is given by a
community of more or less autonomous islands for which the former colonizing
state (=the larger administrative entity) still provides aid in establishing certain
service facilities. An example of this last situation is given by the former islands
of the Netherlands Antilles and The Netherlands.

Let N = {1,2...,n} be the set of communities in need of services that
can be provided by facilities that are members of the set of facilities .F# =
{F1,F,,Fs, ..., F,}. Each facility F, € % provides a different type of service and
each community is in need of each type of service. The communities are connected
by roads (or ferries or air traffic). The set of communities with their connections
can be modeled as an undirected graph G =< N, E > where N is the set of nodes
of the graph G and equals the set of communities and E is the set of edges of G.
Since G is undirected each edge e € E is a two element subset of N. Each edge
{i,j} = e € E has a positive number [, = I;; associated with it. This number can
be viewed as the unit cost of providing the service of a facility located in one of
the nodes to a person located in the other node. We assume that G is connected. In
graph theoretic terms we consider /, to be the length of edge e € E. The distance
d(i,j) = d(j,i) between two nodes i,j € N is defined to be the length of a shortest
path from i to j. The length of a path is the sum of the lengths of the edges belonging
to the path. The administrative entity stipulates that the facilities can be located in
the communities (nodes of the graph) with at most one facility in each community
(node). The costs for community i related with the service provided by facility F,
is proportional to the distance between i and the node where F, is located. The
proportionality constant is denoted by w;(F,) > 0. The proportionality constant
w;(F,) can be seen as a measure of how many citizens of i will need the service
provided by F,. With a(F,) € N denoting the location of F,, the costs of i related
with the service provided by F, equals

wi(F,)d(i, a(F;)). (1)

Each community i has costs associated with not having access at all to the type of
service provided by a facility. The costs of community i if it does not have access
to the service provided by facility F, is denoted by L;(F,) > 0. The amount L;(F)
can be seen as the loss incurred by community i due to the lack of access to the
service provided by facility F,. A communityi is not allowed to decline the services
of a facility F, if F, is available even if w;d(i,a(F,) > L;(F,). Each community
is allowed to build only one facility and controls access to the facility built in the
location of the community. At most one of each type of facility may be built. The
communities can and will have to cooperate if they want access to more than one
type of service. The problem that arises is how to allocate the total costs among
the cooperating communities. Just letting each community be responsible for its
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own costs may not provide enough incentive for the communities to cooperate. By
modeling this situation as a cooperative game we can consider core elements of
the game as appropriate cost allocations. Recall that the core C(c) of a cost game
< N, ¢ > is defined as

Cle) ={x € R"| > xi=c(N). Y x <c(S)forall § € 2V \ {@}}. 2)

ieN ies
The following example illustrates this.

Example 1 Let N={1,2,3} be the set of communities. Let .% = {F, F,, F3} be the
set of facilities. The proportionality constants are given below.

wi(F1) =2 wi(Fy) = 1L wi(F3) =1
wa(F1) =3 wa(F2) =3 wa(F3) =3
w3(F1) = 1 wy(Fp) =2 w3(F3) =3

The losses are

Li(F1) =8 Li(F;) =6 Li(F3) =6
Ly(Fy) =7 Ly(Fy) =7 Ly(F3) =7
Lsy(F1) = 5 L3(F2) = 6 L3(F3) = 6.

The graph < N,V > is K3, the complete graph with 3 nodes. The lengths of the
edges are [1; = 1, l13 = 5, )3 = 3. Let < N, ¢ > be the cooperative cost game
arising from this situation. The players in this game are the communities. Each
player when working alone will build a facility that it needs the most in its node. So
player i will build facility F;, in the node corresponding to i where

F; = arg ;nea; Li(F,) 3)

Any tie may be broken arbitrarily. The cost of player i will be the sum of the losses
that it incurs by not having access to the facilities beside F;,. This yields c({1}) =
12, ¢c({2}) = 14, c({3}) = 11. A coalition consisting of two players i and j must
decide if it will build zero, one, or two facilities, which one(s) it will build, and
where it will put which one.The coalition will choose the option that minimizes it
costs. For the coalition consisting of players 1 and 2 this means placing F in nodel
and F, or F3 in node 2. This results in

c({1,2}) = Li(F3) + Ly(F3) + wi(F2)d(1,2) + wa(F1)d(1,2) @)
=6+7+14+3=17.

Similarly, we find c({1, 3}) = 20, ¢({2,3} = 25, and c¢({1, 2, 3}) = 27. One may

be inclined to divide the costs of 27 equally among the three players. However, this

would result in total costs of 18 for players 1 and 2 together which is more than
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the 17 they incur when working without 3. So, they will not accept this . Instead
a core element can be used to divide the costs of 27. The core of this game is
co({(2,14,11),(9,7,11), (3,14, 10), (10,7, 10)}). Here co(A) is the convex hull of
the set A.

In the following we will give a formal definition of a location game with type
dependent facilities. Let N, G, 1 : E — Ry, #,L; : ¥ — Ry foralli € N,
w; 1 F — R, foralli € N be as described above. For each coalition S € 2V \ {@}
we define the collection o5 of subsets of .# that S is allowed to build by

s ={A C Z||A| < |S]}. ®)

The definition of o7 reflects the fact that S may build at most |S| facilities. For each
non-empty coalition S and each element A of .7 we define a permissible assignment
of facilities to nodes belonging to S as a one-to one function

a5 A—S. (6)

Let P§ denote the set of all permissible assignments for S and A € 7. The cost of
a non-empty coalition S in a location game with type dependent facilities < N, ¢ >
is given by

c® = min Y (Y L(F)+ Y wiF)d(i.ay(F)). 7

S S
A5 SPA ies peg\a FeA

In Example 1 we discussed a location game with type dependent facilities with
a non-empty core. As Example 2 shows, the core of a location game with type
dependent facilities can be empty.

Example 2 Let N={1,2,3} be the set of communities. Let .% = {F, F,, F3} be the
set of facilities. The proportionality constants are given below.

wi(F) =2 wi(F) = 1wi(F3) =1
wa(F1) = 1 wa(Fa) = 1 wa(F3) =1
w3(F1) = 1 w3(Fp) =2 w3(F3) =3

The losses are

Li(F\) =1Li(Fy) =1L(F3) =1
Ly(F1) =2 Ly(Fy) = 2 Ly(F3) =2
L3(F1) = 1 L3y(F2) = 2 L3(F3) = 2.

The graph < N,V > is K3, the complete graph with 3 nodes. The lengths of the
edges are I;; = 1, 13 = 5, I3 = 3. The location game that corresponds to this
situation has c¢({1}) = 2, c({2}) = 4, c({3}) = 3, c({1,2}) = 5, c({1,3,}) = 8,
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c({2,3}) = 10, and c({1,2, 3}) = 14. Since it is impossible for x € R? to satisfy

X1+x <5
X1 +x3 <8

X2 +x3 <10

X1 +x+x;3 =14

simultaneously, it follows that this game has an empty core.

In the next section we will study conditions that will guarantee that a location game
with type dependent facilities will have a non- empty core.

3 Location Games with Type Dependent
Facilities with a Non-empty Core

In this section we will study conditions that guarantee the non-emptiness of the
core of the location games with type dependent facilities that were introduced in
Sect. 2. Let the finite set NV, the connected graph G =< N, E >, the length function
[ : E — Ry, the finite set .#, the loss functions L; : % — R4 foralli € N, and
the weight functions w; : % — R forall i € N give rise to the location game with
type dependent facilities < N, ¢ >. For all i € N we denote the maximum distance
between i and the other nodes in N by D;. That is,

D; = maxd(i,j). €]
jEN

We will first consider situations with |N| = |.%|. It is clear that if the loss incurred
by a player for not having access to a facility is small compared to the costs of using
a facility that is located in another node, there will be less incentive for the player
to cooperate with the others and the core of the game is likely to be empty. In fact,
this was the case in Example 2. This inspires the following definition.

Definition 1 A location game with type dependent facilities < N,c¢ > is said to
satisfy the no access big loss-property, or shorter, the NABL-property if
Li(F,) > wj(Fs)D;foralli,j e N, F,,Fs € #. ©)]

Note that in Definition 1 i may equal j and F, may equal F;.
The following property has to do with the way the players rank the facilities with
respect to their need for each facility.

Definition 2 A location game with type dependent facilities < N,c > is said to
satisfy the equal ranking, or ER-property if
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Li(Fr) = LI(FA) < L](Fr) = L](FA) for all l,] € N» Fers €Z. (10)

The ER-property implies that we can rank the facilities from most desired, i.e., the
one whose omission would cause the biggest loss for every player, to least desired,
the one whose omission would cause the smallest loss for every player. Any ties that
occur may be resolved arbitrarily. Without loss of generality and for ease of notation
we assume that this ranking is as follows: Fy, F», ..., F,. Given this ranking we
define the equal ranking with respect to weights property as follows.

Definition 3 A location game with type dependent facilities < N, ¢ > is said to
satisfy the equal ranking with respect to weights, or ERW-property if

wi(F1) = wi(F2) = wi(F3) > ... > w;(F,) foralli € N. (11)

The next property we introduce has to do with the magnitude of the difference
between the losses caused by the absence of two facilities that are ranked subse-
quently.

Definition 4 A location game with type dependent facilities is said to satisfy the
large loss difference or LLD- property if

Li(F,)—Li(Fry1) = Wi(F,)—wi(F,41))D; foralli € N, re {1,2,....n}. (12)

The next theorem uses three of these properties to show that every coalition with the
same size will build the same facilities.

Theorem 1 Let < N,c > be a location game with type dependent facilities that
satisfies the NABL-, ER-, and LLD-properties. Then for every coalition of size |S|,
its minimum costs c(S) are achieved by building the facilities F\,F», ..., Fs).

Proof Let S C N. First we will show that the minimum in (7) is achieved for a set
A with |A| = |S]. Let B C .Z with |B| < |S|. Let ay be an optimal way of assigning
the facilities in B to the nodes in S. Let F, € .# \ B. Place F, in a node of S that did
not get any facility assigned to it by alsg. Assume that this is node j. Then the change
in costs will equal

> wilFd(ij) = ) Li(Fy) <0, (13)

i€S,iFj i€S

Here the inequality follows from the NABL-property. It follows that the minimum
is achieved for a set with cardinality equal to |S|.

Suppose A is a subset of .7 with |A| = |§|, and A # {F\,F»,...,Fjs}. Let
F, € Abut notin {F1,F5,...,Fig} and let F, € {F|,F»,...,Fjg} but not in A.
Replace F; by F,. Assume that F; was located in node j € S. Then the change in
costs will equal



46 1. Curiel

D wilFy) — wi(F)d(i.j) = Y (Li(F,) = Li(F))) < 0. (14)

i€s i€s

The inequality follows from the LLD-property. So, for any set with cardinality |S|
the minimum costs, ¢(S), are achieved by building the facilities F'y, F», ..., F|g. O

In the proof of the non-emptiness of the core of a location game that satisfies the four
properties mentioned above we will use the fact that a related permutation game has
a non-empty core. Permutation games were introduced in [11] where it was shown
that they are totally balanced. This implies that every permutation game has a non-
empty core. To define a permutation game with n players an n x n-matrix K is given.
The cost of a coalition § in a permutation game < N, ¢ > is given by

c(8) = 75211% ;K,-n(,-). (15)

Here Kj; is the entry in row i and column j of the matrix K and ITs is the set of
permutations of S.

Given the sets and functions that define a location game with type dependent
facilities < N, ¢ >, we define a n x n-matrix K by

Ky =Y wi(F)d(k.i). (16)

keN

Recall that wi(F;)d(k, i) is equal to the costs for player k to access facility F; if
facility F;is located innode i. Let< N, ¢’ > be the permutation game associated with
this matrix K. The following theorem describes the relationship between < N, ¢ >
and < N, ¢’ >.

Theorem 2 Let < N,c > be a location game with type dependent facilities
that satisfies the NABL-, ER-, ERW-, and LLD-properties. Let < N,c’ > be the
permutation game associated with the matrix K as defined in (16). Then

1. ¢(N) = /(N) and
2. ¢(8) = (S) forall S C N.

Proof By Theorem 1 the grand coalition N will build all n facilities. The cost for
the grand coalition associated with building facility F; in node i is given by Kj; as
defined in (16). So, both ¢(N) and ¢’(N) are given by

Jmin 2 Kin i) (17)

It follows that ¢(N) = ¢'(N).
Let S be a subset of N with S # @, N. We construct two|S| x |S|-submatrices of
the matrix K. The first |S| x |S|-matrix KSwe obtain by deleting every column j with
J € S and every row i with i € S from the matrix K. The second |S| x |S|-matrix K’
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we obtain by deleting every column j with j > |S| and every row i with i & S from
K. From the ERW-property it follows that

K} > K foralli,j €. (18)

In the following I1js) denotes the set of permutations of the set {1,2,...,|S[}. From
the way that ¢’ is defined it follows that

i=|S]
¢(S) = min Koy (19)

w€ll|g) =

Similarly, we define a cooperative cost game < N, d > associated with the matrix
K’ by

i=|S|
d(S) = min Ki - (20)

ﬂenm i1
Let the minimum in (20) be attained for 7, and let
o {LL2...,|S]} > S (21)

be such that ¢ (i) is that element of S that corresponds to the i-th row in K® and K.
From (18) it follows that d(S) > ¢/(S). Therefore,

N n

() =d(S) =YY wiF)do (' (). k) + Y. Y L(Fy) = d(S) = (S).
=1 kes J=ISI+1 k€S

(22)

Here the equality follows from the definitions of ¢(S) and d(S) and the first

inequality follows from the NABL-property. O

The non-emptiness of the core of the location game with type dependent facilities is
now easily established.

Theorem 3 Let < N,c > be a location game with type dependent facilities
that satisfies the NABL-, ER-, ERW-, and LLD-properties. Then the core C(c) of
< N, ¢ > is not empty.

Proof Because < N, ¢’ > is a permutation game it has a non-empty core. Because
c¢(N) = ¢(N) and ¢(S) > /(S) for all S C N it follows that every core-element of
< N, ¢’ > is also a core element of < N, ¢ >. O

If the number of facilities is greater than the number of players, i.e. |[%| > |N|,
and the game satisfies the NABL-, ER-, ERW-, and LLD-properties it is easy to
see that the core will be non-empty. A core element can be constructed as follows.
Let < N,c > be the location game with all || facilities and let the truncated
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location game < N, ¢’ > be the game we obtain when we consider only the |N| top
ranked facilities. From Theorem 3 it follows that C(c") # @. Let x' € C(c'). Then x
defined by

Ed
Xi=x + Z Li(F,) foralli e N (23)
r=|N|+1

is an element of the core C(c) of the game < N, ¢ >.

If the number of facilities is less than the number of players a trivial example that
shows that the core can be empty is to consider the case |.%#| = 1. Then c({i}) = 0
for all i € N while ¢(S) > O for all S with at least two members. A less trivial
example is given below.

Example 3 Let N = {1,2,3}. Let G =< N, E > be the complete graph on three
nodes. The lengths of the edges are [1, = 3, [;3 = 10, L3 = 5. Let &% = {Fy, F3}.
The proportionality constants are given below.

W](F]) =3 Wl(Fz) =2
W2(F1) =5 Wz(Fz) =4
wi(F1) = 4 wi(F2) =3

The losses are

Li(F1) =45 L(Fy) = 34
Lz(Fl) =54 Lz(Fz) = 37
L3(F|) = 60 L3(F2) == 52

Then the NABL-, ER-, ERW-, and LLD-properties are satisfied and c({1}) = 34,
c({2}) = 37, c({3}) = 52, c({1,2}) = 21, c¢({1,3}) = 48, c({2,3}) = 40, and
c¢({1,2,3}) = 65. The core of this game is empty since it is impossible for an
x € R? to satisfy
X +x <21
X +x3 <48
X2 +x3 <40
X1+ x +x3 =65

simultaneously.

Although in the case that |.#| < |N| adding additional players to a coalition S with
|S| = |-#| would not lead to more facilities being built the core of the game can still
be non-empty as the following example shows.
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Example 4 Let N = {1,2,3}. Let G =< N, E > be the complete graph on three
nodes. The lengths of the edges are [;; = 1, ;3 = 6, l,3 = 6. The proportionality
constants are

wi(F1) =4 wi(F) =3
wa(F1) =2 wy(Fp) =2
wi(F1) = 1ws(Fp) =1

The losses are the same as in Example 3. The NABL-, ER-, ERW-, and LLD-
properties are satisfied. The costs of the coalitions are c¢({1}) = 34, ¢({2}) = 37,
c({3}) = 52,c¢({1,2}) = 5, c({1,3}) = 24, c({2,3}) = 18, c({1,2,3}) = 17. The
core of this game is co({(—1, =7, 25), (—1, 6, 12), (12, =7, 12)}).

4 A Non-cooperative Approach

In the previous sections we introduced an analyzed situations in which a set of
communities that belong to a greater administrative entity can cooperate in the
building of facilities that provide services that are needed by the communities. In
this section we analyze what happens if the communities can not make binding
agreements. We cannot use a cooperative game anymore. Instead we will look at
a non-cooperative game. We assume that |.%| = |N|. The rules of the game are as
follows. The greater administrative entity allows every community to indicate which
facility it wants to have built in its geographical location. If only one community
chooses facility F, then facility F, will be built in the location of that community.
If s communities choose facility F, then a lottery will be conducted to decide where
facility F, will be built. A facility that is not chosen by any player will not be
built. Each one of the s communities will have probability % of having facility F,
built in its location. The game we will consider is a game of complete information.
Each community has all the information about the losses, proportionality constants,
and distances of all communities. Each community also knows the decision rule
that the administrative entity will apply. The communities have to submit their
choice simultaneously. Each community wants to minimize its expected costs. The
following example uses the data from Example 2 to generate this non-cooperative
game.

Example 5 Let N, G =< N,E >, 1, fore € E, %, L; and w; for i € N be as
in Example 2. In the non-cooperative location game with type dependent facilities
arising from this situation each player has three pure strategies. The costs associated
with the 3-tuples of pure strategies are given below.

(54,51 61)(6, 4, 10)(6, 4, 13 )
1 1 1 1

(6, 4%,1115)(95,55,9 )(9,1 4,l 171)

(6, 43,75 ) (9, 4, 18) (95,55, 111)
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(6, 53.55) (33,41 ,9)(5 4, 13 )
(53,4, 9 )(33,54,52)(55.4, 12 )
(6, 4, 10)(33,43.16) (53.53.125)

(6,5 5%)(51 4,l 10)(3%,4%,9%1)
(6,4, 11)(54,51.8 )(33,4%,115)
(5.4, 11)(4, 4, 13)(3%,54,10 )

The first, second, and third matrix corresponds to the pure strategies F, F,, F3,
respectively, of player 3. In each matrix the first, second and third row corresponds
to the pure strategies F, F,, F3, respectively, of player 1. For player 2 the first,
second, and third column in each matrix corresponds to the pure strategies F, F»,
F5, respectively. By inspection we see that this game has two Nash equilibria in pure
strategies. They are (F», F1, F3) and (F3, F,, F3).

In a non-cooperative location game with type dependent facilities the set of pure
strategies of every player is the set #. Letx = (x1,x2,...,x,) = (F;,, Fip, ..., Fi,)
be an n-tuple of pure strategies of the n players. For every F, € % let |xp,| denote
the number of times that F, occurs in x. Let P.(F,) denote the set of players that
choose F, in x. The cost function u; for player i € N is given by

W =Y — Y wEdGH+ Y LF). @4

r=1,\x1:,|750 " JEPL(Fy) r=1,|xF,|=0

In Example 5 none of the two Nash equilibria in pure strategies corresponds to
choices of the players that would lead to all three facilities being built. This cannot
happen if the game satisfies the strict NABL-property, that is, the NABL-property
with the inequality replaced by a strict inequality. This is shown in Theorem 4.

Theorem 4 Let x = (x1,X3...,X,) be a Nash equilibrium in pure strategies in a
non-cooperative game with type dependent facilities that satisfies the strict NABL-
property. Then |xg,| = 1 forall F, € .

Proof Let x be such that there is a F, € .% such that |xp,| # 1. Let F, be such that
|xF,| > 1 and let F; be such that |xz,| = 0. Consider a player i with i € Py(F,).
Define y by

o Xj lf] 7& i,
77| F, otherwise.

Then

() — 1) = LF) — —— 3 wi(F)d(ij) > 0. ©5)

Ix£, |1yF, | P
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Here the equality follows from the definition of y and the inequality follows from
the strict NABL-property. Since player i can do better by unilaterally changing his
strategy it follows that x is not a Nash equilibrium. O

From the proof of Theorem 4 it is easy to see that every x = (x1,xp,...,x,) with
|xg,| = 1 forall F, € .% is a Nash equilibrium. That leads to the following theorem.

Theorem S The set of Nash equilibria of a non-cooperative location game with
type dependent facilities that satisfies the strict NABL-property is equal to the set of
n-tuples of strategies in which each player chooses a different facility.

Proof By Theorem 4 and its proof. O

So if the strict NABL-property is satisfied each Nash equilibrium will lead to every
facility being built.

5 Concluding Remarks

In the previous sections we analyzed, in a cooperative and a non-cooperative setting,
location situations with type dependent facilities. In both settings a crucial aspect
of the analysis was the magnitude of the loss incurred by the players if they
didn’t have access to a certain facility. We gave sufficient conditions for the core
of a cooperative game with type dependent facilities to be non-empty. However,
these conditions are not necessary as Example 1 shows. If the facilities under
consideration are necessary for the saving of lives (like certain types of medical
treatments) the NABL-property is a natural property to occur. The ER- and ERW-
properties will also occur naturally in such situations if the medical conditions
that require certain treatments have approximately the same distributions in all
the communities. The LLD-property is less intuitive. It compares the difference
between the losses of a community due to the lack of access to two facilities with
the difference between the costs when these facilities are as far as possible from
the community. Other conditions that guarantee non-emptiness of the core could be
found. It would be especially interesting to find conditions that are necessary and
sufficient. We did not consider setup costs for the facilities. All costs involved in
building the facilities were assumed to be handled by an administrative entity that
was not one of the players but controlled the rules of the game being played. Further
research could look at an analysis of the situation when the players themselves are
responsible for the setup costs of the facilities. Another research direction is the
study of how a game with an empty core could be broken in to smaller games with
non-empty cores in a way that is as cost efficient as possible.
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Notation

oy, op  Positive real number

B1, B> Positive real number

8 Positive real number

r Game

2 Rectangular region in two-dimensional space
a Positive constant

b Positive constant

c Positive constant

f Payoff function

n Number of test points

by Player’s strategy or cartesian coordinate
y Cartesian coordinate

AoA Angle of Attack

DoE Design of Experiment

ED Experiments Design

E; Experiments

FT Flight Tests

H Pressure altitude
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K Payoff function

L Payoff function
M Mach number

N Finite players’ set

NE Nash Equilibrium
P, O  Experiment or test points

StE Structural Engineering
SyE Systems Engineering
Ug Equivalent airspeed

X Players’ strategy set

1 Introduction

In this chapter a survey of location methods based on Nash equilibria for the
design of experiments is presented. An experimental design, or design of experiment
(DoE), is the detailed planning of testing activities. As the time and cost require-
ments nowadays could experience no difference between a numerical simulation
and an experimental campaign, DoE would refer in general to the design of a test,
either being numerical or experimental. The design phase is needed due to maximize
the information gathered from tests and to solve some related issues, as their non-
repeatability. Experimental design is an effective technique made for maximizing
the amount of information gained from a test while minimizing the amount of data
to be acquired, ensuring the assessment of valid and reliable conclusions. DoE can
be used in several engineering problem-solving areas:

* Sensitivity analysis, whose goal is the determination of the dependency of the
whole process on a single factor. It is used to discriminate among relevant and
non-relevant factors [36].

¢ Modeling, whose scope is to find the good fitting between a model and an
experimental data set to estimate the parameters characterizing the modeled
process [20].

e Optimization, i.e. the determination of the optimal setting to achieve the best
results [21].

These areas are strictly connected because usually the optimization process involves
modeling and sensitivity analysis to increase the knowledge of the system under
optimization. The location of receivers is a problem that can be included in DoE,
because the scope is to determine the optimal location of a certain number of
receivers [14] to maximize data gathering resulting from test execution. Location
problems deal with finding the best location for one or more facilities such that
some objectives are optimized [18, 19]. Generally one distinguishes three classes of
location models depending on the domain of feasible locations: continuous location
problem, network location problem and discrete location problem. If more that one
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facility has to be located one deals with a multi-facility location problem. Facility
location models assume that the closer the facility is to demand, the better the
objective is met.

The solution of a facility location problem is restricted to the bi-dimensional case
and approached by means of a potential formulation and a Nash non-cooperative
game. The most important definitions and proofs are reported in Sect. 2.

A game theoretical approach to a multi-facility continuous location problems
was presented in [23], where each competitor controls one or more facilities trying
to optimize an economic objective. This model is representative of a classical facility
location problem common in Operation Research area. The solution of the location
problem is a Nash equilibrium solution of the related game. The game has a peculiar
structure, namely it is a potential game where the Nash equilibrium solutions are
the minimum points of a function, that is called the potential function or potential
[24, 29]. The numerical procedure to compute the maxima of the potential is based
on a genetic algorithm [5, 8-10, 16, 32, 37]. Another case is also considered,
where some experiments are already planned and the problem is to determine the
optimal value of the design variables of a certain number of new experiments, that
still optimize the same criteria of the previous set, but are taking into account
the informations derived from the previous design. This situation corresponds to
a multi-facility continuous location problem, where some existing facilities are
already in the admissible region providing, within the game theoretical model, an
additional term in the objective functions [27].

Two main application fields are employed to stress the capability of an ad
hoc numerical methodology involved in the solution of the location problem. The
first one refers to optimal (constrained) location of sensors collecting cosmic rays
for astrophysics experiments [11, 12, 25, 26], see Sect.3. This is related to the
location of a certain number of receivers on ground, under uniform cosmic source
distribution, with a bounded settlement area, further constrained to a limited number
of receivers due to a budget cap. Assuming that the capture area of each receiver (e.g.
a radar) has a circular shape, this application shares many aspects with the classic
sphere packing problem [7, 22, 33] that has been applied in several fields (Fig. 1)
and solved with algorithmic optimization procedures [4, 6, 17, 23, 28, 31, 34, 35].
In this case the greater difference between the typical location problem on a bounded
domain and the considered location problem is the following: in the latter, the nature
of the domain’s boundaries is such to act as a cut-off line on which the receiver lost
its efficacy or any other measure of profit. In other words, as in the sphere packing
problem, the spheres are forced to stay within a limited bounded volume avoiding
to consider their elasticity in reduce their size, in the examined location problem the
receiver or sensor (for an experiment) loses a portion of its efficacy in collecting the
signal (pressure, temperature, etc.) by allowing itself to be pushed on the boundary,
because the information is limited within the same boundary (see Sect.2.2). For
this reason, a classical facility location problem with an additional requirement is
studied: to locate the facilities far from the boundary of the admissible region.

The second application field presented in this manuscript regards the design of
a test matrix for an envelope expansion flight test campaign [13, 27], see Sect. 4.
In this case, the test points must be located inside the flight envelope of the airplane,
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Fig. 1 Sketches for classic sphere packing problem in a cubic domain
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Fig. 2 Fighter type aircraft flight envelope

which is defined as the region where the aircraft is allowed to fly and is limited by
the aircraft limits. The aircraft could be conducted outside the envelope flight only
under a particular flight clearance and using a controlled test environment. Figure 2
shows a typical flight envelope for a fighter type aircraft with the limiting factors per
each area where flying the aircraft is forbidden. Those areas are the following:

¢ A: Stall limit/High angle of attack (abbreviated as AoA).
¢ B: Engine performance (related to the service altitude).

¢ C: Compressibility, or Mach number effects.

¢ D: Dynamic pressure effects (related to structural limits).
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Classical methods used to design test matrices for flight tests are the Economy
Methods and the Extensive Methods. The Economy Methods concentrate on min-
imizing the number of test points in order to save money. In this case, a subset
of flight test conditions (i.e. Mach number and pressure altitude) will be chosen
considering a build-up approach in dynamic pressure in order to increase flight test
safety. The Extensive Methods attempts to cover the majority of the flight envelope
resulting very expensive and time consuming but also giving more data. Generally,
due to money constraints, Economy Methods are more used in flight test.

The approach presented in [13, 27] consists of an alternative method to those
previously mentioned. The main driving factors in this kind of DoE are the require-
ments to be demonstrated by two engineering departments: Structural Engineering
(StE) and Systems Engineering (SyE). Generally, StE is more interested on true
airspeed, load factor and compressibility effects on the aircraft structure, thus,
requires optimized test points distribution in Mach number. SyE is instead more
focused on environmental effects on the aircraft and its systems, thus, demanding
an optimized distribution in pressure altitude.

However, it is fundamental to add an additional requirement that guarantees
testing at the conditions corresponding to the maximum equivalent airspeed, which
is a function of both Mach number and pressure altitude. This kind of problem can
be approached as a particular non-cooperative game, where the two engineering
departments represent the two players. The test matrix is designed in order to give
the opportunity to both departments to optimize the test points distribution for their
objectives considering the problem of a new store certification process.

The structure of this manuscript presents in Sect.2 a discussion on the facility
location problem, while in Sects. 3 and 4 are presented the results for, respectively,
sensors location in experiments for astrophysics and test matrix for airplane flight
test activities. The conclusions are summarized in Sect. 5.

2 Location Problem in Two Dimensions

In this section the location problem in a bi-dimensional space is discussed. Some
preliminaries of Game Theory are presented in Sect. 2.1, where the definition of
Nash equilibrium and exact potential game are reported. In Sect. 2.2 the experimen-
tal design and the facility location game definitions are recalled. Those informations
are later used for the applications described in Sects. 3 and 4.

2.1 Preliminaries of Game Theory

Let consider an n-player normal form game I" (n € .4, where ./ is the set of
natural numbers), that consists of a tuple
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I =< N;Xl,...,Xn;fl,...,ﬁ, >

where N = {1,2,...,n} is the finite player set, for each i € N the set of player i’s
strategies is X; (i.e. the set of player i’s admissible choices) and f; : X x---xX, > %
is player i’s payoff function (Z is the set of real numbers). It is supposed that
players are cost minimizing, so that player i has a cost f;(x;,x3,...,x,) when
player 1 chooses x; € Xj, player 2 chooses x, € X, and player n chooses
X, € X, It is defined X = X; x ... x X;; and fori € N: X_; = ey (3 X;. Let
X = (x,x2,...,%,) € Xand i € N. In the following it is also used x = (x;, X_;),
where X_; = (X1, ..., Xi—1, Xif 1y -+ - » Xn)-

Definition 1 A Nash equilibrium [3] for I' is a strategy profile X =
(X1,%2,...,X,) € X such that for any i € N and for any x; € X; one has that

fi®) = filxi, X-)).

It is denoted by NE(I") the set of the Nash equilibrium strategy profiles. Any X =
(X1,...,%,) € NE(I') is a vector such that for any i € N, X; is solution to the
optimization problem

Elel)l(l’_ﬁ (i, X—7).
A very well known existence result of Nash equilibria is the theorem proved by J.
Nash in 1950. Not always a game admits a Nash equilibrium solution. There are
special situations in which this is true, for example in potential games. Potential
games have been introduced by Monderer and Shapley: the idea is that a game is
said potential if the information that is sufficient to determine Nash equilibria can

be summarized in a single function on the strategy space, the potential function
[24, 29].

Definition 2 A game I' =< N; Xy,..., Xy fi,-...fy > 1S an exact potential game
(or simply potential game) if there exists a function V : IT;,eyX; — Z such that for
each player i € N, each strategy profile x—; € ITjey\ (33 X; of i’s opponents, and each
pair x;, y; € X; of strategies of player i:

fiyi X)) — filxi, =) = V(yi, X)) — V(xi, X—).

The function V is called an exact potential (or, in short, a potential) of the game
I'. If V is a potential function of I', the difference induced by a single deviation
is equal to that of the deviator’s payoff function. Clearly, by definition, the set of
all strategy profiles that minimize V (called potential minimizers) is a subset of the
Nash equilibrium set of the game I:

argmin V(x) € NE(I'").

xeX
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This implies that in a potential game finding a Nash equilibrium means to solve
an optimization problem, namely finding the minimum points of the potential
function V.

2.2 DoE as a Facility Location Game

Let £2 be a rectangular region of 2. The model is restricted to the unit square
2 = [0, 1]? without leading the generalities (rescaling the variables our results
hold). The problem is to decide for two variables x and y the values of n available
experiments (n € .4). So one wants to settle n points Py, P, ..., P, in the square in
such a way that they are far as possible from the rest of the points and, in some cases
(as the optimization of sensor devices location on the layer), from the boundary of
the square. This implies to maximize the dispersion of the points. Each point is
assigned to a virtual player, whose decision variables are the coordinates and whose
pay-off function translates the dispersion in terms of distances.

Problem 1 (Experimental Design (ED)) The problem of deciding the values of
two variables for n assigned experiments is to choose Py, ..., P, € §2 maximiz-
ing the

dispersion(Py, ..., Py),

where the dispersion function is defined in a suitable way [14].

If the dispersion is translated with a suitable objective function, this problem
corresponds to a classical facility location problem.

The problem could be stated in different ways, and one of the better known
historical formalization are the Weber’s problem or minisum, that minimizes the sum
of weighted distances, and the minimax problem (von Neumann) that minimizes
the maximal distance between facilities and demand points (Fig. 3). In a n facility
location problem, one considers 7 virtual players each of them optimizing a suitable
objective function in the admissible region. As in Problem 1 it is required to
maximize the dispersion, imaging that each player wants to stay as far as possible
from the opponents (and, in some cases, from the boundary of the region). So, a
non-cooperative behavior emerges and a Nash equilibrium solution for this game is
considered (Fig. 4).

In the following the focus lies on the situation where there is a competition
between the points in the admissible region, because the dispersion depends on
the mutual position of all the points and also on the distance with respect to the
boundary of the region. It is assumed that there are n (virtual) players, i.e. the n
points to determine, competing in order to choose the optimal locations: the location
problem can be stated as a Nash equilibrium problem.
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Fig. 3 Location problem statement as a sketch on the left side; Weber’s problem or minisum on
the right side

Player 1 controls (z1,y1)

"\ Player 2 controls (z2,2) ®
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™ e VoL
.-
\ .

Fig. 4 Location problem as a game

Definition3 Let N = {1,...,n} (n € A); the facility location game is the
n-player strategic form game FnED =< N;$82;{f;,i € N} >, where §2 and f; are
defined by the following assumptions:

(i) Each player i has to set up a new facility in a point P' € 2 C %?, where £2 is
the compact set of the feasible locations for each player, i.e. his strategy set.
(i1) Each point P; has to be far away as possible from 052, the boundary of £2.
(iii) The function d(P, Q) is a measure of the distance between any two points P
and Q in %°.
(iv) Foranyi € N, b;, ¢; : [0, +00[— Z are lower semi-continuous and increasing
functions.
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(v) The new facilities will be locate in (f’l, ... ,13,1) € £2" such that each player i
wants to minimize the total cost f; : A — % defined by

1 1
PP = ) bi(m)Jrc"(d(Pi,aQ))

1<j<nj#i

being A = {(Pi,....P,) €R":P;e(0,1)* Pi#P;Vij=1,....n}
{j # i} and d(P, 082) = mingeyq d(P, Q).

The first n — 1 terms in the definition of f; depend on the inverse distance between
the point P; and the rest of the points, where the last term is a decreasing function
of the distance of P; from the boundary of the square.

It may happen that after locating a number k (k € .4") of location points,
i. e. facility location positions that correspond to design variable vectors, a budget
variation occurs and it is possible to locate n (n € .#") additional facility location
points taking into account that in the admissible region there are already k of
them (demand points). In this dynamic situation the following location game is
defined [27].

Definition4 Let k € 4 and {Q;,..., 0} (Q; € £2,j = 1,...,k); the facility
location game [P =< N; 2;{f;,i € N};:k,{Qi, . ... O} > is defined as follows:

(i) Each player i has to set up a new facility in a point P’ € 2 C %2, where 2 is

the compact set of the feasible locations for each player, i.e. his strategy set.

(ii) Each point P; has to be far away as possible from each demand point Q;, j =
1,...,k, and from 052, the boundary of £2.

(iii) The function d(P, Q) is a measure of the distance between any two points P
and Q in %>

(iv) For any i € N, a;,b;,¢; : [0,+00[—~> Z are lower semi-continuous and
increasing functions.

(v) The new facilities will be locate in (ﬁl, . ,IA’n) € £2" such that each player i
wants to minimize the total cost f; : A — % defined by

1 ! !
F(Pra. .. P =Zai(m) + 2 bi(d(Pi,Pj)) +C"(d(P,-, asz))

1<j<k 1<j<nj#i

being A = {(Py,...,P,) € 2" : P;€(0,1)% P; # P, Vi # I, P; # Q;} with
i,l=1,...,nandj=1,...,kand d(P, 052) = mingey d(P, Q).
The game I'FP is a particular case of the game F,fD , i.e. without demand points
that requires @; = 0 forany i = 1, ..., n in Definition 4.

Any Nash equilibrium solution of the game Frka is an optimal solution of the
problem (ED), for which a sketch in Fig. 5 is illustrated.

In the next section are presented some theoretical as well computational results

concerning the facility location games I;? and I'P.



62 E. Daniele et al.

(0,1) (1,1)
J/(](P:;.(')Sl) d(Pl, PS)
Pg.\
\ (P, 09) ——d(P, )
o——
P
/ ? —— d(P:, P3)
Py
(0,0) (0,1)

Fig. 5 Sketch for the game of location problem (ED)

3 Sensor Location in Experiment for Astrophysics

In the following we denote P; = (x;,y;), i € N. Next definition specifies the solution
of the problem (ED) in terms of Cartesian coordinates.

Definition 5 Any (X1, y1,...,%:, ¥») € A Nash equilibrium solution of the game
IEP (resp. I)) is an optimal solution of the problem (ED). For any i € N, (. 1)
is solution to the optimization problem

min_fi(X1, Y1, .« X1, Vi s Xis Yis Xid 1, Vid 1s - -+ » X Yn)
(xi.yi) €S

with (x1,y1,...,%:,Ys) € A, being f; the cost function specified in Definition 3
(resp. 4).

As proved in [26], [EP and T ka are potential games and there exists a solution to
the problem (ED), namely a Nash equilibrium solution.

3.1 Absence of Demand Points

In this sub-section it is considered the game I'*P as given in Definition 3, with

d(P, Q) the Euclidean metric in %2 and for any i € N

bi(t) =t, ¢i(t) = \/g vVt > 0.

In terms of coordinates, if P; = (x;,y;),i € N the distance of a point P = (x, y) from
the set 052, the boundary of 2, is

d(P,082) = glgn})?z d(P,Q) = min{x,y, 1 —x, 1 —y}

€
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and one has for (x1,y1,..., X, yn) €A
£ = ¥ 1 +
ixl»yl""axlhyn =
| <j=miti V& —x)2 4+ (i — )2

1
\/2min{x,~,y,-, 1 —x,1 _)’i}.

)]

In order to find the Nash equilibrium solutions of the game I'*P, by means of
Theorem 2 of [26] it is sufficient to minimize the potential function V, then to solve
the following optimization problem:

min VX1, V1o X, V) =
(X1, Y11 Xn,yn) EA

1 1
min +
D B B e e A S e e e

<i<j<n 1<i<n
2

being A = {(P,....P,) € 2":P;€ (10,12 P; #P;Vi,j=1,....nj #i}.
The solution of this problem is achieved through a computational procedure based
on a genetic algorithm. The results summarized in this section are purely numerical
and they have been computed by a genetic algorithm for several cases, where the
number of points to be located is increased.

A genetic algorithm (GA) is an optimization technique based on the Darwin’s
principles about natural selection. The principal object is a virtual individual
(or chromosome) that represents a feasible solution in the search space. In a binary
representation it’s made by a string of bits, called chromosome, that is the genotype
model of problem variables or properties (see, for example, [15]). A population
is a finite set of individuals. It is a sampling of the problem domain that evolves
generation by generation, exploring zones with an higher probability of minimum
cost function. These improvements are achieved by combining the good features of
each individual, using crossover and mutation operators. The algorithm consists of
several steps:

* Initialization, where in the first step a new population is initialized, generating a
set of random solutions in the search space.

 Fitness computation, where fitness means the function that estimates the quality
of a chromosome, combining cost function and constraints for each individual.

* Selection, i.e. a probabilistic based selection is performed on sorted population
to choose parents for applying genetic operators. The selection does not waste
worst chromosomes, useful to move towards unexplored zones of search space.

* Crossover/mutation, where the genotypes of selected parents are mixed to
generate new individuals for the following population. To avoid premature
stagnation of the algorithm a mutation operator is used, randomly changing a
bit of the just created chromosomes.
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Table 1 Genetic algorithm character-
istics

Parameter Value or type
Chromosome Binary string
Crossover Multi-cat
Mating-pool 50
Mutation probability | 0.01%
Population size 100
1 1
0.8 |- 1 0.8 |- N
° [ ]
Y °
0.6 - 1 0.6 |- N
= = [ ]
0.4 - 0.4 |
() [ ] °
[ ]
0.2 - 0.2 |
O | | | | U | | | |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Z T

Fig. 6 Cases forn =4,5

* Population evolution occurs when the whole population built on parents and
children is sorted by using a new fitness computation and then it is cut to the
initial population size.

The genetic algorithm employed for the solution of the location problem is
initialized using parameters that are summarized in Table 1. Each one of the
following results is intended to represent only one of the several solutions that
differs only for the permutation of design point locations. This reduces the number
of evaluation of the location problem solutions proportional to the factorial of the
number of points to be located. In Figs. 6 and 7 the results obtained with n = 4,5
and 15,20 are shown, respectively. The symmetrical nature of the solution for the
case with few points is lost when the number of locations increases to 15 and 20
elements.

3.2 Presence of Demand Points

In this sub-section it is considered the game I’ ka as given in Definition 4, with
d(P, Q) the Euclidean metric in Z2, Q1. . .., O« points in £2 and for any i € N

ai(t) = bi(t) =t, ci(t) = \/g vVt > 0.
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Fig. 7 Cases forn = 15,20
In terms of coordinates one denotes P; = (x;,y;),i € N and Q; = (s;.4),j =

1,...,k; then

1
S, Y1, o X, Yn) = +
l;k Vi —)* + (i — )

3 1 1 3

+ = .
lﬁjfnj#i \/(xi _'xj)z + (yi _y])2 \/2mln{xi5 Vi, 1 — X, 1 _yl}

As in the previous case, in order to find the Nash equilibrium solutions of the game
IEP. itis sufficient to minimize the potential function V, as in the following [26]:

min VX1, V15 Xns Yn) =
(X1 Y1500 Xn,Yn) EA

. 1
M e 2o L

+
191 1<i<n 1<j<k V@i —5)% + i — 1))’

1 1
2 2 St Y ,
1<igen VO =)+ 0=y S, v 2mindx, yi L= xi 1= i)
“4)

being

A = {(P,....P,) e " : P (0, 1D)* P; # P Vi# 1P # Q;} withi,] =
1,...,nand j = 1,...,k. The solution of this problem follows a computational
procedure based on a genetic algorithm analogously to the one used in the previous
sub-section. In Fig. 8 the results obtained with (n, k) = (5, 4) are shown, compared
with the results of the case without demands points: the blue points represent the
locations evaluated considering the already present red demand points.
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Fig. 8 Solution to I'y?, and to I

4 Design of a Test Matrix for an Envelope Expansion
Flight Test Activity

The problem of designing a test matrix for an envelope expansion flight test activity
is an experimental design problem that we define as a facility location problem.

It is assumed that the requirements of the different engineering departments
can be formalized with two different objective functions. The StE, being more
interested on combined true airspeed, load factor and compressibility effects on the
structures, optimizes distributions in Mach number, while SyE, being more focused
on environmental effects on the aircraft and store systems, optimizes distributions in
pressure altitude. However, both the engineering departments need to investigate and
report, as an additional requirement, the effects of high dynamic pressures on both
structure and systems, that means to test at the maximum equivalent airspeed, Ug.
The latter is a function of both the Mach number and the pressure altitude (Fig. 9).

A decision should be taken concerning the design variables U;, U,, whose values
are in suitable real intervals, for n experiments E|, ..., E,. The two players StE
and SyE decide for each experiment i the values of U}; and Uy; in the spatial domain
optimizing a payoff function. As already mentioned, the StE optimizes the test
points distribution in Mach number, while the SyE optimizes the distributions in
pressure altitude, but both of them want to maximize test points density near the
maximum equivalent airspeed (Ug) area. Because of this definition, StE and SyE
are in a competition. In the next we define the Flight Test Location Game.

Let n be a fixed natural number (n > 1), that is the number of the prescribed
flight test points.

Definition 6 The Flight Test Location Game is the two-player strategic form game
'l =< 2; X7, X5 f1.f» > defined as follows:
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Fig. 9 Flying in the hot spot

(i) Player 1 is the StE team and player 2 is the SyE team.

(i) The sets Xi, X, are real intervals and represent the variable ranges: for each
i €[1,n] (with [1,n] = {1,...,n}), player 1 choses the Mach number M; in the
set X1 = [My, My] and player 2 the pressure altitude H; in X, = [Hy, Hy]. The
i-th flight test point has coordinates (M;, H;) and (M, H) is the 2n-dimensional
vector (My,...M,,H,,...,H,). Player 1 (resp. player 2) has to choose a n-
dimensional vector M € X! (resp. H € X.

(iii) The objective functions are real valued functions defined on X] x X7 and
defined by

n

SMH) = Z |:\/051(Mi —Mp)? + ar(M; — My)? + §(Uy — U;)—

i=1
M; — M2 (H; — H;)?
min ( f)+( ) (3)
jelln]j#i M} H}

and

n

HL(MH) = Z |:\/,31(Hi — H;)? + B2(H; — Hy)* + 8(Uy — Uj)—

i=1
M; — M2 (H; — H;)?
min ( f)+( ) (6)
jelln]ji M} H}
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where «y, oz, B1, B2, § are positive real numbers, Uy = 400 KCAS and the
equivalent airspeed U; = Ug(M;, H;) is a function of M; and H; under the
assumption of International Standard Atmosphere [1]. Here the equivalent
airspeed is given by Ug (M;, H;) = a M;+/(1 + b H;)° with a, b, ¢ positive
constants.

The first term of each objective function represents the position of the points
with respect to the lower bound and the upper bound of the variable range, the
second term is the distance in terms of equivalent airspeed and the last one considers
the opposite distance from the closest test point. The objective of each player
is to minimize his own objective function in order to obtain an optimal test points
distribution. The objective is to distribute the test points maximizing their dispersion
inside the flight envelope and at the same time maximizing test points density close
to the right lower corner of the flight envelope (maximum equivalent airspeed).

The optimal flight test distribution is obtained using a Nash equilibrium solution
of the game ', i.e. a vector (M, H) € X" x X7 such that:

fi(M,H) < fi(M,H), VM € X
(M, H) < £,(M,H), YH € X}

In terms of facility location problems, the payoff functions of the flight test
location game present a minsum part as well a minmax one [19].

From the analysis of the two objective functions it is possible to observe that our
location game is a potential game that reduces its solution to the determination of
the minimum of the potential function, which represents a Nash Equilibrium (NE)
solution [23, 24, 29]. Here

n

voLH) =) [\/al (M; — M) + ax(M; — My)* + \ B1(H: — HL)® + Ba(H; — Hy)+

i=1

M; — M; 2 H: — H)?
§(Uy —U;))— min ( 21) +( ! 2’) }
jE[l,n].j;éi MU HU

A genetic algorithm has been used in order to find the minimum values of the
potential function. Table 2 shows the parameters values used in the genetic algorithm
to achieve convergence. Obtained solution of the proposed problem was analyzed
in order to evaluate goodness and robustness of the result iterating the process
applying step by step minor changes to the setup configuration. Results validation
was accomplished comparing the test cases results with the test matrix structure
given by other standard empirical testing methods as the Economy method already
mentioned in Sect. 1.
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Table 2 Genetic algorithm parameters

Parameter Value or type
Crossover fraction | 0.80

Crossover mode Scattered

Fitness scaling Rank

Mutation fraction | 0.20

Mutation mode Adaptive feasible
Population size 200

Selection function | Tournament
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Fig. 10 The optimal distribution for 25 flight test points

A typical store integration test campaign, considering the economical budget
usually available and the objectives, requires a test matrix dimension ranging from
10 to 30 test points [2, 30].

Figure 10 shows the test matrix plot in the flight envelope for a 25-test points
distribution, where it is possible to verify that the initial requirements in terms of
test points distribution have been met by the solution.

5 Conclusions

In this chapter is presented a survey of location methods based on Nash equilibria
for the design of experiment. The solution of the location problem is restricted to
the bi-dimensional case where it is approached by means of a potential formulation
and a Nash game. The most important definitions and proofs are reported in Sect. 2.
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Two main application fields are employed to stress the capability of an ad hoc
numerical methodology involved in the solution of the location problem. The first
one refers to optimal (constrained) location of sensors collecting cosmic rays for
astrophysics experiments, see Sect. 3. The DoE problem is solved as a multi-facility
continuous location problem and faced by using a game theoretical approach. Each
facility is controlled by a competitor that tries to optimize his objective. The solution
of the location problem is a Nash equilibrium. A potential approach is presented to
reduce computational load due to the numerical evaluation of the Nash equilibria.
Furthermore, it is considered the case where some experiments are already planned
and the problem is to determine the optimal value of design variables of additional
new experiments. Existence results and several test cases are presented in both cases,
with and without the presence of demand points, showing the effectiveness of the
algorithm. The second application field concerns the design of an experimental test
matrix for an envelope expansion flight test activity and a solution is presented.
By means of the used genetic algorithm is possible to approach the optimal test
points distribution for a test campaign of a new store integration, where optimality is
assessed in terms of prescribed objective functions. An alternative approach, based
on the concept of potential and repulsive fields has been discussed in [13], where
a method to dynamically relocate test points has been presented by considering an
initial test points subset, already performed, and the total amount of test points that
could be cut (or increased) due to time and cost constraints.
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Leader-Follower Models in Facility Location

Tammy Drezner and Zvi Drezner

1 Introduction

Facility location models deal, for the most part, with the location of plants,
warehouses, distribution centers and other industrial facilities [38, 57, 70, 73,
100, 105]. In this chapter we review the game theoretical concept of the leader-
follower in two facilities location models which addresses specific circumstances:
the competitive facility location problem and the defensive maximal covering
location model on a network. A framework of facility location models that can be
investigated in a game theoretical environment is depicted in Fig. 1. The models
reviewed in this chapter are marked in boldface italics. Four reliable competitive
models (on the plane or network) and one unreliable model on a network with the
cover objective are investigated.

There are two well researched two players’ games: Nash equilibrium [108] and
the leader-follower game also termed the von-Stackelberg equilibrium [136] which
in voting theory is known as Simpson’s problem [131]. In the Nash equilibrium
game no player can improve his objective when the other player does not change his
strategy. In many cases no equilibrium exists. In the leader-follower game the leader
adopts a strategy and the follower adopts his best strategy knowing the leader’s
strategy. The follower’s goal is to maximize his objective function while the leader’s
goal is to maximize his objective function following the follower’s action.

Early contributions to Nash equilibrium location problems include Hotelling
[92], Lerner and Singer [103], Eaton and Lipsey [66], Wendell and McKelvey [146].
The leader-follower location problem was introduced by Hakimi [84], and published
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| Game Theory

Y

Facility Type: | Competitive Desirable | | Obnoxious |

Y Y
Objective: |Max Demand | |Mm1sum | |M1mmax | | Cover | | Maximin |

Environment: |Netw0rk || Plane || Sphere |

| Unreliable | | Reliable |

Fig. 1 A framework of common facility location models

in Hakimi [85-87], for location on network nodes using the Hotelling [92] premise
that each customer patronizes the closest facility. See also Hansen and Labbe [88].

We first provide an overview the covering and competitive facility location
models, and models addressing the location of unreliable facilities. We then review
five different leader-follower models:

* Competitive location of two facilities (leader and follower) anywhere on the
plane [33]. The proximity rule is assumed.

* Covering a large area by chain facilities so that a future competitor will not be
able to attract much demand [59]. The proximity rule is assumed.

» Competitive location of two facilities (leader and follower) applying the gravity
(Huff) rule [47].

* Competitive location of multiple facilities (leader’s and follower’s) using the
cover-based rule [65].

» Locating facilities on the nodes of a network to cover as much demand as possible
following a disruption of a link by a follower [16].
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2 Overview of Covering Models

There are two basic types of covering models: set covering and max-covering. In the
set covering model the entire demand is to be covered with the minimum number of
facilities [124]. In the max-covering model the objective is to cover as much demand
as possible with a given number of facilities [24, 27, 98].

Many extensions to the two basic covering models were proposed. Some papers
investigate the hierarchical covering problem where a set of different possible radii
is given and the two possible objectives apply [23]. A hierarchy of objectives is
considered by Daskin and Stern [31]. The max-covering problem with variable radii
is investigated in Berman et al. [18]. The expected maximal covering problem is
investigated in Daskin [29], Batta et al. [6], Tavakkoli-Mogahddam et al. [142].

Another stream of research is the gradual covering problem. In one version of the
problem the demand covered is a decreasing stepwise function of the radius [12]. In
another version there is a minimum and maximum covering distance. The demand
is fully covered within the minimum distance and is not covered at all beyond the
maximum distance. Between these two distances the coverage is gradually declining
either linearly or otherwise [14, 61]. In Drezner et al. [61] the single facility case
in the plane using Euclidean distances is optimally solved. The stochastic gradual
covering problem is investigated in Drezner et al. [62] and the multiple facilities
gradual cover with the maximin objective is investigated in Drezner and Drezner
[55].

Carrizosa and Plastria [22] and Plastria and Carrizosa [115] studied covering
problems with varying radii. They developed the efficient frontier between the
covering radius and the maximal cover with that radius.

Berman et al. [19, 20], Averbakh et al. [5] investigated the cooperative covering
location problem. Each facility emits a (possibly non-physical) “signal” which
decays over the distance and each demand point receives the aggregate signal
emitted by all facilities. A demand point is considered covered if its aggregate signal
exceeds a given threshold. Facilities cooperate to provide coverage, compared to the
classical coverage location model where coverage is only provided by the closest
facility. Examples include: locating warning sirens, heaters or fans in restaurants,
light posts in parking lots.

For recent reviews of covering models see Schilling et al. [128], Daskin [30],
Current et al. [27], Plastria [114], Snyder [132], Garcia and Marin [76].

3 Overview of Competitive Facility Location Problems

Typical location models do not account for competition or for differences among
facilities therefore allocate consumers to facilities by proximity. In reality, retail
facilities operate in a competitive environment with an objective of profit and market
share maximization. The basic problem is the optimal location of one or more
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new facilities in a market where competition already exists or will exist in the
future. When the budget invested in expanding market share is fixed, profit increases
when market share increases, thus maximizing profit is equivalent to maximizing
market share. For a discussion of the equivalence of maximization of profit and
maximization of market share see Dasci and Laporte [28], Jensen [96], Winerfert
[148]. It follows, then, that the location objective is to locate the retail outlet at the
location which maximizes its market share. Recent reviews of competitive location
models are Berman et al. [17], Drezner [41, 44], Eiselt et al. [71].

Competitive location models are investigated in planar continuous space and in
discrete space, in particular in a network environment. Continuous models seek
the location of facilities anywhere in the plane thus there is an infinite number of
potential locations for the facilities. Discrete models restrict the location of facilities
to a pre-specified set of potential locations, typically the nodes of a network.

Most models assume that all the buying power is distributed among the compet-
ing facilities. Lost demand is addressed in [2, 11, 52, 54, 63-65, 120].

The underlying theme of competitive models is the existence of an interrelation-
ship among four variables: buying power (demand), distance, facility attractiveness,
and market share, with the first three variables being the independent variables and
the market share the dependent variable. Many rules were proposed for formulating
this relationship:

e Proximity [92].

e Minimum Utility [35, 90].

¢ Random Utility [45, 102].

¢ Cover-based [63, 64].

e Gravity (Huff) Model [93, 94].

3.1 The Proximity Rule

Hotelling [92] analyzed location on a line assuming that each consumer patronizes
the closest facility. Eiselt [67] and Eiselt and Laporte [69] extended the model to
a tree environment. Hotelling [92] showed that when two competitors charge the
same price (they do not compete on price) an equilibrium exists. However, when
competitors can compete on price, no equilibrium exists. For a discussion of the
equilibrium issue the reader is referred to the seminal paper by d’ Aspremont et al.
[32] and Wong and Yang [150], Yang and Wong [152], Eiselt [68].

3.2 The Minimum Utility Rule

When the facilities are not equally attractive, the proximity premise for allocating
consumers to facilities is no longer valid. To account for variations in facility attrac-
tiveness, a deterministic utility approach was introduced by Drezner [35]. Hodgson
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[90] also suggested to incorporate attractiveness in the competitive location model.
A trade-off between distance and attractiveness takes place. It is suggested that a
consumer will patronize a better and farther facility as long as the extra distance to
it does not exceed its attractiveness advantage [35]. The attractiveness of a facility
can be transformed into a distance mark-up. A break-even distance is defined. At
the break-even distance the attractiveness of two competing facilities is equal. This
break-even distance, therefore, is the maximum distance that a consumer will be
willing to travel to a farther facility (new or existing) based on his perception of its
attractiveness and advantage relative to other facilities.

3.3 The Random Utility Rule

A random utility model was introduced by Leonardi and Tadei [102] and Drezner
and Drezner [45]. The deterministic utility model is extended by assuming that
each consumer draws his utility from a random distribution of utility functions. The
probability that a consumer will prefer a certain facility over all other facilities is
calculated by applying the multivariate normal distribution. Once the probabilities
are calculated, the market share captured by a certain facility (new or existing)
can be calculated as a weighted sum of the buying power at all demand points.
To circumvent the mathematically complicated formulation of the random utility
model, Drezner et al. [60] suggested using a simple S-shaped function. The utility
declines very slowly for short distances, declines sharply for intermediate distances,
and remains around zero for large distances.

3.4 The Cover-Based Rule

Drezner et al. [63, 64] introduced the cover-based approach to estimating market
share. Each competing facility has a “sphere of influence” [123] represented by
a radius of influence which depends on the facility’s attractiveness. A consumer
at a distance within the radius of influence is attracted to the facility. Consumers’
demand within the sphere of influence of no facility is lost. In Drezner et al. [63]
adding additional facilities of a given radius of influence is considered an expansion
strategy. In Drezner et al. [64] three market expansion models are analyzed: (1)
increasing the radius of influence of existing facilities thereby increasing their
attractiveness, (2) adding new facilities (and determining the radius of influence
of each), and (3) a combination of both.
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3.5 The Gravity (Huff) Rule

The gravity approach is the most commonly used model in recent papers. According
to the gravity rule [122] two cities attract retail trade from an intermediate town in
direct proportion to the populations of the two cities and in inverse proportion to
the square of the distances from them to the intermediate town. Drezner [36, 37]
was the first to introduce the gravity model to location analysis. Evaluating market
share based on the gravity rule was introduced by Huff [93, 94] and is used by
marketers. Huff proposed that the probability a consumer patronizes a retail facility
is proportional to its size (floor area) and inversely proportional to a power of the
distance to it. At any demand point, the proportion of consumers attracted to each
facility is a function of the facility’s square footage (attractiveness) and distance.
The model finds the market share captured at each potential site, thereby the best
location for new facilities whose individual measures of attractiveness are known.

In the original Huff formulation, facility floor area serves as a surrogate for
attractiveness. An improvement on Huff’s approach was suggested by Nakanishi
and Cooper [107], Jain and Mahajan [95] who introduced the multiplicative
competitive interaction (MCI) model. The MCI coefficient replaces the floor area
with a product of factors, each a component of attractiveness.

In the gravity model a distance decay function f(d) is defined. It represents the
decline in facility attractiveness as a function of the distance from the facility and
thus the probability that a consumer patronizes that facility. In the original gravity
model [122], it is assumed that the distance decay parallels the gravity decay and
thus f(d) = (}—2 Huft [93, 94] suggested a decay function of f(d) = d% where
the power A depends on retail category. A = 3 was found for grocery stores [94],
A = 3.191 for clothing stores [93], A = 2.723 for furniture stores [93], and A =
1.27 for shopping malls [40, 49]. Wilson [147] suggested an exponential decay ¢~*¢
which was used in many subsequent papers [1-3, 52, 91]. Drezner [40] compared
power and exponential decay on a real data set of shopping malls in Orange County,
California and found that exponential decay fits the data better than power decay.
The decay function f(d) = ¢~ 17°5¢**” was used in Bell et al. [9] who investigated
grocery stores. A Logit function f(d) = m was used in Drezner et al. [60].
Goodchild and Noronha [81] applied gravity based models to the location of gas
stations, and Drezner [43] applied them to the hotel industry.

There are other location models that apply the gravity rule to various objectives.
This is the appropriate approach if demand is not necessarily satisfied by the closest
facility because the assignment of demand is not centralized. Examples:

* In the hub location problem [21], a set of hubs needs to be selected from a list of
airports so that flyers change planes at a hub on the way to their destination. It is
reasonable to assume that customers do not necessarily select the hub that yields
the shortest total distance to their destination. The total distance is used in the
gravity rule to assess the probability that customers select a particular hub [48].
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e In the p-median problem [82, 83], p facilities are to be located such that
each demand point gets its services from the closest facility with the objective
of minimizing the total weighted distances for all demand points. When the
assumption that each customer gets his service from the closest facility is
replaced by the gravity rule we obtain the gravity p-median problem [51].
The planar version of this problem is proposed and analyzed in Drezner and
Drezner [50].

e The multiple server location problem [10] combines travel time and service time
at servers using M/M/k queueing systems. A given number of servers are to be
located at nodes of a network. Demand for these servers is generated at each
node, and a subset of nodes needs to be selected for locating one or more servers
in each. Each customer at a node selects the closest server. The objective is to
minimize the sum of travel time and the average time spent at the server, for all
customers. The gravity multiple server problem is defined when customers do
not necessarily use the server with the shortest travel time plus service time [53].

3.6 Implementation Issues

Once buying power, distance, and attractiveness are known, market share can be
calculated by any of the approaches discussed above.

Buying power (demand), sometimes referred to as purchasing power, is available
in secondary data sources. Geographic information systems data bases, such as those
provided by ESRI,! also have data about buying power.

Facility attractiveness is assessed using one of a variety of methods. The
attractiveness of a facility is a composite index of a set of attributes. Examples of
attractiveness components of shopping malls are: (1) floor area (2) variety of stores,
(3) appearance, (4) favorite brand names. Other techniques for inferring or deriving
attractiveness levels were proposed in Drezner [40], Drezner and Drezner [49].

The distance between two points can be easily measured. However, since demand
points represent areas, the distance correction for an area A and distance d is
~/d* + aA where a = 0.24 is recommended by Drezner and Drezner [46].

Plastria and Vanhaverbeke [117], Francis et al. [74] addressed the issue of
aggregation and its effect on the optimality of the location solution. Demand points
often have to be aggregated due to computational intractability. However, this spatial
aggregation typically introduces a bias to the value of the objective function thus the
optimality of the solution cannot be guaranteed.

!'Environmental Systems Research Institute, supplier of GIS software such as ArcGIS, ArcView.
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3.7 Extensions

Many extensions to the basic model were suggested. The following two extensions
are incorporated in this chapter.

Budget Constraints: Combining the location decision with facility design (treat-
ing the attractiveness level of the facility as a variable) was recently investigated
in [1, 39, 63, 64, 72, 116, 119, 144]. Drezner [39] assumed that facilities
attractiveness levels are variables. In that paper it is assumed that a budget
is available for locating new facilities and for establishing their attractiveness
levels. One needs to determine the facilities attractiveness levels so that the
available budget is not exceeded. Plastria and Vanhaverbeke [118] combined the
limited budget model with the leader-follower model. Aboolian et al. [1] studied
the problem of simultaneously finding the number of facilities, their respective
locations and attractiveness (design) levels.

Leader-Follower: The leader-follower model [136] considers a competitor’s reac-
tion to the leader’s action. The leader decides to expand his chain. The follower is
aware of the action taken by the leader and expands his facilities to maximize his
own market share. The leader’s objective becomes maximizing his market share
following the follower’s reaction [33, 47, 99, 118, 119, 121, 125, 126].

4 Leader-Follower Models in Competitive Models

In this section we review four leader-follower models in a competitive environment.

4.1 The Leader-Follower Model Locating Two Facilities
in the Plane

Drezner [33] analyzed two competitive location models in the plane. One is the
location of a new facility that will attract the most buying power from an existing
facility (the follower’s problem). The other is the location of a facility that will
secure the most buying power against the best location of a competing facility to
be set up in the future (the leader’s problem). The proximity rule using Euclidean
distances is assumed.

Let n demand points be located on the plane. A weight, or buying power, b; > 0
is associated with demand point i for i = 1,...,n. The leader locates his facility at
X and the follower locates his facility at Y. Customers will patronize the follower’s
facility Y if the Euclidean distance between the customer and Y is less than the
distance between the customer and X. Two problems are considered:
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Problem 1 (the follower’s problem): Given the location of an existing facility X
serving the demand points, find a location for a new facility Y that will attract the
most buying power from demand points.

Problem 2 (the leader’s problem): Find a location for X such that it will retain the
most buying power against the best possible location for the follower’s facility Y.

For given locations X and Y, the distribution of the buying power can be found
by constructing the perpendicular bisector to the segment connecting X and Y. This
perpendicular bisector divides the plane into two half-planes. All points in the closed
half-plane which includes X (including points on the perpendicular bisector itself)
will patronize X and all the points in the other open half-plane which includes Y,
will patronize Y. This is a generalization of Hotelling’s analysis on a line [92].

It is shown in Drezner [33] that one of the optimal locations for Y when X is given
is infinitesimally close to X but not on X. It follows that a solution to Problem 1, Y*,
is ‘adjacent’ (close) to X. The variable yet to be determined is the direction in which
Y is ‘touching’ X. In conclusion, finding an optimal location for Y is equivalent to
finding the best line through X such that the open half plane defined by this line
contains the most buying power for Y. Finding the best line by simple enumeration
is detailed in Drezner [33].

The algorithm that solves Problem 2 is based on the algorithm used for solving
Problem 1. It can be found whether attracting a certain market share P, or higher by
Y is possible by finding whether there is a feasible solution to a linear program. The
algorithm is based on a bisection on the value of Py. Complete details are given in
Drezner [33].

1. Calculate all %n(n — 1) lines through pairs of points and find the market share P;
for each open half-plane defined by the lines.

2. Sort P; in decreasing order. Set Py, and Pn,.x to the smallest and largest P;,
respectively.

3. Set P, to the median value in the P; vector for all P, < P; < Pmax. If the set
Piin < P; < Ppax 1s empty go to Step 7.

4. Find if there is a feasible point to all half-planes for which P; > Py. This can be
done by linear programming.

5. If there is a feasible solution point to the linear program then set Pp,x to Py and
go to Step 3.

6. Otherwise, set Py, to Py and go to Step 3.

7. A feasible location for the last P, is an optimal solution. The value of the
objective function is Ppip.

The two problems can be modified by an extra restriction that the follower cannot
construct his facility closer than a given distance R from the leader’s facility. To
solve the modified Problem 1 for a given X it can be shown that the best solution for
Y is determined by open half planes defined by tangent lines to the circle centered
at X with a radius of %R rather than lines through X. The details of the algorithms
for solving the modified Problems 1 and 2 are available in Drezner [33].
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4.2 A Leader-Follower Model for Covering a Large Area with
Numerous Facilities

Drezner and Zemel [59] considered the following problem: a large number of
customers are spread uniformly over a given region A € R?. What configuration
of facilities that cover the area will best protect against a future competing facility?
The proximity rule is assumed. Each customer patronizes the closest facility.

Drezner and Zemel [59] found the solution to the problem of covering the whole
R? plane. Then they analyzed the finite area problem and found bounds on the
difference between the configurations as the number of facilities increases.

There are three evenly spread configurations that cover the whole R? plane with
equilateral polygons depicted in Fig. 2: a triangular grid where facilities are located
at the centers of equilateral triangles; a square grid where facilities are located at the
centers of squares; and an hexagonal grid (beehive) where facilities are located at the
centers of hexagons. No other cover of the plane by identical equilateral polygons
exists.

Since customers are attracted to the closest facility, the market share captured by
each facility is proportional to the area attracted to the closest facility. This is similar
to the Voronoi diagram concept [113, 140, 145]. In the configurations depicted in
Fig. 2, the market share attracted by each facility is the area of the polygon. Let A
be the area attracted by each facility. It is shown in Drezner and Zemel [59] that:

* For the triangular grid the competitor’s facility can attract a maximum of %A =
0.6667A. The best location for the follower is at a vertex of a triangle (see Fig. 2).

* For a square grid the competitor’s facility can attract a maximum of 1—96A =
0.5625A. The best location for the competitor is at the center of the side of the
square.

e For an hexagonal grid the competitor’s facility can attract a maximum of
0.5127A, i.e., 51.27% of the leader facility’s market share. All regions inside
the equilateral triangles with the leader’s facilities at its vertices (see Fig.2) are
equivalent. Also, because of symmetry, the market share at any location, except
at the center of the triangle, has two more equivalent locations. The best locations

L ° o ° o ° o ° oo |0 | o
o\ e\ e\ \* o | o |0 |0
® ® e\ ® o | o |0 e
ANVANA ° o | o |0 |0
Triangular Grid Square Grid Hexagonal Grid

Fig. 2 Various configurations
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e Leader; o Follower.

Fig. 3 Best follower’s locations

for the follower inside such triangles are depicted in Fig. 3. The minimum market
share of half the area of the hexagon is captured by the follower at the three
vertices of the triangle and at its center. The factor 0.512713 has a contrived

formula developed in Drezner and Zemel [59]: Define 6§ = %arctan 9”3}1(7)77;
o= % (16 — /94(cos @ + /3 sin 9)); then the factor is: % + Mt(xl(i;—;(z)ja)' The

follower’s facility location in Fig. 3 is on the line connecting the vertex of the
triangle and its center. Its distance from the leader’s facility is ¢« = 0.2955766
times the distance between the vertex and the center of the triangle or %a of the
triangle’s height.

The hexagonal pattern provides the best protection from a future competitor. It is
interesting that for hexagonal and square grids the competitor captures at least half
of A at any point in the plane.

Hexagonal pattern is optimal for many location problems with numerous facili-
ties covering a large area. For example:

* packing the most number of circles in an area [26, 89, 141],
e p-median [112], p-center [138] and p-cover [58],

» p-dispersion [56, 104, 106, 109],

* equalizing the load covered by facilities [139].

It is also the preferred arrangement for a bee-hive in nature which has developed
over the years in the evolutionary process.

4.3 The Leader-Follower Problem Using the Gravity
(Huff) Rule

It is assumed that a new competing facility will enter the market at some point in the
future. The competitor will establish his facility at the location which maximizes his
market share given the leader’s location. The leader’s objective is to find the location
that maximizes the market share captured by his facility following the competitor’s
entry [47]. Ghosh and Craig [77] solved a similar problem by discretizing all
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Table 1 Notation for gravity (Huff) based models

Number of demand points

e

Discretionary buying power at demand point i
Number of existing competing facilities

&=
<

Euclidean distance between demand point i and existing facility j
Location of the leader’s new facility
Location of the follower’s new facility

—~
~
~

Euclidean distance between demand point i and location Y
Power to which the distance is raised

Measure of attractiveness for existing facility j

Measure of attractiveness for the leader’s new facility

AL al> =

Measure of attractiveness for the follower’s facility

variables and assuming a given set of possible locations for both the entrant and
the future competitor. They formulated the problem as an integer programming
problem which limits the solution procedure to relatively small problems. We briefly
summarize the results in Drezner and Drezner [47]. For complete information the
reader is referred to that paper.

4.3.1 Calculating the Market Share

Drezner and Drezner [47] applied a power distance decay function as suggested
by Huff [93, 94]. As described in Sect. 3, other distance decay functions were also
investigated in the literature. The notation is depicted in Table 1.

The market share captured by the leader’s new facility as a function of X and U
using the gravity model, M, (X, U), is:

S
. ar (X
Mi(X.U) = ) b (&) p (1)
i=1 L + L + Zi
a}x) () d}

j=1 "0

The market share captured by the follower’s facility as a function of X and U,
M,(X, U), is:

c
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4.3.2 The Optimization

The leader’s objective is to maximize his market share M;(X, U) in the long run
by selecting the best location X, taking into consideration that the follower selects
its location U so as to maximize his market share M, (X, U). The best location for
the follower, U, is a function of the leader’s selected location X. In a mathematical
formulation, for a given X, let U(X) be the maximizer of M, (X, U). The leader’s
objective is converted to:

max{ M (X, U(X)) } &)
subject to: U(X) is the maximizer of M, (X, U)

The leader-follower problem (3) is a complicated problem. The functions
M(X,U) and M,(X, U) are not concave and may have many local maxima. The
problem may have many local maxima. The constraint of (3) is unusual and cannot
be formulated into a mathematical programming formulation. Such a constraint is
not in the form of an equality or an inequality.

Drezner and Drezner [47] proposed three heuristic approaches for finding a good
solution: brute force, pseudo mathematical programming, and gradient search.

The Brute Force Approach: A grid of locations X that cover the area is gen-
erated. For each location X the value of U(X) is found and the value of
M (X, U(X)) is calculated. If the grid is dense enough, the vicinity of the global
maximum can be identified. If a more precise location is sought, a finer grid can
be evaluated in that vicinity.

The Pseudo Mathematical Programming Approach: If the functions M (X, U)
and M,(X,U) were concave, the following mathematical programming
formulation (termed the “pseudo” problem) would have solved the problem:

max{ Mi(X. U) } S

subject to:

SM(X,U) = 0

The Gradient Search Approach: A gradient search that directly finds a local
maximum for the leader-follower problem (3) is suggested. It guarantees ter-
mination at a local maximum of problem (3) once U(X) can be found. It is
recommended that this procedure is repeated many times in order to have a
reasonable chance of “landing” at the global optimum.
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Fig. 4 Problem 1

4.3.3 Computational Experiments

Two sets of problems were tested. The first one (problem 1) consists of 100 demand
points evenly distributed in a 10 by 10 miles area, each with buying power of “1” for
a total buying power of 100. There are seven existing facilities in the area, each of
an attractiveness level of “1” (equally attractive). The data are given in [35-37] and
are depicted in Fig. 4. The attractiveness of both one’s new facility and the future
competing facility are also equal to one.

As explained in Drezner and Drezner [46], the accuracy of the market share
estimate is enhanced by replacing the square of the distance d” with d?> + aA where
A is the estimated area represented by a demand point. This “distance correction”
compensates for the fact that demand points are not mathematical points and if,
for example, a facility is located on a demand point, not all customers at that
demand point are at distance zero from the facility. It provides for the averaging
of the distance between all customers assigned to a demand point and the facility.
A distance correction factor of ®A = 0.24 was used, because the area surrounding
a demand point is A = 1, as suggested in Drezner and Drezner [46].

The second problem (Problem 2) applies real data. It is based on sixteen
communities in Orange County, California, and six existing major shopping malls.
The data are given in Table 2. The total buying power for this problem is 1346.5.
Both the leader’s new facility and the follower’s facility have an attractiveness of 5.
The distance correction factor [47] is A = 1 because the demand points are farther
apart than in Problem 1.

The results reported in Drezner and Drezner [47] indicate that local maxima of
problem (3) are encountered more frequently by the gradient search approach than
by the pseudo mathematical programming approach. The gradient search approach
is recommended as the approach of choice for solving the problem. The pseudo
mathematical programming approach is recommended for users who do not wish to
code a special program but rather use standard software. The brute force approach
is recommended if the value of the market share captured as a function of location
is of value to the user.
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Table 2 Data for problem 2

Demand Shopping
points malls

x |y |b; X y S;
3 |5 /1638 (2.7 |68 | 7
3 /7 288 |39 |45 | 3
2 16 | 390 (36 |42 | 7
32 774 |32 |22 |10
1|5 | 420 |40 |15 | 7
316 1070 |61 |12 | 3
3 14| 645

2 |2 |250.6

512 /1014

71| 576

4 1 /132.0

4 14| 776

4 16 | 296

4 13| 675

53| 507

6 |6 | 570

The sensitivity analysis reported in Drezner and Drezner [47] indicates that the
increase in captured market share, compared with the market share at the location
that does not anticipate a follower’s reaction, increases as competitor’s attractiveness
increases. In Problem 1 there is a clear shift in location as the attractiveness of
the competitor reaches 3.0. The additional market share, using the leader-follower
model, reaches an increase of 22.7% in market share. The gain in market share is
more modest when solving Problem 2. For an attractiveness of 50, the gain is only
2.4% and the best location does not change significantly. We conclude that in some
problems the model significantly improves the location, and therefore the market
share captured, when compared with the model that does not consider a follower,
and in some problems the improvement is not as significant.

4.4 The Leader-Follower Model Using the Cover-Based Rule

Drezner et al. [65] investigated a leader-follower (Stackelberg equilibrium) com-
petitive location model incorporating facilities’ attractiveness (design) subject to
limited budgets for both the leader and follower. The competitive model is based on
the concept of cover [63, 64]. The leader and the follower, each has a budget to be
spent on the expansion of their chains either by improving their existing facilities or
constructing new ones. We are interested in the best strategy for the leader assuming
that the follower, knowing the action taken by the leader, will react by investing his
budget to maximize his market share. The objective of the leader is to maximize his
market share following the follower’s reaction.
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4.4.1 Estimating Market Share

The cover-based competitive location model [63, 64] is applied for estimating
market share. Each facility has a sphere of influence (catchment area) for patronage
defined by a distance termed “radius of influence”. Consumers patronize a facility
if they are located within the facility’s radius of influence. More attractive facilities
have a larger radius of influence, thus they attract consumers from greater distances.
Demand at demand points which are not attracted by any facility is lost. When the
total captured market share is estimated, it is assumed that if a consumer is attracted
to more than one facility, his buying power is equally divided between the attracting
facilities.

Models based on this rule are simpler to implement than those based on the
gravity rule or the utility-based rule. One only needs to estimate the catchment area
of competing facilities which yields their radius of influence. There are established
methods for estimating the radius of influence of a facility [8, 143]. For example,
license plates of cars in the parking lot are recorded and the addresses of the cars’
owners obtained. Drezner [40] conducted interviews with consumers patronizing
different shopping malls asking them to provide the zip code of their residence and
whether they came from home.

The location of p new facilities with a given radius is sought so as to maximize
the market share captured by one’s chain. In Drezner et al. [64], three strategies
were investigated: In the improvement strategy (IMP) only the improvement of
existing chain facilities is considered; in the construction strategy (NEW) only
the construction of new facilities is considered; and in the joint strategy (JNT)
both improvement of existing chain facilities and construction of new facilities are
considered. All three strategies are treated in a unified model by assigning a radius
of zero to potential locations of new facilities.

The leader employs one of the three strategies and the follower also implements
one of these three strategies. This setting gives rise to nine possible models. Each
model is a combination of the strategy employed by the leader and the strategy
employed by the follower. For example, the leader employs the INT model, i.e.,
considers both improving existing facilities and establishing new ones, while the
follower employs the IMP model, i.e., only considers the improvement of his
existing facilities. The most logical model is to employ for both the leader and
the follower the JNT strategy which yields the highest market share. However,
constructing new facilities or improving existing ones may not be a feasible option
for the leader or the follower.

The set of potential locations for the facilities is discrete. The notation is given
in Table 3.

Note that the radii 7; are continuous variables. However, it is sufficient to consider
a finite number of radii in order to find the optimal solution. Consider the sorted
vector of distances between facility j and all n demand points. A radius between two
consecutive distances covers the same demand points as does the radius equal to the
shorter of the two distances yielding the same value of the objective function. Since
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Table 3 Notation for cover based models

Br
P
Pr
djj

0

f@)

C(ry)

Number of demand points

Buying power at demand pointi,i = 1,...,n

Number of facilities that belong to the leader’s chain that
attract demand point i

Number of follower’s facilities attracting demand point i

Budget available to the leader for increasing the
attractiveness of existing facilities or constructing new
ones

Budget available to the follower for increasing the
attractiveness of existing facilities or constructing new
ones

Set of the existing 1 of cardinality p,,

Set of the existing follower’s facilities including potential
locations for new facilities

Distance between demand point i and facility j
Present radius of facility j

Cost of building a facility of radius r (a non decreasing
function of r)

Unknown radius assigned to facility j

Set of unknown radii {rj} forj=1,...,p

Fixed cost if facility j is improved or established, i.e.,

rj > 1y for existing facilities and r; > 0 for establishing
new facilities

Cost of improving facility j to a radius ;. It is zero if
ri = r7,and f(r;) — f(r{) + S;, otherwise
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the improvement cost is an increasing function of the radius, an optimal solution
exists for radii that are equal to a distance to a demand point.

For demand point i, the numbers L; and F; can be calculated by counting the
number of leader’s facilities that cover demand point i, and the number of follower’s

facilities that cover it. For a given strategy R = {r;}, j=1,..

., p we define these

values as L;(R) and F;(R). The objective functions for the leader and the follower,
before locating new facilities, are:

v, L®
MSUB) = 2 D &y 1 k)
Fi(R)

MS# () = ; LR + FR)

®)

(6)

Note that if F;(R) = L;(R) = 0, then in (5) L(L& = 0,in (6) - rum (W 7 = Oand

i(R)+Fi(R)

the demand b; associated with demand point 7 is lost.
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Suppose the leader improves some of his facilities and establishes new ones.
Note that F;(R) does not depend on the actions taken by the leader. The follower’s
problem is thus well-defined following the leader’s action and can be optimally
solved by the branch and bound algorithm detailed in Drezner et al. [64].

Once the follower’s optimal location is known, the leader’s objective function is
well defined as his market share is calculated by (5) incorporating changes to the
follower’s locations and radii.

The leader and follower cannot exceed their respective budgets. For a combined
strategy R = {r;} by both competitors the constraints are:

Y C(y) =B Y C(r) < Br. @)

JEPL JEPF

Once the leader’s strategy is known and thus L; = L;(R) are defined, the
follower’s problem is:

n
F;(R
max E bl#
. j€Pr | = Li + Fi(R)

Subject to:

Y C(r) < Br. )

JEPF

The leader’s problem needs to be formulated as a bi-level programming model [75,
137]:

n L (R)
P { 2V E® + Lm) }
Subject to: ®
Y Cy) < By

JEPL

FI(R)
max { > bi TR +Li (R)}

7, JEPF

subject to: Z C(rj) < Br.
JEPF

rjforj € Ppr = arg

Note that the follower’s problem may have several optimal solutions (each
resulting in a different leader’s objective) and the leader does not know which of
these the follower will select. This issue exists in all leader-follower models.

The follower’s problems are identical to the three problems analyzed in [64]
because market conditions are fully known to the follower. A branch and bound
algorithm as well as a tabu search [78—80] were proposed in Drezner et al. [64] for
the solution of each of these three strategies. For details the reader is referred to
Drezner et al. [64, 65].



Leader-Follower Models in Facility Location 91

4.4.2 Computational Experiments

Drezner et al. [65] experimented with the 40 Beasley [7] problem instances designed
for testing p-median algorithms. The problems range between 100 < n < 900
nodes. The number of new facilities for these problems was ignored. The leader’s
facilities are located on the first ten nodes and the follower’s facilities are located
on the next 10 nodes. The problems are those tested in [64]. The demand at node i
is 1/i (for testing problems with no reaction by the follower) and the cost function
is f(r) = r*. The same radius of influence was used for the existing leader’s and
follower’s facilities. When new facilities can be added (Strategies NEW and JNT),
n — 10 nodes are candidate locations for the new facilities (nodes that occupy one’s
facilities are not candidates for new facilities) and are assigned a radius of 0. ry =
20, and S; = 0 were applied for expanding existing facilities and the same §; > 0
were used for establishing any new facility.

A branch and bound optimal algorithm was used to solve the follower’s location
problem. Since it is used numerous times in the solution procedure for the leader’s
location problem, a budget of 1500 and a set-up cost of 500 were applied to both the
leader and the follower. Both the leader and the follower apply the JNT strategy.
Tabu search, which does not guarantee optimality, is used to solve the leader’s
location problem. Therefore, the solution of each problem instance was repeated
for at least 20 times to assess the quality of the tabu search solutions. Problems with
up to 400 demand points were solved in reasonable run times.

The experiments conducted in Drezner et al. [65] are:

* Solving the leader’s location problem when the follower does not react and
does not change his facilities. This is performed by the branch and bound
rigorous algorithm. When solving the leader-follower problem, this algorithm
is performed to find the follower’s optimal location solution and consequently
the leader’s objective function. As expected, one’s chain market share increases
and the competitor’s market share declines. Some of the increase in the leader’s
market share comes at the expense of the competitor and some comes from
capturing demand that is presently lost. It is interesting that the proportion of
the additional market share gained from the competitor remains almost constant
for all budgets tested. The average for all 40 problems is 44.2% for a budget of
1500, 44.2% for a budget of 2000, 44.9% for a budget of 2500, and 46.7% for
a budget of 5000. A larger percentage of market share gained comes from lost
demand. These percentages are the complements of the percentages gained form
competitors or about 55%.

* The tabu search procedure for finding the leader’s best solution after the
follower’s reaction was coded in C#. Its effectiveness was first tested by optimally
solving 160 JNT instances (40 instances for each budget), i.e., assuming no
follower’s reaction. The tabu search found optimal solutions to 148 out of 160
instances and sub-optimal solutions (avg. error: 0.11%, max error: 0.41%) to the
remaining 12 instances. It is also observed that, for the budget of 1500, only one
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instance was not optimally solved by tabu search and the error was 0.04%. In the
subsequent experiments, a budget of 1500 was used.

e The leader’s location solution was extended by adding the branch and bound
procedure (the follower’s solution) to the tabu search. First, the original Fortran
code was recoded statement-for-statement in C# and tested on several JNT
instances. It was discovered that it took the C# implementation 10 times longer
to find the solution to the follower’s problem than the Fortran implementation.
This inefficiency was likely caused by pointer arrays used in C#.

e The branch and bound procedure was coded in .NET’s C++ language using native
C++ arrays. This new implementation was two times slower than its Fortran
counterpart. Because the branch and bound procedure is called for each tabu
search move, the very efficient Fortran code was compiled to a Digital Link
Library (DLL) and was called from the C# code using the .NET inter-operability
technology.

e The original parameters used for solving the leader’s problem (b; = %) did
not provide interesting results because the weights declined as the index of the
demand point increased and thus both the leader and the follower concentrated
their effort on attracting demand from demand points with a low index (high b;)
and “ignored” demand points with higher indices. Therefore, equal weights of
“1” were assigned to all demand points. A budget of 1500 and a set-up cost of
500 for both the leader and the follower were used.

Twenty Beasley [7] problem instances with n < 400 demand points were tested.
For 13 instances all results are the same and therefore the minimum and average are
100%. On average, the market share was 99.67% of the best obtained market share
and the minimum market share was 98.80% of the best one. The average standard
deviation was 0.50%. The numerical simulation experiments were run in parallel
as 24 separate threads distributed on 24 virtual CPU cores and four different 64-bit
Windows servers. Each server was equipped with 12 to 32 GB RAM and each virtual
CPU was approximately equivalent to an Intel Xeon 2 GHz physical processor.
These virtual CPUs are on a “cloud” and many applications are executed on them
simultaneously by many users. Applications are migrated from one physical CPU
to another by the central operating system. Total run time by the “cloud” computers
was about 16 months with a maximum of about 2 months for one particular problem.

It was found that the leader has a slight advantage over the follower. The leader’s
market share increased by an average of 14.80% while the follower’s market share
increased by 13.95%. However, this difference is not statistically significant. The
leader’s market share as a percentage of his original market share increased by
84.07% while the follower’s increase was only 73.43%. This difference is also not
significant.

When the leader takes no action he loses 3.29% of his market share while the
follower gains 24.68%. The lost demand (demand not served by either the leader
or the follower) also decreases by either action. It drops by 21.4% when the leader
takes no action but drops by 28.75% when both the leader and the follower expand.
By investing in expanding their chains, the leader attracts 14.80% of the lost demand
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while the follower attracts 13.95% of the lost demand. Lost demand was reduced on
the average by 48.1% of its value prior to the leader’s and follower’s expansions.
The leader and the follower may have attracted demand from one another but these
exchanges cancel out. The main source of extra market share for both the leader and
the follower was obtained by attracting new consumers that did not patronize any
facility prior to the expansion.

Finally, the leader’s market share results found by tabu search were compared
with a pure random search [153] for the leader’s strategy. The budget was allocated
to some facilities by the JNT strategy. The follower’s problem is then optimally
solved by the branch and bound algorithm. The procedure is repeated the same
number of times that the follower’s problem was solved in the tabu search and
the best leader’s market share selected. For example, in the tabu search the first
problem required about 4490 solutions of the follower’s problem in each of the
100 replications. For this problem 449,000 random allocations of the budget by the
leader were tested.

The results were quite surprising. For example, for the second problem the best
increase in market share found by tabu search is 7 units from 18 to 25. However,
the best pure random search increase is only 4 units (from 18 to 22) which is only
57.1% of the potential market share increase. The results indicate that if the leader
uses his budget at random, he gets poor results even when such random allocation is
repeated hundreds of thousands of times and the best “lucky” result selected! This
clearly shows the value of the approach suggested in Drezner et al. [65].

S5 Overview of Models Addressing the Location of Unreliable
Facilities

The issue of unreliable facilities or inoperable links on the network is discussed
in many papers. Wollmer [149] and Wood [151] considered the possibility that
some links of the network can be destroyed. Their objective is to maximize the
network flow following the loss of some links. It does not involve facility location.
Location of unreliable facilities was first introduced by Drezner [34] and extended
by Lee [101], Berman et al. [13], Snyder and Daskin [133], Shishebori et al. [130],
Shishebori and Babadi [129]. If the closest facility is out of service, then users get
their service from the second closest facility. The location of unreliable facilities
on a network when the reliability of service declines with the distance from the
facility is discussed in Berman et al. [13]. Church and Scaparra [25], Scaparra and
Church [127] proposed a model based on the p-median objective. They assume that
some of the facilities may be destroyed and a budget is available to protect several
facilities. O’Hanley et al. [111] and O’Hanley and Church [110] also suggest models
in which one or more facilities are destroyed retaining maximal cover. For a review
of unreliable location models the reader is referred to Scaparra and Church [127],
Snyder and Daskin [134], Snyder et al. [135], An et al. [4].
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6 The Defensive Maximal Covering Location Problem

The defensive maximal covering location model [16] is a leader-follower game
theoretic model [87, 136]. The leader locates p facilities on some nodes of a network
and at some point in the future a terrorist (the follower) removes one of the links of
the network. The follower’s objective is to remove the link that causes the most
damage. The leader’s objective is to cover the most demand following a link
removal. The model can also be applied to an accident or a natural disaster.

If the disaster is a terrorist attack, it is likely that they will sever the most
damaging link. If a link becomes unusable by accident, the leader would like to
“protect” himself against the worst possible scenario. This is reminiscent of the
minimax regret concept in decision analysis. In both cases, the leader’s goal is to
maximize coverage following the removal of the most damaging link.

The model suggested in Berman et al. [16] is based on demand coverage. For an
overview of covering models see Sect. 2. The model is related to location models of
unreliable facilities (see an overview in Sect. 5) and can be classified in this category.

We summarize the main results reported in Berman et al. [16]. For complete
details the reader is referred to that paper.

The follower’s problem is optimally solved while the leader’s problem is solved
heuristically. Consider a leader’s action locating p facilities on a set of p nodes. To
solve the follower’s (attacker’s) problem one needs to find the link whose removal
will inflict the maximum decline in coverage. Let F; be the number of facilities that
cover node j when links are intact, and Fj’f be the number of facilities that cover node
Jj following the removal of link k.

By removing link %, the follower may either remove the cover of node j or not.
Clearly Fj'-‘ < F;. There are four possibilities:

F; >0, Fj’.‘ > 0 no damage;

F; >0, FJ’.‘ = 0 lose node j (damage);

F; =0, FJ]-‘ = 0 no damage;

F; =0, F]k > 0 impossible since Fj’? <F,

Node j loses its cover if and only if ; > 0 and Fj’F = 0. F; is a known number
independent of k. Therefore, if F; = 0 no damage can be done to node j because it
is not covered before a removal of a link and can be removed from the follower’s
problem. The follower’s problem is solved by efficiently checking the damage for
every removed link and selecting the maximum damage rather than solving an
integer programming formulation. It is shown in Berman et al. [16] that all links
longer than the covering radius can be eliminated from the original problem.
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6.1 Properties of the Problem on a Tree

If the network is a tree, some additional properties can be used in the solution
approaches. All links longer than the covering radius can be removed from the tree.
Each such removal breaks the tree into two sub-trees. It is clear that if K links are
removed, there are K + 1 disjoint sub-trees. It is shown in Berman et al. [16] that
on a tree network, in each direct path the only links that are candidates for removal
are links that are adjacent to a facility. In conclusion, for a path network at most 2p
links are candidates for attack by the follower.

There are other reduction schemes on a path between two facilities. When a
direct path connects two facilities, if the distance between each of the end-nodes
of a direct path and the node adjacent to the other end-node does not exceed the
covering radius, then the whole direct path can be eliminated from consideration by
the follower.

6.2 Heuristic Algorithms for the Solution of the Leader’s
Location Problem

Solving the integer programming formulation for reasonably sized problems
requires too much computational effort. Therefore, it is recommended to apply
heuristic algorithms in order to solve moderately large problems. Three heuristic
algorithms are designed and tested in Berman et al. [16]:

Ascent Algorithm A set P of p nodes is randomly selected for locating the p
facilities. The objective function is the total cover following the follower’s move.
All possible exchanges between a node in P and a node not in P are evaluated.
If an improved exchange is found, the best improved exchange is performed and
the next iteration starts. The algorithm terminates when no improving exchange
is found. Each iteration requires p(n — p) solutions to follower’s problems, each
taking O(n*m) time for a complexity of O(n*mp(n — p)).

Simulated Annealing The simulated annealing [97] simulates the cooling pro-
cess of hot melted metals. A starting solution is generated, its value of the
objective function F is calculated, and the temperature 7 is set to Ty. The
following is repeated for [ iterations:

— The solution is randomly perturbed by removing one facility and replacing it
with a non-selected facility. The change in the value of the objective function
AF is calculated.

— If AF > 0 the search moves to the perturbed solution. If AF < 0 the search
moves to the perturbed solution with probability eT. Otherwise, the search
stays at the same solution.

— If the search moves to the perturbed solution, F is changed to the perturbed
value of the objective function.

— The time T is changed to «T.
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The best encountered solution during the process (usually the last solution) is the
result of the algorithm.

Berman et al. [16] followed the approach adopted in Berman et al. [15].
Three parameters are required for the implementation of the simulated annealing
algorithm. In Berman et al. [16] the following parameters were used: the starting
temperature 7y = 10, the number of iterations I = 500p(n — p), and the factor
a = 1 — 2. By this selection of o, the last temperature is To(1 — 3)! ~ Toe™ ~
0.0067T, = 0.067.

Tabu Search  Tabu search [78—80] proceeds from the ascent algorithm’s terminal
solution by allowing downward moves, hoping to obtain a better solution in
subsequent iterations. A tabu list of forbidden moves is maintained. Tabu moves
stay in the tabu list for tabu tenure iterations. To avoid cycling, the forbidden
moves are the reverse of recent moves. If a move leads to a better solution than
the best solution found so far, this move is executed and the tabu list is emptied.
If none of the moves leads to a better solution than the best found solution, the
best permissible move (disregarding moves in the tabu list), whether improving
or not, is executed.

Each move involves removing a node in P and substituting it with a node not
in P. The tabu list consists of nodes recently removed from P so they are not
allowed to re-enter P. The maximum possible number of entries in the tabu list is
n — p. The tabu tenure is randomly generated each iteration between 0.1(n — p)
and 0.5(n — p). Let h be the number of iterations by the ascent algorithm. The
tabu algorithm is run for an additional 9% iterations.

The easiest way to handle the tabu list is to create a list of all nodes and for
each node to store the iteration number at which it entered the tabu list. Emptying
the tabu list means assigning a large negative number to every node. A node is
in the tabu list if and only if the difference between the current iteration number
and the iteration value in the tabu list does not exceed the tabu tenure. This way
the length of the tabu list is changing every iteration according to the randomly
generated tabu tenure.

6.2.1 Breaking Ties

A useful “trick” for the ascent and tabu algorithms is designed to break ties in
the best move. This can be useful in other algorithms for other problems as well.
Consider a stream of events (for example a move tying the best move found so far)
received over time. It is not known how many events will occur. One event needs
to be randomly selected, with equal probability for each event, as a “winner”. It is
inconvenient to store the list of all events. Thus, the winner cannot be selected at the
end of the process.

Drezner [42] suggested the following simple approach: the first event is selected.
When the kth event is encountered, it replaces the selected event with a probability
of % It is shown in Drezner [42] that at the end of the process every event is selected
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with the same probability. This “trick” simplifies programming algorithms, such as
ascent or tabu search, when the events are moves tying for the best one. There is no
need to store all tying moves in order to randomly select one.

6.3 Computational Experiments

The three heuristic algorithms were tested on the 40 Beasley [7] problems designed
for testing algorithms for the solution of p-median problems. Each problem was
solved 100 times by the ascent algorithm and 10 times by simulated annealing and
tabu search starting with randomly generated starting solutions leading to similar
run times.

We found from the computational results that:

e The ascent algorithm found the best known solution (BK) at least once for 28
of the 40 problems, the tabu search found it in 31 of the 40 problems, while the
simulated annealing algorithm found it for all 40 problems. For the 12 problems
for which the ascent algorithm did not find the best known solution, the best
found solution was, on the average, 1.09% below the best known solution. For
the 9 problems for which the tabu search did not find the best known solution, the
best found solution was, on the average, 0.50% below the best known solution.

* The ascent algorithm found the BK 33.6% of the 4000 runs, the tabu search found
it 56.5% of the 400 runs, while the simulated annealing algorithm found it 83.5%
of the 400 runs.

e The average solution of the ascent algorithm was 1.25% below the BK, the
tabu search average was 0.34% below the BK, while the average solution of the
simulated annealing algorithm was 0.13% below the BK.

e Running 10 replications of the simulated annealing was faster, on the average,
than running 100 replications of the ascent algorithm and 10 replications of tabu
search.

6.3.1 In Conclusion

* The simulated annealing algorithm performed better than the ascent algorithm
and the tabu search.

* The tabu search performed better than the ascent algorithm in a slightly shorter
run time.

* The ascent algorithm may be useful for solving large problems for which only
one run can be afforded. In such a case, even one run of the simulated annealing
or tabu search may take too long.

* The advantage of the simulated annealing over the ascent algorithm and the
tabu search is pronounced for larger values of p. For p = 5 problems, one
hundred runs of the ascent algorithm require about the same time as one run
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of the simulated annealing, and the average result is quite comparable (of course,
the best result among the 100 runs of the ascent algorithm is better than one
run of the simulated annealing). One may consider the ascent approach for small
values of p.

7 Summary

The leader-follower model in the context of facility location is an interesting
extension to many practical location problems. Four different competitive location
models and one defensive maximal covering location model are reviewed.

Many other location problems can be extended to a leader-follower framework
and investigating such problems may yield interesting and useful results. For
example, the variations of covering objectives in Sect.2 suggest a plethora of
defensive maximal covering location models for future investigation: hierarchical
covering [23], variable radii [18], gradual cover [12, 14, 61, 62], cooperative cover
[5, 19, 20].

The thirty models (five objectives, each in one of the three environments, and
facilities can be reliable or unreliable) depicted in Fig. 1 can also be investigated
using a game theoretic framework. For example, unreliable minisum facility
location on the sphere (the follower destroys a facility) can be applied in this
context and is worth exploring. There are other competitive location models that can
be investigated as a leader-follower game. For example, the random utility model
[36, 45, 102].
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Asymmetries in Competitive Location Models
on the Line

H.A. Eiselt and Vladimir Marianov

1 Introduction

This paper deals with competitive location models in a very simple spatial context.
These models are essentially explanatory in nature, i.e., they demonstrate the
effects different policies have and how competitors generally behave. Due to the
simplicity of the market shape under consideration, it is clearly not designed to
provide locating firms with solutions to their specific problems. While problems
involving competing firms have long been discussed by economists, Hotelling [41]
is generally credited with being the first to consider competition in the spatial
context. In a nutshell (and without providing all details at this point), he considered
duopolists, who each locate a single branch of their firm in a space that is in the
shape of a line segment, which Hotelling referred to as “main street.” The demand
on the line is assumed to be uniformly distributed. In his original scenario, each
of the independently operating firms has two decision variables at its disposal,
viz., location and price. Hotelling concluded that an equilibrium is reached when
both competitors locate arbitrarily close at the center of the market. He framed
this result in the context of product design or brand positioning; more specifically,
the two “firms” represent products, while the space symbolizes one quantitatively
measurable aspect of the products. In his work, Hotelling used the example of two
brands of cider and their respective sweetness. Given his mathematical result, the
two products will turn out be become very similar. This result has been dubbed the
“principle of minimum differentiation.” Similarly, he mapped political candidates
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in an “issue space”—in the simplest case, the usual left—right scale—and claimed
that his result would prove why that the political platforms tended to be so similar.
The analogy of his original model and the political application is not very fitting,
though, as this model does not feature prices. This model was later expanded upon
to two dimensions by Rusk and Weisberg [65]. It became clear in later years that
Hotelling models are notoriously unstable, meaning that even small changes to the
model can result in dramatic changes to the solutions (see, e.g., Brown [12], Brenner
[11], Yasuda [77], and Marianov and Eiselt [55]). In other words, Hotelling’s result
with prices may (and does) have very different results from those with fixed prices.

It took 50 years until d’Aspremont et al. [15] proved that Hotelling’s original
model with linear transportation costs does not have an equilibrium. However, if the
transportation costs were assumed to be quadratic, there would be an equilibrium,
however one, in which facilities (we will call the entities to be located “facilities,”
regardless if they represent firms, their branches, brands, politicians, or anything
else) locate as far apart as possible from each other. This is yet another indication of
the instability of the results.

Lerner and Singer [52] introduced reservation prices into the model, Smithies
[70] used elastic demand, and Stevens [71] was the first to formally use game
theory in a discretized Hotelling model. Eaton and Lipsey [19] used fixed and equal
prices, but generalized Hotelling’s model in a different direction by including more
than two competitors into the market. They re-established the principle of minimum
differentiation for two facilities (even though it can easily be shown that arbitrarily
small price changes will destroy the equilibrium, showing again the instability of
the model), and demonstrated that the case of n = 3 competitors does not have an
equilibrium at all. Furthermore, models with more than five firms were shown to
have multiple equilibria.

Rothschild [64] appears to have been among the earliest to introduce sequential
entry of the firms onto the market into Hotelling’s model. This was soon followed
by the contribution by Prescott and Visscher [62], who computed locations for
two and three firms that sequentially enter the market. Interestingly enough, these
authors noticed 2 years before the D’ Aspremont et al. [15] paper that there was a
problem regarding the nonexistence of price equilibria for firm locations that are
close together.

Finally, it was Hakimi [36] and the follow-up contribution [37] that introduced
Hotelling models to operations researchers. His arguments place customers and
firms on a network, and the main concern are optimal locations (rather than
equilibria) and the complexity of the algorithms that compute the optimal locations.

The key results derived from the large variety of Hotelling models in the literature
fall into two categories. The first type of result deals with the stability of the
model. More specifically, authors use the concept of Nash equilibrium [58] and a
later refinement by Selten [67] and his subgame perfect equilibrium. Essentially,
Nash essentially states that a situation is in equilibrium, if neither of the decision
makers (or players in game-theoretic parlance) can improve his own objective by
unilaterally changing his present decisions. There is no concern of how such an
equilibrium, assuming it exists, can actually be reached, even though some authors
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have addressed that issue (see, e.g., Bhadury and Eiselt [7]). Similarly, the existence
of an equilibrium is typically dealt with as a binary result: either an equilibrium
does exist or it does not. Authors such as Eiselt and Bhadury [24], however, have
deviated from this convention and have suggested a continuum to measure stability.

Another solution concept was put forward by the economist von Stackelberg
[76]. It subdivides the existing firms or players into two groups, the leaders and
the followers. The decision makers of all players will then decide sequentially:
first the leaders decide (whatever their decisions may entail, e.g., locations, prices,
quality of the products, service level, etc.), knowing fully well that the followers
will make their decisions once the leaders have announced their decisions. The
followers will wait for the leaders to have made their announcements, and they
will then make their decisions. It is important to realize the inherent asymmetry in
the leader—follower concept: while the leader must make assumptions concerning
the behavior of the follower (e.g., concerning its objectives, perceptions about
demand, and other issues), and thus looking over his shoulder, followers do not
have any such problems: all they have to do is wait until the leaders make their firm
announcements regarding their decisions, take them as given and solve their own
conditional problems. This is the concept Rothschild [64], Prescott and Visscher
[62] and their many followers have used.

An important concept in sequential facility location is the “first mover advan-
tage.” It refers to the (possible) advantage a firm has while being the first to make
a location decision. Whereas this concept has been discussed in the marketing
literature for a long time, Ghosh and Buchanan [34] introduced it to the discussion of
competitive locations. More specifically, the coined the phrase “first entry paradox”
for cases, in which the firm that is first to choose its location, does not have an
advantage as expected. It turns out (and some of the cases discussed below will
witness this) that the “paradox” is more a rule than an exception in competitive
location models.

With the multitude of assumptions, rules and concepts pertaining to Hotelling
models, it is not surprising that authors have devised taxonomies to classify models,
see, e.g., Eiselt et al. [28]. It includes the space, number of players, the pricing policy
chosen by the decision makers, the rules of the game (referring to Nash equilibria or
von Stackelberg solutions), and the behavior of the customers. However, like most
location models, it is assumed that all decision makers perceive reality the same
way (e.g., assess demand in the same way; for a model that drops this assumption,
see Eiselt [22]), and that all players use the same objective function. While the
assumption of symmetry among players may apply in some situations, in others it
does not. Firms do not apply the same technologies, so that their cost functions may
differ. Upstarts may attempt to establish a foothold in the market (by maximizing
sales, while keeping the profit at least at a preset required minimum level), while
established firms may attempt to maximize their profit. Similarly, while some firms
employ mill pricing as their pricing policy of choice, others, such as internet firms,
may use delivered pricing instead. Asymmetries such as these are at the core of this

paper.
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There is a multitude of introductions, reviews, and surveys to the subject.
An early introduction is provided by Gabszewicz and Thisse [33] that focuses on
different pricing policies and derives objectives. Plastria’s [61] piece concentrates
on optimization approaches to competitive location problems. The work by Kress
and Pesch [47] is similar, as it also looks at the optimization side of the problem with
sequential entry onto the market. Younies and Eiselt [78] rework the fundamental
contributions of competitive location models with sequential entry, while Eiselt [23]
looks at the early contributions focussing on equilibrium results. In his teaching
note, Russell [66] stresses the “limited applicability of the principle under more
realistic assumptions.” Biscaia and Mota [8] review Hotelling models with their
many facets, while the latest review is by Ashtiani [3]. Finally, we do not want to
omit mentioning two books devoted to the subject, viz., those by Miller et al. [57]
and Karakitsiou [45].

The remainder of this paper is organized as follows. Section 2 introduces the
basic model and, in doing so, sets the stage for move involved models. Section 3
considers cases, in which the two firms apply different objectives, while Sect.4
discusses cases, in which the pricing policies of the firms differ. In the models
in Sect.5 firms have different technological capabilities (reflected in different
production and/or transportation costs), and, finally, Sect. 6 summarizes the paper
and provides an outlook.

2 The Basic Model

Consider a line segment extending from 0 to £, on which customers are uniformly
distributed. There are two competing firms, so that each will locate one facility.
The firms (and, if no confusion can arise, their facilities) are referred to as A and
B, respectively. Without loss of generality, firm A is located to the left of firm B.
Firm A is located a units from the left end (i.e., 0) of the market, while firm
B is located b units away from the right side (viz., £) of the market. Given the
above assumptions, a,b > 0 and a + b < {. Given a unified common price p
and assuming mill pricing by both firms, customers will purchase the goods they
desire from the closer facility, as the good is homogeneous (e.g., a brand name) and
transportation costs are the only distinguishing feature. Transportation costs include
not only out-of-pocket expenses for the transportation, but also inconvenience, such
as time in case where actual shipments occur, or other disutilities such as dislike in
case of brand positioning models. Just like Hotelling in his original contribution, we
assume in this work that transportation costs are linear in the distance. D’ Aspremont
et al. [15] introduced quadratic costs, which have very little meaning in case of
physical transportation, but are important in case of brand positioning models, in
which dislikes of a brand may increase superlinearly in the distance of the brand
features and the ideal point that represents a customer’s most preferred product
design. Following the introduction of linear-quadratic transportation cost functions
by Gabszewicz and Thisse [33], Anderson [1] used such functions in his analysis.
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Fig. 1 Facility locations A and B and marginal customer y

He showed that an equilibrium in pure strategies exists only, if the cost function
does not include a linear part, however small. Authors such as Hamoudi and Moral
[38] expanded the analysis to general convex and concave transportation costs.

For our purposes, we assume that transport costs are linear with unit transporta-
tion costs ¢, so that we can determine the location of the marginal customer at
point y. The marginal customer is located at a point, at which the costs of purchasing
the good from firm A are identical to those of a purchase from firm B. In order to
formalize matters, denote by d,, the distance between two suitably defined points g
and r. At point y, the cost of purchasing from firm A is p + tdy,, while the cost of
purchasing from firm B is p + td,p. With dyp = dsp — dyay, we obtain dy, = %dAB,
i.e., the marginal customer is located at the midpoint between firms A and B. This
situation is shown in Fig. 1.

We will refer to the area to the left of A as “A’s hinterland”, the area to the
right of firm B is called “B’s hinterland”, while the area between the two firms is
the competitive region. In this situation, firm A will capture all customers between
the left end of the market at 0 and the marginal customer at y, while firm B will
capture all customers between y and the right end of the market at £. The market
areas M(A) and M(B) are then M(A) = doy = a + %dAB =a+ %(( —a—b) and
M(B) = dy = b+ 3dsp = b+ (€ — a — b). If either of the two firms were
to act unilaterally and relocate, trying to increase its market share, it would move
towards its opponent, as for each € units that a firm moves towards its competitor,
it gains € units of demand in its hinterland, while losing %e units in the competitive
region. Given that moving towards one’s competitor is the strategy that maximizes
market share, it follows that central agglomeration of the two firms is the only stable
solution, i.e., a locational Nash equilibrium. As far as von Stackelberg solutions are
concerned, given the leader’s location at some point on the line, the follower will
always locate right next to the leader on the longer side of the market. The leader
anticipates this move, so it will-given that the market size is fixed-minimize the
maximum size the follower can get, which is achieved by locating at the center
of the market. As demonstrated above, the follower will locate next to the leader,
so that again, central agglomeration results. This is Hotelling’s result, but it was
achieved in a model in which prices are fixed and equal, rather than variable, as in
Hotelling’s original paper.
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Things change dramatically once the prices of the two competitors are still fixed,
but no longer equal. Without loss of generality let ps < pp. This pricing structure
allows the lower-priced firm A to follow its competitor B in a predatory fashion by
locating arbitrarily close to it, thus cutting him out and capture the entire market.
Firm B, on the other hand, will attempt to stay away from A and attempt to capture
a small, “out of the way,” segment of the market. (This is the fashion of small
retailers who, unable to compete in prices with large chain stores, have survived
off the main centers.) Clearly, there is no equilibrium. This demonstrates how fickle
the equilibrium in the previous case with fixed and equal prices actually is: if one
of the two prices changes by an arbitrarily small amount, the equilibrium ceases to
exist.

As far as von Stackelberg solutions are concerned, we will consider two cases.
In the first case, the higher-priced firm B locates first, followed by the lower-priced
firm A. This case is easily dispensed with. Wherever firm B locates, its competitor A
can always locate arbitrarily close to B, cut out its competitor, and capture the entire
market. The case in which firm A locates first, followed by firm B, is not quite as
simple. Given any location of firm A, firm B will locate on the longer side of the
market (or on either side, in case A has located at the center of the market), at a
distance of %(pg —pa) + €, which guarantees that firm B is just sufficiently far away
from A to avoid being cut out. Its market area is restricted to roughly the area to its
right, i.e., M(B) ~ b. As firm A anticipates this move, and it obtains the complement
of B’s market area, i.e., M(A) = £ — M(B), it will locate at the center of the market
with firm B locating %(pB — pa) + € away on either side. The two market areas
are then M(A) ~ 3¢ + L(ps — pa) and M(B) ~ 1€ — 1(pg — pa). Notice that (1)
the case of equal prices results in central agglomeration as discussed above, and (2)
M(A) > M(B) for all cases, in which py < pg.

3 Asymmetry of Objectives

This section investigates models, in which the two competitors have different objec-
tives. In particular, we will investigate a model, in which one of the competitors, say
firm A, resembles a private firm that maximizes revenue, while its competitor, firm
B, is a public firm, whose objective is to maximize access to its facility. Settings
such as this are well known in the literature, as they pit a private firm against a
public firm. Typical examples are contributions, such as Thisse and Wildasin [74],
in which customers decide whether to patronize a centrally located public facility
or one of two more peripheral branches of a private firm. Lu [54] has a welfare-
maximizing firm compete with a private firm that maximizes its profit, while Herr
[39] considers a specific mixed duopoly that examines the potential privatization of
a public hospital and whether or not such course of action will increase welfare.

In our analysis, we first consider a model, in which one of the competitors,
say firm A, resembles a private firm that maximizes revenue, while its competitor,
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Fig. 2 Delivered prices for two firms with equal prices

firm B, is a public firm, whose objective is to maximize access to its facility.
To operationalize, access is expressed as the average distance between a customer
and a facility. Again, to simplify matters, assume that the prices at the two firms
are equal, so that customers, given that they have no preference for either firm, will
patronize the closer facility. Furthermore, let firm A be located to the left of firm B,
i.e., a < £ — b. The situation is shown in Fig. 2.

Atpointy, we have p+tdy, = p+tdyp, resultingindy, = dyg = %(E—a—b). Then
firm A’s market area (which the firm attempts to maximize), is M(A) = a + day =
a+ %(E —a—b) = %(E +a—b). With the length of the market £ and firm B’s location
being temporarily fixed (as long as firm B does not react to firm A’s move), firm A
will maximize its sales and revenue, if it chooses the value a as large as possible.
Since a + b < £ (firm A locates to the left of its competitor B), i.e., a = £ —b, which
is firm A’s reaction function. In other words, firm A will locate arbitrarily close to
its competitor.

Consider now the public firm B, which attempts to maximize access of its
customers to its own facility. The average distance of facility B to its own
customers is:

1
1 5 ({—a—b) b 1 1 1
D/=7 / xdx+/ xdx 27[*'€_a_b2+*b2]
B M) |: =0 =0 $(t—a+b) 8( "t

We already know that firm A will cluster, so that a = £ — b, and Dl’g = %b, which
is clearly minimized for » = 0. Adding firm A’s clustering, we obtain a = £.
This paradoxical result indicates that at equilibrium, the public facility will locate
at one end of the market with the private facility right next to it, so that the private
firm captures the entire market (certainly its best possible result), while the public
facility ends up with no market at all. This is explained by the fact that the public
firm considers only its own customers when minimizing average access time, which
in this solution equals zero, the lowest possible value. Since neither facility has an
incentive to move out of the present situation, this is a Nash equilibrium. Note that

the average distance between a customer and its closest facility is %E.



112 H.A. Eiselt and V. Marianov

Things change if the public firm considers the average access distance for all
customers. While firm A’s objective and its resulting predatory behavior are still the
same, firm B’s objective changes. The average customer-facility distance, given that
customers patronize the facility closest to them is then

1 a day=1/2((—a—b) dyg=1/2(t—a—b) b
Dp = - / xdx + / xdx + / xdx + / xdx
14 x=0 x=0 x=0 x=0

= % [%az + %(ﬁ —a—b)?+ %b2:|
Optimizing this function with respect to b results in firm B’s reaction function b =
%(ﬁ — a). In other words, the public firm B will disperse and attempt to locate away
from its private competitor. Since firm A, on the other hand, needs to agglomerate
to achieve its best possible result, we obtain the result:

Theorem 1 In the competitive model with one firm that maximizes its market
capture and another that minimizes the average customer—facility distance, there
is no equilibrium.

Consider now the von Stackelberg solutions in this asymmetric game. There are
two versions of it, “first public, then private” as well as “first private, then public.”
The case of “first public, then private” is easy. The public facility knows that its
private competitor will cluster. Thus it locates at the point, at which the average
distance is minimized, which is central agglomeration.

Finally in this section, consider the von Stackelberg solution for the “first private,
then public” problem. To analyze this case, we first need to derive firm B’s reaction
function. Evaluating the derivative of D = % [%az + %(Z —a—-0b)?*+ %bz] with
respect to b, we obtain the reaction function b = %(6 —a). Since the private firm A’s
objective is to maximize its market, we can rewrite firm A’s objective as M(A) =
%(Z +a—->b) = %(Z + 2a). This is maximized, if a is as large as possible. Note
that the maximum value for a is %E. If exceeded, the public facility’s best move is
to locate on the left side of the private facility (longer side of the market), and by
symmetry, firm A would move left to maximize its market. We then obtain a = %E,
so that b = %Z, firm A’s market share is M(A) = %E, and the average distance
between a customer and its closest facility is %Z. We can summarize our pertinent
finding in
Theorem 2 Consider a competitive Hotelling model on a line segment with a
private firm that maximizes its market capture and a public firm that minimizes the

average customer—facility distance. The “first public, then private” game results in
central agglomeration with M(A) = %E and an average customer—facility distance

ofj—tﬁ, while the “first private, then public” game has a solution at (a, b) = (%Z, %E)
with M(A) = %Z and an average distance of é@.
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It is noteworthy that among the cases discussed above the customer benefits most,
if a public facility joins the market after a private firm already exists. This result is
somewhat reminiscent of Teitz’s [72] “even a small gadfly can keep the big operator
‘honest’.”

Another “public vs. private” model exists, in which the public facility follows
a minimax, rather than a minisum, objective. In other words, while the private
facility still maximizes its sales or, proportional to it, its revenue, the public
facility attempts to minimize the longest distance any customer has to travel to
his closest facility. The private firm A’s reaction functions is easily derived: it
will again cluster with its public counterpart B by locating on the latter’s longer
side. Firm B’s reaction function can be described as follows. For any a < %Z,
b = %(ﬁ — a), so that the longest distance between any customer and his closest
facility is dygy = b = %(@ — a) and firm A’s market area will be M(A) = a4+ b =
1(¢ + 2a). For a € [1¢, 1¢], firm B will locate at b € [max {0, £ — 3a}, a], so that
dyar = max {a, 1({ —a — b), b}. Given the two bounds for b, we obtain dy. = a.
Furthermore, firm A’s market area is M(A) = a + %(K —a—>b) = %(( + a—b).

In other words, for any set value a < iﬁ, firm B locates at a fixed point, while
for a € [{¢.4¢], firm B has some leeway due to ties. If firm B were to be a
“willing cooperator” of B, it would choose among its alternative optima that, which
maximizes firm A’s objective. This would mean that firm B would always choose
b = max {0, { — 3a} for a € [}, 1£]. The choice for firm B’s secondary objective
as a willing cooperator is somewhat arbitrary. It may be justified by considering
possible side payments from firm A. Additional possibilities are explored below.

This leads to the following result regarding Nash equilibria. Clearly, for a < }‘Z
equilibria cannot exist, as firm A needs to cluster. The only place where clustering is
possible is at a = 1, for which b € [0, 1£]. All of firm B’s locations in that interval
are optimal, as in all these cases, d,,,, = a. The only clustered point in this interval

isb = %E, i.e., central clustering. This immediately leads to

Theorem 3 Consider the problem of one firm that maximizes its market share and
a second firm that minimizes the longest distance any customer on the market
has to travel to a facility. The unique Nash equilibrium in this model is central
agglomeration.

Consider now von Stackelberg solutions for this model. First we examine the
case in which the public firm locates first, followed by the private firm. Given A’s
reaction function, firm B knows that A will cluster on its longer side. If B locates at
the center of the market, so will A, resulting in d,,,,, = %Z. If B locates anywhere off
center at some b = %Z =+ € with some € > 0, firm A will locate arbitrarily close to B
on its longer side, so that d,;,, = %Z + €. Hence, central agglomeration is the result.

Assume now that the private firm locates first, followed by its public counterpart.
Here again, we need to specify a tie-breaking rule. (This is the case in many
instances when minimax objectives are used. This is due to the fact that the minimax
objective focuses exclusively on the longest customer—facility distance, ignoring
all other distances). For a < }16, firm B’s reaction function is as shown above with
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b= %(K—a), resultingin M(A) = a+b = %(€+2a). This market area is maximized
with the largest possible value of a = 1¢, resulting in M(A) = 1€.Fora € [1£, 34],
dnax = a and, as a willing cooperator, firm B locates at b = max {0, £ — 3a},
resulting in M(A) = a + %(K —a—>b) = %(K + a — b). Firm A will maximize this
function by choosing a as large as possible and firm B will cooperate by choosing
b as small as possible, i.e., a = %E and b = 0. This results in d,,., = %K and
M(A) = %Z, larger than firm A’s previous option at a = i(. If firm B had used the
minimization of the average customer—facility distance as a secondary objective,
it would have used its reaction function b = %(Z — a) derived above and located
ath = éﬁ, resulting again in d,,,, = %Z but also in the average distance éﬁ. Here,
firm A’s market share would have been %E. We can now summarize our pertinent
findings in the following

Theorem 4 Two firms compete on a linear market, a private firm that maximizes
its market share and a public firm that minimizes the maximum customer—facility
distance. The “first public, then private” game has a unique solution with central
agglomeration, while the “first private, then public” game has a solution with the
private firm locating at the center, while the public firm’s location depends on its
tie-breaking rule.

4 Asymmetry of Pricing Policies

One of the key decisions a firm must make is the choice of a pricing policy.
Among the many pricing policies, mill (or fob) pricing, uniform delivered pricing,
and spatial price discrimination are the most popular strategies, but certainly not
the only ones. Anderson et al. [2] examined the location equilibria for the three
aforementioned policies and the social surplus they generate. However, in their
study, both firms were using the same strategy. In this paper, we will assume that the
two competitors use different exogenously determined pricing policies. Lederer [49]
considered the case of brick-and-mortar facilities that compete against an internet
e-tailer, which has the choice of pricing policies. Guo and Lai [35] follow a similar
route in that they investigate equilibrium conditions for two “regular” retailers
and one internet etailer. In contrast, Thisse and Vives [73]—while not considering
location choice in their model-let firms first decide which pricing policy they choose,
followed by the decision on a price. Our discussion here will follow along the lines
of Eiselt [21], who considered the model of one mill-pricing firm competing against
one firm that has chosen uniform delivered pricing as their strategy.

Assume that firm A uses mill pricing, while its opponent, firm B, employs
uniform delivered pricing. However, this does not mean that firm B’s location is
irrelevant, as it has to ship the goods to the customers and pay for the shipment.
In other words, both firms have to consider transportation costs, albeit in different
ways: whereas for firm A, the transportation costs will determine its market area,
transportation costs will be paid for by firm B and thus directly affect its profit. The
situation is shown in Fig. 3.
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The two firms’ revenue functions will have a number of breaks. If firm B charges
pB < Pa, customers can obtain the good more cheaply from firm B than from firm
A anywhere on the market, so that firm B’s market area is M(B) = £. Once firm B’s
price increases above that of its competitor, its market share starts dropping as firm A
gains market symmetrically about its location. After pg = p», firm A keeps gaining
market shares but only at half the rate as before. Once pg = p3, firm A captures the
entire market, while firm B’s market share is reduced to zero. The market shares of
firm B can be determined as

4 PB < DI = PaA
2 _
M(B) — Z T t(pB pA) if PB € [plvp2]
—+(pp—pa)—a ps € [p2.p3l
0 PB > D3

The revenue function the above capture function leads to has also four regions: it
increases linearly in the first, is concave in the second and third, and equals zero in
the fourth region. While the function has nondifferentiabilities at the points pi, p»,
and p3, the function does not exhibit jumps.

It is apparent from Fig. 3 that firm A has an incentive to move towards the center
of the market, especially when firm B charges a price pg € [p2, p3]- In such a case,
firm A can get additional market shares by moving towards the center. More so,
firm A can never do better than when located at the center of the market. Hence-
even though for a specific combination of prices, there may be alternative optimal
solutions for firm A’s location-we assume that A will locate, so that a = %6.

In order to determine the market areas of the two facilities, we need to determine
the price levels at all points on the market. More specifically, the points at which the
prices from the two firms are equal are § units away from the mill pricing facility A,
where ps + t§ = pp,ie.,§ = %(pB — pa). Then the market areas of the two firms
are M(A) = 26 = %(pB —pa)and M(B) ={—M(A) ={ — %pB. The profit of firm
A is then P(A) = M(A)py = %(pB — pa)pa- Evaluating the derivative of this profit
function with respect to p4 and setting it to zero results in py = %pg.

p3=p+i(t-a)

pr=prtia

iy P1=P4

0 a A l-a 4

Fig. 3 Determination of breaks in the revenue function
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Consider now firm B. First the easy cases: for pg > ps+ %tﬁ, firm B’s market area
and profit are zero, while for pp < py, firm B’s market area is M(B) = £, its costs,
if located at %E, are C(B) = %tﬁz, and its profit function is thus P(B) = {pp — %tﬁz,
so that its optimal price is as large as possible, which is achieved at py = p4 — € for
€ > 0 but arbitrarily small. Clearly, as firm A’s reaction function sets its price at half
the level of that of its competitor B, this will not result in a stable situation.

Consider now the case, in which pg € [p1,p2] = [pa.pa + %t@]. With firm A at
the center at a = %K, and its price py = %pg, firm B’s market area is symmetric
about %Z, extending from the two ends of the market to points d = %K — %pg from
them. It is not difficult to demonstrate (see the Appendix) that as long as firm B
locates anywhere in the central interval [d, £ — d], its costs are C(B) = (£ — d)td =
1102 — 1p2 + 2papp — 1p3. It can also be shown that firm B’s costs are higher for
locations closer to the ends of the market.

We can then set up firm B’s profit function P(B) = M(B)pg — C(B) = 1p2 +
% i+ pp — itﬁz. Differentiation leads to the optimal price for firm B as pp = %tﬁ,
and, subsequently, py = it@. It is noteworthy that with py = A—l‘t& the interval
p1,p2] = [%tﬁ, %tﬁ] does include pp = %tﬁ, so that the assumptions for this case
are indeed satisfied. In other words, firm B’s profit is optimized on [py, p2]. With
equilibrium prices py = %tﬁ and pp = %tﬁ, the equilibrium profits are P*(A) =
102 and P*(B) = L1£?, giving a strong advantage to the mill pricing facility.
However, this is not really surprising as the uniform delivered pricing firm does
have to absorb the transportation costs, while firm A lets the customers pay for their
own transportation. Note that there are many possible location combinations (a, b)
that lead to this solution. We can summarize this result in

Theorem S In a competitive location model with one firm adopting mill pricing
while the other uses uniform delivered pricing, there is an equilibrium in which the
mill pricing firm charges half the price of its opponent, but obtains twice the profit.

Consider now the von Stackelberg solutions. Assume that firm A moves first and
firm B follows. Optimizing firm B’s profit function results in pg = %t[. Given that
firm A locates at the center of the market, p4 > 0 implies that firm A will not be a
monopolist. Applying firm B’s price in its own profit function, we obtain py = J—ttﬁ,
leading to PA(A) = 41> and P*(B) = {:t{*, where the superscript indicates the
leader. These are the same as the equilibrium results obtained earlier.

Now examine the case, in which firm B is the leader, while firm A takes on the
role of follower. The leader knows that A locates somewhere near the center of the
market and charges a price of py = %pg. Firm B’s profit function can then be written
as P(B) = {pp— 110> — 2 p?. Differentiation results in ps = 31{, and, given firm A’s
reaction function, py = %IZ. Note that both prices are higher than their equilibrium
counterparts. The resulting profits are PP(A) = 2#42 and PP(B) = L%, both
higher than at equilibrium. Note the very strong advantage for the mill pricing firm.
We can summarize these results in
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Theorem 6 In a competitive location model, in which a mill pricing and a uniform
delivered pricing facility compete against each other, the solution is a Nash
equilibrium if the mill pricing facility moves first. If the uniform delivered pricing
facility moves first, its opponent charges half the price and has 8/3 as high a profit
as the uniform pricing facility.

S Asymmetry of Firm Technology/Ability

This section consists of two parts. The first part assumes that the two firms apply
different production technologies, so that their respective costs differ. We will
investigate the situation, in which both firms apply spatial price discrimination. The
second part has the firms use equal technologies and thus have equal production
costs, but their modes of transportation differ, so that their unit transportation costs
differ.

5.1 A Duopoly with Different Production Costs

Models in which firms have different production costs have been examined by many
authors in the literature. In the context of competitive location models, one of the
earlier contributions is that by Hurter and Lederer [44], who located firms in a
two-dimensional plane and determine equilibrium conditions. Ziss [80] considers
a three-stage game: enter/do not enter the market, choose a location, determine the
price. The issue of entry deterrence is an important feature in this mode, which does
allow for different production costs of firms. A similar game is examined by Vogel
[75], albeit on a circular market. Liang and Mai [53] investigate a product design
model (in the usual features space) in order to decide on export taxes or subsidies.
Matsumura et al. [56] show how technology transfer can guarantee the existence
of an equilibrium in case of different production cost. Ledvina and Sircar [51]
research the case of asymmetric costs in the energy industry. Cai and Kobayashi [13]
examine two firms with different production costs, one of which already present in
the market, while another wants to enter, how lobbying influences entry regulations.
Pierce and Sen [59] look at firms with different production costs in the context of
outsourcing, and Eleftheriou and Michelacakis [29] prove that firms with different
production costs and spatial price discrimination result in locational arrangements
that are always socially optimal, given a large variety of different assumptions.

Our discussion stays close to Hotelling’s model. We begin by considering the
case of firms A and B locating a single facility each with unit production costs c
and cp, respectively. Without loss of generality, suppose that ¢4 < cp. Based on firm
A’s lower per-unit production costs, we will refer to it as the “efficient firm,” while
firm B will be called the “inefficient firm.” Both firms have their respective locations
and prices as variables. As usual, we assume that the costs of delivery of the goods
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Fig. 4 Delivered cost functions of two firms with different production costs

are linear in the distance and the quantity. Hence, the cost functions of the two firms
for delivering the goods are shown in Fig. 4 as the “Y”-shaped functions above the
locations of firm A and B, respectively. Note that in contrast to the usual mill pricing
Hotelling models, these Y-shaped functions represent costs to the firms, rather than
costs to the customers. In other words, at any point on the market, the full cost of
delivering one unit of the good from the firm to that point is represented by the curve
of that facility. The argument is now that the price that a customer pays is indicated
by the upper envelope of the two Y-shaped functions. Note that at any point on the
market, the lower-cost firm will capture the demand at that point, but at a price that
equals the cost of the higher-priced firm (minus some ¢).

Furthermore, we define a separation point y as the point on the market, at which
the full costs of the two firms are equal. Note the similarity of the marginal customer
in the previous sections and the separation point y, one defined on the basis of full
prices and the other on the basis of full costs. Formally, the separation point is
defined as the point y, at which ¢ + tda, = cp + tdp,. As aresult, firm A’s costs
are lower than that of its competitor to the left of the separation point y, while to
its right, firm B’s costs are lower. This means that to the left of y, firm A can set a
price slightly lower than the cost of its competitor at p, = cp + tdyg — €, so that,
assuming that firm B does not use a suicidal strategy (i.e., attempt to capture demand
regardless of its loss), firm B will not be able to compete and firm A will capture the
demand. A similar argument applies all points to the right of the separation point y,
where B will be able to undercut its competitor A.

The results of this argument are twofold. First, the prices at some point x on the
market are

cg+ l‘(Z —b— de) if d()x = dOy
ca+ t(de - (l) de = dOy

and secondly the market areas captured by the two facilities are M(A) = dy, and
M(B) = (£ — dyy). Note that if c4 + tdsp < cp, then the efficient firm A will be

able to supply the entire market more cheaply than the inefficient firm, so that firm
B will be cut out. This will destroy the duopoly and, at least temporarily, create a
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monopoly. Rewriting the condition that avoids such an occurrence is the regularity
condition ¢g — ¢4 < t(£ — a — b). This condition requires firm B’s production costs
to be lower than firm A’s production cost plus its transportation costs to the location
of firm B.

One somewhat compelling reason for the prices to increase as we move away
from the separation point y is this. At the separation point, the level of competition
is largest. As we move away from that point, the level of competition decreases and
with it the price increases. In Fig. 4, the shaded area above point A denotes firm
A’s profit, while the shaded area above firm B denotes firm B’s profit. Also notice
that the force that pulls the two facilities together in the original Hotelling model is
absent in this model: on the contrary, there is a force that pushes the two facilities
apart, as that way, the prices and with it the two firms’ profits increase.

Formally, firm A’s market area is M(A) = doy = a + dyy = %t(cB —
cA) + ;(Z 4+ a — b) and its profit is P(A) = alcg—ca +t(l —a—>b)] +
4, [cg —ca + t( —a—b)]%. Similarly, the expression of firm B’s profit is P(B) =
blca —cg+t( —a—D)|+ 5 [ca — cg + t({ — a — b)]*. The respective derivatives
result in the reaction functions of the two firms, which are a = %(CB —cq+tl—1b)
and b = %(CA —cp +tf —ta). These two equations result in a Nash equilibrium with
locations a* = %E + 2%(03 —cy) and b* = IZ — i - (cg—ca). In other words, with very
similar operating costs, the two firms will locate at the first and third quartiles of the
market, respectively (this is Hotelling’s “social optimum”), and as the differences
between the unit operating costs increase, both firms move to the right by equal
distances. These equilibrium locations will apply, as long as a > 0 and b > 0. This
is ensured by the regularity condition. The equilibrium profits of the two firms are
P*(A) = 2(cp — ca + t€)? and P*(B) = 2 (ca — cp + 3t€)?, respectively.

While it is possible for firm A to undercut its competitor, one can show that it is
not profitable to do so. This leads immediately to

Theorem 7 Aslong ascp—ca < %tﬁ the Hotelling model with delivered prices has
a stable equilibrium with locations a* = %Z + %(CB —cy) and b* = %@— % (cg—ca).
Ifcg —ca > %tZ, firm A becomes a monopolist.

Consider now the von Stackelberg solutions. We first investigate the case,
in which the efficient firm A locates first, followed by its inefficient counter-
part B. Inserting firm B’s reaction function into firm A’s profit function yields
P(A) = 3a[cp—ca+ 31l — Sta] + 5 [cp —ca + 3£ — %ta]z, which, after taking
the derivative with respect to a and setting it equal to zero results in the leader’s
location at @’ = Si[(cB —cq + %tﬁ) = %(CB —cp) + %K. Firm B will then react by
choosing its location at b’ = %(CA —cp+ %tﬁ) = %(CA —cp) + %K. Here, b > 0
requires that cg — cy < %tﬁ, which is the same as the regulatory condition above.
We can also show that for cg — ¢4 > %tﬁ, concavity of the profit function P(B)
implies that firm B will stay as close to the (now unattainable) optimum, so that it
will set ' = 0 and thus locate at the right boundary of the market The profits of
the two firms are P(A) = 2(cp — ca + 3t0)* and P(B) = 2L(ca — cp + 31€)?,
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respectively, so that the leader’s profit is P(A)/P(B) = 66.67% higher than that
of the follower. As firm B’s cost increase, firm A’s profit also increases. This is
due to two forces that apply simultaneously: on the one hand, the more efficient
firm’s relative competitiveness increases (and with it its market share), and secondly,
the price of the product in firm A’s market area is determined by its less efficient
competitor.

Consider now the von Stackelberg game, in which the inefficient firm B locates
first, followed by its efficient counterpart A. The same procedure used in the previous
analysis results in optimal locations b = %(CA —cp+ %tﬁ) for the leader and a =
%(CB —cp+ %t@) for the follower. The profits of the two firms are P(A) = % (cp—
ca+ 31€)? for the follower and P(B) = 22 (ca—cp+31£)? for the leader, respectively.
In the boundary case of ¢4 = ¢, the strong leader advantage of 5/3 applies again.
We can summarize these results in

Theorem 8 In a competitive location model with two competitors that have
different production costs, consider the von Stackelberg solution. In case the efficient
firm locates first, it has a % profit advantage, while if the inefficient firm locates first,
it may have an advantage if the costs are not too different. In other words, there is
always a first mover advantage.

5.2 A Duopoly with Different Transportation Cost

There are relatively few authors who have looked at models with different trans-
portation costs. Among them are Lederer and Hurter [50], whose firms may
have different production costs, face different transportation costs, and use spatial
price discrimination in a “first location, then price” game, in which the firms
make simultaneous choices in each of the two phases. The authors prove that a
location-price equilibrium exists in this case. Konur and Geunes [46] use a model
with differential transportation costs and simultaneous location choices. They use
variational inequalities to determine optimal locations.

Our model in this section deals with a standard Hotelling model, in which
there are different transportation costs associated with each of the two firms. This
assumption may be justified in different ways. On the one hand, there is the usual
mill-pricing model, in which customers pick up the goods from the stores and pay
their own transportation costs. Consider the case, in which one store is located in an
area that is harder to get to, e.g., more congested, such as a downtown location. In
such a case, a shopping trip to this facility will take more resources, i.e., be more
expensive per mile than a trip to an alternative facility, which is, say, located next to
the highway, can easily be reached, and has ample and free parking. This argument is
somewhat reminiscent of competitive location models with attraction functions, see,
e.g., the references in Sect. 6 of this paper. However, this argument does not apply
in cases, in which the two firms locate close together. Alternatively, we can think of
a model, in which goods are delivered to customers, who are subsequently charged
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Fig. 5 One marginal customer at x in the case of firms with different transportation costs
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Fig. 6 Two marginal customers at x and y in the case of firms with different transportation costs

for the delivery, based on the distance between them and the facility. Different unit
transportation costs can then result from the fact that the two firms employ different
modes of transportation with different costs.

Formally, we have again the standard Hotelling model of length £, two firms A
and B, which locate at @ and b distance units away from the left and right edge of the
market (we assume that a + b < £), both firms charge a price p, and their respective
unit transportation costs are 74 and 7, respectively. Without loss of generality, we
assume that #4 < 75. Again, we define a marginal customer as a customer who faces
the same costs from both facilities and thus is indifferent to the choice. Figures 5
and 6 demonstrate that in the case of different unit transportation costs, it is possible
that one or two marginal customers exist.

We will discuss these two cases separately. More specifically, Case 1 deals with
the situation in Fig. 5, in which there exists a single marginal customer at x, while
in Case 2 (Fig. 6), there exist two marginal customers at points x and y.

Case 1: There exists a single marginal customer at x. The condition for this to
happen is p+14 (£ —a) > p—+1tgb. Given some standard algebraic transformations,
we obtain the condition ¢ < £ — %b. The distance between firm A and the

marginal customer x can then be written as ds, = %, so that firm A’s
market share is M(A) = a + day, which can be rewritten as M(A) = %

Clearly, this function is linearly increasing in a, so that firm A will choose a
location that is as far as possible from the left end of the market. In other words,
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firm A will move towards firm B. A similar analysis for firm B reveals that
M(B) = M;MTA;””B, so that again, this measure will increase with increasing
values of b, so that firm B will also gain market shares and profit by moving
towards its opponent.

Case 2: The condition for this case is a > £ — %b. As shown in Fig. 6, there are
now two marginal customers x and y. The distances between firm B and x and y
are dgy = + + ” ——( —a—0b)and dp, = — a — b), respectively. Firm B’s

market area is then M(B) = ZZZA’B (¢ — a — b). The term in brackets expresses
B

the distance between the two ﬁrms, whose coefficient is positive, so that, firm B
has an incentive to move away from its opponent. On the other hand, firm A’s
market area is M(A) = [1 — tf‘]_l [(3 — 13 — 2tat) £ + (21at) (a + b)]. Here,
the coefficient of a, the only variable under firm A’s jurisdiction, is positive, so
that A has an incentive to move towards its opponent. In the extreme, firm A
co-locates with its opponent and it will thus capture the entire market.

The above discussion now allows us to analyze possible solutions. First consider
Nash equilibria. Suppose that Case 1 applies. In such a case, both firms have an
incentive to move towards each other, so that at some point, the situation becomes
Case 2 and there is no equilibrium for Case 1. Assume now that we are in Case 2.
Here, firm A is predatory, while its opponent will move away from A, until Case 1
applies. It is apparent that no equilibrium can exist.

Theorem 9 In a competitive location model, in which firms have different trans-
portation cost functions, there is no equilibrium.

Consider now von Stackelberg solutions. The case of “first firm B then firm A” is
easy. Wherever firm B locates, its opponent will locate arbitrarily close, so that firm
B’s market share is reduced to virtually zero. A more interesting case is the case, in
which firm A locates first, followed by firm B. As firm B will profit on the longer
side, i.e., farther away from firm A, firm A will attempt to prevent this by locating at
the center of the market, i.e.,a = IZ As firm B’s reaction function in both cases is
b= ’A (¢ — a), we obtain b = 1 ’A E This means that for any fixed location of firm
A, ﬁrm B will locate, such that the right end of its market area coincides with the
right end of the market. The market areas in the “First A, then B” scenario are then

M(A) = m + - { and M(B) = m + - £, meaning that the ratio of the two market areas
is inversely proportional to the ratio of the unit transportation costs, i.e., %g

We summarize the result in

Theorem 10 Consider a competitive location model with firms that are associated
with different unit transportation costs. If the higher-cost firm moves first, it will
be cut out and be eliminated from competition. If the lower-cost firm moves first,
the ratio of its market share is inversely proportional to the ratio of the unit
transportation rates.
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6 Conclusions

In this paper we have examined a number of competitive location models, in which
asymmetries exist. Special attention has been paid not only to the existence of
locational Nash equilibria, but also to von Stackelberg solutions and the possible
existence of first (or second) mover advantages.

Many possible extensions exist, some of which have already been suggested in
the literature. One issue, suggested by many authors, deals with more than two
competitors. Among those who have worked in the field and suggested pertinent
models are Shaked [68, 69], DePalma et al. [16] as well as Eiselt and Laporte [27]
for three firms, and some more recent contributions are those by Brenner [10], Ben-
Porat and Tennenholtz [4], and Fournier and Scarsini [32]. However, all of these
contributions have investigated models with identical facilities. There are many
asymmetries that could be thought of that exist in real life.

Another type of model that has been widely researched—albeit not with
asymmetries—includes attraction functions. Such functions typically associate
a weight to each facility, which is a unidimensional measure that expresses
the desirability of that facility. As mentioned above, this can and will typically
involve the size of the facility, the breadth of goods and services the facility offers,
the ease of accessibility, and others. In the context of competitive location, attraction
functions were suggested by Eiselt and Laporte [25, 26] and Eiselt [21]. These
models have been pioneered by Reilly [63] and Huff [43]. Drezner [17] picked up
the issue in her model in the two-dimensional plane. More recent contributions that
involve facilities with different attractivenesses include papers by Blanquero et al.
[9], Kiiciikaydin et al. [48], and Ferndndez and Hendrix [31]. Drezner [18] surveys
competitive location models with facilities that have different attractivenesses.

Another large and important field involves uncertainty and imperfection of
information. Again, much work has been done in the area-including the specific
aspect of competitive locations-but not with asymmetries. Bhadury [6] deals with
uncertainty of costs, an issue picked up again by Huang et al. [42] and Pinto and
Parreira [60]. Imperfect information was used in a model by Esteves [30]. Eiselt [22]
included different perceptions of some features in a competitive location scenario in
his model.

Finally, there is a number of issues that have been introduced into some
competitive location models, but have not really been examined closely, and most
certainly not in the context of asymmetries. Among them are flow capturing models,
pioneered by Hodgson [40] and Berman et al. [5], in which customers patronize
facilities not by making special trips, but as they drive by them on their regular route,
e.g., between home and work. Another interesting issue involves the popular price
matching. In his model, Zhang [79] describes a three-stage competitive location
model, the second phase of which features the decision of whether or not to adopt a
price matching policy. Finally, the issue of taxation was brought up by Casado-Izaga
[14] in his competitive location model that does allow for some asymmetries.



124 H.A. Eiselt and V. Marianov

Acknowledgements This work was in part supported by the Institute Complex Engineering
Systems, through grants ICM-MIDEPLAN P-05-004-F and CONICYT FBO0816.

Appendix

Given that firm A locates at the center of the market, i.e., a = %E, firm B’s market
area is symmetric about %Z. Suppose that firm B’s market area is d units near both
ends of the market. (We deviate from some of the notation in the paper in order to
simplify matters.) As usual, B is located b units from the right end of the market.
This situation is shown in Fig. 7.

Firm B’s transportation costs are then the two trapezoids (D, E) and (F,G).
Elementary algebra indicates that the areas of D, E, F, and G are %tdz, (L —b—d)dt,
%tdz, and(b—d)dt, respectively, so that the total cost (the total area) is (£ —d)td. It is
apparent that these costs are independent of b, the location of firm B. The scenario
does not change as long as b € [d,{ — d].

Consider now the case, in which locates at a point b < d (or, alternatively, b >
£ — d). This situation is shown in Fig. 8.
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Fig. 7 Transportation cost of a firm that uses delivered prices and whose market share extends d
from both ends of the market, the form locates outside its market area
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Fig. 8 Transportation cost of a firm that uses delivered prices and whose market share extends d
from both ends of the market, the form locates inside its market area
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Similar to the above analysis, we have the four areas H, I, J, and K, the sum of

whose areas determine the transportation cost incurred by firm B. The areas are %dzt,
(L—b—d)d, %(d —b)?t, and %tbz, respectively, so that the area is —2btd + £td + h?,
which is dependent on b. The minimum is found at b = d, indicating that firm B
best locates somewhere in its opponent’s market area.
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Huff-Like Stackelberg Location Problems
on the Plane

José Fernandez, Juana L. Redondo, Pilar M. Ortigosa, and Boglarka G.-Téth

1 Introduction

Locating a new facility usually requires a massive investment. In order to guarantee
the survival of the facility, especially in a competitive environment (where other
facilities offering the same product or service exist), the locating firm tries to
take all the factors which may affect the market share captured by the facility
(or its profit) into account. A well-known aphorism states that ‘the most important
attributes of stores are location, location and location’. The literature about facility
location corroborates that point as the number of papers devoted to that topic is
huge. Mathematical location models try to combine all the factors of interest for the
facility into neat equations which try to faithfully represent (a simplified version of)
reality. The location decisions provided by the location models can be of invaluable
help to the decision-maker, as the location of a facility cannot be easily altered.
Depending on the location space, competitive facility location models can be
subdivided, as any other type of location problems, into three main categories: (1)
continuous problems, where the set of feasible locations for the new facility (or

J. Fernandez (D)

Department of Statistics and Operations Research, University of Murcia, Campus de Espinardo,
30100 Espinardo, Murcia, Spain

e-mail: josefdez@um.es

J.L. Redondo * P.M. Ortigosa

Department of Informatics, University of Almeria, ceiA3, Ctra. Sacramento s/n,
La Cafiada de San Urbano, 04120 Almeria, Spain

e-mail: jlredondo @ual.es; ortigosa@ual.es

B.G.-Téth

Department of Computational Optimization, University of Szeged, H-6720 Szeged,
Arpad tér 2, Hungary

e-mail: boglarka@inf.u-szeged.hu

© Springer International Publishing AG 2017 129
L. Mallozzi et al. (eds.), Spatial Interaction Models, Springer Optimization
and Its Applications 118, DOI 10.1007/978-3-319-52654-6_7


mailto:josefdez@um.es
mailto:jlredondo@ual.es
mailto:ortigosa@ual.es
mailto:boglarka@inf.u-szeged.hu

130 J. Fernandez et al.

facilities) is (a subset of) the plane; (2) network problems, where any point in a
network (on an edge or a vertex) is a possible location, and (3) discrete problems,
when the set of potential locations is reduced to a finite set of points. In this chapter
we restrict ourselves to continuous models, as this is the main research field of the
authors, but the interested reader can find many references on network and discrete
competitive location models in literature, see for instance [3, 4, 16, 29, 30, 45] and
references therein.

In competitive models there is a demand which has to be, or may be, served
by the facilities. This demand is commonly assumed to be concentrated at a finite
set of points, called demand points (also referred to as customers). In most of the
research works it is assumed that the demand is fixed, regardless the conditions
of the market (price, distance to the facilities,...). This implicitly assumes that
goods are ‘essential’ to the customers. It is only recent that the case of ‘inessential’
goods has been addressed [28, 41]. In those models it is assumed that the demand
varies depending on the location of the facilities.

The attraction of a customer towards a facility depends on both the location and
the characteristics of the facility. Usually the characteristics are combined into a
single figure which represents the quality of the facility. The closer the facility to the
customer and the higher its quality, the higher the attraction of the customer towards
the facility. Although there are many ways to model the attraction (see [34]), the
formula quality divided by a function of the distance (already proposed in [22]) is
the most popular in literature, and the one followed in this chapter.

The patronizing behavior of customers, which establishes how customers split
their demand among the available facilities, is another key factor of the model.
Two rules dominate literature. In the deterministic rule it is assumed that customers
only buy at a single facility, the one to which they are attracted most [8, 33].
However, this hypothesis has not found much empirical support, except in areas
where shopping opportunities are limited and transportation is difficult. On the
contrary, in the probabilistic rule customers patronize all the facilities. However, the
demand served at each facility is not the same: it is proportional to the attraction.
Hence, more attractive facilities capture more demand than less attractive facilities.
The probabilistic rule was already suggested in [22] to estimate the market share
captured by competing facilities, and first used in a location model in [9]. In that
paper, as in most of the ones using the probabilistic rule, the quality of the facility
to be located was fixed, given beforehand. It was in [18] when quality was first
considered an additional variable to the problem to be determined. In fact, it was
empirically proved that both the location and the quality of the facility to be located
have to be found simultaneously, as the location influences the quality, and vice-
versa. In general, the probabilistic rule has proved to approximate the market share
captured by the facilities more accurately than other alternatives, and it will be the
one used in the models in this chapter.

Another point to be taken into account is the possible reaction of the competitors.
In most competitive location models it is assumed that the competition is static.
This means that competitors are already present in the market, the locating chain
knows their characteristics and no reaction to the location of the new facility
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(or facilities) is expected from them. However, there are situations where the
competitors do react to the location of the new facilities. In those cases, it is very
important to foresee those reactions, as the market share and profit obtained by the
locating chain may vary substantially. Although there are dynamic location models,
where competitors can change their decisions indefinitely, and then the existence
of equilibrium situations is of major concern (see for instance [6, 19, 27]), in this
chapter the focus is on the so-called ‘leader-follower’ (or Stackelberg) problems.
The scenario considered in that type of problems is that of a duopoly. A chain,
the leader, makes the first movement, and locates p new facilities in the market,
where similar facilities of a competitor (the follower), and possibly of its own chain,
already exist. Then, the follower, as a reaction, decides to locate r new facilities.
Hakimi [20] seems to be the first considering this type of two-level optimization
problems. He introduced the term (r|X,) medianoid to refer to the follower’s
problem of locating r facilities in the presence of the p new leader’s facilities located
at the set of points X,. And the term (r|p) centroid problem to refer to the leader’s
problem of locating p new facilities, knowing that the follower, as a reaction, will
locate r new facilities by solving the corresponding (r|X,) medianoid problem. In
this chapter only the (1|1) centroid problem will be considered, i.e., it is assumed
that the leader will locate only one new facility, and the follower’s reaction consists
of the location of a new single facility too.

Even in this simple case the leader-follower problem is very hard to solve. In fact,
the follower’s problem is already a highly nonlinear global optimization problem
(see [9, 18]). The literature on leader-follower location problems is scarce (see [15]
for a review on the topic until 1996). And this shortage is even more pronounced
in the case of continuous problems, largely due to the complexity of this type of
bilevel programming problems. Drezner [7] solved the (1]1) centroid problem for
the Hotelling model and Euclidean distances exactly, through a geometric-based
approach. Bhadury et al. [2] considered the (r|p) centroid problem also for the
Hotelling model with Euclidean distances, and gave an alternating heuristic to cope
with it. In [11] Drezner and Drezner considered the Huff model, and proposed
three heuristic approaches for handling the (1|1) centroid problem (see also [12]).

More recently, the authors of this chapter have worked and extended the Huff-
like Stackelberg problems. In [44] an exact branch-and-bound method is proposed
for a model closely related to that in [11]. This model was later extended in [39] to
consider the quality of the new facilities as additional variables of the model, and
also changing the objective from market share maximization to profit maximization;
both sequential and parallel heuristics were proposed to cope with it (see [39, 40]).
Finally, in [42], the model was extended to take into account the possibility of the
variability of the demand (see also [1]); again, sequential and parallel heuristic
procedures were proposed. The goal of this chapter is to make a critical review
of those papers and to point lines for future research. First, in the next section,
the basic notation is introduced, and then, in the three following sections, the three
aforementioned models are reviewed. Finally, in the last section we point out an idea
which may be used to develop exact methods for the last two models.
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Although here we only consider that, as a reaction, the follower will locate an
additional facility too, other alternatives have been recently proposed in literature.
They all consider that the follower can change the quality of its existing facilities. In
particular, in [43], the leader locates one single facility in a region of the plane, and
then the follower may increase the quality of some of its facilities. The follower does
not locate any new facility. In [25] the leader enters the market by locating several
facilities at some of the points of a finite set of feasible locations (discrete problem),
and then, the reaction of the competitor is to adjust (i.e., increase or decrease) the
attractiveness of its existing facilities so as to maximize its own profit. However, it
cannot open new facilities and/or close existing ones, either. The model is extended
in [26], where the follower can also open new facilities or close some existing
ones. The probabilistic rule is used in the three aforementioned papers. A different
approach is followed in [14] (see also [13]) where a discrete location model based
on the concept of coverage is presented. Each facility attracts consumers within a
sphere of influence defined by a radius. The leader and the follower, each has a
budget to be spent on the expansion of their chains either by improving their existing
facilities or constructing new ones.

2 Notation

A chain, the leader, wants to locate a new single facility in a given area of the
plane, where m facilities offering the same goods or product already exist. The first
k (= 0) of those m facilities belong to the chain, and the other m — k (> 0) to a
competitor chain, the follower. The leader knows that the follower, as a reaction,
will subsequently position a new facility too.

The following notation will be used throughout this chapter:

Indices
i Index of demand points, i = 1,...,n.
Jj Index of existing facilities, j = 1, ..., m. The first k of those m facilities

belong to the leader’s chain, and the rest to the follower’s.
[ Index for the new facilities, / = 1 for the leader, [ = 2 for the follower.

Variables

7= (x, v1) Location of the new leader’s (I = 1) or follower’s (I = 2)
facility.

o Quality of the new leader’s (I = 1) or follower’s (I = 2)

facility (in case the quality is to be determined by the model).
nfi = (z;, ;)  Variables of the new leader’s (I = 1) or follower’s (I = 2)
facility.
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Input data
Di Location of the ith demand point.
w; Fixed demand (or purchasing power) at p;, w; > 0 (when the demand is
assumed to be fixed).
w?ﬁ“ Minimum possible demand at p;, w?‘i“ > 0 (when the demand is
assumed to be variable).
wi#  Maximum possible demand at p;, w"™* > w"" (when the demand is
assumed to be variable).
fi Location of the jth existing facility.
d;; Distance between p; and f;, d;; > 0.
Bi Quality of f;, B; > 0.
d}m“ Minimum distance from p; at which the new facilities can be located,
dmin > (.
S Location space where the leader (I = 1) or the follower (I = 2) will
locate its new facility.
a]mi" Minimum level of quality for the new leader’s (I = 1) or follower’s
(I = 2) facility, @™ > 0 (when the quality is a variable of the model).
a"™  Maximum level of quality for the new leader’s (I = 1) or follower’s
(I = 2) facility, @™ > a™", (when the quality is a variable of
the model).
Miscellaneous
gi() A non-negative, non-decreasing function, which modulates
the decrease in attractiveness as a function of distance.
di(z)) Distance between p; and z;, [ = 1, 2.
U; nfy Attraction that p; feels for nf;, [ = 1,2,
i = ou/gi(di(z1))
U;(nfi, nf) Total utility perceived by a customer at p; provided by all the
facilities.
w;(U;(nfi,nf2)) Actual demand at p; (when the demand is assumed to be
variable).
Computed parameters

i

Attraction that p; feels for f; (or utility of f; perceived by the people at p;),
u; = B;/gi(dy).

Market share and profit functions
M,(nfi1,nf,) Market share obtained by the leader (/ = 1) or the follower

(I = 2) after the location of the new facilities.

I;(nfi,nf)  Profit obtained by the leader (/ = 1) or the follower (I = 2) after

the location of the new facilities.

The profit functions I1; and I1, vary in each of the problems analyzed, and are
detailed in the corresponding sections.
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In all the models in this chapter it is assumed that the patronizing behavior of
customers is probabilistic, that is, demand points split their buying power among
all the facilities proportionally to the attraction they feel for them. Using these
assumptions, the market share attracted by the leader’s chain after the location of
the leader and the follower’s new facilities is

k
Uinfi + D joy Ui

n
M (nf1, nfz) = wi R
1(nfionfy) =Y P—

i=1

ey

where w; stands for w; when the demand is fixed, and for w;(U;(nf1, nf>)) when
the demand is variable. Analogously, the market share attracted by the follower’s
chain is

n
Uinf, + Zj=k+l Uij

My(nfi nfy) = Y wi

T : @)
= tinfi + iy + Doy Ui
Given nfj, the problem for the follower is the (1|nf;) medianoid problem:
max [T (nfi, nf2)
(FPGf)) {2 3)

di(z) >d™,i=1,...,n
012 e [a£n1n’a£nax]

whose objective is the maximization of the profit obtained by the follower (once the
leader has set up its new facility at nf]). In case the problem (FP(nf})) has multiple
optimal solutions, then it is assumed that the follower selects an optimal solution
which provides the worst possible objective function value for the leader (the so-
called pessimistic approach in bilevel programming [5]).

Let us denote with nf)(nfi) an optimal solution of (FP(nfi)) for which the
objective value of the leader is minimum. The problem for the leader is the (1]1)
centroid problem:

max I, (nfl,nfz*(nﬁ))
S.t. 21 S Sl
di(z1) =d™,i=1,...,n

o] € [oz‘lni", o]

(LP) “)

As we can see, the leader problem (LP) is much more difficult to solve than
the follower problem (FP(nf})). Notice, for instance, that to evaluate its objective
function I7; at a given point nf;, we have to first solve the corresponding medianoid
problem (FP(nf})) to obtain nf," (nfi).
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3 A Model Without Costs

3.1 The Model

The first model we will describe is that in [44]. Essential goods are considered.
Therefore, the demand has to be served by the facilities. The demand quantities
are assumed to be known and fixed. Also the quality values of the new facilities
to be located, «; and o, are assumed to be given, i.e., they are not variables of
the model. As the qualities are fixed, no cost related to the achievement of a given
level of quality is considered. No cost related to the setting-up of the facilities at a
given location is considered either. Then, taking into account that the profit obtained
by a player is an increasing function of the market share it captures, the objective
functions considered in [44] were

H](Vlfl,l’lfg) = M](l’lfl,l’lfz), | = 1,2.

In addition to this, the location space is the same for the leader and the follower,
i.e., S = S,. No other constraints are considered in the model. The corrected
Euclidean distance [10] was used as distance function.

Since the demand is fixed and has to be served, then

Mi(nfi, nf) + Ma(nfi, nfy) = ) Wi ®)

i=1

In particular, what is a gain for one chain is a loss for the other. This zero-sum
concept is the key used in [44] to develop a Branch-and-Bound (B&B) procedure to
solve the leader problem rigorously, to have a guarantee on the reached accuracy.

3.2 A B&B Algorithm for the Follower Problem

Branch-and-bound (B&B) algorithms recursively decompose the original problem
into smaller disjoint subproblems until the solution is found. The method avoids
visiting those subproblems which are known not to contain a solution. The initial
set C; = Si(= S,) is subsequently partitioned in more and more refined subsets
(branching). At every iteration, the method has a list A of subsets Cy of C;. The
method stops when the list is empty. For every subset Cy in A, upper bounds UB* of
the objective function on Cy are determined. Moreover, a global lower bound GLB
is updated. If UB* < GLB for a given subset Cy, it can be removed from the list,
since it cannot contain a maximum.
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Algorithm 1: B&B algorithm for the (reverse) follower problem: function
FunctB&B(M, nf, C, €)

I: A:=0.

2: Cp:=C.

3: Determine an upper bound UB' on C;.

4: Compute nfa' :=midpoint(C,), BestPoint := nfa'.

5: Determine lower bound: LB' := M(nfa'), GLB := LB'.
6: Put Cionlist A, r:= 1.
7
8

: while A # @ do
Take subset C from list A and bisect into C,4; and C,4».
9: for r:=r+1tor+2do

10: Determine upper bound UB'.

11: if UB' > GLB + ¢ then

12: Compute nfa’ :=midpoint(C,) and LB’ := M(nfa").

13: if LB' > GLB then

14: GLB := LB', BestPoint := nfa' and remove all C; from A with UB' < GLB.
15: if UB' > GLB + ¢; then

16: save C; in A.

17: ri=r+2.
18: OUTPUT: {BestPoint, GLB}.

The steps of the method can be seen in Algorithm 1. In the solution procedure
for the leader problem, a similar problem to that of the follower, in which the leader
wants to locate a new facility at nfj, given the location and the quality of all the
facilities of the competitor (the follower), has to be solved. In this case, the leader
has to solve a medianoid problem in which the roles of leader and follower are
interchanged. We will call this problem a reverse medianoid problem. To take both
the medianoid and the reverse medianoid problems into account, in Algorithm 1 the
new facility of the competitor is denoted by nf, the objective function by M (nfa)
(where M(nfa) = M, (nf, nfa) when solving a medianoid problem and M(nfa) =
M| (nfa, nf) when solving a reverse medianoid problem), and the feasible set by C.

The B&B method introduced in [44] uses boxes (2-dimensional intervals) as
subsets of the initial region and the subdivision rule bisects a box C over its longest
edge. Several selection rules of the next box to be selected (Step 8 of Algorithm 1)
were tested in [44], see Sect. 3.4.

Concerning the computation of bounds, the global lower bound is updated by
evaluating the objective function at some points (the centers of the boxes). As for
the upper bounds, four variants were proposed in [44]. The simplest one (which
turned out to be competitive with the other three more elaborated bounds based on
D.C. decompositions of the objective function) is based on the underestimation of
the distance from demand point p; to facilities in a box C. Since the new facility is
only located at one point within the box, we obtain an overestimation (upper bound)
of the market captured by the new facility. The idea developed in [44] is similar to
that in [32].

The demand points p; within box C have a distance A;(C) = 0 from C. For
demand points out of box C, p; ¢ C, the shortest distance A;(C) of p; to the box
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is calculated, A;(C) = mingec d(x, p;). The distance A;(C) can be determined as
follows. Box C is defined by two points: lower-left point LL = (Il;, ll;) and upper-
right point UR = (ury, ur,). The shortest distance from demand point p; to the box
C can be computed by

ifpiecC

0
VAL + AL ifpi ¢ C

4,(C) =

where

Ay = max{lly — p;1,piy — ury, 0}
Ap = max{ll — pp,pip — ur;, 0}

Notice that this distance calculation can be extended to higher dimensions.

The output of Algorithm 1 is the best point found during the process and its
corresponding function value. The best point is guaranteed to differ less than € in
function value from the optimal solution of the problem.

Another B&B algorithm which can be used to solve the follower problem is
described in [18]. It uses interval analysis tools (see [47]) and can also handle the
follower problems in the next two sections.

3.3 A B&B Algorithm for the Leader Problem

The corresponding B&B method for the leader problem is given in pseudocode
form in Algorithm 2. The branching and selection rules used were the same as in
Algorithm 1, as well as the computation of the global lower bound.

The key point in the algorithm is computation of the upper bounds. Let C C R?
denote a subset of the search region of the leader problem (LP). An upper bound of
the objective function M, (nfi, nf; (nfi)) over C can be obtained by having the leader
solve the reverse medianoid problem, as the following lemma proves.

Lemma 1 Let nf; be a given solution for the new follower’s facility. Then
UB(C, nf) = max M, (nfi, nf>)
nfieC

is an upper bound of My (nfi, nf; (nf1)) over C.

Proof According to (5), maximizing the market share captured by the follower
given nf; is equivalent to finding the facility nf, that minimizes the market share
captured by the leader. Hence, M (nf1, nf; (nf1)) < M, (nfi, nf>) such that

max M, (nfi. nf3 (nf1)) < max M, (nfi.nf2) = UB(C, nf3).
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Algorithm 2: B&B algorithm for the leader problem

I A:=0.

2: C:=S.

3: Compute nfl :=midpoint(C}), BestPoint := nf}.

4: Solve the problem for the follower: {nfy , Ibobj} := FunctB&B(My, nf}, Ci, €f).
5: Determine an upper bound UB! on C; solving a reverse medianoid problem:

{nfa, UB'} := FunctB&B(M,,nf),C\, €).
: Determine lower bound: LB' := M, (nf!, nf}), GLB := LB'.
:PutCionlist A, r:=1.
: while A # 0 do
9: Take subset C from list A and bisect into C,4-; and Cy4-.
10: for t:=r+1tor+2do

[ BN o)

11: Compute nf{ =midpoint(C,).
12: Solve the problem for the follower: {nf;, lbobj} := FunctB&B(M,, nf{, C\, €/).
13: Determine upper bound UB' solving a reverse medianoid problem:
{nfa, UB'} := FunctB&B(M, nf;, C,, €;)
14: if UB' > GLB + ¢; then
15: Determine LB' := M, (nf{, nf3).
16: if LB' > GLB then
17: GLB := LB, BestPoint := nf{, and remove all C; from A with UB’ < GLB.
18: if UB' > GLB + ¢; then
19: save C; in A.

20: ri=r+2.
21: OUTPUT: {BestPoint, GLB}.

a

For a given box C,, the choice of nf] for the upper bound calculation is done
as follows. First, the midpoint of C; is computed, and considering it as the new
leader’s facility, nf], the corresponding follower’s problem is solved, (FP(nf})),
obtaining nf;. Then, the upper bound is obtained by solving the reverse medianoid
problem up to an accuracy ¢;

UB' = UB(Ci.nff) = max (My(nfy.nf})} = FunciB&B(My. nf}. C,. 1)
nf1€Cy

Again, the output of the B&B method (see Algorithm 2) is the best point found
during the process and its corresponding function value, which differs less than ¢,
from the optimum value of the problem.

3.4 Computational Studies

A random problem with n = 10 demand points and m = 4 existing facilities was
first solved to illustrate the algorithm. The number k of facilities belonging to the
leader’s chain was varied from k = 0 to 4. The other parameters of the problem were
chosen from uniform distributions (see [44]). Table 1 shows the resulting optimal
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Table 1 Optimal locations and market capture for different number of leader facilities,
k=0,..., 4; locations and market captures are rounded to two decimals

k=0 k=1 k=2 k=3 k=4

. . 2.44 5.03 5.33 5.33 5.03
Optima location | Leader
3.97 0.69 4.34 4.34 0.69
2.44 5.03 1.41 1.75 1.75
Follower
3.97 0.69 4.65 3.79 3.79

Market Capture | Leader 186.29 367.87 497.70 611.07 773.44

Follower | 813.71 632.13 502.30 388.93 226.56
Gain or loss for the leader 186.29 100.67 14.17 | —72.46 | —226.56

locations and market capture of both chains. In the last line, the gain or loss for the
leader, to be understood as the difference between the market captured by the leader
after and before the location of the facilities, is given. The accuracy for Algorithms 1
and 2 were set both to ¢, = ¢y = 1072

One can observe a characteristic of the problem, where leader and follower tend
to co-locate when the number of existing facilities of the leader is low. Notice also
that when the leader is dominant in the market then the leader suffers a decrease
in market share after the location of the two new facilities (see the negative values
in the last line of Table 1). This is because in those cases the follower increases its
market share more than the leader.

Concerning the efficiency of the selection rule of the next box to be processed,
breadth-first and best-bound strategies were researched. The results in [44]
concluded that best-bound strategy is the one providing the best results, as
in average, the number of iterations employed by Algorithm 1 was reduced
significantly. The influence in the number of iterations of Algorithm 2 was not so
clear when using the upper bound described in Sect. 3.2, but when additional bounds
are employed the best-bound selection rule was also clearly the best for Algorithm 2.

As for the memory requirement, it is known that branch-and-bound algorithms
are usually hindered by huge search trees that need to be stored in memory.
This complexity usually increases rapidly with dimension and with accuracy.
Interestingly, this does not seem to be the case for this problem. There are never
more than 30 boxes in the storage tree. And the same remains valid when the
accuracy is increased up to 0.0001 for both Algorithms 1 and 2.

The last set of experiments done in [44] studied whether larger problems could
be solved in reasonable time. To this aim, random problems were generated varying
the number of demand points (n = 20, 30, ..., 110), number of existing facilities
(m = 5,10, 15) and number of those facilities belonging to the leader’s chain (k =
[m/2]). For each (n, m) setting, ten problems were generated by randomly selecting
the parameters of the problem from uniform distributions. The results can be seen
in Fig. 1. It can be seen that increasing the number of demand points does not make
the problem more complex in terms of the memory requirement. The leader problem
neither needs more iterations, although the follower problem needs more iterations
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Fig. 1 Average number of iterations and memory requirement (rectangles) over ten random cases
varying number of demand points n = 20, ..., 110, existing facilities m = 5,10, 15 and k =
[m/2] € = € = 0.01

on average. Hence, the results suggest that no exponential effort is required to solve
the problems with increasing number of demand points, confirming the viability of
the approach.

4 A Model with Costs Assuming Fixed Demand

4.1 The Model

The scenario considered in this section (see [39]) is similar to the one previously
described. The demand is again supposed to be fixed and known. But now, both the
location and the quality (design) of the new facilities have to be found and several
types of costs are considered.

The objective function I1, for the follower problem [see Eq.(3)], is now
formulated as the difference between the revenues obtained from the captured
market share minus the operating costs of the new facility:

I (nfi, nf2) = F2(Ma(nfi, nf2)) — Ga(nfa). (6)

Similarly, the profit obtained by the leader [see Eq. (4)] is given by:

I, (nfy, nfy (nf1)) = Fi(Mi(nfi, nf5 (nf1))) — Gi(nf1). 7

Functions Fj, [ = 1,2, are strictly increasing differentiable functions that transform
the market share into expected sales. In the computational studies in [39], they are
linear, F;(M;) = c; - M;, where ¢, is the income per unit of goods sold.

Functions G;, 1 = 1, 2, are the operating costs functions. G; should increase as z;
gets closer to any demand point, since it is rather likely the operating costs of the
facility will be higher as the facility approaches the demand points. Furthermore, G;
should be a nondecreasing and convex function in the variable «;, since the more
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quality the facility requires, the higher the costs will be, at an increasing rate. In [39]
it is assumed that functions G; consist of the sum of the location costs and the
costs needed to achieve a given level of quality, i.e. Gi(nf)) = G} (z) + Gﬁ’ (o).
In the computational experiments the following choices were made: Gj(z;) =
Y, i(di(z)), with B} (di(z) = Wi/ ([diz)? +4i1), ¢, i > 0and G (ay) =
exp(ey/€) + &) — exp(&)), with €0 > 0 and & € R given values. See [18] for a
detailed explanation of these functions, as well as other possible expressions for F;
and G,(nf;).

Notice that the key to solving the problem of the previous section with precision
was that what is a gain for one chain is a loss for the other, see (5). This
is no longer true for this model: notice that now I1;(nf,nf>) + I1r(nfi, nf) is
not necessarily constant due to the cost functions. This fact impedes using the
methodology employed in the previous section to develop a B&B method for the
new leader’s problem (Lemma 1 does not hold any more). That is why heuristic
procedures are proposed in [39] to cope with the new problem. However, other
strategies are possible, as described in Sect. 6.

4.2 Solving the Medianoid Problem

The algorithm UEGO is used here to deal with the medianoid problem. UEGO,
which stands for Universal Evolutionary Global Optimizer, is a memetic multi-
modal global optimization method especially suitable to be parallelized and highly
adaptable to different problems [24, 31, 35-38].

The key concept of UEGO is that of species, which is defined by a center and
a radius. The center is a solution, and the radius is a positive number that defines
an attraction area and hence, multiple solutions. In particular, for the medianoid
problem, a species is an array of the form (nfy, I[1,(nfi, nf2),R) (we also store
information about the objective value at the center of the species). During the
optimization procedure, UEGO works with a set of species stored in the species_list.

The adaptability of UEGO mainly relies on being defined in two levels, global
an local. In the global level, UEGO defines an iterative and progressively cooled
management process over a set of available species, and this process is the same
for all the problems to which UEGO is applied. In the local one, a particular local
optimizer is selected for the studied problem at the context defined by every species.
For the current problem, a Weiszfeld-like method (WLM) has been considered as a
local optimizer. The UEGO algorithm executed with WLM to solve the medianoid
problem will be called UEGO_med throughout.

A global description of UEGO_med is given in Algorithm 3. The input given
parameter nf; indicates the additional leader facility, which has to be taken into
account apart from the m pre-existing facilities. Additionally, UEGO_med has four
more user given parameters: (1) N, the maximum number of function evaluations
(f.e.) allowed for the entire optimization process; (2) L, the maximum number of
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Algorithm 3: Algorithm UEGO_med(nf;, N, L, M,R;)

1: Init_species_list
2: Optimize_species(n;)
3: fori=2to Ldo
: Determine R;, new;, n;
Create_species(new;) {# budget_per_species = new;l/length(species_list;)}
Fuse_species(R;)
Shorten_species_list(M)
Optimize_species(n;) { # budget_per_species = n;/M}
Fuse_species(R;)

VRN

levels (iterations) of the algorithm; (3) M, which refers to the maximum length of the
species_list, and (4) R, which indicates the minimum radius that a species can have.
Furthermore, from these four input parameters, three important values are computed
at each level i: the maximum number of f.e. for the creation of new species (new;),
the maximum number of f.e. for the optimization of species (n;), and the radius
assigned to the new species (R;). The equations linking all these parameters are
detailed in [23, 31].
In the following, the different key stages of UEGO_med are described:

» [Init_species_list: The initial species_list is composed of a single species. The
value of nf;, is randomly computed and the corresponding radius is set to R;.

* Create_species(create_evals): In terms of evolutionary computation, this proce-
dure can be interpreted as an algorithm to create offspring. The input parameter
create_evals indicates the number of function evaluations allowed for the
creation procedure at the current level. The most remarkable aspect of this
mechanism is that every species in the species_list is able to generate a
new progeny without participation from the remaining ones. The parameter
create_evals is internally divided by the current number of existing species
(length(species_list;)), which means that the budget available per species for the
creation of new points is equal to:

budget_per_species = new;/length(species_list;).

For each single species, the creation method proceeds as follows: New random
exploratory points are created within the area defined by its radius, and for every
pair of those points, a new candidate solution is created at the middle of the
segment connecting the pair. Then, all the candidate points are evaluated, and
the one with the best objective function value replaces the center of the original
species in the case that it improves the objective function of the center. Later,
the merit of the extreme points to become a new species, is analyzed. Both
extreme points are inserted into the species_list if their objective function values
are better than the one at the corresponding midpoint. Every new inserted species
is assigned the current radius value (R;).
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Fuse_species(radius): This procedure unites species from the species_list that
are closer than the distance defined by the parameter radius. Then, for every pair
of species in the list, the Euclidean distance is computed. If such a distance is
smaller than the given radius, the species with the lowest fitness are removed.
The radius of the species that remains is set equal to the maximum of the radii of
the original two species.

Shorten_species_list (max_list_length): It deletes species to reduce the list length
to max_list_length value. The species with the smaller radius are deleted first.
Optimize_species(opt_evals): In this procedure, every species calls a local
optimizer once, using the nf, value of the caller species as initial point. If
after the execution of the local method a new point with a better objective
function is found, then the original nf, is updated. The budget per species for
the optimization process, in terms of number of function evaluations, is n;/M.
For the problem at hand, a Weiszfeld-like algorithm has been considered as local
optimizer.

4.2.1 Weiszfeld-Like Algorithm WLM

This algorithm is a steepest descent method. The derivatives of the objective
function are equated to zero and the next iterate is obtained by implicitly solving
these equations. Notice that, here, the derivatives are computed taking the F; and G;
functions described in Sect. 4.1 into account. Of course, they should be recomputed
if any other expression is considered.

If we denote

m

m
ri = E Ujj, t; = W; E Uij,
Jj=1

j=k+1

Hinyy = 2T _ 4P aitgdi)  do
Y2 Sdi () dM>  (vien + rigi(di(z2)))?  ddi(z)’

and d;(z;) is a distance function such that

8d,~ Z 8di Z
( 2) = x2Ai1(Z2) - Bil(Z2)’ ( 2)
0xy )

= y2A(22) — Ba(22), (8)

then the Weiszfeld-like algorithm for solving the corresponding problem is
described by Algorithm 4 (for more details see [18]).
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Algorithm 4: WLM (Weiszfeld—like algorithm)

1: Set 1terat10n Counter ic =
(0) (()) o

2: Initialize nfz =(x , ¥ 0y )

3: while stopping criteria are not met do

4 Update nf(xc+l) ;lC+l)! y(zlc-‘rl), agu‘-}-l))
5 if nf (et i unfeasible then

6: f(IL"rl) c [f(I() f(t<+1)] n BS

7 ic=ic+1

Values of x(zic+l) and y(“—|r ) in Algorithm 4 are obtained as:
ZH (nfy)Bir (25) ZH (nfy)Bin(2y)
(ie+1) _ i=l (ic+1) _ i=I
X Y2 ~ n ] ]
> H A ) 2_Hilnfy ") An(3")
i=1 i=1
(ic+1) . .
and a, as a solution of the equation:

AP N yitgd @) dG
dMy = (e + rigi(diS V)2 den

Two stopping rules are applied in WLM: (1) the algorithm stops if

eS8 ) = 657,35 2 < €1 and oy — o] < e,
for given tolerances €1, €, > 0; and (2) the procedure finishes if a maximum number
of iterations icy,x is achieved or the number of function evaluations exceeds the
budget assigned.
In Step 6 of Algorithm 4, nf, (et is set to a point in the segment [nf, 1) nfz(ic+l)]
which is also on the border 95, of the feasible region S,.
The I, distance, given by

di(z1) = Vb1 (x1 — pi)? + b2 (v — pin)?,

satisfies the conditions in (8). Furthermore, it has proved to be a good distance
predicting function (see [17]), and it is therefore a good distance function to be used
in competitive location models, as it measures distances (or travel time) as they are
perceived by customers on their ways to and from facilities.
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4.3 Solving the Centroid Problem

Four heuristics are introduced in [39] for handling the centroid problem, namely, a
grid search procedure (GS), an alternating method called AlternatMed and two evo-
lutionary algorithms based on the UEGO_med structure. These two variants, which
differ basically in the considered local optimizer, are named UEGO_cent. WLM and
UEGO_cent.SASS.

A comprehensive computational study in [39] shows that UEGO_cent.SASS is the
algorithm which provides the best results. In fact, in all the considered problems, it
is the algorithm giving the best solutions. In view of those results, only the algorithm
UEGO_cent.SASS is explained below. For the sake of brevity, only the fundamental
differences concerning UEGO_med are mentioned. The interested reader can always
consult [39] for a detailed account of the remaining methods.

Species definition: A species is now defined by the vector (nfi, nf>, R), where nf
refers to the leader point, nf; is the solution obtained by UEGO_med when taking
the original m existing facilities and nf] into account, and R is the radius of the
species.

Create_species procedure:  This procedure is, in essence, the same as the creation
process described in Sect. 4.2. However, some amendments have been made to
comply with certain computational requirements.

In this procedure, random trial points for nf; are also created within the area
defined by the radius of the species. Additionally, similar to what is done in
UEGO_med, the midpoint of each pair of solutions is also computed. However,
not all candidate solutions are evaluated, but only the most promising ones, i.e.,
we do not solve the corresponding medianoid problem associated to each new
point to obtain the follower’s facility. This is done in this way because this
procedure is too costly and the number of points to be evaluated is very high. On
the contrary, we first analyze the merit of the candidate solutions by computing
an approximate objective value. More precisely, the follower’s facility associated
to the species from which they were generated is used to obtain an approximate
fitness for the leader’s candidate solutions.

After this process, for every species in the species_list we have a sublist
of ‘candidate’ points to generate new species. Notice that in this creation
process, the candidate solutions never replace the original species, as happens
in UEGO_med. This is because the comparison in terms of fitness may be
misleading, since the objective value at the midpoints or at the endpoints of the
segments is only an approximation.

Furthermore, in order to reduce the large number of candidate points,
those ‘candidate’ points are merged as described in Sect.4.2 (using the pro-
cedure Fuse_species). Finally, for each candidate point in this reduced list,
its corresponding follower’s facility is computed applying UEGO_med, and the
objective value for the leader’s facility is evaluated. The new species (with the
corresponding radius according to the iteration) are inserted in the species_list.
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Algorithm 5: Algorithm LeaderOpt

1: Let (nf1, nf2, R) be the species to be optimized.
2: opt_nfi = SASS+WLM(nf1, nf>, R)

3: opt_nf, = UEGO_med(opt_nf})

4: if opt_nfi = nf| then

5 if IT,(nf1, nf>) > I1,(nf1, opt_nf>) then
6: opt_nf, = nf,
7
8
9

Update the original species to (nfi, opt_nf>, R).
. else if IT| (opt_nfy, opt_nfy) > I, (nfi, nf>) then
Update the original species to (opt_nfi, opt_nf>, R)

Optimize_species procedure:  For every species in the list, the local optimization
process described in Algorithm 5 is applied. In Step 2, the SASS+WLM local
search is applied (see [39]). This method tries to obtain a better solution for
the leader (nf;) based on the current choice of the follower (nf;). To do so,
this algorithm uses the stochastic hill climber SASS (see [46]) for updating
the leader’s facility and WLM for updating the follower’s. Notice that the
algorithm WLM is used because obtaining the exact new follower’s facility
every time the leader’s facility changes, using UEGO_med, makes the process
very time-consuming. Nevertheless, to prevent that the objective value for the
leader becomes misleading (overestimated), UEGO_med is used in Step 3 of
Algorithm 5. Finally, the species is replaced only in case a better objective
function value is obtained (see steps 5-9 of Algorithm 5).

4.4 The Cost of a Myopic Decision

A study is carried out to know how important it is to consider the follower’s
reaction. To this aim, for fourteen problems, we have calculated the leader’s profit
by solving the medianoid problem but interchanging the roles of the leader and
the follower and only taking the original m facilities into account, i.e., the reverse
medianoid problem. The corresponding optimal solution will be denoted by nf,"”.
Then, we have solved the corresponding medianoid problem, taking the existing m

facilities and nfl(my(’p ) into account, using UEGO_med. And finally, we have evaluated

1" = [T, (nf"™, UEGO_med(nf™")).

Table 2 shows the obtained results. The first column refers to the setting of the
problems solved (for three settings, more than one problem was generated, and
the letters a, b, and c at the end of the setting has been added to highlight it).
Columns two and three show the values of nfl(my ) and Hl(my ) The following
two columns provide the values of the facility (nf;") and the profit (J1;*) obtained
with UEGO_cent.SASS. Finally, the loss in profit caused by the myopic decision as
compared to the long term decision, in percentage, is shown.
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Table 2 Comparison between the myopic and the long term view

n fl( myop) nf
(n,n, k) X X o) Hl(myol)) X X3 o Iy % loss
(21,5,2) 2.234 13352 | 1.524 |226.645 |2.981 [4.482 2218 |228.394 0.76
(21,5,3) 3.024 | 6.576 | 0.536 |363.451 |2.234 |3.352 | 1.162 | 379.943 4.34
(50,5,0)a | 6.082 |2.378 |2.230 9.156 |6.082 |2.378 | 2.230 9.156 | 0.00
(50,5,00b | 5.419 |6.411 |5.000 | 67.569 |5.417 |6.906 |4.851 94.044 | 28.15
(50,5,1) 4452 15920 |3.839 | 116424 4917 |5.150 | 3.418 |143.498 | 18.87
(50,5,2)a 2.264 12.096 |2.421 |189.113 |2.228 |2.138 |2.122 | 189.653 0.28
(50,5,2)b 3.573 4.044 |2.554 |109.514 |3.572 |4.044 |2.549 | 111.246 1.56
(50,6,3)a 1.122 13.362 |3.224 |291.052 |1.161 |4.222 |3.663 |292.554 0.51
(50,6,3)b 1.733 |5.848 |3.991 |194.486 |7.151 |3.487 |3.123 |212.358 | 8.42
(50,6,3)c | 6.851 |3.459 |4.486 |218.890 |4.103 |3.055 |4.255 230.329 | 4.97
(50,8,4) 5.677 |2.830 |2.973 | 198.546 |5.893 |2.629 |2.864 |223.983 |11.36
(100,2,0) 4471 14704 |5.000 | 168.430 |4.724 [4.591 |5.000 |169.717 0.76
(100,2,1) 3.379 16.298 |5.000 | 271.951 |3.255 |6.366 |5.000 | 272.027 0.03
(100,10,0) | 2.758 |5.119 |5.000 | 40.944 |2.758 |5.119 |5.000 | 40.944 | 0.00

As can be seen, the loss is less than 1% for half of the problems, it is over
4% for 6 out of 14 problems, and it exceeds 11% in three of them. This clearly
indicates how important anticipating the competitor’s reaction is, since the loss that
can be produced may be substantial. Furthermore, note that the obtained results
are independent of the setting (n, m, k) of the problem. Notice, for example, that
the two extreme cases, with 0% loss and 28.15% loss, have the same configuration
(50, 5,0). What is important is the actual distribution of the demand points and the
actual locations and qualities of the existing facilities. Notice also that even though
nf"™) may be close to nf*, the value of 17"
see problem (50,5,0)b.

may be very different from I7;,

4.5 High Performance Computing for the Leader-Follower
Problem

UEGO_cent.SASS is a costly algorithm, since the evaluation of the objective func-
tion value implies the resolution of a global optimization problem. Its parallelization
may allow to reduce the execution time and to increase the size of the problems that
can be solved. In [40], a master-slave algorithm and four coarse-grain methods are
presented to parallelize UEGO_cent.SASS. The efficiency of the parallel algorithms
is tested through an extensive computational testbed. Results showed that the
master-slave method outperforms all the coarse-grain proposals, i.e. it is able to
solve more instances using fewer processing elements and to obtain efficiencies
close to or even greater than the ideal one.
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Algorithm 6: Algorithm MS

1: Init_species_list
2: Optimize_species(n)
3: fori=2to L do

: Determine R;, new;, n;
Create_species_paral(new;)
Fuse_species(R;)
Shorten_species_list(M)
Optimize_species_paral(n;)
Fuse_species(R;)

VRN

In the following, the main features of the master-slave strategy are detailed.

Readers interested in delving into the coarse-grain methods as well as into the
performance comparison among parallel algorithms are referred to [40].

4.5.1 A Master-Slave Strategy (MS)

Broadly speaking, in this parallel strategy, two types of processing elements are
considered: the master processor, which makes global decisions and delivers data
among the slaves, and the slaves, which execute different tasks simultaneously.

In our particular master-slave (MS) model (see Algorithm 6), the master proces-

sor executes UEGO_ cent.SASS sequentially. The parallelism has been included in
new creation and optimization procedures (see Steps 5 and 8 in Algorithm 6). Next,
they are briefly described.

Create_species_paral: In this procedure, the master obtains a new offspring
of candidate solutions for the leader sequentially. The parallelism comes from
the simultaneous resolution of the medianoid problems to evaluate the new
leader’s trial points. To do so, the master divides the list of candidate solutions
by the number of processors P and delivers the resulting sublists among all
the processing elements (including itself). Each processing element applies
UEGO_med to every received leader’s facility to obtain the associated follower’s
location.

The master processor does not receive information from the slaves until it has

finished its work (first synchronization point). When it does so, it picks up all the
follower sublists sent by the slaves, updates the candidate solutions list with such
information and includes it in the species_list;, with the radius value associated
to the current level i.
Optimize_species_paral: In this procedure, the master divides the species_list;
among all the processing elements (again including itself). Once the sublist has
been received, each slave applies the local optimization process SASS+WLM
to every leader’s facility and executes UEGO_med to obtain the corresponding
follower (see [40]). Finally, once the master finishes its work, it starts to receive
the new species sublists from the slaves (second synchronization point).
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Note that the synchronization points are imposed because the master is working
with the whole species_list;, or because it is needed to know the fitness value at the
points of the leader before executing the next stage of the optimization procedure.

4.5.2 Improving the Quality of the Solution: A New Creation Procedure

Parallel algorithms can use more computational resources. Then, they can incor-
porate computationally intensive techniques that help at intensifying the search
for more effective solutions. In [40], new alternative procedures to be included in
UEGO_cent.SASS are studied. In particular, new creation methods that explore the
search space deeper are analysed. After an exhaustive computational study, where
several options are examined, it is found that the procedure named Create_speciesy;
is the best choice, since it maintains a good balance between the quality of
the final solution and the execution time and memory resources required by
UEGO_cent.SASS.

The idea behind this method is to take advantage of the non-consumed evalua-
tions of the previous level. The budget per species in the Optimize_species procedure
is bo; = n;/M. This means that there is a remainder of n; — bo; - length(species_list;)
function evaluations in the optimization process, when the length of the species_list;
is not equal to the maximum allowed. Then, these function evaluations can be used
to force the creation of more candidate solutions at the next level. Therefore, the
budget per species in the level i 4 1 is:

bes — new;4+1 + n; — bo; - length(species_list;)
Ak length(species_list;1 1) ’

As a consequence of the previous generation procedure, a huge list of candidate
solutions is obtained. To reduce the list length while keeping the most promising
solutions, a fusion procedure with the radius set to 2R; is applied.

This new creation procedure makes the sequential UEGO_cent.SASS run out of
memory most of the times. Then, to be able to use it, high performance computers
are required. In [40], this new proposal is checked with the master-slave parallel
model, since this algorithm does not modify the behavior of the sequential version,
i.e., it considers the same number of function evaluations and acts over the species in
the same way as the sequential algorithm. For the studies, the use of two processing
elements has been enough to solve all the problems. An exhaustive analysis has
proved that the Creation_species,; method can improve the objective value more
than 1% in some instances, which is not a negligible value.

4.5.3 Efficiency Results of MS

In this subsection the behavior of MS is analyzed by solving a representative set
of location problems. The settings (n,m, k) employed in this experiment can be
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Table 3 Settings of the larger test problems

n | 100 150 200
m |1 |2 5 1|3 7 2 5 10
kK /00,1 /0,2 0 0,11/0,3 /0,1 0,2 10,5

Table 4 Efficiency results

n [P |Av(0b) [AvT) | Ef(P.Q)
100 2 | 472.66 251224 |-
472.66 1218.48 | 1.03
472.67 580.96 | 1.08
16 |472.66 271.28 | 1.06
32 | 472.66 152.44 |1.03
150 | 4 | 646.90 2271.08 |-
8 1646.90 1161.28 | 0.99
16 | 646.90 582.28 |0.98
32 | 646.90 295.71 |0.96
200 8 |850.70 964.53 | -
16 |850.70 474.53 | 1.02
32 1850.70 238.74 | 1.01

seen in Table 3. For every setting, five problems are generated. Furthermore, all the
instances are solved five times and average values are considered.

Table 4 shows average results (for all the values of m and k) for each value of
n and P. In the column labelled Av(Obj), the average objective function value is
given, in Av(T) the average computational time and in the last column Eff (P, Q),
efficiency values are given.

Results reveal how costly solving the centroid problem is. As can be seen in
Table 4, the higher the number of demand points of the problem at hand, the larger
the minimum number of processing elements required to solve it. Nevertheless, the
performance of the parallel algorithm is good, i.e. its efficiency is larger than the
ideal one for problems with 100 and 200 demand points, and very close to ideal for
problems with n = 150.

5 A Model with Costs and Variable Demand

5.1 The Model

The model considered in this section, introduced in [42], extends the previous model
by relaxing the assumption that the demand is fixed. On the contrary, an endogenous
(variable) demand is contemplated so that it varies depending on several factors.
In real problems, for example, consumer expenditures on services or products that
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are offered by the facilities may increase depending on different reasons related to
the location of the new facility. So, opening new outlets may increase the overall
utility of the product. Also, the ‘marketing presence’ of a product may be increased
with the marketing expenditures resulting from the new facilities. Another thing that
can happen is that some consumers who did not patronize any of the facilities may
now be induced to do so. The quality of the facilities may also modify consumer
expenditures because a better service usually leads to more sales. The fact that the
demand is endogenous is commonly disregarded in literature, usually due to the
difficulty of the problems to be solved (see [41]).

The demand at a demand point p; is now assumed to be a function of

m

Ui(nfi.nf2) = winf + inp, + 3 ;2 i, in the form

wi(Ui(nf1, nf2)) = w?’in + incr; - ¢;(Ui(nf1, nf)),

where incr; = Wi — w?‘i“, and wi"™ (resp. W?‘i“) denotes the maximum (resp.
minimum) possible demand at p;. Function e¢;(U;(nf1, nf2)) can be interpreted as the
share of the maximum possible increment that a customer decides to spend given a
location scenario.

The objective functions I1, for the follower problem and I1; for the leader
one, are formulated as in Sect.4.1 (see (6) and (7), respectively), although the
market share function expressions (M;) contain the variable demand function
wi(U;(nf1, nf>)) instead of the constant w;:

m
Uinf, + Zj=k+l U
m b
infi T Uinps + D0 Ui

M;(nfy, nfy) = Zwi(Ui(nfh nfz))u

i=1

k
Uinf + Zj:l Uij

- .

Uinfy + Uings + D sy Uij

Mi(nfi,nfy) = Y wiUi(nfi, nf))

i=1

The operating costs also are modified to include the variable demand in the
®/(di(z))) functions, so that now

®](di(z1)) = Avers,(wi(Us(nfi, o)/ (diz)? + ¢i1).

Avery, (wi(Ui(nfi,nf2))) stands for the average value of w;(U;(nfi,nf2)) over the
feasible set and can be thought of as an estimation of the demand at p; by a fixed
number (see [41] for more details about how to compute this average). In [42] linear
expenditures is considered, i.e., W™ = 0, w(Ui(nf1, nf2)) = wi™-e;, (Ui(nfi, nf2)),
where ¢;, (U;(nfi,nf2)) = qUi(nf1,nf>), with g; a given constant such that ¢; <
1/UP, where U™ is the maximum utility that could be observed by a customer
ati.

Certainly, other functions could be defined depending on the real problem
considered, and for each real application the most appropriate F; and G; functions
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should be discovered. In [49] a pseudo-real application to the case of the location
of supermarkets in the Autonomous Region of Murcia, in Southern Spain, can be
found. Although in that paper the demand was assumed to be exogenous (fixed) and
no reaction from the competitor was expected, the parameters and functions have
the same meaning as those in this section.

It must be emphasized that although the objective function of the follower’s
problem with exogenous demand is multimodal, it tends to be smoother than the
one of the follower’s problem with endogenous demand, which has much more local
optima and whose landscape is much steeper. Consequently, the complexity of the
centroid problem is greatly increased due to the endogenous demand assumption.

5.1.1 A Real Example

In order to show the difficulty of the problem at hand, and its differences with the
exogenous demand case, in [42] the quasi-real example introduced in [49] dealing
with the location of supermarkets in an area around the city of Murcia was solved.
There are five supermarkets in the area: three from a first chain, ‘E’, and two from
another chain, ‘C’. Two problems have been considered: the first one assumes that
the leader belongs to chain ‘E’ and the second one assumes that it belongs to chain
‘C’. Each problem was solved both considering fixed and variable demand. The
numerical results are shown in Table 5. The interested reader can find a detailed
description of the example with some illustrative figures in [42].

As can be seen, when the leader belongs to chain ‘E’, in the exogenous demand
case, the optimal location for the leader is near the city of Alcantarilla (x; =
3.303,y; = 6,433), with a quality of 0.5. At that location, the market share captured
by the new leader’s facility is m; = 2.112, which coincides with the 5.94% of
the total market share. Taking into consideration all its facilities, chain ‘E’ obtains
53.22% of the market, and a profit [1; = 593.352. The location for the follower’s
facility is near the city of Molina (x; = 3.259,y; = 4.285), with a quality of
3.696, where it captures 20.04% of the total market share. However, the results are
rather different for the endogenous case, where the leader’s optimal location is in the
suburb of Puente Tocinos (x; = 5.407,y; = 5.798), in Murcia city, with a quality
of 0.961. The market share captured by the facility is 0.419, which is only 5.94%
of the total one. The whole chain obtains 43.68% of the market and a smaller profit
Il = 73.454. The location for the follower’s facility is near the suburb of San
Benito (x; = 5.190,y; = 6.276), in Murcia city, with a quality of 0.571, where it
only captures 3.875% of the total market share.

For the second problem, where it is assumed that chain ‘C’ is the leader, then, in
the exogenous demand case, the optimal location for the leader is near the city of
Orihuela, with a quality of 3.277, where the facility gets 17.57% of the total market
share. The location for the follower’s facility is near the city of Alcantarilla, with
a quality of 0.5, where it captures 6.15% of the total market share. However, the
leader’s optimal location in the endogenous demand case is near the suburb of San
Benito, in Murcia city, with a quality of 1.042 and only captures 6.52% of the total
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market share. The location for the follower’s facility is near the suburb of San Benito
too, with a quality of 0.571, where it captures 3.88% of the total market share.

These two examples indicate how important it is to consider endogenous demand.
As can be seen, depending on whether endogenous or exogenous demand is
considered, the maximum profit for a chain is obtained at different locations and
with different qualities. Additionally, it is interesting to remark that even the
percentage of market share captured by the chains may change to the point that
the chain obtaining more profit may be the competitor’s one.

5.2 Solving the Centroid Problem

Considering the algorithms proposed for solving the centroid problem with exoge-
nous demand (see Sect.4.3), the following three algorithms are implemented to
solve the centroid problem with endogenous demand [42]: a grid search procedure,
a multistart method named MSH, and an evolutionary algorithm named TLUEGO.
MSH and TLUEGO require the use of a local optimizer. In particular, a local
optimizer based on SASS and WLM has been designed. In fact, two variants of
the local optimizer have been implemented, leading to two versions of MSH and
TLUEGO. Next we describe the corresponding algorithms.

5.2.1 The Local Optimizer SASS+WLMyv

In [39], after studying several strategies, a local procedure SASS+WLMy, similar
to SASS+WLM in Sect. 4.3 is proposed. The main differences between this local
algorithm and SASS+WLM are:

* The Weiszfeld-like algorithm used now for updating the follower’s facility is
WLMy, a variant of WLM to take the variability of the demand into account (see
[41]). Similar to what was considered for WLM (see Sect.4.2.1), WLMyv stops
when either two consecutive iterations are closer than the tolerance €; = €, =
0.0001, or when a maximum number of ic,,,, = 400 iterations is reached.

* Due to the high increment in the complexity of the problem when using
endogenous demand, the WLMyv algorithm is not as reliable as the corresponding
method WLM for the fixed demand case. Consequently, due to the cumulative
error, a large number of consecutive iterations in SASS could give rise to the
leader achieving overestimated solutions. To deal with this drawback, the number
of consecutive iterations in SASS+WLMyv has been reduced to only 15. In
addition, in order to compensate the possible error obtained using WLMy, after
every 15 iterations, the medianoid problem is solved accurately using a reliable
global optimizer. Two global optimizers have been considered: iB&B [18] or
UEGO_med (see Sect. 4.2), resulting in two versions of the local optimizer.
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5.2.2 TLUEGO: A Two-Level Evolutionary Global Optimization

Algorithm

The evolutionary algorithm TLUEGO is rather similar to the UEGO_cent.SASS
algorithm introduced in Sect. 4.3 for the fixed demand case. The main differences
are the following:

Create_species procedure: In the same way that for UEGO_cent.SASS, after the
creation procedure it is very important to precisely evaluate the fitness of the new
species. In this problem, two alternative algorithms to compute a reliable follower
solution have been implemented: iB&B or UEGO_med.

Optimize_species procedure: The local optimizer algorithm used in TLUEGO
is SASS+WLMyv. There is another difference: this local optimizer is executed
twice in order to have more chances of obtaining a better point. The input
parameter value of o,, passed to SASS+WLMyv is always (the two times it
is called) the radius associated to the calling species. Therefore, the scope
of the local optimizer coincides with the region covered by the species. As
it has been mentioned in 5.2.1, the execution of SASS+WLMyv implies that
a reliable optimization algorithm, iB&B or UEGO_med, is run at the end of
the algorithm (Step 9 in Algorithm 7). As a result, the inclusion of iB&B
or UEGO_med in TLUEGO derives two algorithms for solving the centroid
problem, TLUEGO_BB and TLUEGO_UE, respectively. The reader is referred
to [42] for a more detailed description of these procedures.

Algorithm 7: Algorithm SASS+WLMv (nf1, nfs, iterm. (= 15), 04p)

1: Initialize SASS parameters. Set iter = 1,nf}”" = nfi, I1,"" = IT,(nf1, nf>).

2: while iter < itery,x do

3:  Update SASS parameters considering the previous successes at improving
the objective function value of the leader.

4:  Generate a location for the leader nfl(im) within the updated radius.

5. Solve the corresponding medianoid problem using WLMv and let nf,""”
denote the solution obtained.

6 if I (nf"”, nf"”) > " then

7: setnfy” = nf{"” and 17" = 0, (nf""  nfs"").

8: iter = iter + 1.

9: Compute the corresponding follower nf;”" for nf{”" using either iB&B or

UEGO_med.

10: if I, (f”", nfy"") > I, (nfi, nf>) then
11:  return (nf", nf;m)
12: else
13:  Return (nf}, nf>).
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5.2.3 MSH: A Multistart Heuristic Algorithm

The MSH algorithm consists of randomly generating MaxStartPoints feasible
candidate solutions for the leader and then applying a local optimizer to each one in
order to improve it to an optimized leader solution. The final solution provided by
the algorithm will be obtained by selecting the solution with best objective function
value.

For this problem with exogenous demand, the considered local optimizer has
been SASS+WLMy (see Algorithm 7). In order to provide a better balance between
exploitation and exploration of the search space, this method has also been executed
twice as in TLUEGO, but with different values for o,;, because the multistart
heuristic does not have a cooling process for the radius. In the first call, a value of
o = 2.083895 (the one corresponding to level 10 in TLUEGO) was considered.
This value was chosen because then the initial random candidate solutions in the
multistart strategy can cover the whole searching space, and at the same time, they
can search on an area small enough so that the local procedure can find a good local
optimum. In the second call, a value of 5,;,, = 0.162375 (level 23 in TLUEGO) was
used to improve the quality of the local optima obtained with the first call. These o,
values were selected after doing some preliminary studies, in which eight problems
of different sizes were solved trying different strategies for the heuristic algorithm.

As in TLUEGO, two versions of the MSH method have been implemented:
MSH_BB and MSH_UE. They differ in whether iB&B or UEGO_med is used as
a method of computing the follower nf,”" in Step 9 of Algorithm 7.

5.24 Computational Studies

To study the performance of the algorithms, a set of 24 problems has been generated
varying the number n of demand points, the number m of existing facilities and
the number & of those facilities belonging to the leader’s chain. The actual settings
(n,m, k) employed are detailed in Table 6. For each setting, the problem has been
generated by randomly choosing its parameters within given intervals. In all the
problems, S| = S, = ([0, 10], [0, 10]) and &y, &2 € [0.5, 5].

For every heuristic algorithm, each problem has been solved ten times and
average values have been computed. However, the heuristic GS has only been run
once and the results obtained in that run (no average results) are given. All results
for all the problems are shown in [42]. In this section only some average results for
n = 15 and n = 50 are shown in Table 7. In the column labeled ‘7ime’, the average

Table 6 Settings of the test problems
n |15 25 50

m |2 5 10 2 5 10 2 5 10
k |01 /0,12 0,24 |01 |0,1,2 |024 |0,1 0,1,2 02,4
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Table 7 Results for the problems with n = 15 and n = 50

Objective function

(n) | Algorithm Time Max dist | Min Av Max Dev

15 | TLUEGO_BB 226 |0.015 15.478 | 15.478 | 15.479 |0.000
TLUEGO_UE 891 |0.009 15478 |15.478 |15.479 |0.001
MSH_BB 258 |1.164 15.350 | 15.413 |15.453 |0.038
MSH_UE 1091 | 0.516 15.290 |15.409 |15.469 | 0.067
GS 490,338 |- - 15445 |- -

50 | TLUEGO_BB 9470 |0.186 39.866 |39.960 |40.065 | 0.081
TLUEGO_UE 8259 |0.185 39.912 | 40.072 |40.174 | 0.102
MSH_BB 11,090 | 2.855 25.597 | 31.329 |37.722 |4.508
MSH_UE 9911 |2.769 23.769 | 33.088 |38.084 |5.346
GS 3,003,794 |- - 37.280 |- -

TLUEGO_BB (¢; = €, = 0.0001), TLUEGO_UE, MSH_BB and MSH_UE and GS

time in the ten runs (in seconds) of each problem is shown; the ‘MaxDist’ column
indicates the maximum Euclidean distance (for the three variables (xi,y;, o))
between every pair of solutions provided by the algorithm in different runs, which
gives an idea of how far these solutions can be; in the following three columns, the
minimum, the average and the maximum objective value are computed. Finally, in
the ‘Dev’ column, the standard deviation is shown. As can be seen in these tables,
two versions of TLUEGO and MSH algorithms have been executed. It is worth
mentioning that the number of times that MSH_BB (resp. MSH_UE) was allowed
to repeat its basic local optimizer was chosen so that the CPU time employed by
MSH_BB (resp. MSH_UE) was, on average (when considering all the problems
with the same value of n), similar to the CPU time employed by TLUEGO_BB
(resp. TLUEGO_UE) or a bit higher. In particular, for the problems with 15 and 50
demand points, the number of starting points were 150 and 250, respectively.

Analyzing the results, it can be seen that the method used to reliably solve the
medianoid problem does not seem to have an influence on the quality of the final
solution, i.e., TLUEGO and MSH behave similarly, regardless whether iB&B or
UEGO_med is employed. This is due to the reliability of UEGO (in spite of its
metaheuristic nature). The iB&B technique is faster than UEGO_med for small size
problems (n = 15), which directly reduces the execution time of both TLUEGO and
MSH. Specifically, the use of iB&B reduces the computing time of TLUEGO_BB
by 74.6% as compared to TLUEGO_UE. A similar behavior in computing time
can be seen in MSH when iB&B is used instead of UEGO_med. Nevertheless, for
medium size problems (with n = 50 demand points), TLUEGO_UE and MSH_UE
reduce the computing time as compared to TLUEGO_BB and MSH_BB, by 12.79%
and 10.63%, respectively. These results are also consistent with the ones showed in
[37], where it was observed that the increase of requirements for iB&B with the size
of the problem was greater than for UEGO_med.
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Focusing now on the strategies proposed to solve the current centroid problem,
it can be stated that TLUEGO (in both versions) is the algorithm achieving the
best results. Their average objective function values are always higher than the ones
provided by both MSH and GS. It is also remarkable that the minimum objective
function value found by TLUEGO in the ten runs is always better than the average
values obtained by both MSH and GS (see columns ‘Min’ and ‘Av’). Additionally,
TLUEGO is the most robust algorithm in the sense that it usually attains the same
solution in all the runs, whereas MSH is more erratic, and can provide different
solutions in each run (see the values of ‘MaxDist’ and ‘Dev’).

5.3 Influence of the Fuse Process in the Creation Procedure

Taking into account the main structure of TLUEGO, based on UEGO_cent.SASS
algorithm, it can be seen that in the creation procedure, for every species in the
list, a set of possible new solutions is computed, fused and evaluated with the
objective of finding new promising species, and therefore increasing the species-
list. This creation process is applied independently to each species as no relation
among species exists.

Taking into consideration that the evaluation of a single species in TLUEGO
requires intensive computational effort, since it implies the execution of another
expensive optimization algorithm (UEGO_med or iB&B) to obtain the optimal loca-
tion of the follower (by solving the corresponding medianoid problem), TLUEGO
had to be designed to maintain a small-size species-list. This was done by including
a ‘fuse’ process just after the creation of candidate solutions and before the
evaluation of the resulting ones.

However, it is known that working with larger species-list sizes helps to explore
the search space deeply and consequently to obtain better solutions. With this aim, in
this section, new creation procedures are proposed, where the fuse process is relaxed
in part by modifying the threshold distance to apply the fusion of two species. Now
two species will be fused if the distance between their centers is smaller than the new
thresholds R;, R,/2 or 0 instead of 2R,. In what follows, only TLUEGO_UE will be
used, since it can solve larger instances. It will simply be denoted by TLUEGO.
For the analysis at hand, only medium size problems have been considered, i.e.
n = 50, 100 (the actual settings can be seen in Table 8).

Considering that each run of TLUEGO may provide a different solution, each
problem has been solved ten times and average values have been computed.
Table 9 shows the average results obtained by the algorithms considering all the

Table 8 Settings of the test problems
n |50 100

m |2 5 10 2 5 10
k |01 (012 024 |01 |0,1,2 |0,24
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Table 9 Effectiveness evaluation of the fuse process in TLUEGO (sequential
algorithm) for problems with n = 100 and » = 50 demand points

n Threshold | Time MaxDist | I1; Dev | DifIl, | DifSol
50 | 2R, 10,993 |0.520 148.316 | 0.578 |- -
R, 17,689 | 0.307 149.616 | 0.177 |0.782 |1.812
R,/2 18,686 | 0.129 150.296 |0.113 |1.235 |2.364
0 22,898 1 0.135 151.002 | 0.064 | 1.794 | 2.940
100 | 2R, 32,029 | 0.755 177364 |1.992 |- -
R, 52,125 1 0.146 183.341 1 0.490 |3.260 |4.221
R,/2 56,932 1 0.133 185.710 10.272 | 4.562 |5.998
0 65,470 | 0.056 186.551 |0.058 |5.033 |7.027

configurations for the problems with n = 50 and n = 100, respectively. In [42] a
complete set of tables with detailed results for each configuration can be found. The
first column gives the size of the problem. The second one indicates the threshold
value used in the fuse process. In the third column, the average time in the ten runs
(in seconds) is computed. The MaxDist column provides the maximum Euclidean
distance [for the three variables (xi, y;, &1)] between any pair of solutions provided
by the algorithm in the ten runs, which gives an idea of how far the solutions
computed by the algorithm in different runs can be. The average objective function
value (column I7)) in the ten runs and the corresponding standard deviation (column
Dev) are given next. Column Dif IT| shows the relative improvement in the objective
function value between the solution obtained by the algorithms when a threshold
different from 2R, is used as compared to the result obtained when using 2R,. The
final column shows the relative difference between the solutions.

As can be seen, the CPU time increases as the threshold decreases, and when this
is set to 0, the time is more than double as compared to the 2R, case. The algorithm
also becomes more robust (see the decrease in columns Dev), in the sense that the
objective function value at different runs are more similar. In addition, analysing
column [7; it can be deduced that the quality of the solution also becomes better.
Regarding the relative improvement in the objective function value, it can be seen
that for the problems with n = 50 demand points is moderate, with an average of
1.794%. However when the threshold is set to 0, for the problems with n = 100 it
attains a significant 5.033%. This clearly shows that the smaller the threshold, the
better the solutions are. Unfortunately this is at the cost of increasing the CPU time
and the memory requirements.

5.4 High Performance Computing

Due to the high computational cost of TLUEGO, which is even higher than that of
UEGO_cent.SASS, a parallelization of the algorithm is required, especially if real
problems, with more demand points than the studied in the previous section must
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be solved. In [1], three programming paradigms for the parallelization of TLUEGO
are designed. More specifically, a pure message passing paradigm, a pure shared
memory programming model and a hybrid one which combines message passing
with shared memory are implemented and their efficiency and effectiveness are
analyzed and compared. Results showed that both pure message passing and pure
shared memory paradigms have almost the same performance, while the hybrid one
shows less efficiency though it can exploit all computational resources of the parallel
architecture.

Considering that TLUEGO structure is similar to UEGO_cent.SASS, the mes-
sage passing algorithm is based on a master-slave strategy like the one described in
Sect. 4.5. For this reason only the main features of pure shared memory strategy are
detailed here. Readers interested in a deep description of the three strategies as well
as in the performance comparison among them are referred to [1].

5.4.1 Shared Memory Programming for TLUEGO: SMP_TLUEGO

For the implementation of this parallel strategy, OpenMP has been selected, since
it is a portable and scalable model, and gives programmers a simple and flexible
interface for developing parallel applications.

Concerning the parallel model, it can be considered a pseudo master-slave
technique, similar to the MS described in Sect. 4.5. OpenMP includes mechanisms
to distribute the species list among the different processors without the existence of
a master processor. Therefore there does not exist a master processor which globally
controls the algorithm and manages the species list. This task can be done in parallel
by all the processors. However, the existence of a kind of pseudomaster processor
to be in charge of applying the Selection procedure and updating the species list that
will be accessible to all processors, is still necessary. Accordingly, the parallelism
is applied to the evaluation of the new candidate solutions in the Creation and
Optimization procedures. Consequently, new creation and optimization procedures
have also been designed. They are briefly described next.

The parallel algorithm developed considers that the species-list is stored in shared
memory. When the Create_species_paral is executed, each processor picks up a
new single species and evaluates it. Once a processor has finished this task, it
collects another species. This cyclical process finished when all the new offspring
are evaluated. Notice that mutual exclusion is not needed because each processor
accesses different memory areas.

The Optimize_species_paral procedure maintains a similar structure to the
previous method Create_species_paral. But instead of only evaluating the species,
it applies the local search procedure. Considering that the number of function
evaluations required to optimize a single species, and therefore, the computational
load assumed by each processor, may be quite different, this strategy of selecting
the species one by one helps to balance the computational burden and to reduce the
waiting time of the processors.
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Table 10 Settings of the test problems

n |50 100
m |2 15 25 2 15 25
k |01 /05,10 |0,7,15 |0,1 |0,5,10 |0,7,15

Table 11 Efficiency results for SMP_TLUEGO

P |n Time Eff(P) |n Time Eff (P)
1 1100 | 65,470 |- 500 | 565,358 |-

2 32,878 | 1.00 283,707 | 1.00
4 16,928 | 0.97 143,416 | 0.99
8 8703 | 0.94 73,065 |0.97

5.4.2 Efficiency Results of SMP_TLUEGO

In this subsection the behavior of SMP_TLUEGQO is analyzed by solving a set of 24
problems whose settings can be found in Table 10. For every setting one problem
was generated. Additionally, all the instances are solved ten times and average
values are considered.

Table 11 shows, for the problems with n = 100 and » = 500 demand points,
the average computing time (in secs.) and the mean efficiency Eff (P) obtained. As
can be seen, SMP_TLUEGQO has either optimal or near-optimal efficiency for up to
P = 8 processors. For a given n the efficiency values slightly decrease as the number
of processors P increases. Notice, however, that the algorithm is scalable, as it shows
a better performance (see Eff (P) columns) when the problem size increases, i.e. the
efficiency improves with higher n values.

6 Solving the Models with Costs Exactly

In this section we propose an exact solution method for the problems described
in sections 4 and 5, i.e. when operational costs are taken into account. As already
mentioned, the B&B method described in Sect.3 works only when no costs are
present, that is, the zero-sum property holds for the objective functions of the leader
and follower. The method we propose to solve these harder problems exactly is a
generalization of the algorithm presented in [48]. In that paper almost the same
problem is solved exactly on networks, although with fixed qualities. Here, we
propose a modification of this method to be able to solve the problem on the plane
having the quality as additional variables for the new facilities.

In [48] a B&B method is used to solve the leader problem, while in an embedded
way another B&B was used to refine the follower. The main difference between
this method and Algorithms 2 and 1 is that the follower problem has to be solved
for a set of leader placements instead of for a leader point. This is much more
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challenging, and it may even be impossible if the aim is to solve the problem with
a small accuracy. Therefore, instead of solving the follower problem in the inner
B&B to optimality, its searching set is only refined, and the solution (set of sets)
is stored together with the leader set. The method proposed next differs from that
in [48] mainly in the searching space and the solution sets, that instead of being
segments of edges of the network, they are now 3-dimensional boxes (vector of
intervals) in R3.

6.1 Overcoming the Difficulty of the Lack of the Zero-Sum
Property

In Sect.3 we have already seen that when the objective function is the market
share (no costs are present), and the qualities of the facilities are given parameters,
the problem can be solved efficiently by a B&B method. The key point there is
the zero-sum property of the objective functions: minimizing the objective of the
leader, one directly maximizes the objective of the follower and vice-versa. What
makes the method very efficient is that although (reverse) medianoid problems have
to be solved to obtain bounds, the other new facility is always fixed to a point.
This is no longer the case when costs are taken into account. It may even happen
that changing the location of the follower increase both the leader and the follower
objective. Therefore the result of Lemma 1 cannot be used directly, and so a new
trick is needed to overcome this difficulty.

When operational costs are present, for the bound calculations of the leader, all
possible locations (and qualities) of the follower have to be considered. On the one
hand, until the follower is not enclosed tightly in a set of boxes, it might mean that
the obtained bounds are very loose. On the other hand, until the leader box is not
small enough, it is not possible to enclose the follower tightly. Thus, what is needed
is a good and possibly cheap bound calculation procedure in order to overcome the
above problem. One promising approach is to use interval bounds, as done in [48].

6.2 Interval Arithmetic Bounds

We propose to use Interval Arithmetic to obtain lower and upper bounds of the
objective functions automatically when one or both facilities are in boxes. The main
idea of Interval Analysis is to change all real arithmetic operators and elementary
real functions to their interval versions. As a result, an interval containing all
possible results from points from the input intervals is obtained, maybe with some
overestimation. See [21] for details of interval analysis in global optimization.

Let us denote intervals with capital letters, e.g. X = [x, x|, where x < X are the
lower and upper bounds of X, respectively.
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For a given box NF; containing a new facility nf;, an interval U, ,; containing the
utility of any point within NF; can be computed as

Uinfy = [ting, i) = 01/ 8i(di(Z1)), @1/ 8i(di(Z))]

where

di(Z) = \/(maX{)ﬂ — pit,pin — X1,0}) + (max{y; — pin, pia — 31, 0})%,

di(Z) = \/max{()ﬂ —pi)?, (pa —X1)?} + max{(y; — p)?, (P2 — 31)*}-

Given a fixed box (or a point) NF, for the follower, an upper bound of [1; at the
box NF| can be calculated with interval arithmetic as

UB(IT,(NFy, NF»)) = ¢ - UB(M,(NF,, NF3)) — LB(G\(NFY)),

where the upper bound of the market share is given by the formula

—_ k
Hinfi + D=y Ui
m )
Uinfi + Uingy + D0y Ui

UB(M,(NF\,NF,)) = Z’Wi

i=1

when the demand is fixed, and

n k
UB(M\(NFy, NF2)) = Y wi™ qi(iliag + Y _ ut),
j=1

i=1

when the demand is endogenous but linear as introduced in Sect. 5.
The lower bound LB(G1(NF)) of the operational cost function Gy, when it has
the form

Gi(nf) = Y wi/ (@)™ + ") + exp(ai /8] + &) — exp(E])
i=1

(where w; stands for w; when the demand is fixed, and for w;(U;(nf1, nf>)) when the
demand varies) can be computed as

n ~

LB(GI(NF1) = ) ——5——

S+ exp(en /&) + ) — exp(&)
=1 di(Z)" + )
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when the demand is fixed, and as

n min

LB(Gi(NFy)) = ) M;—o +exp(ai/€) + &) — exp(§))
=1 di(Z1)"" + ¢}

when it varies.
Of course, if an upper bound for the leader’s profit is required when the follower
is in a set of boxes NI, it can be obtained as

UB(IT,(NF,,NF;)) = c- inax UB(M\(NF\,NF>)) — LB(G(NF})).
2€NI

The interval arithmetic lower bound of the profit can be obtained by interchang-
ing upper bounds and lower bounds in the above formulae. The bounds for the
follower are straightforward by the rules above.

One can see that even those computations might be time-consuming for obtaining
an upper or a lower bound. However, notice that in the fixed demand case, we can
still use the zero-sum property of the market share for its bound calculations, so that
if bounds for the follower’s market share are known, they can be used directly for
the leader’s bounds on the market share and vice-versa.

6.3 Solution Method

A B&B method is designed to solve the leader’s problem, and consequently the
follower’s problem as well. The main goal of the method is for every subproblem to
simultaneously tighten the set containing the global optimizer of the leader and the
set that contains all the global optimizers for the follower problem.

Without loss of generality, it is assumed that the feasible set of both the leader
and the follower is a box. We define subproblems of the leader as boxes. For a
given box of the leader, the follower’s possible position can be in many places, and
until the leader is not enclosed tightly, the follower can only be bounded to a set
of boxes. Therefore, for every box of the leader we need to store the subboxes that
may contain the global optimal solutions of the follower. Hence, a partial solution
or subproblem of the leader refers to a box containing the leader and the set of boxes
that contain the corresponding solution of the follower problem.

An inner B&B method tightens the boxes of the follower, and a main (outer)
B&B method tightens the boxes of the leader. Thus, lower and upper bounds for the
leader’s (follower’s) profit are needed when the follower (leader) is enclosed in a
box. For the calculation of the lower and upper bounds of the follower in a given box
NF,, its corresponding single leader’s box NF is taken into account. These lower
and upper bounds are LB(IT>(NFy, ﬁ]\‘z)) and UB(I1I,(NF,,NF,)), respectively,
where nf, € NF, is a feasible solution within the follower’s box. For the calculation
of the bounds for a leader’s box NF|, every box of the follower corresponding to it
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has to be considered, i.e. LB(I1; (ﬁ}l, NF,)) and UB(I1;(NF;,NF,)), where ﬁ}‘l is
a feasible solution in the leader’s box and NI, > NF, the set of the corresponding
boxes of the follower.

6.3.1 Inner B&B

Both the leader’s and their corresponding follower’s boxes need to be refined for the
algorithm to converge. The inner B&B takes care of the refinement of the follower’s
boxes.

The termination criterion of the inner B&B is to have the size of each follower’s
box at least as small as the corresponding leader’s box. The algorithm returns the
modified list of the boxes of the follower. The selection rule chooses the largest box,
while the branching rule bisects the box perpendicularly to the coordinate direction
of maximum width.

Given a leader box, this method is applied to the set of follower boxes associated
to it, until the corresponding follower’s sub-boxes have a size smaller than or equal
to that of the leader’s box. Each time a new leader box is created, the inner B&B is
run until its follower’s boxes are refined.

6.3.2 Outer B&B

The outer B&B refines the leader’s boxes and calls the inner B&B method for each
new box of the leader. Recall that a subproblem of the leader is a box with the
corresponding set of boxes for the follower. Thus, the initial subproblem is the
starting box of the leader, and the starting box of the follower. However it might
be more efficient to make a pre-division at the very beginning, as the first lower and
upper bounds obtained by the algorithm are usually useless, but computing them
needs time.

The output is a set of boxes containing any global optimizer, and the interval
containing their objective values contains the global optimum of the problem. The
selection rule selects the leader box with the highest upper bound of the leader’s
profit, while the branching rule bisects the leader’s box perpendicularly to the
coordinate direction of maximum width and leaves the follower’s boxes unchanged
but duplicated for the new boxes of the leader. The algorithm stops when the
interval containing the objective values of all leader’s boxes gets smaller than a
prescribed tolerance or the size of all the boxes becomes smaller than another
tolerance parameter.

6.4 Algorithm

The pseudocode of the inner and outer B&B algorithms are given in Algorithm 8.
For the sake of simplicity let us denote the objective function as I (I1; for the outer
and [T, for the inner B&B).
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Algorithm 8: The inner and outer B&B methods

1: Input: A, GLB for the inner B&B
2: A = {S}, GLB = —o0 for the outer B&B

3: Remove all NF' from A with UB' < GLB

4: while A # @ do

5: Select NF from A

6:  Bisect NF into NF' and NF?

7: fori:=1to 2do

8: Determine an upper bound UB' on NF'

9: if not UB' < GLB then

10: Compute a lower bound LB’ of IT at midpoint(NF")
11: if LB' > GLB then

12: GLB := LB', BestPoint := midpoint(NF’)

13: Remove all NFY from A with UB' < GLB

14: if not TerminationCriterion(NF') then

15: if outer then
16: Call the inner B&B on the set of follower boxes of NF'
17: A= A U{NF}
18: else
19: I :=T U{NF}

20: Output: I, BestPoint

In line 3 we remove each box known not to contain any global optimizer from
list A. The main cycle of the general B&B method is listed from line 4 to line 19.
The main difference of the outer B&B from the inner B&B is the call of the inner
method added in lines 15 and 16. In fact, the additional differences between the
inner and outer procedures are hidden in the bound calculations, as well as in the
selection and termination rules.

The output of Algorithm 8 is the set of boxes which could not be eliminated and
thus contain any global optimizer, and the point at which the best lower bound was
achieved.

The proposed method should be tested on a set of test problems to know the
size of the problems that it can solve, for both exogenous and endogenous demand.
However, this is not the aim of this section, but to show that an exact algorithm can
be designed even if operational costs are considered, the qualities are variables of
the model and the demand is endogenous.

7 Conclusions and Future Research

Despite its inherent difficulty, facility location leader-follower (or Stackelberg)
problems can be addressed when the location space considered is the plane, at least
in its simple case, when only one new facility is going to be located by the leader
and the follower. Exact (interval) branch-and-bound methods can be put to work for
solving small instances, whereas evolutionary algorithms can handle large instances.
If so required, parallel implementations of the algorithms can help to solve larger
instances and with more accuracy.
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Dealing with problems where more than one facility is to be located by the leader
and/or the follower seems to still be a challenge when the location space is the
plane. An extension which deserves to be explored is to allow the existing facilities
to modify their quality, or even close some of them. Studying the problems with
other patronizing behavior of customers is another line of future research. From the
computational point of view, the design of high performance computing approaches
for the exact branch-and-bound algorithms is also worth exploring.
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A Game Theoretic Approach to an Emergency
Units Location Problem

Vito Fragnelli, Stefano Gagliardo, and Fabio Gastaldi

1 Introduction

Emergency management represents a hard task in several situations. In fact, it can
be viewed under many different lights and involves a large number of parameters.
Consequently, the complexity of the problem allows and requires many different
experiences and expertise and the synergic use of different methods and approaches
in order to reach an efficient result. We refer to the problem of locating units in the
area controlled by an emergency service as the emergency units location problem
(EULP). In this paper, we introduce a new class of games to deal with it.

Location problems are broadly studied in operations research. Among the wide
literature, we address to the books [9] and [10] for an analysis of the theory and
possible applications, and to the book [29] for a common theory of location models
(continuous, discrete and network location problems). Moreover, we refer to three
survey papers [11, 18, 31].

Also EULPs receive great attention in the field of location analysis, applying
several disciplines and techniques. In a deterministic environment, the pivotal work
is [43], who refer to a set covering problem, refined first in [5] adding a constraint on
the available units. Schilling et al. [37] goes on accounting different types of units,
while [40] introduces travel-time constraints.

One of the first probabilistic models is [7], that considers a request only if all
capable units are not engaged with other interventions; [13] applies the method to
the city of Bangkok; [15] uses a tabu search simulation; [35] introduces variations
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in travel speed. Two other probabilistic models are [36] and [1]: the first aims to
position a certain number of units in order to maximize the population satisfied
within a time window with a fixed reliability; the second accounts for the probability
of system failure.

The works just introduced use linear programming [1, 36] and simulation [15] to
find the solution of the considered problem.

In the last years, GIS (Geographical Information System) integrates with simu-
lation and gives rise to decision support software and tools; for instance, [3] and
[8] integrate GIS, GPS (Global Positioning System) and GSM (Global System
for Mobile communication), offering a solution to the problem of ambulance
management and emergency accident handling in the prefecture of Attica in Greece.
A survey about location methods can be found in [4], while for a survey about
applications of GIS to location problems we address to [28].

In the last 30 years, the interest in location analysis gives birth to some game
theoretic papers that mainly deal with the cost sharing aspect. In a cooperative
setting, some of the first papers introducing cost allocation games arising from
location problems are [17], dealing with single facility location problems in tree
graphs, [22], generalizing location games on graphs, [41], considering coverage
models on graphs, and [6], studying games arising from p-facilities problems in
graphs. Puerto et al. [32] introduces a new class of games linked to continuous
single facility location problems, where the location for a facility has to be found
in order to minimize the transportation cost for the users, which depends on their
distances from the facility; the authors give some sufficient conditions in order that
a game in this class has a non-empty core and define an allocation rule which is in
the core for two classes of location games (Weber location problems and minimax
location problems). The model in [32] is extended in [26] designing a continuous
single facility location problem in which the fixed cost depends on the region where
the new facility is located and finding two sufficient conditions to have a non-
empty core for the cost allocation game. Goemans and Skutella [14] finds fair cost
allocations among the customers of a service in several situations and show strongly
connections with linear programming relaxations. Pal and Tardos[30], Leonardi
and Shifer [24], Xu and Du [44], and Immorlica et al. [21] address the problems
of choosing a subset of providers and a subset of users which will be part of a
service network and of sharing the building costs of the network itself. Finally,
[33, 34] studies the core and the polynomial representations of it for new classes
of cooperative games related to facility location models defined on metric spaces.

In a non-cooperative setting, after [23, 42] introduces the multifacility location
game in the context of supermodular games. In [20] possible collusions are
considered. Mallozzi [25] starts from the idea that real-world transportation costs are
seldom linear with respect to the distance to extend the idea of [42] to a more general
context. Mazalov and Sakaguchi [27] analyzes the Hotelling’s duopoly model (see
[19]) on the plane, in which two firms are located in different points inside a circle
and the customers are distributed in it according to a density function. A survey on
game theoretic models is provided in [12].
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1.1 Utility in an Emergency Environment

Referring to emergency management, it is necessary to distinguish among different
types of emergencies, for instance medical, environmental and urban, each one
involving particular features, which may be coped in different ways that require
different means and tools.

The concept of emergency is strongly related to the idea of urgency and then
to the idea of fast intervention. The ideal time necessary to solve an emergency
situation varies: for example, medical interventions should be carried out in minutes,
environmental ones, e.g. fires or floods, may allow longer time and rescue missions
after an earthquake can be organized also some days (or weeks) after the event.

In this work we are interested in those particular situations in which, after a given
period, there is a sudden and large reduction of the usefulness of the intervention.
In particular, we refer to a situation in which the utility is 0-1 type, i.e. it is equal
to 1 until a given distance (measured as ground distance, time distance, Euclidean
distance, etc.), and then goes down to zero (Fig. 1a). A classical real-world example
is represented by the ambulances that, from a statistical point of view, are required,
for the most serious and urgent situations (the so-called red and yellow codes), to
reach the emergency place within a fixed maximum time. In Italy, for example,
the time allowed is 8 min for the calls coming from the city and 20 min for the
ones coming from the province, including the time for answering the call (2 min,
on average). Statistically, emergency management does not consider as performed
the missions that are completed after the fixed time threshold. However, if an
ambulance arrives later, the intervention is anyhow completed (e.g., an injured
person is transported to hospital). This means that in a forecasting model, only
the area that is reachable respecting the threshold is considered as covered by an
ambulance and that the utility of the service from the point of view of the emergency
management is 1 within this area and 0 otherwise.

This situation is different from the standard location problem, where the utility of
a service located in a given place decreases when the distance increases (Fig. 1b). In
Fig. 1c we represent a real-life oriented utility function that is a good approximation
of the one in Fig. la. For instance, we may refer to a fire plane intervention. In this
case, the distance from water reservoir and the fuel tank capacity have to be taken
into account. We may assume that the utility is constant until a certain distance,

utility utility utility

distance distance distance
a b c

Fig. 1 Possible utility functions for location problems
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that allows for the number of flights necessary to extinguish the fire, without
refuelling. From that point on, the utility quickly decreases because refuelling
becomes necessary, making the time to extinguish the fire longer and the risk higher.

Despite of this, we choose the situation represented in Fig. la as the utility
function used by emergency managers in their performance analysis.

Finally, we want to stress that the utility functions in Fig. la, ¢ can be good
approximations of the utilities of some location problems which arise from other
situations. For example, we may think to the problem of locating antennas for
mobile phones or internet services, where there exists a distance within which
the signal has its maximum power, and then it suddenly decreases. Another
interesting situation is represented by the transportation of perishable goods through
appropriate vehicles that can preserve the quality of the goods only for a certain
time.

1.2 Game Theory and EULP

The main idea that has driven us in our game theoretic approach to this problem is
that the different candidate locations for hosting an emergency unit interact among
them. In fact, the choice of deploying an emergency unit cannot take into account
only the characteristics of a candidate location, i.e. the extension of the area that
can be covered within the maximum time allowed (or with the maximum utility),
the probability of a call in that area, etc., but should also consider where the other
emergency units are located. In other words, we look for maximizing the utility
associated to the selected set of locations, rather than for a set of locations with
maximal utility; in particular, we account the marginal contribution of an ambulance
to each possible set of units located in the other candidate zones of the area, i.e.
we consider what a further candidate location may add to the service when an
ambulance is located there. The average marginal contribution may be considered a
measure of the relevance of the candidate locations. We are going to do that solving
a suitable cooperative game for ranking by relevance the whole set of the candidate
locations. In view of this, we may not account the number of available ambulances.

We may stress that the problem under analysis is a centralized decision situation
in which the emergency management decides where to locate vehicles. Cooperative
games have been widely used to deal with situations in which interacting agents
realize that they may improve their payoffs by cooperating; in the EULP case,
cooperation ends in supplying the best possible service to a set of users. This is
the reason why we decide to consider the EULP in a cooperative setting. A non-
cooperative approach can be reasonable if we think that the inhabitants of a zone
prefer to have an emergency unit close to their houses and that sometimes “political”
problems can arise: if an association supplies or pays for a vehicle, it wants to decide
where to locate it (probably close to itself). In spite of this, the solution of a non-
cooperative approach does not take into account the global welfare and may be
inefficient from a social point of view, and this is another reason why we prefer to
deal with a cooperative setting.
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To the best of our knowledge, our model is the first, in which the cooperative
game theoretic approach is used to support the location of the facilities, disregarding
cost allocation problems.

In the following, we devote Sect. 2 to introduce the EULP; Sect. 3 recalls some
basic game theoretical concepts and introduce the model; in Sect.4 we propose
the Shapley value as the most suitable solution for the class of games introduced
in the previous section; Sect.5 provides a simple and computationally efficient
algorithm for solving the EULP; in Sect. 6 we describe an application to the real-
world situation of 118 of Milan; Sect. 7 concludes.

2 EULP

In this section, we formally introduce the emergency units location problem. In
particular, let us consider an area divided into zones and let us use the following
notations:

e M ={1,...,m} is the set of zones of the area;

e N ={l1,...,n} C M is the subset of zones which are candidate locations for an
emergency unit;

e C = (c;j) € R™™is the coverage matrix, s.t. ¢;; = 1 if an emergency unit located
in i covers zone j, ¢;; = 0 otherwise;

¢ w € R™ the vector of the demands of the zones of the area.

The (M, N, C,w)-EULP is the problem of ranking the n candidate locations in the
area described by the previous parameters in order to satisfy the demand in the best
possible way, where the utility of the service is modelled as in Fig. 1a.

Example 1 Consider the area in Fig. 2, where each box represents a zone and the
value in each of them is the demand of the zone; suppose that each zone is a
candidate location and that an ambulance located in a zone is able to cover it and
the two adjacent ones (those immediately to the left and to the right, if any).

In this case we have:

e M=N={a,b,c,d,ef};
e (s given by the following table:

246 | 228 | 091 | 1.52 | 3.34 | 2.31

Fig. 2 A simple EULP
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abcdef
a110000
b111000
c011100
doo1110
e000111
1000011

e w=1(2.46,2.28,0.91,1.52,3.34,2.31).

To make clear the importance of considering the interaction among the possible
locations, observe that, in order to cover the whole area, it is sufficient to locate two
units in zones b and e; allocating the units in the most demanding zones the area
is covered when four ambulances are located in zones e, a,f and b; accounting
the locations with the highest aggregated demands’ that are 4.74, 5.65, 4.71, 5.77,
7.17, 5.65, respectively, the area is covered when three ambulances are located in
zones e, d and b, preferring this last with respect to zone f that has equal aggregated
demand.

A final remark is devoted to the meaning of the demand of a zone. In general, it may
represent different quantities, for instance the expected number of calls originated
from each zone or its spatial extension; the choice will orient the model towards
efficiency in the former case or equity in the latter; other choices are possible.

3 Game Theoretical Model

In this section, we recall some notions and notations of game theory and formally
introduce the game theoretical model for the EULP.

3.1 TU-Games and the Shapley Value

A cooperative game with transferable utility or TU-game is a pair (N, v), where N =
{1,2,...,n} denotes the finite set of players and v : 2¥ — R is the characteristic
function, with v(&) = 0. A group of players S C N is called a coalition and v(S)
is the worth of the coalition, i.e. what the players in S may obtain independently
from the other players. N is called the grand coalition. Often, a TU-game (N, v) is
identified with the corresponding characteristic function v.

! By aggregated demand we mean the sum of the demands coming from all the zones covered by
a location.
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Denoting by ¥y the class of TU-games with player set N, a (point-valued)
solution is a function ¥ : ¥y — R”". One of the most well-known solutions to a TU-
game is the Shapley value, introduced in [39]. It is based on the concept of marginal
contribution: given a coalition S, the marginal contribution to it of player i is the
value that player i adds to S entering it. The Shapley value assigns to each player his
average marginal contribution over all the possible permutations of players.

Definition 1 (Shapley Value) Given a TU-game (N,v), the Shapley value ¢
assigns to playeri € N

Bi0) = 4 3 (PGe:) U i) — v(Plr )] | m

tmen

where [T is the set of all the permutations of the players and P(r;i) is the set of
players that precede i in permutation 7.

Shapley characterized his value as the unique solution ¢ which satisfies the
following axioms:

Al. Efficiency: for each game (N, v), Y ey ¢i(v) = v(N);

A2. Symmetry: if two players i and j are symmetric for a game (N, v), i.e. v(S U
{i}) = v(S U {j}) foreach S € N\ {i,j}, then ¢;(v) = ¢;(v);

A3. Null Player: if i is a null player for a game (N, v), i.e. v(S U {i}) = v(S) for
each S C N\ {i}, then ¢;(v) = 0;

A4. Additivity: given two games u and v with the same set of players N, let the
sum game (u+ v) be the game with the same set of players N and (u+ v)(S) =
u(S) 4+ v(S) for each S C N; then ¢;(u 4+ v) = ¢;(u) + ¢;(v) foreach i € N.

The main problem in dealing with the Shapley value is its high computational
complexity: according to (1), it is necessary to consider n! orderings of the players
that, in general cases, could be dozens, and for the EULP also hundreds. Moreover,
the definition of the characteristic function can be really complex (with n players
we need to define the worth of 2" coalitions).

3.2 Coverage Games

Given an EULP, we introduce a new class of TU-games related to it, namely the
coverage games, denoted by % .

Definition 2 (Coverage Games) The coverage game is the TU-game (N,v)
defined by

v(S) =) w VSCN,

JEAs
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where Ag = {j € M | 3i € S s5.t. ¢; = 1}, i.e. the set of zones which are covered by
at least one emergency unit located in S, when each zone in S hosts one emergency
unit.

The main idea of the coverage games is to evaluate the demand covered by a
coalition of possible locations. In fact, looking at Definition 2, the value of a
coalition S in the coverage game is the sum of the demands of the zones that are
covered locating one emergency unit in each location of S.

As we said in the Introduction, the definition of the coverage game related to
an EULP does not consider the number of available units; ranking by relevance the
possible locations makes our approach adaptable to a variable number of units to
activate. Finally, we stress that we do not consider that the ambulances may not
satisfy the whole demand, for instance due to the high number of calls or to their
time distribution (in an efficiency-oriented case).

4 Shapley Value for the Coverage Games

Looking for a good solution to the EULP, we propose to use the Shapley value of
the coverage games. As we already said in Sect. 1.2, a good reason to do that is the
concept of marginality: it is important to take into account not only the demand of
a zone or the aggregated demand that a candidate location can cover, but mainly
the contribution that an ambulance located there can add to the other locations. As
we already said, our aim is ranking by relevance the candidate locations accounting
their marginal contributions; in view of this the Shapley value represents a very good
solution. Then, the available ambulances are deployed according to the ordering of
relevance of the candidate locations.

Also the Banzhaf value (see [2]) takes into account marginal contributions, but
the Shapley value is also efficient, allowing sharing among the locations the whole
demand that can be potentially covered by all of them. Moreover, it has pretty good
fairness properties with respect to our problem. To choose a “good” solution, in
fact, we identify two suitable fairness criteria it should satisty, called coverage
indifference and demand indifference; we may notice that these properties are related
more to the problem than to the game, allowing improving the fairness of the
solution of the location problem.

In particular, the coverage indifference looks at the situation from the point of
view of the users and requires to give the same importance to the units that cover
a zone allowing for equally sharing the demand of the zone among them; in a
sense, any of those units has the same probability to satisfy a call coming from
the considered zone. This property is suitable to the EULP as the utility function we
use (Fig. 1a) implies that the most important requirement is to satisfy the demand
within the fixed time threshold, independently from the unit which does it and from
the actual time required. The demand indifference looks at the situation from the
point of view of the emergency service provider and gives the same importance to
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each demand, wherever it comes from and whatever the required intervention is.
Also this property is suitable to the EULP as all emergency calls (yellow and red
codes) have the same importance for the emergency service.

It is interesting to notice that other usual fairness criteria, such as monotonicity
and equal treatment of equals, are not so important in the situation at hand. For
example, looking at the situation in Fig. 2, the Shapley value of the corresponding
coverage game is (1.99,2.29,1.57,1.92,2.78,2.27), so that deploying two units in
the second and the fifth zones we obtain the optimal solution. This choice does not
satisfy the two mentioned criteria: the second zone has an aggregated demand of
5.65 and receives one unit, while the fourth zone receives nothing even if it has an
aggregated demand of 5.77 (non-monotonicity); the second and the sixth zones have
both an aggregated demand of 5.65, but one receives a unit and the other does not
(they are not equally treated). This is essentially due to the fact that monotonicity
and equal treatment of equals focus on the features of each location.

4.1 Coverage and Demand Indifference

Before introducing the two properties of coverage indifference and demand indif-
ference, we need to define a sub-class of coverage games, the jth zone sub-games, in
which uniquely zone j has a positive demand, i.e we put down to zero the demands
of all the zones but j.

Definition 3 (jth Zone Sub-Game) Let v be a coverage game. Given j € M, the
Jjth zone sub-game of v is the coverage game v/ defined, for each S C N, by

wj lf] € Ag
0 otherwise

v (S) = {

The following result proves that the coverage game is the sum of all its zone
sub-games.

Lemma 1 Let v € € be any coverage game. Then, for every S C N,

v(S) =Y V(S). 2)

JEM

Proof By Definitions 2 and 3,

VS =D W= V) =D V),

jeAs jeAs jeM

where the last equality holds because v/(S) = 0if j € M \ Ag. O

Now, we can formally introduce the two fairness criteria.
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Definition 4 (Coverage Indifference: CI) A solution ¥ satisfies coverage indif-
ference if for each v € ¢ and each jth zone sub-game v/ of v, if j € Ay N Agy,
i,l € N, then

Vi) = yi) .

Definition 5 (Demand Indifference: DI) A solution  satisfies demand indiffer-
ence if foreachv € €,i € N,

Yiv) = (V).

jeM

We can notice that DI is very similar to the additivity property A4. However, DI is
a different condition as we require the additivity to be satisfied only with respect to
the zone sub-games. Moreover, it is easy to observe that

== ifjeay
i) = 1 =i ¢ ieN, 3)
0 otherwise

satisfies CI. We may notice that (3) recalls the other Shapley axioms (efficiency,
symmetry, null player), but from a “local” point of view, in the sense that it does
not concern the coverage game, but its zone sub-games; in particular, it does not
imply neither Al., nor A2., nor A3. for the coverage game, but it does only together
with DI.
The following proposition shows that the Shapley value satisfies both properties.

Proposition 1 The Shapley value of a coverage game satisfies CI and DI.

Proof At first, we prove that ¢ satisfies CI. Let be j € M and let us consider the jth
zone sub-game v/. Then:

o ifi € Niss.t.j ¢ Agy, theniis anull player in the game v/ and by A2. ¢;(v/) = 0;
e ifi,l € Nares.t.j € Ay N Ay, then i and [ are symmetric players in the game
v/ and by Al. ¢;(v) = ¢;(v/);

Letbe @ = ¢;(v/) forall i s.t. j € Agy, i.e. forall i s.t. ¢;; = 1 (if such an i exists).
Then, by the efficiency of the Shapley value:

W=V =) )= Y a=a) = a= Z”Wj
1

ey
iEN icii=1 i= i=1"y
Then,

i/ ifjeA
; ~n {i}
di(v) =13 Y=<y ,

0 otherwise

that is CI.
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DI immediately follows from (2) and A4. O
As a consequence of DI and of (3), the following proposition holds.
Proposition 2 The Shapley value of a coverage game is given by

Wi

¢i(v) =

“)

. cj
jeg 2len €y

5 Algorithm for the Shapley Value

In this section, we show how (4) leads to a computationally efficient algorithm for
implementing the solution of the corresponding coverage game.

The algorithm simply requires the construction of a n x m matrix D, called the
division matrix, where, for eachi € N, j € M,

ifc; =1
dij = 3 2ien Cij
0 otherwise

By (4), the Shapley value of the coverage game for player i € N can be obtained
simply summing up the values in the ith row of D. The computational complexity of
this algorithm is then polynomial in n and m, differently from the one of formula (1)
that is exponential in n. Moreover, we may stress that the algorithm does not require
defining the 2" values of the characteristic function of the coverage game, further
reducing the complexity of the implementation of the solution.

Example 2 Let us consider the following EULP: the area depicted in Fig. 3 is made
up of 18 zones, three of which, namely d, j and m, are candidate locations to host an
ambulance; the thicker lines represent the coverage of the candidate locations and
the numbers in the boxes the demands of the corresponding zones. This leads to the
following coverage matrix C and demand vector w:

111110011100000000\ «— d
C=|000111001110011100] <«—j
000000111001110011/) <—m

w=(2,3,4,6,8,1,3,4,3,8,1,2,3,4,5,3,2,1)
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a b
2 3
c d e f
4 6 8 1
g h i J k
3 4 3 8 1
li m n 0 p
2 3 4 5 3
q r
2 1

Fig. 3 A simple example of EULP

Following the algorithm previously described, we obtain the following division
matrix and Shapley value:

234340021400000000\ <« ¢g(v) =23
D=[000341001410025300 | «— ¢;(v) =24
000000321002320021/) <« ¢.(v) = 16

which provides the ranking j > d > m among the three locations.

5.1 Computational Experiments

Table 1 summarizes the results of some random computational experiments for
testing the performance of our algorithm: the first column gives the numbers m
of zones; the second column is the random-generated number n < m of possible
locations, with a uniform integer distribution on the interval [m/5, m/3]; the third
column gives the average computational time (calculated on 30 runs per each
pair (m,n) and given in milliseconds) for computing the Shapley value of the
corresponding coverage game.’

As we may notice, the algorithm is able to ranking a large number of candidate
locations in few milliseconds.

2 The algorithm ran on a Desktop PC with an Intel Core i5-2400 Processor, 3.10 GHz, with 8 GB
RAM.
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Table 1 Average com-
putational time of the
algorithm on random
experiments
m n Time
25 7 | 0.242
100 | 30 | 0.364
225 | 75 | 0.719
400 | 113 | 1.122
625 | 181 | 2.753
900 |224 | 5.266
1225 295 |10.115
1600 | 338 | 16.579

6 Example of Milan

The 118 is a public institution that manages the ambulances in the area of
each Italian province. A project named DECEMbRIA (DECisioni in EMergenza
sanitaRIA, i.e. decisions in medical emergency) started in 2006, involving 118
of Milan, University of Milan, Polytechnic of Milan and University of Eastern
Piedmont, with the objective of providing an emergency decisions support system at
strategic, operative and tactical level to the 118 of Milan. A part of the project deals
with the ambulances location problem. The 118 of Milan controls the area of the
city and of the province of Milan, for a total surface of about 1580 km?, populated
by three million people; on average, the dispatch center receives 1580 calls per day,
resulting in 670 missions activated per day. The number of ambulances available
is 53 for the whole area, 25 in the city and 28 in the province. This gives an idea
of the dimensions that the ambulances location problem may assume and of the
importance of providing good (and fast) solutions to it.

The performance of our algorithms has been tested at first on a common
benchmark provided by the 118 of Milan, represented by a hypothetical city made
up of 1127 zones, all of which are possible locations, in which 53 ambulances
have to be deployed. This benchmark was used by the researchers of DECEMbRIA
project for testing the results obtained with different approaches. It is worthwhile
to remark that our algorithm finds a solution to the problem in few seconds,
ranking in the first 564 positions 46 of the 53 locations found by the approximated
mathematical programming approach.

In the following, we present in details the results given by the application of the
coverage game to the extra-urban area of Milan. The situation corresponds to the
EULP where:

e M is the set of the 117 municipalities in the province of Milan (excluding the city
itself);
e N is the subset of 65 municipalities in which an emergency unit can be located;
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e (C is obtained assigning 1 to those entries of the coverage matrix which
correspond to an average travelling time smaller than the time threshold of
18 min, and O to the others>;

* wis defined for 13 different scenarios, as described in the following.

We may remark that in the extra-urban area locations are fixed, as ambulances
can be hosted only in emergency service sites (such as hospitals, Red Cross sites,
and so on). Figure 4 represents the province of Milan, where the black circles show
the 65 possible locations.

Speaking about the demands, the first 12 out of the 13 scenarios look at the
problem from an efficiency point of view; their identification is based on the results
obtained by the University of Milano team; each scenario is a segment of the year
where the daily call distribution is similar, so that the treatment could be the same
(see Table 2). The demand of each zone is the average number of calls per day
received by the 118. The 13th scenario uses an equity point of view and the demands
of the zones are given by their spatial extensions.

Table 3 summarizes the results we obtained. The first column is the list of the
candidate locations in which an ambulance may be located.* Towns in capital letters
are those in which the 118 located an ambulance. The following 12 columns refer
to the efficiency approach applied to the scenarios introduced above, while the last
one (marked with a E) refers to the equity approach: an “X” in one of these columns
means that the candidate location of the corresponding row by the corresponding
approach is ranked among the first 28, that is the number of ambulances available
in the province of Milan.

The algorithms are implemented in Matlab and the results are obtained in a very
short time: the computational time (see footnote 2) of the different approaches and
scenarios varies from 3.691 to 4.842 ms. This is one of the most important features
of our approach, as its low computational complexity allows studying many different
scenarios and situations very quickly, using several trials, with different parameters
and splitting the day in very refined time periods.

We compared the coverage of our approach with that of the real deployment
of the ambulances, obtaining a reduction of about 2%, that we consider a good
performance, in view of the limited amount of time required for computing our
solution. We considered also a hypothetical situation with a tighter threshold for the
intervention time, from 18 to 13 min, preserving the number of 28 ambulances; also
with this hypothesis our method covers more than 90% of the area in all the cases.

3The travelling time have been obtained thanks to the information provided by the 118 of Milan
on the real average travelling time of an ambulance from each of the possible locations to each of
the municipalities in the area; the time threshold of 18 min is determined by the 20 min allowed to
reach the location of an event, minus the 2 min spent (on average) to answer the call.

4We omitted the candidate locations which an ambulance is never assigned to: Bellinzago, Bollate,
Cassano, Ceriano, Cislago, Cuggiono, Inzago, Lainate, Novate, Pozzuolo, Solaro, Uboldo.
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Fig. 4 Map of the province of Milan
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Table 2 The analyzed scenarios (first 12 cases)

Winter 1 Winter From 00 a.m. to 08 a.m.

Winter 2 | Winter From 08 a.m. to 02 p.m.

Winter 3 Winter From 02 p.m. to 12 p.m.

SA,; 1 Spring—Autumn | From Monday to Friday, from 00 a.m. to 07 a.m.
SAf 2 Spring—Autumn | From Monday to Friday, from 07 a.m. to 13 a.m.
SA,r 3 Spring—Autumn | From Monday to Friday, from 01 p.m. to 12 p.m.
SA 1 Spring—Autumn | Saturday and Sunday, from 00 a.m. to 07 a.m.
SAg 2 Spring—Autumn | Saturday and Sunday, from 07 a.m. to 13 a.m.
SAg 3 Spring—Autumn | Saturday and Sunday, from Ol p.m. to 12 p.m.
Summer 1 | Summer From 00 a.m. to 07 a.m.

Summer 2 | Summer From 07 a.m. to 02 p.m.

Summer 3 | Summer From 02 p.m. to 12 p.m.

Table 3 Results of the different approaches on the province of Milan

Winter SA,p SAg Summer
Town 1 /2 /3 /1 (2 |3 |1 |2 |3 |1 2 |3 |E
ABBIATEGRASSO (X |[X (X |[X X X |[X X |[X X | X X |X
Arese X X X X X |X X X |X|X | X X
ARLUNO X X [X X X |X X X |X X X |X|X
BASIGLIO X
Bernate X
BINASCO X X X X X X | X X | X | X
BRESSO X X X X X |X X X |X|X | X X
BuUCCINASCO
CARONNO
CARUGATE
Cassina X X X | X |X
Cernusco X X [X X X |[X X X |X|X X X
CESANO
Cesate X
CINISELLO X X X [X X |[X|X X X X |X
COLOGNO X X [X X X |[X X X |X|[X | X X
Cormano X X [X X X |[X X X |X|[X X X
Cornaredo X X X |[X |X X | X X
CORSICO X X |[X X X X X |[X X X |X
CUSANO X X [X X X |X X X |X|X | X X
Gaggiano X X X X X [X [X X X | X [|[X|X X
Garbagnate X X X X X |[X X X |X|[X X X
GORGONZOLA X
Limbiate X X X
Locate X |[X X X X |X X | X

(continued)
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Table 3 ((Continued))
Winter

Town
MAGENTA
Marcallo
MELEGNANO
MELZO
MISINTO
OPERA
Paderno
PAULLO
Pero
PESCHIERA
Pieve
PIOLTELLO
RHO
Rodano
Rozzano
SAN DONATO
San Giuliano
SARONNO
Sedriano
Segrate
Senago
Sesto
SETTIMO
TREZZANO
Vanzago
Vignate
Vimodrone
Vizzolo
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In the paper we presented a cooperative game theoretical model for a particular set
of location problems, where the utility of the service is maximal within a given
distance, and then goes down to zero. An algorithm for computing the Shapley
value, based on two suitable fairness criteria is provided and an application to the
real-world situation of the emergency service of Milan is described.

Note that there exist other important point-valued solutions, e.g. the nucleolus
(see [38]), which is based on the idea of minimizing the maximum dissatisfaction
of each coalition. However, in view of what we said in the paper, the Shapley value,
in our opinion, turns out to be the most suitable solution to the problem.
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We may observe that our approach can give a solution which is not the best one,
i.e. the distribution of a given number of ambulances so that the covered area is
maximum (in terms of the demands of the covered zones). As it is well-known, the
value of a coalition S # N has no relationship with the sum of the Shapley values of
its members, i.e. v(S) # D _,cs #i(v), but using the coalition of maximal worth with
a fixed cardinality, corresponding to the number of available ambulances, requires
to compute the whole characteristic function.

Looking at Table 3, we may notice that eight of the locations chosen by the 118
(Buccinasco, Caronno, Carugate, Cesano, Misinto, Opera, Peschiera and Saronno)
are never selected and a little more than one third of the remaining, precisely just
12 (Abbiategrasso, Arluno, Binasco, Bresso, Cinisello, Cologno, Corsico, Cusano,
Melegnano, Pioltello, San Donato and Settimo) are among the most relevant
locations. Moreover, 12 locations that the 118 has not chosen (Arese, Cernusco,
Cormano, Gaggiano, Garbagnate, Paderno, Pero, Rozzano, San Giuliano, Senago,
Sesto and Vimodrone) are selected in all the scenarios.

Another interesting point is that the algorithm may be used as a first step in
approaching those cases in which a large number of candidate locations is involved,
because of its low computational complexity. We may think about a problem with
several hundreds of candidate locations. We can use our approach to restrict the
size of the problem, finding a subset of the locations with a high Shapley value.
Then, a new problem involving only this subset of candidate locations can be
built and solved, possibly exactly, with other approaches, such as mathematical
programming, stochastic optimization, and so on. We can use the results obtained
on the common benchmark mentioned in Sect.6 to make things clearer. As we
said, 46 of the 53 locations found by an approximated mathematical programming
approach are placed in the first half of the ranking of the corresponding coverage
game. Therefore, our approach is able to transform the original allocation problem
in a new one, where the number of possible locations is about one half. This
dramatically reduces the complexity of the problem and may allow finding a better
solution to the problem through mathematical programming (or similar methods),
reducing the time needed. This way of acting may allow obtaining an exact solution
to an approximated problem (as some of the best locations may be lost), instead of
an approximated solution to the given problem, taking some advantages from the
computational point of view, which could be really important if we need to find
solutions for different scenarios in a short time.

Finally, we may stress that the Shapley approach can give more than one optimal
set of locations and the approximated problem may restrict the choice; even if
sometimes this may cause the exclusion of all the optimal sets previously found,
when this does not happen the approximated problem may quickly determine one
of the optimal solutions in the approximated problem.

Possible extensions and further researches are in the direction of allowing more
than one ambulance in each location in order to satisfy the whole demand; also the
service time of the ambulances, from the beginning to the end of the mission, may
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deserve a deeper analysis; moreover, the interaction index (see [16]) instead of the
Shapley value may be used to find a solution to the coverage game, considering the
marginal contributions given by coalitions of more than one player.

Moreover, the situation described in Fig. 1c can be modelled considering also the
zones that are not covered within the time threshold, but giving them a weight in the
interval [0, 1] depending on the distance from the candidate location, and adjusting
the implementation of the Shapley value according to the weights.

Finally, some experiments have been done also to exploit the issue of multi-
covering: due to the definition of the coverage game, if two ambulances largely
overlap on a part of the considered area with large demand, they both can be chosen
by the Shapley value despite of a completely non-served area with small demand.
This feature can be exploited defining a new game, that we may call multicoverage
game, where only the multi-covered zones are considered in the definition of the
characteristic function; algorithms similar to those described before allow fast
calculation of the Shapley value also for multicoverage games. Finally, the results
of the two approaches may be also combined to have a solution which profits from
both the issues of covering and multi-covering.

Acknowledgements The authors gratefully acknowledge the financial support of DECEMbRIA
project.
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An Equilibrium-Econometric Analysis of Rental
Housing Markets with Indivisibilities

Mamoru Kaneko and Tamon Ito

1 Introduction

1.1 General Idea

We develop a theory of an equilibrium-econometric analysis of rental housing
markets, and test it with some data from the Tokyo area. Our theory has the
following salient features:

(i) An econometric method is developed through an (market) equilibrium theory.
(if) Both economic agents and an econometric analyzer are facing statistical
components in the economy. We show that an equilibrium theory without
statistical components is regarded as an idealization, and that its structure is
estimated by our equilibrium-econometric analysis.
(iii) We define the measure of discrepancy between the prediction by our theory and
the best statistical estimator, and show that the prediction is quite satisfactory
in the example of the Tokyo area.

Feature (ii) tells why and how we can use an equilibrium theory for an econometric
analysis of (7). Feature (iii) is a requirement from the econometric point of view.
Here, focusing on these features, we discuss our motivations and backgrounds.
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One fundamental question arises in an application of an equilibrium theory
to real economic problems with an econometric method: what is the source for
errors in the econometric analysis? This may be answered in the same way as
classical statistics: the source is attributed to partial observations. In many economic
problems, this answer is applied not only to the economic analyzer but also to
economic agents. Both face non-unique (perturbed) rents of goods. Error terms
represent the effects of variables not included in available information to either
economic agents or the econometric analyzer.

We look at a rental housing market in Tokyo. In the Tokyo area, the rental housing
market is held, day by day, in a highly decentralized manner, i.e., many households
(demanders) and many landlords (suppliers) look for better opportunities.! Various
weekly magazines, daily newspapers, and internet services for listing apartments for
rental prices (rents) are available as media for information transmission of supplied
units together with rents from suppliers to demanders.? With the help of those media,
rental housing markets function well, even though rents are not uniform over the
“same” category of apartment units. We will call these media housing magazines.

Housing magazines give concise and coarse date about each listed apartment
unit, following a fixed number of criteria, rents, size, location, age, geography, etc.
This information is far from the description of its full characteristics. This is because
the number of weekly listed units is large; e.g., 100-1200 listed around one railway
station, and an weekly issue may exceed 500 pages.

The data of rents show that they are heterogeneous over the “same” category of
apartment units. The market can still be regarded as “perfectly competitive” in that
each has many competitors. These may appear contradictory, but can be reconciled;
households and landlords look at summary statistics, and behave as if they are facing
uniform rents. Taking this interpretation into account, the econometric analyzer may
make estimation of a structure of the market. These are the two faces of our theory.

We call the attributes listed in the magazine as systematic components and the
others as non-systematic factors. The systematic ones are described as a market
model E, which is assumed to be an equilibrium theory without perturbations, and
the non-systematic factors are summarized by error terms €. The listed rents in
housing magazines are given as p(E) + €, where the rent vector p(E) is determined
by E. Both economic agents and econometric analyzer observe the rents p(E) + e,
but they have different purposes. The economic agents use them for their behavioral
choices, while the econometric analyzer does for the estimation of the systematic
components of E. Those structures are depicted in Fig. 1. In the left box, the

'In the city of Tokyo (about 12 millions of residents), the percentage of households renting
apartments is about 55% in 2005, and in the entire Japan, the percentage is about 37%.

2There are many decentralized real estate agents. In our analysis, we do not explicitly count real-
estate companies. But we should remember that behind the market description, many real-estate
companies are included.
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p(E)+e :behavioral choices| = [estimation of E

Fig. 1 E(e) = (E;¢)

rents and behavioral choices are simultaneously determined as an equilibrium.
The determined, yet perturbed, rents are used by the analyzer. We study each of
those, and then synthesize them.

We adopt the theory of assignment markets for the systematic part E, which
was initiated by Bohm-Bawerk [19] and developed by von Neumann-Morgenstern
[20] and Shapley-Shubik [16]. In this theory, housings are treated as indivisible
commodities, which significantly differs from the urban economics literature of bid-
rent theory from Alonso [1].% In particular, we adopt a theoretical model given by
Kaneko [7] in which income effects are allowed. In the model, apartments units are
classified into a finite number, T, of categories, and are traded for rents measured
by the composite commodity other than housing services.

1.2 Specific Developments

Let us discuss specific developments of our theory. First, the systematic part of the
housing market is summarized as:

E = (M,u,I;N,C), )

where M is the set of households, u their utility functions, I the income distribution
for households, and N the set of landlords, C the cost functions for landlords. The
details of (1) and the market equilibrium theory are given in Sect. 2.

In the systematic part, the rents are uniform over each category of apartments.
However, the rents listed in housing magazines are not uniform over each category.
Those non-uniform rents are resulted by non-systematic factors other than the
components listed in (1). The effects of non-systematic factors are summarized
by one random variable €, for each category k. That is, the apartment rent for a
unit d in category k is determined by py + €4, Where p; is the competitive rent
for category k and €, is an independent random variable identical to €;. This
€14 represents properties of unit d such as its specific location in addition to the
systematic components in E. The rent py is latent in that only p; + €, is observed
in housing magazines. The market model with housing magazines is denoted by
E(e) = (E;e).

3See van der Laan et al. [17] and its references for recent papers for the literature of assignment
markets, and see Arnott [2] for a recent survey on the urban economics literature from Alonso [1].
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As described above, the housing market model [E(e) has two faces: it is purely
the trading place with media for information transmissions; and it is a target of an
econometric study. In both faces, housing magazines serve information about rents
to households/landlords and to the econometric analyzer. Here, we emphasize that
these two faces are asymmetric.

An economic agent pursues his utility or profit in the market, rather than to
understand the market structure. If he looks at the average of the rents of randomly
taken 10 apartment units from one category, its variance becomes 1/10 of the
original distribution. Thus, the uniform rent assumption for each category seems
to be an approximation. This interpretation will be expressed by the convergence
theorem (see Theorem 3). Once this is obtained, we can use a housing market model
E without errors as representing a market structure.

The econometric analyzer estimates the components in [E. Let I" be some class
of market models [E so that each E in I" has a competitive rent vector p(E). He
minimizes the total sum of square residuals Tx(Pp, p(IE)) from the observed data
Pp to p(E) by choosing E in I'. This will be formulated in Sect. 4.

Here, we consider two specific choice problems:

A: ameasure 1 of discrepancy between the data and predicted rent vector;
B: a candidate set of market models I

For A, the discrepancy measure 7 is defined in terms of Tz(Pp,p(E)) in Sect. 4,
to describe how much the estimated result deviates from the optimal estimates. In
our application to the data in Tokyo, the value of the measure will be shown to be
1.025-1.032, i.e., 2.5-3.2% of the optimal estimates, by specifying certain classes
of market models with homogeneous utility functions.

As an application, we examine the law of diminishing marginal utility for the
household. It holds strictly with respect to, particularly, the consumption other than
the housing services.

For B, we consider two classes of market models. We show the Ex Post
Rationalization Theorem in Sect.6 that we make the value of the discrepancy
measure exactly 1 by choosing a certain set I" of market models. However, this
has no prediction power in that only after observations, we adjust a model to fit
to the data, because this candidate set I" has enough freedom. This means that a
too general candidate set is meaningless for an econometric analysis. As a kind of
opposite, we consider the standard linear regression in our equilibrium-econometric
analysis. When the households have the common linear utility functions with respect
to attributes of housing and consumption, our econometric analysis becomes linear
regression, which is “too specific” in that income effects cannot be taken into
account. The choice of an appropriate candidate set is subtle.

This chapter is organized as follows: In Sect. 2, the market equilibrium theory
of Kaneko [7] is described together with the example from the Tokyo area. In
Sect. 3, a market equilibrium theory with perturbed rents is discussed. In Sect. 4,
statistical/econometric treatments are developed as well as a definition of the
measure for discrepancy is defined. In Sect.5, we apply those concepts to a data
set from the Tokyo metropolitan area. In Sect. 6, we consider two classes of utility
functions. Section 7 gives conclusions and concluding remarks.
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2 Equilibrium Theory of Rental Housing Markets

In Sect. 2.1, we describe the market structure IE of (1), and state the existence results
of a competitive equilibrium in E due to Kaneko [7]. In Sect. 2.2, we describe a
rental housing market in the Tokyo area.

2.1 Basic Theory: The Assignment Market

The target situation is summarized as E = (M, u,I; N, C), where

M1: M = {1,...,m}—the set of households, and each i € M has a utility function
u; and an income /; > 0 measured by the composite commodity other than
housing services;

M2: N ={1,..., T}—the set of landlords and each k € N has a cost function Cy.

Each i € M looks for (at most) one unit of an apartment, and each k € N supplies
some units of apartments to the market. The apartments are classified into categories
1,...,T. These categories of apartments are interpreted as potentially supplied.
Multiple units in one category of apartments may be at the market. When no
confusion is expected, we use the term “apartment” for either one unit or a category
of apartments.

Each household i € M chooses a consumption bundle from the consumption set
X := {0,e!,..., e’} x Ry, where e’ is the unit T-vector with its k-th component 1
fork = 1,...,T and Ry is the set of nonnegative real numbers. We may write e” for
0, meaning that he decides to rent no apartment. A typical element (e*, m;) means
that household 7 rents one unit from the k-th category and enjoys the consumption
m; = I; — py after paying the rent p; for e“from his income I; > 0.

The initial endowment of each household i € M is given as (0, ;) with [; > 0.
His utility function u; : X — R is assumed to satisfy:

Assumption A (Continuity and Monotonicity) For each x; € {0,e!,..., e’},
u;(x;,m;) is a continuous and strictly monotone function of m; and u;(0,7;) >
ui(e,0)fork=1,...,T.

The last inequality, #;(0,1;) > u;(e*,0), means that going out of the market is
preferred to renting an apartment by paying all his income.

Remark 1 The emphasis of the model E is on the households and their behavior,
rather than on the landlords. We simplify the descriptions of landlords: As long as
competitive equilibrium is concerned, we can assume without loss of generality that
only one landlord k provides all the apartments of category k (cf., Sai [15]). Still, he
is a price-taker.

By this remark, we assume that the set of landlords is given as N = {1, ..., T},
where only one landlord & provides the apartments of category k (k = 1,...,T).
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Each landlord & has a cost function Cy(y) : Z3 — R4 with Ci(0) = 0 < C(1),
where Zi = {0,1,...,z*} and z* is an integer greater than the number of
households m. The cost of providing y; units is Ci(y;). No fixed costs are required
when no units are provided to the market.* The finiteness of 7 will be used only
in Theorem 3.

We impose the following on the cost functions:

Assumption B (Convexity) For each landlord k € N,
Cior+ 1) —CrOr) < Cr(yx +2)—Cr(yr+1) forall y; € Z*+ with y, < 7F—2.

This means that the marginal cost of providing an additional unit is increasing.

We write the set of all economic models E = (M, u, I; N, C) satisfying Assump-
tions A and B by Ij.

Now, we define the concept of a competitive equilibrium in E = (M, u, I; N, C).
Let (p,x,y) be atripleof p € RL, x € {0,e',... e’} and y € (Z*)". We say that
(p, x,y) is a competitive equilibrium in E iff

UM (Utility Maximization Under the Budget Constraint): for all i € M, I,—px; >
0; and u;(x;, ;—px;) > wi(x,, I;—px) forall x; € {0,e!,... e} with I, —px| > 0;

PM (Profit Maximization): for all k € N, pryx — Ce(vk) = pry;, — Ci(y,) for all
Ve €L

BDS (Balance of the Total Demand and Supply): Y ey, Xi = 3 1ey yi€.

Note px; = ZI{:l piXir- These conditions constitute the standard notion of
competitive equilibrium. Here, each agent maximizes his utility (or profits) as if
he can observe all rents py, ..., pr, and then the total demand and supply balance.

The above housing market model is a special case of Kaneko [7], where the
existence of a competitive equilibrium is proved.

Theorem 1 (Existence) IneachlE = (M,u,I; N,C) in I, there is a competitive
equilibrium (p, x, y).

A competitive equilibrium may not be unique, but we choose a particular
competitive rent vector, we say that p is a competitive rent vector iff (p,x,y) is a
competitive equilibrium for some x and y, and that p = (py, ..., pr) is a maximum
competitive rent vector iff p > p’ for any competitive rent vector p’. By definition,
a maximum competitive rent vector would be unique if it ever exists. We have the
existence of a maximum competitive rent vector in E = (M, u,I; N, C). This fact
has been known in slightly different models since the pioneering work of Shapley-
Shubik [16] and Gale-Shapley [4]. Also, see Miyake [13].

Theorem 2 (Existence of a Maximum Competitive Rent Vector) There is a
maximum competitive rent vector in each & = (M,u,I;N, C) in I.

4The cost functions here should not be interpreted as measuring costs for building new apartments.
In our rental housing market, the apartment units are already built and fixed. Therefore, C;j(y;) is
the valuation of apartment units y; below which he is not willing to rent y; unit for the contract
period. This will be clearer in the numerical example in Sect. 2.2.
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We can define also a minimal competitive rent vector, but here we focus on the
maximum one.

2.2 Application to a Rental Housing Market in Tokyo (1)

Consider the JR (Japan Railway) Chuo line from Tokyo station in the west direction
along which residential areas are spread out. See Fig.2. The line has 30 stations
from Tokyo to Takao station, which is almost on the west boundary of the Tokyo
great metropolitan area. Here, we consider only a submarket: we take six stations
and three types of sizes for apartments. We explain how we formulate this market
as a market model E = (M, u,I;N, C).

Look at Table 1. The first column shows the time distance from Tokyo to each
station, i.e., 18, 23, 31, 52, 64, and 70 min. It is assumed that people commute to
Tokyo station (office area) from their apartments. The first raw designates the sizes
of apartments, and the three intervals are represented by the medians, 15, 35, and
55m?. Thus, the apartments are classified into T = 6 x 3 = 18 categories.

We assume that the households have the common base utility function
U°(t, s, m;), from which the utility function u;(x;, m;) in the previous sense follows:
it is given as

U%(t, s,m;) = —2.2t + 4.0s + 100 /m;, )

Yamanote line

o (O . o .
B S o
0 O A% W W
W W ¥ ~ A0 ¢
Q{,\ Q\O‘C &0(}‘\ \\\ 0\ g&"
O
70 min. 64 min. 52 min. 31 min. 23 min. 18 min.
okyo sta.
Fig. 2 Chuo line
Table 1 Basic data
<25 25-45 45-65
Time(min) : size(m?) |k | Iy Wi k| hy we |k |y Wi
18: Nakano 11 204 | 1176 | 5 | 1004 |761 |1 | 180.4 | 269
23:0gikubo 12 9.4 | 1153 | 6 89.4 |739 |2 1694 | 367
31:Mitaka 14 | —82 | 716 @ 8 71.8 | 571 |3 |151.8 | 267
52:Tachikawa 16 | —54.4 | 460 |10 25.6 1283 |4 |105.6 | 260
64:Hachio-ji 17 | —80.8 | 1095 |13 | —0.8 346 |7 | 79.2 | 184
70:Takao 18 | —94.0 | 103 |15 |—14.0 | 105 |9 | 66.0 | 102
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where ¢ is the time distance, 18, 23, 31, 52, 64, or 70 min, s is the size 15, 35,
or 55m?, and m; is the consumption after paying the rent. A pair (¢, s) determines a
category. By calculating the first part —2.2¢+4.0s of U°(, s, ¢), we obtain / for the
corresponding cell of Table 1. These h;’s give the ordering over the 18 categories:
For example, —2.2¢ + 4.0s takes the largest value at (z,s) = (18,55); we label
k = 1 to the category of (z,s) = (18,55). Similarly, it takes the 7-th value at
(t,s) = (64,55), and thus k = 7. We have the correspondence Ay(z,s) = k from
(,s)’s to k’s. We call A the category function.
Now, we define the utility function u : X = {e”,e',..., e!®} x R — Rby

u(e*, m;) = hy + 100 /m;, 3)

where Ag(t,5) = k and hy = —2.2t + 4.0s for k > 1 and hy is chosen so that
ho + 100+/T,, > hy. The derived utility function in (3) satisfies Assumption A.
The concavity of 100,/m; expresses the law of diminishing marginal utility of
consumption.

The third entry wy of category k in Table 1 is the number of units listed for sale in
housing magazines; particularly, the Yahoo Real Estate (15, June 2005). The largest
number of supplied units is wj; = 1176 for the smallest apartments in the Nakano
area, and the smallest number is wg = 102 for the largest apartments in the Takao
area. The total number of apartment units on the market is 2118=1 wy = 8957. These
large numbers will be important for statistical treatments in subsequent sections.

We assume that the same number, m = 8957, of households come to the market
to look for apartments and they rent all the units.

To determine a competitive equilibrium, we separate between the cost functions
fork=1,....,T—1landk=T.Fork=1,...,T — 1, we define the cost function

Ci(yi) as:

aye ifyr S wy
Cex) = €]

“large” if yx > wy,

where ¢, > O fork = 1,...,T — 1 and “large” is a number greater than /;. Thus,
only the supplied units are in the scope of cost functions. For k = T, we assume
that more units are waiting for the market. Let w9 be an integer with w) > wr. We
define Cr(yr) by (4) with cr > 0 and substitution of w¥ for wy. Hence, the market
rent for an apartment in category 7 must be cy. This satisfies Assumption B.

For calculation of the maximum competitive rent vector, we take cig = 48.0
and cy,...,c7 are “small” in the sense that all the w; units are supplied at the
competitive rents for k = 1,..., 17. The cost 48,000 yen is about the average rents
of the smallest category in Takao around in 2005.
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Table 2 Calculated and average rents

<25 25-45 45-65

Time(min) : size(m?) |k |pe | Px | sx |k | px Dk sk | kipe | Dk Sk

18:Nakano 11785 7441127 5/113.9|112.5/23.8 1|154.8|162.7 | 26.7
23:0gikubo 121743758 13.6| 6|108.6107.0 23.1 2|149.0 146.2 | 20.9
31:Mitaka 141687 689 9.8 8|110.6102.1|21.2 |3 140.0 | 143.1 | 21.6
52:Tachikawa 16564598/ 11.0 10| 80.7| 78.1 12,5 4/116.6/116.0|16.5
64:Hachio-ji 17 150.0|51.5| 75|13 71.0| 73.3|11.3|7|104.0|103.5/17.9
70:Takao 18148.0 464 59|15 672 65.1| 9.6 9| 98.1| 86.1|11.3

Finally, we assume that the (monthly) income distribution I = (14, .. ., Isg57) over

M = {1,...,8957} is uniform from 100,000 yen to 850,000 yen. Hence, Igg57 =
100,000 and I; = 850,000. In fact, this uniform distribution is just for the purpose
of calculation, and can be changed into other distributions.’

Under the above specification of E = (M, u,I;N,C), we can calculate the
maximum competitive rent vector p = (p1, ..., pg), which is given in Table 2. The
average rents p = (p,,...,p;s) as well as the standard deviations (s, ..., s7) from
the Yahoo Real Estate are given. Figure 3 depicts the average rents p = (p;,...,P;g)
from the data of as well as p = (p1,...,p1s).

In Sect.4.1, we will define the discrepancy measure in order to consider how
much the calculated rent vector p = (py,...,pr) fits the data from housing
magazines. For the present data, the value is about 1.032, i.e., the discrepancy
is 3.2%.

3 Rental Housing Markets with Housing Magazines

In a competitive equilibrium in E = (M,u,I; N, C), all the apartment units in
each category are uniformly priced, but in reality, prices are not uniform. This
non-uniformity represents the effects of non-systematic factors. Here, we modify
a housing market model by taking non-systematic factors into account. We show
that the market model E can still be used as an analytic tool for the markets with
non-systematic factors.

3 At this stage, the result is not sensitive with the uniform distribution assumption, i.e., if we change
it to a truncated normal distribution, the calculated rents are not much changed. However, in the
later calculation in Sect. 5, a change of this assumption seems to affect the result.
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Fig. 3 Calculated and average rents and average prices
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Fig. 4 weekly markets

3.1 Time Structure of the Rental Housing Market

Since our approach is a static equilibrium theory, we do not need time indices.
However, it would be easier first to describe the economy with the time structure for
the consideration of decision making with housing magazines. We use time indices
only for this explanation.

The market is recurrent and is described using the “week” due to Hicks [5] in
Fig.4. In week ¢, market /(") = (E'; €') has, in addition to the systematic part
E' = (M',u',I';N', C"), a perturbation term €’ = (€},. .., €}) as the summary of
non-systematic factors.

Interactions between information from housing magazines and decision making
by households/landlords have a complex temporal structure. For logical clarity, here
we simplify the story in the following manner. Before going to the market of week ¢,
households M’ look at housing magazines of week ¢ — 1 and decide which category
they go to. Landlords N’ decide to a supply quantity, also looking at the same
housing magazine (recall Remark 1). Decision making by each household is only
about category choice; and decision making by each landlord is only about supply
quantity choice. Then, households M" and landlords N’ go to the market of week ¢,
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and there they trade apartment units (no explicit decision making is considered here
in our theory) and disappear from the market.

In E’(€’), the rental prices are realized with error term €. This €’ is a T-vector of
independent random variables which perturb the market rents pj for apartments in
category k = 1,..., T to p; + €,. However, when apartment unit d in category k is
provided, the error term applied to the unit d is €},. Here, it is assumed that €}, is
independently and identically distributed as €} over those units in category k.

To distinguish between random variables and their realizations, we prepare the
underlying probability space (§2, .%, i) which all the random variables in this paper
follow.

In week ¢ — 1, apartment units of categories 1, ..., T were brought to the housing
market. Let D’l_l, . ,D’T_ I are the (finite nonempty) sets of those units. Each unit
d in Di7! is listed in housing magazines with its realized rent p ' + €' (™),
where w/! is the realized value of the state of nature. The entire housing magazine
of week t — 1 is described as

P+ ed @) den™) o el (@) deD L (5)

Each household i € M’ looks at the housing magazines (5) of week 7 — 1, and
then forms an estimate of the rent distribution:

PZ’ = pfc_l + e;;'r foreachk=1,...,T. 6)

In general, le(a)’ )y=pi '+ e};"(a)’ ) is a random variable for each k; possibly, it may
be degenerated such as P;;”(a)’) = pi' + €' (w!7!) given by the observation of a
particular unit d. Household i makes a choice of a category by looking at his rent
estimator in (6). That is, he maximizes the expected utility (subject to the budget
constraint) relative to this rent expectation.

Each landlord k (k = 1, ..., T) decides the supply quantity of apartment units in
category k based on his estimate pfc_l + ei" of the rents of apartments in category k.

3.2 Equilibrium with Subjective Estimates

Assuming that the market is stationary and Pi”, as a random variable, is inde-
pendent of week f, we drop the superscript ¢ from E'(e) and Pff. The econ-
omy where the households and landlords have their estimators are denoted by
E(e; eMVN) = (E(e); €M), where €YY = ({€'}icy, {€*}ren). Thus, each house-
hold i € M has his own subjective estimate P, = py + €} ineachk = 1,..., T, and
each landlord k € N has the rent estimate P\ = p; + €. We assume that these rent
estimates do not take negative values:

Pi(®) > 0and Pi(w) > 0 forallw € £2. (7
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Since the realization /! of the previous week differs typically from the realization
w! of the present week, we should distinguish between the realization of the
previous week and the present one. We still use the symbol a)f)_1 for the previous
week, and the symbol @ without the time index for the present week.

We give two examples for such subjective rent estimates.

Example 1 (Average Rents) Looking at the housing magazine (5), household i
(landlord k) takes some samples of rents from category k. Let L; be the samples
taken. Then, if he uses the average of the observed rents, he has a single-value for
estimate:

Pi(w) = Y (pr + €xa(@) )/ Ll (8)

dely

which is independent of w. On the other hand, if he is more careful and take some
uncertainty about rents into account, he could have the random average P :

Pi(@) = Y (pi + €xa(@))/ |Lil - 9

dely

This exact form must be very rare. The point of this example is: The number of
samples |L| is typically small such as 5 ~ 25. In the second case, since €, are
independent random variables identical to €, for d € Dy, the expected value is
E(P)) = piy + E(€y) and its variance is E(P;, — E(P}))? = E(ex — E(€x))?/ |Lx| .
Thus, the variance is reciprocal to the number of samples.

The above examples suggest that the economic agents may take rents with
smaller variances than the actual variances of € = (€,,...,€er). If household
i (landlord k) very carefully scrutinizes the housing magazines by drawing a
histogram. Since the number of units listed in the magazine is quite large, it is close
to the true P}; = pr + €, = px + €. Since, however, the magazine is quite large and
not well-organized, it is costly to extract the distribution p; + €(:). Instead, often,
the information publicly used is the average rent of samples; the examples of (8)
and (9) are better fitting to reality.

In the model E(e; YY), the concept of a competitive equilibrium is adjusted
by incorporating each agent’s rent estimation. We, first, take this estimation into
account in utility maximization for each household, and then we formulate a
landlord’s profit maximization.

To capture the budget constraint for household i with estimation P! =
(P',...,P}), we define the following utility function: for x; € {0,e!,... e’}
and w € £2,

ui(x;, I; — P(w) - x;) if 0 < I; — Pi(w) - x;
Ui(xi, I — Pl(w) - x;) = (10)
u;(0,1;) otherwise.
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In the second case, his budget is violated; so, no trade occurs. In general, this utility
function U;(x;,I; — P'(+) - x;) is a random variable. We define the expected utility
before going to a category:

EU (i i — P ox) = / Ui s — P(0) - x)du(@). (11

WESR

He chooses a category by maximizing this expected utility function over
{0,e',... e}

We assume that each landlord k has a risk-neutral utility function. Then his
expected utility is calculated as the expected payoff:

EGP; — Cck)) = WE(P}) — Cr(yi). (12)

If E(e’,ﬁ) =0,ie., E(P’]z) = p, (12) becomes simply the profit function ypr—Ci (yx)-
However, we treat landlords in the same way as households in that he may construct
his rent estimate P’,j without assuming E(ef) = 0.

In the housing market E(e; €”YN), a competitive equilibrium is simply defined
by substituting the objective functions (11) and (12) for the utility functions and
profit functions in UM and PM. Nevertheless, we need to take two approximations:
a y-competitive equilibrium and a convergent sequence of rent estimates.

Let y be a nonnegative real number. We call (p,x,y) is a y-competitive
equilibrium E(e; €MYN) when the following two conditions and the BDS condition,
iem i = Yy v, hold:

y -Expected Utility Maximization: for all household i € M,

EUi(x;, I; — P'-x;)) +y > EU;(x}, I — P'- X)) for all X, € {0,e',... e }.
y -Expected Profit Maximization: for all landlord k = 1, ..., T,

E(Piye — CeOw) + 7 = E(Ppy; — Ci(y)) forall y, € Z}.
The other notion is that €YY is “small perturbations”. To describe this, we
introduce the convergence of the vectors of estimators €YV, We say that an error
sequence {€YYNY 1 v = 1,..} = {({e"iem 1€ ken) 1 v = 1,...} is
convergent to 0 in probability iff for any § > 0,

: v 8 1 13

n{w jg\l/lad(N ||e (a))” <é}) —> lasv - +o0, (13)

where ||-|| is the max-norm ||(y1,...,y7)| = [max |y¢| - This mean that when v is
<i<

large enough, the estimation €/ (w) is distributed closely to 0.
We have the following theorem. The proof will be given in the appendix.
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Theorem 3 (Convergence to E) Suppose that the sequence of estimation errors
{eMONY -y = 1,.. .} is convergent to 0 in probability.

(1): If (p,x,y) be a competitive equilibrium in E, then for any y > 0, there is
a v, such that for any v > v,, (p,x,y) is a y-competitive equilibrium in
E(e; MOV,

(2): Suppose that a triple (p, x, ) satisfies px' < I; for alli € M. Then, the converse
of (1) holds.

When the rent expectation for landlord k € N satisfies E(€X) = 0, his expected
profit is simply given as the profit function, and so we need to consider neither the
convergent sequence nor the y-modification for landlord k. Also, if a competitive
equilibrium (p, x, y) is strict in the sense that a household (landlord) maximizes his
utility at a unique choice, then we do not need the y-modification for the household
(landlord).

The convergence condition is interpreted as meaning that the subjective rent
expectation of each household (landlord) has a small variance. Theorem 3 states that
when each household i (landlord k) has his rent expectation €’ (or €¥) with a small
variance, his utility maximization (or profit maximization) in the idealized market
EE is preserved approximately in the market E(e; €”YN"") for large v, and vice versa.
Thus, the competitive equilibrium in E(e; €”YN") can well be represented by one
in .

4 Statistical Analysis of Rental Housing Markets

We turn our attention to estimation of the structures of the rental housing market
from the data given in housing magazines. In Sect. 4.1 we develop various concepts
to connect the data with possible market models and to evaluate such a connection.
In Sect. 4.2 we specify a class of market models for estimation.

4.1 Estimation of the Market Structure

We denote, by E°(e?) = (E’; €°), the true market, to distinguish between E°(€?)
and an estimated E. We call E° = (M°, u°, I°;N°, C°) the latent true market
structure. We assume that this E° satisfies Assumptions A and B of Sect.2, i.e.,
E? € I,. The maximum competitive rent vector p° = (p{, ..., p5) of E° is called
the latent market rent vector. Let D} be a nonempty set of apartment units listed
in category k = 1,...,T. Once the perturbation term €° is realized at ® € £
for each d € Dy, k = 1,...,T, we have the housing magazines {P{,(w) : d €
DY}, ... {Pg,(w) :d e D$}. Here, w is not fixed to be a specific w,. The listed
rent for each unit d € D, k = 1,...,T is given as: P},(w) = p; + €,(w).
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We estimate components of E? from the housing magazines; in this paper, specifi-
cally, we estimate the utility functions of households.

Letp = (p1,...,pr) be arent vector in R”, which is intended to be an estimated
one. Then, the total sum of square residuals Tg(P} (@), p) is given as

T
Tr(PY(@).p) = D Y (Pyy(@) = pi)’. (14)

k=1deD}

This is the distance between the data and estimated rent vector.

Let I" be a subset of I where T is fixed and M = {1,...,m} is determined
by m = Zl{:l |DZ| . Our problem is to choose E = (M, u,I; N, C) to minimize
Tr(P}(w),p(E)) in I', where p(E) is the maximum competitive rent vector in E.
We write our problem explicitly:

Definition 1 (/"-MSE) We choose a model [E from I to minimize Tz (P} (w), p(E))
subject to the condition:

(*):  (p(E),x,y) is a maximal competitive equilibrium in E for some (x, y)
withy, = |Df| fork =1,...,T.

The additional condition y; = |Di| fork = 1,...,T requires (p(E), x,y) to be
compatible with the number of apartment units listed in the housing magazines.

If the latent true structure [E? belongs to I it is a candidate for the solution of the
I'-MSE. However, we do not know whether or not [E° belongs to I'. A simple idea
is to choose a large class for I to guarantee that £ could be in I". In fact, this idea
does not work well in Sect. 6.1, we discuss the negative result for this; we should
somehow look at a narrower class for I".

As the benchmark, we consider the average rent estimator: given the housing
magazines P9 = {P%,:d € D}andk = 1,...,T}, we define P’ = (P|,...,P;) by

—o >_aep; Pra(@)
Pk(a))zCJGT‘TFforeacha)e.Qandkzl,...,T. (15)
k
This is the best estimator of the latent market rents p° = (p{,...,p%). Each

realization P’ (w) (w € £2) is the unique minimizer of Tx(P)(w),p) with no
constraints. When E(e7) = 0, I_’Z is an unbiased estimator of p}.

Lemma 1 (1) For each w € S2, TR(P;))(a)),ﬁo(a))) < Tr(P}(w),p) for any p =

(pl,...,pT)ERT._O —
(2) When E(e}) = 0, P, is an unbiased estimator of p{, i.e., E(P,) = p}.

Proof (1) Let w € 2 be fixed. Since Tr(P}(w),p) is a strictly convex function
of p = (p1.....pr) € RT, the necessary and sufficient condition for p to
be the minimizer of Tr(P},(w), p) is given as 0Tg(Pp(w),p)/dpr = O for all
k = 1,...,T. Only the average P’(w) = (P|(®),...,Py(w)) satisfies this
condition.
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(2) Since €, is identical to €] for all d € D] and E(e}) = 0, we have E(e},) =
0 P° 0 0 0

0 for all d € D{. Hence E(P) = Y epp E(PL)/ D} = Lyep (i +

E(ei))/ |Df] = pi- 0

The estimator P’ enjoys various desired properties such as consistency (i.e.,
convergence to the latent market rent vector p® in probability as min; |Dy| tends to
infinity) and efficiency in the sense of Cramer-Rao. For these, see van der Vaart [18].

We have the decomposition of the total sum of square residuals, which cor-
responds to the well-known decomposition property in the regression model (cf.,
Wooldridge [21]). This will be a base for our further analysis.

Lemma 2 (Decomposition) For each o € §2,

T
Tr(Pj(),p) = Te(Ph(@), P’ (@) + Y_ |Df| (P (@) — i)’ (16)

k=1

Proof The term Y (P{,(w) — px)?* of Tr(P%(w), p) for each k is transformed to:
deDy

> (L) = P(@) + Pi@) —po)* = Y (Pyy(w) — Pi())?

deDy deDy
+ ) 2(Py(@) — Pr(@)) - (Po(w) —pi) + Y (Polw) — pi)’.
deD; deDy

The sgcond term of the last expression vanishes by (15). The third is written as
|D¢| (P(®) — px)?. We have (16) by summing these overk = 1,...,T. O

The first term of (16) is the residual between the data and the averages (optimal
estimates) of rents. The second is the total sum of the differences between the
average P’ (w) and p, and this is newly generated by the estimates p = (py, ..., pr)-
We call the ratio

TePp@).0)  _ i DU Pilw) = piy”

np)(w) = TR(P%(CU),}_)O(“))) - TR(P%(CU)vﬁU(CU))

A7)

the discrepancy measure of p from of I_JO(a)). The second is the theoretical
discrepancy, relative to the smallest total sum of residuals from f’u(a)). In the
example of Sect. 2.2, n = 1.032 (denoted by 1°), i.e., the theoretical discrepancy is
only 3.2%.°

SIncidentally, in the present context, the coefficient of determination is defined as

Z,{=| {Dz| (F:(w) — ?) ())?/Ty(P)(w), Fo(w)), where ?) (w) is the entire average of Pj. It
indicates how much the systematic factors explain the observed rental prices. In the above example,
the coefficient is approximately 0.757.
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4.2 Subclass I, of Iy

We estimate the utility functions u’ = (u{,...,uS) in E° = (M?,u’,I°;N°, C°)
from the rents listed in the housing magazines, assuming that the other components
in E° = (M°,u’,1°;N°, C°) are given from the other information included in the
housing magazines. For example, the set of households M? is given as {1,...,m},
where m is the cardinality of the data set D° = U] _, DY.

The set of market models I, consists of E = (M, u,I;N, C) satisfying the
following three conditions:

S1: The incomes of households are ordered as I} > ... >1,, > 0.

S2: Every household in M has the same utility function u; = ... = u,, expressed as
u(e*, my) = by + g(m;) for all (e, m;) € X, (18)
where hg, hy, ..., hy are given real numbers with iy > ho fork =1,...,T and

g : Ry — Riis an increasing and continuous concave function with g(m;) —
400 as m; — +oo and hy + g(l;) > h + g(0) fork=1,...,T.
S3: Eachlandlord k = 1,..., T has a cost function of the form (4).

In S1, the households are ordered by their incomes. Condition S2 has two parts:
Every household has the same utility function; and the utility function is expressed
in the separable form. The former part is interpreted as requiring the households to
have the same location of their offices. The latter still allows the law of diminishing
marginal utility over consumption, i.e., g(m;) may be strictly concave. Condition S3
is for simplification: Our theory emphasizes on the households’ side.

The set I'y,, may be regarded as very narrow from the viewpoint of mathematical
economics in that the households have the same utility functions and the landlords’
cost functions are also very specific. However, we will show in Sect. 6.1 that the
class Iy, is still too large in that the estimated model has no prediction power.
Thus, we will consider a narrower class for I

A method of calculating a maximum competitive equilibrium (p,x,y) in E =
(M, u,I;N, C) was given in Kaneko [8] and Kaneko et al. [10]. This method is used
to implement our econometrics. Here, we describe this method without a proof.

Consider a rent vector p = (py,...,pr) with p; > ... > pr > 0. This is
obtained by renaming 1, ..., T. Then, we regard the units in category 1 as the best,
and will suppose that the richest households 1, ..., D‘1’| rent them. Similarly, the
units in category 2 are the second best and the second richest households |D‘1’ +
1,..., {D’l’| + }Dg} rent them. In general, defining

k
Gy =) _|Dy| forallk=1.....T, (19)

t=1
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we suppose the households G(k — 1) 4+ 1,...,G(k) rent units in category k.
We focus on the boundary households G(1), G(2), ..., G(T — 1) and their incomes
Icy, I62)s - Ilor—1)-

We have the following lemma due to Kaneko [8] and Kaneko et al. [10]. Our
econometric calculation is based on this lemma.

Lemma 3 (Rent Equations) Consider avector (py,...,pr)withpy > ... > pr > 0.
LetE = (M,u,I;N, C) € Iy, satisfying

(1): px <Igq forallk=1,...,T —1,
(2): ¢ < prand wy = |Dz| forallk = 1,...,T, where c is the marginal cost
given in (4). Suppose also that (py, . .., pr) satisfies

hr—1 + glgr—1) — pr—1) = hr + gUgr-1) — pr)
hr—s + gUcr—2) — pr—2) = hr—1 + gUgr—2) — Pr—1) (20)

h + gllgay —p1) = ha + glgay — p2).

Then, there is an allocation (x,y) such that (p, x,y) is a maximum competitive
equilibrium in E with y, = |D2|f0r allk=1,...,T.

In (20), the boundary household G(T — 1) compares his utility hr—y +g(Igr—1)—
pr—1) from staying in category T'—1 with the utility iy + g(Ig¢r—1) —pr) obtained by
switching to category 7. Also, the household G(7 —2) makes a parallel comparison,
between staying in category 7 — 2 and moving to category 7 — 1 and so on. The
logic of this argument is essentially the same as Ricardo’s [14] differential rents.
The rent py = cr in the worst category T is regarded as the land rent-cost of farm
lands, which corresponds to Ricardo’s absolute rent.

S Application to the Market in Tokyo (2)

Here, we apply our equilibrium-econometric analysis to the rental housing market
in Tokyo described in Sect. 2.2. First, we give a simple heuristic discussion on our
application, and then give a more systematic study of it.

5.1 Heuristic Discussion

For a study of a specific target, we consider a more concrete class for I" than the
class I, given in Sect.4.2. In Sect. 2.2, we used a specific form of the base utility
function U°(t, s, m;) = —2.2t + 4.0s + 100, /m; and obtained the resulting value
of the discrepancy measure, n° = 1.032. Perhaps, we should explain how we have
found it and how good it is relative to others.
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Let us compare several other base utility functions with (2):

U'(t,s,m;) = —t + s + 100./m; n' = 3.259
U?(t,s,m;) = =2t + 255+/s + 1000 + 100 /m; = n*> = 1.036 Q1)
U3(t,s.m;) = —T4t + 1655 + 100m; 7 = 1.124.

With U, the discrepancy measure 7 takes large value 3.259. Thus, the total sum of
square residuals from the estimated rents is more than the three-times of that from
the average rents. With U2, the value of 7 is already almost as small as 1.032 given
by (2). With U3, it is larger than this value, but U? is entirely linear. The law of
diminishing marginal utility does not hold.

The case of U' tells that if coefficients are arbitrarily chosen, the discrepancy
value could be large. On the other hand, U° is chosen by minimizing the discrepancy
measure 1 by changing the coefficients of ¢ and s in the class of base utility functions:

U(1,1,3) = {U(t,s,m;) = —oyt + s + 100 /m; : a1, € R}, (22)

where 1, 1 and % are the exponents of ¢, s and m;. The coefficient 100 of the third
term is chosen to make the values of «;, a; clearly visible. Both U° and U belong
to this class. Then, U°(t, s, m;) is obtained by minimizing the discrepancy measure
n in this class. This is not the exact solution but is calculated using a method of
grid-search by a computer.

Consider our computation procedure more concretely. Suppose that U €
(1,1, %) is given. For each (r,s) € {18,23,31,52,64,70} x {15,35,55},
we have the value —of + aps, which gives the ranking, 1,...,18 over
{18,23,31,52,64,70} x {15, 35, 55}. Recall that this is described by the category
function A¢. The k-th category has i = a1t + ans and Ag(k) = (¢, ). This method
is the same as in Sect. 2.2. Hence, U determines

u(e*, m;) = by + 100 /m; fork =0,1,...,T. (23)

Thus, each U € % (1, 1, %) determines E €7,,.
Now, we consider the subclass I'(1, 1, %) of Iy, defined by

{M,u,I;N,C) € I'y, : uis determined by some U € % (1,1, %)}. 24)

Then, we apply the I'(1, 1, %)-MSE problem to the data in Sect.2.2, and find an
approximate solution (¢, o) for it.
An approximate solution will be obtained by the following process.

Step 1: we assume that each of «; and «, takes a (integer) value from some
intervals, say, [1,100]. Then, we have 100> = 10* combinations of
(a1, ).
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Step 2: for each combination (¢j,®;), we find a maximum competitive rent
vector p compatible with the data set P (w) and we have the value 7
of discrepancy measure. The algorithm to find a maximum competitive
rent vector given by Lemma 3 is used to find the rent vector.

Step 3: we find a combination (o, ;) with the minimum value of 1 among 10*
combinations of (a, o).

If a solution is on the boundary, we calibrate the intervals, and if not, we repeat
these steps by choosing a smaller intervals with finer grids. Hence, the computation
to obtain the minimum value of 7 is not exact: it may be a local optimum as well as
an approximation.

By the above simulation method, we have found the utility function U°(z, s, m;)
of (2) in the class I"(1, 1, 3) with n° = 1.032.

The base utility function U? is obtained by minimization in the class % (1, % ®

Ba. 3):
{U(t,s,m,») = —at + a2/ + /32 + 100\/% : C(],Olz,ﬂz € R} 25)

In fact, when B, is increased, the optimal value of 7 is decreasing (we calculated n
up to B, = 400,000), but it does not reach n° = 1.032. Since B, is getting large, the
second term is getting closer to the linear function. Therefore, we interpret this result
as meaning that the base utility function U(t,s,m;) = —2.2t+ 4.0s + 100 /m;
of (2) would be the limit function.

The utility function U3 (¢, s, m;) is obtained by minimizing the value 7 in the class
v(1,1,1) :

{U(t,s,m;) = —ajt + aps + 100m; : oy, € R}. (26)

That is, the utility functions are entirely linear. The estimation in this class is only
interested in seeing the relationship between our I'-MSE problem and the standard
linear regression. This will be discussed in Sect. 6.2.

5.2 Law of Diminishing Marginal Utility

In the above classes of base utility functions, U°(t, s, m;) gave the best value to the
discrepancy measure. The law of diminishing marginal utility holds strictly only
for the consumption term m;, but not for the other variables, the commuting time-
distance ¢ and size of an apartment s. One possible test of this observation is to
broaden the class of base utility functions. Here, we will give this test.

Consider the following class % (7t ® B1, 72 ® B2, 713 ® B3):

U(t,s,m;) = ai (B — ™ + ax(s + B2)™ + 1000m; + B3)™, (27
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where o1, oz, B1, B2, B3, 71, 72, 3 are all real numbers. The introduction of B; is
natural, since the commuting time-distance ¢ has a limit. The parameters 8, and 3
will be interpreted after stating the calculation result. The parameters 7y, ,, 73 are
related to the law of diminishing marginal utility. When they are close to 1, the law
is regarded as not holding, and when they are far away from 1, the law holds.

The computation result is given as

UMY(1, 5, m;) = 3.53(140 — £)°7° 4 2.68(s 4+ 200)>°! + 100(m; — 25)*4°,  (28)

and the discrepancy value is nMY = 1.025. Assuming the incomes are uniformly
distributed, we adjusted parameters of the lowest income Ig9s7, the highest income
I, and the lowest rent pg, and obtained the estimated minimum income as Iggs7 =
94 (x1000yen) and the highest as I; = 1120.”

First, the law of diminishing marginal utility holds for each variable. However,
the degree is quite different: the degree of diminishing marginal utility is the largest
with consumption, the second with the commuting time-distance, and is the least
with the size of an apartment unit.

The fact that it is the least with the size may be caused by our restriction on
apartments up to 65 m?. In Tokyo, we may find a quite small number of apartments
larger than 85 m?, and omitted these “large” apartments, since the number of supply
is much smaller than the smaller types. This may be the reason for almost constant
marginal utility.

Second, the degree for the commuting time-distance is higher than that for
the apartment size. This suggests, perhaps, that the time-distance 70 min to Takao
station is already quite large. Our computation result is sensitive with §; = 140, i.e.,
if we change B, = 140 slightly either up or down, the value of 1 changed. Thus,
this upper limit has a specific meaning; it may be an upper limit for commuting.

Finally, the degree of diminishing marginal utility for consumption is quite large.
This means that the choice by a household renting an apartment crucially depends
upon its income level. The dependence of willingness-to-pay for an apartment upon
income is quite strong: a poor people do not (or cannot) want to pay for a rent for a
good apartment, but if they become rich, they would change their attitudes.

Nevertheless, the discrepancy value n¥Y = 1.025 for UMY is not very different
from n° = 1.032 for U”; despite of the fact that the latter has 2 parameters controlled
and the former has 8. This means that more precision after U° does not give much
differences. It is more important to see the difference between the discrepancy
values for U° and U? (® = 1.124) in (21). After all, we conclude that the law
of diminishing marginal utility surely holds for consumption, but less for other
variables.

7One possible amendment of our estimation is to change the assumption on the income distribution.
We have assumed that the incomes are distributed from the lowest Ig9s7 to the highest /;. The above
computation result seems to be quite sensitive by changing these lowest and highest income levels.
Hence, it could give a better result if we replace the assumption of a uniform distribution by the
data available from the other source. This is an open problem.
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This conclusion differs from the estimation result of a utility function in
Kanemoto-Nakamura [11] in the hedonic approach (cf., Epple [3]). It is stated in
[11, p. 227], that the degree of diminishing marginal utility is very low, for example,
consumption term is x*°7®, The approach itself is totally different from ours. One
difference is: all variables take continuous values in the hedonic approach. This
approach requires a very large variety of attributes of apartment units. In contrast,
the number 7 of apartment categories should not be so large, because the choice of
description criteria is restricted, as discussed in Sect. 1.1.

6 Two Classes of Market Models

First, we argue that I, is too large as a candidate set of models for estimation.
Second, we consider the other extreme, i.e., the class of linear utility functions, and
show that the I"-MSE problem is equivalent to linear regression.

6.1 I,,-Market Structure Estimation: Ex Post Rationalization

From the viewpoint of mathematical economics, the class I, of market models is
quite restrictive. However, the following theorem implies that it is too large to have
meaningful estimation. A proof will be given in the end of this section.

Theorem 4 (Ex Post Rationalization) Suppose that each D} is nonempty and the
average rents T’o(a)) = (I_’(l) (), ... ,ﬁ;(a))) are positive. Then, there exists a market
model E = (M, u,I;N, C) in the class Iy, such that for some (x,y), (I_’o(a)),x,y) is
a maximum competitive equilibrium in E with y, = |DZ| >0fork=1,...,T. This
existence assertion holds for any fixed g : R+ — R in Condition S2 of Sect. 4.2.

Within the class I'y,, we can “fully explain” any data set from housing magazines
in the sense that the estimate coincides with the average rents Fo(a)) and the
discrepancy measure 7 takes the exact value 1. The key fact for this is that the
number of dependent variables Pl(w) = (F;(a)), .. ,ﬁ;(a))) is the same as that
of independent variables (h;, ..., hr) in utility function u(e*, m;) = hy + g(m;).
For a different observed P(w) = (P;(®),...,Pr(w)), the theorem gives different
(hy,...,hy). The I'(1,1, %)-MSE problem in Sect. 5.1 exhibits a clear-cut contrast:
18 average rents are explained by the choice of parameters by changing essentially
2 parameter values, and 7° = 1.032.

Should we be pleased by finding a class to guarantee to “fully explain” each
data set? Or should we interpret this theorem as meaning that the true market E° is
included in the class I5,,?

Contrary to these interpretations, we regard the above theorem as a negative
result. The estimated economic model critically depends upon the observed average
rents P’ (w) = (FT (w),... ,F;(a))). If a different @’ happens and the realized rents
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P’ (w’) are different, the estimated model E’ differs, too. This estimation explains
the observed rents only after observations; it cannot make any meaningful forecast.
In particular, since the assertion is done with an arbitrary given function g, it is
totally incapable in talking about the law of diminishing marginal utility.®

Perhaps, this is related to the fact that the degree of diminishing marginal utility is
very low in the hedonic price approach mentioned in Sect. 5. It allows a great variety
of attributes, which is contrary to the above negative interpretation of Theorem 4.

Proof of Theorem 4 We denote (F;(a)), e ,ﬁ;(a))) by (p1,...,pr), andlet G(k) =
Zf:] |Df| fork = 1,...,T. We assume without loss of generality that p; > ... >
pr > 0. First, we let g : Ry — R be any monotone, strictly concave and continuous
function with  lim g(m;) = +o0.

mi—>+00

Let hy = 0. We choose I, Igr—1y, - - ., Ig1) and define hy, hy_y, ..., h induc-
tively as follows: the base case is as follows:

(T — 0): choose an income level I,, so that I,, > pry > 0, and then choose
hr > ho + g(In) — g(Ln — pr).

The choices of I,, and A7 are possible by the monotonicity of g. Here, hy + g(I,, —
pr) > ho + g(ln).

Let k be an arbitrary number with 1 < k < T. The inductive hypothesis is that
I and hy are already defined. First, we choose Ig—1) so that

(k—1) : Igu—1) > pr—1 and Igu—1) > Igg.-

This choice is simply possible. Then we define /;—; by

(k—=2) : i1 = hy + gga—1) — pr) — 8UGw—1) — Pk—1)-

Since g(Igg—1) — Pk—1) < 8UGwk—1) — Pr), we have hy_y > hy.

By the above inductive definition, we have I, Igr-1),...,1ga) and
hr,hr—1,...,h . We also choose other I;’s (i # mand i # G(k) fork =1,...,T)
sothat/,, <1, <...<I.

Thus, we have the utility function u(e*, m;) = h; + g(m;) for (e*,m;) € X. By
the above inductive definition, (py, .. ., pr) satisfies the recursive Eq. (20).

Let us define the cost function Ci(+) for landlord k. We assume 0 < ¢; < py for
allk=1,...,T—1and cr = pr. Then each Ci(-) is defined by (4) fork =1, ..., T.
Then, by Lemma 3, (py, ..., pr) is the maximum competitive rent vector of E with
yk=|DZ|fork=l,...,T. m]

8The reader may recall the Debreu-Mandel-Sonnenshein Theorem in general equilibrium theory
(see Mas-Colell et al. [12]) stating that any demand function with a certain required condition is
derived from some economic model. It describes the equivalence between the set of demand curves
and the set of economic models. In this sense, it gives an important implication to the theory of
general equilibrium theory.
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6.2 Linear Utility Functions and Linear Regression

Here, we compare our approach with the linear utility assumption to linear
regression. We assume that there are L attributes for the base utility function U
for each household, and the domain of U is expressed as ¥ = Rﬁ_ x R4. In the
example of Sect.?2.2, there are only two attributes, the commuting time ¢ and the
apartment size s. A linear base utility function over Y is expressed as

L
Uay,...,ap,my) = Zalal + m; forall (ay,...,a.,m;) €Y. (29)
=1

Here, a; represents the magnitude of the /-th attribute of an apartment and ¢; € R is
its coefficient for / = 1, ..., L. We denote the set of all base utility function of the
form (29) by %};,. We choose 1 for the coefficient of m; for a direct comparison to
the linear regression analysis, while it was 100 in the previous examples.

An attribute vector t* = (r{‘, el f,lf) € RI;r is given for each k = 0,1,...,T.
That is, the choice e* gives the attribute vector 7%, which means that an apartment
in category k has the magnitudes r{‘, R rl‘ of attributes 1,...,L. For k = 0, °

is interpreted as the attributes of the outside option. In the example of Sect.2.2,
category k = 5 (Nakano, size: 25—-45) has the attribute vector 0= (18 min, 35 mz).
Then, each U in %;, determines

L
u(et,m)) = UG my) = Zalr,k +m; forallk=0,1,...,T. (30)

=1
We define the class I}, := {E € I, : uis determined by U € %}, and °, ..., T},

The boundary condition “u(0,1;) > u(e,0) forallk = 1,...,T” holds E € I},
because E €1I,,. Once this class is defined, we have the I'7;,-MSE problem.

The next lemma states that the competitive rents in E € I';, are simply described
by the utility from the attributes of an apartment and some constant.

Lemmad LetE € I'y,. If p = (p1,...,pr) is a maximum competitive rent vector
inlE € Iy, then there is some B such that

L
pe=) atf+B>0fork=1,....TandB <-Y o). (31
! =1

Proof Let (p,x,y) be any competitive equilibrium in E = (M, u,I; N, C) in [},
with |D§;| =y >0forallk = 1,...,T. Without loss of generality, we assume that
pr > prfork=1,...,T — 1. First, we show

pk—pT=Za,z{<—zaﬂfforauk=1,...,T. (32)
1 1



An Equilibrium-Econometric Analysis of Rental Housing Markets with Indivisibilities 217

Suppose that this is shown. Let 8 = pr—>_, oy7/. We have, by (32), px = >, oy} +
B fork =1,...,T. For each k, since ]Di| = yx > 0 and ¢, > 0, we have p; > ¢.
Hence p;, > Ofork = 1,..., T, which is the first half of (31). Since any household i
in D% chooses the T-th apartment rather than (0, 1,), i.e., U(e”, I, —pr) = >, aur] +
L= ar] +B8)=15—B>u(,1)=hy+1 =)t + I;, which implies
B<-=> 1.

Now let us prove (32). Consider any k = 1,...,T. Since |Dz‘ > 1, we take a
household i with x; = eX. Since he chooses x; = e* by utility maximization under
p = (p1,...,pr), we have 3, oyty(k) + I — px > >, aqm(T) + I; — pr. By the
same argument for a household i’ with xy = e, we have Y, a/7(f) + Iy — px <
> out(T) + Iy — pr. Equation (32) follows from these two inequalities. O

Now let us turn our consideration to linear regression: the rent of an apartment in
category k is assumed to be a linear combination of the magnitudes of attributes and
some constant. Mathematically, it is exactly the same as (31) subject to some error,
that is,’

L

Pe=) arf + B+ fork=1....T (33)
=1

The attribute vectors °, ..., t7 are fixed. Given the housing magazine P)(w) as

data, we estimate « = (&j,...,o;) and B by minimizing the sum of square

residuals, i.e., the method of least squares. It is formulated by the following

minimization problem:

T L 2
min 3" 37 (Py(w) ~pe)’ = gﬂ;ZZ( @)= Qe +ﬂ>) . GY
’ ’ k d =1

k=1 deD}

This is a no-constraint minimization problem and has a solution (a, B)

The above linear regression problem is very close to the I7;,-MSE problem. In
linear regression, however, neither utility maximization nor profit maximization is
included. It would be worth considering the exact relationship.

The minimization (34) is applied to any data set P}, (w), even if P{)(w) contains
negative elements. On the other hand, the I7;,-MSE problem may not be if it
contains negative elements: if the estimated rent for category & is negative, landlord
k provides no apartments, i.e., condition y; = |D;§| is violated. We need a certain
condition to avoid such a case. For this, the following condition is enough, though
it is not directly on P, ():

9This is regarded as a linear hedonic price model.
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L L
Zalrl"+/3>0forallk=1,...,Tandﬂ<—2altlo. (35)
=1 =1

Again, this corresponds to (31) in Lemma 4. Using this condition, we can state the
equivalence between the I7;,-MSE problem and the linear regression problem (34).

Theorem 5 (Linear Regression) Let (@, B) € RE x R. Then, (@, B) is a solution
of the minimization (34) and satisfies (35) if and only if there is a solution model E
in the I',-MSE problem such that u of E is determined by U of (30) with & and the
maximum competitive rent vector p(E) = D is given as'®

L
Pi=Y atf+p forallk=1.....T. (36)
=1

In the example of Chuo line in Sect. 2.2, the base utility function and rents are
estimated as follows:

U(t,s,m;) = —0.74t + 1.65s +m; and py s = —0.74t 4+ 1.655 +41.3,  (37)

where Ao(z, s) is the category function. This U is considered the same as U* of (21)
in that U? = U/100. The discrepancy value n = n* = 1.124 is larger than the
corresponding values given in Sect. 5 except U'.

The next lemma states that the rent vector given in (35) is sustained as a
competitive vector by some E in I7;,.

Lemma 5 (Sustainability) Ler (35) hold for o = (ay,...,ar) and B, and let
Dk = Zz a,rlk + B8 >0fork=1,...,T. Then, there is a model E in I}, such that

p = p(E).

Proof First, we define the base utility functionby U(ay, ..., ar, m;) = Y, cia;+m;.
Let I1,...,I, be incomes with I; > ... > [, > p;. We define cost functions
Ci,....Cr— by (4) with w, = |D¢| and ¢, < pi fork = 1,...,T — 1. Define Cr
by (4) with w9 > |D%| and cr = pr. In this case, foreachk = 1,.... T, y = |Df]
maximizes landlord k’s profits.
The rents py = >, a7} + B satisfies the rent equation (20). Also, since B <
— ¥, a7}, each household i has the utility, u(e*, I, —py) = L,—f > L+ > 1) =
u(0, I;). Hence, his choice of an apartment is better than choosing no apartments.
O

Proof of Theorem 5 (Only-If) Let («, B) be any vector satisfying (35) and let p; =
Y, tf+p >0fork=1,...,T.By Lemma5,p = (pi,...,pr) is the maximum

10T fact, “maximum” can be dropped in here in the sense that each E has a unique competitive
rent vector.
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competitive rent vector of some E € I7;,. Hence, if (@, B) minimizes the total sum
of square errors in (34), then it also minimizes Tx(P},(w), p(E)) over I}, with y; =
|DZ\ fork=1,...,T.

(If) Suppose that I is a solution of the I';,-MSE problem, and that its maximum
competitive rent vector p = (py,...,pr) is expressed by (36). Let @ be the
coefficients of the utility function in E and let ;3\ be the constant given in (36). For
eachk=1,...,T, wecan assume/t\hat ZZL=1 fx\[r,k +,/B\ = pr > 0, since some unit in
category k is supplied in E. Then, B < — >, a7} by the boundary condition in E.

Suppose that p = (pi,...,pr) is not a solution of (34). Then, some other p/ =

1+-...P7) with o’ and B’ gives a smaller value of the total sum of square errors
in (34). Consider the convex combination «(7) = mwa’ + (1 — 7)& and B(wr) =
ap + (1 — n)B with 0 < 7 < 1. The, («(1), 8(1)) gives a smaller value of the
total sum of square residuals than («(0), 8(0)). Since the total sum is a convex
function of @ and B, (a(r), B(;r)) gives a smaller value than («(0), 8(0)) for any
7 (0 < 7w < 1). We can take a small 7 > 0 so that B(7) < — >, ey()7) and
> ()Tt + B(w) > O for all k. By Lemma 5, there is a model E in I;, such
that p = p(E). This is a contradiction to the supposition that E is a solution of the
I7;,-MSE problem. Hence, (@, B) is a solution of (34). d

7 Conclusions

We developed the equilibrium-econometric analysis of rental housing markets. Our
analysis provides a bridge between a market equilibrium theory and an econometric
analysis. This is built by focusing on housing magazines as serving information
about apartment units to economic agents (households, landlords) as well as to
the econometric analyzer. We modified the equilibrium theory by incorporating the
former aspect, but at the same time, we showed that we can ignore the error terms,
which is the convergence theorem (Theorem 3) for equilibrium theory.

Then, we introduced the discrepancy measure as the ratio of the total sum of
square residuals from the predicted rents over that from the average rents. In the
best estimation we obtained in Sect. 5, the measure takes about the value 1.025.
This result has strong implications on the law of diminishing marginal utility. It
holds strictly for consumption, less for the commuting time-distance to the office
area, and much less for the sizes of apartment units.

We have many untouched problems, which are divided into three classes: we end
this paper by mentioning some problems in each class.

(1) Subjective estimation: we simply assumed that each economic agent forms an
estimate of a rent distribution from housing magazines. Theorem 3 is a study
of this subjective estimation. However, a more study is of great interests also
from the viewpoint of inductive game theory (Kaneko-Kline [9]): the question
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is whether an agent with a limited analytical ability can derive a meaningful
estimation. This should be studied not only theoretically but also empirically.

(2) Applications to housing markets along different railway lines and in different
cities: we discussed only a submarket along the JR Chuo railway line in Tokyo.
The authors have been applying the theory to some other railway lines, but
those are not more than pilot studies. A more systematic study of rental housing
markets in different places and in different time is an important future problem.
Then, for example, the law of diminishing marginal utility can be tested in
different areas.

Although there are almost no clear-cut segregations, in the Tokyo area (also
in Japan), with different income groups and/or ethnic groups, such segregations
are common phenomena in the world. The theory of assignment markets has
not been developed to treat such problems. To treat it, we need to develop a
more general procedure to calculate a competitive equilibrium than that used in
this paper. An application to such cases will make our theory more fruitful.

(3) Applications to panel data: this is related to (2). Each housing magazine is
issued daily or weekly. Accumulating these housing magazines, we have panel
data, and can study the temporal changes of the housing market. One problem
is to check the comparative statics results obtained in Kaneko et al. [10] and Ito
[6] with those railway lines. In doing so, we may have better understanding of
the structure of the housing market.

Appendix: Proof of Theorem 3

Since the condition BDS in E is preserved to E(e; €”YN), we show that the y-
UM and y-PM hold for E(e; €¥YN) for all v > some vp, but show it only for a
household i € M. It is similar to prove it for j € N; the assumption that the domain
of the profit function is finite is used for it.

Now, let y be an arbitrary positive number, and PV =p+4+éevforv=1,....
Consider any i € M. Let 7' € {0,e', ..., e’} with I; — pz > 0. Then, by UM,

wi(x', I — px') > wi(Z', I; — p2'). (38)

We should consider two cases: x' = e/ (¢ # 0) and x' = 0, but now we consider the
case of x' = €.

As § — 0, the utility value u;(e’, I; — (p; + 8)e")) converges to u;(x', I; — px') =
u;(e',I; — p,) by continuity of u; in Assumption A. Since {e¢""} converges to 0 in
probability, for any § > 0, there is a v(§) such that for any v > v(§),

. )
w(ow : ”e"”(a)) || <6 <1-— 7 (39)
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Since u; is increasing in consumption by Assumption A, it holds that for all
v > v(9),

EU(€',I; — P* -€') > (1 — g)ui(etvli —(pi +8)e")) + gui(et,li) (40)

Since the right-hand side converges to u;(e’,I; — p;e’) as § — 0, there is some §;
such that for all § > §;,

(1- g)ui(etvli —(pi +8)e")) + gui(et»li) > ui(e', I; — pe’) — g (41)

Since § in (40) is arbitrary, we can take the above §; for §. From (40) for §; and (41),
for any v > v(§;), we have

EU;(€',I; — P™e') > u;(€', I; — pe') — g (42)

Now, let 7' be in {0, el, ... ,el}. Since u; is increasing in consumption, we have,
using (39) and (38), for all v > v(§),

8 1] : . o
(1 — E)M,’(et, I,'— (p;/ —8)9’)) + Ebt,'(et, Il) > EU,'(CZ, Ii —P""e’) > EU,'(ZI, Ii—Pl’VZ”)
(43)
The first term converge to u;(e’, I; — p,e') as § — 0. Hence, there is some &, such
that for any § > §,,

ui(e', I; — p,e) + % > (1-— g)ui(e’,li —(p + 8)e")) + gui(e’,li). (44)
Hence, from (43) and (44), it holds that for any v > v(8,),
ui(e' . I; — pie') + % > EU(Z. I; — P"'7) (45)
Let 63 = min(;, 6;). Then, it follows from (42) and (45) that for all v > §3,
EUi(€'.I; = P"¢') + g > (€', I; — ') = EUi(Z' I; = P"2) — g
Connecting the first term with the last term, we have the final target: EU;(e’, I; —

Pi,ueZ) + y > EUi(Zi’Ii _ Pi,uzi).
In the case x* = 0, the first half of the above proof should be modified.

(2): Suppose the if clause of the assertion. Now, let {yg} a positive decreasing and
converging sequence to 0. For each yg, we find a vg such that for all v >
vg. (p.x,y) is a yg-competitive equilibrium in E(e; €”“"""). We show that the
utility maximization and profit maximization hold under rent vector p.
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Consider utility maximization for x;. We have, for all S,
EU;(x;, I; — P x;) + yp > EU(Z', I, — P""#z;) for all z; € {0, ¢, ... e"}.  (46)

Letz; € {0.e', ..., e"} be fixed. Suppose I;—pz; > 0. Then, both EU;(x;, I; — P""# x;)
and EU;(Z, I; — P"6z;) converge to u;(x;, I; — px;) and u;(z;, I; — pz;); by (46), we
have u;(x;, I; — pxi) > ui(2', I; — pz;).

Now, suppose I; — pz; = 0. Since u;(z;, 0) < u;(0,I;) by Assumption A, there is
a Bo such that for all B > By, EU(z',I; — P"Vfz;) > u;(z;, 0). Hence, by (46), we
have u;(x;, I; — px;) > u;(z:,0) = u;(Z'. I; — pz;).

The profit maximization for y; can be proved even in a simpler manner. O
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Large Spatial Competition

Matias Nuiiez and Marco Scarsini

1 Introduction

Consider a market with consumers and retailers. Suppose that the former ones are
distributed on the unit interval and each one of them shops at the closest store
whereas the latter ones decide where to locate in order to attract the largest fraction
of consumers. This model is called the Pure Location Game and was initially
considered by Hotelling [18] for the case of two retailers. This seminal paper has
been extended and applied in different fields such as industrial organization or
spatial competition (as in [8]), giving rise to an immense literature.

Among the different lessons one can draw from this model, the convergence
to the median result is a highly attractive feature. Indeed, with just two players,
a unique equilibrium exists. This equilibrium has two main features: (1) it is
in pure strategies and (2) both parties locate at the location preferred by the
median consumer. Yet, these attractive features are not robust to the introduction
of some slight modifications of the model (see the review of the literature for
a detailed account). For instance, if one assumes that consumers are distributed
on a multidimensional space rather than on the unit interval, a pure equilibrium
ceases to exist. Similarly, adding more retailers to the game might imply that a pure
strategy equilibrium fails to exist. For instance, a pure equilibrium need not exist
with at least four firms [26] when firms can locate over the unit interval. Nufez
and Scarsini [25] prove that, surprisingly a pure equilibrium must exist when the
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number of retailers is large enough as long as firms are restricted to choose from
a finite set of locations. More specifically, while the consumers are distributed in a
multidimensional space, the retailers can only locate in a finite subset of this space.'
Moreover, in this pure strategy equilibrium, the distribution of retailers converges
towards the distribution of consumers when the number of retailers increases. Note
that [25]’s result allows the consumers to be distributed in any multidimensional
space and holds independently of the finite set of locations the retailers can choose
from.

The current work focuses on a similar framework? and attempts to characterize
the whole set of symmetric equilibria when the number of retailers becomes large
enough. To do so, we first consider a simple version of the model, where all retailers
are symmetric. We examine the properties of symmetric mixed strategy equilibria
(which must exist since the game is finite and symmetric). We first prove that, as the
number of retailers grows large, every symmetric equilibrium must be completely
mixed. In other words, in these equilibria, every feasible location is occupied with
positive probability. This implies that the expected payoff from choosing each
location must be equal for each retailer. A non-trivial consequence of this is that
the distribution of retailers induced by the symmetric mixed equilibrium converges
to the consumers’ distribution.

Once we have considered the simple model with an exogenous number of
symmetric retailers, we then examine two extensions. The first extension deals with
games with a random number of players and the second one introduces ex-ante
asymmetries between the retailers. As far as the first extension is concerned, it
is well-known that games with a large number of players can easily produce results
that are not robust with respect to the number of players. In order to check this
robustness, we consider also a model where the number of players is random, using
Poisson games a la [23, 24]. We show that in the unique equilibrium of the Poisson
game retailers match consumers when the parameter of the Poisson distribution
is large enough, so retailers do not even need to know the exact number of their
competitors to play their (mixed) equilibrium strategies.

IThere are several real-life applications where the strategic behavior of the retailers is subject to
feasibility constraints as, for instance, when zoning regulations are enforced. Land use regulation
has been extensively analyzed in urban economics, mostly from an applied perspective. It is often
argued that zoning can have anti-competitive effects and at the same time be beneficial since it
might solve problems of externalities [see 31, for a recent work on this area].

2Throughout, we assume that competition among retailers is only in terms of location, not price.
We do this for several reasons. First, there exist several markets where price is not decided by
retailers: think, for instance of newsvendors, shops operating under franchising, pharmacies in
many countries, etc. Second, our model without pricing can be used to study other topics, e.g.,
political competition, when candidates have to take position on several, possibly related, issues.
Finally several of the existing models that allow competition on location and pricing are two-stage
models, where competition first happens on location and subsequently on price. Our game could
be seen as a model of the first stage. It is interesting to notice that the recent paper by Heijnen and
Soetevent [16] deals with the second stage in a location model on a graph, assuming that the first
has already been solved.
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Finally, we consider a richer model where the retailers are of two different types,
advantaged and disadvantaged. Consumers prefer advantaged retailers, so they
are ready to travel a bit more to shop at one of them rather than at a disadvantaged
one. Here we model the comparative advantage of the first type of retailers by an
additive constant. This is formally equivalent to the idea of valence in election
models [see 2, 3, among others]. We show that, when the number of advantaged
players increases, they play as if the disadvantaged retailers did not exist, and these
ones get a zero payoff, no matter what they do.

1.1 Review of the Literature

We refer the reader to [13] for a recent survey of the literature on Hotelling games.
Here we just mention the articles that are somehow closer to our contribution.
Eaton and Lipsey [10] consider a Hotelling-type model with an arbitrary number
of players, different possible structures of the space where retailers can locate, and
different distributions of the customers. Lederer and Hurter [20] consider a model
with two retailers where consumers are non-uniformly distributed on the plane.
Aoyagi and Okabe [1] look at a bidimensional market and, through simulation,
relate the existence of equilibria and their properties to the shape of the market.
Tabuchi [32] considers a two-stage Hotelling duopoly model in a bidimensional
market. Horner and Jamison [17] look at a Hotelling model with a finite number
of customers. Note that, with just two retailers, the literature has underlined the
existence of a “curse of multidimensionality” (see [5] and [33] for a discussion).
This curse implies that there exists no equilibrium in pure strategies for almost
all distributions of consumers whenever the competition takes place in a setting
with more than one dimension (as first identified by Plott [30]).> When the number
of retailers becomes large, the location of the retailers at the symmetric mixed
equilibrium tends to coincide with the distribution of the consumers on the space.
This phenomenon where “retailers match consumers” was first observed by Osborne
and Pitchik [26].* A similar result is present in [19] and [27] in the context
of professional forecasting. The previously mentioned results just focus on the
unidimensional space. As far as multidimensional spaces are concerned, [9, 11, 22],
and [15] consider a Hotelling model on graphs where retailers can locate only on
the vertices of the graph. Palvolgyi [28], Fournier and Scarsini [13], and Fournier

3Two main possibilities have been explored to solve for this lack of equilibrium: either alternative
candidates’ objectives were considered (as in [6]) or the use of mixed strategies (as in [4]).
“Formally, [26] prove that the symmetric equilibrium strategies satisfy the claim assuming that the

consumers are distributed in the interval [0,1] according to any twice continuously differentiable
distribution function.
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[12] consider Hotelling games on graphs with an arbitrary number of players.
Heijnen and Soetevent [16] extend Hotelling’s model of price competition with
quadratic transportation costs from a line to graphs. Another model of location-
price competition on a graph is studied in [29]. Nufiez and Scarsini [25] prove the
existence of pure strategy equilibrium when the number of locations is finite and the
number of players is large enough.

Two papers on the optimization literature are related to ours. Crippa et al. [7]
focuses on an one-shot optimization problem where several agents, distributed
across some space, have access to different services. To use a service, each agent
spends some amount of time which is due both to the travel time to the service and
to the queue time waiting in the service. This article considers this problem globally
and in an equilibrium-like perspective. Mallozzi and Passarelli di Napoli [21] solve a
two-stage optimization problem in which a social planner divides the market region
into a set of service regions, each served by a single facility, in order to minimize the
total cost. More precisely, the social planner decides in the first period the location
of the facilities and seeks in the second period an optimal partition of the customers
in each of the locations.

The paper is organized as follows. Section 2 introduces the model. Section 3
analyzes its equilibria. Section 4 considers the case of a random number of retailers.
Section 5 deals with the case of differentiated retailers. All proofs are in Appendix.

2 The Model

In this section we describe the basic location model, whose different variations will
be studied in the rest of the paper. This model falls in the more general framework
studied by Nuiiez and Scarsini [25].

2.1 Consumers

In this model consumers are distributed according to a measure A on a compact
Borel metric space (S,d). For instance S could be a compact subset of R? or a
compact subset of a 2-sphere, but it could also be a (properly metrized) network.

2.2 Retailers

A finite set N, := {1,..., n} of retailers have to decide where to set shop, knowing
that consumers choose the closest retailers. Each retailer wants to maximize her
market share. The action set of each retailer is a finite subset of S. This means
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that, unlike what happens in a typical Hotelling-type model, retailers cannot locate
anywhere they want, but can choose only one of finitely many possible locations.
For instance they can set shop only in one of the existing shopping malls in town.

2.3 Tessellation

More formally, define K = {1,...,k} and let Xg := {x1,...,x:} C S be a finite
collection of points in S. These are the points where retailers can open a store. For
every J C K call X; := {x; : j € J} and consider the Voronoi tessellation V(X;) of §
induced by X;. That is, for each x; € X; define the Voronoi cell of x; as follows:

V(%) ;= {y € S:d(y. x;)) <d(y,x) forall x, € X;}.

The cell v;(x;) contains all points whose distance from x; is not larger than the
distance from the other points in X;. Call

V(X)) = (v5(x})jes

the set of all Voronoi cells v;(x;). See, for instance, Fig. 1. It is clear that for J C
L C K we have v;(x;) D v (x;) for every j € J.

Given that A is the distribution of consumers on the space S, we have that
A(vy(x;)) is the mass of consumers who are weakly closer to x; than to any other
point in X;. These consumers will weakly prefer to shop at location x; rather than at
other locations in X since we assume that all firms offer the same good at the same
price.

To simplify the notation and the results, we assume that S is a compact subset of
some Euclidean space, that A is absolutely continuous with respect to the Lebesgue
measure on this space and

A(UK(.XJ')) > (0 for all Xj € Xk. @))

This assumption implies that the set of consumers that belong to r different Voronoi
cells vy(x;,),...,vs(x;,) (i.e. are at the same distance of several points in Xg) is
of zero measure. This allows us to simplify the payoff functions. More general
situations can be considered but they would require more care in handling ties.

2.4 The Game

We will build a game where N,, := {l,...,n} is the set of players. For i € N,
call a; € Xk the action of player i. Then a := (a;);en, is the profile of actions and
a_; := (ap)nen,\{ 18 the profile of actions of all the players different from i. Hence
a = (aj,a—;).
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a X3 X1

°X10 °x2 °

.X7
“Xa
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[ ] X5
° X
L] Xg

c [ ]

Fig. 1 Various Voronoi tessellations with different subsets of locations. (a) Xy C [0,1]?, K =
{1,...,10}. (b) V(X)), J = {1,2}. (¢) VX)), J = {3,4,5}. (d) V(X)), J = {3,4,5,6}. (e)

VX)), J =1{1,2,7,8,9,10}. ® V(X)), J =K
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We say that @ := (a;,...,a,) ~ X; if for all locations x; € X; there exists a
player i € N, such that a; = x; and for all players i € N, there exists a location
x; € X; such that a; = x;. For each a, we let K(a) denote the subset of K such that
a ~ Xk(). Therefore, for i € N,, the payoff of player i is u; : Xy — R, defined as
follows:

1
ui(a) = mA(UK(a)(ai))- ()

The idea behind expression (2) is as follows. Player i’s payoff is the measure
of the consumers that are closer to the location that she chooses than to any other
location chosen by any other player, divided by the number of retailers that choose
the same action as i. As Fig. 1 shows, some locations may not be chosen by any
player, this is why, for every J C K, we have to consider the Voronoi tessellation
V(X;) with a &~ X; rather than the finer tessellation V(Xg). We examine a simple
example to clarify the idea.

Example 1 Let S = [0, 1], let A be the Lebesgue measure on [0, 1], and let Xx =
{0,1/2,1}. As mentioned before, for any given X, the Voronoi cell of location x;
represents the set of points in [0, 1] that are closer to x; than any other point in X.

[0, 1] if X; = {0},
v(0) = 11[0,1/2] if X; ={0,1},
[0,1/4] ifX; = Xg or X; = {0, 1/2}.

0,1] if X; = {1/2},
1/4,1  ifX; ={0,1/2}
0,3/4] ifX; ={1/2,1},

[
0 (1/2) = {
[1/4,3/4] ifX, = Xx.

0,1 ifX; = {1},
v;(1) = q[1/2,1] ifX; ={0,1},
[3/4, 1] lejZXKOrX]Z{l/Z,l}

See Fig. 2.

Hence

1 if X; = {0},

A(y(0)) = 11/2 ifX; = {0,1},

1/4 ifX_]:X](OI'XJZ{O,l/z}.

1 ifXy; = {1/2},
Aw;(1/2)) = 13/4 ifX; ={0,1/2} or X; = {1/2,1},
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° ° e  S=[0,1], Xx ={0,0.5,1}

VJ(O)7 Xj = {0}

o o (0, X={0,1}

° : o : v(0), X;={0,0.5}

o o o v(0), X;={0,051}
o : v(0.5), X;={0.5}

o : o v(0.5), X;={0,0.5}
o o (05, X={051}

o : o : o  v(05), X;={0,051}

o v(l), X;={1}

- : o (), X;={0,1}
o : o (1), X;={051}

o o : o (1), X;={0,051}

Fig. 2 Voronoi cells with different subsets X; of locations

1 ifXx, = {1},
Ay(1) =131/2 ifX; ={0,1},
1/4 ifX; = XgorX; = {1/2,1}.

Therefore the payoff for player i, if she chooses location O when the rest of the
players’ pure actions are a_; is
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1

ui(0,a_;) = md’(a—i)»
where
ifa ~ {0},
pla—;) = ifa ~ {0, 1},

Bl Ol— =

ifa ~ Xgora ~ {0,1/2}.

The payoffs when she chooses either 1/2 or 1 can be similarly computed.

Remark 1 As mentioned before, the total demand for a location x; (i.e. share of
consumers that purchase the good from a given location) depends on the location
of all the retailers. The minimum value that this demand can assume is equal to
A(vk(xj)) > 0, which happens when there is at least one retailer in each location
(i.e. when @ ~ Xk). This represents one of the main differences with respect to
the classical model in which retailers can locate everywhere in the set S. In the
classical model the demand for a location could be made arbitrarily small. To see
why, consider the classical Downsian model in the interval [0, 1] with three players.
Assume, for instance that player 1 locates in x, player 2 locates in x — ¢ and player
3 locates in x + ¢. Then the total demand for x can be rendered arbitrary small
ase — 0.

Consider a game where the consumers are distributed on S according to A, the
set of players is NV, the set of actions for each player is Xx and the payoff of player
i is given by (2). Call this game ¥, = (S, A, N,, Xk, (u;)). Since the set of actions
coincides with the set of locations, we will use the two terms interchangeably.

With an abuse of notation, we use the same symbol ¢, for the mixed extension of
the game, where, for a mixed strategy profile ¢ = (a1, .. ., 0,), the expected payoff
of player i is

Uie) = Y - Y u@oi(@)...0u(a).

a1 €Xg a,€Xg

3 Equilibria

In the rest of this section, unless otherwise stated, we consider a sequence {¢,} of
games, all of which have the same parameters S, A, Xx. More precisely, our focus is
on the sequence of games when the number of retailers n grows.

We prove that when the number of retailers is large enough the distribution of
retailers in equilibrium approaches the distribution of consumers.
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3.1 Pure Equilibria

Nufiez and Scarsini [25, Theorem 3.4] prove in a more general setting that, when
the number of players is large, the game ¥, admits pure equilibria and the share of
players in the different locations in equilibrium is approximately proportional to the
measure of the corresponding Voronoi cells. They also show that this is not the case
for small n. In our setting their theorem becomes:

Theorem 1 Consider a sequence of games {9, },en, where 9, = (S, A, N, Xk, (u;))
and all the symbols are defined as in Sect. 2. Then there exists n such that for all
n > n the game 9, admits a pure equilibrium a*. Moreover, for all n > n, any pure
equilibrium is such that

nj(a*) - A(vg(x)) - nj(a@*) + 1
ne@*) +1 7 Auk(xe)) —  ne(a*)

3)

3.2 Mixed Equilibria

We consider now the mixed equilibria of the game ¢,.

Theorem 2 For every n € N the game %, admits a symmetric mixed equilibrium
y® =W, . y®) such that

lim y® =y, “
with
y(x) = —A(Klzgl)) forallje K. %)

Theorem 2 says that, as the number of players grows, there is a symmetric
equilibrium where players mix according to the market share of each location.
This result holds only asymptotically. For instance, consider a game ¥, with
n = 2,8 = [0,1], A the Lebesgue measure, and Xy = {0.45,0.5,0.55}. Then
the only symmetric equilibrium is the pure profile where both players choose the
location 0.5.

4 Games with a Random Number of Players

In this section we consider games where the number of players is random and we
show how the results of the previous section extend to this case. In particular we
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focus on Poisson games [see 23, 24, among others]. In these games, the number of
players follows a Poisson distribution. We call &, = (S, A, Ng,, Xk, (4;)) the game

e

where the cardinality of the players set Nz, is a random variable &, with

—n I’lk

k'

P(En = k) = :

that is, &, has a Poisson distribution with parameter n.

Just like in game ¥, in game &7, all players have the same utility function. So
the utility function of player i depends only on i’ s action and on the number of
players who have chosen x; for all j € K.

Quoting [23], “population uncertainty forces us to treat players symmetrically in
our game-theoretic analysis,” so each player choses action x; with probability o (x;).
As a consequence, all equilibria are symmetric. Properties of the Poisson distri-
bution imply that the number of players choosing action x; is independent of the
number of players choosing action x; for j # £.

Let Z(Xk) stand for the set of vectors y = (y(X;))y,ex, such that each component
v(x;) is a nonnegative integer that describes the number of players choosing action x;.
For each mixed strategy o, the probability that that the actual play equals y for any
y € Z(Xk) equals:

(e—na(xj) (no (xj))y(x_,-) )
ek (%) ’

where the product is a consequence of the independence of the different voters
choosing a different action. Therefore, the expected utility of each player, when she
chooses action x; and all the other players act according to the mixed strategy o is

—no (x; V)Y (x)
U(xj,a) _ Z l_[ (e )(nO(xj))} ) U(xj,y).

vez(xy) jek Y ()

In the rest of this section we consider a sequence {£?,} of games, all of which
have the same parameters S, A, Xk.

Theorem 3 For every n € N the game 2, admits a symmetric mixed equilibrium
vy such that

A .
lim Yy (x) = % foralljeK. (6)

The next example shows that in general the equilibria of ¢, and &7, do not
coincide.

Example 2 Let S = [0,1] with A the Lebesgue measure on [0, 1] and Xx =
{0.1, 0.5, 0.9}. We consider the equilibria of the games ¥; (static) and &5 (Poisson).
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In the game %, there exists an equilibrium ¢* in which each retailer locates in
0.5. Under ¢ * the payoff for each retailer equals 1/3 since they uniformly split the
consumers in S. A deviation towards 0.1 or 0.9 would give a payoff of 0.3 < 1/3,
so 0* is indeed an equilibrium of ¥;.

We now prove that ¢* is not an equilibrium in the game 47;. We have

l—e3

U(c™) = ~ 0.316738,

U(0.1,0%) = U(0.9,0%) = e +(0.3)(1 —e ™) ~ 0.334851.

This shows that a deviation to either 0.1 or 0.9 is profitable, hence ¢* is not an
equilibrium of the game ;.

5 Competition with Different Classes of Retailers

Up to now, we have considered a model where all retailers are equally able to attract
consumers. In other words, a consumer is indifferent between purchasing the good
at two different shops if they are equally distant from her location.

In many situations some retailers have a comparative advantage due, for instance,
to reputation. Therefore, ceteris paribus, a consumer may prefer one retailer over
another. Similar models have been studied in the political competition literature
with few strategic parties [see 2, among others]. In this literature the term “valence”
is used to indicate the competitive advantage of one candidate over another.

In the model that we analyze below, retailers can be of two types: advantaged
(A) and disadvantaged (D). We choose this dichotomic model out of simplicity.
Results are not qualitatively different when a finite number of types is allowed.
More precisely, we have in mind a model with several types of firms ranked by their
comparative advantage. If we assume that the number of most advantaged firms
goes to infinity (as we do now with just two types), then the most advantaged
firms split the consumers among them and the disadvantaged ones get a zero
payoff (asymptotically) whatever they do and independently of their comparative
advantage.

When choosing between two retailers of the same type, a consumer takes into
account only their distance from her and she prefers the closer of the two. When
choosing between a retailer of type A located in x* and a retailer of type D located
in x°, a consumer located in y will prefer the retailer of type A iff

d(x,y) <d(P,y) + B, with g > 0.
She will be indifferent between the two retailers iff
d(.y) = d(P.y) + B.

Obviously the case 8 = 0 corresponds to the model examined in Sect. 2.
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Different ways to model advantage of one type of players over another have been
considered in the literature [see 14, for a discussion].

We now formally define a game &, with differentiated retailers. For j € {A, D},
call N/ the set of retailers of type j and define / = card(N/). Therefore

N, = N*UNP,
n:nA+nD.

Forj € {A,D} and i € N/ call a’ € Xk the action of retailer i. Then the profile of
actions is

a:=(a".d") = {(a?)ieNf}’ (a?)ieN,?}“
For any profile a € Xy define

n; A(a) ;= card{i € NA af‘ X},
P

D(a) = card{i € ND ;= Xj).
So n_? and nf.) are the number of A and D players, respectively, who choose action x;.

We say that (a*,a”) a~ X o if for all locations x; € X4 there exists a player
i € N% such that a’;’ = x; and for all players i € N there exists a location x; € X
such that af = x; and for all locations x; € X, there exists a player i € N such

that a? = x; and for all players i € N” there exists a location x; € X;» such that

D — .
a; = x;.

Fix B > 0, and, for J4, JP C K, define

U?AJD(X/-) ={yeS:dy,x) <d(y,x) forall x; € X1 and
d(y.xj) <d(y,x¢) + B forall x, € X;p}

vJDAJD(xj) ={yeS:dy,x) <d(y,x;)— B forall x, € X4 and
d(y,xj) < d(y,xe) forall x, € Xjn}.

For i € N, the payoff of player i is u; : X3 — R, defined as follows:

Mi(aA7 aD) =

> AWh @)@ a®) = X o). ifi € N2,
JAJPCK

> AR @)@t a) ~ X ). ifie NP

JAJPCK

card{h : a} = a'}

card{h : aP = aP}
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We call 2, := (S,A,NA, NP,
players.

Note that, in any pure strategy profile of the game %,, a D-player gets a strictly
positive payoff only if she chooses a location that is not chosen by any advantaged
players.

The next example shows how substantially different the equilibria of a game ¥,
and of a game %, can be.

Xk, B, (1)) a Hotelling game with differentiated

Example 3 Let S = [0, 1] with A the Lebesgue measure on [0, 1] and Xx = {0, 1}.
The game %, admits pure equilibria. Actually any pure or mixed profile is an
equilibrium and gives the same payoff 1/2 to both players.

Consider now the game 2, with one advantaged and one disadvantaged players.
In the unique equilibrium of %, both players randomize with probability 1/2 over
the two possible locations.

Indeed, in 2, there cannot be a pure equilibrium in which both players choose the
same location since the disadvantaged player would get 0 and hence would strictly
increase her payoff by deviating. Similarly, there cannot be a pure equilibrium
in which players choose different locations, since the advantaged player would
have an incentive to deviate to the location chosen by the disadvantaged player.
Therefore, any equilibrium must be mixed. A simple computation proves that
uniform randomization is the unique strategy profile that constitutes an equilibrium.

We now examine the equilibria in this model with differentiated candidates.

Given a game Z,, an equilibrium profile (pA”, yP") is called (A, D)-symmetric if
yi =M, (N
yD.n — (yD.n, . ]/Dﬂ)~ (8)

Theorem 4 For every n € N the game 9, admits an (A, D)-symmetric equilibrium
(yA", yP") such that

AL o) A(ug ()

lim y*"(x) = = 9
Am Y ) A(S) 2(S) ©)

forall x; € S, for all JP C K. Moreover, in this equilibrium,
lim > UP(y*. P = 0. (10)

nA—00 N
ieNt

Theorem 4 shows that, as the number n* of advantaged players grows, they
behave as if the disadvantaged players did not exist, so they play the same mixed
strategies as in the game ¥,4. The disadvantaged players in turn get a zero payoff
whatever they do.
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Appendix: Proofs

Proofs of Sect. 3

The proof of Theorem 2 requires some preliminary results.

Lemma 1 Consider a sequence of games {9, }nen. There exists n such that for all
n > n, if y® is a symmetric equilibrium of 4, then y™ is completely mixed, i.e.,

yP(x) >0 forall x; € X.
Proof Assume by contradiction that for every n € N there exists some x; € Xg and
a symmetric equilibrium y of &, such that y® (xj) = 0. Given that A(S) < oo,

we have that for all i € N,

Uiy ™) = A(S)

If player i deviates and plays the pure action a; = x;, then she obtains a payoff

Uar YD) = 20k(s)) > 2,

where the strict inequality holds for n large enough. This contradicts the assumption

that ™ is an equilibrium. O
Lemma 2 Let (Yy,...,Y:) be a random vector distributed according to a multino-
mial distribution with parameters (n — 1; y(n) Y )) with § < y(") 1—26, for

some 0 < § < 1 and forall j € K. Then

[ 7T 2o ML = 0 forh ¢J)}

lim Ik =1, foraljlek

TR [ Z)L(UJ(XZ))]I(Y;, =0forh ¢J)i|
JCK

(1T)
iff
Avg (%))

20) forallj € K. (12)

lim 3" = y(xy) =
n—>oo ¢

Proof Given j € K, consider all / C K such thatj € J and the family ¥; of all
corresponding Voronoi tessellations V(X;). Call V the finest partition of S generated
by ¥}, that is, the set of all possible intersections of cells vy (xj) € V(X;) for V(X)) €
¥;. It is clear that vk (x;) € V
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For A € Vj, call T/}(A) the class of all cells in Vj whose intersection with A is
nonempty.
Then

Y 1 JCK

E [ ,- i Zx(u,(xj))]l(yh =0forh ¢J)i|

_E [A(vx(xj))]
Y+ 1

FE| D AAL (Y = 0if vk (x) N A # )

Y+ 1
A€V;

<E [A(vK(xj))}
Y+ 1
+ Y AAP (Y, = 0if vg(x) NA # )
A€V,
_E |:/\(UK(X;‘))

Y+ 1 ]+0(1/n) for n — oo,

since P(Y; =0) = (1 — yi("))" = o(1/n) for n — oo. Therefore

E|_! > X)) LYy = 0 for h & J)
. Y’ + 1 JCK :
lim = lim

E[MW@D}
Y+ 1

n—>00 n—00 W
£ |: :_ 1 ZX(UJ(XZ))]I(Y/, =0 forh ¢j)i| E |:YZK—+£;]

Y,
¢ JCK

_ o Mok() 7"
w20 A(vg(xe)) )

(13)
_ Mux() y()
Avg (xe)) ¥ (%)
Given that Zf:l y(x;) = 1, (13) holds if and only if (12) does. O

Proof (Proof of Theorem 2) The game ¥, is finite and symmetric, so it admits a

symmetric mixed Nash equilibrium ™ = (y™, ..., y™). Then, given Lemma 1,
forallj, ¢ € K,

O (O N2 (n) 14

Uz(xj’)’_i) - Uz(xz,)’ i ( )

—i)-
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Using (2) we obtain

Uiy y")) = Z Z ui(ai, ..., ai-1,%, aix1, ..., ay)

a1 €Xg a, €Xg

7/(n) (xl)nl(afi) o y(n) (xj)”j(afi)‘i‘l o y(")(xk)”k(afi)

= [Y — > A ))L(Y, = 0 for h ¢J):|

JCK
where (Y},...,Y;) has a multinomial distribution with parameters (n —
1;y™(x)),...,y"™(x)). Notice that @ ~ X; is equivalent to ¥, = 0 for all
hel.

Therefore (14) holds if and only if

E [Y — > A () 1Y, = 0 for h ¢J):|

JCK

—E [Y — > X)) L(Y, = 0 for h ¢J)i|

JCK

which implies (11). Lemma 2 provides the result. ]

Proofs of Sect. 4

The next two lemmata are similar to Lemmata 1 and 2, respectively.
Lemma 3 Consider a sequence of games {2, } en. There exists n such that for all
n>n, if y™ is a symmetric equilibrium of 2, then y"™ is completely mixed, i.e.,

y(”)(xj) >0 forallx; € Xk.

Proof Assume by contradiction that for every n € N there exists some x; € Xx and
a symmetric equilibrium y ™ of £, such that y™ (x;) = 0. Given that A(S) < oo,
we have that for each player i

v =72,

where &, has a Poisson distribution with parameter n. If player i deviates and plays
the pure action a; = x;, then she obtains a payoff
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Usar y™) = A(ve(x)) > E [“S)} ,

&
~n

where the strict inequality holds for n large enough. This contradicts the assumption
that ™ is an equilibrium. O

Lemma 4 Let (Z1,..., Ey) be a random vector of independent random variables

where E; has a Poisson distribution with parameter n)/‘A(") ,withé < yj(n) <1-5,
for some 0 < § < 1 and forallj € K. Then

|

D M) L(E, = 0forh ¢J)}

Ei+1
lim ! Ik =1, foralljlecK
n—>odo
E|— D X)) L(Ey = 0forh &J)
e+ 1%
5)
if
: A(vk (%)) .
() _ N — KW
nll)rglo Y, =rx) 25) foralljeK. (16)

Proof Given j € K, consider all J C K such that j € J and the family ¥; of all
correspondmg Voronoi tessellations V(X;). Call V the finest partition of S generated
y 7}, that is, the set of all possible intersections of cells vy (xj) € V(X;) for V(X)) €
”// It is clear that vk (x;) € V
For A € V call V i(A) the class of all cells in V whose intersection with A is

nonempty.
E [

Then
) I:A'(UK(xj))i|
Ei+1

A

— > X)) L(Ey = 0 for h ¢J)]

JCK

— Z AA)L (8, = 0if vk (x) NA # 2)

o
AGV]

e [A(vK(x,»]
-l E+1

~.

+ Y AMAP (&), = 0if vk(x) N A # )
A€V,
_E [k(vK(xj))

+o(1/n) forn — oo,
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since P(&; = 0) = e™ = o(1/n) for n — oo. Therefore

E [ - ! > A () 1(&, = 0 for h ¢J)i| E [A(UK(XJ))]
. g+ . Ej+1
lim = lim ————=
n—00 1 _ n—00 E Avg(xe))
Bl 575 J;{A(vj(x[))]l(ah = 0forh &J) Sl
_ o Ak(y) 7"
%0 A0 (x0))
17
_ AMug() 7()
Avg (xe)) ()
Given that Z]k: L v(x;) = 1, (17) holds if and only if (16) does. O

Proof (Proof of Theorem 3) Since the number of types and actions is finite, [23,
Theorem 3] implies that the Poisson game &7, admits a symmetric equilibrium y ™.
Given Lemma 3, for all j, £ € K,

Ui, y™) = Ui, y™). (18)

For j € K call nj(a, §) the number of players who choose x; under strategy @ when
the total number of players in the game is £. Using (2) we obtain

00
U,-(xj,y(_",»)) = Z|: Z Z u,-(al,...,ai_l,xj,a,-ﬂ,...,ag)

=1 a1 €Xk ag €Xk

)/(") (xl)"l(afif) o y(n) (xj)nj(afff)ﬂ o 7/(n) (xk)nk(“if)j|

—n

£l

e " nf

1
=E|—= > A&y = 0forh &) |
= +1 ’
JCK
where (&1, ..., &) are independent random variables such that Z; has a Poisson
distribution with parameter ny ™ (x;). Notice that @ ~ X; is equivalent to &), = 0
forallh & J.
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Therefore (18) holds if and only if

E [ ! > X)) L(Ey = 0 for h ¢J)i|

A
S Er=ry

=E [SZL 1 Zk(vj(xz))ll(sh =0 for h ¢J)j| ,

JCK

which implies (15). Lemma 4 provides the result. O

Proofs of Sect. 5

Lemma 5 Consider a sequence of games {Z,},en. There exists n* such that for
all n* > i, if (y", yP") is an (A, D)-symmetric equilibrium of 9, then y*" is
completely mixed, i.e.,

)/A’”(xj) >0 forall x; € Xg.

Proof Assume by contradiction that for every n € N there exists some x; € Xx and
an (A, D)-symmetric equilibrium (p*, y?") of ,, such that y*"(x;) = 0. Given
that A(S) < oo, we have that for i € N4

1)

U?()/A’n,yD’n) < .
n

If player i € N deviates and plays the pure action a; = x;, then she obtains a payoff

A(S)

Ut ai, 27, pP™) > A(vk(x;)) > e

for n* large enough. Indeed, note that even if some D-players choose x; in Y2, the A
player attracts all the consumers from x;. Therefore (p4", P} is not an equilibrium

for n# large enough. O
Lemma 6 Let (Yy,...,Yy) be a random vector distributed according to a multino-
mial distribution with parameters (n; )/1("), A ylgn)), with§ < )/j(n) < 1-4, for some

0 <68 < 1andforallje K. Then

lim P(Y; =0) =0 foralljeKk.
n—>oQo
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Proof The result is obvious, since
P(Y;=0) = (1-y")" < (1-8)" 0. o

Proof (Proof of Theorem 4) Whenever a location x; is occupied by an advan-
taged player, any disadvantaged player choosing x; gets a payoff equal to zero.
Therefore (10) is an immediate consequence of Lemmata 5 and 6. Moreover,
asymptotically, the actions of disadvantaged players do not affect the payoff of
advantaged players. Therefore an application of Lemma 2 with n* replacing n
provides (9). ad
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Facility Location Situations and Related Games
in Cooperation

Osman Palanci and S. Zeynep Alparslan Gok

1 Introduction

Facility location situations are a promising topic in the field of Operations Research
(OR), which has many applications to real life. In this type of problems, there exist
a given cost for constructing a facility. Further, connecting a player to this facility
by minimizing the total cost is necessary.

In cooperative game theory allocating the costs in a fair way is very important,
which is known as the cost allocation problem. In facility location situations, two
cases can occur. One of them is the case of public facilities (such as libraries,
municipal swimming pools, fire stations, etc.) and the other one is the case of private
facilities (such as distribution centers, switching stations, etc.).

In a facility location situation, each facility is constructed to please the players.
Here, the problem is to minimize the total cost. This cost is composed of both the
player distance and the construction of each facility. A facility location game is
constructed from a facility location situation [8].

In classical cooperative game theory payoffs to coalitions of players are known
with certainty. On the other hand, there are many real-life situations in which people
or businesses are uncertain about their coalition payoffs. Situations with uncertain
payoffs in which the agents cannot await the realizations of their coalition payoffs
cannot be modelled according to classical game theory. Several models that are
useful to handle uncertain payoffs exist in the game theory literature [5, 14, 16].

The paper is organized as follows. In Sect. 2, we give some preliminaries about
the study. We mention facility location games and PMAS in Sect. 3. Section 4
introduces facility location interval games and their Shapley value.
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2 Preliminaries

In this section, some terminology on the theory of cooperative games and some
useful results from the theory of cooperative interval games are given [3, 4, 8, 15].

A cooperative (cost) game in coalitional form is an ordered pair < N, ¢ >, where
N = {1,2,...,n} is the set of players, and ¢ : 2% — R is a map, assigning to each
coalition S € 2V a real number ¢ (S), such that c (9) = 0.

We identify a cooperative cost game < N, ¢ > with its characteristic function c.
The family of all games with player set N is denoted by GV. We recall that GY is a
(2|N - 1)—dimensional linear space for which unanimity games form an interesting
basis. The unanimity game based on S, ug : 2¥ — R is defined by

1 ScrT
T) = ’
us (T) 0 otherwise,

where S € 2V\ {0} .

Every coalitional game < N,c > can be written as a linear combination of
unanimity games in a unique way such that ¢ = Z&ezN\{@} As(c)ug [11]. The
coefficients Ag (c), S € 2V\ {@} are called the unanimity coefficients of the game
< N, c >, where ¢ € GV and satisfy

As(@ = Y (=DFMe(T) foran s e 2\ {0}
Te25\{0}

HM

(N > associated with ¢ € GV is the

Let ¢ € GV. The potential game < N, P
coalitional game as follows,

HM
Py S)=r (S, C|s)
VS C N. Hart and Mas-Colell [7] shows that the characteristic function of the

potential game can be expressed in terms of the unanimity coefficients Ag (c) of
the game < N, ¢ > which is given by,

As (c)
ngﬁflc) = Z S| us.
SEN\(@}

Let 7 (N) be the set of all permutations 0 : N — N of N and ¢ € G". The
marginal contribution vector m° (¢) € RM with respect to o and ¢ has the ith
coordinate the value

m? (c) := ¢ (P’ (i) U {i}) — ¢ (P° (i)) foreachS e 2".
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One of the most important solution concepts in cooperative game theory is the
Shapley value [10]. The Shapley value associates to each game ¢ € GV one payoff
vector in RN, The Shapley value @ (c) of a game ¢ € GV is the average of the
marginal vectors of the game, i.e.

1
()=~ > m (o).

" oen(N)
We call a game < N, ¢ > as concave iff
c(S)+c(T)=>c(SUT)+c(SNT) VS, Te2V.

We denote by CG" the class of concave games with player set N. It is well known
that a concave game has a non-empty core.

In this paper, we consider a (point-valued) solution f on G assigns that a payoff
vector f(c) € RY to every TU-game ¢ € G". Examples of such solutions are
the Centre-of-gravity of the Imputation-Set value, shortly denoted by CIS-value,
Egalitarian Non-Separable Contribution value, shortly denoted by ENSC-value and
the equal division solution (see [6, 17]).

The CIS-value assigns to every player its individual worth, and distributes the
remainder of the worth of the grand coalition N equally among all players, i.e.

CiS; (c) = c({i}) + ﬁ(c (N) — Zc({j})) foralli € N.
ieN

The ENSC-value assigns to every player in a game its marginal contribution to
the ‘grand coalition’ and distributes the (positive or negative) remainder equally
among the players, i.e.

1

ENSC; (c) = —c(N\ {i}) + ]

(c(N)+ > c(N\{j})) forallieN.

jEN

The equal division solution (ED-value) just distributes ¢(N) equally among all
players, i.e.

ED; (c) = ﬁc(N) foralli € N.

A cooperative interval (cost) game is an ordered pair < N,c¢’ >, where N =
{1,...,n} is the set of players, and ¢’ : 2¥ — I(R) is the characteristic function
such that ¢/(@) = [0, 0]. Here, I(R) is the set of all nonempty, compact intervals
in R. For each S € 2V, the cost set (or: the cost interval) ¢’(S) of the coalition S in
the interval game < N, ¢’ > is of the form [¢(S), ¢/(S)], where ¢/(S) is the minimal
cost which coalition S could receive on its own and ¢/(S) is the maximal cost which
coalition S could get. The family of all interval games with player set N is denoted
by IGV.
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Let/,J € I(R) with I = [L.I],J = [J.J].|I| =1 -1 and @ € Ry. Then,

O I+J=[LI|+[LT]=[I+L1+]]]
(ii) of =« [LI] = [al o]

By (i) and (ii) we see that I(IR) has a cone structure.

Here, we need a partial substraction operator. We define I — J, only if |I| > |J|,
byl—J:=[LI]—[J.J] =[I—J.1—1J].Letusnote that/—J < I—J. We recall
that 7 is weakly better than J, which we denote by I > J, if and only if / > J and
I > J. Furthermore, we use the reverse notation I < J, if and only if / < J and
1<1J. We say that [ is better than J, which we denote by I > J, if and only if I > J
and I # J.

Finally, let I,J € I(R) with I = [[ U, J = [[ , .7]. We define the minimum of the
two intervals, I AJ, by I AJ = Tif I < J, and their maximum, I vV J, by IV J =J
ifI<J.

In general, let I, ..., Iy € I(R). Suppose that [; = I, foreach r € {1,... k}.
Then, we say that [; := max {l,,..., I} . If I, < I, foreach r € {1,...,k}, then
I, := min{ly,...,I;}. For example, let I; = [0,1], I, = [-1,2] and I5 = [3,5].
Then, Iy = max{[,;,13}, whereas max{l,, I} does not exist. Similarly, I, =
min {l, I3}, but min {I}, I, I3} does not exist. For details see [1].

3 Facility Location Games and PMAS

In a facility location game a set .7 of agents (also known as cities, clients, or demand
points), a set .% of facilities, a facility opening cost f; for every facility i € .#, and
a distance dj; between every pair (i, ) of points in &/ U .% indicating the cost of
connecting j to i are given. We assume that the distances come from a metric space;
i.e., they are symmetric and obey the triangle inequality. For a set S C .7 of agents,
the cost of this set is defined as the minimum cost of opening a set of facilities and
connecting every agent in S to an open facility. More precisely, the cost function ¢
is defined by [8].

S) = mi i in d;;

c(§)= min {} fi+D_ mind;} (1)
i€EF* JES

Now, we give an example of facility location game.

Example 3.1 Figure 1 shows a facility location game with three cities {Burdur
(Player 1), Antalya (Player 2), Isparta (Player 3)} in Turkey and two hospitals {1, 2}.
The cost function is calculated by using (1) the following:

c(1)=5,¢(2)=4,c(3) =4,
c(12) =7,¢(23) =5,c(13) =9,
c(123) = 10.
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fi=3

Burdur Antalya Isparta
(Player 1) (Player 2) (Player 3)

Fig. 1 An example of the facility location game

Table 1 Marginal vectors

o m$ (¢) |m§ (c) |m§ (c)
o =(1,2,3) |5 2 3
0, =1(1,3,2) |5 1 4
03 =(2,1,3) |3 4 3
oy =(2,3,1) |5 4 1
os=(3.12) |5 1 4
o6 =321 |5 1 4

Now, we recall the allocation schemes [8, 12]. An allocation scheme is a scheme
which provides payoff vectors for a game and all its subgames. Formally, an
allocation scheme for a game < N,c¢ > is a vector (d;s);cgscy- The allocation
scheme based on the Shapley value is called the Shapley allocation scheme.

Example 3.2 We reconsider the facility location game in Example 3.1. The
marginal vectors are given in Table 1.

Table 1 illustrates the marginal vectors of the facility location game in
Example 3.2. The average of the six marginal vectors is the Shapley value of
this game, which can be written as:

?(c) = (43,21.3).

The Shapley allocation scheme of < N, ¢ > is represented in Table 2.

PMAS are introduced by Sprumont [13]. Sprumont [13] argues that this requires
that the payoff of any player does not decrease as the coalition he belongs to
grows larger. An allocation scheme that satisfies this property and that also satisfies
efficiency for each subgame is called PMAS [12]. In formula, a vector a =
(ais)ies,se2v\(g} is a population monotonic allocation scheme for a coalitional game
< N, ¢ > if it satisfies the following two conditions.
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1. Y ais = c(S) forall S € 2V\ {0},
ies

2. ajs > a;pforall S,T € 2N\ {0} with S C T and i € S.

Now, we give a relation between the Shapley allocation scheme being a PMAS
and concavity of the associated potential game [8].

Remark 3.1 The Shapley allocation scheme of coalitional game < N, ¢ > is PMAS

if and only if the associated potential game < N, PZ\,"?C) > is concave.

An illustration of this remark can be found in the following facility location
game.

Example 3.3 We continue studying the facility location game in Example 3.1. The
unanimity game of this facility location game is < N, ¢ > with N = {1,2, 3} and

c = S5uy + 4uy + duz — 2u1,2 — 3I/t2’3 + 2M1’2,3.

The Shapley allocation scheme of this game is represented in Table 2. Using the
payoffs in this table we find

ay {123} > 41412}

Hence, the Shapley allocation scheme is not a population monotonic allocation
scheme.

The potential game associated with < N, P(y" > is described by
" 3 2
Py = 5ur + duy + duz — luy 5 — FU23+ Fth23

Consequently, we conclude that < N, PZVML ,

following result.

> is not concave because of the

13 67
c(12) + ¢ (23) =8+7 <4+F =c(2)+c(123).

Table 2 The Shapley allocation scheme
Coalition | Player 1 | Player2 | Player 3

{3 5 * *
{2} * 4 *
{3} * * 4
{1.2} 4 3 *
{1.3} 5 * 4
{2.3} * 21 23
{1,2,3}y |42 21 3t
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Remark 3.2 The facility location game is not concave. Then, the Shapley allocation
scheme of the facility location game is not PMAS.

Now, we study the other allocation schemes on the facility location game. The
allocation scheme based on CIS-value, ENSC-value and ED-value is called the CIS,
ENSC and ED allocation scheme respectively.

Example 3.4 We use the facility location game in Example 3.1 again. The CIS-
value is defined by

CIS; (€) = c({i}) + —(c (V) = 3 (i) foralli € N,

v &
Then,

CISi (c) = c({1}) + % (c({123}) = (c ({1} + c ({2}) + c({3})))

=4,
CIS; (c) = c({2) + % (c({123}) — (c ({1} + c ({2}) + ¢ ({3})))

=3,
CIS3 (c) = c({3}) + % (c({123}) = (c({1D) + c({2}) + c({3}))

=3

So, the CIS-value of this game is obtained by
CIS(c) = (4,3,3).

The CIS-values of the subgames of < N,c > are easily computed. The CIS
allocation scheme of < N, ¢ > is represented in Table 3.
Using the payoffs in this table we find

a {123} > a2 {23}

Table 3 The CIS allocation scheme

Coalition |Player 1 | Player 2 | Player 3
{1} 5
{2}
{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

D=

[SCR I N IV UV VAR N V)
[S1E

Al¥ OB
VORI NCR N VI SO O S
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Hence, the CIS allocation scheme is not a population monotonic allocation scheme.
Let us compute the ENSC-value of this game. The ENSC-value is defined by

ENSC; (c) = —c(N\ {i}) + WH(C (N) + Y _c(N\{j})) forallieN.
JjEN

Then,

ENSCy (c) = —c({2,3})) + % (c({123}) + c({1.2}) + ¢ ({1.3}) + ¢ ({2.3}))
16

3 )

ENSC; (¢c) = —c ({1,3}) + % (c({123}) + c({1,2}) + ¢ ({1,3}) + c ({2, 3}))

4
3

’

ENSC; (c) = —c({1,2}) + % (c({123}) + c({1,2}) + c ({1, 3}) + c ({2, 3}))
10

3

So, the ENSC-value of this game is obtained by

ENSC (c) = (53, 14,39).
The ENSC-values of the subgames of < N,c¢ > are easily computed. The ENSC
allocation scheme of < N, ¢ > is represented in Table 4.
Hence, the ENSC allocation scheme is not a population monotonic allocation
scheme. Finally we compute the ED-value of this game. The ED-value is defined by

1
ED; (c) = mc(N) foralli € N.

Table 4 The ENSC allocation scheme

Coalition |Player 1 | Player 2 | Player 3
{1} 5
{2} *
{3} *
{1,2} 4
{1,3} 5
{2,3} *
{1,2,3} |5

— N %W % A
W = N |—
[FOR N O N VR S B
W= =

W=



Facility Location Situations and Related Games in Cooperation

Then,

ED, () = w
10
)

ED, (¢) = c({1,32,3})
_ 10
T3

EDs (c) = c({1,32,3})
10
)

So, the ED-value of this game is obtained by

ED(c) = (31.3

1 1
30 35)'

255

The ED-values of the subgames of < N, ¢ > are easily computed. The ED allocation

scheme of < N, ¢ > is represented in Table 5.

Using the payoffs in this table we find

ar {123} > d2{2.3}

Hence, the ED allocation scheme is not a population monotonic allocation scheme.

As you can see that in facility location games the CIS, ENSC and ED allocation
scheme does not form population monotonic allocation scheme. Now, we give main

result of this paper.

Remark 3.3 The three allocation schemes CIS, ENSC and ED used in Example 3.4

do not generate PMAS.

Table 5 The ED allocation scheme

Coalition | Player 1 | Player2 | Player 3

{1} 5 *
{2} * 4
{3} * *
{1,2} 31 31
{1,3} 41 *
{2,3} * 24
{1,2,3} |31 31

*
*

4
*

1
43

1
23

1
33
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Remark 3.4 When we check the results in Table 2 (Shapley allocation scheme),
only the player 2 is satisfied from cooperation. On the other hand we consider the
results in Table 3 (CIS allocation scheme), the player 2 and player 3 are satisfied
from cooperation. Additionally, we can see that the results in Table 4 (ENSC
allocation scheme), only the player 3 is satisfied from cooperation. Finally, we take
the results in Table 5 (ED allocation scheme), only the player 1 is satisfied from
cooperation.

4 Facility Location Interval Games and Their Interval
Shapley Value

In this section, we introduce the facility location interval games inspired by Nisan
[8]. In a facility location interval game, a set <7 of agents (also known as cities,
clients, or demand points), a set .% of facilities, a facility opening interval cost f; for
every facility i € .%, and a distance dlfj between every pair (i, j) of points in &/ U .%

indicating the interval cost of connecting j to i are given. Here, f/ := [fi,fi] ,dlfj =

[dij,d_ij] € I (R). The distances are supposed to come from a metric space. So,

these distances are symmetric and satisfy the triangle inequality. For a set S € &7
of agents, the interval cost of this set is defined as the minimum interval cost of
opening a set of facilities and connecting every agent in S to an open facility. More
precisely, the interval cost function ¢’ is defined by

/ S = i i i d[' ) i _[ i E I R
O = | int 2+ D mindid min {3 St D min i} | €1 ®

T~ eFx* JES -7 jeg* j€Ss
. o o (@)
Now, we give the example of facility location interval game.

Example 4.1 Figure 2 shows a facility location interval game with three cities
{Burdur (Player 1), Antalya (Player 2), Isparta (Player 3)} in Turkey and two
hospitals {1, 2}. The interval cost function is calculated by using (2) the following:

¢ (1) = [5,5.5],¢ (2) = [4,4.4], ¢ (3) = [4,4.4],
¢ (12) = [7,7.7],¢ (23) = [5,5.5], ¢ (13) = [9,9.9],
¢ (123) = [10,11].

Now, we calculate the interval Shapley value of the facility location interval
game. Firstly, we recall the definition of the interval Shapley value. For this, we
need to recall some notions from the theory of cooperative interval games [2].

Interval solutions are useful to solve reward/cost sharing problems with interval
data using cooperative interval games as a tool. The interval payoff vectors, which
are the building blocks for interval solutions, are the vectors whose components
belong to I(R). We denote by I(R)" the set of all such interval payoff vectors.



Facility Location Situations and Related Games in Cooperation 257

fi=[3,33]

Burdur Antalya Isparta
(Player 1) (Player 2) (Player 3)

Fig. 2 An example of the facility location interval game

We call a game < N, ¢’ > size monotonic if < N,|c’| > is monotonic, i.e.,
Ic'| (S) < || (T) forall S, T € 2V with S C T. For further use we denote by SMIGY
the class of size monotonic interval games with player set N.

The following theorem shows that the facility location interval games are size
monotonic.

Theorem 4.1 The facility location interval game < N,c’ > belongs the class of
SMIGN .

Proof We show that the facility location interval game ¢’ belongs to the class of
SMIGN . For this,

|c'| (8) < || (T) forall S, T € 2¥ with S C T.

It can be seen that < N, ¢’ > belongs to the class of SMIG . For details see [9].

We know that if an interval game is belonging to SMIG", then the interval
Shapley value is always given [2].

Remark 4.1 The interval Shapley value of the facility location interval games
always exists.

The interval marginal operators and the interval Shapley value were defined on
SMIG" in [2] as follows.

Denote by IT(N) the set of permutations 0 : N — N of N = {1,2,...,n}. The
interval marginal operator m° : SMIGY — I(R)" corresponding to o, associates
with each ¢’ € SMIG" the interval marginal vector m° (¢) of ¢’ with respect to o,
defined by m? (¢') = /(P (i) U {i}) — ¢/(P?(i)) for each i € N, where P°(i) :=
{r €N|o7'(r) <o™! (i)}. Here, 0~ (i) denotes the entrance number of player i.

For size monotonic games < N, ¢’ >, ¢/(T) — ¢/(S) is defined for all S, T € 2V
with S C T, since |¢/(T)| = || (T) = || (S) = |c/(S)|. Now, we notice that
for each ¢’ € SMIGY the interval marginal vectors m° (c’) are defined for each o €
IT(N), because the monotonicity of |¢’| implies ¢/ (SU{i})—c’ (SU{i}) > ¢/(S)—c/(S),
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which can be rewritten as ¢/(SU{i})—c/(S) > ¢/(SU{i})—c'(S). So, ¢'(SU{i})—c'(S)
is defined foreach S C N and i ¢ S.

The interval Shapley value assigns to each cooperative interval game a payoff
vector whose components are compact intervals of real numbers. Cooperative games
in the additive cone on which we use the interval Shapley value arise from several
OR and economic situations with interval data.

The interval Shapley value @ : SMIGY — I(R)" is defined by

1
D(c) = —~ > mo(c'). for each ¢’ € SMIG".
" oell(N)

The following example shows the calculation of the interval Shapley value in the
facility location interval game.

Example 4.2 Consider < N,c > as the facility location interval game in
Example 4.2. Here, N = {1, 2, 3} and the characteristic function ¢’ is given as

(1) =[555].¢ () =[4,4.4].¢ (3) = [4,4.4],
d(12) = [7,7.7].¢ (23) = [5.5.5]. ¢ (13) = [9,9.9],
¢ (123) = [10,11].

Then, the interval marginal vectors are given in the Table 6. The set of permutations
of N is

o1 =(1,2.3).00 = (1,3,2) .05 = (2,1,3),

7 (N) = o4 =(2,3,1),05 =3,1,2),06 = (3,2, 1)

Firstly, for o, = (1, 3,2), we calculate the interval marginal vectors. Then,
m? (') = (1) =[5,5.5].
my* (c’) = (123) — ¢/ (13) = [10,11] = [9,9.9] = [1, 1.1],
mP () = (13) = (1) =[9.9.9] - [5,5.5].

The others can be calculated similarly, which is shown in Table 1.

Table 6 Interval marginal vectors

o mi () | mi ()  m§(c)
o= (123 |[55}] [[2.24] |[3.3%]
oo =(1.32) [[5.54] [[1.1%] |[4.4.4]
o3 =(2.1.3) |[3.35%] |[4.43] |[3.37;]
=231 [[553] |[443] [[1.15]
=(.1.2) |[553] [[1.15] |[4.43]
=G.2.D) |[553] |[1.15] |[4.43]
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Table 6 illustrates the interval marginal vectors of the facility location interval
game in Example 4.2. The average of the six interval marginal vectors is the interval
Shapley value of this game, which can be written as:

@(c) = (42,521, 128.22). 3L 33).

5 Conclusion and Outlook

The objective of cooperative game theory is to study ways to enforce and sustain
cooperation among agents willing to cooperate. A central question in this field is
how the benefits (or costs) of a joint effort can be divided among participants, taking
into account individual and group incentives, as well as various fairness properties.

In this paper, we study some results related with facility location situations and
games. After that, we introduce facility location interval games. Further, we show
that some allocation schemes of facility games do not have PMAS.

For future studies, allocation schemes of other solutions can be studied and
interpreted. In this study, we introduce facility location interval games. Similarly,
potential interval games can be studied.
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Sequential Entry in Hotelling Model
with Location Costs: A Three-Firm Case

Stefano Patri and Armando Sacco

1 Introduction

In Industrial Organization Theory, the Horizontal Product Differentiation emerges
in the market when consumers do not agree on the preference ordering. Price and
location can be viewed as a metaphor of products characteristics. In this perspective,
Hotelling [12] provide a two-stage model where two firms first choice their location
and then fix the price of an homogenous good. Consumers are uniformly distributed
along a segment of unitary length and their utility is a function of prices and
transportation costs. In this context Hotelling derive the principle of minimum
differentiation, for which the equilibrium solution is that both firms choose their
location in the middle of the road.

Since this seminal work, several types of extensions have been provided in the
literature, regarding the number of firms, the structure of the city and the functional
forms of the model. The first attempts are Chamberlin [3] and Lerner and Singer
[16], in which models with more than two firms are considered. Eaton and Lipsey
[5] study a model with an arbitrary number of players, several possible structures
of the city and different distributions of the consumers, and they conclude that the
principal of minimum differentiation holds just under strong hypothesis. Moreover,
d’Aspremont et al. [4] show that neither this strategy neither any other possible
location are subgame perfect, because they fail to imply an equilibrium in price in
every subgame. If the utility function is altered, assuming a quadratic transportation
cost, then the principle of maximum differentiation is established. That means that
the two firms maximize the distance between them. Economides [7] consider a
linear utility for consumers and more than two firms, supporting a non-cooperative
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equilibrium in prices for each subgame, but the model fails to imply an equilibrium
in locations. More recently, Stuart [27] uses the core of cooperative games in the
price stage, while Brenner [1] analyze a multi-firm unit interval Hotelling model
under quadratic transportation costs. Peters et al. [25] add the expected waiting
time in consumers’ utility function, which depends on the number of consumer that
choose the same firm.

Salop [28] and Economides [6] analyze models with linear utility and multiple
firms located on a circumference. In particular, Salop shows that when firms are
equidistant then exists an equilibrium in prices. In the model of Lederer and Hurter
[15] firms are different and consumers are distributed non uniformly on the plane,
while Eiselt and Laporte [9] consider a model where three firms are on a tree.
Papers where consumers are distributed on a graph start to appear in literature just
in the last years (see e.g., Mavronicolas et al. [19], Nufiez and Scarsini [22, 23]).
Simultaneously entry is a common assumption in this kind of literature.

For that reason Prescott and Visscher [26] introduce the concept of sequential
location games, where firms enter the market sequentially, paying a fixed setup
cost and have no possibilities to relocate as response to new firm entry. Neven
[21] proposes a model of sequential entry in a standard Hotelling framework with
quadratic transportation costs. Extensions of this model are in Economides, Howell
and Meza [8], in which they also analyze consumer welfare and calculate various
measures of degree of asymmetry among firms, while Gotz [10] reexamines the
results of both papers. Moreover, Palfrey [24], Weber [29], Callander [2] and
Loertscher and Muehlheusser [17] combine the sequential entry with a not uniform
distribution of consumers. Jost et al. [13] consider a model of sequential location in
which the two incumbent firms can react to the entry of the third, choosing a new
location.

An implicit assumption in the Hotelling model is that the cost of location is
independent of location and normalized to zero. Also, the literature followed this
idea that location itself is free good. That means that the effects of location costs
on equilibrium are still poorly explored. An attempt in this sense is Mayer [20], in
which the production cost is conditioned on firm’s location, while Hinloopen and
Martin [11] consider the geographic interpretation of Hotelling model adding in
firms profit function a location cost that is independent on production. Mallozzi [18]
uses the cooperative game tools to address the problem of a single facility location,
when an installation cost that depends on the region occurs.

The aim of this paper is to make another step in exploring the effects of costs of
location in the Hotelling model. We are in the classical linear city, where consumers
have to face a quadratic transportation cost. We solve the game backward, assuming
a general form of costs of locations in the price stage. Also, we will show that this
terms can lead to multiple equilibrium in the location stage, when a third firm enters
in the market. To solve the location problem we consider two different functional
forms, to take into account that the costs of location are function of location
themselves. For example, in Europe centre-city locations are more expensive than
the periphery, while in the USA is just the opposite (see Karmon [14]). Moreover,
we want to analyze the impact of cost of locations in a dynamic framework, then we
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divide the paper in two step. In the first one two firms play the classical location-
cum-price Hotelling game. In the second step a third firm enters the market choosing
price and location, and we allow the two incumbent players to react.

The rest of the paper is organized as follows: in Sect. 2 we present the model; in
Sect. 3 the case of two firms is considered, while in Sect. 4 we analyze the impact of
the entry of a third firm. Section 5 concludes.

2 The Model

As in d’Aspremont et al. [4] and Brenner [1], a classical Hotelling game, where
consumer are uniformly distributed on the unitary interval, is considered. Assuming
that each consumer i, located in a point s, has a quadratic transportation cost, the
utility function can be written as follows

u;i(xj, pj) = k—p; — (x; — )7,

where x; and p; are, respectively, the position and the price charged by the firm j.
The parameter k£ > 0 represents the reservation price and it is assumed to be high
enough to guarantee that every consumer buys a unit of product.

Following Jost et al. [13], the model considers a dynamic version of the Hotelling
problem, in which the game is played into two steps. In both steps the game is a two
stage, in which the firms choose location in the first stage and fix the prices in the
second stage. Also, in both steps the two stage game is solved backward, addressing
the price game first and using the optimal solutions to solve the location game.

e Step One. In the first step the set of players / is composed of two firms, denoted
by A and B, that play simultaneously a location-cum-price game. The set of
strategies in the first stage are the locations (x4, xz), where x; € [0, 1], while
strategies are given by prices (pa, pg) in the second stage. This step is a classical
Hotelling situation.

* Step Two. In the second step a third firm, denoted by C, enters the market. The
difference in this step is that the location stage is not played simultaneously by
every players. The stage is played as follows

1. Firm C maximizes its own profit function to find the optimal location xc.

2. The incumbent firms A and B internalize the optimal location x¢ and evaluate
their profit function taking it into account. Then, the incumbents are allowed
to react to the entry of firm C changing the locations (x4, xg) chosen in the
first step.

3. The price stage is played simultaneously by the three firms.

Respect Jost et al. [13] in this model the location is not a free good. A cost of
location function affects the payoff of each player. This function is assumed to be
continuous and depending only on the locations. Then, it has no effects in the price
stage, but it can change significantly the choice of the optimal location.
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3 Two-Firm Case

In this section the first step with two firms is considered. The two players, denoted by
A and B, address a two stage game in which they have to choice first their locations
(x4, xp), where the admissible positions are on a road of unitary length. In the second
stage the firms fix the prices (p4, pg). In order to find the Nash equilibrium the game
is solved backward, then the price stage is solved first, taking as given the locations.

The payoft of the firm j, denoted by IT;(-, -), depends on the vector of locations
X = (x4, xp), on the vector of prices p = (pa,pg) and on the costs of location, as
follows

IIj(x, p) = p;D;(x,p) — I(x)), (1)

where D;(x, p) is the demand function and /(x;) is the location cost of the firm j.
Given the uniformly distribution of consumers on the unitary segment, the two

demand functions are determined by the indifferent consumer, that is the individual

for which is indifferent to buy from firm A or firm B. The location ssap of the

indifferent consumer is given by solving the equation u(xs,ps) = u(xp,pg), as
follows

Gip = PBTPA Xg + Xp

4B (s — x0) 2

Then, the demand functions are D4 (X, p) = sap and Dp(x,p) = 1 — s4p.

The functional form of /(x;) is not established in the price stage. The backward
approach requires to find first the equilibrium in prices, that is given by solving the
system of maximization problems

max [T (%, p) = maxpy | —o2—PA_ 4 24 L I(xa),
DA PA Z(XB _XA) 2

max I1g(x,p) = maxpp| 1 — Ps—Pa Xt 1(xp).
PB B 2(xp — x4) 2

Computing the first order conditions the optimal prices are given by

1
Pi= 5(2 + x4 + xB)(xg — X4),
()

3(4 — x4 — xB)(xXp — X4).

Pk
In order to solve the first stage of the game and find the optimal locations, it is
necessary to substitute the solutions (2) in the payoff function (1) and derive respect

the variables x4 and xp as follows
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0 1 1
. 3(2 + xa + xp) (x5 —M)[g(l — x4 — xp) + 2 ;XB:| - l(xA)} =0,
3)
d 1 1
@{ 3(4_)@4 — xp)(xp —XA)[l - 5(1 —Xg —Xg) — i ;XB1| —Z(XB)} = 0.

The system (3) can be reduce to

oIl 1

3xA = _ﬁ(3xf2; + 8x4 + 2405 — x5 + 4) = I'(xa) = 0, “)
A

JaI1 1

axB — E(3x12;_16XB_|_2)CA)CB—xi—|—16)—l/(x)3) =0. (5)
B

The system of Egs. (4)—(5) is non linear in the variables x4 and xp and require a
specific functional form of the cost of location to be solved. The next proposition
characterizes the solution for some classes of cost of location.

Proposition 1 If the cost of location function is constant or increasing going
toward the centre, then the maximum differentiation principle holds.

Proof Consider a function I(xj) = ¢, where ¢ is a constant, so that I'(xs) = '
(xg) = 0. In this case the system (4)—(5) become

all 1

WA = —§(3xi + 8x4 + 2x4xp —xé +4) =0,
A

aIl 1

WB = E(?)XZB — 16xp + 2x4x5 — x5 + 16) = 0.
B

After some algebras it is possible to show that 33% < 0 and aaﬂ > 0, for every
A XB

allowed values of x4 and xp. Consequently, the firm A chooses the minimum value
possible, that is x4 = 0, while the firm B chooses the maximum value possible, that
is x3 = 1. For the second part of the proof consider a location cost function that is
not constant, but that increase going toward the center.

This function /(x;) is assumed to be always positive in the interval [0, 1], and that
it has a maximum in x; = 1/2. In order to proof the proposition the only condition
required is that /(0) = [(1) = min, [(x).

Consider first the firm A. Its payoff is given by the function

ITy = R(xa) — C(xa) = paDa(xa) — I(xa),

where R(-) represents the revenues and C(-) represents the costs. Assuming that
payoff is always positive, the aim is to prove that
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R(0) = C(0) = R(xa) — C(xa), Vxa €[0,1]. (6)

From Eq. (4) it is known that R(0) > R(x4), while for hypothesis holds C(0) <
C(xa), Vx4 € [0, 1]. As consequence, the inequality R(0) — R(x4) > C(0) — C(x4)
always holds and the proposition is proved for firm A.

Heuristically, it is possible to say that the location x4 = 0 maximize the revenues
and minimize the location cost, and for that is the optimal location for the firm A.

A specular reasoning leads to conclude that the location xz = 1 is the optimal
one for firm B.

Then, the two firms has no incentives to move and the equilibrium of the game is
given by

(py-x3) = (1,0), (Pg-xp) = (L. 1).
Remark 1 (Costly Periphery) The locations are not more expensive in the centre-

city everywhere. For that reason it is interesting to analyze also the case of costs of
location that increase in the periphery. Then the function /(x;) is chosen as follows

1 2
() = (x.i_ 5) +r,

where r is a constant. The derivative of this function is
l’(xj) =2x— 1. 7

Substituting (7) in the system (4)—(5), the optimal locations solve the following

oIl 1

WA - —E[:%xj—2xA(14—2xB)—x,23+22] =0, (8)
A

a1

WB = E[sxg — 2(26 — xp)xp — X + 34] = 0. )
B

This system has a unique solution in the set of admissible values that is given by the
couple (x},x3) = (0.31,0.69). Then the game has a unique Nash equilibrium, in
which prices are still symmetric, given by

(5. x}) = (0.38,0.31),  (ph.x}) = (0.38,0.69).
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4 Three-Firm Case

In this section the second step of the game is presented. Consider a third firm,
denoted by C, that enters in the market in position x¢, such that x4 < x¢ < x,
and that offers the product at the price pc.

Then, there are two indifferent consumers that are located in ss¢c and scp, given
by the points

g = PCTPa Xq +Xc

A€ (e — xa) 2

g — PBTPC Xc + xp

B 2()(3 —)Cc) 2

The indifferent consumer positions imply the demand functions of the three firms,
as follows

Da(xa, Xc,paspc) = Sac,
DC(XA’xB,xC,pA’vaPC) = SCB — S4B;

Dg(xc,xg,pc,pg) = 1 — sca.

As in the first step, the three firms have to maximize their own payoff, respect price
and location, that are given by

Iy = paDa(xa, xc, pa,pc) — (xa),
¢ = pcDe(xa, xp, Xc, pa, Pe. pc) — l(xc),
ITg = peDp(x4,Xc,pa.pc) — l(xp).

4.1 Price Stage

Also in the second step the game is solved backward looking first to the equilibrium
in prices. Then, the three firms maximize the profit function respect the vector of
prices. The optimal prices are the triple (p}, pg., pp) that solves the system

d
a—[PADA(xA,XC,PA,PC) —l(xx)] = 0,
PA

0
%—C[PCDC(XA,XB,XC,PA,PB»PC) —l(xc)] =0, (10)

0
a_[pBDB(xA»xC»pAvpC) —l(xp)] = 0.
PB
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In this stage players are supposed to play simultaneously, then substituting the
demand functions and solving the system (10), the prices of equilibrium are given by

pz = %[S(XC + )CA)()CB —)CA) + (-xB _)CC)(2 + xp _)CA)]7

. (g —xc)(xc —xa)(xp — xa +2)
o™ 30 =) ’ "
Py = ﬁﬁ(xg —x4)(2 —xp — x¢) + (xc —x4) (2 + xp — x4)].

4.2 Location Stage

The location game is solved first by the entrant firm C. The payoff of this player is
given at this stage by the function

(XB — XA + 2)2

18(xp — x4) (xc — x4) (xg — xc) — I(xc).

He(xa, x5, x0) =

Computing the first order conditions the solution x{. solves the equation

xp — xp + 2)?
b 8 E 2Py~ 2x0) L x) = 0. (12)
18()63 — XA)
Again, the effective positioning of the firm depends on the functional form of the
location cost function. If it is constant, so that I’(x¢) = 0, then the firm C chooses a
location exactly halfway between firms A and B:

XA + X

*x
Xc =

4.2.1 Costly Centre-City

In the first step, in case of locations that are more expensive in the centre of the
city the maximum differentiation principle holds and the equilibrium locations are
(x3,x3) = (0, 1). What happens if a third firm is present in the market?
A quadratic function is assumed to represent the location costs, as follows
2
I(x) = x; — x;.

Substituting the first derivatives of /(xc) in Eq.(12) and solving respect xc, the
optimal location is given by
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= (XB — x4 + 2)2()(,4 + XB) — 18(XB —XA) (13)
€T Qg —xa +2)2—18(xg —xa)]

The incumbent firms react to the entrance of the firm C internalizing its optimal
position (13) and maximizing their payoff. The payoff functions of firms A and B
are as follows

Iy = piDs(xa, x, X5) — xa(1 — x4),

ITp = pyDp(xa, xp, x3) — xp(1 — xp).

The first order conditions, a% = 0and %XL: = 0, constitute the system that brings
to the optimal response. Solving this system leads to multiple Nash equilibria in
the location game, more specifically there are two solutions (x},x;) allowed by the
model:

(x%.x5) = (0.586184,0.600714),
(x%.x5) = (0.391533,0.584469).

Substituting these solutions in Eq. (13), the complete Nash equilibria for the location
stage are given by

(. xt. x5) = (0.586184,0.599886, 0.600714),

(3, x5 x5) = (0.391533,0.456813, 0.584469). 1
Both solutions highlight the tendency of firms A and B to deal with higher location
costs to react to the entry of firm C. From these results seems that the incumbent
firms prefer to pay more for location and stay close to the entrant instead of minimize
the cost of location giving more space to the firm C. That is clearly a result that
overturn the solution of the first stage in which the two firms prefer to maximize the
distance between them.

4.2.2 Costly Periphery

The entry of the firm C in case of more expensive centre locations leads the
incumbents to pay more for location in order to relocate close to the entrant. In
the first step higher costs of location in the periphery lead the firm A and B to move
toward the centre. Then, it is interesting to analyze what equilibrium is achieved in
the second step, also in this last case. Consider the following location cost function

1 2
l(xj) = (x.i_z) .

where r is a constant. The computational process is the same of Sect. 4.2.1.
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The first move is made by the firm C that addresses the payoff maximization and
looks for the optimal location that is given by the solution of the equation

2

W =Xt 27 ) e+ 1 =0, (15)
18(X B — XA)

respect the variable x¢. The two incumbent firms internalize x7. solution of (15) and

maximize their own welfare, in order to choose the best response to the entry of

firm C. In this case there is a unique Nash equilibrium allowed by the model, that is

given by the triple

(x5 xt. x5) = (0.437419,0.558699, 0.823202). (16)

Figure 1 shows how the incumbent firms reply to the entry of firm C changing their
position and prices. On the horizontal axis there are locations, while on the vertical
one there are prices. In the second step (the blue lines), the two incumbent firms
react moving toward the end of the street respect the first step (the green lines).
Moreover, the entry on the firm C, cause a sensible decreasing in prices, that are
given by the triple

(0. pe.py) = (0.0935,0.0661,0.1148). (17)

Independently on the location cost function, the entrant firm C chooses a location
that is around the middle of the road. Instead, the reaction of the incumbents changes
as the location costs change. When the structure of this costs causes higher costs
in the centre of the city the firms A and B prefer to pay these higher costs and
relocate closer to the firm C. When the location costs are higher in the periphery,
the incumbents move toward the end of the line, that means that the firm A pays
lower location costs and relocate itself near the entrant, while the firm B pays higher
location costs and choose to move away from the firm C.

step one
step two
p
— —
‘ | .
0 0.31 0.437  0.559 0.69 0.823 1
—0)  (0) X (x3)

Fig. 1 Reaction of the incumbent firms when /(x;) = (x_,- - %)2 +r



Sequential Entry in Hotelling Model with Location Costs: A Three-Firm Case 271

5 Conclusions

The effects of costly locations were largely not considered in the literature. The aim
of this paper was to address the location-cum-price problem when the location is
not a free good. Moreover, we wanted to consider also how it can affects the choice
of the firms when a dynamic interaction is allowed. Then the game was played
in two different step, a first one in which a classical Hotelling duopoly is played
and a second one in which a third firm enters the market producing the reaction of
the incumbents. In the first step the classical result of maximum differentiation is
confirmed, if the location costs are constants or more expensive in the centre-city.
Nevertheless, we showed that when the periphery is more expensive the firms tend
to move toward the centre.

In the second step a third firm enters in the market and chooses the location. As
consequence, the incumbents reconsider their optimization problem internalizing
the presence of the entrant and react to the new situation. The results are different
and depend on the functional form of the location cost function. In both cases
considered in the paper, the entrant choose to locate itself around the middle of
the road, but the reaction of the incumbents change as the structure of location cost
change. Moreover, we showed that in some cases multiple equilibria may be present
in the location stage.
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Nash Equilibria in Network Facility Location
Under Delivered Prices

Blas Pelegrin, Pascual Fernandez, and Maria D. Garcia

1 Introduction

Some competitive location models attempt to find the locations of facilities at which
profit is maximized. Profit is strongly affected by both the locations of facilities
of the competing firms and the price set by firms in each customer area. If the
firms enter simultaneously in the market, the maximization of their profit can be
seen as a two-stage game. In the first stage, the firms simultaneously choose their
facility locations. In the second stage, the firms will compete on price. The division
into two stages is motivated by the fact that the choice of location is usually prior
to the decision on price. Observe that location decision is relatively permanent
whereas price decision can be easily changed. The two stage game can be reduced
to a location game if there exists a price equilibrium in the second stage which is
determined by the locations chosen by the firms in the first stage. Once the facility
locations are chosen, the firms would set the equilibrium prices, and then their profit
would be determined. Thus, the location-price problem could be considered as a
game in which firms decide only on facility location. Other similar location games
where the payoffs are given by market share or profit can be seenin [1, 7, 17, 20, 27].

The existence of a price equilibrium in the second stage of the game depends on
the price policy to be considered, among other factors. Most of the papers dealing
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with the location-price problem consider two competing firms under any of the two
following policies: mill pricing and delivered pricing. With mill pricing, a price
equilibrium rarely exists (see for instance [4, 13, 14, 24]). Then the location-price
problem has been studied as a location game by taking prices as parameters. For two
competing firms on a tree network, it has been proved that a Nash equilibrium (NE)
exists with locations at the median nodes if both firms set equal prices (see [9, 10]).
For more than two firms, a location NE on a tree may not exist for equal prices as it
has been proved in [11]. The profit maximization problem for an entering firm has
been studied on a general network (see [26, 28]), but existence of a Nash equilibrium
on a general network has not been proved when firms compete simultaneously
on location. With delivered pricing, a price equilibrium always exists under quite
general conditions. The existence of a price equilibrium was shown for the first time
by Hoover [19], who analyzed spatial discriminatory pricing for firms with fixed
locations and concluded that the local price set by a firm serving a particular market
will be constrained by the delivery cost of the other firms serving that market. In
situations where demand elasticity is ‘not too high’, the equilibrium price at a given
market is equal to the delivery cost of the firm with the second lowest delivery
cost. This result was extended later to spatial duopoly (see [21, 22]) and to spatial
oligopoly for different types of location spaces (see [9, 14]).

Under delivered pricing, the equilibrium prices are usually determined by the
locations of the facilities, then the location-price problem can be reduced to a
location game. This location game has been scarcely studied in the location litera-
ture. For completely inelastic demand, the existence of a location Nash equilibrium
has been proved. In a duopoly with constant marginal production costs, Lederer
and Thisse [22] showed that a location Nash equilibrium exists which is a global
minimizer of the social cost. The social cost is defined as the total delivered cost
if each customer were served with the lowest marginal delivered cost. In oligopoly,
the same result is obtained in [6], where the authors present a model in which firms
compete with delivery pricing and locate single facilities on a network of connected
but spatially separated markets. If demand is price sensitive or marginal production
costs are not constant, the minimizers of social cost may not be a location NE (see
[16, 18]). The profit maximization problem for an entering firm has been studied
with price sensitive demand (see [15]), but existence of a location Nash equilibrium
has not been proved when firms compete simultaneously on location.

The problem of minimizing the social cost on a network has been studied for
two competing firms when marginal delivered costs are concave. This problem is
equivalent to the r-median problem if the marginal delivered cost from each site
location to each demand point is the same for all competing firms (see [25]). There
is an extensive literature on algorithms to solve the r-median problem on networks
which can be used to find a location NE (see for instance [2]). If marginal delivery
cost from each site location to each demand point is different for each competitor
the problem has been solved by using a Mixed Integer Linear Programming (MILP)
formulation (see [25]). The problem of minimizing the social cost on a plane has
been solved for two competing firms which locate single facilities (see [5, 12]).

The aim of this chapter is to extend the main results on the above mentioned
location-price problem with delivered pricing to a general framework where there
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are more than two competing firms, each of them locating multiple facilities. The
problem is studied for constant and variable demand which is located at the nodes of
a transportation network. The chapter is organized as follows: In Sect. 2, it is shown
how the location-price problem is reduced to a game with decisions on location.
In Sect. 3, the existence and determination of location NE is studied for constant
demand. In Sect. 4, the existence and determination of location NE is studied for
variable demand. Finally, the selection of a location NE when there are multiple
location NE is discussed in Sect. 5.

2 The Location-Price Problem

Let us consider N firms that sell an homogeneous product and compete for demand
in a certain region. The firms manufacture and deliver the product to the customers,
which buy from the firm that offers the lowest price. The firms have to choose their
facility locations in some predetermined location space. Once their facility locations
are fixed, the firms will set delivered prices at each customer area. Thus, each firm
has to make decisions on location and price in order to maximize its profit.

As location space we will take a transportation network G = (V, E, [), where V
is the set of nodes, E is the set of edges, and / : E — R with I(e) being the length
of edge e. Distance between two points a and b in the network is measured as the
length of the shortest path linking the two points and it is denoted by d(a, b). It is
assumed that customers are grouped at the nodes, then the set of customer areas
is given by V = {1,2,...,m}. The firms are supposed to locate their facilities at
points on the network, then the set of location candidates for each firmis L = VUE.

The following notation will be used:

Indices

n index of the firms,n =1,...,N

k index of the nodes, k =1, ...,m.

Data

qx(p) demand function at node k

cy marginal production cost of firm z at location x

Iy marginal transportation cost of firm n from locationx
to node k

Cy = ¢ + 1ty marginal delivered cost (or minimum delivered price)
of firm n

from location x to node k

Decision variables

X" set of facility locations for firm n
p;  price the firm 7 sets at node k



276 B. Pelegrin et al.

Miscellaneous

C{(X") = min { X E X”} minimum price the firm n can set at node &
Ci(X) = min{Cy : x € X} minimum price the facilities in the set X
can set at node k

Let gx(p) be continuous and strictly decreasing at all p in [0, p{"*], where p{'** is

the maximum price that customers in market k are willing to pay for the product.
We consider that the demand function g, (p) in market k£ may be different from the
demand function in other markets. In order to make competition effective in each
market k, we assume that the competing firms are able to price below the maximum
price ,i.e. CY(X") < py® forall X", n =1,2,...,N.

Marginal delivered costs are supposed to be independent of the amounts deliv-
ered and firms use linear prices. Thus, the profit any firm gets from market k, serving
the full market at price p, is ITy(p) = qi(p)(p —c), where c is the marginal delivered
cost of the firm. Then the monopoly price in market k is the optimal solution to the
problem:

max {T,(p) : ¢ < p < P}

and it will be denoted by p;**"(c).
The following assumptions concerning the previous maximization problem are
considered:

Assumption 1 [T;(p) is a unimodal quasi-concave function in [0, py'*].

Assumption 2 ¢ < p{"”"(c), for each ¢ > 0.

Assumption 3 p{*"(c) is a continuous increasing function at all c in [0, p'™].

The first assumption guarantees the existence of a unique maximizer of the profit
function, and therefore a unique monopoly price for each ¢ value. The second
assumption avoids trivial cases in which the optimal price is the marginal delivered
cost, and consequently the profit is zero. The third assumption will be used to prove
a convexity property of the maximum profit. There exists a variety of demand
functions for which the previous assumptions are verified. Some examples are
shown in Table 1.

The previous location-price problem can be seen as a two-stage game. In the first
stage the firms compete on location. In the second stage, once the facility locations
are fixed, the firms will compete on price.

2.1 The Second Stage of the Game

First, we will show the existence of a unique price equilibrium for any set of facility
locations. Let us consider that customers do not have any preference concerning the
supplier and they buy from the firm that offers the lowest price. It is assumed that
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Table 1 Some demand functions and their monopoly prices

Demand qx(p) PE”(c)

Linear oy — Bip %(c + %
0<p=<¢§

Quadratic o — o’ %(" + e+ 3%)
0<p=<,/ %

Exponential ope P c+ ﬁ%\
0<p<oo

c Bk

Hyperbolic | axp™* B

0<p<oo,fr>1

each firm cannot offer a price below its marginal delivered cost and each facility can
supply all demand placed on it. Thus, each firm n will set a price at node k which is
greater than, or equal to, C}/(X") for any set of facility locations X", n = 1,2...,N.

If two firms offer a minimum price at node k, the one with the minimum marginal
delivered cost can lower its price and it obtains all the demand in node k. Then we
consider that ties in price are broken in favour of the firm with the lowest marginal
delivered cost. If the tied firms have the same marginal delivered cost in node k, no
tie breaking rule is needed to share demand at node k because they will obtain zero
profit from node k as a result of price competition.

In the long-term competition, customers at node k will not buy from firm
n it CY(X") > min{C{(X*) : u = 1,2,...,N}. Therefore, each node will
be served by the firm with the minimum marginal delivered cost and such a

firm will set a price which maximizes its profit. Let X = (XI,XZ, XY
denote the set of fixed facility locations. For n = 1,2,...,N, let C{"(X") =
min{ vxeXu=1,...,Nu# n} denote the minimum delivered cost of the

competitors of firm n.
The price competition is as follows:

1. If Ci(X") < C”™(X"), then firm n obtains a maximum profit from node k by
offering a price equal to the optimal solution of the following problem:

Max (I (p) = qe(p) (p — Gi(X™) : GI(X™) < p = G™(X");

The optimal solution to this problem is unique and it depends on the set of
facility locations X. The solution is given by:

P (CR(X™) if P (CRX™) < G(X™)
PiX) =
C]C(‘()m(XVl) l‘fpkm()n(CZ(XI‘l)) Z C]L(‘Om(XVl)
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2. If CH(X™) = C;°™(X™), then firm n obtains zero profit from node k. In this case,
firm n sets a price p}(X) = C}(X") to make its competitors obtain a minimum
profit from node k.

It is clear that no firm n can get a greater profit from node k by changing the price
Dp(X) while the other firms keep such prices. Then p}(X),n = 1,2,...,N, are the
unique equilibrium prices in market k.

2.2 The First Stage of the Game

Let us assume that for any fixed set X = (X!, X?,...,X"), the firms will set the
equilibrium prices pj(X), n = 1,2,...,N. Observe that price competition lead to
each firm n will monopolize a group of nodes from which the firm gets a positive
profit. This group of nodes not only depends on the locations of the facilities of firm
n, but it also depends on the locations of the facilities of its competitors. Such group
of nodes is denoted by M"(X) and it is given by:

M'(X) = {k: CIX") < G (X")}

Then, the profit obtained by firm 7 is:

m

m(x) = k; k(P (X)) (pr(X) — Cy(X)) =
> ak(prX))(Pr(X) — G (X))

keM"(X)

If the competing firms set the equilibrium prices, the location-price problem can
be seen as a location game LG = {N,X",IT" : n = 1,...,N}, where N is the
number of firms (players), X" represents the set of facility locations chosen by firm
n, and IT" is the payoff firm n obtains. This game captures the idea that, when firms
select their locations, they all anticipate the consequences of their choice on price.

For simplicity, given X = (X', X?,....X"), we will use the notation
X = (X",X™"), where X™" is the set of locations of the competing firms
but n. Then a location Nash equilibrium (NE) is defined as a set of locations

(X X2, XY ) such that for any n it is verified that:

o X" X™" > m(x",X™"), vx"
In the following we will study the problem of existence of location NE, and

the problem of finding such equilibria if they exist. We will distinguish between
essential and non essential products.



Nash Equilibria in Network Facility Location Under Delivered Prices 279
3 Location Nash Equilibria with Essential Products

Let us assume that firms sell essential products. This means that demand does not
change when price changes. Then the amount of demand at each node & is given by
a constant function, ¢x(p) = O, k=1,...,m.

3.1 Existence of NE

For constant demand functions, the existence of a location NE can be proved by
using the concept of social cost. The social cost is defined as the total cost incurred
to supply demand to customers if each customer would pay for the product the
minimum delivered cost. Then, for any fixed set of locations X = (X', X2,...,X"),
the social cost is given by:

S(X) =Y Qemin {Cy(X"). CZ(XP). ... Y (XV)}
k=1

Firstly, it is shown that the profit obtained by any firm is the total cost that would
be experienced by its competitors serving the entire market with the minimum
delivered cost minus the social cost. Secondly, a characterization of location NE
is obtained. Finally, the existence of a location NE is proved.

Property 1 If the firms set the equilibrium prices in each market, then for
n=1,...,N, it is verified that:

m'(x) = ) CG"(X") Ok — S(X)

k=1

Proof Since gi(p) = O, the equilibrium prices are given by:

ComXm) if CHX™) < Co™(X™)
CL(X™) otherwise.

proo = |
Then the profit obtained by firm n can be expressed as follows:

T(X)

> o (Gt = Crxm)

keM(X)

Do oG - Gixn)

keM" (X)
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+ ) QG = ) QX

kEM" (X) kEM™(X)

= > O (XM) = Y Qemin {CHX"), G (XM}
1 k=1

~
Il

QG (X™) — S(X).

I
NE

»
I

a
Property 2 X is a location NE ifand only if forn = 1,..., N, it is verified that:

SX", X" < S(X", X" VX"

Proof Note that X is a location NE if and only if forn = 1,2,..., N, it is verified
that:

XX > X", X™") vX".
From Property 1, these inequalities are equivalent to the following ones:

SX", X" < S(X" X" VX"

Property 3 Any global minimizer of S(X) is a location NE.
Proof 1t follows from Property 2. O

The existence of a global minimizer of social cost is proved by considering the
following assumptions:

Assumption4 Forn = 1,2,...,N the marginal production cost, c%, is a positive
concave function when x varies along any edge in the network, and it is independent
of the quantity produced.

Assumption 5 For n = 1,2,...,N the marginal transportation cost, ty, , is a
positive, concave and increasing function with respect to the distance from x to
each node k.

Concavity of marginal production cost and marginal transportation cost is
realistic in certain situations as it has been remarkable by many authors (see for
instance [20, 22, 27]). Under such assumptions, as dy is a concave function at x,
for any node k and x varying along any fixed edge, it is verified that the marginal
delivered cost, Cy = Cy + ty,, is also a concave function for any node k and x
varying along any fixed edge.
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Property 4 Under Assumptions 4 and 5, there exists a set of nodes which is a global
minimizer of the social cost.

Proof Let X = (X', X?,...,X") be an arbitrary set of facility locations on the
network. If x € X" is not a node, then x is in the interior of some edge ¢ = (a, b) € E.
Assume that all points in X are fixed, but the point x, which varies on the edge e.
Under Assumptions 1 and 2, it results that the minimum price to serve market &,
min {C}(X"), CZ(X?), ..., C}(XM)}, is a concave function when x varies on the edge
e and the other locations are fixed. Since the sum of weighted concave functions,
with non-negative weights, is also concave, it follows that the social cost, S(X), is
concave when x varies on the edge e and the other locations are fixed. Therefore, the
social cost reaches its minimum value on edge e forx = a or x = b.

Therefore, if we replace each non-node point in X by the corresponding
minimizer node of the social cost when the other locations of the facilities are
fixed, we will obtain sets of nodes V!, V2,..., V¥ for which S(V!,V?,...,VV) <
S(X',X2,,...,XN). Consequently, there exists a set of nodes V = (V1, V2,..., VN)
which minimizes the social cost. O

3.2 Finding a Location NE

From Property 4, it follows that a location NE can be found by minimizing the social
cost on the set of nodes. For any set of nodes X = (X1 JX2 . ,XM) every set X" can
be represented by a vector x" = (x{, x5, ...,x),) with components:

{1 ifnodei € X"
P71 0 otherwise.

Let x = (x',2%,...,x"). With this representation of X, the social cost S(x) is
given by the optimal value of the following optimization problem:

SC()C) Min Z Qk (Z Czkzlk + Z ClkZlk -+ Z Csztk)

i=1 i=1

m

st g+ Y G+ Y d=Lk=1L...m (1)

i=1 i=1 i=1

Zp <xiin=12,...,N; i,k=1,2,....m 2)

€10, 1} ;n=1,2,...,N; i,k=1,2,....m
Constraints (1) mean that for any k, only one variable zj;, will be equals to 1, the

one corresponding to the minimum delivered cost from the locations of the facilities
to node k. Constraints (2) mean that variable zj; may take the value 1 if x] = 1.
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For each k, note that the optimal solution to the previous problem is obtained by
assigning the value 1 to one variable zj, for which the following two conditions are
verified: Cj = min{Cj : j = 1,2,....mandx} = 1} and Cj < C*"(X"). The
value 0 is assigned to the other variables.

Therefore, the problem of minimizing the social cost when locations are nodes
becomes into the problem:

m m

sy Min Y>> Gz

k=1 n=1 i=1

N m
st Y Y di=lk=1...m 3)

e <xiin=1,...,N;i,k=1,....m )
Zx?:rn;nZI,...,N (5)
g, xl €0, 1};n=1,....N;i,k=1,....m

Constraints (5) show that each firm n selects r, facility locations, where r,, is the
number of facilities to be located by firm . Let X7 be the optimal values of variables
x!, then a location NE is given by X = (X', X%, ... . X") where X" = {i : =1},
n=12,...,N.

Problem (SCM) can be solved by any standard ILP-optimizer (Xpress, Cplex,
...). However, computational difficulties may occur when the number of binary
variables, which is Nm(m + 1), is large. To solve more efficiently problem (SCM),
the constraints zj € {0, 1} can be replaced by zj > 0. Note that for both sets of
constraints the same value of SC(x) is obtained. Therefore, an optimal solution of
(SCM) can be obtained by talking either the sets of constraints zj; € {0, 1}, or the
set of constraints zj, > 0.

3.3 Firms with Equal Marginal Delivered Costs

If the marginal delivered costs are equal for all the firms, Cj = Cjy for
n=1,2,...,N, the previous formulation of the social cost minimization problem
can be simplified. In fact, once the facility locations are fixed, note that any node
k is served from the facility with the minimum delivered cost. Since the marginal
delivered cost from each node is the same for all the firms, the minimum delivered
cost to node k only depends on the nodes where the facilities are located, no matter
which of the firms is the owner of the facility. Thus, if we consider the following
variables:
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.= 1 if a facility is located at node i
"7 | 0 otherwise

1 if node k is served from node i
Zik = .
0 otherwise

then the social cost minimization problem becomes into the following problem:

m

(SCM1) : Min Y Qi[> Caza]

k=1 =1
s.t. Zzikzl;kzl,...,m (6)
i=1

e <xip iL,k=1,....,m (7

in:r (8)
i=1
zx > 0,x,€{0,1}; i,k=1,....m

Constraints (6) mean that each node will be served by one facility, the one with
the minimum delivered cost. Constraints (7) show that node k can be served from
node i if x; = 1. Constraint (8), where r = r| 4. ..+ ry, represents the total number
of facilities to be located. The constraints z; € {0, 1} have been replaced by the
constraints z; > 0. The number of variables is now equal to m(m + 1), where m
of them are binary and the other are non negative. Then large size problems can be
solved by using standard optimizers. Observe that (SCM1) is a formulation of the
well known r—median problem (see [2, 23]).

If X is the set of nodes corresponding to the optimal solution £ = (£, ..., %)
of problem (SCM1), i.e., X = {i : X; = 1}, then any partition ()21,)22, ... ,)fN) of
X verifying |)2”| =r,,n=12,...,N,is alocation NE. This is true due to Xisa
global minimizer of social cost. Consequently, there exist a large number of location
NE. The problem of selecting one of such equilibria is considered in Sect. 5.

4 Location Nash Equilibria with Non Essential Products

Let us now consider that demand is sensible to price. This happens for products
considered as not necessary to the customer. The demand at each node k is given by
a function g, (p). We first prove a convexity property of the maximum profit that is
obtained by any firm at each node. This property will be used to show that for any
firm n, there is a set of optimal locations at the nodes for any fixed locations of its
competitors.
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4.1 Convexity of the Maximum Profit at a Node

Let us consider that the locations of the facilities of firm n, X", may change, but the
locations of the facilities of its competitors are fixed. Given a node k, for simplicity
let c = C(X") and ¢{”" = C{""(X"). The maximum profit of firm » at node k, as a
function of the marginal delivered cost, is given by:

' (c) = max{g;(p)(p —c) :c <p Z "} if ¢ < "

Since p;’®*(c) is a continuous increasing function (Assumption 3), it follows that
P (c) < " if and only if ¢ < ¢ for someone threshold value ci. Then the
maximum profit in market & is given by the following function (see Fig. 1):

a (PP (@) (" (c) —¢) if c < ck
HI?(C) = Qk(Czom)(Ciom . C) lf o <c< Ciom

Observe that I1}' (c) depends on the demand function g (p) and it can be nonlinear
in the interval [0, ¢], but it is always linear in [ck, c¢{*"].

Property 5 I1]'(c) is a decreasing convex function in [0, pj'®*].

Proof 1t is clear that function I1}'(c) is decreasing at c, so we will show that it is

convex. Let ¢; and ¢; be in [0, py'*], and ¢, = Ac; + (1 —A)cz, 0 < A < 1. For
mon

simplicity, let py = pi""(c1), p2 = pi”"*(c2), p» = pi®"(cy). From Assumption 3,
as c) < ¢y < ¢y, it follows that p; < py < p».

My

com
ck

Fig. 1 Maximum profit function
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We have to prove that I} (cy) < AII}(c;)+(1—A)I1}(c2), for which we consider
the three following possible cases:

i) If ¢y < ¢y, then:

IT (c3) = q(p2)(Pr — 1) = () (Pr — Act — (1 = A)c2)
= Aqi(P2)(pr — c1) + (1 = Vg (pa) (pa — c2)

Since ¢) < ¢ and ¢; < p{®*(c1) = p1 < pa, it follows that ¢; < py < ",

and therefore gx(py)(pr — c1) < II}(c1). Since p; < ¢, it is verified that
qrx(pr)(pr — c2) < II}(c2). Then we obtain:

I (c3) < ML (c1) + (1 = VT (c2)
ii) If cx < cp < ™", then:

T (c2) = @) (™ — c2) = @) (™ — Aer — (1 = A)er)
= Agi(c”") (™ = c1) + (1 = Mg ) (™ — c2).

Since ¢; < ¢y and ¢ < ¢, then c; < ¢;". Therefore, qi(c;™")(c;™" —

c1) < I1}(c1). On the other hand, we have that g (c{”")(c{" — ¢2) < II}'(c2)
if o < ¢ and g (i) (" — ) < 0 < [T} (c2) if ¢2 > . Then we
obtain:

T (c2) = AT (er) + (1 = VT (c2)

iii) If ¢ < cp, then: IT'(c3) = 0 < AIT(c1) + (1 — )T} (c2). O

4.2 Existence of Location NE

For variable demand functions ¢, (p), k = 1, ..., m, the social cost is given by:

S(X) =) qu(Ci(X)) Ci(X)

k=1

where Ci(X) = min{C}(X"), C2(X?),...,CY(XN)}. Contrary to what happens for
constant demand functions, a minimizer of the social cost may not be a location NE,
as it is shown by the following example.

Consider two competing firms on the network shown in Fig. 2, each firm locating
one facility. The number in each edge (i, k) is the marginal delivered cost, C},
between i and k, being Cilk = Cizk. Demand in each node £ is linear and given by

g(p) =4—-p,0<p =<4
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Fig. 2 Transportation network

Table 2 Social cost and profits

X |Sx) |MmTY(x) | IM*X)
12 |75 |7.125 |4
1,3 1675 |7.25 4
14 1675 |7.25 4

23 |7 5 4.75
24 |7 5 4.75
34 |55 3 3

Let X = (i,j) be facility locations, where node i is the facility location for firm
1, and node j is the facility location for firm 2. Since Cilk = Ci, it is verified
that S(i,j) = S(.i) and IT'(i,j) = IT%(j,i) for all (i,/). In Table 2, the values
S(X), IT'(X) and IT%(X) are shown for the different combinations (i, j), i < j. Note
that pairs (2, 3) and (2, 4) are location NE while the minimizer of social cost, the
pair (3, 4), it is not a location NE.

The previous example shows that social cost cannot be used to obtain a location
NE if demand is sensible to price. In this case, to our knowledge, no proof has been
given to guarantee the existence of a location NE.

4.3 Finding a Location NE

We propose to use the best response procedure to find a location NE. This procedure
has extensively been used in Game Theory to find NE when they exist (see [8]).
In our location game, the best response function is obtained as follows:

e Given a set X = (X', X2,...,X") of facility locations, for each firm n the
following optimization problem is solved:

P'(X™) : Max{IT"(Y",X™") : [Y"| = r,, Y" C L}

+ LetX"bean optimal solution of problem P"(X™"), then the best response of firm
n to the locations of the facilities of its competitors X" is defined as follows:
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Rn(X) . ?Vl l"}(' H’l(?VI’X—”) > HI’[(X}’!,X_I’I)
| X" otherwise

* The best response function is R(X) = (R'(X), R*(X).....RV(X)).

It is clear that X is a Nash equilibrium if and only if R(X) = X. Therefore, the
following algorithm can be used to obtain a location NE.

Algorithm BR

Step 1:  Start with any feasible set of facility locations,
X =x4X2. .., XY,

Step 2:  For each n:
i) Find an optimal solution Y™ to problem P*(X™").
ii) Determine R"(X).
Set R(X) = (R'(X).R*(X), ..., RV (X)).

Step 3:  1If X = R(X), X is a location NE, STOP.
Otherwise, set X = R(X) and go to Step 2.

Algorithm BR requires to solve problem P"(X™") for each firm n. The following
property will be used to solve such a problem.

Property 6 Under Assumptions 4 and 5, there exists a set of nodes which is an
optimal solution to problem P"(X™") for each n.

Proof Let X" be an optimal solution to P"(X™"). Assume that there is a location
x; € X" which is an interior point on some edge (a, b). Let us consider all locations
in X" are fixed but x; which is assumed to vary in (a, b).

Since the minimum of concave functions is also concave and Cy is a concave
function at x; in (a, b), then C,’C‘()A(”) = min{Cyy, C,’C’()A(” \ x;)} is also concave at
x; in (a, b). From Property 5 we have that H,:’(C,’(’()A(")), as function of CZ()A(”), is
decreasing and convex. From the theorem of composition of convex functions (see
[3]) we obtain that IT}'(C} (X")) is convex at x; in (a, b) if X" \ x; is fixed.

The sum of convex functions is also convex, therefore the profit function defined
as [I(X") = Y, IP(CHX™) is convex at x; in (a,b) if X" \ x; is fixed. This
function reaches a maximum value in an extreme point of the edge (a, b) when x;
varies in (a, b). Then the location set X" can be improved by replacing point x; by
one of the nodes a or b (the one for which a maximum profit is obtained).

Therefore, if the set of optimal locations X" contains non nodes points, each non
node point can be replaced by one node so that a new set of locations V" is obtained
whose points are nodes and 7 ()A(”) = I1(V"). Consequently, there exists a set of
nodes which is an optimal solution to P*(X™"). O

If Assumptions 4 and 5 hold, from Property 6 an optimal solution to problem
P*(X™") can be found as follows:
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Let us define the following sets and variables:
Ly ={i:Cj, < G(X ™)}
M" = {k: L] # 0}

o= 1 if a facility is located at node i
"7 | 0 otherwise

2 % 1 if node k is served by firm # from node i
ik =

0 otherwise

Note that L}, is the set of locations at which firm n can price below its competitors
at node k. M" is the set of nodes where firm 7 can get a positive profit. x} and zj, are
location and allocation variables, respectively.

If node k is served from node i € L, the equilibrium price is:

P (Cy) i " (C) < Ge(X™")
pr) =
GeX™) i p"(C) = G(X™")

Then the problem P"(X™") can be formulated as follows:

P'(X7") s max Y Y @) Pr) — )z

keMn ieL]

st. Y <l keM 9)
€Ly}
Zp <xl, keM"'ieL} (10)
Y X =r keM (11)
€Ly

X2 €{0,1}, ke M"ie L}

The objective function of problem P"(X™") represents the profit of firm n.
Observe that the prices p}(i) depend on the set X~”. Constraints (9) mean that
each node k € M" can be served from at most one of the facilities of firm n
(the facility with the minimum marginal delivered cost in the optimal solution).
Constraints (10) imply that variable zj, may be positive only if firm n locates a
facility at i. Constraint (11) represents the number of facilities to be located by
firm n.

The above problem is a Binary Integer Linear Programming (BILP) problem
which contains a lot of binary variables. However, the number of binary variables
can be notably reduced as follows. Let % denote an optimal solution for variables
x!, then an optimal solution for variables zj; is given by:

o 1ifcy = min{chk the LZ,)CZ = 1}
ik 0 otherwise
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As the allocation variables are determined by the decision variables in the optimal
solution, 2, can be taken as non negative variable instead of a binary variable. Then,
replacing constraints z; € {0, 1} by zj; > 0 in the above formulation, we obtain an
equivalent problem which is a Mixed Integer Linear Programming (MILP) problem.

It may occur that Algorithm BR does not stop, and therefore it does not find a
NE. It may also occur that a location NE does not exist but if it exists Algorithm BR
could find it.

5 Existence of Multiple Location Nash Equilibria

In the case of an essential product, social cost minimization at the nodes of the
network is a combinatorial optimization problem that may have multiple global
optima. Then more than one location NE could exist. Furthermore, if X is a global
minimizer of social cost and Cj; = Cy for all n, then any partition of the set of
optimal locations X into sets X! ..., X" such that X" = r,n=1,...,N,is a

location NE. Thus, the number of location NE corresponding to such partitions is
r!

rilrpleery!” . L .
In the case of a non essential product, minimizers of social cost may not be

location NE and the previous result does not hold, but it is possible the existence of
more than one location NE as it was shown in the example of Sect. 4.

When more than one location NE are found, the competing firms could agree
to select a Pareto optimum equilibrium. Thus, if X and X are location NE and it is
verified that I7 ”(X) > " (5(), n=1,...,N, with at least one strict inequality, then
the firms could agree to select X better than X.

5.1 Aggregated Profit Maximization

Let X be a set of nodes corresponding to an optimal solution to problem (SCM1).
We want to determine a partition of the set X into N subsets X', ..., X" such that
the aggregated profit obtained by the firms is maximized.

Then we have to solve the following problem:

N
P(X) : Maximize Y  IT"(X")

n=1

s.t. X'"CXand |X"|=r,,n=1,...,N.
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The aggregated profit associated to X is given by:

N N m
21 m(X) = 3 (3 %C"(X") —8(X)) =

n=1 k=1

é OuCE (XT) + CM(X2) + .. + Com(xXNY) — NS(X)

We consider the following variables:

[ 1ifjexn

Y =1 0 otherwise

CZ = min{Cjk j S X,yjn = 0}

Note that variables y;, define a partition (X Lo xN ) of set X, and each variable
C} takes the value C;°"(X") associated to the partition (X Lo XY,

Then the problem of determining the partition of X with the maximum aggregated
profit can be formulated as follows:

P(X) : Maximize Y Q(Cf + Cf + ... + C}) — NS(X)
k=1

5.t Zy,,,=r,,;n=1,...,N (12)

jex
Ci < Ci(l=yp)+Dyjsn=1,... . Nk=1,...,m,je X (13)
yn €{0,1},C >0 n=1,....Nk=1,....mjeX

Constraints (12) mean that each firm »n locates r, facilities which are selected
from the set X. Constraints (13) guarantee that each variable C} will take the value
Cc"(X™) corresponding to the optimal partition (X', ...,X"V) of X. D is a fixed
positive value greater than any cost Cj.

Let 3, be the values of variables y;, corresponding to an optimal solution to
problem P(X). Then the location NE which maximize the aggregated profit is
X'={eX:y=1},n=1,...,N.

5.2 Equity Constraints

Any firm n could disagree with the partition ()A( L..XN ) of X which maximizes
the aggregated profit if I1 ”()A(”) is not high enough. An alternative way of selecting
a partition of X is by including equity constraints. The aim of such constraints is
to determine a location equilibrium, so that the firms get similar profits per facility.
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Let /1 denote the maximum aggregated profit, which can be obtained by solving
problem P(X). For a fixed value A, 0 < A < 1, any firm n could agree on selecting
a partition of X (location NE) if the average profit per facility the firm obtains
is greater than, or equal to, AT /r, where r is the total number of facilities. A
location equilibrium verifying the equity constraints, for which the aggregated profit
is maximum, could be obtained by solving the following MILP problem:

P;(X) : Maximize Y Qi(C} + C; + ...+ CV)
k=1

s.t. Cl<Ci(1=yp) +Dyj;n=1,....Nk=1,....mjeX

Y Van=rsn=1,...,N
jex

\
>~
IS

%(ZQkCZ—S(X)) >ALin=1,....N
k=1

yin €{0,1},Ct >0, n=1,....Nk=1,....mjeX

Observe that Py (X) reduces to P(X) for A = 0. For small values of A problem
P, (X) is feasible, but it could be unfeasible for values of A close to 1. In order
to select a location equilibrium, a sequence of problems P, (X) can be solved for
fixed increasing A values until one not feasible problem is found. Let A be the
greater value of A for which P, (X) is feasible, then firms could select the location
equilibrium given by the following partition:

X'=§eX =1}
where ¥, are the optimal values for variables yj, in problem Py (X).
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Sharing Costs in Some Distinguished
Location Problems

Justo Puerto

1 Introduction

Location Analysis is an important area within Operations Research that has attracted
a lot of attention in the last decades by its theoretical implications and its many real
world applications [28]. A lot of effort has been devoted to its modeling aspects
and algorithmic developments with special emphasis on complexity issues and links
with other areas such as logistics, network design or transportation (see e.g. [21]).
Apart from the above mentioned subjects there is another one, namely cost
sharing, that is becoming more and more appealing in Location Analysis. In a
standard location problem one has to determine the placement of some facilities to
deliver a service to a set of users. Provided that this placement is done to minimize
the overall cost and assuming that the cost must be assumed by the users, there is
an additional question that should be addressed: How to share this cost in such a
way that users do not have any incentives to break apart and leave the group. This
problem is not new and, in general, it is a central question in cooperative game
theory (see [30]). To each O.R. model that leads to an optimization problem one can
associate a cooperative game where the different entities in the model are the players
and the characteristic function of each group of players (coalition) is given as the
optimal value of the solution of the model applied to that group [3]. This way one
defines a Transferable Utility (TU) game and then the remaining question is how
to find fair cost shares among the users. This issue can be addressed by different
approaches: using some distinguished allocations (as for instance the Shapley value
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or the nucleolus...) or by means of sets of stable allocations [31]. In this chapter
we will restrict ourselves to this latter approach and among the different choices of
solution sets we shall focus on the concept of core.

The core of a TU game is the set of cost shares that are efficient and coalitionally
stable. Efficiency ensures that the overall cost incurred by the complete set of users
is fully distributed. This is always implicitly assumed. Therefore, an allocation x is
in the core if, for any group of users S, the cost supported by S, namely x(S) =
> ies Xi, is not greater than the characteristic value of that group, ¢(S). This property
ensures that no group of users will have any incentive to break apart while sharing
the cost by any allocation scheme in the core. The reason is clear: any group is
entitled to pay less than what it would have paid by the characteristic value. This
condition is rather desirable because it enforces a stability property to cost shares in
the core. However, the core is a polyhedral set that may be empty depending on the
characteristic function of the game.

The goal of this chapter is to analyze some location models under the perspective
of their cost sharing aspects. We will consider some standard location problems
and will associate cost TU games to each of them. The final goal is to provide
non emptiness conditions for the core and to give its geometrical or analytical
description. In our way we will recall some already known and also introduce new
classes of location games focussing essentially on continuous location problems.
Unlike the class of discrete location problems whose cost sharing analysis has been
well-analyzed in [4, 14], cost sharing aspects of the class of continuous location
problems is not well-understood and core existence results are only known for some
single facility situations [24, 38, 39] which are easier than the related multifacility
problems.

The contribution of this work is to unify the analysis of cost sharing in continuous
location models. In doing that, we revisit some results from the literature that cover
continuous single facility location games as in [24, 38] and the diameter and radius
games [39, 40]. In addition, we present a new framework to handle continuous
multifacility location games based on the analysis of some mixed-integer programs
resulting from their respective optimization problems.

The rest of the chapter is organized as follows. In Sect.2 we recall the main
elements describing a location problem and introduce some basic location models
that will be analyzed in the following sections. Section 3 is devoted to revise the
literature of location games and to build the links between the optimization and the
cost sharing models. The next three sections analyze cost sharing problems on con-
tinuous location problems. Specifically, Sect.4 considers single-and-multifacility
location problems and Sect. 5 a continuous set covering location model. Section 6
deals with diameter Steiner location and radius location problems on general metric
spaces. The chapter ends with the acknowledgements and the list of references.
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2 A Primer on Location Theory

A location problem consists of determining the position of one or more facilities in
order to optimize a measure of effectiveness with respect to a set of known demand
locations. Location theory, as any other discipline in Operations Research, develops
mathematical models to represent in the best possible way the real situation and to
give adequate solutions to the problem under study. This area of research has already
a long history and it is now in full expansion since a lot of methods and procedures
can successfully be adapted in order to solve complex problems belonging to other
knowledge areas [21, 28, 37].

Roughly speaking, location problems can be classified into three categories:
discrete, network and continuous location. Discrete location imposes that the set
of candidate locations for placing the new facility(ies) is finite. Network location
problems consider that the demand points are in a graph and facilities have to
be located at the nodes or at the interior points of edges of the graph. Finally,
continuous location considers problems where the demand points and the service-
facility locations belong to a continuous space, typically the Euclidean space.
Excellent references that cover these fields in Location Theory are [6, 22, 23, 27].
Other references covering all fields are [7, 8, 21, 35].

In order to get a better understanding of the location problems structure, we
briefly describe, next, the common elements to all these problems.

2.1 The Solution Space

The solution space is the framework where the problem is defined. It contains
as elements the existing facilities and the new facility(ies). The choice of an
appropriate solution space is crucial, because it determines important aspects such
as the accuracy and efficiency of the model. Some usual solution spaces are:

— Discrete spaces: When there exists a finite number of potential locations for the
new facilities.

— Networks: The solution candidates lie within a graph, usually representing a
communication network. Nodes represent important elements, such as cities or
crossroads. Arcs represent connections between nodes, like roads, streets, cables,
etc. A kind of network that has received considerable attention is the “tree
network”. This is due mainly to the uniqueness of a path between pairs of points.

— Euclidean space R?: It is used when the problem presents regional aspects that
cannot be discretized. In addition, it can be used to approximate networks when
the number of nodes and arcs is large.

The cases ¢ = 2 and ¢ = 3 have a clear physical meaning. Cases where ¢ > 4
have been used to model and solve estimation problems in Statistics.

— Sphere: It is useful for those real situations that cope with large scale distances.
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— Embedded network in a continuous space: This is the solution space where a net-
work, that represents high speed connections, overlaps on a general continuous
framework, the most common are the Euclidean space or the sphere.

2.2 Existing Locations

In terms of Location Theory, existing facilities are the users that require to be served.
Therefore, they are called demand points. Usually, they are modeled by means of a
set N and an infensity function to weight the elements of N.

There exist two main ways of representing demand in the solution space: by
a finite set of points and by regions (see e.g. [29, 36]). In the first case, a set of
points N = {ay,...,a,} is considered as well as a set of weights {w1, ..., w,} that
represent the importance (or intensity) of the demand generated at each point. In
the regional model, demand is represented by means of a region % (not necessarily
connected) included in the solution space and it is a probability measure which gives
importance to each measurable subset of Z.

2.3 The New Facility(ies)

The location of the new facility is the decision variable of the general location
problem. This variable is characterized by

(a) Number and quality of the service provided. If more than one facility is to be
located, it will be necessary to specify the characteristics of each one of them.
When they are identical, as for instance mail boxes, we face with a multifacility
problem; otherwise as in the case of health services, we may face hierarchical
location problems.

(b) Nature of the service. Not all the services are attractive for the community
where they will be located. For instance, nuclear plants, solid waste disposals
or garbage plants are usually refused by population. Therefore, in modeling a
problem it is very important to determine the attractiveness of the service.

2.4 The Objective Function

Location problems mentioned in this chapter have the following objective function
in common:
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where

F is a globalizing function,

“opt” means optimize, either minimize or maximize,

Xis the solution space,

X = {x1,..., X%, C S is the new facility(ies), either single m = 1 or multiple
m> 1.

N is the set of existing facilities (demand points),

a is a general existing facility,

d(-,-) is a measure of distances. In general, d(X,a) stands for the distance
between demand point a and the set of facilities (xi,...,x,), i.e. d(X,a) =
mingey d(b, a).

Determining which objective function has to be used is sometimes a hard task. It
should be noted that the final solution strongly depends on that choice. Therefore, it
is important to devote some effort to this part of the modelling process. Some of the
most common objective functions in the literature of location analysis are described
below [21].

1. The p-median problem or “minisum”. The p-median problem [16, 17] searches
for the location of m facilities with the goal of minimizing the weighted sum
of distances between the demand points and the facilities to which they are
allocated. A general p-median formulation is the following:

i d(X, a).
i ) udX. )

a€eD

2. The p-center problem or minmax. The p-center problem [16] assumes that all
the demand is covered with p facilities and minimizes the coverage distance for
doing so: the maximum weighted distance between a demand and its nearest
facility is minimized

min max w,d(X, a).
XCX aeN
The minmax model can be interpreted as an equity based criterion.
3. Cent-dian problem. Given a positive scalar A € (0, 1), this objective function
corresponds to a convex combination of the minisum and minmax criteria. That
is, the problem is:

min(A Y dX.a)+ (1-2) max d(X. a)).

a€eN

The cent-dian model corresponds to a compromise between the center and
median criteria, that are conflicting criteria in most of the cases [44].
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4. Ordered median problem.
Given a finite number of existing facilities N = {ay, ..., a,} and nonnegative
weights [y, ..., iy, the goal is to find the location of X minimizing an ordered
weighted average of distances, i.e.,

m

min » * pridgp (X).

i=1
Here, d(;)(X) = d(X, a,,) is the ith element in the list of sorted distances
d(X, aal) =...= d(X» aO',;)a

where o is a permutation of {1, ..., n}. Note that this objective function is point-
wise defined, because its expression changes when the order between distances is
modified. This function is somehow similar to the p-median, but is more general
because depending on the choice of the parameter u, it includes as particular
instances the minsum, minmax and centdian, among many others [28, 37].

5. Set covering problem. In this problem, the number of facilities to be located is not
fixed a priori, that is, the cardinality of X (denoted by |X|) has to be minimized
and determined together with its elements. The requirement is that each existing
facility a must have a server within a specified distance, r,. The goal is to find
the lowest number of facilities and their location satisfying the above constraint
[21, 43]. Thus, the problem can be written as:

min |X].
XCXid(X,a)<rq,a€EN

3 From Location Problems to Location Games

As we already mentioned in the introduction, the last decades have been a florist
period in the development of Location Analysis. Among the many fields that have
attracted the interest of location analysts one of them is Game Theory. This interest
has covered noncooperative and cooperative game theory and specifically, cost
sharing in locational decisions. The first historical reference to location games goes
back to the duopoly model by Hotelling in [20]. Since then several extensions and
further results have appeared in the specialized literature. The interested readers are
referred to [9, 12] and to the good surveys on this topic by Owen and Daskin [32]
and Fragnelli and Gagliardo [11].

One of the main goals of an optimization problem defined on an applied
mathematical model is cost reduction. One way to achieve this goal, in location
problems, is to incentive collaboration of groups of users (demand points) that
might form coalitions to diminish costs. These coalitions should induce individual
and collective cost reductions; thus, stability must be achieved in the process
of promoting cooperation. In a location problem the main costs are set up and
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transportation. This implies that to reduce expenses, users may share the service
facilities and their operation and construction costs.

In our framework a coalition allows each of its users (demand points) to have
access to the same service facilities. Obviously, this planning process makes sense
only throughout a long term time horizon since building a service location is a
strategic decision that is made to last for a long period of time. The model that
represents the above described situation can happen in most location problems
considered in the literature. The aim of any group of demand points (users) is to
satisfy their service needs at a minimum cost. Depending on the framework the
former question gives rise to well-known optimization problems that can appear in
the discrete, network and continuous fields. The optimal solutions of these problems
lead to the best locational decisions for the group of demand points and these
policies generate an optimal operation cost for the group as a whole. The question
is what portion of this cost is to be supported by each demand point. Cooperative
game theory provides the natural tools for answering this question.

The analysis of cost sharing in location problems is not new. Some of the first
papers considering cost allocation games coming from location problems are [5, 15,
41-43]. The first paper, namely [15], analyzes single facility location problems on a
tree. The paper by Tamir [43] considers cost sharing problems on coverage location
models. In [5] several discrete multifacility location problems from a cooperative
point of view are described, whereas [41] considers cooperative games based on
Hub-location problems. Many more references can be found in the literature and
the reader is again referred to the recent survey [11] for a comprehensive list of
references.

Our goal in this chapter is to analyze some continuous location problems
under the cost sharing perspective. We have chosen, to be included in our pre-
sentation, three single facility games, namely the single facility game proposed
in [38], the Steiner diameter [40] and the radius games [39]. Moreover, motivated
by the lack of references, we have also included two new classes of continuous
multifacility games: the multifacility single allocation ordered median game and the
multifacility coverage game. The reason for these choices is that all of them provide
interesting results that shed light on the structure of their core sets. Moreover, the
last two classes of multifacility games are new and extend some results known for
their discrete version to the continuous framework. The main difference between
discrete and continuous problems rests on their sets of feasible solutions. In the
former case, feasible solutions are finite and known a priori whereas in the latter
feasible solutions belong to a set with a continuum of points, one has to choose
the candidates and only a description of the set is provided. Usually, this fact
introduces a first degree of difficulty on the problem. In addition, there exists another
difference between single facility and multifacility problems that is inherited from
their respective optimization models. Multifacility problems are often more complex
than their single facility counterpart since they incorporate a combinatorial aspect
due to the patronizing rule used to assign the users to their service facility (in
our problems we shall assign demand points to the cheapest or the closest service
facility). This feature also introduces a second degree of difficulty on the problems.
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For the sake of completeness the last part of this section is devoted to recall the
definition of some concepts that will be referred to extensively in the rest of the
chapter.

First, we recall that a generic finite cooperative game is a pair (N, ¢), where N
is a finite set of n players and c is the characteristic function defined from 2V to R,
which satisfies ¢(@) = 0, and assigns to each coalition S € N a real value (it can
be a benefit or a cost). The game (N, ¢) is called monotone if for any pair of subsets
S € 8 © N, c(S1) < c(Sy). Tt is called subadditive if for any pair of subsets
S1,SS CN,S1 NS =0,c(51USy) < c(Sy) + ¢(S2), and it is called submodular if
for any pair of subsets S1, 5, € N, ¢(S1 U S>) + ¢c(S1 NS2) < c(Sy1) + ¢(Sy).

The core of (N, ¢) (in the case of a cost game) is the set

C(N,c) ={x e R": x(N) = c(N),x(S) < c(S),V S C N}, €Y

where x(S) = Z/:aj esXj, forany S C N.

4 Cost Sharing of Some Location Situations on a Continuous
Framework

This section considers cost sharing situations that are based on two basic facility
location problems, namely the continuous single facility location and the continuous
single allocation multifacility location models. The first one was already considered
in [24, 38] whereas the analysis of the second one is new. For the presentation of the
results on the single facility case we follow the notation and material in [38].

4.1 The Single Facility Case

To start with, we consider the continuous single facility location problem. Infor-
mally, in such a problem we have a set of n users of a certain facility, placed in
n different points in the space R? with g > 1. The problem consists of finding a
location for the facility which minimizes the transportation cost (which depends on
the distances from the users to the facility).

Formally, a continuous single facility location problem is a triplet (N, @, d)
where N = {a,, ..., a,} is a set of n different points in R? (withn > 2), @ : R" - R
is a lower semicontinuous globalizing function that satisfies (1) @(x) = 0 if and
only if x = 0; and (2) @(x) < ®(y) whenever x < y,and d : R? x R? — R is
a measure of distance, satisfying that, for every r,s € RY, d(r,s) = f(| r —s ||),
where f is a lower semicontinuous, non decreasing and non negative map from R to
R with f(0) = 0, and |||| is a norm on RY.

Solving the continuous single facility location problem (N, ®,d) for § C N
means to find a ¥ € RY minimizing @ (d5(x)), where d°(x) is the vector in R” whose
ith component is equal to d(x, a;) if @; € S, and equal to zero otherwise. We denote
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L(S) = min,ers @(d%(x)). It is worth noting that this problem always has a solution
for every S C N (see, for instance, [34]).

This is the classical version of the continuous single facility location problem.
Here we consider a natural variant of this problem in which the users in N are
interested not only in finding an optimal location of the facility, but also in sharing
the corresponding total costs. By total costs we mean the sum of the variable
costs (depending on the users and on the location of the facility; they are mostly
transportation costs), plus the fixed costs (independent of the number of users
and of the location of the facility; they are mostly installation costs). Formally, a
continuous single facility location situation is a 4-tuple (N, @, d, K) where (N, @, d)
is a continuous single facility location problem and K € R, K > 0, is the
fixed installation cost of the facility. Note that we can associate with (N, @, d, K)
a cost TU-game (N, csp) whose characteristic function cgr is defined, for every
SCN=V{ay,...,a,},by:

csr(S) = K+ L(S) ?fSaé @
0 ifS=0.
Every cost TU-game defined in this way is what we call a continuous single facility
location game.

In a location situation, the goal of the users is to find a location for the facility
which minimizes the total cost, and to allocate the corresponding minimal total cost.

An interesting problem which arises now is to study under what conditions there
exists a stable allocation of the minimal total costs in a location situation, i.e., under
what conditions the core of the corresponding location game is non empty.

First, we include some preliminary properties of the single facility location
games.

Proposition 1 The game (N, csp) corresponding to (N, @, d, K) is monotonic (i.e.,
cse(S) < csp(T) forall S, T CNwithS CT).

Proof Let S C T be two coalitions. By definition d¥(x) < d7(x) for all i and x.
Then, since @ is monotone, ®(d®(x)) < @(d” (x)). Hence, the result follows. [

Proposition 2 If L(N) < K then the game (N, csr) corresponding to (N, ®,d, K)
satisfies that csp(SU T) < csp(S) + csp(T) forall S,T C N.

Proof Let S, T be two coalitions. Then, by the monotonicity of L (see the proof of
Proposition 1) and the properties of @,

LSUT) — (L(S) + L(T)) < L(SUT) < L(N).
Now, since L(N) < K,then L(SUT) < K + L(S) + L(T) and

CSF(S U T) =K+ L(S U T) <K+ L(S) + K + L(T) = CSF(S) + CSF(T).
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Note that the result above implies the subadditivity of csr because in particular,
if L(N) < K, then csp(SU T) < csp(S) + csp(T) for any pair of coalitions S and T
disjoint.

The next example, taken from [38] shows a subadditive location game with an
empty core. It motivates the development of sufficient conditions that ensure the non
emptiness of the core of this location game.

Example 1 Let N = {ay, az, az} be the set of players, located on the vertices of an
equilateral triangle of side /. Consider that the globalizing function is the sum and d
is the Euclidean distance to the power of b (b > 2). Then

Sdx) =Y |x—al}

a; €S

for every § C N and every x € R™. It is easy to check that the location game
associated with (N, @, d, K) is given by:

csp(ar) = csp(az) = csplaz) = K,
csr(arar) = csp(aras) = csp(araz) = K +2(1/2)°,

V3
csr(ayaraz) = K + 3(Tl)b.

After some algebra, it can be checked that this game is subadditive if and only if K >
>/ \/§b72) — (I /2°=1). However, taking for instance K = (I*/ ﬁbiz) —(1P/207N,
it can be seen that the resulting location game has an empty core. Namely, since all
its players are symmetric, a necessary and sufficient condition for the non emptiness
of its core is that the egalitarian allocation (csg(N)/3, csp(N)/3, csp(N)/3) belongs
to it. After some algebra it can be checked that this is not the case when b > 2.

The rest of this section presents a sufficient condition for the non emptiness of
the core of the single facility location game. First, we include a technical lemma
concerning the sum of the balancing coefficients of a balanced family of coalitions.
Recall that a collection of coalitions % C 2" is balanced if and only if there exists a
set of positive real coefficients {ys/ S € A} (balancing coefficients) satisfying that
> saes ¥s = 1 forevery a; € N. The set of balancing coefficients associated with
a balanced collection needs not to be unique. However, every minimal balanced
collection of coalitions (in the sense that it does not properly contain another
balanced collection) has a unique set of balancing coefficients (see [31]). It is a
well-known result that a cost game (N, ¢) has a non empty core if and only if, for
every minimal balanced collection 4 with balancing coefficients {ys/S € £}, it
satisfies that ) . ,» ysc(S) > ¢(N) (again, see [31]).

Note that the only balanced collection with balancing coefficients summing up
to one is B = {N}. We say that B = {N} is the trivial collection. The next
result establishes bounds on the sum of the balancing coefficients for any non trivial
balanced collection.
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Lemma 1 Let B be a non trivial balanced collection with balancing coefficients
{ys /| S € AB}. Then,

ni1§§:m§m

Se#

Proof Let us consider the following linear programming problem (2):

min Y s
SE2N\{N}

st > ys=1 VaeN 2)
{S€2N\{N}:q;€S}
ys>0 ¥Se2V\ (N}

A solution to this problem is a set of balancing coefficients of a non trivial
balancing collection with a minimal sum (% = {S € 2V/ys > 0}). Let us denote
the coalition N'\ {g;} = {ai,as, ..,aj—1,ajy1, ..., a,} by —j. Consider the basis B of
Problem (2) of the columns which correspond to y_;, y—», ..., Y—y. In this problem
the matrix of B, its inverse B~! and the transformed right-hand side B~'b are:

01...1 -2 1 ... 1
10...1 | I —-2 ... 1
B=|... .|.B'= . . . ,
R n—1 : : :
11...0 1 R
and B~'b = [ .- ,ﬁ]t. The reduced costs for any coalition § with 1 < k <

n — 1 players are:

cgBlas—cs = £ -1 <0iffk<n—1,

cgBlag —cg = E—l =0iff k=n—1.
Then B is a basis associated with an optimal solution of Problem (2), which proves
the lower bound. The proof for the upper bound is straightforward and it follows
taking the collection whose elements are all the sets of size one with coefficients
equal to 1. |

Using the lemma above, it follows the main result in this section which can be
also found in [38].

Theorem 1 Let (N, @, d, K) be a location situation and let (N, csr) be its corre-
sponding location game. Denote I, = mingcy:|sj=2 L(S).

(a) Suppose that2 <n <2+ ]1—§ If K(n — 1) > L(N), then csg has a non empty
core.

(b) Suppose that 2 + l,% <n IfK > (n—1)L(N) — nly, then csr has a non empty
core.
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Proof In a location game we have for any balanced collection % with balancing
coefficients {ys/S € A}:

> vsesr(S) = KO ys) + ) ysL(S).

NS Se%B NS4

Taking into account the monotonicity of L and the fact that L(S) = 0 for any
coalition S of size one, we have that

Y sez Vscse(S) = K(Q_se vs) + st&mzz ysL(S)
> KQ sen V) + Qsemsi=2 Vsh-

For every minimal balanced collection 2 denote

mB) =K y)+h Y, s

Se A S€ZB:|S|>2

(note that, if # is minimal, the balancing coefficients are uniquely determined).
Then, a sufficient condition for the non emptiness of the core is that

min m(AB) > c(N). 3)

{9B: DB non wivial and minimal balanced }

Suppose that this minimum is achieved in Bt {a;} & B for every a; € N, then
={- z/a, € N} (see Lemma 1) and m(%) =(K+h);%5 If% ={a;} /a; €
N}, then m(%) = Kn. In any other case 2 can only be a famlly {{a;}, N\ a;} (for

an g; € A) and, then, m(@) =2K + I,.

Now, since m(%) = min{(K+1,) -2, Kn, 2K 4 1}, then it can be easily checked

n—1’
that
~ Kn if 2<n<2+1%
m(%) = n . N )] - K
(K+ b))% if 24 2 <n.
This together with (3) completes the proof. |

4.2 The Continuous Single Allocation Multifacility Case

Roughly speaking, a multifacility location problem occurs whenever one is going
to place several servers to provide some service to a set of users. Assuming that
the quality of the service provided decreases with the distance to the user, the most
common assumption is that each user will receive its service from the closest server.
Ties are solved randomly. In this way, each user is allocated to a unique server.
This situation can be described in the following terms. We are given a set of N
users which are modeled by n points in R?, a feasible region, that for simplification
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is assumed to be the convex hull of a set of r points, and we wish to place at most m
new facilities or service points within the feasible region to provide service to the n
users.

Formally, a continuous multifacility location problem is a 5-tuple (N, P, K, @, d)
where:

e N ={ay,...,ay,} is a set of n different points in RY (with n > 2),

e P ={py,...,p,} is the set of extreme points that define the feasible region. p
is a very remote point that models a fictitious placement of those servers that are
not actually located.

* K; >0,j=1,...,mis the fixed cost to locate the jth facility. We assume that
Koo = 0. In addition, we suppose that there is some economy of scale in those
costs so that K; > K1 forallj=1,...,m—1.

e @ : R" — Ris a lower semicontinuous globalizing function satisfying that:
(1) @ is definite, i.e. @(x) = 0 if and only if x = 0; (2) @ is monotone, i.e.
@(x) < @(y) whenever x <y, and

e d:R?7xR?— R is ameasure of distance, satisfying that, for every r,s € RY,
d(r,s) =| r—s ||, where || || is a norm on RY. For the ease of presentation we
assume that this norm is polyhedral, namely its unit ball is a bounded polyhedron.
This implies that ||x|| admits a representation as a number of linear inequalities;
polynomial in the description of its unit ball.

Next, for any X € RY, let dN(X) = (d(X,a1),...,d(X,a,)). Forany S C N, we
denote by y(S) the incidence vector of S. i.e. the vector defined as y;(S) = 1ifi € S
and y;(S) = 0 otherwise. This way d5(X) = (d(X, a)y1(S),...,d(X, a,)y.(S)), is
the vector whose ith component is equal to d(X, @;) if i € S and zero otherwise.

In the following we introduce some instrumental variables to get a mathematical
programming representation of this problem. Let x; be the location of the jth
new facility (server). We can write x; = Y ,_, A¢jpe. The variable Ay gives the
coefficient of the point p, in the convex combination of the points in P that describe
x;. Clearly, Ay; € [0, 1], forall £ =1,...,r,j=1,...,m.

The variable y; assumes the value 1 if the jth server is located and zero otherwise.
The variable w;. takes the value 1 if the nearest service facility to the demand
point a; is x; and it is equal to O otherwise, foralli = 1,...,n,j = 1,...,m.
v, i = 1,...,n, is equal to the distance from the demand point a; to its nearest
service facility. For modeling purposes we introduce a formal point po, with the
property that d(a;, pec) > d(x,a;) for all i = 1,...,n and Vx € conv(P).
M > 0 is a big constant to be used in the constraints of the problem. In particular
M > max;=1,_, d(Ppco, a;).

Solving the continuous single allocation multifacility location problem
(N,P,K, @,d) means to find X C R? with |X| < m, minimizing the following
problem.

cyr(N) := min > im Ky + @(v) €]



306 J. Puerto

st =Y Agpe + (=Yoo, j=1.....m, )
Yi = D ore1 My j=1,....m, 6)

dxj,a) <vi+ Q2Q—yiN)—wy)M,i=1,....nj=1,....m, (7)
27=1Wij = y;(N), i=1,...,n, (8)

v; >0, i=1,...,n, )

Ay >0, C=1,....rj=1....m (10)

vi, wi € {0, 1}, i=1,....nj=1,....m. (11)

The objective function (4) accounts for the total fixed cost to locate the servers
plus the transportation cost induced by the globalizing function @ applied to the
vector of distances @V (X) = (d(X,a,), ...,d(X,a,)). The family of constraints (5)
defines the location of each new facility as a convex combination of the points in P.
By (6) ,if y; = 1, x; € conv(P) and if y; = 0, x; equals the point at infinity, peo.
With (7) and the monotonicity of @, it is ensured that v; represents the distance from
a; to x; provided that g; is assigned to x;, i.e. w;; = 1. Otherwise, this inequality is
trivially fulfilled since M >> 0. The family of inequalities (8) enforces that one w;;
variable assumes the value 1, i.e. each user is allocated to a unique server. Finally,
the last three sets of conditions define the domain of the variables. It is worth noting
that for any N and suitable choices of @, as for instance the ones that we will
choose in this chapter, the above problem always has an optimal solution (see, for
instance, [2]).

Now, we can extend the location situation to any subset S € N and it results in
finding X C R? with |X| < m minimizing the following problem.

cyr(S) ;= min i Ky + @(v) (12)
st xj =y Agpe + (1 = Y)Poo. J=1,....m, (13)

Yi = 2 p=1 A j=1....m, (14)

dxj,a) <vi+Q—-w—yiM,i=1,....nj=1,....m, (15)

Z;';l wi = i(S), i=1,...,n, (16)

v; >0, i=1,...,n, 17

Ay >0, L=1,....r,j=1,....m, (18)

i, wi € {0, 1}, i=1,....nj=1,....m. (19)

As before, it is worth noting that for any S € N and suitable choices of @, as
for instance the ordered median function [28], this problem always has an optimal
solution (see, for instance, [1, 2]).

The above formulation provides a general version of the continuous multifacility
location problem. In this chapter we will restrict ourselves to consider @ (d" (X))
as an ordered median function for a given parameter u € R’ . Recall that if
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(1)(X) < d}(X) < ... < dfj (X), then Omf,,(d"(X)) = X|_ 1;Lkd(k)(X) (see
[28]), Wthh stands for a utility of the users in N being interested in minimiz-
ing the ordered weighted average of their distances to the closest server in X.
Formally, the continuous single allocation multifacility location situation is a 5-
tuple (N, P, K, Omf,,,d) where N, P, K and d where defined above; and Omf,, is an
ordered median function. We recall that minimizing Omf,, can be represented as the
following problem [1, 2].

m1n Z ukd (X) = miny Z Z WiOix (20)

i=1 k=1
S.t. 9,'/( Ed(ai,X)—i-M(l—'W[k), Vl,kz 1,...,n

Xn:wikz 1, Vk=1,....n

i=1

’Zl%kz ,Vi=1,...,n

k=1

ieiksigi’k'i']’ Vk=1,...,n—
i=1 i=1

Ya €{0.1}, 04 >0, Yiok=1,....n

In this way, the characteristic function cyr(S), for choices of the globalizing
function @ as an ordered median function with parameter w, can be written in the
following form.

emp(S) =min 3L Ky 4+ D00y Dk i Q1)
st x; =Dy Agpe + (1= Y)poo, J=1,....m, 22)
Vi = =1 Ay i=1....m, (23)
d(xj,a) <vi+ Q—wy—yiSOM,i=1,....nj=1,....m, (24)
> wy = yi(S), i=1...n (25)
S Vi =1, k=1,....n (26)
S Vi = 1, i=1,....n 27)
Yo Ok < D O, Vk=1,...,n—1, (28)
O < vi + M1 — ¥y) Viok=1,...,n, (29)
Ay =0, L=1,....rj=1,....,m,
v; >0, i=1,....n, (30)
yj-wi € {0, 13, i=1...nj=1....m

Vi € {0, 1}, Vijk=1,...,n
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Our interest goes into the direction of analyzing the situation where the costs
induced by the above location problem must be shared by the users that are served
by the facilities in X. We would like to determine whether there are fair allocation
schemes for the overall cost induced by the location problem. We will address this
question using a cooperative location game.

Formally, a continuous single allocation multifacility location game is defined by
a 6-tuple (N, P, K, Omf,,,d, cyr) where N is the set of demand points (users), P is
the set of extreme points of the convex hull defining the feasible set, K is the set
of fixed or installation costs, Omyf,, is the globalizing function that determines the
transportation cost, d is the measure of the distance among points and ¢y is the
characteristic function of the game, namely the set function that for each set S € N
returns the minimal value of a set of servers that solves the location problem for
the users in S. We recall that ¢j;r(S) is defined in (21). (Observe that by definition
cur(9) = 0.)

Let Fs be the feasible region of the problem that defines c)r(S) in the space of
variables (£, y), where for the sake of readability we denote £ = (A, v,0,y,w, ) €
[0, 1] x R" x R™" x {0, 1} x {0, 1} x {0, 1}". Additionally, for any
(y,w,¥) € {0, 1} x {0, 1} x {0, 1}"™", let Fs(y, w, ) be the feasible domain
of the same problem in the space of variables (4, v, ) € R™" x R" x R™", In the
following we denote by ext(A) the set of all the extreme points of the convex set A.

Next, we introduce the following set:

F¥ = {y €{0,1}",w € {0, 1}, ¢ € {0, 1}, (A, v.0) € ext(Fs(y,w, V),
for some § € N}. (€1))

We can interpret F& as the set of all potential candidate solutions (§ ,y) for the
evaluation of c¢yr(S) whenever y is the characteristic vector of S, for all possible
SCN.

For the ease of readability, let Xg and x(i) denote the location of the service
facilities in the optimal solutions of c¢y#(S) and cpr (i), respectively.

Proposition 3 If K| — K> + Omf,,(d5(x)) + wad(x(i), a;) > Omf,,(d5V (x)) for any
S C N, i €S andx € conv(P) then cyr is subadditive. Namely, for any S,T C N,
SNT = @ then CMF(S U T) < CMF(S) + CMF(T).

Proof Observe that it is enough to prove the claim for S and {i} ¢ S. Under the
general assumption of non-negative Kj, there is only one server in the solution for
{i}. If | X5| < m then clearly X is also a feasible solution for ¢ (S U i). Moreover,

[Xs|+1
cur(SUD) < Y K + Omfy, (d* (Xs))

Jj=1
X5

< Y K+ Omfu(d5(Xs)) + Ky + pad(x(i). ar) = cpr(S) + cnr ().
j=1
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Analogously, if |Xs| = m, then

cur(SUD) < ) Ki+0mfu(d™V (Xy)) <

J=1

SZKJ' + Omf, (d* (X)) + K1+ pad (x(i). a;)

J=1

= cyur(S) + emr ().

O

We note in passing that the condition in Proposition 3 is fulfilled whenever
the difference between the set up costs is large enough as compared with the
transportation cost. In the case of monotone p, namely 1 < ... < u,, the condition
is easier since it always holds that Omf, (d*V (Xsu;))) < Omf, (d°Y'(Xs)) <
Omf,, (d*(Xs)) + 1nd(Xs, a;). Therefore, to ensure subadditivity, it is simply required
that K7 > w,(d(x, a;) — d(x(i) —a;)) foralli = 1,...,n and any x € conv(P).

Lemma 2 The maximum value of cyr(N) so that the core of the game
(N,P,K,Omf,, d,cyr) is not empty is given as

ar) =min Y DK+ Y bl (32)

(Ey)erty j=1 i=1 k=1
st. Y Vg =Lli=1...n
(Epert

520,V (Ey) e Fo.

Proof Recall that by Shapley-Bondareva Theorem, the core of the game (N, P, K,
Omf,,, d, cyr) is not empty if and only if

cnr(N) <min{) " eyr(S)zs: Y zs =1, Vi=1,....n. z5=0,YS}.  (33)

SCN AT

We can replace the value of ¢ (S) in the above expression by its value as given by
minimizing the objective function of (21), namely ZJ'."ZI Kivi+> =1 > =y Oix, over
the set Fy which is a mixed-integer set of solutions in the space (A, v, 0, y,w, V) €
[0, 1] x R" x R™" x {0, 1} x {0, 1} x {0, 1}"*". Since that objective function
is linear, we can also obtain cyr(S) minimizing over the convex hull of the feasible
set, i.e. ey (S) = min{Y 7L, K+ imy 2y O 0 (A, v, 6, y,w,¥r) € conv(Fs)}.
This representation can be plugged in (33) and we obtain that:
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cur(N) <min Y (3 Ky + )Y 00z (34)

SCN j=1 i=1 k=1
S.t. E zs=1,Vi=1,...,n
§i

(A5, 05,605, y5 W ¥5) € conv(Fs), YS S N.

Next, representing each subset S by its characteristic vector y(S), we obtain that the
set of all candidate to optimal solutions to (34), for some S, coincides with the set
F& defined in (31). Thus,

GH=min Y O Ky+Y.Y 0z; (35)

Eyerty J=1 i=1 k=1
Z zg-&yi:l, Vi=1,...,n, (36)

Eyers

%520,V (E.3) € F¥. 37)

|

The construction above, see (36-37), shows that for the evaluation of cyr(N)
there is a non-negative variable z¢ ,, for each point in F° €. Thus, finding the optimal
values of those variables in (35)—(37) can be interpret as searching on the cone
generated by F& intersected by (36).

Let us formally define this set.

C* = proj(cone(F®) N{(£.y) : § = (A, v.0,y.w. %), A e R™™ v e R", 6 € R™",
yER" we R yy e Ry, =1,Vi=1,...,n}). (38)

The discussion above leads to the following alternative condition for the evalu-
ation of the maximal value of cyr(N) that gives rise to a nonempty core for this
game.

Proposition 4 The maximal cost cyp(N) that gives rise to a nonempty core in the
location game (N, P, K, Omf,,,d, cyr) is

n n

min{ " Ky;+ > > O (h.v.0.y.w. ) € ). (39)

j=1 i=1 k=1

The result above can be restated equivalently representing C¢ by means of all its
valid inequalities. It is not difficult to prove that C¢ is the set of points satisfying all
inequalities of the form a’§ > b if there exists a homogeneous inequality a’é > d'y
with Y7, d; = b valid for conv(F%).
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The results above can be summarized in the following theorem.

Theorem 2 The core of the continuous multifacility single allocation game
(N,P,K, Omf,.d, cur) is nonempty if and only if any of the following conditions
hold:

1. The optimal value of Problem (21) for S = N coincides with the optimal value of
Problem (39).

2. The minimal value of the objective function Y 7| Kjy; + 31— 3_j_, Ou subject
to all the valid inequalities representing C¢ coincides with the minimal value of
Problem (39).

Moreover, if any of the conditions in 1. or 2. hold then the set of dual optimal
solutions to (39) are cost shares in the core C(N, cyr).

Proof The proof of items /. and 2. follows from the discussion above. The proof of
the last assertion is as follows. From Lemma 2 we obtain that

CMF(N) = mln{ZI(JV] + Zzeik : (A,U,G, Y, w, W) (S] CE}

j=1 i=1 k=1
=min{) ewr(S)zs: Y zs =1, Vi, 25 = 0,VS}. (40)
SCN S3i

Now, the dual of the second problem in (40) is exact and it is:

max{y ;1Y 1 < cup(S). VS S NY.

r=1 i€S

Therefore, its optimal solutions are allocations (cost shares) in the core C(N, cyr).
O

5 The Continuous Set Covering Location Game

This section considers another location model that gives rise to a different cost shar-
ing problem. This situation is based on the continuous covering location problem,
schematically described in Sect. 2. Different versions of covering games applied to
discrete location situations have been already studied in [14] in the discrete case
and [43] on networks. In this section we study the continuous counterpart of those
models. In this case, we are given a set N = {ay,...,a,} C R? and each point
a; has associated a radius ; > 0. Denote by R = {r,..., r,} the set of all radii.
We also assume that new facilities (servers) must be located in a bounded domain
that is defined by the convex hull of a finite set of points P = {py,...,p,} C RY.
The goal is to install a set of servers X C conv(P), |X| < m so that d(X,a;) < r;,
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for all i = 1,...,n and minimizing the overall installation cost; where K; > 0 is
the installation cost of the jth server for j = 1,...,m and we assume economy of
scale, that is K; > Kjyy forj = 1,...,m — 1. Let K = {Kj,...,K,}. For the
ease of presentation we assume that for any x,y € RY, d(x,y) = ||x — y| and the
norm is polyhedral, namely its unit ball is a bounded polyhedron. This implies that
||x|| admits a representation as a number of linear inequalities; polynomial in the
description of its unit ball.

In order to present a valid formulation for the continuous covering location
problem we need to introduce some families of variables. Let x; be the location
of the jth new facility (server). We can write x; = Y ;_, Agjpe. The variable Ay
gives the coefficient of the point p, in the convex combination of the points in P that
describe x;. Clearly, Ag; € [0, 1], forall{ =1,...,r,j=1,...,m.

The variable y; assumes the value 1 if the jth server is located and zero otherwise.
Finally, the variable u;; takes the value 1 if the jth server is at a distance from g; less
than or equal to r; and O otherwise, foralli = 1,...,n,j = 1,..., m. For modeling
purposes we introduce a formal point ps, with the property that d(a;, pec) >> 1;
foralli = 1,...,nand Ko = 0. pso is a very remote point that models a fictitious
placement of those servers that are not actually located. Recall that y(S) denotes the
characteristic vector of S € N, namely y;(S) = 1if i € S and 0 otherwise.

Using these variables the continuous covering location problem can be stated as
follows.

csc(N) = min ZKJ'VJ' @)

j=1
s.t. Xj:ZMjpz-l—(l—yj)poo,j: 1.....m. (42)

=1

Zkéj=)’j’j=1,--.,m, (43)

(=1
d(di,xj) = riu,-j—i-(Z—yi(N)—u,-j)M, i=1,....nj=1,...,m, (44)

j=1
Mijf)’j,i:l,...,n,jzl,___,m, (46)

Age[0,1], £=1,....,rj=1,....m,
u; €{0,1}, yye {01}, i=1,...,nj=1,...,m.

The objective function (41) minimizes the overall installation cost. The family of
constraints (42) describe the location of the different servers as convex combinations
of the points in P. By (43), if y; = 1, x; € conv(P) and if y; = 0, x; equals
the point at infinity, peo, Whose distance to any a; € N is greater than r; for all
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i = 1,...,n. With (44), it is ensured that the coverage of each demand point is

done within the required radius. If u; = O then the inequality is satisfied since

2 —yi(N)—u; > 0and M > max {d(x,a;),d(poo. ai)}. If uy = 1
i=1,...,1,x€CONV(P)

the term 2 — y;(N) — u; = 0 and the server x; must be within the given radius,
7, from a;. The family of inequalities (45) enforces that at least one u;; variable
assumes the value 1, i.e. there is at least one server to cover the demand point a;.
The family (46) ensures that coverage is done from open servers. Finally, the last
two sets of conditions define the domain of the variables. It is straightforward to
check that for suitable choices of radii R the problem above has optimal solutions.

As before, in this section we are interested in the situation where the cost induced
by the installation of the servers must be shared by the users or demand points.
Formally, a continuous set covering location game is described by the 6-tuple
(N,P,K,R,d, csc) where N is the set of demand points, P is the feasible set, K
is the set of installation costs, R is the set of coverage radii, d is the distance and
csc is the characteristic function, namely the function that for each S € N returns
the minimal value of a placement of servers to cover the demand. The characteristic
function cgc of the set S is defined as:

cse(S) = min Y Ky, (47)
j=1
(=1
dDdg=vy.i=1....m (49)
=1

d(ai, x)) < riuj + Q—yi(S) —up)M, i=1,....,n,j=1,....m, (50)

m

Zuijiyi(S), i=1,...,n, (51)
Jj=1

wy <y,i=1,...,nj=1,...,m, (52)
Agel0 1], £=1,....rj=1,....m, (53)
uj €{0,1}, {0, 1}, i=1,....nj=1,....m. (54)

Let us denote by Fg the feasible set of the problem (47)—(54) that defines csc(S),
S C N.Forany (u, y) € {0, 1}"*"x{0, 1} fixed let Fs(u, v) be the feasible region of
the above problem in the space of A variables. Denote by { = (A, u, y) € [0, 1] x
{0, 1} % {0, 1} and for any convex set A, ext(A) is the set of extreme points of A.
Finally, let F% be the set of all candidate to optimal solutions of Problem (47)—(54)
for all S € N, namely:

FY = {u e {0, 1™,y € {0,1}", A € ext(Fs(u,y)), for some S C N}. (55)
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As usual the question that we wish to answer is under which conditions
stable cost allocations exist; or in other words when the core of the game
(N,P,K,R,d, csc) is nonempty. We start by studying some properties related to
the characteristic function cgc.

Proposition 5 The characteristic function csc of the game (N,P,K,R,d, csc) is
subadditive, that is for any S,T C N such that SNT = @ then csc(SUT) <
csc(S) + csc(T).

Proof Observe that it suffices to prove the claim for S and {i} ¢ S. Let Xg, X; be
the optimal location of the solutions of csc(S) and csc (i), respectively. It is clear
that an optimal solution for {i} locates only one server, say x(i) at any point within
a distance r; from a; and the optimal value is K.

Assume that an optimal solution for S requires | Xs| < m. Then, clearly XsUx(i) is
also a feasible solution for S U {i} and csc(SU{i}) < csc(S) +csc(i) = cse(S) + K.
On the other hand, if |Xs| = m then csc(S) = ij=1 K;. Since we assume that the
problem for N is feasible, then it is also feasible for S U {i} and there must exist a
set Xgu;, of at most m servers, that satisfies d(Xsu;, a) < r,, for all a € S U {i}. This

implies that csc(S U i) = Zj‘iﬂu’l K;. Hence,

[Xsuil m
CSC(S Ui) = Z va < Csc(S) + Csc(i) = Z[(] + K.
j=1 j=1
This concludes the proof. O

Next, we can characterize the nonemptiness of the core of this game.

Theorem 3 The core of the game (N, P,K,R,d, csc) is not empty if and only if

csc(N) < min{z Kiy;: (A,u,y) € C°}, (56)

J=1

where Ct = proj;(cone(Fg") N{ECy) : = A,uy),Ael0, 1] ueR> ye
R™ y; =1,V i=1,...,n}). Moreover, the set of optimal dual solutions to (56) are
cost shares in the core C(N, csc) of the game (N, P,K, R, d, csc).

Proof Shapley-Bondareva theorem states that the core of the game (N, P,K,R,d,
¢sc) is not empty if and only if

csc(N) < max{Z ri Zri <csc(S), VS S N}

r=1 i€S

= min{z csc(S)zs Zzs =1, Vi, zg>0,VS}. (57)

SCN S§3i
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Next, for each S we can compute the value csc(S) minimizing 7| K;y; over the
set Fg which is a mixed-integer set of solutions. Equivalently, we can obtain this
value as cgc(S) = min{Z;":1 Kiy; 1 (A, u,y) € conv(Fs)}. This representation can
be plugged in (57) and we obtain that the right-hand-side of that expression equals
the following:

min sen Qo Kiv)zs (58)
S.t. Zsai s — l» Vl»
(A5, ub, yS) € conv(Fs), VS C N.
Next, representing each subset S by its characteristic vector y(S), we obtain that the

set of all candidate to optimal solutions to (58), for some S, coincides with the set
F% . Thus,

G8)=min Y O Kz (59)
@yerty J=1
Y ggi=LVi=1..n (60)
(Cy)ers

7520, V(5 e FY,

The above problem defines one non negative variable z; ; > 0 for each point in the

set F'. Thus, they can be interpreted as the coefficients of a conic combination of
the points in F%”. For this reason, minimizing Problem (59) is equivalent to minimize
the same objective function over the cone(F%) intersected with the Eq. (60). These
equations are nothing but the hyperplanesy; =1, Vi=1,...,n.

The above discussion implies that

(58) = min ZK,%
j=1

(A,u, y) € proj¢(cone(F¥ N (£, 1)) = C¥.

Finally, the above chain of equations proves that the dual of (58), which in turns
equals (56), is equal to max{d> _,r;i : Y .esti < csc(S), VS € N}. Clearly the

optimal solutions of this last problem are allocations in the core C(N, cs¢c). This
proves the last assertion of the theorem. O

The result above can be stated equivalently describing C¢ by means of all its
valid inequalities. Since C? is the projection of cone(F®) N (¢, 1) on the space of ¢
variables, it is well known that all valid inequalities for C% are of the form a’¢ > b
such that there exists @’¢ > d'y with 3", d; = b which are valid for cone(F®).
This implies the following result.
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Corollary 1 The core of the game (N,P,K,R,d,csc) is not empty if and only if
csc(N) < min{zj'.';l K;y; 1 d'¢ = b, for all inequalities such that a'¢ > d'y is valid
for cone(F®) and Y__, d; = b}.

Further, the applicability of this result depends on the availability of obtaining
efficient polyhedral descriptions of cone(F%’) which may not be easy. In any case,
any partial description of that set allows to give approximate allocations that differ
from actual core allocations an amount given by, at most, the gap between the
problem (59) and the approximated version that we are able to solve.

6 Minimum Diameter and Radius Games

In this section we consider two different problems in the field of continuous location,
namely finding the Steiner diameter and the radius of sets of points in metric spaces.
These two problems are closely related and they have been revisited a number
of times in the specialized literature [10, 18, 19, 25, 26]. In our analysis, we are
interested in their cost sharing aspects. This perspective has been already studied
in [39, 40]. For this reason, our presentation, in this section, follows the material in
these two papers.

Let X be a metric space with distance function d and let Ny = {ag,ay,...,a,} be
a finite set of points in X. The subset N = {ay, ..., a,} is identified as the set of n
players, and we refer to these points as existing facilities, or demand points. There
is also a distinguished point ag, representing the location of a server that provides
service to the players, that can be viewed as an essential element in the system, e.g.,
each demand point must have access to ay. Note that a; is not a player.

Given a finite subset of points ¥ C X, its diameter D(Y), is defined by

D(Y) = max d(y, ).
Yi.2€Y

A pair of points y;, y, € Y, satisfying D(Y) = d(y, y2) is called a diametrical pair.
The radius of Y is defined by

R(Y) = inf .
(1) = if max i)

A point x € X satisfying R(Y) = max,ey d(x, y) is called a 1-center of Y. Note that
by the triangle inequality

R(Y) = D(Y) < 2R(Y). (61)

We now formally define the class of cooperative cost games based on the above
facility location problems.
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The first game is the Minimum Diameter Location Game (MDLG), (N, c¢p), with
respect to the metric space X and the set of points Ny (see [40]). Its characteristic
function is defined by

cp(8) = D(S U {ao}).

The second game is the Minimum Radius Location Game (MRLG), (N, cg), with
respect to the metric space X and the set of points Ny (see [39]). Its characteristic
function is defined by

cr(S) = 2R(S U {ap}).

(The factor 2 in the above definition is used for convenience and comparison
purposes only.)

It directly follows from the definitions that both games are monotone. Also,
from (61), for any S C N,

cp(S) = cr(S) = 2cp($).

Next, we recall the concept of network metric space induced by a connected
undirected graph and its positive edge lengths. Suppose G = (V, E) is a connected
undirected graph with positive edge lengths {/.}, e € E, where V = {ag, a1, ..., a,}.
When e = (a;,a;), we will also use the notation /(a;,a;) = l.. Each edge in E is
assumed to be rectifiable. We refer to interior points on an edge by their distances
(along the edge) from the two nodes of the edge. A(G) is the continuum set of points
on the edges of G. For any pair of points x, y € A(G), we let d(x, y) denote the length
of a shortest path in A(G) connecting x and y. We refer to A(G) as the metric space
induced by G and the edge lengths.

We first prove, following [40], that C(N, cp) is nonempty.

Theorem 4 Given a graph G = (V,E), and a subset N C V \ {ao}, let (N, cp) be
the minimum diameter location game, defined over A(G). Then, there is an extreme
point of the core C(N, cp), which has at most two positive components.

Proof Let a;,a; € N U {ap} such that cp(N) = d(a;, a;).

If a; = ay, define the allocation x’ by setting x; = ¢p(N) = d(a;, ap), and x, = 0,
for any k # i. It is easy to see that x’ is in the core since for each coalition S such
that a; € S, we have x'(S) = xi = d(a;, ap) < cp(S).

Next suppose that a; # ao and a; # ao. We present two extreme points of
C(N, cp). First, define the allocation x” by setting x; = d(a;, ap), x; = cp(N) —
d(ai, ao), and x; = O for any k # i,j. Note that by the triangle inequality, x; <
d(aj,a0) = cp({a;}).

Then, x'(S) = cp(N) = d(a;, a;) < cp(S), for each coalition S, satisfying i, j € S.
Also, ¥ (N) = cp(N).If a; € Sand a; ¢ S, then x'(S) = x; = d(a;, ap) < cp(S).
Similarly, if a; € S and g; ¢ S, then X'(S) = xj’. < d(aj, ap) < cp(S).
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A second extreme point of C(N, cp), x”, is similarly defined by setting, x;' =
d(aj, a), x] = cp(N) — d(aj, ap), and x; = 0 for any k # i,j. This concludes the
proof. |

In spite of the facts that C(N, ¢p) is nonempty and that cp(S) can efficiently be
computed for any coalition S, it is known that testing membership in the core for a
given vector x is NP-hard for general graphs [40]. Note that the latter task amounts
to testing whether mingcn (cp(S) — x(S)) > 0.

Formally, given an MDLG with an underlying graph G = (V, E) with positive
edge weights, and an allocation vector x, the core membership decision problem is
to determine whether x is not in the core C(N, cp).

Theorem 5 The core membership decision problem is NP-hard even when G =
(V,E) is a complete graph, N = V \ {ap}, the edge lengths satisfy the triangle
inequality, and x distributes the total cost cp(N) equally.

Proof We formulate the independent set problem [13] as an instance of the core
membership decision problem. An instance of the NP-Complete independent set
problem is an undirected graph G; = (Vi, E;) and an integer k, and the decision
problem is whether G| has an independent set (i.e., a set of nodes such that no
pair of them are adjacent) of size greater than k. Without loss of generality we may
assume that | V| is even and k = |V{|/2. (If k < |V;|/2, add | V| — 2k isolated nodes
to Gy. If k > |Vy|/2, add a clique with 2k — | V| to G;.)

Let G; = (V1, E)) be an undirected graph with V| = {ay,...,a,}. Let G, =
(V1, E) be the complete graph with node set V. Associate a positive length with
each edge of E, as follows: If e € E; then set the length of e to be equal to n. If
e ¢ E; then set the length of e to be equal to n/2. Let G3 = (V; U {ap}, E3) be the
graph obtained from G, by adding the node a( and the n edges connecting ay to the
n nodes in Vj. The length of each one of these n edges is set to be equal to n/2.
Note that G5 is a complete graph with n + 1 nodes, and its edges satisfy the triangle

inequality.
Next, set N = V; and consider the game (N, ¢p), defined on A(G3). In order to
prove our claim, we will show that x = (1,...,1) is not in C(N, ¢p) if and only

if the graph G, has an independent set of cardinality greater than n/2. We assume
without loss of generality that E; is nonempty, and therefore c¢p(N) = n.

First note that cp(S) € {n,n/2} forany S € N. Also, cp(N) = n =} _, x;.

Suppose that G| has an independent set S with |S| > n/2. Then, by definition
cp(S) =n/2 < |S] = Zajesxj = x(S), and therefore x ¢ C(N, cp).

Next suppose that there is a subset S € N such that ¢p(S) < x(S) = Za,e oX =
|S| < n. Therefore, cp(S) = n/2, and |S| > n/2. In particular, the subgraph
induced by S has its diameter equal to n/2. By the definition of the edge lengths,
S is an independent set of G; (otherwise there would exist a pair a;,a; € S with
d(a;, a;) = n). Since |S| > n/2, the result is proven. |

In view of the above result it is unlikely that there is a formulation of C(N, ¢p)
involving only a polynomial number of linear constraints. In [40] the authors present
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Fig. 1 Graph in Example 2

an efficient representation of C(N, c¢p) for the class of minimum diameter games
defined on tree graphs.

In contrast, in the following we show that C(N, cg), the core of the MRLG,
can be empty. In view of this result we will show that for several metric spaces
the core, which by definition is a polyhedral set in R”, is nonempty and/or has
a polyhedral representation by O(n¢) linear inequalities (c is independent of the
number of players n, and depends only on some parameters of the space X.) Such a
representation is usually called efficient or compact.

We have already noted that by definition the characteristic function cg is
monotone. However, when the metric space X is discrete, i.e., |X| is finite, the radius
location game, (N, cg) may not be subadditive. As a result players may have no
incentive to cooperate and the core can be empty, as shown in the next example also
taken from [39]

Example 2 Consider a 5-node path with edge set E = {(a;, a2), (a2, ap), (ao, az),
(a3, as)}. The respective edge lengths are 1, 1, 2 and 2, as shown in Fig. 1.

The finite (discrete) space X consists of the 5 nodes (points) with the distance
function induced by the edge lengths. X can also be viewed as a set of 5 points on
the real line. Consider first the 2-player game on X defined by N = {ay, a4}. It is not
subadditive since cg({ay, as}) > cr({a1}) + cr({as}).

The above example can easily be modified to show that subadditivity may not
hold even for complete discrete games, i.e., when N = X \ {ao}. Specifically,
consider the complete 4-player radius game defined on the above set X, and let
N =X \{ao} = {a1, a2, a3, as}.

The smallest discrete neighborhood covering all nodes has radius 4, while
the smallest (discrete) neighborhoods covering {a;, a»,ao} and {a3, a4, ap} have
radii 1 and 2, respectively. Hence, cr({a;,as,as,a4}) = 8,cp({aj,ar}) =
2, cr({as, as}) = 4, and therefore cg({ay, az, a3, as}) > cg({ay, az}) + cr(as, as}).

It is easy to check that unlike the above 2-player radius game defined on a discrete
metric space, every complete 2-player game, defined on a 3 point discrete metric
space has a nonempty core.

When the metric space X consists of a continuum set of points C(N, cg) can
also be empty for a 3-player game, as illustrated by the next example of a network
metric space A(G). This example corresponds to a very simple geometric planar
road network, where the edges are line segments and their lengths are the respective
Euclidean distances.

Example 3 Consider the graph G = (V,E) where V = {ag,ay,...,as} and E =

{(ao, as), (ao, as), (ao, as), (a1, as), (ay, ag), (a2, as), (a2, as), (as, as), (a3, ag) }. All
edges are of unit length, see Fig. 2.
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Fig. 2 Graph in Example 3

Set X = A(G). Consider the game (N,cg), defined on X, with Ny =
{ag,a1,az,a3} and N = {ay,as,as}. It is easy to check that for each coalition
S C N with |S| < 2 we have cg(S) = 2, and cg(N) = 4. The following table
summarizes these results. By symmetry, if the core was not empty the symmetric

S Center Radius
a1, a2} as 1
{ai} ay, ag 1

lai,ax, a3} | a1,a2,a3,a0 | 2
allocation x = (4/3,4/3,4/3) would be in the core contradicting the constraint
x1+x2 < cr({ar, az}) = 2.

For any metric space X, the definition of cg ensures the monotonicity of the game
(N, cg), whereas subadditivity is proved in the next proposition, under the following
continuity assumption:

Definition 1 Let X be a metric space such that for any pair of points x,y € X, and
areal 0 < o < 1, there is a point z € X such that d(x,z) + d(z,y) = d(x,y) and
d(x,7) = ad(x,y). Then X is called a “geodesic metric space”, [33].

Proposition 6 If X is a geodesic metric space, then the radius game (N, cg) over X
is subadditive.

Proof Consider a pair of coalitions, S| and S,. We need to show that
cr(S1 U S2) < cr(S1) + cr(S2).

For j = 1,2, let ¢; and r; be the 1-center and 1-radius of the smallest ball
enclosing the points in S; U {ao}, respectively.
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Let P(cy, cz) be a shortest path in X, connecting ¢; and ¢,. Let d(cy, ¢;) denote
the length of P(cy, ¢3). Then, d(c1, ¢3) < d(cy,a0) + d(ag, c2) < ri + rs.

Suppose without loss of generality that r, > r|. If , > r; + d(cy, ¢;), then a
center established at ¢, will ensure a covering radius of , to all nodes in S; U S, U
{a()}. Hence, CR(Sl U Sz) <2r) = CR(Sz).

If i <r, <r +d(c,c,), then consider a center established at the point ¢*,
such that d(cy, ¢*) = (d(c1, c2)+ra—r1)/2, and d(cz, ¢*) = (d(c1,¢c2) —r2+11)/2.
It is easy to check that this center will ensure a covering radius of (d(cy, cz) + r| +
r2)/2 < r; + rp to all nodes in S; U S, U {ag}. (Note that vy is in the intersection
of the smallest balls enclosing S; U {ao} and S, U {ag}.) Therefore, cg(S; U S3) <
cr(S1) + cr(S2). ]

6.1 {, Metric Spaces over R4

In this section we focus on the case in which the MRLG (N, cg) is defined on the £,
metric space over RY. Again, we let Ny = V = {ay, ai, ..., a,} be a set of points in
RY, and set N = V \ {aop}.

The following examples, borrowed from [39], show that in general the MRLG is
not submodular, and that with the exception of the case p = o0, cp(N) = D(V) #
2R(V) = cgr(N). Hence, the existence of core allocations is not clear in the case
where p # oo.

Example 4 Consider the planar £, normed case with V = {ag, ay., a,, a3}, where,
ap = (O, 0), a) = (0, 1),612 = (1,0) and azy = (—1,0).

We have CR({a] ,ay, a3}) =2, CR({a]}) =1, and cR({a1 s az}) = CR({(I] s (13}) =
2!/P_ Thus, cg is not submodular in this example for any p such that 27 < 3/2,
which in particular applies to 2 < p < oo.

Example 5 Consider the planar £; case with V = {ag,a,, as, a3}, where, ay =
(0, O), a = (1, —1),612 = (1, 1) and a3 = (—1, —1). We have cR({al,az,a3}) = 4,
cr({a1}) = 2, and cg({a1, a2}) = cr({ay,as}) = 2. Thus, cg is not submodular in
this case.

The next two examples show that for any 1 < p < oo in the planar case, and for
the rectilinear norm £, even in R?, cgx(N) = 2R(N U{ay}) can be strictly larger than
cp(N) = D(N U {ay}). (In R? the £; norm is equivalent to the £, norm.)

Example 6 Consider the set of points V = {ay, a1, az, as} where a; = (a,b),a, =
(—a,b), a3 = (0,—1), and @y = (0,0). For I < p < o0, leta = b = 27'/7, Then,
the £, diameter of Vis (a” + (b + 1)? )!/P whereas the £, radius is 1 and the 1-center
is (0,0). Hence, cp(N) = D(V) <b+ 1 <2 =2R(V) = cg(N).

Example 7 Consider the set of points V = {ag,a;,az,a3} where a; =
1,1,1),a, = (-1,-1,1), a3 = (-1,1,—-1), and ¢y = (1,—1,—1). The ¢,
diameter of V is 4 whereas the £; radius is 3 and the 1-center is (0,0, 0). Hence,
cp(N) = D(V) < 2R(V) = cg(N).
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Next, we show that for any p > 1, the core of the game (N, cg), defined on the £,
metric space over R?, can be represented as a set described by a polynomial number
of linear inequalities, for any fixed q.

Consider first the case where 1 < p < oo.

Theorem 6 Let | < p < oo, and consider the game (N, cg), defined on the £,
metric space over Ri. Let {S;}, j € J, be the collection of all subsets S € N with
|S| < g + 1. For each j € J, let B(S;), be the smallest enclosing ball containing
S; U {ag}, and let S; be the subset of all points in N, contained in B(S;). Then the
core of the game is given by,

C(N,cg) = {x e R :x(Sj'») <cr(S)), YjeJ, and x(N) = cr(N)}.

Proof For any subset S C N, cg(S) is the diameter of B(S), a smallest enclosing ball
containing S U {ao}. (Since 1 < p < oo, B(S) is unique, [45].)

By the Helly property there is a subset S; C S, j € J, such that cg(S) = cr(S)).
Then, by definition S C S]/.. Moreover, by the monotonicity of the game each vector
in the core is nonnegative, and therefore x(S) < x(Sj’.). Hence, the constraint x(S) <
cg(S) is dominated by the constraint x(SJ/.) < cg(S;). This completes the proof. [

Next, consider the case where p = 0o. As above, let {S;}, j € J, be the collection
of all subsets S C N with |S| < ¢ + 1.

Theorem 7 Consider the game (N, cg), defined on the £, metric space over RY.
Then there is a collection of subsets of N, {S7°(k)}, j € J, k = 1,....¢{°(n, q), such

that ¢°(n, q) = 0(29n'9=V), and the core of the game is given by,

C(N,cp) = {x € Ry 1 x(S7°(k) < cr(S), YjeJ k=1,...,¢°(n,q)
and x(N) = cg(N)}.

Proof For each subset S the problem of finding the smallest £, ball enclosing
S is reduced to finding a smallest hypercube containing S. Such a hypercube is
not unique. The set of centers of all optimal hypercubes is itself a hypercube of
dimension less than or equal to g— 1. For j € J consider an optimal hypercube H(S;)
enclosing S; U {ao} and let P(H(S;)) be the maximal subset of N, contained in H(S)).
We can shift H(S;) along the axes and obtain an optimal hypercube H’(S;) such that
P(H'(S))) = P(H(S))), and for each coordinate i = 1, ..., d, one of the two faces of
H'(S;) corresponding to the ith coordinate contains a point in N. Thus, there is only
ngo (n,q) = 02974~ D) such maximal subsets of N, associated with a given subset
S;,j € J. Denote this collection of subsets by {SJ°° k) k=1,... ,cj‘?o (n, ).

Using the monotonicity of the game and following the arguments used in the
previous proof, we observe that for each subset § C N, there is a subset S;, j € J,
and k = 1,...,¢%(n, q), such that the constraint x(S) < cg(S), is dominated by the
constraint x(S7°(k)) < cg(S;). This completes the proof. |

A similar analysis applies to the rectilinear case when p = 1 [39].
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Theorem 8 Consider the game (N, cg), defined on the £, metric space over R4,
Then there is a collection of subsets of N, {S} &}jed k=1,..., c} (n,q), such

that c} (n,q) = O(2q2nq_l), and the core of the game is given by,

C(N.cp) = {x € R 1 x(S/(k) < cp(S). Yjelk=1,...c(nq)
and x(N) = cg(N)}.

With the exception of the case p = oo, we do not know yet whether C(N, cg)
is nonempty for all £, metric spaces over RY. We assume without loss of generality
that a; # ap foralli=1,...,n.

Theorem 9 The core C(N, cg) of the game (N, cg), defined on the £, metric space
over RY, is nonempty. Specifically, C(N, cp) = C(N, cg).

Moreover, if D(No) = d(ao, a;), for some a; € N, the dimension of C(N, cg)
is n — 1, and there is x* € C(N,cg) such that x; > 0, for any a; € N. Also, if
D(Noy) = d(a;, a)), for some a;,a; € N, and d(a;, a;) < d(a;,ao0) + d(aj, ap), then
the dimension of C(N, cg) is n — 1, and there is x* € C(N, cg) such that x} > 0, for
any a; € N.

Proof When p = o0, it is easy to see that for any set S we have cp(S) = D(S U
{ap}) = 2R(S U {ap}) = cg(S). Thus, C(N,cp) = C(N, cg), and the nonemptiness
of the core follows from the fact that C(N, cp) # 0.

Suppose without loss of generality that D(Ny) = d(ag,a;). Let o =
(o1, 7, ...,0,) be an arbitrary real vector satisfying 0 < oy < min,—;_, d(ao, a;),
n .
o = Zj=2a_,~anda_,~ >0,j=2,...,n

We show that the allocation x* = (d(ag,a) — 1,02, ...,0,) is in C(N, cg).
First, by definition x*(N) = d(ap, a;) = D(Ny) = cg(N). Next consider a coalition
S C N.Ifa; € S, then XH(S) < d(ao,al) < CR(S). If a; 75 S, then Xa(S) <o <

min,—; . d(aop,a;) < cg(S).
To see that the affine dimension of C(N, cg) in this case is n— 1, we show that the
core contains n independent vectors. One of them is the vector x' = (x%, . ,x,ll),

defined by x] = d(ag, ar) and le = 0forj = 2,3,...,n. The other n — 1 vectors
are defined as follows:

Let € be a sufficiently small positive real, and consider the n — 1 independent
core allocations {x*©}, £ = 2,... n, where a(£) is the vector defined by o;({) =
€,a¢(f) = ¢, and oy(¢) = 0, for any t = 2,...,n;t # L. The allocation x* =

7—, x*® /(n — 1) is in the core and has strictly positive components.

Next, suppose without loss of generality that D(Ny) = d(ay, ay) and d(a;, ay) <
d(ag,ay) + d(ag, az). Let 8,6, be a pair of positive reals satisfying 0 < §; <
d(ao,CZ]), 0< 52 < d(a(), (12), and 51 + 82 = d((ll, aO) + d(az,ao) — d(al, (12).

Leta = (ay, a2, ..., a,) be an arbitrary real vector satisfying oy < d(ay, ap)—51,
or < d(az,ap) — 8,0 < oy +ap < min—_,d(ag, a;),0 < a1 + o < min{d;, 6>},
a +ay = Z;’=3oqiandoqj >0,j=1,...,n

We show that the allocation

x* = (d(ap,a1) — 61 —ay,d(ag, az) — 8 — s, a3, ..., 0)
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is in C(N, cg). First, by definition x*(N) = d(aj,a;) = D(Nyg) = cr(N). Next
consider a coalition S € N. If aj,a; € S, then x*(S) < d(aj,az) = cg(S). If
a € S,a 75 S, then x*(S) < d(aj,ap) — 8 — oy + ZZ=3OZ( < d(aj,a) —
o —o + Y gy < d(ar,ap) < cg(S). Similarly, if a; # S,a, € S, we obtain
x¥(S) < d(az,ap) < cg(S). Finally, suppose that aj,a; # S. Then, x*(S) < oy +
oy < ming=p, ., d(ao,a;) < cg(S).

To see that the affine dimension of C(N, cg) in this case is n— 1, we show that the
core contains 7 independent vectors. Two of them are the vectors x' = (x{, . ,x,ll),
and x> = (x3,...,x2), defined by x| = d(ay, ap), x} = d(ai, az) — d(ay, ap), x} =0
forj = 3,4,...,n, x% = d(ay,ay) — d(az,ao),)é = d(az, ap), and sz = 0 for
j=3,4,...,n. The other n — 2 vectors are defined as follows:

Let € be a sufficiently small positive real, and consider the collection of n — 2
independent core allocations {x*(¥}, £ = 3,...,n, where a({) is the vector defined
by a1 (f) = €,a¢(f) = ¢, and o, (f) = 0, forany t = 2,...,n; t # £. The allocation
= (! + 22+ X5 x*©) /nis in the core and has strictly positive components.
This completes the proof. O

Elaborating on the result in the last theorem, the next example illustrates that
when the conditions in the theorem are not satisfied, the dimension of the core can
even be zero. Specifically, for any number of players, even in the £, planar case,
the core can be a singleton where only two players share the total cost, in spite of
the fact that the distance from each player to the server a is positive. (We also note
in passing that in the £ case, if cr({ai, a;}) < cr({a:}) + cr({a;}) = d(ai, ap) +
d(a;, ap), for any pair of distinct players in N, then there is a core allocation where
any player which is at a positive distance from a pays a positive amount.)

Example 8 Consider the set of points Ny = {ag,ai,...,a;} where ay =
0,0),a; = (0,1), a = (0,—1), a3 = (1,0) and a; = (x,0),0 < x; < 1,
fori = 4,5,...,k. Since ¢p(S) = 2, if {a;,a,} C N, and cp(S) < 1, otherwise, it
is easy to see that C(N, cp) = C(N,cg) = {(1,1,0,...,0)}.

Corollary 2 The core of the game (N,cg), defined on the {1 metric plane is
nonempty. Specifically, C(N, cp) = C(N, cg).

The next example shows that even in R?, cg(N) = 2R(N U {ag}) can be strictly
larger than cp(N) = D(N U {ay}) for the rectilinear norm.

Example 9 Consider the set of points V = {ay, ..., a3} where a; = (1,1,1),a, =
(-1,-1,1),a3 = (-1,1,—1), and a9 = (1,—1,—1). The diameter of V is 4
whereas the radius is 3 and the 1-center is (0, 0, 0). Hence, D(V) < 2R(V).

It is not known whether the core of the radius location game, C(N, cg), is
nonempty for the rectilinear case on R% for ¢ > 3. Nevertheless, for any fixed ¢
the nonemptiness of the core can be tested in polynomial time since the core can
be represented by a polynomial number of constraints as follows. If S € N then by
the Helly property there is a subset S’ C S, |S’| < ¢ + 1 such that cg(S) = cg(5).
Therefore

C(N.cg) = {x € R : x(S) < cr(S), VSCN, |S| < g+ 1, and x(N) = cr(N)}.
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The above compact representation also holds for the space R augmented with
any metric induced by a gauge with a symmetric unit ball (norm).

6.1.1 Euclidean Spaces

In the particular case of p = 2 which is the Euclidean model, in general, the equality
¢p(N) = cg(N) may not hold even in the planar case. From Proposition 6 it follows
that the characteristic function cg(S) is subadditive also for the Euclidean model.
However, it does not follow from the general analysis in previous sections that the
core of the Euclidean planar game is nonempty.

In spite of that, it is known that C(N, cg) is nonempty for the Euclidean planar
case [39]. More specifically, there is a core allocation where at most 3 players
(points) pay positive amounts. These are points defining C(V), the minimal circle in
the plane enclosing the set V.

Theorem 10 The core C(N, cg) of the minimal radius location game (N, cg) in the
Euclidean planar case is non-empty.

Proof See [39].

According to [39] the proof of the above theorem is based on a rather long case
analysis. It is still unclear whether a shorter and more elegant proof exists and it is
applicable to any dimension g > 2.

In the minimum radius location game (N, cg), for each coalition S, cg is defined
as twice the solution value to the 1-center problem for the set of nodes S U {ay}.
Similarly we can consider location games defined by other common optimization
criteria often used in facility location models. For example, consider the minimum
ordered median location game, (N, coy), where for each coalition S, cgy, is defined
as the solution value to the single facility ordered median problem for the set of
points S U {aop}.

We note that from the cooperative point of view the above definition does not
even induce the desirable property of subadditivity. Thus, players may not even
have the incentive to cooperate. This can be enforced by introducing set up costs as
in Sect. 4.
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