
Automation of the Incremental Integration
of Microservices Architectures

Miguel Zúñiga-Prieto, Emilio Insfran, Silvia Abrahão
and Carlos Cano-Genoves

1 Introduction

The need to maintain high customer satisfaction by delivering new or customized
products and services signifies that development paradigms are changing to the
Continuous Integration (CI) and Continuous Deployment (CD) of software func-
tionality, in which companies offering internet-based services should be capable of
providing customers with software functionality on a daily basis [1]. The
microservice architectural style has therefore emerged to facilitate CI/CD by
affecting the way in which software development teams are structured, source code
is organized and continuously built/packed, and software products are continuously
deployed [2]. This architectural style proposes the development of a single appli-
cation as a suite of small and cohesive sets of microservices built around business

A prior version of this paper has been published in the ISD2016 Proceedings (http://aisel.aisnet.
org/isd2014/proceedings2016).

M. Zúñiga-Prieto (&)
Department of Computer Science, Universidad de Cuenca, Cuenca, Ecuador
e-mail: miguel.zunigap@ucuenca.edu.ec

E. Insfran (&) � S. Abrahão (&) � C. Cano-Genoves
Department of Information Systems and Computation, Universitat Politècnica de València,
Valencia, Spain
e-mail: einsfran@disc.upv.es

S. Abrahão
e-mail: sabrahao@disc.upv.es

C. Cano-Genoves
e-mail: carcage1@inf.upv.es

© Springer International Publishing Switzerland 2017
J. Gołuchowski et al. (eds.), Complexity in Information Systems Development,
Lecture Notes in Information Systems and Organisation 22,
DOI 10.1007/978-3-319-52593-8_4

51

http://aisel.aisnet.org/isd2014/proceedings2016
http://aisel.aisnet.org/isd2014/proceedings2016


capabilities, and independently developed, deployed and scaled, thus allowing them
to scale their applications, gain agility and get new functionalities out to customers
faster [3, 4].

The flexibility in resource management (e.g. processing, memory, message
queues) provided by cloud environments is motivating organizations to consider
them as their systems deployment environment, in which different Infrastructure as
a Service (IaaS) or Platform as a Service (PaaS) environments are chosen depending
on Service Level Agreements (SLA) or other requirements. Cloud environments are
a well suited option as regards deploying microservices [5, 6], since they allow
companies to gain agility and reduce complexity not only when deploying and
scaling microservices, but also by acquiring resources provisioned according to
specific microservice needs. However, applications that will be deployed in cloud
environments (cloud applications) must be developed using cloud vendor stan-
dards, thus preventing developers from creating software that can be deployed on
multiple clouds, which is known as vendor lock-in [7]. The incremental nature of
the microservice-based applications development additionally leads to a situation in
which the application’s architecture evolves each time a microservice is integrated
into it. Building microservices for deployment in cloud environments therefore
requires managing architectural changes (architectural reconfiguration) and mini-
mizing application disruptions while the integration takes place.

Current cloud development approaches do not support microservice
development/migration and only a few technical reports on this can be found (e.g.,
[6, 8, 9]). Approaches that support the development of cloud applications are
related to this work (e.g., [10–12]); however, proposals confronting the incremental
development and its architectural implications are still lacking. Furthermore, in
terms of architectural reconfiguration, as far as we know, there are no proposals that
support a systematic reasoning about the architectural impact of the integration of
the services included in a given software increment into the current application
architecture. In previous works [13, 14], we introduced a general process definition
for the DIARy method which follows an incremental and model driven develop-
ment approach that supports the incremental integration of cloud service applica-
tions and their dynamic architecture reconfiguration triggered by the integration of
new software increments (increments); to support the specification and generation
of some software artifacts for service architecture reconfiguration. In this paper, we
extend the DIARy process by defining new activities and tasks to satisfy
microservices principles and support the incremental integration of microservices,
covering the lack of proposals that allow developers to propagate integration design
decisions to reliable software artifacts that improve the agility of integration and
deployment processes. We also provide the tool support needed to automate these
tasks by defining models that describe the microservice integration logic, as well as
the transformation chains, which automate the generation of software artifacts that
implement the integration logic (orchestration among microservices), and scripts for
architectural reconfiguration.

52 M. Zúñiga-Prieto et al.



The remainder of this paper is structured as follows. Section 2 contains a
description of the background and discusses related works. Section 3 presents an
overview of the method proposed. Section 4 illustrates the use of our approach in a
case study. Finally, Sect. 5 presents our conclusions and future work.

2 Background and Related Work

The microservice architectural style is a lightweight subset of the Service Oriented
Architecture (SOA), in which: “the main difference between SOA and microser-
vices is that the latter should be self-sufficient and deployable independently of each
other while SOA tends to be implemented as a monolith” [15]. This architectural
style is gaining acceptance as regards overcoming the shortcomings of a monolithic
architecture in which, rather than having the application logic within one deploy-
able unit, applications are decomposed into services, each of which is deployable on
a different platform, runs its own process, and communicate by means of light-
weight mechanisms. The main principles of microservices are [3]:

• Componentization via Services: Software is broken up into multiple services that
are independently replaceable and upgradeable and communicate by means of
inter-process communication facilities using an explicit
component-published-interface.

• Organized Around Business Capabilities: Microservices are implemented
around business areas, in which services include a user-interface, storage, and
any external collaborations.

• Products not Projects: Development teams own a product throughout its entire
lifetime, taking full responsibility for the software in production.

• Smart Endpoints and Dumb Pipes: Business logic, related business rules, and
data reside in the services themselves rather than in a centralized middleware.
Simple messaging or a lightweight messaging bus is used to provide commu-
nication among microservices.

• Decentralized Governance: Standardization on a single technology platform is
avoided; the right technological stack for a job should be used, and each
microservice manages its own decisions regarding tools, languages, and data
storage.

• Decentralized Data Management: Decisions concerning both the conceptual
model of the world and data storage will differ between microservices.

• Infrastructure Automation: Automatic means to integrate and deploy in new
environments.

• Evolutionary Design: Services are independently replaced and upgraded, which
is achieved by using service decomposition as a tool so as to enable application
developers to control changes in software applications at the pace of business
changes.

Automation of the Incremental Integration of Microservices … 53



Decentralized Governance and Decentralized Data Management microservice
principles suggest avoiding standardization in a single technology; however, certain
development challenges (e.g., the vendor lock-in) need to be addressed in order to
produce services that are feasible for deployment in different cloud environments.
Furthermore, the Infrastructure Automation microservice principle suggests having
an automatic means of integration and deployment in new environments. However,
despite the fact that development teams building microservices use CI/CD tech-
niques and tools [3], these techniques require the inclusion of reliable software
artifacts (e.g., implementation code, deployment scripts, configuration scripts) in
their automated building processes or deployment pipelines. Software artifacts
should therefore be error free in order to ensure that the CI/CD’s automated test
functionalities do not prevent the integration or deployment process. Finally, CI/CD
requires the making of architectural decisions [15], where in a context in which the
application architecture evolves with each microservice integration, mechanisms
that support the specification of architectural decisions and manage architectural
changes without preventing the execution of applications are therefore required.

Model-Driven Development (MDD) is an approach used to develop software
systems in which developers build an application by refining models at different
levels of abstractions, and then obtain implementation artifacts by means of model
transformations. We believe that an MDD approach provides good support as
regards managing microservice integration and the consequent architectural evo-
lution of the application. This approach will allows developers to: (i) capture
technology-independent microservice integration specification and deployment
information, thus making design artifacts reusable and enabling developers to
overcome the vendor lock-in issue; (ii) propagate microservice integration speci-
fication to implementation/deployment/reconfiguration artifacts, thus enabling
developers to obtain error free artifacts; and (iii) automate building, packaging,
deployment and the architectural reconfiguration process.

2.1 Related Work

Developing applications by using the microservice architectural style is a relatively
new approach, and only a few related technical reports can be found (e.g., [6, 8, 9]).
These works describe design decisions made or strategies employed in order to
either satisfy microservice principles, or make use of CI/CD tools and techniques;
however, they do not propose design, implementation or integration methods.
Moreover, those works do not propose mechanisms with which to help to obtain
error free artifacts to be included into CI/CD pipelines.

Microservices are cloud-native architectures, and the MDD approaches that
support the development of cloud applications are therefore related to this work
(e.g., [10–12, 16]). These approaches apply MDD principles in order to tackle the
vendor lock-in problem when developing or migrating cloud applications. With
regard to approaches that propose mechanisms with which to document design

54 M. Zúñiga-Prieto et al.



decisions in cloud environments we can highlight CAML [17], MULTICLAPP [18]
and CloudML [19]. These works define UML profiles or other modeling languages
used to describe deployment topologies, applications as a composition of software
artifacts to be deployed across multiple clouds, or resources that a given application
may require from existing clouds. However, although “getting integration right is
the single most important aspect of the technology associated with microservices”
[4], these proposals do not provide mechanisms with which to specify architectural
decisions regarding integration and the impact of integrating increments in the
current cloud application architecture. Finally, with regard to approaches for
dynamic reconfiguration, works such as SeaClouds [20] or MODAClouds [12]
propose mechanisms that can be used to achieve architectural reconfiguration either
by replacing orchestration or as result of the re-deployment of components. These
proposals do not allow the specification of the architectural changes produced
during integration nor do they take into account implementation alternatives that
facilitate scalability and the re-deployment of services in different clouds.

3 A Method for the Incremental Integration
of Microservices

This method allows cloud applications to be constructed as a composition of
microservices, in which each microservice design is included in an incremental
increment integration process that allows architects to specify how microservices
will be integrated into a cloud application. Developers use the increment integration
specification to generate software artifacts, such as skeletons of microservice logic,
interaction protocol and scripts with which to build, deploy and architecturally
reconfigure the current cloud application, all of which are generated according to
each microservice technology specification. In order to define this method, we
analyzed how our previous work satisfies the principles of the microservice
architectural style; we then used the lessons learned to extend the DIARy-process
[13, 14]. The Microservice Incremental Integration Method, which is made up of
the Microservices Incremental Integration Process (also referred to as the
Integration Process), the adapted DIARy-specification-profile [21] and transfor-
mation chains, is explained as follows. Figure 1 shows the Integration Process,
whose main activities are explained in the next sections.

3.1 Increment Integration Specification

This activity aims to allow architects to specify how to integrate a microservice
(Microservice Architecture Model) into the current application (Application
Architecture Model) by specifying both the integration logic and the architectural

Automation of the Incremental Integration of Microservices … 55



impact of integration, without taking into consideration the specifics of any cloud
environment. This is an iterative activity that provides architects with the possibility
of specifying the integration of increments composed of several microservices;
therefore architects takeMicroservice Architecture Models as input, include them as
part of an increment’s architecture (Extended Increment Architecture Model), fol-
low Microservices Composition and Increment Integration Specification
Guidelines, and make integration design decisions based on SLA terms (whose
definition, specification and representation is outside of this work scope). The
DIARy-Specification-profile (see [21] for more details about its usage) helps
architects to create the Extended Increment Architecture Model which specifies the
increment integration by documenting the increment’s architecture, the integra-
tion’s logic and the architectural impact of integration. This model complies with
the Extended Increment Architecture Model metamodel, which is explained below.

The Extended Increment Architecture Model metamodel
The Service oriented architecture Modeling Language (SoaML) [22] is an OMG
specification that was specifically designed for the modeling of service-oriented
architectures. SoaML leverages the Model Driven Architecture (MDA) approach
and provides a UML profile and a metamodel that extends the UML metamodel.
The DIARy-specification-profile extends the SoaML profile, resulting in an ADL
that facilitates the increment integration specification. In order to facilitate software
artifact generation, this work extends SoaML and UML metamodels in order to
define the Extended Increment Architecture Model metamodel (see Fig. 2). Owing
to space limitations, Fig. 2 includes only those meta-classes that define the main
concepts used to describe integration logic and architectural impact, in which
meta-classes belonging to the UML metamodel are depicted with an icon next to the

Fig. 1 The Microservice Incremental Integration Process

56 M. Zúñiga-Prieto et al.



meta-class name, whereas meta-classes that extend the SoaML/UML notations are
depicted with a background color.

An Extended Increment Architecture extends a UML Collaboration, thus
allowing the increment integration specification by modeling both the integration
logic and the architectural impact of integration. Integration logic is described by its
inner parts (i.e., ParticipantUse, RoleBinding, and ServiceContractUse) which
model the interoperation between Participants belonging to the increment with
Participants belonging to the current Application Architecture Model. Additionally,
architectural impact is described by tagging its inner parts with architecturalImpact
values (Add, Modify, and Delete) that describe the architectural change that each
inner part will produce on the current Application Architecture Model after
integration.

A Participant represents: (i) a microservice to be integrated, (ii) a
microservice/component already existing in the current application architecture
with which the microservice(s) to be integrated will interoperate, (iii) a
microservice/component to be created in order to consume microservice services or
provide it with services, and (iv) a cloud resource consumed by a microservice.

A ServiceContract extends a UML Collaboration and, as SoaML proposes,
represents an agreement between the involved Participants about how the service is
supposed to be provided and consumed (interoperation). A Service Contract defi-
nition includes the following inner parts: (i) Roles that Participants involved in a
service must fulfil in order to interoperate, (ii) provided and required Interfaces that
explicitly model the provided and required operations to complete the service
functionality and that Participants must implement in order to fulfil a Role, (iii) and
an Interaction Protocol that specifies the interoperation between Participants
without defining their internal processes. This work uses Service Contracts in order

Fig. 2 Excerpt of Increment Architecture Model meta-model

Automation of the Incremental Integration of Microservices … 57



to describe integration logic, where an UML activity diagram is used to model the
interaction protocol among Participants belonging to the increment with
Participants belonging to the current Application Architecture Model. Service
Contracts are implemented as services that manage interoperation among
Participants.

Participants and ServiceContracts may be reused, therefore a ParticipantUse
references a Participant involved in a specific service and a ServiceContractUse
explicitly specifies the use of the interoperation described in a ServiceContract. The
attributes scalability and lifetime make it possible for architects to specify
requirements related to the expected demand of a Participant or ServiceContract
service. The attributes HighProcessing, HighMemory, HighStorage, Parallel
Processing, and LowEnergyConsumption are used to specify characteristics of the
cloud resources that a Participant is expected to consume from the cloud envi-
ronment. Finally, the attribute hostResource describes the cloud resource type of a
Participant representing a cloud resource.

The Services Architecture of the participant, modeled as a SoaML Services
Architecture diagram, specifies how parts of a microservice work together to play
the owning microservice’s role(s). It includes the microservice’s architectural ele-
ments as well as interoperation requirements described by outside Roles that
external Participants must play in order to interact with the microservice and
outside ServiceContracts that describe the interaction among those roles.

Finally, a RoleBinding binds each of the Roles defined in a ServiceContract to a
Participant, both of which are referenced in an ExtendedIncrementArchitecture.

Integration Specification
Integration specification is done by using high level representations of microser-
vices, which is achieved by creating Participants that represent a Microservice
Architecture Models. Consequently, each Microservice Architecture Model taken as
input in this activity becomes the Services Architecture of the participant that
represent the microservice to be integrated. Once a Participant representing a
microservice to be integrated has been created, architects specify the integration
logic by creating an ExtendedIncrementArchitecture element, and then create its
inner parts: (i) a ParticipantUse that references a Participant representing a
microservice to be integrated; (ii) ParticipantUses that reference Participants
belongings to the current Application Architecture Model that, by playing outside
Roles, will interoperate with Participants representing the microservice to be
integrated; (iii) ServiceContractUses that use the interoperation defined in outside
ServiceContracts; (iv) RoleBindings that bind each of the outside Roles defined in
an outside ServiceContract to the ParticipantUse that will play the role.

Developers specify the architectural impact of integration by tagging
ExtendedIncrementArchitecture inner parts with architecturalImpact values that
describe how they collaborate to reconfigure the current Application Architecture
Model (e.g., by adding RoleBindings, adding Participants, removing Participants).
Finally, for each ParticipantUse and ServiceContractUse, architects specify theirs
expected demand and usage of cloud resources.

58 M. Zúñiga-Prieto et al.



In this activity, the creation of Extended Increment Architecture Models allows
architects to satisfy Componentization via Services and Organized around Business
Capabilities microservice principles. Furthermore, designing microservice inte-
gration in advance not only facilitates incremental integration of microservices but
also allows different development teams working independently on different
microservices to take full responsibility for the software in production, satisfying
Evolutionary Design and Products not Projects microservice principles.

3.2 Increment Implementation

This activity aims to support the integration process by generating platform-specific
cloud artifacts (software artifacts to be deployed on a cloud platform), includes the
following steps:

Check Increment Compatibility
Architects participate in verifying whether the ExtendedIncrementArchitecture
Model is compatible with the current ApplicationArchitectureModel. If discrepan-
cies exist between the Participant’s interfaces (e.g., different names for methods
and services, different message ordering), they design a ServiceContract that
overrides outside ServiceContracts and apply model-to-text (M2T) transformations
that generate skeletons of Cloud Adaptors (see Fig. 1).

Specify the Packaging and Deployment Structure
In this step, developers apply model-to-model (M2M) transformations to translate
the Extended Increment Architecture Model into a model that describes the cloud
artifacts needed to implement its inner parts (DIARyArchitecturalElements): the
Increment Cloud Artifacts Model. This model organizes cloud artifacts into projects
that can be packed/built/deployed independently in different cloud environments in
accordance with decisions made during the development process (e.g. technology,
microservice workload management decisions). This model promotes the decou-
pling of software artifacts that implement interaction protocol from those that
implement microservice design, thus satisfying the Smart Endpoints and Dumb
Pipes microservice principles. The Increment Cloud Artifacts Model complies with
the Cloud Artifacts Model meta-model (see Fig. 3).

The Cloud Artifacts Model meta-model
The way in which microservices are deployed has an influence on satisfying SLA
terms or other nonfunctional requirements [23] (e.g., agility to deploy, modifia-
bility, monitoring, cost of provisioning). We use Projects to manage the building,
packaging and deployment options. M2M transformation rules map Interaction
Projects onto Service Contracts (see Fig. 2) architectural elements, and generate
descriptions of cloud artifacts that allow developers to implement interoperation
among microservices as a separate service. An Interaction Project includes the
following cloud artifacts: Interaction Service—Hosted Services that implement

Automation of the Incremental Integration of Microservices … 59



interoperation interaction protocols, Interface definitions, and Service Data (mes-
sage Types or data Types). M2M transformation rules map inner parts of Service
Contracts architectural elements onto the before mentioned cloud artifacts.

In the case of Participants that provide services, ImplementationProjects are
mapped onto Service Architectures of the participant architectural elements (see
Fig. 2). These Implementation Projects include descriptions of Artifacts, such as
FrontEndService—Hosted Services that implement microservice business logic,
Interface implementations that implement interfaces defined in related Service
Contracts, BackEndService—HostedServices that use cloud resources (e.g., mes-
sage queues), or Adaptors that correct incompatibilities between interfaces.
Additionally, in the case of Participants that play a Role whose attribute
isConsumer = true (see Fig. 2), Implementation Projects also include
ClientObjectArtifacts which implement corresponding Interfaces and initiate the
service execution by invoking InteractionServices that manage interoperation
(orchestration/choreography). For detailed mappings see [13].

Deployment Projects and Interaction/Implementation Projects facilitate the
packaging of Artifacts into a deployable package. Microservices whose related
projects are included into a Deployment Project will be implemented with the same
technology and deployed in the same cloud environment, whereas Artifacts
included in an Interaction/Implementation project will be packed together in the
same deployment artifact and deployed in the same cloud environment resource
(e.g., virtual machine), thus sharing cloud environment resources. Including
microservice related Artifacts in an exclusive or shared Interaction/Implementation
Project allows developers to manage workload changes and running costs.

DynamicConfiguration meta-classes describe Settings of HostedServices (e.g.,
service parameters) that could change at runtime. Settings and Invoked/Exposed
EndPoints information will therefore be stored outside the deployable package.

Fig. 3 Excerpt of Cloud Artifacts Model meta-model

60 M. Zúñiga-Prieto et al.



Thus enabling them to be updated without requiring the redeployment of the entire
package, a best practice in the CD [24].

In order to specify the packaging and deployment structure, we provide an
Eclipse plug-in which executes M2M transformations carried out using the Atlas
Transformation Language (ATL) to generate Increment Cloud Artifacts Models
from Extended Increment Architecture Models. Input/Output models are imple-
mented as ecore models in the Eclipse Modeling Framework (EMF).
Transformations generate descriptions of the cloud Artifacts required to implement
architectural elements and define the packaging/deployment structure by assigning
Artifacts to different Interaction/Implementation/Deployment Projects according to
the architecturalImpact, and expected demand and usage of cloud resources (e.g.,
values scalability, lifeTime, HighProcessing). Figure 4 shows an excerpt of the
transformation rule applied to assign the Artifacts corresponding to Participants
that require scalability = HighVolumenRequests (line 4) into an exclusive
ImplementationProject (line 6) that is assigned to a DeploymentProject (line 9) that
will be deployed in an exclusive virtual machine. Additionally, in the case of
Participants that play a Role whose attribute isConsumer = true, a client object that
initiate the interaction is created (line 12).

Generate Implementation Code
In this step, cloud developers make implementation decisions that best fit the indi-
vidual requirements of each microservice included in an increment, and then com-
plete the previously generated Increment Cloud Artifacts Model by specifying: (i) the
technology in which Artifacts included in aDeploymentProjectwill be implemented;
(ii) inter-service communication information of Implementation/InteractionProjects
(e.g., SOAP/REST service style, message format, protocols) along with configura-
tion information of HostedServices that will change at runtime, by creating or
updating classes of type DynamicConfiguration, Setting or EndPoint; (iii) the rep-
resentation of Artifacts (e.g., source code language); and (iv) the location where the
Artifacts will be generated. Next developers execute M2T transformations that use
this model and the Extended Increment Architecture Model as input in order to
generate cloud Artifact implementations, which are organized into a directory
structure according to the Location specified for each Project. The generated cloud
Artifacts implement (see Fig. 1): (i) Interaction Protocols (e.g., choreography),

Fig. 4 Excerpt of M2M for generating the Increment Cloud Artifact Model

Automation of the Incremental Integration of Microservices … 61



(ii) software Cloud Adaptors, (iii) skeletons of microservices logic, Interfaces, client
objects that invoke services and initiate interaction, APIs that microservices expose,
and as many configuration files as DynamicConfiguration Environments (e.g.,
development, production), (iv) Building/Packaging Scripts to create deployable
packages, according to the DeploymentProjects’ structure. Finally, cloud developers
complete the generated cloud Artifacts and execute the packaging/building scripts
obtaining deployable packages.

3.3 Deployment and Architectural Reconfiguration

In this activity architects select the adaptation patterns best suited to integrating the
increment’s architecture into the current application architecture. Additionally,
architects make provisioning and deployment decisions about the infrastructure and
platform resources that must be provisioned in order to deploy the microservices
included in a deployment artifact, then execute M2T transformations that generate
cloud artifacts that operationalize the adaptation patterns according to Extended
Increment Architecture Model and the Increment Cloud Artifacts Model. The cloud
artifacts generated are (see Fig. 1): (i) Deployment Scripts with which to deploy
(and provision) previously generated packages along with the corresponding con-
figuration files, and (ii) scripts with which to reconfigure the application architec-
ture, which use architectural impact specification to dynamically update EndPoints
information stored in the microservice configuration files. For deeper information
about how to document provisioning and deployment decisions, as well as about
the generation of deployment scripts see [21].

Finally, the Extended Increment Architecture Model and the Increment Cloud
Artifacts Model are used as the input for M2M transformations that update the current
Application Architecture Model and the Application Cloud Artifacts Model by
integrating the corresponding architectural elements and cloud artifact descriptions.

The Increment Implementation and Deploy and Architectural Reconfiguration
activities allow developers to satisfy theDecentralized governance and Infrastructure
Automation microservice principles by providing models that abstract implementa-
tion and deployment decisions from technological aspects, and tools that enable
developers to obtain software artifacts that can be used as part of CI/CD pipelines.

4 Case Study

In order to illustrate the use of our approach, in this section we present an excerpt of
a case study (adapted and extended from [3]). A manufacturing company wishes to
improve the technological support given to its dealers, and is considering updating

62 M. Zúñiga-Prieto et al.



its already existing manufacturer microservice by including new functionalities
with which to allow dealers to place production orders and obtain the products
ordered by means of a shipping service. Figure 5 shows an excerpt of the current
Application Architecture Model which will evolve after integrating the
Manufacturer’s microservice update.

The development team involved in this new requirement used SoaML to model
the architectural design of the new manufacturer microservice functionalities and
produced the Microservice Architecture Model (Fig. 6), described as a Services
Architecture, whose inner parts (e.g., ServiceContracts, Interfaces, Roles) are not
shown owing to space restrictions. The Microservice Architecture Model includes
microservice architectural elements that describe microservice logic as well as
microservice interoperation requirements (depicted with a background color in
Fig. 6). Note that the Participants that are expected to interoperate with the man-
ufacturer microservice (other components/microservices that consume manufacturer
microservice’s services or provide it with services—outside Roles) are indicated by
ParticipantUses with dashed outlines (i.e., :Dealer and :Shipper), whereas that
internal microservice components are indicated by ParticipantUses with continuous
outlines (i.e., :Fulfilment and :Production).

Fig. 5 Excerpt of the current Application Architecture Model

Fig. 6 Excerpt of the Microservice Architecture Model

Automation of the Incremental Integration of Microservices … 63



Figure 7a shows the Extended Increment Architecture Model resulting from the
Increment Integration Specification activity, in which theMicroservice Architecture
Model (Fig. 6) becomes the Service Architecture of the participant Manufacturer,
which is referenced by the Manufacturer ParticipantUse. The microservice inter-
operation requirements described in the Microservice Architecture Model (depicted
with a background color in Fig. 6), were referenced in the Extended Increment
Architecture Model, thus becoming the microservice integration logic (depicted
with a background color in Fig. 7a).

Fig. 7 Main transformation chains a Extended Increment Architecture Model, b Increment Cloud
Artifacts Model, c generated cloud artifacts and updating of current application models

64 M. Zúñiga-Prieto et al.



Architects proceed to specify the Participants that will play the roles defined in
the integration logic. The Participant Manufacturer already exists in the Current
Architecture Model and its implementation will change in order to implement the
interfaces required to play the provider Role, thus it is tagged with architectural
Impact = Modify. The Dealer and Shipper participants do not exist in the Current
Architecture Model and must be created, therefore they are tagged with
architecturalImpact = Add. Finally, architects analyze the nature of the work that
Participants and ServiceContracts will perform. The PlaceOrder service is
expected to be highly demanded, and the ParticipantUse Manufacturer plays the
Role of provider then it is tagged with values scalability = HighVolumenRequests,
and lifetime = Asynchronous. The ServiceContractUse purchase:PlaceOrder will
manage the interoperation, then it is tagged with equal values (see Fig. 7a).

During the Increment Implementation activity there were no inconsistencies
among Participants’ interfaces, and the interaction protocols described in the
integration logic were not therefore changed. The Increment Artifacts Model
(Fig. 7b) was automatically obtained by defining and executing M2M transfor-
mations in the Eclipse extension Atlas Transformation Language (ATL), then it was
completed. Skeletons of source code that implement microservices logic (see
Fig. 7c) were obtained by defining and executing M2T transformations in the
Eclipse extension Acceleo. Once skeletons were completed we built the application,
packed it and deployed it in the Microsoft Azure cloud environment. Figure 8
shows an excerpt of the transformation rule applied to generate skeletons of source
code that implement Interfaces corresponding to the Roles (lines 12, 13) played by
a microservice. Visual Studio compatible files (line 13) were generated for each
new microservice (line 8) that consume another microservice service (line 10).

During the Deployment and Architectural Reconfiguration, we use the open
source Eclipse extension Acceleo M2T generator in order to obtain Reconfiguration
Scripts (see Fig. 7c). We generated XML Document Transform (XDT) files used in
Visual Studio to modify service configuration files while the deployment takes
place. Finally, the M2M transformations that update current application models (see
Fig. 7c) are in the process of being built; however Fig. 9 shows how the
Application Model Architecture is expected to look after integration.

Fig. 8 Excerpt of M2T used to generate Reconfiguration Scripts

Automation of the Incremental Integration of Microservices … 65



5 Conclusions and Future Work

We presented a general view of a method for the incremental integration of
microservices into cloud applications. In this method, developers specify how to
integrate a microservice into the current application by describing both the inte-
gration logic and the architectural impact of integration without taking into con-
sideration the specifics of any cloud environment. They then use both the
microservice design and the integration specification to generate: (i) source code
that implement skeletons of microservice’s logic as well as integration logic,
(ii) scripts to build and package the related microservice software artifacts,
(iii) scripts to deploy the microservices, and (iv) scripts to manage the current
application’s architectural reconfiguration produced by the integration. Particular
emphasis has been placed on explaining how the method manages to keep the
microservice design independent from the integration specification, thus allowing
different development teams to work on different microservices and giving them the
independence to design, implement and deploy microservices according to the
implementation/deployment technological requirements of each microservice.
Providing developers with tools that automate integration and deployment opera-
tions help developers in eliminating discontinuities between development and
deployment through CI/CD support which is required in order to deliver new
functionalities to customers in an agile manner.

We have shown the feasibility of our proposal by applying it to a case study. We
are currently working on implementing transformation chains; however, our
approach does not take into account the automation of infrastructure changes. We
are considering the use of the DevOps approach in order to improve the collabo-
ration between development and operations, thus allowing new software releases to
be made available much faster [25]. In this context, as further work we plan to adapt
the method presented in this work in order to satisfy DevOps practices which
promote the automation of the process of software delivery and infrastructure
changes. Additionally, even though the offered models allow version control

Fig. 9 Current Application Architecture Model after integration

66 M. Zúñiga-Prieto et al.



and we propose to generate software artifacts according to the architectural impact
of integrating microservices, the approach to generate software artifacts that
propagate design decisions related to updating or deleting already deployed
microservices needs to be implemented. We also plan to provide mechanisms to
manage incremental consistency, avoiding to lose changes introduced in the
implementation code after generation (e.g., changes in interface implementations).

We identified some limitations, architectural reconfiguration is achieved by
deploying/redeploying/undeploying microservices and by updating binds among
them; however, we are not managing the updating of running instances of
microservices. This is a challenging task, since cloud providers offer some pro-
prietary instance management functionalities. Fortunately, the model-driven
approach followed by our method enables us to abstract the instance manage-
ment mechanisms, as well as to describe some proprietary advanced characteristics
at a detailed level. Finally, we also plan to design experiments with which to
validate the effectiveness of our approach in practice.

Acknowledgements This research is supported by the Value@Cloud project (MINECO
TIN2013-46300-R), DIUC_XIV_2016_038 project, and the Microsoft Azure Research Awards.

References

1. Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and deployment at facebook.
IEEE Internet Comput. 4, 8–17 (2013)

2. Familiar, B.: Microservices, IoT, and Azure: Leveraging DevOps and Microservice
Architecture to Deliver SaaS Solutions. Apress (2015)

3. Fowler, M., Lewis, J.: Microservices: a definition of this new architectural term. http://
martinfowler.com/articles/microservices.html

4. Newman, S.: Building Microservices. O’Reilly Media, Inc. (2015)
5. Hillah, L.M., Maesano, A., De Rosa, F., Maesano, L., Lettere, M., Fontanelli, R.: Service

functional test automation. In: 10th Workshop on System Testing and Validation. Sophia
Antipolis (2015)

6. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures using
microservices: an experience report, pp. 1–15 (2015)

7. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina, J.: Controlling
data in the cloud: outsourcing computation without outsourcing control. In: Proceedings of
the 2009 ACM Workshop on Cloud Computing Security, pp. 85–90 (2009)

8. Krylovskiy, A., Jahn, M., Patti, E.: Designing a smart city internet of things platform with
microservice architecture. In: 2015 3rd International Conference on Future Internet of Things
and Cloud, pp. 25–30 (2015)

9. Stefan, B.: How we build microservices at karma. https://blog.yourkarma.com/building-
microservices-at-karma

10. Frey, S., Hasselbring, W.: The cloudMIG approach: model-based migration of software
systems to cloud-optimized applications. Int. J. Adv. Softw. 4, 342–353 (2011)

11. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: Developing migratable multicloud
applications based on MDE and adaptation techniques. In: Proceedings of the Second Nordic
Symposium on Cloud Computing and Internet Technologies—Nordic ‘13, pp. 30–37 (2013)

Automation of the Incremental Integration of Microservices … 67

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://blog.yourkarma.com/building-microservices-at-karma
https://blog.yourkarma.com/building-microservices-at-karma


12. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., Mohagheghi, P., Mosser, S., Matthews, P.,
Gericke, A., Ballagny, C., D’Andria, F., et al.: MODAC LOUDS : a model-driven approach
for the design and execution of applications on multiple clouds. In: Proceedings of the 4th
International Workshop on Modeling in Software Engineering, pp. 50–56 (2012)

13. Zuñiga-Prieto, M., Abrahao, S., Insfran, E.: An incremental and model driven approach for
the dynamic reconfiguration of cloud application architectures. In: 24th International
Conference on Information Systems Development ISD2015 (2015)

14. Zuñiga-Prieto, M., Gonzalez-Huerta, J., Abrahao, S., Insfran, E.: Towards a model-driven
dynamic architecture reconfiguration process for cloud services integration. In: 8th
International Workshop on Models and Evolution (ME 2014) co-located with ACM/IEEE
17th International Conference on Model Driven Engineering Languages and Systems,
pp. 52–61. Valencia, Spain (2014)

15. Viktor, F.: The DevOps 2.0 Toolkit: Automating the Continuous Deployment Pipeline with
Containerized Microservices. CreateSpace Independent Publishing Platform (2016)

16. Vijaya, A., Neelanarayanan, V.: Framework for platform agnostic enterprise application
development supporting multiple clouds. Procedia Comput. Sci. 50, 73–80 (2015)

17. Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., Kappel, G.: UML-based cloud
application modeling with libraries, profiles, and templates. In: CloudMDE@ MoDELS,
pp. 56–65 (2014)

18. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A UML Profile for modeling multicloud
applications. In: European Conference on Service-Oriented and Cloud Computing,
pp. 180–187 (2013)

19. Brandtzæg, E., Mosser, S., Mohagheghi, P.: Towards CloudML, a model-based approach to
provision resources in the clouds. In: 8th European Conference on Modelling Foundations
and Applications (ECMFA), pp. 18–27 (2012)

20. Brogi, A., Ibrahim, A., Soldani, J., Carrasco, J., Cubo, J., Pimentel, E., D’Andria, F.:
SeaClouds: a European project on seamless management of multi-cloud applications.
ACM SIGSOFT Softw. Eng. Notes 39, 1–4 (2014)

21. Zúñiga-Prieto, M., Insfran, E., Abrahão, S.: Architecture description language for incremental
integration of cloud services architectures. In: IEEE 10th Symposium on the Maintenance and
Evolution of Service-Oriented Systems and Cloud-Based Environments (MESOCA), Raleigh,
USA (2016)

22. Object Management Group: Service oriented architecture Modeling Language (SoaML)
Specification. http://www.omg.org/cgi-bin/doc?formal/2012-03-01.pdf (2012)

23. Costa, B., Pires, P.F., Delicato, F.C., Merson, P.: Evaluating REST architectures-approach,
tooling and guidelines. J. Syst. Softw. 112, 156–180 (2014)

24. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Pearson Education (2010)

25. Wettinger, J., Andrikopoulos, V., Leymann, F.: Enabling DevOps collaboration and
continuous delivery using diverse application environments, pp. 348–358 (2015)

68 M. Zúñiga-Prieto et al.

http://www.omg.org/cgi-bin/doc%3fformal/2012-03-01.pdf

	4 Automation of the Incremental Integration of Microservices Architectures
	1 Introduction
	2 Background and Related Work
	2.1 Related Work

	3 A Method for the Incremental Integration of Microservices
	3.1 Increment Integration Specification
	3.2 Increment Implementation
	3.3 Deployment and Architectural Reconfiguration

	4 Case Study
	5 Conclusions and Future Work
	Acknowledgements
	References


