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Abstract. In civil engineering, the installation of a reliable foundation is
essential for the stability of the emerging structure. Already during the
foundation process, a comprehensive survey of the mutual interactions
between the preliminary established construction pit and the surround-
ing soil is indispensable, especially, when building in an existing context.
In this regard, drawing our attention to the construction site at the Pots-
damer Platz in Berlin, which resides within a nearly fully saturated soil
and in the immediate vicinity of existing structures, measurements have
revealed significant displacements of the retaining walls during the vibra-
tory installation of the foundation piles via a so-called vibro-injection pro-
cedure. Herein, due to the gradual plastic strain accumulation and the
small pore-fluid permeability of the granular assembly, the rapid cyclic
loading conditions gave rise to a gradual pore-pressure build-up, which
degraded the load-bearing capacity of the surrounding soil.

Addressing the simulation of cyclic loading conditions within a fluid-
saturated soil, the present contribution proceeds from a multi-phasic
continuum-mechanical approach based on the Theory of Porous Media
(TPM), where the solid scaffold is described as an elasto-(visco)plastic
material incorporating both an isotropic and a kinematic hardeningmodel.
The properties of the proposed solid-skeleton description are extensively
discussed. Moreover, the model response is compared to experimental
data.

Keywords: Elasto-plasticity · Soil mechanics · Theory of Porous Media

1 Introduction

A soil is a complex aggregate of several mutual interacting components. On the
one hand, it consists of the soil grains composing the solid skeleton and, on
the other hand, of a single or multiple pore fluid(s), e.g. pore water or pore
gas, occupying the intergranular pore space. Consequently, due to their granu-
lar structure, soils cannot be classified as solids or fluids, as their macroscopic
observed state (solid- or fluid-like) strongly relies upon the loading conditions
and the mutual interactions between the individual constituents. For instance,
common failure scenarios, such as slope instabilities or soil liquefactions, can be
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traced back to a pore-pressure build-up. In particular, the contract tendency of
the granular assembly gives rise to an excess of pore pressure, which degrades
the intergranular normal contact forces and, thereby the intergranular frictional
forces. In consequence, the load-bearing capacity of the overall soil compound
decreased.

The present contribution is dedicated to the numerical simulation of liquid-
saturated granular assemblies, which are subjected to cyclic loading conditions
as they occur, for instance, during earthquakes or geotechnical installations
processes (e. g. installation of vibro-injection piles). Aiming at the stability analy-
sis of fluid-saturated granular media, there are several models available, see, e. g.,
[33,44], from which most are based on the phenomenological and somehow ad
hoc formulated Biot ’s theory [4], however, proceeding from different approaches
in order to describe the solid-skeleton behaviour. In this regard, special attention
needs to be paid to the description of the contractant (densification) and dilatant
(loosening) behaviour of the granular assembly under pure shear deformations
as a consequence of the micro-structural grain motions, such as grain sliding and
grain rolling. Depending on the initial density, the soil exhibits a macroscopically
contractant (loose soil) or dilatant behaviour (dense soil) under shear loading,
where in the latter, although the dilatant regime is more pronounced, the defor-
mation behaviour is preceded by a slight contractant property at first. However,
experimental observations have revealed that with ongoing shear deformation,
independent of the initial soil state (loose or dense), the soil reaches a critical
state from which on no further volumetric changes occur, see [8]. This observa-
tion motivated the development of so-called critical-state-line (CSL) models, see,
e. g., [27,34,37]. In this regard, some are associated with the Cam-Clay-based
descriptions, see, e. g. [27] or [34], and others with the hypoplasticity framework,
see e. g. [41]. Furthermore, it is also worth to mention the more phenomenologi-
cal approaches, such as [45,46], which employ a direct stress-strain relation that
distinguishes between loading and unloading stages. Other approaches account
for the hardening (and softening) behaviour through kinematic hardening mod-
els. Herein, the yield surface is translated or rotated within the principle stress
space through a so-called kinematic back-stress tensor and/or a rotation ten-
sor, respectively. In this connection, further two concepts can be distinguished
to handle the nonlinear hardening (or softening) material properties. On the
one hand, there are the so-called multiple-yield-surface models, which have been
introduced by [23,30]. Herein, various nested yield surfaces are defined, where
each subdomain is associated with constant hardening parameters. Upon load-
ing, the individual hardening regimes are gradually activated and the hardening
behaviour accumulates. These models suffer from their piece-wise linear hard-
ening properties and theoretically require an infinite number of nested yield
surfaces to accurately recover the non-linear behaviour and, in turn, a signifi-
cant number of material parameters. On the other hand, there are the nonlinear
kinematic hardening models, which already propose a non-linear relation for the
evolution of the kinematic back-stress tensor, see, e. g., [1], or the evolution of
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the rotation tensor, respectively. A comparison between both concepts can be
found in [28].

For the purpose of this contribution, the description of the soil aggregate
proceeds from the thermodynamically consistent TPM as a suitable modelling
approach. Herein, the overall soil is described as an immiscible biphasic aggre-
gate composed of the soil grains and the percolating pore water. The descrip-
tion of the solid skeleton is based on the approach of [13], who proposed an
elasto-(visco)plastic formulation incorporating an isotropic hardening model
and a stress-dependent failure surface. The model has been validated through
the simulation of small-scale slope-failure experiments. Subsequently, the solid-
skeleton model was incorporated into a dynamic biphasic formulation by [19,22]
to cope with dynamic loading conditions and the related phenomena therein,
such as dynamic soil liquefaction, thereby illustrating that the TPM-based mod-
elling approach appropriately accounts for the important solid-skeleton-pore-
fluid interaction. For the purpose of this contribution, the formulations of [13]
will be further enhanced through a kinematic hardening model based on non-
linear evolution of the kinematic back-stress tensor to overcome its shortcomings
under quasi-static cyclic loading conditions.

2 Fluid-Saturated Soil Model

In what follows, a fluid-saturated soil model is presented. In this regard, at
first, the theoretical framework namely the TPM is briefly reviewed. For a more
detailed insight refer, e. g., to [6,18] and references therein. Subsequently, the
governing equations are tailored to describe a fluid-saturated soil, where partic-
ular focus is put on the description of the elasto-plastic behaviour of the solid
skeleton.

2.1 Preliminaries

With respect to the TPM, the overall aggregate is treated as an immiscible mix-
ture of various interacting components ϕα, which are assumed to be homoge-
neously distributed within a representative elementary volume (REV) dv. How-
ever, addressing the simulation of fluid-saturated soils, the overall aggregate is
composed of the solid skeleton (α = S), assembled by the soil grains, and of the
pore liquid (α = L) representing the pore water. The composition of the bulk
volume element is defined through the respective volume fractions nα = dvα/dv,
where dvα is the partial volume of the component ϕα within the REV. Note that
the saturation condition

∑
α nα = nS + nL = 1 must hold.

Following this, two density functions are defined. The material (realistic or
effective) density ραR = dmα/dvα relates the components local mass dmα to
its volume dvα, while the partial (global or bulk) density ρα = dmα/dv is asso-
ciated with the bulk volume. Moreover, both density definitions are related to
each other through ρα = nαραR. As we assume materially incompressible and
uncrushable grains, the realistic density of the solid remains constant under the
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prescribed isothermal conditions, but the bulk density can still change through
a changing volume fraction nα.

2.2 Kinematics

In the framework of the TPM, the individual components ϕα are treated as super-
imposed continua, where each spatial point is simultaneously occupied by particles
of both components. Moreover, each component is moving according to its own
motion function and, thus, has its own velocity field. In this regard, it is conve-
nient to express the solid motion in the Lagrangean description through the solid
displacement uS and the motion of the pore-liquid component ϕL in the Euler ian
setting relative to the solid motion through the seepage velocities wL :

• solid: uS = x − XS , (uS)′
S =

′
xS ,

• pore liquid: wL =
′
xL − ′

xS .
(1)

Therein, XS denotes the position of a solid material point in the reference con-
figuration (t = t0), while x is the position of a point in the current configuration
(t > t0). Moreover, (·)′

S and (·)′
L denote the material time derivatives following

the motion of the solid skeleton and the pore fluid, respectively.

2.3 Balance Relations

The underlying balance equations proceed from the balance equations of classical
continuum mechanics. However, with respect to an efficient solution procedure,
the set of governing balance laws is tailored to the particular application sce-
nario of the present contribution by imposing several constraints on the general
balance laws. In this regard, the individual constituents are assumed to be mate-
rially incompressible, i. e. (ραR)′

S = 0, and mass-exchange processes among them
are excluded. Moreover, only quasi-static processes are considered, i. e. the accel-
eration terms are dropped, and the investigations are restricted to isothermal
processes. Note that, in order to obtain a thermodynamically consistent model,
the entropy inequality is exploited additionally. However, its lengthy evaluation
is not carried out here, instead, only the final results are given. An interested
reader is referred, for instance, to [12,16] and references therein. Following these
elaborations, the underlying balance laws are the momentum balance and the
volume balance both associated with the overall aggregate:

0 = div (TS
E − p I) + (ρS + ρL)g, (2)

0 = div(vS +
kL

γLR
{ρLRb − grad p}). (3)

Therein, g is the unique mass-specific body force (gravity), kL is the hydraulic
conductivity (Darcy permeability) and γLR = gρLR is the effective fluid weight
with g = |g| = const. as the scalar gravitational acceleration. Moreover,



Cyclic Loading of Granular Media 197

TS
E is the effective solid stress, which is associated with the intergranular forces,

p is the pore-fluid pressure and I is the second-order identity tensor. The corre-
sponding primary variables of the resulting independent field variables are the
solid displacement uS and the pore-liquid pressure p.

2.4 Solid Skeleton

Due to its granular microstructure, the solid skeleton exhibits a complex mater-
ial behaviour. In particular, the macroscopic behaviour of the granular assembly
is a result of the microstructural grain motions leading to irreversible (plastic)
deformations on the macroscopic level. These plastic deformations are of par-
ticular importance during multiple loading-unloading loops, see, for instance,
the comprehensive experimental observations of [2], where irreversible deforma-
tions have been found during both pure deviatoric and pure isotropic loading
conditions. To mimic the gradual accumulation of plastic deformations during
cyclic loading, kinematic hardening model are commonly used, thereby usually
proceeding either from a rotation or a translation of the yield surface within the
principle stress space. An example of the former can be found in [29], where the
yield surface is allowed to tilt over the hydrostatic axis of the principle stress
space. In contrast, other authors, for instance [1,5], follow the latter approach.
For the purpose of this contribution, the latter is used, as it, in contrast to the
rotational hardening approach, additional allows for a plastic strain accumula-
tion observed during cyclic isotropic compression see e. g. [2].

For the purpose of this contribution, the constitutive description of the solid
skeleton is based on [13], where an elasto-plastic formulation proceeding from
comprehensive quasi-static monotonic experiments has been proposed. In partic-
ular, the experiments have revealed that the shape of the failure surface, which,
in turn, governs all admissible stress states, is not constant but depends on the
current isotropic stress state. Moreover, an isotropic hardening formulation has
been used to account for material hardening. To additionally account for the
hardening properties of granular assemblies under cyclic loading conditions, the
given formulation of [13] is extended through a translational kinematic harden-
ing model yielding a mixed isotropic-kinematic hardening model. Following the
elasto-plastic modelling framework, this section comprises the individual model
components, in particular, the description within the elastic domain, the yield
criterion, the evolution of the plastic strains, the isotropic and the kinematic
hardening models, and the stress-dependent failure surface.

Preliminaries. The description of the solid skeleton is constrained to the small
strain regime. Consequently, the linear solid-strain tensor is given by

εS =
1
2
(graduS + gradTuS) −→ εS = εSe + εSp, (4)

which, in the framework of elasto-plasticity, is additively split into an elastic εSe

and a plastic part εSp. Following this, the solid volume fraction can be written
as, see [20],

nS = nS
0S(1 − εV

S ) = nS
0S(1 − εV

Sp)(1 − εV
Se) = nS

p (1 − εV
Se). (5)
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Therein, nS
0S denotes the initial solid volume fraction and εV

S = divuS = εS ·I
is the volumetric solid strain, which is split into its corresponding elastic part
εV
Se = εSe · I and plastic part εV

Sp = εSp · I. Moreover, with respect to the
assumed small strain regime, the effective solid stress tensor is approximated by
its linearised formulation σS

E , i. e. σS
E ≈ TS

E . Note that, as we proceed from a
continuum-mechanical framework, volumetric compression corresponds to neg-
ative volumetric quantities, i. e. σS

E · I < 0 and εV
S < 0, whereas volumetric

expansion corresponds to positive volumetric quantities, i. e. σS
E · I > 0 and

εV
S > 0. Within the elasto-plastic setting, the investigation, whether the current

stress state yields purely elastic, or elasto-plastic deformations, is made based on
the yield criterion F (σS

E), where the deformation is purely elastic for F < 0 and
elasto-plastic for F = 0. In a graphical representation, the yield limit, F = 0, is
depicted through the so-called yield surface in the principle stress space. It bounds
the elastic domain and, consequently, defines all elastic stress states. Once plastic
deformations are commenced, the load cannot increase any further unless the elas-
tic domain is altered through a suitable hardening mechanism. In this regard, in
order account for hardening or softening effects, the hardening model has to alter
the shape of the yield-surface (isotropic hardening) or translate the yield locus

Fig. 1. Illustration of the failure surface
∗
F and of the isotropic and kinematic hardening

concepts.
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through the principle stress space (kinematic hardening), where in any case the
failure surface bounds the ultimately allowable stress states, see Fig. 11.

In this regard, in order account for hardening or softening effects, the hard-
ening model needs to alter the shape of the yield-surface (isotropic hardening)
or translate the yield locus through the principle stress space (kinematic hard-

ening), where the failure surface
∗
F bounds the ultimately allowable stress states,

see Figure 1. Note that, following the findings of [13], the failure surface is not

constant but depends on the current stress state, i. e.
∗
F =

∗
F (σS

E). Proceeding
from the isotropic hardening model, the shape of the yield surface is altered,
e. g., via expansion or shrinkage, from its initial state F0 towards its current
state F̃ through a variation of the yield surface parameters. In case of kinematic
hardening, the yield locus is shifted from its initial position O towards O within
the principle stress space {σ1, σ2, σ3} via the back-stress tensor YS

E (shifting
tensor), viz.

σS
E = σS

E + YS
E . (6)

Combining both hardening concepts, the yield surface is simultaneously shifted
(kinematic hardening) and altered (isotropic hardening) simultaneously, where
the latter is described within the shifted principle stress space {σ1, σ2, σ3}.

Elastic domain. In order to capture the materially non-linear behaviour of
sand, in the geometrically linear regime, the following stress-strain relation based
on a non-linear elastic potential is introduced [13]:

σS
E :=

∂ΨSe

∂εSe
= 2μS εD

Se +
[

kS
0 + kS

1 (
εV
Se crit

εV
Se crit − εV

Se

− 1)
]

εV
Se I. (7)

Therein, εD
Se = εSe − 1/3 εV

Se I denotes the deviator of the elastic strain tensor.
Moreover, μS is the constant elastic shear modulus, kS

0 and kS
1 are volumetric

bulk moduli, and εV
Se crit is the critical volumetric strain, which is given by

εV
Se crit = 1 − nS

max

nS
P

, (8)

where nS
max is a material parameter defining the densest packing.

Yield surface. Within the framework of elasto-plasticity, the elastic domain is
bounded by an appropriate yield surface. For soils, or granular matter in general,
a suitable criterion is provided in [17]. It reads:

F =
√

Γ II
D

σ +
1
2
αI

2

σ + δ2I
4

σ + βIσ + ε + I
2

σ − κ = 0,

Γ = (1 + γ
III

D

σ

(II
D

σ )3/2
)m.

(9)

1 Herein, the stress tensors are interpreted as vectors in the principle stress space.
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Therein, Iσ, II
D

σ and III
D

σ are the first principal invariant of σS
E and the (negative)

second and third principal invariants of the effective stress deviator (σS
E)D all

given in the shifted principle stress space. The material parameter sets Sh =
(δ, ε, β, α, κ)T and Sd = (γ,m)T define the shape of the yield surface in the
hydrostatic (Sh) and deviatoric plane (Sd) (Fig. 2).

Fig. 2. Sketch of the evolution of the plastic flow in the hydrostatic (left) and deviatoric
plane (right).

Evolution of plastic strains. In order to evaluate the evolution of the plastic
strains, following the experimental findings of several authors, see, e. g., [26] or
[43], the concept of non-associated plasticity needs to be applied for frictional
geomaterials as an associated flow rule would overestimate the volumetric defor-
mations. In this regard, a suitable plastic potential, which allows for an adequate
description of the contractant and dilatant behaviour of the granular assembly
is introduced:

G =

√

ψ1II
D

σ +
1
2
α I

2

σ + δ2I
4

σ + ψ2β Iσ + ε I
2

σ. (10)

Therein, ψ1 and ψ2 are material parameters, which serve to relate the dilatation
angle νD to experimental data. The flow rule governing the plastic strain rate
(εSp)′

S reads

(εSp)′
S = Λ

∂G

∂σS
E

, (11)

Therein, Λ is the so-called plastic multiplier, which in the framework of vis-
coplasticity using the overstress concept of Perzyna [32] is determined from

Λ =
1
η

〈 F

σ0

〉r

, (12)

where
〈 · 〉 are the Macaulay brackets, η is the relaxation time, σ0 is the reference

stress and r is the viscoplastic exponent. Note that the overstress concept regu-
larises the ill-posed problem, for instance at the onset of shear bands, see [14] and
the references therein, through a careful choice of the parameters η and r.
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Isotropic and kinematic hardening. In granular assemblies, any macroscopi-
cally observed plastic deformation is a result of the microstructural grain motions
leading to macroscopic hardening or softening effects. In this regard, experimen-
tal observations have revealed an anisotropic material behaviour, see, e. g., [25] or
[35], which originates from the preceded loading history, see [5]. This anisotropy
is of particular importance upon the stress reversal under cyclic (dynamic and
quasi-static) loading conditions. An explanation is found by the similarities
between the established theory of dislocation movement in solid materials, e. g.
metals, known as the Bauschinger effect [3], and the grain motions and the
related grain-to-grain interactions. Additionally, a densification or loosening of
the granular assembly leads to isotropic hardening or softening, respectively,
which needs to be considered as well.

Fig. 3. Sketch of the combined isotropic-kinematic hardening concept considering the
failure surface.

Any hardening model needs to ensure that the current stress state is admis-
sible. In particular, it has to satisfy the yield criterion, i. e. F (pi) ≤ 0, and, in
addition, the failure criterion

∗
F = F (

∗
pi) ≤ 0 (13)

as the ultimate loading boundary, where
∗
pi ∈ {∗

α,
∗
β,

∗
δ,

∗
ε,

∗
γ} denotes the set of

material parameters governing the failure surface. In order to ensure the admis-
sibility of the computed stress state, the commonly used predictor-corrector
scheme, see [38], is used. Herein, a preliminary overstress is computed based on
the current strain increment (predictor step), which is, subsequently, checked
whether the current increment is elastic (F < 0) or elasto-plastic (F ≥ 0). In
case of plasticity, the governing equations of the plasticity model are solved such
that the resulting stress state lies on the yield surface (F = 0) (plastic corrector
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step), where, in the scope of the present formulation, the shape of the yield sur-
face is adjusted (isotropic hardening) and the yield locus is shifted through the
principle stress space (kinematic hardening). In the scope of the kinematic hard-
ening part, the translation direction is of particular interest. In this regard, Mróz
[29] proposed an approach based on the geometric requirement that the tangen-
tial plane on the yield surface, which is associated with the current stress state,
has to correspond to a tangential plane on the failure surface, thereby defining
a second stress state on the failure surface. The evolution of the plastic strain
is then governed by the vector defined through the current stress state and the
second stress state leading to neither an associated nor a plastic-potential-driven
non-associated flow rule. Note that the approach of [29] prevents an intersection
of the yield and failure surfaces.

The current model also proceeds from a stress-projection method, but in
contrast to [29], following a non-associated flow rule exploiting a plastic potential.
In particular, the projection is carried out utilising the current stress state σS

E

and the normalised flow direction N, which proceeds from the plastic potential
(10). The projected stress state

∗
σS

E , which lies on the failure surface, is then
found with the help of the scaling factor ζ, see Figure 3. In particular, following
the concept of the volumetric and deviatoric splitting, the projection is carried
out independently along the hydrostatic and the deviatoric direction via

(
∗
σS

E)V = σS
E + ζV NV , (

∗
σS

E)D = σS
E + ζDND, (14)

where the projected stress tensors (
∗
σS

E)V and (
∗
σS

E)D, the scalar multipliers ζV

and ζD and the normalised projection directions NV and ND are the corre-
sponding contributions in the hydrostatic and deviatoric direction, respectively.
The projection directions are computed through

NV =
1
3

sgn(GV )I with GV =
∂G

∂σS
E

· I, (15)

ND =
1

‖GD‖G
D with GD =

∂G

∂σS
E

− 1
3

(
∂G

∂σS
E

· I
)

I,

where sgn(·) = (·)/‖ · ‖ denotes the signum function with ‖(·)‖ =
√

((·) · (·))
being the Euklid ian norm. Exploiting the relations (14)1 and (14)2, ζV and ζD

can be computed2 through the requirement that the projected stresses have to
lie on the failure surface, i. e.

∗
F

(
ζV

) != 0 and
∗
F

(
ζD

) != 0. (16)

2 Note that under pure hydrostatic or deviatoric loading, the contributions of the
plastic flow in the deviatoric or hydrostatic direction, respectively, are not uniquely
defined due to ‖GD‖ = 0 and GV = 0, respectively. Consequently, arbitrary projec-
tion directions ND and NV are defined in this case in order to keep the formulation
computable. In this case, the scaling factors, ζV and ζD, do not contribute to the
hardening, see (18) and (19), due to vanishing plastic strain rates in the correspond-
ing directions.
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Consequently, the presented formulation always ensures the admissibility of the
resulting stress state. To make this point more clear, lets assume an invalid stress
state, i. e. where the current stress point lies outside the domain bound by the
failure surface. In this case, at the onset of plastic deformations, the scaling
factor ζ will be negative and the plastic strain increment, will be in the opposite
direction, thereby leading to a softening material behaviour.

Next, the isotropic and kinematic hardening laws are addressed. In this
regard, concerning the isotropic hardening, suitable evolution laws for the para-
meter subset pi ∈ {β, δ, ε, γ} of the yield surface F have been proposed by [15],
viz.

(pi)′
S = (pV

i )′
S + (pD

i )′
S = (

∗
pi − pi)[CV

pi (εV
Sp)

′
S + CD

pi ‖(εD
Sp)

′
S‖ ]

with pi(t = 0) = pi0,
(17)

which, however, are adopted to match the present mixed isotropic-kinematic
hardening concept and yield

(pi)′
S = (pV

i )′
S + (pD

i )′
S = ζV CV

pi(ε
V
Sp)

′
S + ζDCD

pi‖(εD
Sp)

′
S‖

with pi(t = 0) = pi0.
(18)

In both cases, the evolution equation (pi)′
S for the parameters pi is separated into

volumetric and deviatoric parts, (pV
i )′

S and (pD
i )′

S , which are driven by the cor-
responding plastic strain rates, (εV

Sp)
′
S and (εD

Sp)
′
S , together with the volumetric

and the deviatoric evolution constants, CV
pi and CD

pi . Moreover, pi0 denotes the ini-
tial values of the parameters pi. Evidently, the deviatoric part only governs plastic
hardening, whereas the volumetric part (pV

i )′
S can take positive or negative values

and, therefore, describes both hardening and softening processes [13].
The evolution of the kinematic back-stress tensor YS

E is based on the app-
roach of Armstrong & Frederick (AF) [1]. However, it has been modified to match
the present framework:

(YS
E)′

S = ζV (CV
0 − CV

1 |YSV
E |)(εV

Sp)
′
S I

+ ζD[CD
0 (εD

Sp)
′
S − CD

1 ‖(εD
Sp)

′
S‖YSD

E ].
(19)

Therein, (YS
E)′

S denotes the rate of the kinematic back-stress tensor. Further-
more, YSV

E = YS
E · I and YSD

E = YS
E − 1/3YSV

E I denote the volumetric and the
deviatoric part of the back-stress tensor, and |(·)| is the absolute value of (·).
Moreover, CV

0 and CV
1 , and CD

0 and CD
1 are the volumetric and the deviatoric

evolution constants, respectively. In contrast to a pure linear kinematic hard-
ening model, which, for instance, was proposed by [5], the nonlinear extension
in (19) gives a better representation of the material behaviour. The differences
between the linear kinematic, i. e. CV

1 = 0 and CD
1 = 0, and the AF hardening

model are schematically depicted in Fig. 4.
In particular, at the onset of yielding, the nonlinear part is initially inac-

tive. With ongoing (monotonic) loading it becomes more and more pronounced,
thereby slowing down the rate of the back-stress tensor. Upon load reversal,
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the back-stress tensor and its rate have opposite directions and, therefore, the
additional term increases the stress rate. For more details on the AF model, the
interested reader is referred, for instance, to the work of [9,10,24] or [31]. where,
however, the latter three in particular focus on its extension within the scope of
metal-plasticity.

A suitable model for the description of granular media needs to account for
the contract and dilatant properties of the granular assembly, which are, within
the current setting, driven through the plastic potential. In consequence, the used
hardening models adapt, in addition to the yield surface, the plastic potential
and, therefore, the direction of the plastic flow as well. The impact on the plastic
strain increment proceed from the isotropic and the kinematic hardening model
are qualitatively sketched in Fig. 5 (left) and (right), respectively.

Herein, both hardening models are subjected to the same loading scenario
starting with an isotropic compression to reach the stress state A and followed
up by an pure deviatoric load from A to C. At first, the attention is drawn
to the pure isotropic hardening model. Herein, the evolution of the volumetric
contribution of the plastic strain increment gradually changes from a contrac-
tant behaviour at A towards a dilatant behaviour at C, see Fig. 5 (left). In
contrast, in case of the kinematic hardening model, the volumetric part in the
plastic strain increment merely exhibits contractant and isochoric properties, see
Fig. 5 (right). Consequently, only the isotropic hardening part in the combined
isotropic-kinematic hardening model mimics the commonly observed contract-
dilatant property of granular matter under pure shear deformation.

Stress-dependent failure surface. To complete the model, the attention is
drawn to the stress-dependent failure surface. In this regard, the comprehensive
experimental investigations under monotonic quasi-static loading conditions car-

Fig. 4. Comparison between a linear kinematic hardening law and the model of
Armstrong and Frederick [1].
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Fig. 5. Comparison of the evolution of the plastic strains in case of pure isotropic (left)
and pure kinematic hardening (right).

ried out by [13] have revealed that the failure surface is not constant, but depends
on the hydrostatic stress state, i. e. on the confining pressure Iσ. In particular,
different confining pressures lead to slightly different granular configurations and,
consequently, to different grain movements upon loading. Therefore, at failure
the granular configuration and consequently, the corresponding stress states are
different. Following [13], the evolution of the stress-dependent failure surface is
conducted via

∗
ε(Iσ) =

∗
ε0(1 +

∗
Cε Iσ) with

∗
ε ≥ ∗

εlim, (20)

Therein,
∗
Cε is a constant evolution parameter of the failure surface, while

∗
ε0

theoretically defines the failure surface for the unloaded virgin material, which is
adjusted as small as possible but large enough for the smallest confining pressure
used in a triaxial experiment. The failure-surface limit is defined by

∗
εlim.

Fig. 6. Schematic sketch of stress path resulting in a not admissible stress state.
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Next, the behaviour of the plasticity model and, in particular, its interplay
with stress-dependent failure surface is elaborated in terms of a load-unload-
reload cycle. For this purposed a possible loading scenario as depicted in Figure

6 is considered. Note that, therein,
∗
FB and

∗
FE denote the failure surfaces asso-

ciated with stress states B and E, respectively. In the considered load case,
a soil specimen is subjected to a hydrostatic compression and a triaxial load
((O-A-B). Next, the specimen is unloaded and the hydrostatic stress level is
reduced (B-C-D) and, finally, the specimen is reloaded (D − E). Following the
considered load path, the stress path O-A-B causes a consolidation and, thereby
an load-path-associated granular configuration represented through a shift and
an expansion of the elastic domain through the kinematic and isotropic hard-
ening models. During the unloading stage B-C-D, the granular configuration
is mainly maintained. However, in the subsequent reload D-E, the stress state
violates the yield criterion, thereby representing the interlocked granular con-
figuration and, in consequence, allowing for stresses states violating the failure
criterion. However, once the applied load exceeds the yield limit, plastic deforma-
tions are commenced and the granular assembly rearranges such that granular
configuration and the current hydrostatic stress state match, which is represent
in the plasticity model by returning the current stress onto the failure surface.

Summarised solid-skeleton model. With the previous elaborations at hand,
two different solid-skeleton descriptions can be summarised, each composed of a
set of ordinary differential equations (ODE). In particular, the mixed isotropic-
kinematic hardening (IKH) model comprises the Eqs. (11), (12), (18), (19), (16)1
and (16)2 and reads

LIKH =

⎡
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The purely isotropic-hardening (IH) model, composed of the relations (11), (12)
and (17) is summarised as

LIH =

⎡
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⎢
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Note that, alternatively, (22)2 may be solved for Λ and inserted into (22)1, in
order to reduce the number of ODE within the local system on the one hand
and to allow for explicit time-discretisation schemes on the other hand.

3 Numerical Treatment

The present section briefly outlines the spatial and temporal discretisation meth-
ods as well as the associated solution procedure of the underlying problem. For
a more detailed insight into the numerical treatment of elasto-plastic porous
materials, the interested reader is referred to, e. g., [13] and references therein.

The spatial discretisation is based on the finite-element method (FEM),
thereby following a variational approach of Bubnov-Galerkin-type. Note that
the ansatz and test functions need to fulfil the inf-sup condition (Ladyshenskaya-
Babu ška-Brezzi (LBB) condition) [7] for the sake of a stable solution procedure.
In particular, the solid displacements uS and their corresponding test functions
are approximated by quadratic shape functions, whereas linear shape functions
are used for the pore pressure p and its associated test function. Addressing the
simulation of quasi-static process, the unconditionally stable backward (implicit)
Euler scheme, see e. g. [21], is used for the temporal discretisation.

The resulting system of a non-linear algebraic equations is composed of a
global system associated with the finite-element (FE) discretisation and a local
system related to the ODE of the elasto-plastic model. The coupled system is
solved iteratively through the Newton-Raphson method. To be more precisely,
in order to obtain an efficient solution strategy, the system is solved in a decou-
pled manner through a generalisation of the block Gauss-Seidel -Newton method,
thereby exploiting the block-structured nature of the coupled system. This pro-
cedure results in two nested Newton iterations, where at each global iteration
step, which seeks the solution to the primary variables, the local system is itera-
tively solved at first for the internal state variables with frozen primary variables.
Note that the solution of the local system is found, as usual in elasto-plasticity,
through the commonly used predictor-corrector scheme, see [38].

Following this, the discrete governing equations are implemented into the
coupled FE solver PANDAS, which is then linked to the commercial FE package
Abaqus via a general interface, see [36].
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Fig. 7. Geometry and loading of the triaxial test (left) and the deduced IBVP (right).

4 Simulation

The simulations address the investigation of the model responses under quasi-
static cyclic loading conditions of the pure isotropic and the mixed isotropic-
kinematic hardening model both in comparison to experimental data. In this
connection, at first, a triaxial test on a cylindrical sand sample (diameter: 0.1 m,
height: 0.1 m) subjected to slow cyclic load cycles is carried out, which will
serve as a reference for the subsequent simulations. Herein, on the one hand,
the isotropic hardening (IH) model with the material parameters depicted in
Appendix A, and, on the other hand, the mixed isotropic-kinematic hardening
(IKH) model with the parameters of Appendix B are used. Note that the material
constants of the IKH are, in contrast to the IH model, not found through an
calibration procedure. Instead, they are adapted from the parameters of the IH
model. Therefore, the present investigations merely serve as a proof-of-concept
rather than a validation of the material models.

The governing triaxial test and the deduced IBVP are depicted in Fig. 7. Note
that in the numerical model, the axial symmetry of the problem is exploited,
thereby simplifying the actual three-dimensional problem to a axial-symmetric
two-dimensional FE model, which is solely composed of a single axial-symmetric
finite element. The solid displacements normal to the symmetry lines (left and
bottom edge) are equal to zero, i. e. uS1 = uS2 = 0, whereas the edges associated
with the free surfaces of the specimen, i. e. the top and bottom edge, are free to
move and are perfectly drained, i. e. p = 0. The sample is subjected to a quasi-
static cyclic loading, through a prescription of the axial σa(t) and the radial
stresses σr(t). In particular, the confining pressure, i. e. σa(t) = σr(t) = 0.1 MPa,
is applied in the interval t ∈ [ 0 s, 600 s ] in a first step. Subsequently, the radial
stress is kept constant and the axial stress periodically increases and decreases
with an amplitude of Δσa = 0.05 MPa, see Fig. 8.

The evolution of the axial solid strain of the experiment, and the computed
responses of the IH and IKH model are depicted in Fig. 9. At first, the elabora-
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Fig. 8. Evolution of the axial σa(t) and
the radial stress σr(t) applied on the
cylindrical soil specimen.

Fig. 9. Evolution of the total axial
strain εa for the IH and the IKH
model in comparison to the experimen-
tal records.

tion of the experimental records is addressed. As illustrated by the evolution of
the axial strain, the subsequent loading-unloading loops alter the granular con-
figuration, thereby allowing for a gradual axial settlement of the top end of the
specimen. These findings are in agreement with the experimental observations
of other authors, see, e. g., [11] or [42]. Comparing the experimental observations
with the model responses, it can be seen that only the IKH model is capable of
predicting the axial settlement under the prescribed quasi-static loading condi-
tions. The predictions of the IKH model are in very good agreement with the
test result.

5 Conclusions

The present contribution addressed the simulation of granular assemblies under
quasi-static cyclic loading conditions, thereby exploiting the TPM and the elasto-
plasticity as suitable modelling frameworks. For the sake of a complete represen-
tation, the entire numerical model starting from the governing balance laws, over
the constitutive relations towards the numerical treatment has been presented.
In particular, two hardening models describing the solid-skeleton behaviour have
been elaborated, namely an isotropic and a mixed kinematic-isotropic harden-
ing model. Both formulations have been compared to experimental data, which
has been obtained from quasi-static cyclic triaxial tests. It has been shown that
the pure isotropic hardening model fails to mimic the axial settlement under slow
cyclic loading conditions. In contrast, the mixed isotropic-kinematic hardening
model was able to qualitatively reproduce the experimental observations at least
to some extent. However, it was also illustrated that the proposed model does not
reproduce the exact characteristics of the axial-strain evolution, i. e. the curvature
in the zigzag pattern. To trace back the origin of the mismatch, further experimen-
tal investigations are necessary to optimise the governing material parameters on
the one hand and to identify further physical processes, which might be essential
for the mimicking of the experimental observations on the other hand.
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Appendix A: Material Parameters of the IH Model

Following the DIN 18196 of the German Institute for Standardisation, the under-
lying granular material, in particular, the sand3 of the research unit FOR 1136
“GeoTech”, can be classified as closely graded sand with an average grain diam-
eter of d50 = 0.55mm, see Fig. 10. The density of an individual soil grain,
which corresponds to the realistic solid density of the overall aggregate, is
ρSR = 2650 kg/m2.

In order to identify the solid-skeleton material parameters associated with the
FOR1136 sand, the course of actions as described in [13] is followed.Herein, initially
several triaxial tests on cylindrical sand specimens (height: 0.1m, diameter: 0.1m)
havebeen carried out, fromwhich, subsequently, thematerials parameters are iden-
tified through a staggered identification scheme, In particular, at first, the elastic
shear modulus μS is determined straightforward from triaxial loading-unloading
loops and the compression-extension-ratio parameter

∗
γ of the failure surface is

found fromcompressionandextension experiments atdifferent confiningpressures.
Subsequently, several triaxial tests at different confining pressure, in particular,
σc,1 = 0.1MPa, σc,2 = 0.2MPa and σc,3 = 0.3MPa, have been carried out, where
the axial σa and radial stresses σr, the axial strain εa, and the volumetric strain εV

have been recorded. The material parameters are then found through a minimisa-
tion of the squared error between simulation and experiment, which is known as
Least-Squares optimisation method. In particular, a gradient-based constrained
optimisation is used, in which the Hessean matrix is approximated through the
BGFS (Broyden, Fletcher, Goldfarb, Shannon) procedure, see e. g. [39], and the
parameter constraints are considered via the sequential-quadratic-programming
(SQP) technique, see [40]. The identified solid-skeleton material parameters of the
research-unit sand FOR 1136 are summarised in Table 1.

Fig. 10. Microscopic picture of the soil grains (left) and grain size distribution (right)
of the sand of the research unit FOR1136.

3 The sand samples have been provided by the Institute of soil and rock mechanics
(Institut für Boden- und Felsmechanik, IBF) of the Karlsruher Institut of Technology
(KIT).
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Fig. 11. Comparison of the experimental data with the simulation results of the triaxial
tests at different confining pressures (left) and of the isotropic loading-unloading loop
(right).

A comparison between the simulation and the experiments for the triaxial
experiments at different confining pressures and for the isotropic compression
test are depicted in Fig. 11. As can been seen, the model responses are in a quite
good agreement with the experimental observations.

Appendix B: Material Parameters of the IKH Model

Proceeding from the material constants of the pure isotropic hardening (IH)
model, see Table 1, the governing parameters of the mixed isotropic-kinematic
hardening (IKH) model are guessed and the adjustments according to Table 2
are made.
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Table 1. Material parameters of the solid skeleton of the sand of the research unit
FOR1136.

Parameter Symbol Value Unit

Elastic parameters and solidity

Initial volume fraction nS
0S 0.6 -

Maximum volume fraction nS
max 0.623 -

Shear modulus μS 190 N/m2

Bulk modulus 1 kS
1 20 MN/m2

Bulk modulus 2 kS
2 47 MN/m2

Yield-surface parameters

Yield-surface parameter α 0.01 m2/MN

Yield-surface parameter κ 0.0001 m2/MN

Yield-surface parameter m 0.54 -

Initial yield surface

Yield-surface parameter δ0 0.0009 m2/MN

Yield-surface parameter ε0 0.1 m2/MN

Yield-surface parameter β0 0.05 -

Yield-surface parameter γ0 0.0 -

Failure surface

Yield-surface parameter
∗
δ 0.09 m2/MN

Yield-surface parameter
∗
ε0 0.01 m2/MN

Yield-surface parameter
∗
β 0.255 -

Yield-surface parameter
∗
γ 1.75 -

Failure-surface constant
∗
Cε 0.4 m2/MN

iso. hard. evolution constants

Volumetric constant CV
δ −93 m2/MN

Volumetric constant CV
ε −150 m2/MN

Volumetric constant CV
β −250 -

Volumetric constant CV
γ −0 -

Deviatoric constant CD
δ 23 m2/MN

Deviatoric constant CD
ε 200 m2/MN

Deviatoric constant CD
β 180 -

Deviatoric constant CD
γ 20 -

Plastic potential

Parameter 1 ψ1 1.3 -

Parameter 2 ψ2 0.53 -

Viscoplasticity

Reference stress 1 σ0 0.0001 MN/m2

Relaxation time η 0.001 s

Viscoplastic exponent r 0.001 s
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Table 2. Material-parameter adjustments of the solid skeleton for the mixed isotropic-
kinematic hardening (IKH) model.

Parameter Symbol Value (IH) → Value (IKH) Unit

Yield-surface parameters

Yield-surface parameter α 0.01 10−5 m2/MN

Yield-surface parameter κ 0.0001 10−6 m2/MN

Initial yield surface

Yield-surface parameter δ0 0.5 0.0009 m2/MN

Yield-surface parameter ε0 0.01 0.1 m2/MN

Yield-surface parameter β0 0.003 0.05 -

Failure surface

Yield-surface parameter
∗
δ 0.09 0.0005 m2/MN

Yield-surface parameter
∗
ε0 0.01 0.00001 m2/MN

Yield-surface parameter
∗
β 0.255 0.003 -

iso. hard. evolution constants

Volumetric constant CV
δ −93 −1500 m2/MN

Volumetric constant CV
ε −150 −1500 m2/MN

Volumetric constant CV
β −250 0 -

Deviatoric constant CD
δ 23 −1500 m2/MN

Deviatoric constant CD
ε 200 −1500 m2/MN

Deviatoric constant CD
β 180 0 -

Deviatoric constant CD
γ 20 0 -

kin. hard. evolution constants

Volumetric constant CV
0 - 0 m2/MN

Volumetric constant CV
1 - 0 m2/MN

Deviatoric constant CD
0 - 300 m2/MN

Deviatoric constant CD
1 - 50 m2/MN

Plastic potential

Parameter ψ1 1.3 0.001 -

Parameter ψ2 0.53 1.0 -
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Abkühlen und durch oftmals wiederholte Beanspruchungen. Mitteilungen aus
dem mechanisch-technischem Laboratorium 13, Königlich Bayerische Technische
Hochschule München (1886)



214 W. Ehlers et al.

4. Biot, M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid.
J. Acoust. Soc. Am. 28, 168–178 (1956)

5. de Boer, R., Brauns, W.: Kinematic hardening of granular materials. Ingenieur-
Archiv 60, 463–480 (1990)

6. de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung
auf bodenmechanische Probleme. Forschungsberichte aus dem Fachbereich Bauwe-
sen, Heft 40. Universität-GH-Essen (1986)

7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer,
New York (1991)

8. Casagrande, D.R.: Characteristics of cohesionless soils affecting the stability of
slopes and earth fills. J. Boston Soc. Civil Eng. 23, 13–32 (1936)

9. Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplastic-
ity. Int. J. Plast 5, 247–302 (1989)

10. Chaboche, J.L.: On some modifications of kinematic hardening to improve the
description of ratcheting effects. Int. J. Plast 7, 661–678 (1991)

11. Danne, S., Hettler, A.: Experimental strain response-envelopes of granular materi-
als for monotonous and low-cycle loading processes. In: Triantafyllidis, T. (ed.)
Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77,
pp. 229–250. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7 12

12. Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W.,
Bluhm, J. (eds.) Porous Media: Theory, Experiments and Numerical Applications,
pp. 3–86. Springer, Berlin (2002)

13. Ehlers, W., Avci, O.: Stress-dependent hardening and failure surfaces of dry sand.
Int. J. Numer. Anal. Meth. Geomech. 37, 787–809 (2013)

14. Ehlers, W., Graf, T., Ammann, M.: Deformation and localization analysis of par-
tially saturated soil. Comput. Methods Appl. Mech. Eng. 193, 2885–2910 (2004)

15. Ehlers, W., Karajan, N., Wieners, C.: Parallel 3-d simulation of a biphasic porous
media model in spine mechanics. In: Ehlers, W., Karajan, N. (eds.) Proceedings
of the 2nd GAMM Seminar on Continuum Biomechanics, pp. 11–20. Report No.
II-16 of the Institute of Applied Mechanics (CE), University of Stuttgart (2007)
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