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Abstract. We focus on voters’ preference profiles where at least two of the
three selected voting rules (e.g. plurality, Borda count, and anti-plurality) pro-
duce different outcomes—thus, the voting body needs a procedural choice.
While this situation evokes an infinite regress argument for the choice of rules to
choose rules to choose rules to…and so on, we introduce a new concept named
regress convergence, where every voting rule in the menu ultimately gives the
same outcome within the finite steps of regress. We study the mechanism of this
phenomenon in a large consequential society having a triplet of scoring rules.
The results show that, in the menu of plurality, Borda count, and anti-plurality,
the probability that the regress convergence happens is 98.2% under the
Impartial Culture assumption and 98.8% under the Impartial Anonymous Cul-
ture assumption.
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1 Introduction

In modern democratic societies, the choice of voting rules has an important role. Saari
[17] shows that a single profile of ten candidates could result in millions of different
rankings for ten candidates simply depending on the choice of scoring rule. Even when
there are three candidates, Saari shows that a preference profile could support up to
seven different rankings1 by changing the scoring rule. Nurmi [14] also argues the
discrepancies within popular voting rules, the plurality, Borda count, max-min, and
Copeland’s method. Therefore, in addition to the choice of candidates, society must
also choose their voting rules, which will also require to choose a voting rule for the
choice of a voting rule. In this way, procedural choice falls into an infinite regress.

To overcome this problem, a growing number of studies have been carried out both
from axiomatic and probabilistic viewpoints. Barbera and Jackson [2] and Koray [10]
axiomatically studied the properties, called self-stability and self-selectivity, of a single
voting rule for two and three or more alternatives, respectively. These concepts demand
that a voting rule should choose itself among the other voting rules at hand in the

1 If the alternatives are denoted A, B, and C, the seven rankings are A � B � C, A � C � B,
C � A � B, C � B � A, A � B � C, A�C � B, and C � A � B (Saari and Tataru 1999).
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voting on the voting rules. Later on, the concepts are extended to apply for the set of
voting rules. A set of voting rules is (first-level) stable if for any profile there is exactly
one rule that chooses itself (Houy [9]), or if there is at least one self-selective voting
rule (Diss and Merlin [4]). Using the methods developed by Saari and Tataru [18] and
Merlin et al. [13], Diss and Merlin [4] estimate the likelihood that the set of plurality
(P), Borda (B) and anti-plurality (A) is stable under the Impartial Culture (IC) as-
sumption within a large society. Diss et al. [3] also determines corresponding proba-
bilities under the Impartial Anonymous Culture (IAC) assumption. These estimations
show that the set of P;B;Af g is stable with a probability 84.49% under IC and 84.10%
under IAC within a large society.

The objective of the present article is to propose a new way to analyze and solve the
regress argument. Specifically, we formulate a phenomenon, named regress conver-
gence, where the regress argument is supposed to naturally disappear within the finite
steps of regress, and we show that this phenomenon occurs quite frequently in the
choice of triplets of scoring rules. The regress convergence is a phenomenon where
every voting rule in the agenda ultimately designates the same outcome.2 Let us explain
this with an example. Suppose a society of 14 individuals chooses one of three can-
didates a; b; c, and there is an ex ante agreement on the set of voting rules, F ¼
P;B;Af g: When the preference profile on the set of candidates X is given as L01�10 :

abc; and L011�14 : bca (individuals 1; 2; . . .; 10 prefer a to b and b to c and individuals
11; 12; 13; 14 prefer b to c and c to aÞ, the three voting rules P;B; and A yield af g; af g;
and bf g; respectively. Suppose now that the same society votes on which rule in F to
use. If everyone is consequential (i.e., preferring those rules that yield better candidates
for themselves) and is supposed to submit a linear ordering, it is natural to think that the
first 10 individuals submit either 00PBA00 or 00BPA;00 and the remaining four individuals
submit 00APB00 or 00ABP00. Suppose that they submit the following: L11�4 : PBA,
L15�10 : BPA, and L111�14 : APB. For this profile L11; L

1
2. . .; L

1
14

� �
, P yields Bf g while B

and A yield Pf g (See Fig. 1).
Note that each P2;B2, and A2 (a rule to choose the rule) ultimately reach the same

outcome af g. This means that no matter which rule in F2 is selected, the outcome is the
same. Hence, further regress has no meaning for the determination of the ultimate
outcome. In a large and consequential society, our result shows that the regress con-
vergence phenomenon is not so rare. Indeed, under the menu of P;B;Af g, for example,
the phenomenon occurs at more than 98% under either IC or IAC (Corollary 1).

The present article is organized as follows. Section 2 introduces the notation.
Section 3 states basic results, and some of the results are expanded in the discussion
found in Sect. 4. The conclusion is stated in Sect. 5, and all proofs are in the Appendix.

2 Saari and Tataru [18] argue in their introduction that “Except in extreme cases such as where the
voters are in total agreement, or where all procedures give a common outcome, it is debatable how to
determine the ‘true wishes’ of the voters.” Clearly, the intuition of regress convergence lies in the
latter “extreme cases,” though our results show that the phenomenon can occur relatively frequently
in the choice of triplets of scoring rules.
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2 Notation

Suppose a society N ¼ 1; 2; . . .; nf g n� 3ð Þ makes a collective decision over the choice
of m alternatives without an agreement on the Social Choice Rule (SCR). Let X ¼
x1; . . .; xmf g be the set of alternatives. Suppose also that they have in their mind m

possible SCRs, denoted by f1; f2; . . .; fm. We call this combination a menu of SCRs. For
any nonempty set A, we denote by L Að Þ the set of all linear orderings over A.

Each individual i 2 N is supposed to have a linear preference L0i 2 L Xð Þ. The
combination of L01; . . .; L

0
n is called a level-0 preference profile. An SCR f over a

nonempty set A is a correspondence f : L Að Þð Þn�A such that / 6¼ f Lð Þ�A for all
L2 L Að Þð Þn. A scoring SCR f for m options is an SCR that assigns to each alternative
sj j ¼ 1; 2; . . .;mð Þ points if it is ranked at the jth position in the preferences, where
1 ¼ s1 � s2 � � � � � sm � 04. Then, f Lð Þ is defined as the set of options with the highest
scores. We often express score assignments as f : s1; s2; . . .; sm½ �. If m ¼ 3, the plurality
rule fP has the assignment 1; 0; 0½ �, the Borda count fB has the assignment 1; 1=2; 0½ �,
and the anti-plurality rule fA has the assignment 1; 1; 0½ �. For any m 2 N, a k-approval
voting fEk is a scoring SCR such that s1 ¼ s2 ¼ � � � ¼ sk ¼ 1 and
skþ 1 ¼ skþ 2 ¼ � � � ¼ sm ¼ 0.

The regress argument, i.e., the choice of SCRs for the choice of SCRs for the choice
of…and so on, is supposed to be as follows (the terms in italics are formally defined
later). It starts from the choice of X using the set of SCRs F1 (level-1 issue). If the
society finds a regress convergence, then the regress stops. Otherwise, the society goes
up to the choice of F1 using the set of SCRs F2 (level-2 issue). If the society finds a
regress convergence, then the regress stops. Otherwise, the society makes the choice of
F2 using F3 (level-3 issue), and so on there is regress convergence at some level. Note
also that each individual is supposed to be consequential throughout the regress
process.

Fig. 1. Example of a regress convergence.3 F1 denotes the set of voting rules for the choice of
candidates and F2 denotes the set of voting rules for the choice of F1.

3 Note that no rule chooses itself in the figure. Therefore, the weak convergence does not logically
imply the stability of the menu of SCRs in either Houy [9]’s or Diss and Merlin [4]’s sense. We can
also say that the existence of a self-selective rule does not imply regress convergence (See the trivial
deadlock described in Definition 5 and Fig. 2).

4 Note that by definition we normalize the score assignment so that the top position gains one point
and the worst position gains zero points.
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Definition 1 (Level5). Let X ¼ F0. For any k 2 N [ 0f g, the level-k issue is the
choice from Fk�1 using f1; f2; . . .; fm. At this level, each SCR fj j ¼ 1; 2; . . .;mð Þ is called
a level-k SCR and is often denoted by f kj . We denote by Fk ¼ f k1 ; . . .; f

k
m

� �
the set of

level-k SCRs.

Definition 2 (Class C�X of fk 2 Fk). For any level-1 SCR f 2 F 1, its class at L0 2
L Xð Þð Þn is f L0ð Þ �Xð Þ. For k� 2, the class of g 2 F k at L0 2 L Xð Þð Þn, L1 2 L F1ð Þð Þn,
…, Lk�1 2 L Fk�1

� �� �n
, denoted Cg L0; . . .; Lk�1

� �
or simply Cg, is the union of each

class of h 2 g Lk�1
� �

at L0; L1; . . .; Lk�2.

Definition 3 (Consequentialism6). Let k 2 N and L j 2 L F jð Þð Þn j ¼ 0; 1; . . .; k � 1ð Þ.
Lk 2 L Fk

� �� �n is called a consequentially induced level-k profile from L0; . . .; Lk�1 if
for all i 2 N, x; y 2 X, f ; g 2 Fk , if Cf ¼ xf g, Cg ¼ yf g, and xL0i y, then fLki g. We
denote by Lk L0; . . .; Lk

� �
the set of all such profiles.

When L0; L1; . . .; Lk is a sequence of profiles such that L j j ¼ 1; . . .; kð Þ is a con-
sequentially induced level-j profile from the preceding profiles, we simply say
L0; . . .; Lk as a consequential sequence of profiles. We are now ready to formally state
how the regress argument could stop. The weak regress convergence (Definition 4) and
the trivial deadlock (Definition 5) are thought to be a success and failure, respectively,
in the procedural regress argument. In either case, further regress is thought to be
meaningless.

Definition 4 (Weak Regress Convergence). Let f1; . . .; fmf g be the menu of SCRs.
A level-0 preference profile L0 ¼ L01; L

0
2; . . .; L

0
n

� � 2 L Xð Þð Þn weakly converges to
C�X if and only if a consequential sequence of profiles L0; L1. . .; Lk exist such that
f k1 ; f

k
2 ; . . .; f

k
m are all in the same class C at L0; . . .; Lk.

Definition 5 (Trivial Deadlock). Let f1; . . .; fmf g be the menu of SCRs. A level-0
preference profile L0 2 L Xð Þð Þn is said to cause a trivial deadlock if and only if
f1 L0ð Þ; f2 L0ð Þ; . . .; fm L0ð Þ are mutually distinct singletons.7

Example 1. Suppose m ¼ 3 and the menu of SCRs is fP; fB; fAf g. If f 1P L0ð Þ ¼ x1f g,
f 1B L0ð Þ ¼ x2f g, and f 1A L0ð Þ ¼ x3f g (as in Fig. 2), it is clear that for all k 2 N, a

5 In this article, we suppose the society uses the fixed set of SCRs, f1; . . .; fm for any level. The
distinction between f 1j and f 2j by the superscripts is made based on the supposed agenda.

6 If we identify f 2 Fk with its class C�X, the consequentialism assumption is a way to introduce
one’s preference on sets of alternatives. This is often called preference extension (Barbera et al.
[1]). When seen in this way, our consequentialism assumption is the same as the Extension Rule. It
is a natural requirement of most reasonable systems of preference extension to satisfy the
Extension Rule (See also Endriss [6]).

7 In the present article, we adjust the number of alternatives and that of admissible SCRs. However,
this is not essential. If the society has m0 6¼ mð Þ alternatives and m scoring SCRs, we can modify the
definition of trivial deadlock to be the case where every level-2 scoring SCR chooses distinct
singletons and f 21 L1ð Þ [ . . . [ f 2m L1ð Þ ¼ F1 for all L1 2 L1 L0½ �. Then, our proofs for Lemma 1 and
Proposition 1 also hold (though the specific value of pD depends on m0).
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consequentially induced Lk is unique and f kþ 1
P Lk

� � ¼ f kP
� �

, f kþ 1
B Lk

� � ¼ f kB
� �

, and
f kþ 1
A ¼ f kA

� �
. Therefore, no matter how high of a level we see, the structure does not

change at all, which makes the regress argument meaningless in a negative sense
(Fig. 2).

Finally, we discuss the asymptotic probabilities as n ! 1. Among the proba-
bilistic studies of voting events, there are two major assumptions on the distribution of
preferences. One is called the Impartial Culture (IC). It assumes that each voter
independently chooses, with equal likelihood, one of the linear orderings over
X. Therefore, each profile L0 2 L Xð Þð Þn occurs with probability 1= m!ð Þn. The other
assumption is called the Impartial Anonymous Culture (IAC). This assumes that every
voting situation, a combination of the numbers of individuals who each have a specific
linear ordering, occurs with equal likelihood. Hence, each n1; . . .; nm!ð Þ, where nj
represents the number of individuals who have the jth linear ordering, occurs with the
probability 1=nþm!�1Cn. While the probability of certain events, such as the Condorcet
winner exists, can differ according to which assumption is used, there are two common
properties when n ! 1. The first common property is that the probability that a
specific scoring rule yields a tied outcome is negligible as n ! 18 (Marchant [12];
Pritchard and Wilson [15]; Pritchard and Wilson [16]; Diss and Merlin [4]). Let us
denote by pI the probability that at least one level-1 SCR in F1 yields a tied outcome.
Because IC and IAC both say that pI ! 0 as n ! 1, we can focus only on the cases
where each level-1 SCR yields a singleton outcome. The second common property is
that the probability that exactly a 2 0; 1½ � of the whole individuals prefer x to y for some
x; y 2 X; where a is a fixed constant, is negligible as n ! 1. We show this in the
appendix (Lemma 3).9 We denote by qa the probability that exactly a of the whole
individuals prefer x to y for some x; y 2 X:

Fig. 2. A graph image of trivial deadlock

8 For a relatively small n, the probabilities of tied outcomes by famous scoring rules such as plurality
and Borda count are studied by Gillet [7,8] and Marchant [12].

9 Note that these two properties (and thus, our Proposition 1) are also satisfied under IANC (impartial
anonymous and neutral culture) model introduced by Eǧecioǧlu [5]. This is because each ANEC
(anonymous and neutral equivalence class) has at most m! different AECs. Hence, the ratio of those
ANECs including profiles such that ties happen or # i 2 NjxLiyf g ¼ na to the whole ANECs is at
most m!ð Þ2 times that of IAC , i.e. the ratio of AECs (anonymous equivalence class) causing ties or
# i 2 NjxLiyf g ¼ na to the whole AECs. With our Lemma 3, we can confirm that the two
asymptotic properties still hold under IANC. We thank an anonymous referee for encouraging us
to consider about IANC also.
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In sum, either under IC or IAC, the probabilities pI and qa (for several a s) are both
negligible as n ! 1. Based on this property, we next evaluate pWC , the probability
that those level-0 profiles occur that weakly converge, and pD , the probability that
those occur that cause a trivial deadlock.

3 Results

Beginning with preliminary lemmas, we show our central result Proposition 1. It shows
under several conditions that the regress argument can be solved (with weak conver-
gence) unless it falls in the trivial deadlock.

Lemma 1. Let n�m and F ¼ g1; g2; . . .; gp; h1; h2; . . .; hq
� �

p� q� 0ð Þ be the menu
of scoring SCRs, where m ¼ pþ q� 3: For given consequential sequence of profiles
L0; . . .; Lk�1 and alternatives x; y 2 X; suppose the following holds:

Cgkj
L0; L1; . . .; Lk�1� � ¼ xf g for all j ¼ 1; 2; . . .; p ð1Þ

Chkj
L0; L1; . . .; Lk�1� � ¼ yf g for all j ¼ 1; 2; . . .; q: ð2Þ

If # i 2 NjxL0i y
� �

[# i 2 NjyL0i x
� �

; then L0 weakly converges to xf g:
Lemma 2. Let n�m; m ¼ 3 or4; and x; y 2 X such that # i 2 NjxL0i y

� � 6¼ n=2: If the
menu of SCRs is F ¼ fE1 ; fE2 ; . . .; fEm�1 ; fBf g and the class of each level-k SCR is either
xf g or yf g at given L0; . . .; Lk�1 , then L0 weakly converges.

Proposition 1. Suppose m ¼ 3 and n is large (n ! 1 ). Denote the three scoring
SCRs as f i : 1; si; 0½ � i ¼ 1; 2; 3ð Þ; where 1� s1 [ s2 [ s3 � 0: Either under IC or IAC,
we have pWC 	 1� pD whenever the following holds:

s3 � 1=2 or s3\1=2 and s2 
 1þ s3
2� s3

� 	
: ð3Þ

It is worth noting that if the menu of SCRs contains fB; fAf g or fP; fBf g; then the
condition 0 automatically holds irrespective of the last one. Therefore, once a large
consequential society admits the menu fP; fB; fAf g; for example, Proposition 1 shows
there are approximately only two possibilities: they face a trivial deadlock, or they are
endowed with the ability to realize the weak convergence. The probability pD under IC
and IAC is determined by Diss and Merlin [4] and Diss et al. [3]. Based on their
probability calculation, we have the following.

Corollary 1. Let n ! 1 and m ¼ 3; where the menu of SCRs is given by
f P; f B; f Af g: Under IC, the regress weakly converges with a probability of 98.2%.

Under IAC, the regress weakly converges with the probability of 98.8%.
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4 Discussion

4.1 Uniqueness of the Convergent Outcome

L0 2 L Xð Þ is said to weakly converge if at least one consequential sequence of (sub-
sequent) profiles L1; L2; . . . exists10 that adjust the rules’ ultimate judgments at a
certain level. The existence of such L1; L2; . . . guarantees that we can stop the apparent
infinite regress arguments through finite steps of regress. One might, however, be
concerned that the same L0 might weakly converge to a distinct C and C0 by the choice
of the sequence. Now, we show that the set of fP; fB; fAf g guarantees the uniqueness of
the convergent outcome with a slightly stronger assumption on the meta-preferences.

Definition 5 (Strong Convergence). Let f 1; . . .; f mf g be the menu of SCRs. A level-0
preference profile L0 2 L Xð Þð Þn strongly converges to C�X if and only if it weakly
converges to C, and if it does not weakly converge to any other C0�X: (Note that
strong convergence implies weak convergence but not vice versa.)

Expected Utility assumption (EU). For given L0 2 L Xð Þð Þn and their utility rep-
resentations u0i : X ! R i 2 Nð Þ; i.e. u0i xð Þ� u0i yð Þ , xL0i y; the subsequent sequence of
profiles L1; L2; . . . satisfies EU if they satisfy the following:

(1) Each i 2 N has utility function uki over F
k such that 8f ; g 2 Fk k 2 Nð Þ;

uki fð Þ� uki gð Þ ,
P

x2Cf
u0i xð Þ

Cf



 

 �
P

y2Cg
u0i yð Þ

Cg



 

 ð4Þ

(2) Let Rk
i be a weak ordering represented by uki . L

k
i is compatible with Rk

i (i.e. Lki is
obtained by breaking the indifferences in Rk

i ).

(Note that EU logically implies consequentialism (Definition 3), but not vice versa.)
Under EU, we modify Definition 4 by substituting “a consequential sequence of

profiles L0; L1; . . .” with “a sequence of profiles L0; L1; . . . satisfying EU”.

Proposition 2. Assume m ¼ 3; n ! 1, EU, and either IC or IAC. Then, for the menu
of SCRs F ¼ f P; f B; f Af g; we have pSC 	 1� pD, where pSC is the probability that L0

occurs that strongly converges.

Based on Proposition 2, a large consequential society holding fP; fB; fAf g as the
menu of SCRs has only two possibilities: either the society faces a trivial deadlock

10 Technically speaking, we can find the similar use of a compatible linear ordering in Koray [10] and
Koray and Slinko [11] . They define a Social Choice Function (SCF) f as self-selective at L0

relative to the menu of SCFs F1 if and only if there is a consequentially induced L1 2 L F1ð Þð Þn
such that f 2 L1ð Þ ¼ f 1. As Koray and Slinko stated (if we impose that the rule chooses itself for all
compatible linear orderings), “it leads to a vacuous concept”. The same applies to regress
convergence.
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(with at most 1.8% under IC and 1.2% under IAC) or they can know the possible
regress convergence without implementing the regress arguments.

4.2 Tie-Breaking by the Scoring Rules

Finally, we deal with the choice of Social Choice Function (SCF) (i.e., not a corre-
spondence but a function). Suppose we provide SCRs with neutral tie-breaking sys-
tems. Especially, for any SCR fY , we denote by fY� the SCF that breaks ties in favor of
iY 2 N, named the tie breaker of fY . Note that different SCRs are allowed to have
different tie breakers (for example, the plurality tie breaker iP ¼ 1 and the Borda count
tie breaker iB ¼ 2Þ. Then, Proposition 2 can be revised for a relatively small n (it is
straightforward to revise the proofs of Lemma 2 and Proposition 2, so we omit the
proof).

Proposition 3. Let us assume n is odd (n� 3Þ, m ¼ 3, and the menu of SCFs is either
f P� ; f X� ; f A�f g, where f X is either the Borda count, Black’s rule, Copeland’s method, or

the Hare system.11 Then, any level-0 profile L0 either causes trivial deadlock or
strongly converges.

5 Conclusion

We analyzed the regress arguments for procedural choice in a large n ! 1ð Þ conse-
quential society. Once the society admits the menu of SCRs (plurality, Borda count,
and anti-plurality), the probability that at least two of them give different outcomes is
about 46.5% under IC (from Table 7 of Diss and Merlin [4]). While this fact
emphasizes the importance of procedural choice, Proposition 1 says that at more than
98% (either under IC or IAC), we can derive a weak convergence. Furthermore, our
Proposition 2 and Proposition 3 show even further that there are ways to uniquely
determine the possible convergent outcome.

A different interpretation of our results can be obtained when compared with
Suzuki and Horita [19], who argue the difficulties of ranking meta-procedures with a
menu of all the possible SCFs. On the other hand, the present paper shows that the
difficulty of procedural choice quite frequently disappears when the society considers a
relatively small menu of voting rules, such as plurality, Borda count, and anti-plurality.
It can be an interesting future topic to determine the tradeoff between the size of the
menu and the possibility of resolving the regress problem.12

Acknowledgements. This work was supported by JSPS KAKENHI, grant number 15J07352.

11 We assume the Hare system drops exactly one alternative with the least plurality score in each round
(if two or more get the least score, it selects and drops one of them in neutral way).

12 As a step further in this direction, it is also shown that the asymptotic property of pWC 	 1� pD
holds in a large consequential society having fP; fE2 ; fA; fBf g m ¼ 4ð Þ. The sketch of this
calculation is found in the appendix.
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A Appendix

Extra Notation: If f k 2 Fk is obvious in the context, we denote by s f k�1 : Lk�1
� �

the
score of f k�1 2 Fk�1 at Lk�1 evaluated by f k . If Lk�1 is also obvious, we write as
s f k�1
� �

.

Lemma 3. For any x; y 2 X and a 2 0; 1½ �, and either under IC or IAC assumption,
P að Þ, the probability that exactly na individuals prefer x to y, converges to zero as
n ! 1.

Proof of Lemma 3. We can suppose na 2 N. [Under IC] We have the following:

P að Þ ¼ n
na

� �
1
2

� �na 1
2

� �n 1�að Þ
¼ n

na

� �
1
2

� �n

:

Because the proof is similar, we show only for even n. Let n ¼ 2k k 2 Nð Þ. Then,

P að Þ
P
1
2

� �
¼ 2k

k

� �
1
2

� �2k

¼ 2kð Þ!
k!k!

1
2

� �2k

Using Stirling’s approximation, we can evaluate the RHS as

lim
k ! 1

, n ! 1ð Þ

2kð Þ!
k!k!

1
2

� �2k

¼ lim
k!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � 2kp

2k
e

� �2k
ffiffiffiffiffiffiffiffi
2pk

p
k
e

� �k� �2

1
2

� �2k

¼ lim
k!1

1ffiffiffiffiffiffi
pn

p ¼ 0:

[Under IAC] Let a ¼ # i 2 NjxL0i y
� � ¼ na and b ¼ n� a. The probability is

described as:

P að Þ ¼ aþ m!
2 � 1
a

� �
� bþ m!

2 � 1
b

� �
=

aþ bþm!� 1
aþ b

� �
:

With a simple calculation, this is shown to converge to zero as n ¼ aþ b ! 1. ■

Proof of Lemma 1. Assume that F ¼ g1; . . .; gp; h1; . . .; hq
� �

and L0; L1; . . .; Lk�1

satisfy the given condition. Let A ¼ 1; 2; . . .; af g ¼ i 2 NjxL0i y
� �

. If q ¼ 0, the lemma
is obvious. So, we assume p� q[ 0. It follows that 0\ Aj j ¼ a\n (if a ¼ 0, e.g., no
level-1 SCR chooses xf g, which contradicts with p[ 0Þ. Since n�m, we have
a� n=2ð Þ� m=2ð Þ� q. Let Lk be a profile on Fk defined as follows:

Lki : g
k
1; g

k
2; . . .; g

k
p; h

k
1; h

k
2; . . .; h

k
i�1; h

k
iþ 1; . . .; h

k
q; h

k
i for all 1
 i
 q

Lki : g
k
1; g

k
2; . . .; g

k
p; h

k
1; h

k
2; . . .; h

k
q for all qþ 1
 i
 a

Lki : h
k
1; h

k
2; . . .; h

k
q; g

k
1; g

k
2; . . .; g

k
p for all i 2 NnA:
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In words, this is a level-k profile where everyone (except the first q individuals)

orders gk1; . . .; g
k
p

n o
and hk1; . . .; h

k
q

n o
lexicographically. Clearly, we have

Lk 2 Lk L0; . . .; Lk�1
� �

. Take any f kþ 1 : 1 ¼ s1; s2; . . .; sm ¼ 0½ � 2 Fkþ 1 and consider
the scores evaluated by this f kþ 1. Note that hk1 has the largest score among hk1; . . .; h

k
q.

We have

s gk1
� �� s hk1

� � ¼ aþ n� að Þsqþ 1
� �� n� aþ a� 1ð Þspþ 1

� �
� 2a� nþ n� að Þsqþ 1 � a� 1ð Þsqþ 1 *p� q ) sqþ 1 � spþ 1

� �
¼ 2a� nð Þ 1� sqþ 1

� �þ sqþ 1 [ 0 *2a[ n and 0
 sqþ 1 
 1
� �

:

Since this holds for any f kþ 1 2 Fkþ 1, we obtain the weak convergence to xf g (via
Lk). ■

Proof of Lemma 2. Let A ¼ 1; 2; . . .; af g ¼ i 2 NjxL0i y
� �

, G := gjCg ¼ xf g� � ¼
gk1; . . .; g

k
p

n o
p ¼ Gj jð Þ and H := hjCh ¼ yf gf g ¼ hk1; . . .; h

k
q

n o
q ¼ Hj jð Þ. With

Lemma 1, we have only to consider 0\a\n� a and p[ q[ 0, i.e. p; qð Þ ¼ 2; 1ð Þ if
m ¼ 3 or p; qð Þ ¼ 3; 1ð Þ if m ¼ 4. Since the proof is similar, we show for the latter,
m ¼ 4. We can check that for all Lk 2 Lk L0; . . .; Lk�1

� �
, fE1 Lk

� ��H and the scores (at
Lk) satisfy

S := sB gk1
� �þ sB gk2

� �þ sB gk3
� � ¼ a s1 þ s2 þ s3ð Þþ n� að Þ s2 þ s3 þ s4ð Þ ¼ nþ a:

Let p1; . . .; p6 be preferences over G such that p1 : gk1g
k
2g

k
3, p2 : g

k
3g

k
2g

k
1, p3 : g

k
3g

k
1g

k
2,

p4 : gk2g
k
1g

k
3, p5 : g

k
1g

k
3g

k
2, and p6 : gk2g

k
3g

k
1. We construct Lk 2 Lk L0; . . .; Lk�1

� �
as fol-

lows: if i � j (mod 6) then Lki



G¼ pj j ¼ 1; 2; . . .; 6ð Þ, and gklL

k
i h

k
1 l ¼ 1; 2; 3ð Þ , i
 a.

Because of the symmetry, we obtain that sB gkj : L
k

� �
� S=3 2 �1=3; 0; 1=3f g

j ¼ 1; 2; 3ð Þ. Hence,

D Lk
� �

:= sB hk1 : L
k

� ��max sB gk1 : L
k

� �
; sB gk2 : L

k
� �

; sB gk3 : L
k

� �� �� 2
3

n� 2að Þ � 1
3
:

Since n� 2a� 1, we have D Lk
� �

[ 0. (1) The case of n� 2a� 2. Then, we have
D Lk
� �� 1. Suppose g; hk1

� � 2 fEj0 Lk
� �

for some g 2 G and j0 ¼ 2; 3. Let j be the

smallest such j0. Since sj hk1
� � ¼ n� a\n, there exists ig 2 N whose Lkig assign zero

point to g and one point to g0 2 Gn gf g. Let L0k be a profile where ig swaps g and g0.
Then, we have sj g : L0k

� �
[ sj g : Lk

� � ¼ sj hk1 : L
k

� �
[ sj hk1 : L

0k� �
. Therefore,

fEj L
0k� � ¼ gf g�G. Since the change in Borda score of gk1; g

k
2; g

k
3 is at most 2=3, we still

have D L0k
� �� 1� 2=3ð Þ[ 0. (2) The case of n� 2a ¼ 1. Since n is odd, we can write

n ¼ 6lþ m, where l 2 N [ 0f g and m ¼ 1; 3; 5. Note that the swap of Lki



G and Lkj





G
for

any i; j 2 N does not at all affect s1 �ð Þ and sB �ð Þ. If n ¼ 6lþ 1 (l� 1 since n�m ¼ 4Þ,
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let L 1ð Þ
� �n

2 Lk L0; . . .; Lk�1
� �

be defined as: 1
 i
 l ) L 1ð Þki : p3,

lþ 1
 i
 2l ) L 1ð Þki : p4, 2lþ 1
 i
 3l ) L 1ð Þki : p5, 3lþ 1
 i
 4l ) L 1ð Þki : p1,
4lþ 1
 i
 5l ) L 1ð Þki : p2, 5lþ 1
 i
 6l ) L 1ð Þki : p6, and i ¼ 6lþ 1 ) L 1ð Þki : p1:

Then, we have s3 gk1 : L
1ð Þk

� �
� s2 gk1 : L

1ð Þk
� �

¼ 3lþ 2[ 3lþ 1 ¼ s2 hk1 : L
1ð Þk

� �
¼

s3 hk1 : L
1ð Þk

� �
. Hence, it follows that f kþ 1

E2
L 1ð Þk

� �
�G and f kþ 1

E3
L 1ð Þk

� �
�G. For the other

cases of n ¼ 6lþ 3 and n ¼ 6lþ 5, the following L 2ð Þk (gk3 wins) and L 3ð Þk (gk1 wins),

respectively, gives the corresponding inequalities. L 2ð Þk is defined as: 1
 i
 l ) p4,
lþ 1
 i
 2l ) p5, 2lþ 1
 i
 3l ) p6, i ¼ 3lþ 1 ) p1, 3lþ 2
 i
 4lþ
1 ) p1, 4lþ 2
 i
 5lþ 1 ) p2, 5lþ 2
 i
 6lþ 1 ) p3, i ¼ 6lþ 2 ) p2, and

i ¼ 6lþ 3 ) p3. L 3ð Þk is defined as follows: 1
 i
 l ) p2, lþ 1
 i
 2l ) p3,
2lþ 1
 i
 3l ) p4, i ¼ 3lþ 1 ) p3, i ¼ 3lþ 2 ) p4, 3lþ 3
 i
 4lþ 2 ) p1,
4lþ 3
 i
 5lþ 2 ) p5, 5lþ 3
 i
 6lþ 2 ) p6, i ¼ 6lþ 3 ) p1, and i ¼ 6lþ
4 ) p2, and i ¼ 6lþ 5 ) p5.

In either case above, at least 2 level- kþ 1ð Þ SCRs has class xf g and the other two
have either xf g or yf g. So, we can apply Lemma 1 to get the weak convergence (if
m ¼ 3, with Lemma 4 and the technique shown above, we can verify Lk 2
Lk L0; . . .; Lk�1

� �
such that f kþ 1

E1
Lk
� � ¼ f kþ 1

B Lk
� � ¼ hk1

� �
and f kþ 1

E2
Lk
� �

is either gk1
� �

or hk1
� �Þ.

Lemma 4. Let m ¼ 3 and Fk ¼ gk1; g
k
2; g

k
3

� �
, where gkj : 1; sj; 0

� �
. Assume Cgk1

¼
Cgk2

¼ xf g and Cgk3
¼ yf g. Then, there exists Lk 2 Lk L0; L1; . . .; Lk�1

� �
such that

sj gk1 : L
k

� �� sj gk2 : L
k

� �

 


 1 for all j ¼ 1; 2; 3, where sjðÞ denotes the score evaluated
by gkþ 1

j .

Proof of Lemma 4. Let A ¼ 1; 2; . . .; af g ¼ i 2 NjxL0i y
� �

. We assume that both
a and n� a are odd. The cases where at least one of them is even can be similarly (and
more simply) proven. Note that the fact that Cgk1

¼ xf g and Cgk3
¼ yf g guarantees

a[ 0 and n� a[ 0. Let Lk 2 L Fk
� �� �n

be such that gk1L
k
i g

k
2L

k
i g

k
3 for all

i : 1
 i
 a
2 þ 1

2, gk2L
k
i g

k
1L

k
i g

k
3 for all i : 1
 i
 a

2 � 1
2, gk3L

k
i g

k
2L

k
i g

k
1 for all

i : 1
 i
 n�a
2 � 1

2, and gk3L
k
i g

k
1L

k
i g

k
2 for all i : 1
 i
 n�a

2 þ 1
2. Clearly,

Lk 2 Lk L0; L1; . . .; Lk�1
� �

. We have also that

s gk1
� �� s gk2

� �

 

 ¼ 1� sð Þ � sj j ¼ 1� 2sj j:

The assumption of 0
 s
 1 indicates that this absolute value is at most one. ■

Proof of Proposition 1. Take any distinct x; y 2 X. Let A ¼ i 2 NjxLiyf g and
a := Aj j=n. The only nontrivial case is such that g11 L0ð Þ ¼ g12 L0ð Þ ¼ xf g and
g13 L0ð Þ ¼ yf g, where F1 ¼ g11; g

1
2; g

1
3

� �
. Due to Lemma 1, we need only consider

a\1=2. Take any f : 1; s; 0½ � 2 F2. With Lemma 4, we have the following:
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s g13 : L
1� � ¼ n� Aj j; max

L12L L0½ �
s g11 : L

1� � ¼ Aj j þ s n� Aj jð Þ

min
L12L L0½ �

max s g11 : L
1� �
; s g22 : L

1� �� �� �
 1
2

Aj j 1þ sð Þþ n� Aj jð Þsf gþ 1
2
:

Therefore, f can choose g11
� �

(or g12
� �Þ if and only if

Aj j þ s n� Aj jð Þ[ n� Aj j , s[
n� 2 Aj j
n� Aj j ¼ 1� 2a

1� a
¼ u að Þ:

Also, f can choose g13
� �

if

1
2

Aj j 1þ sð Þþ n� Aj jð Þsf gþ 1
2
\n� Aj j

, s\2� 3 Aj j
n

� 1
n
¼ 2� 3a� 1

n
! 2� 3a ¼ w að Þ asn ! 1ð Þ:

If a\1=3, we have w að Þ[ 1. Thus, any scoring SCR f : 1; s; 0½ � can choose g13
� �

.
If 1=3\a\1=2, we have three cases. (note that events such as a ¼ 1=3 or w að Þ �
1=n\s\w að Þ can be negligible because of Lemma 3).(1) The case of s3 �u 1=3ð Þ ¼
1=2: Then, each f 21 ; f

2
2 ; f

3
3 can exclude g13 for any a 2 ð1=3; 1=2Þ: (2) The case of

s3\u 1=3ð Þ and s2 
w u�1 s3ð Þð Þ. Note that the event a ¼ u�1 s3ð Þ is negligible
because of Lemma 3. If 1=3\a\u�1 s3ð Þ, we have w að Þ[ s2, which implies that
L1 2 L1 L0½ � exists such that f 22 L1ð Þ ¼ f 23 L1ð Þ ¼ g13

� �
and f 21 L0ð Þ is either g11

� �
or

g13
� �

. In either case, with Lemma 1, L0 is shown to weakly converge to yf g. If
u�1 s3ð Þ\a\1=2, L1 2 L L0½ � exists such that f 21 L1ð Þ ¼ f 22 L1ð Þ ¼ f 23 L1ð Þ ¼ g11

� �
. (3)

The case of s3\u 1=3ð Þ and s2 [w u�1 s3ð Þð Þ. In this case, an interval of a (with a
positive Lebesgue measure) exists where f 11 and f 12 necessarily choose g11

� �
or g12

� �
and f 23 necessarily chooses g13

� �
. If a is in this interval, we cannot solve the regress,

because inductively we can show for all k� 3 that f k1 Lk�1
� �

and f k2 Lk�1
� �

are either
f k�1
1

� �
or f k�1

2

� �
and f k3 Lk�1

� � ¼ f k�1
3

� �
. ■

Proof of Corollary 1. Under IC, trivial deadlock corresponds with cases 1, 2, 9, 10,
11, and 27 in Diss and Merlin [4]. Their Table 7 (p. 302) shows that each probability is
0:00299346. Therefore, pD ¼ 0:00299346 6;1:8%. Under IAC, trivial deadlock
corresponds with the cases 1, 2, 9, 10, 11, and 27 in Diss et al. [3]. Their Table 9
(p. 62) shows that each probability is 1=504. Therefore, pD ¼ 1=504ð Þ  6;1:2%. ■

Proof of Proposition 2. The only nontrivial case is f 11 L0ð Þ ¼ f 12 L0ð Þ ¼ xf g and
f 13 L0ð Þ ¼ yf g, where F1 ¼ f 11 ; f

1
2 ; f

1
3

� �
for distinct x; y 2 X. Let A ¼ i 2 NjxL0i y

� � ¼
1; 2; . . .; af g. We show that L0 strongly converges unless a takes several specific

values. The case of a[ 2=3 or a\1=3 is straightforward. Because the proof is similar,
we show for 1=3\a\1=2. To prove the uniqueness of convergence to yf g, we
inductively show that for any level k� 2, f k 2 Fk exists whose class is yf g. For k ¼ 2,

54 T. Suzuki and M. Horita



it follows that f 2P L1ð Þ ¼ f 13
� �

. Assume that the statement holds until k � 1 � 2ð Þ and
Cgk�1

1
¼ yf g. For the other two rules gk2 and gk3, the class is either xf g; x; yf g; or yf g.

Because gk�1
2 and gk�1

3 are symmetric, there are six possible cases on the combination

of Cgk�1
1
;Cgk�1

2
;Cgk�1

3

� �
: Case 1: yf g; xf g; xf gð Þ, Case 2: yf g; xf g; x; yf gð Þ, Case 3:

yf g; xf g; yf gð Þ, Case 4: yf g; x; yf g; x; yf gð Þ, Case 5: yf g; x; yf g; yf gð Þ, and Case 6:
yf g; yf g; yf gð Þ. For each case, we show that at least one of f kP ; f

k
B ; f

k
A has class yf g. For

cases 1, 3, and 6, this is obvious. For case 2, Lk�1 L0; . . .; Lk�2
� �

is a singleton: Lk�1
i :

f k�1
3 f k�1

2 f k�1
1 for all i 2 A and Lk�1

i : f k�1
1 f k�1

3 f k�1
2 for all i 62 A. Because a\n=2, we

have f kP Lk�1
� � ¼ f k�1

1

� �
, which means Cf kP

¼ yf g. Case 4 is similarly shown. For case

5, we have f kA Lk�1
� �� f k�1

1 ; f k�1
3

� �
for all Lk�1 2 Lk�1 L0; . . .; Lk�1

� �
. ■

Sketch of the proof that f E1
; f E2

; f E3
; f B

� �
satisfies pWC 	 1� pD under EU and

IAC. Because of Lemma 1 and Lemma 2, the only nontrivial case is
f 11 L0ð Þ ¼ f 12 L0ð Þ ¼ x1f g, f 13 L0ð Þ ¼ x2f g, and f 14 L0ð Þ ¼ x3f g. If f k1 ; f

k
2 ; f

k
3 ; f

k
4 can drop

xj 2 X at some k 2 N, the proof is similar to m ¼ 3 (using EU). Otherwise, for each
x ¼ x1; x2; x3, at least one f kx 2 Fk exists such that x 2 f kx Lk�1

� �
for all Lk�1 2

Lk�1 L0; . . .; Lk�2
� �

… Ið Þ. Since ties between f 13 and f 14 are negligible (when n ! 1),
each f kx is assumed to be distinct. Furthermore, at least one individual is expected to

exist who ranks xj last. Then, fA cannot be a fx. Therefore, combinations of f kx1 ; f
k
x2 ; f

k
x3

� �
are the permutations of fE1 ; fE2 ; fB. For each combination, we obtain a linear system of
inequalities on the number of individuals who have specific preferences on x1; x2; x3f g
(considering k ¼ 2; 3Þ. With Fourier-Motzkin elimination, we can find that at no case
does Ið Þ occur. ■
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