
The Goals Approach: Agile Enterprise
Driven Software Development

Pedro Valente, Thiago Silva, Marco Winckler and Nuno Nunes

1 Introduction

Software development within enterprises still lacks accuracy, and effectiveness is
still far from being achieved as project full-success rates are still as low as 30% [1],
and there is still a long bridge to cross until software development within enter-
prises is achieved in a patterned way, and established as a consistent source of
revenue following investment within enterprises [2]. Nevertheless, the advances of
Software Engineering (SE) have at least taken us from a chaotic state of the practice
[3], to a more inspiring situation where enhanced executive management support,
agile methods, and increased user involvement are appointed as factors for software
project success [4].

Our work is inspired by the need to improve software project success rates
within enterprises, where the establishment of a tool that enhances communication
capabilities between both Enterprise Engineering (EE) and Software Engineering

A prior version of this paper has been published in the ISD2016 Proceedings (http://aisel.aisnet.
org/isd2014/proceedings2016).

P. Valente (&)
University of Madeira, Funchal, Portugal
e-mail: pvalente@uma.pt

T. Silva � M. Winckler
Université Paul Sabatier, Toulouse, France
e-mail: rocha@irit.fr

M. Winckler
e-mail: winckler@irit.fr

N. Nunes
Madeira-ITI, Técnico — U. Lisboa, Lisbon, Portugal
e-mail: njn@uma.pt

© Springer International Publishing Switzerland 2017
J. Gołuchowski et al. (eds.), Complexity in Information Systems Development,
Lecture Notes in Information Systems and Organisation 22,
DOI 10.1007/978-3-319-52593-8_13

201

http://aisel.aisnet.org/isd2014/proceedings2016
http://aisel.aisnet.org/isd2014/proceedings2016


(SE) knowledge-based expertise can be seen as crucial for the effectiveness of the
Software Development Process (SDP) that may be applied. However, this
enhancement can only be achieved if a common framework of shared concepts of
the business and software domains is established and used to build the Information
System, which today can be seen an inherent part of the global enterprise system.

We present the Goals Approach, which focuses on tailored in-house develop-
ment of Information Systems for Small and Medium Enterprises, which is char-
acterized by needs of agility concerning the supportive SDP in order to allow the
achievement of tangible results in limited amounts of time and budget [5]. Goals
defines a SDP that applies a straightforward method that analyses the enterprise in a
top-down process in order to elaborate a business model, called as Enterprise
Structure. And continues by detailing the Enterprise Structure components using
cross-consistent concepts in order to design the User Interface, the Business Logic
and the Database, including the Enterprise Structure as the back-bone of a final
Software Architecture, which can be used for in-house software development
management.

Briefly, the Goals conceptual structure (back-bone Enterprise Structure com-
ponents are underlined) includes: the human interaction which is represented by
means of Business Processes, User Tasks, User Intentions and User Interactions;
the User Interface which is represented by Aggregation Spaces, Interaction
Components, Interaction Objects, and Interaction Spaces; which (the last one) can
also be used by its Business Logic, which is composed by Business Rules, User
Interface and Database System Responsibilities; and the Database which is com-
posed by Data Entities and Fields.

This paper focuses on the validation of the cross-consistency of concepts that
supports each component, and provides insight on how each can be implemented.
The related work to our approach is presented in Sect. 2, the Goals Approach SDP
and Structure are presented in Sect. 3. The method is presented in Sects. 4 (Analysis
Phase) and 5 (Design Phase), the cross-consistency validation is presented in Sect. 6,
and the conclusions and future work are presented in Sects. 7 and 8.

2 Related Work

Considering enterprise-driven development in the EE domain, our approach is
distinct from the DEMO-based GSDP [6] as it provides a structured user interface
specification. e3Value [7], is a method which also relies on the GSDP, and models
the business for value adding the “value interface” inputs and outputs, yet, also not
providing a user interface elaboration solution. Still in EE, our approach can be
compared to Archimate [8] and BPMN [9] in the perspective that it provides an
enterprise and software structuring language. It is however different in the per-
spective that it applies a method to specify a business model and derive a software
architecture.

202 P. Valente et al.



Our approach can be compared to the business-oriented ‘Management by pro-
jects’ [10], ITIL [11], and the SE’ SCRUM [12] and XP [13] methods, which also
define techniques and architecture for BPI, yet, none of these methods specifies the
software architectural pattern that should be used. Goals can be used by these
methods for software architectural specification, and in the cases of SCRUM and
XP for the specification of architectural spikes regarding iterative implementation,
matching agile software architecture [14], as Goals further structures the enterprise
business model.

Regarding the Human-Computer Interaction perspective, the closest solutions
are methods that settle for user interface conception based on user task and domain
models [15, 16]. Our approach is different as it complementarily conceives the
Business Logic layer based on enterprise business regulations and coordination
structures.

3 Software Development Process

Goals is an Enterprise-Driven Human-Centered Software Engineering (HCSE)
method that bridges enterprise requirements and software implementation by means
of a business model. It introduces the Interaction Space as the space that supports
both in-person and remote interaction whilst applying the same business regulations
and data concepts. The Interaction Space bridges the Business Processes and its
User Task’s human interaction, and establishes a relation with the Business Rule
and Data Entity concepts in order to architect the Enterprise Structure (the business
model) which is the back-bone of Software Architecture.

Goals was developed for over a decade of applying the HCSE Wisdom
Approach [17] in software practice in a SME. Wisdom provides the (original)
definition of Interaction Space (IS) and the architectural technique that bridges
human interaction and system behavior (based on the IS), expressed by User Tasks
and Business Rules in the Enterprise Structure, and by User Interactions and
System Responsibilities in the Software Architecture. It uses DEMO [18], for the
definition of Business Process and Business Rule, Activity Modeling (AM) [19], for
the cornerstone definition of User Task. And uses Hydra [20], for the User Interface
definition of Aggregation Space, and BDD [21] for system behavior specification,
both concerning the Software Architecture elaboration.

The Goals Approach Software Development Process (SDP) integrates the
Enterprise Engineering (EE) and Human-Computer Interaction (HCI) perspectives
in the process of defining a Software Architecture for a given Business Process
Improvement (BPI) in two phases: the Analysis Phase which elaborates the
Enterprise Structure, and the Design Phase which elaborates the Software
Architecture.

The Analysis Phase identifies Business Processes (BP) in Step 1, User Tasks
(UT), in Step 2, Interactions Spaces (IS) in Step 3, Business Rules (BR) in Step 4,
and Data Entities (DE) in Step 5, composing the Enterprise Structure. The Design

The Goals Approach: Agile Enterprise Driven Software Development 203



Phase details and complements the Enterprise Structure by means of a
User-Centered Design (UCD) perspective, specifying each UT by means of a Task
Model (Step 6), designs the User Interface (Step 7), and structures the Business
Logic (Step 8) and the Database (Step 9), finishing with the elaboration of a final
Software Architecture (Step 10), given an MVC architectural pattern [22].

The process continues with the Implementation and Testing Phases (which detail
is out of the scope of the present paper), and uses the Software Architecture to guide
the software development, and the User Interface Design, Task Model and User
Stories to guide the Information System test before deployment. Figure 1 illustrates
the SDP Analysis and Design Phases using a BPMN diagram [9], and each EE, HCI
and SE domain’s contribution and cooperation suggestions for each Step.

The Enterprise Structure is the Goals business model, and is composed of
Business Processes (BP) and its User Tasks (UT), which are Essential Use Cases
[19]. Actors communicate by means of Interaction Spaces (IS) when carrying on
their UTs, which apply Business Rules (BR) that represent business regulations
which are applied over used Data Entities (DE). Each component is identified in a
top-down methodological process, and its definition, origin and symbol is presented
in Table 1.

Briefly, the Software Architecture is composed by one Aggregation Space [20]
per UT, which is composed by Interaction Components and Interaction Objects that
trigger User Interface and Database System Responsibilities (SR), which archi-
tecturally use the ISs, BRs and DEs associated to that UT ensuring traceability
between business and software. Each Software-Specific component is presented in
Table 2.

Fig. 1 Goals software development process

204 P. Valente et al.



4 Analysis Phase

The Analysis Phase defines a top-down methodological process that identifies and
relates each Enterprise Structure component in five Steps, which are presented in
Sects. 4.1 (Step 1—Business Process Identification), 4.2 (Step 2—User Task
Identification); 4.3 (Step 3—Interaction Space Identification); 4.4 (Step 4—
Business Rule Identification); and 4.5 (Step 5—Data Entity Identification).

Table 1 Enterprise Structure components definition, origin and symbol

Component Definition Origin Symbol

Business
Process (BP)

A set of UTs that lead to a Goal DEMO

User Task (UT) A complete task within a BP AM

Interaction
Space (IS)

The space that supports a UT Wisdom

Business Rule
(BR)

A restriction over DE’s structural
relations

DEMO

Data Entity
(DE)

Persistent information about a
business concept

Wisdom

Table 2 Software architecture software-specific components

Component Definition Origin Symbol

Aggregation
Space (AS)

A User Interface Hydra

Interaction
Component (IS)

Tool of a User Interface Goals

Interaction
Object (IO)

A User Interface Object that triggers
SRs

Goals

User
Interface SR (UI
SR)

A SR that provides support for User
Interface presentation

Goals

Database SR
(DB SR)

A SR that manages Data Entities Goals

The Goals Approach: Agile Enterprise Driven Software Development 205



4.1 Step 1—Business Process Identification

Goals defines a Business Process (BP) as “A set of User Tasks that lead to a Goal”.
The Goal is the objective, and also names the BP. It is expressed as a unique set of
related enterprise business concepts (Data Entities) which support the BP execution,
and that will compose the enterprise domain model as will be presented in Step 5—
Data Entity Identification. The relation between the BP and the set of managed
business concepts increases awareness on the problem begin solved, and also the
communication capability between project stakeholders by means of the in-depth of
their knowledge on the specific part of the enterprise that is being evolved. This
facilitates the BPI development, and in practical terms results in faster and more
productive project meetings, increasing the probability developing projects in fewer
time.

The relation between BPs and Data Entities is useful to design the enterprise BP
Model, which relates BPs, Actors and Data Entities, increasing the perception on
how a BP uses and produces certain business concepts from a higher level, which is
useful for business management. We present the BP Model, by means of the
application of the Process Use Cases Model [23] adapted to the current Goals
notation. The meta-model and an example are presented in Fig. 2.

Figure 2 presents the meta-model of the BP Model, in which it can be read that
only one actor can “Initiate” a BP, but an unlimited number of Actors can partic-
ipate in it, and also, that an unlimited number of Data Entities can be used and
produced by a BP. It also presents an example where Actor A initiates the BP,
Actors B and C participate in it, and the Data Entity A is used and the Data Entity B
is produced.

4.2 Step 2—User Task Identification

The User Task (UT) definition is derived from the concept of Essential Use Case
(EUC) [19], which defines a Use Case as a “complete and meaningful task (carried
out in relationship with a system)”. This definition is adapted to the enterprise
context based on the principle that the Business Process (BP) is a sequence of UTs,
and that each UT is carried out by a single Actor. Since a BP always has a limited

Fig. 2 Business process model meta-model, and BP model example

206 P. Valente et al.



number of tasks, all UTs can be considered as meaningful, thus, we abandon the
“meaningful” term and define a UT as “A Complete User Task within a BP”. We
also apply the principle that an Actor (a user) never carries on two UTs consecu-
tively and separately, which is an axiom that aims user performance and software
development efficiency by inducing the reduction of the articulatory distance of the
UT i.e. the user’s effort [24], and by suggesting that the necessary tools should be
provided using as little user interface implementation space as possible. If two UTs
are consecutive, then they can be merged in a single sequence of acts, expressed by
a single UT, leading to is completion in the same way.

The relations between UTs are what designs a BP. The consecutive relation is
the most common, as it supports the most common BP flow. Yet, it is not sufficient
to represent more complex services that must be available in different interaction
points (identified as touchpoints by the Service Design domain) which usually have
back-end support, and may be visited by the customer, but not necessarily and
always in a pre-defined order. This need for flexibility can be attained by the
definition of conditional relation, and thus, we further define it (the conditional
relation), meaning that the execution of a specific UT or BP path is conditioned to
the will of the Actor. This reflects the case when an enterprise suggests its cus-
tomers the execution of a given action in sequence of any other interaction but will
never be sure that they will follow the suggestion, and yet continues to provide the
remaining service.

Figure 3 presents the meta-model of the UT, in which further defines that one
Actor can carry on many UTs and that a UT can also be carried out by many Actors
defining cooperative collaboration; one BP can have many UTs; one UT can belong
to many BPs; and UTs are related consecutively or conditionally. The example
shows the initial UT being triggered by Actor A and consecutive B and C UTs
being carried out by Actors B and C, and the response tasks, D and E (which path is
conditional) being carried out by Actors B and A respectively.

4.3 Step 3—Interaction Space Identification

The Interaction Space (IS) definition is derived from Wisdom original concept of
Interaction Space, as a user interface space where the “user interacts with functions,
containers and information in order to carry on a task”. We adapt this concept to the

Fig. 3 User Task meta-model and example

The Goals Approach: Agile Enterprise Driven Software Development 207



enterprise context by means of its generalization, in order to complementarily
consider the support of the UT in person, as in any of the cases (remote or in
person), the same Business Rules (BR) and Data Entities (DE) also apply. We (re)
define the IS extension as “The Space that supports a UT (with the same BRs and
DEs)”. Hence, one IS supports the interaction between two users in person or
remotely while each one carries on his own UT. Even if many UTs are carried by
out many Actors in a cooperative way, the UTs will still be different. If two Actors
carry on the same UT remotely, then they are performing cooperative work [25].

The identification of ISs is derived from the interaction between sequenced UTs,
in order to support one Actor request and other Actor response, as in any case the
same BRs and DEs apply. Figure 4 presents the meta-model that specifies that an IS
supports many UTs based on the interaction between Actors, with at least a con-
secutive relation and at most one conditional relation.

The example shows the derivation of ISs in order to support the interaction
between Actors A and B, and Actors B and C, by means of ISs A (a Request IS) and
B (a Coordination IS) respectively, which is possible since the set of UTs A, B, D
and E are subject to the same BRs and DEs, and the same happens in the case of
UTs B, C and D. If another interaction between Actors A and B would occur (e.g.
between User Task E and F), then a new IS should be defined (e.g. C) in order to
support that interaction.

4.4 Step 4—Business Rule Identification

The Business Rule (BR) definition is provided by DEMO notion of Action Rule,
which defines a structure of decision (using pseudo-code) that applies restrictions to
Object Classes concerning the execution of business Transactions. These restric-
tions are paradigmatic relations (considering a semiotic association) which are
applied to the syntactic relations (also considering a semiotic definition) which exist
between Data Entities (DE), in order to produce a new valuable and more complex
business concept. Hence, we define BR as “A Restriction over DE’s Structural
Relations”. BRs represent regulations or explicitly defined requirements that should

Fig. 4 Interaction space meta-model and example

208 P. Valente et al.



be elicited in order to understand the restrictions which the user is subject to when
carrying on a UT, and do not represent collaboration impositions with other Actors,
since these rules are already expressed by the BP design.

The BRs are the grounding foundation of the Information System’ Business
Logic, as they are the only business-specific programmed class concerning this
layer, the middleware of the system. The Business Logic will also be complemented
in Step 8—Business Logic Structuring, with programmed parts responsible for
presentation and data management.

Figure 5 presents the meta-model, which defines that an IS can use many BRs,
and that a BR can be used by many ISs, and also defines that a BR can use one to
many DEs, and that a DE can be used by many BRs. The example shows that IS A
uses BRs A and B, and that IS B is used only by BR B. It also defines that BR A
uses DE A, and that BR B uses DEs A and B.

4.5 Step 5—Data Entity Identification

The Data Entity (DE) definition is provided by Wisdom as a class of “Persistent
Information about a Business Concept”. This means that persistency will be
maintained by the Information System, and that it will enclose meaningful concepts
which are recognized within the enterprise by those who have knowledge about it.
DEs are related between each other, allowing a simple representation of reality
which is made available by means of a Database application. Those “meanings”
enclose attributes. In terms of common database objects, DEs are expressed as
tables, and attributes are expressed by fields [26]. DEs are related between each
other by means of semiotic syntactic relations, which are expressed in Goals using a
UML association [27], also implying the definition of multiplicity between the
related DEs. Multiplicity will typically be of one-to-many or many-to-many. The
definition of a specific multiplicity (e.g. 1–5) is uncommon, and should be
expressed by a BR due its volatility (as it will eventually change). The definition of

Fig. 5 Business rules meta-model and example

The Goals Approach: Agile Enterprise Driven Software Development 209



relations of one-to-one is also uncommon as in those cases the DEs meanings can
usually be conciliated in a single DE.

As mentioned in Step 1—Business Process Identification, the identification of
DEs should be carried along the BP design and consequential Steps, so that the
analyst develops a well-defined notion of the concepts involved in the BPI under
analysis. In the current Step, the DEs only need to be identified and related to the
BRs in order to compose the Enterprise Structure, the final artefact of the Analysis
Phase, as illustrated in Fig. 6, with the DEs as the support of the Enterprise Structure.

The Enterprise Structure presented in Fig. 6 is composed by every identified
component until this moment and also by their relation to other components, with
no changes. It represents a relation which is representative of the enterprise in terms
of a logic that relates Business Processes (BP), User Tasks (UT), Interaction Spaces
(IS), Business Rules (BR) and Data Entities (DE) in terms of dependency and
functional specification. It can be used in order to identify the implications of
changing the enterprise in terms of its impact in the software structure, since,
changing BPs, UTs or BRs, which is common in the business management domain,
will inevitably change the underlying information system to which the 3 lower
levels layers (IS, BR and DE) are an inherent part, as they are also part of the
Software Architecture.

5 Design Phase

The Design Phase details and complements the Enterprise Structure with new
software-specific components that build-up the Software Architecture in a top-down
methodological process in five Steps, which are presented in Sects. 5.1 (Step 6—

Fig. 6 Enterprise structure meta-model and example

210 P. Valente et al.



Task Model), 5.2 (Step 7—User Interface Design), 5.3 (Step 8—Business Logic
Structuring), 5.4 (Step 9—Database Structuring), and 5.5 (Step 10—Software
Architecture Composition).

5.1 Step 6—Task Model

The Task Model details User Tasks (UT) in order to obtain information to carry on
the User Interface design, which happens in Step 7—User Interface Design. The
Task Model follows the technique applied in theWisdom method in order to specify
the UT in terms of User Intentions (steps that the user takes to complete the task)
and System Responsibilities (that provide the necessary information), following a
traditional decomposition of an Essential Use Case (EUC) [19].

The decomposition of the UT in terms of User Intentions is carried out by means
of the Concur Task Trees (CTT) technique [28]. CTT defines the User Intentions in
the perspective of what the user wishes to do in order to obtain what the wants from
the system and complete his UT. Each User Intention has an associated System
Responsibility (SR) that provides the necessary information to an Interactive
Component that supports user interaction. The SR is a programmed class which is
part of the Information System’ Business Logic.

The Task Model is represented using an Unified Modeling Language
(UML) Activity Diagram [27], defining the flow of User Intentions that lead to the
accomplishment of the UT. Each User Intention uses an Interaction Component that
in its turn uses a SR. These are User Interface SRs. The last User Intentions always
leads to SRs that manage information, which are Database SRs. In the case when
new Data Entities are identified by means of the Task Model elaboration, then they
must also be represented in the DE’s structure, a design task that will be specified in
Step 9—Database Structuring.

Figure 7 presents the meta-model of the Task Model, where it can be read that a
UT has many User Intentions, which have up to n initial User Interactions, and up
to m last User Interactions that use m + n Interaction Components (which compose
the Aggregation Space that will support the UT). Each Interaction Component

Fig. 7 Task model’s meta-model and example

The Goals Approach: Agile Enterprise Driven Software Development 211



supports one User Intention, and uses one User Interface SR or one Database SR.
The example shows the decomposition of UT A of the designed BP, which has two
initial User Intentions (A and B) and one final (C). User Intentions A and B relate to
User Interface SRs A and B, and User Intention C relates to Database SR A,
meaning that the UT can be carried out by means of 3 interactions, which are
supported by 3 System Responsibilities and 3 Interaction Components.

5.2 Step 7—User Interface Design

The User Interface Design is carried out by means of the application of the
Behavior Driven Development (BDD) method [21] that further specifies each User
Intention, and also frames it in terms of used Aggregation Spaces (AS), specifying
the navigation between User Tasks (UT). BDD is an agile software development
method that describes the system behavior based on a User-Centered Design
(UCD) perspective, producing pseudo-code for User Interface specification. BDD
specifies User Stories for a system feature (a UT) which is used within a certain
scenario (the Aggregation Space), resulting in specific behavior which is generated
by the system in the User Interface. The pseudo-code has the following syntax.

Given [State] When [Interaction] Then [System Behavior]

Where [State] represents the actual the state of the system (which identifies the
Aggregation Space where the UT occurs); [Interaction] is a flow of User
Interactions; and, [System Behavior] is the expected outcome that triggers User
Interface and Database System Responsibilities by means of Interaction Objects.
BDD also specifies the Data Entities (DE) Fields used in each User Interaction. This
specification facilitates the mapping between Systems Responsibilities and DEs that
occurs in Step 8—Business Logic Structuring, and the completion of the Database
specification that happens in Step 9—Database Structuring. BDD’s User Stories are
represented by an UML Activity Diagram, and use the pseudo-code which is
presented in Table 3.

Figure 8 presents the User Interaction meta-model and an example of a User
Story that specifies each Task Model’ User Intentions in terms of Interaction
Objects that match the already identified Interaction Components (IC) and SRs

Table 3 Relation between BDD ‘pseudo code syntax and software architecture’ components

BDD pseudo-code Goals component

Feature ‘Feature’ User Task ‘Feature’

Scenario ‘Scenario’ User Intention ‘Scenario’

Click, Choose, Set User Intentions ‘Click’ or ‘Set’

Display ‘Page’ or Go to ‘Page’ User Interface SR ‘Display Page’ + AS ‘Page’

Field Data Entity Field

[Then] (Last) System Responsibilities

212 P. Valente et al.



when there is only one User Interaction. And that divide in distinct Interaction
Objects when there is more than one User Interaction, as in the case of User
Interface SRs B.1 and B.2 that support two Interaction Objects (for “Type” and
“Choose”) of IC B.

Figure 9 shows a representation of the User Interface which defines that the
Aggregation Space A uses ICs A, B and C, which trigger the User Interface SRs A,
B.1 and B.2, and Database System Responsibility A by means of the Interaction
Objects presented in the User Interface. The relation with Interaction Space A is
inherited from the Enterprise Structure.

5.3 Step 8—Business Logic Structuring

The Business Logic Structuring is carried out by defining the relations that each
System Responsibility (SR) and Business Rules (BR) has to Data Entities (DE),
since the relation with the User Interface components is already established at this
stage.

Figure 10 shows the manual mapping that was done between SRs and DEs.
BR A is inherited from the Enterprise Architecture, as also is its relation with DE A.

Fig. 8 User interaction meta-model and example

Fig. 9 User interface design example

The Goals Approach: Agile Enterprise Driven Software Development 213



User Interface SR A has been mapped to DE A, and it is assumed that Field A and
B identified in Step 7, belong to DE B, which is the reason why User Interface
SRs B.1 and B.2 are related to DE B. By means of the analysis of the semantic of
the Database SR A, it is assumed that there was a decision to relate it to both DEs A
and B.

5.4 Step 9—Database Structuring

The Database Structuring is now possible since all Data Entities (DE) are identified.
Two DEs (A and B) have been identified, and DE B provides information for
Fields A and B. We assume for purposes of example that DE A can only related to a
single record in DE B, yet, on the contrary, any record in DE B can be related to
many records in DE A. Figure 11 presents the Database Structure.

5.5 Step 10—Software Architecture Composition

The composition of the Software Architecture is carried out by relating in a single
diagram every component identified by means of the execution of Steps 1–9,
including the Business Process and User Tasks, and the hybrid Enterprise Structure
and Software Architecture components of: Interaction Space, Business Rule and
Data Entity, as well as the Software-Specific components.

Figure 12 presents the specified Software Architecture, in which the User Task
(UT) A is now supported by Aggregation Space A and the underlying software

Fig. 10 Business logic structure example

Fig. 11 Database structure
example

214 P. Valente et al.



structure, whilst UTs B, D and E are still not automated, reason why they are
directly related to Interaction Space (IS) A. UT C and IS B and Business Rule B are
not represented.

The Software Architecture can be used in order to specify implementation
responsibilities for a software development team and implementation priority.
Priority will usually be from bottom-to-up, since the upper objects use the bottom
ones. Applying the technique to the example architecture, the precedence of
implementation would be: DE B (since it will be used in), DE A, Business Rule A,
Database SR A, User Interface SRs B.1 and B.2, and only then User Interface SR
A. Interaction Components A, B and C can follow any order, and once Interaction
Space A and Business Rule A are developed, the Aggregation Space A can be
implemented and tested.

6 Research Method and Validation

The research method of our approach was based on the question of if it would be
possible to establish a relation between enterprise valuable concepts and the
implementation of a supporting system. And by placing the hypothesis that it is
possible if a cross-consistent definition of concepts is established between the
business concepts that specify human interaction, and from them, derive the
components of the architecture of a software system respecting specified business
regulations. The cross-consistency between concepts is formalized by means of the

Fig. 12 Software architecture example

The Goals Approach: Agile Enterprise Driven Software Development 215



application of the Cross-Consistency Assessment (CCA) [29] method to the
Software Architecture components. Complementarily, we also use the CCA relation
of concepts for purposes of architectural specification aiming software development
clarification by means of providing implementation options insight.

The Software Architecture includes the five defined Software-Specific compo-
nents (as previously presented in Table 2): Aggregation Space (AS), Interaction
Component (IC), Interaction Object (IO), User Interface System Responsibility
(UISR) and Database System Responsibility (DBSR); and the three hybrid
Enterprise Structure components (which were also previously presented in
Table 1): Interaction Space (IS); Business Rule (BR) and Data Entity (DE).
Concerning software development, each component assumes distinct implementa-
tion options, as follows:

• Aggregation Space (AS). A User Interface, a Web Page that includes other
Web Pages (Interaction Components), including an HTML presentation tem-
plate [20].

• Interaction Component (IC). User Interaction for presentation and interaction
support. A web Page, including an HTML template and a configuration artefact.

• Interaction Object (IO). A User Interface object that allows interaction.
An HTML element e.g. Text Field; Checkbox; Radio Button: Dropdown List;
Button.

• User Interface SR (UI SR). Programmed routine that supplies a recordset to be
used in one or more ICs. An SQL Server Stored Procedure, View, or JAVA
programmed class.

• Database SR (DB SR). Programmed routine that receives a recordset and saves
it in the Database. An SQL Server Stored Procedure or JAVA programmed
class.

• Interaction Space (IS). Programmed routine that can be invoked by any
Software-Specific component in order to validate the data received in the User
Interface, and sent to the Database.

• Business Rule (BR). Programmed routine that provides validation about the
data which is transferred between the Interface and the Database.

• Data Entity (DE). Tables and Fields [26].

The Software Architecture components are presented in Fig. 13 from top to
down (from the AS to DE), according to the nature of their relation of usage i.e. the
component on top uses and depends on the component on the lines below to
properly work [27]. We define four types of relations concerning Software
Architecture specification:

• Architectural Usage—Underlined correct sign (✓). Goals architectural rela-
tions. Define relations between components which are generated by means of
the application of the Goals method, and which are part of its meta-model, as
presented throughout Sects. 4 and 5.

216 P. Valente et al.



• Allowed Usage—Correct sign (✓). Relations that can be applied for the purpose
of architectural optimization. Mostly represent: reuse (✓1), of the components
by itself by means of architectural observation, IS invocation (✓2), for purpose
of the data validation, or direct usage of DE by IS (✓3), meaning that no
restrictions are applied in this case.

• Contingency Usage—Wrong sign (✘). Which are relations that that should not
occur, but that yet can represent a useful trade-off, as they can simplify
implementation, however introducing architectural disorganization: between
Software-Specific components (✘1), or related to the Enterprise Structure
components (✘2), as BRs should always be accessed by ISs and not directly,
and also as DEs should be access by means of UI or DB SRs, and not by User
Interface components.

• Restricted Usage—Wrong underlined sign (✘). Relations that should not exist,
as the IO should never make use of itself, and well as the BR, in order to
promote business regulations organization.

Hence, the cross-consistency of concepts between the Enterprise Structure and
the Software Architecture components is achieved by means of the relation between
the AS and the IS, providing support for the human interaction and business reg-
ulation execution, supporting our hypothesis. The AS also establishes the relation
with the Software-Specific components by means of the Interaction Components
and their Interaction Objects, namely with the User Interface and Database SRs,
which use Data Entity elements, which are also common to the Enterprise Structure,
providing full traceability between business and software implementation.

Fig. 13 CCA validation of cross-consistency

The Goals Approach: Agile Enterprise Driven Software Development 217



7 Conclusions

Our approach inherently aims at facilitating requirements elicitation, focuses on
user needs, and simplifies traceability between business requirements and software
implementation, which matches project management needs and user involvement in
the Software Development Process, in what we believe that is the more important
contribution of our work. The base strategy, based on Business Process
Improvement (BPI), fits most successfully sized projects, as based on The Standish
Group statistical reports, projects under 1 M$ (one million dollars), in which cost
most BPI fit into, are believed to be up to 10 times more successful than 10 M$
projects [4].

Our approach is suitable for in-house development in Small and Medium
Enterprises (SME), as it produces a controllable set of elements for a single BP
organizational change, which will usually be implemented with great efficiency
(concerning man-hours work) by programmers with knowledge of the domain, and
also defines an agile and straightforward logic, which suits SME needs for devel-
opment performance. This induces iterative enterprise and information system
continuous development which is compatible with the Agile Development mani-
festo [30], at an enterprise scale.

8 Future Work

Future work mostly concerns the development of a toll for the application of the
Goals method, as we believe from the long term use of the presented concepts, that
the Goals structure is sufficiently well-defined in order to define a Platform-Specific
Model (PIM) that can be used for full-stack MVC code generation. In this way, we
open the space to predict software development effort with higher accuracy, and
ultimately identify successful enterprise and software development patterns.

References

1. The Standish Group. Chaos Report 2014. (2014)
2. Valente, P., Aveiro, D., Nunes, N.: Improving software design decisions towards enhanced

return of investment. In: Proceedings of ICEIS 2015, pp. 388–394 (2015)
3. Morgenshtern, O., Raz, T., Dvir, D.: Factors affecting duration and effort estimation errors in

software development projects. IST 49, 827–837 (2007)
4. The Standish Group. Chaos Report 2013 (2013)
5. Gerogiannis, V., Kakarontzas, G., Anthopoulos, L., Bibi, S., Stamelos, I.; The SPRINT-SMEs

approach for software process improvement in small-medium sized software development
enterprises. In: Proceedings of ARCHIMEDES III (2013)

6. Kervel, S., Dietz, J., Hintzen, J., Meeuwen, T., Zijlstra, B.: Enterprise ontology driven
software engineering. In: Proceedings of ICsoft 2012 (2012)

218 P. Valente et al.



7. Pombinho, J.: Value-oriented enterprise transformation—design and engineering of value
networks. Ph.D. Thesis, University of Lisbon—IST (2014)

8. The Open Group: ArchiMate 2.0 understanding the basics. https://www2.opengroup.org/
ogsys/catalog/W130 (2013). Accessed 17 Feb 2017

9. Völzer, H.: An overview of BPMN 2.0 and its potential use. In: BPMN 2010 Lecture Notes in
Business Information Processing, vol. 67, pp. 14–15, Springer (2010)

10. Gareis, R.: ‘Management by projects’: the management approach for the future. Int. J. Project
Manag. 7(4), 243–249 (1989)

11. Cannon, D.: ITIL service strategy. ISBN: 978-0113313044 (2011)
12. Schwaber, K.: Agile project management with scrum (developer best practices). ISBN:

978-0735619937 (2004)
13. Beck, K.: Embracing change with extreme programming. Computer 32(10), 70–77 (1999)
14. Grundy, J.: Foreword by John Grundy: architecture vs agile: competition or cooperation? In:

Agile Software Architecture. ISBN: 978-0124077720 (2013)
15. Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E., Vandermeulen, J.: User interface

derivation from business processes. In: Proceedings of SAC 2008, pp. 553–560 (2008)
16. Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S., Stolze, M.: User-centered design and

business process modeling: cross road in rapid prototyping tools. In: Proceedings of
INTERACT 2007, pp. 165–178. LNCS (2007)

17. Nunes, N.: Object modeling for user-centered development and user interface design: the
wisdom approach. Ph.D. Thesis, Universidade da Madeira (2001)

18. Dietz, J.: Enterprise Ontology—Theory and Methodology. Springer, Berlin Heidelberg.
ISBN: 978-3540331490 (2006)

19. Constantine, L.: Human Activity Modeling—Toward a Pragmatic Integration of Activity
Theory and Usage-Centered Design. Springer (2009)

20. Costa, D., Nóbrega, L., Nunes, N.: An MDA approach for generating web interfaces with
UML ConcurTaskTrees and canonical abstract prototypes. In: LNCS, vol. 4385 (2007)

21. Chelimsky, D., Astels, D., Helmkamp, B., North, D., Dennis, Z., Hellesoy, A.: The Rspec
Book. ISBN: 1934356379 (2010)

22. Zukowski, J.: The model-view-controller architecture. In: John Zukowski’s Definitive Guide
to Swing for Java 2. ISBN: 978-1430252511 (1999)

23. Valente, P.: Goals Software Construction Process: Goal-Oriented Software Development.
VDM Verlag Dr. Müller, ISBN: 978-3639212426 (2009)

24. Winckler, M., Freitas, C., Palanque, P., Cava, R., Barboni, E.: Usability aspects of the
in-side-in approach for ancillary search tasks on the web. In: IFIP TC13 Conference on
Human-Computer Interaction 2015 (INTERACT), pp. 207–226 (2015)

25. Grudin, J.: Computer-supported cooperative work: history and focus. Computer 27, 19–26
(1994)

26. Awang, M., Labadu, N.: Transforming object oriented data model to relational data model.
New Comput. Archit. Appl. 2(3), 402–409 (2012)

27. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language Users Guide.
Addison-Wesley (1998)

28. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer,
London (1999). ISBN: 978-1-4471-0445-2

29. Ritchey, T.: Principles of cross-consistency assessment in general morphological model-ling.
In: Acta Morphologica Generalis, vol. 4 (2015)

30. Agile Alliance: Agile Manifesto. Retrieved 18 Oct 2016: http://agilemanifesto.org/iso/en/
principles.html

The Goals Approach: Agile Enterprise Driven Software Development 219

https://www2.opengroup.org/ogsys/catalog/W130
https://www2.opengroup.org/ogsys/catalog/W130
http://agilemanifesto.org/iso/en/principles.html
http://agilemanifesto.org/iso/en/principles.html

	13 The Goals Approach: Agile Enterprise Driven Software Development
	1 Introduction
	2 Related Work
	3 Software Development Process
	4 Analysis Phase
	4.1 Step 1—Business Process Identification
	4.2 Step 2—User Task Identification
	4.3 Step 3—Interaction Space Identification
	4.4 Step 4—Business Rule Identification
	4.5 Step 5—Data Entity Identification

	5 Design Phase
	5.1 Step 6—Task Model
	5.2 Step 7—User Interface Design
	5.3 Step 8—Business Logic Structuring
	5.4 Step 9—Database Structuring
	5.5 Step 10—Software Architecture Composition

	6 Research Method and Validation
	7 Conclusions
	8 Future Work
	References


